
M. Tech. (Computer Science) Dissertation Series

Critical Point Analysis of The Modified
Particle Swarm Optimization Model

A dissertation submitted in partial fulfillment of the requirements of
M.Tech (Computer Science)

degree of Indian Statistical Institute, Kolkata.

by

Arindam Pal

under the supervision of

Prof. Swagatam Das

Electronics and Communication Sciences Unit
Indian Statistical Institute, Kolkata

India
July 13, 2015



Declaration

I, Arindam Pal , CS1310,registered as a student of M. Tech (CS),Indian

Statistical Institute, Kolkata do hereby submit my Dissertation Report entitled

“Critical Point Analysis of The Modified Particle Swarm Optimization

Model”. I certify

1. The work contained in this Dissertation Report is original and has been done

by me under the guidance of my supervisor.

2. The material contained in this Dissertation Report has not been submitted

to any University or Institute for the award of any degree.

3. I followed by guidelines provided by the Institute in preparing the report.

4. Whenever I have used materials (data, theoretical analysis, figures, and text)

from other sources, I have given due credit to them by citing them in the text

of report and giving their details in the bibliography.

Arindam Pal

CS1310

July 13, 2015

1



Acknowledgments

First and foremost I would like to thank my mentor Prof. Swagatam Das,

ECSU , ISI Kolkata. He is an idol of mine from my adolescent days and source of

constant inspiration. I thank him for treating all my mistakes and mischief with

great affection and show me the way to success. All I wish in life , is to be someone

like him.

I would also like to thank Prof. Pinakpani Pal, ECSU , ISI Kolkata, who

evaluated my work during the mid term evaluation. He is a man of unlimited

energy and it is his remarks and constant support which helped me overcome all

the stress.

I would also like to thank ISI Kolkata, for providing me the opportunity to be

acquainted with so many great academicians and be inspired from them. I also

thank my classmates and family for supporting me all the way I needed. This is

some text to be centred vertically.

2



Ceritificate of Approval

This is to certify that this thesis titled ”Critical Point Analysis of Particle

Swarm Optimization” submitted by Arindam Pal , embodies the work done

under my supervision.

Dr. Swagatam Das

Electronics and Communication Sciences Unit,

Indian Statistical Institute,

Kolkata - 700 108

3



Abstract

Although different types of evolutionary algorithms for optimization exist which

work efficiently, little is known about their mathematical foundations. This current

work tries to gain an insight over that which will help understanding the inherent

structure, thereby devising more and better algorithms. This case can be compared

to the case of Strassen’s Algorithm for Matrix Multiplications, which is recently

found to be only one case of a broader algorithm.

The current work shows that a modified model of PSO dynamics can be lin-

earized and the behavior of the linearized model around the equilibrium point, is

analyzed via simulations. A solution to the non linear dynamics of PSO is also

obtained. And calculation of settling time for the linearized model is also obtained.

4



Contents

1 Introduction 10

1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Stochastic Optimization . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Swarm Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 State Variables and State Equations . . . . . . . . . . . . . . . . . . 14

1.8 Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Introduction to PSO . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10.1 Nature of PSO parameters: . . . . . . . . . . . . . . . . . . 18

1.10.2 Random numbers: . . . . . . . . . . . . . . . . . . . . . . . 18

1.10.3 Clamping at maximum values: . . . . . . . . . . . . . . . . . 18

1.10.4 Reinitialization of particles: . . . . . . . . . . . . . . . . . . 18

2 Related Work 20

2.1 Initial Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Work by Kadirkamathanan: . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Work by Mart́ınez and Gonzalo . . . . . . . . . . . . . . . . . . . . 22

2.4 Contribution of this thesis: . . . . . . . . . . . . . . . . . . . . . . . 22

3 PSO Algorithm 24

4 Linearization and Equilibrium Points of PSO 29

4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5



4.2 Linearization of the system . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Finding ranges of ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Case 1: λ1 6= λ2 6= 0 . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Case 2: both eigenvalues complex . . . . . . . . . . . . . . . 37

4.3.3 Case 3: Non Zero multiple eigenvalue . . . . . . . . . . . . . 38

4.3.4 Table of possible cases . . . . . . . . . . . . . . . . . . . . . 39

4.3.5 Summarization: . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Simulations 41

6 Solving Non Linear System Dynamics 44

6.1 Expressions of global and local bests: . . . . . . . . . . . . . . . . . 49

6.1.1 Solitary Particle: . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.2 Exponential Variation of r(t): . . . . . . . . . . . . . . . . . 50

6.1.3 No variation of r(t) i.e. constant value: . . . . . . . . . . . . 51

6.1.4 Expression for global best particle: . . . . . . . . . . . . . . 51

6.1.5 Expression for local best particle: . . . . . . . . . . . . . . . 52

6.2 Combined Expression incorporating both L(t) and g(t): . . . . . . . 54

7 Lyapunov Stability 57

7.1 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Lyapunov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Lyapunov Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 Definiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 Positive Definite & Semidefinite Functions . . . . . . . . . . 59

7.4.2 Negative Definite & Semidefinite Function . . . . . . . . . . 59

7.4.3 Indefinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.5 Rephrased Lyapunov Theorem . . . . . . . . . . . . . . . . . . . . . 59

7.6 Generation of Lyapunov Functions . . . . . . . . . . . . . . . . . . 60

7.7 Standard Method of Generating Lyapunov functions for linear systems 60

7.8 Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.9 Calculation of Settling time of Linearized PSO dynamics . . . . . . 64

6



8 Conclusion and Future Work 66

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7



List of Figures

1.1 Different type of optimization algorithms[1] . . . . . . . . . . . . . . 13

3.1 Illustration of PSO , Iteration 5: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 27

3.2 Illustration of PSO , Iteration 20: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 27

3.3 Illustration of PSO , Iteration 30: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 27

3.4 Illustration of PSO , Iteration 45: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 28

3.5 Illustration of PSO , Iteration 55: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 28

3.6 Illustration of PSO , Iteration 70: a = 0.15, b = 0.25, ω = −0.05,

number of particles = 30 , dimension = 1 . . . . . . . . . . . . . . . 28

4.1 variation of ω for different fixed points . . . . . . . . . . . . . . . . 40

5.1 Stable Node: a = −0.15, b = 0.25, ω = 0.1 . . . . . . . . . . . . . . . 41

5.2 Stable Focus: a = −0.15, b = 0.25, ω = 0.85 . . . . . . . . . . . . . . 41

5.3 Stable Node: a = 0.15, b = 0.25, ω = 1 . . . . . . . . . . . . . . . . . 42

5.4 Limit Cycle: a = −0.15, b = 0.25, ω = 1 . . . . . . . . . . . . . . . . 42

5.5 Limit Cycle: a = 1, b = 0.5, ω = 1 . . . . . . . . . . . . . . . . . . . 42

5.6 Saddle Point, only a is negative: a = 0.15, b = −0.25, ω = 0.8 . . . . 43

5.7 Saddle Point, both a and b are negative: a = −0.15, b = −0.25, ω =

0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.8 Saddle point: a = 0.15, b = −0.25, ω = 1 , shows that saddle point

nature prevails over limit cycle . . . . . . . . . . . . . . . . . . . . . 43

8



7.1 Level surfaces of Lyapunov Function . . . . . . . . . . . . . . . . . 58

9



Chapter 1

Introduction

1.1 Prologue

Throughout our lives, we make decisions. In almost all the cases , the goal of the

decisions we take, is to maximize our gains and minimize costs. These kind of

scenarios give birth to a particular kind of problems, namely optimization prob-

lems. Although there are several kind of existing techniques for solving these kind

of problems, e.g. gradient descent , simplex (for linear optimization problems)

etc , Evolutionary algorithms are new players in the market and has shown ex-

tremely good performance for different kind of difficult problems. Particle Swarm

Optimization is one such evolutionary algorithm which employ several candidate

solutions and pick the best one from them, through extensive search of the feasibil-

ity region of the problem. Although there exists a plethora of research work going

on all over the world showing extremely good results, the mathematical modeling

of these class of algorithms is still not well established. The present work deals

with the mathematical formulation of such algorithms and sees the Evolutionary

algorithms from a viewpoint based on Control Systems.

1.2 Optimization Problems

Optimization problems involve selection of the best element , depending on some

criteria, from some set of available alternatives.

10



An optimization problem may be represented as:

min
x

(f(x) : A→ <) (1.1)

where,

A = {x|gi(x) ≤ ai}

A formulation like the above is called an optimization problem OR a mathematical

programming problem. Here x is a point in n-dimensional Euclidean space i.e. a

vector. The function f in this case is called the objective function , or in case

of minimization, loss or cost function or in case of maximization, called utility or

fitness function, or in certain cases , energy function or energy functional.

The inequalities gi(x) ≤ ai are called the constraints. The possible candidates

which satisfy the constraints or criteria are said to be feasible solution and the

ensemble of them , is called the feasible set. Thus, a point in that set is called a

feasible solution.

A feasible solution that maximizes (minimizes) the objective function, is called

an optimal solution.

1.3 Convex Optimization

A convex set S is a set of real numbers which obeys the following property

n∑
i=1

uiλi ∈ S

where,

r > 1

u1, u2, . . . , un ∈ S
n∑
i=1

λi = 1

λi > 0

11



And a function f : S → < is convex if it follows the following

f(λ1s1 + λ2s2 + · · ·+ λnsn) ≥ λ1f(s1) + λ2f(s2) + · · ·+ λnf(sn) (1.2)

where

s1, s2 . . . sn ∈ S
n∑
i=1

λi = 1

λi > 0

So, convex optimization deals with the problems where both the objective and

constraints are convex functions. Many of the real life problems do not involve

convex optimization problems. Thus most of the nature inspired algorithms are

primarily concentrated on non convex optimization problems.

1.4 Stochastic Optimization

Stochastic Optimization problems are those which involve random variables in

their procedures. The random variables can either appear in the formulation of

objective functions, or even in the constraints or maybe both. Some methods in-

volve randomness in the search process to accelerate performance. These methods

include simulated annealing[21] , swarm algorithms and genetic algorithms [14].

1.5 Metaheuristics

A metaheuristic is a procedure which helps to find a partial search method for

providing a sufficiently good solution of an optimization problem. They are most

helpful in case of problems where the information about the problem is incomplete

or the computational resources are pretty limited. A special category of meta-

heuristics is where the collective behavior of a population of agents are considered.

This category of metaheuristics is called Swarm Intelligence.

12



1.6 Swarm Algorithms

Swarm algorithms employ the idea of a population of droids working while inter-

acting with each other , and also the environment. The behavior of the droids

are generally random , and they follow very simple rules. Example of Swarm Al-

gorithms are ant colonies, flocks of birds, schools of fishes etc. Particle Swarm

Optimization is an example of a swarm algorithms.

Figure 1.1: Different type of optimization algorithms[1]

13



1.7 State Variables and State Equations

Dynamical Systems are generally modeled by a finite number of coupled 1st order

Differential Equations i.e.

ẋ1 = f1(t, x1, x2, . . . u1, u2 . . . )

ẋ2 = f2(t, x1, x2, . . . u1, u2 . . . )

...

ẋn = fn(t, x1, x2, . . . u1, u2 . . . )

where,

ẋi =
dxi
dt

ui = input variables

We call the variables xi State Variables and they are associated with the memory

the dynamical system has of its past.

Using Vector notations to represent these equations in compact form,

ẋ = f(t, x, u) (1.3)

14



where,

x =



x1

x2

. . .

xn



u =



u1

u2

. . .

un



f(t, x, u) =



f1(t, x, u)

f2(t, x, u)

. . .

fn(t, x, u)


We call the equation above the State Equation and x , the state variable and u

the input. The state of a system, thus means the set of real numbers required to

completely specify it in the state space.

In some cases, another equation,

y = h(t, x, u) (1.4)

is associated with the 1.3, which defines an output vector that consists of those

particular variables according to particular interests. Which means, choice of

output variables is not fixed and can be done according to the need of the problem.

We call equation 1.4 an output equation and equations 1.3 & 1.4 together as

state space model, or simply the state model.

1.8 Autonomous Systems

If the state equation exists without explicit presence of an input u , which is

ẋ = f(t, x) (1.5)

15



we call equation 1.5 the unforced state equation.

An unforced state equation does not mean, that input to the system occurs

with a value of zero, which means no input is there. This may so happen that the

input is a function of time, state variables , or even both.

Let

u = g(t, x)

Substituting u in equation 1.3 ,

(̇x) = f(t, x, u)

⇒ẋ = f(t, x, g(t, x))

⇒ ẋ = φ(t, x) (1.6)

A special case of equation 1.6 arises when the function φ doesn’t depend ex-

plicitly on time. i.e.

ẋ = φ(x) (1.7)

In this case, the system is said to be autonomous or time invariant.

Thus, an autonomous system is a dynamical system that doesn’t depend on

time and also not explicitly on the input to the system. It does, however, solely

depend on the system.

1.9 Equilibrium Points

One of the most important concepts in case of state equations is of equilibrium

points. A point x = x∗ is said to be an equilibriuk point of ẋ = f(t, x) if whenever

the state of the system starts at x = x∗, it will remain at x∗ for all future time. In

case of ẋ = f(x), the equilibrium points are real roots of the equation f(x) = 0.

An equilibrium point can be isolated, i.e there are no other equilibrium points

in its vicinity, or there could be a continuum of equilibrium points.

16



1.10 Introduction to PSO

Kennedy and Eberhart [18] introduced the concept of function-optimization by

means of a particle swarm in 1995. Currently the basic PSO and its variants

constitute one of the most well-known families of global optimizers over real pa-

rameter space. In PSO, each trial solution is modeled as a particle and several such

particles collectively form a swarm. Particles fly through the multi-dimensional

search space following a typical dynamics in search of the global optima. At any

particular instance, each particle has a position and a velocity. At the beginning, a

population of particles is initialized with random position-vectors marked by xi(0)

, and random velocities as vi(0). Each particle in the swarm adapts its search

pattern by learning from its own experience as well as from other particles’. A

particle has the tendency to move towards a better search area with a definite

velocity determined by the information collected by its own self and the other

members of the swarm over the course of the search process.At time step t + 1,

the algorithm updates the positions as

vi(t+ 1) = ω.vi(t) + a.rand1.(li(t)− xi(t)) + b.rand2.(g(t)− xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1)

where,

ω = inertia factor

li(t) = best position observed by ith particle

g(t) = best position observed by the swarm of particles

a, b = acceleration coefficients reflecting the weighting of stochastic acceleration

terms that pull each particle toward particle best and global best positions

The first term of the velocity updation formula represents the inertial velocity of

the particle. The attractors li(t) and g(t) are not fixed positions. Rather they are

17



also updated through the iterations.

1.10.1 Nature of PSO parameters:

The terms a and b are termed as “self-confidence” and “swarm confidence”. These

terminologies are due to Venter and Sobieski[33].These terminologies provide an

insight from a sociological standpoint. Since the coefficient a has a contribution to-

wards the self-exploration (or experience) of a particle, we regard it as the particle’s

self-confidence. On the other hand, the coefficient b has a contribution towards

motion of the particles in global direction, which takes into account the motion

of all the particles in the preceding program iterations, naturally its definition as

“swarm confidence” is apparent.

1.10.2 Random numbers:

rand1 and rand2 stand for uniformly distributed random numbers from the interval

(0, 1). They contribute to the stochastic nature of the algorithm.

1.10.3 Clamping at maximum values:

A particle’s velocity may be optionally clamped to a maximum value vmax =

[v1
max, v

2
max, . . . , v

D
max].If the velocity of the particle, at d-th dimension vd exceeds

vdmax , specified by the user, then that value can be assigned to the nearest boundary

value, or the value can be generated afresh within the limits. The clamping of the

values of the velocities is generally done via:

vd = sign(vd) ∗ vmax

where,

sign(x) =
|x|
x

1.10.4 Reinitialization of particles:

A similar kind of treatment is done in case the particles get out of the bound that

provided by the user i.e. they leave the search space. In that case, the particles

who leave , are reinitialized afresh. By reinitialization, we mean, they are again

18



assigned positions and velocities at random and made to fly the search space from

scratch.

19



Chapter 2

Related Work

Particle swarm optimization is widely known due to its wide application in opti-

mization domain. Mathematical analysis of the dynamics of PSO has attracted a

good deal of research interest over the last decade and some comprehensive sur-

veys on the research on and with PSO can be found in [19][25][24][5] The research

efforts began with treatments relying on a number of simplifying, e.g. a single

and isolated particle, stagnation (i.e. the local and globally best positions does

not change with time), and deterministic conditions (no random number used for

velocity updation).However, gradually more and more complexities were added to

the particle dynamics and the analyses were undertaken by using more sophisti-

cated mathematical tools.

2.1 Initial Work

The first analytical model of a single particle moving deterministically towards

fixed attractors was put forward by Ozcan and Mohan in [26]. In [27], the work was

extended to cover multiple, multi-dimensional particles and the authors demon-

strated that a particle following the deterministic PSO dynamics describes a sinu-

soidal trajectory with random amplitude and frequency.

The first stability analysis of the simplified PSO dynamics was undertaken by

Clerc and Kennedy [10], who considered similar simplifications as Ozcan and Mo-

han did. Following this model, the state-vector of a particle consists of its velocity

and position and can be determined by finding the eigenvalues and eigenvectors of

the state transition matrix. Clerc and Kennedy studied stable and limit cyclic be-

20



havior of the dynamics for the settings of appropriate values to its parameters and

also added a new component, called ‘constriction factor’ to the velocity updation

formula for PSO, taking a que from their analysis.

F van den Bergh undertook an independent theoretical analysis of the particle

swarm dynamics and studied the particle trajectories under different conditions in

his Ph. D thesis [32], published in the same year (2002). Blackwell [3] extended

Clerc and kennedy’s model, where the particles were allowed to interact and change

their personal bests, and showed that under restrictive assumptions, the spread

of the swarm in space decreases exponentially. Brandstätter and Baumgartner [4]

related the PSO model of Clerc and Kennedy [10] with a damped mass-spring

oscillator, making it possible to rewrite the model using the notions of damping

factor and natural frequency of vibration. Trelea [31] undertook the analysis of a

four-parameter family of particle models and identified regions in the parameter

space where the model exhibits qualitatively distinct behaviors (stability, harmonic

oscillations, or Brownian motion). Emara and Fattah [11] performed a similar

stability analysis of the PSO dynamics in continuous time domain. Campana

et al. [6], [7] modeled particles as a discrete, linear, and stationary dynamical

system with no randomness and were able to formally express the free and forced

responses.

2.2 Work by Kadirkamathanan:

Kadirkamanathan et al. [17] undertook a more generalized stability analysis of

particle dynamics in presence of stochasticity, based on Lyapunov stability theo-

rems. The authors derived stability conditions by regarding the PSO equations as

a time-invariant linear second-order dynamic model, but did not make any general

recommendations concerning the parametric set-up of PSO. Based on the analy-

sis of [17], in [29] Samal et al. investigated an optimal parameter setting for PSO

based on a closed loop stability analysis. The authors conducted experiments with

21 numerical benchmarks and concluded that the parameter settings ω= 0.6,a=

0.103 and b = 2.897 provide the best results. Jiang et al. [16] undertook a conver-

gence analysis of PSO in presence of randomness, based on the stochastic process

21



theory. The authors showed that each particle will converge to the global best

position found by the swarm for a certain range of parameter settings; however,

they did not establish that the global best position will actually correspond to

the optimum of the optimization problem. Recently Poli [28] analyzed the char-

acteristics of a PSO sampling distribution and explained how it changes over the

generations, in presence of stochasticity and during stagnation.

2.3 Work by Mart́ınez and Gonzalo

Fernandez-Mart́ınez and Garćıa Gonzalo [23] derived a general continuous form

of the PSO-dynamics(the ’GPSO’ model), where they used an infinitesimal time

interval ∆t instead of the unity time interval originally used for the velocity and

position update of PSO. They analyzed the deterministic and stochastic stability

regions and their respective asymptotic velocities of convergence as a function of

the time step ∆t and the GPSO parameters. Recently the same authors undertook

a very realistic stochastic analysis of the linear continuous and the generalized PSO

models [12] using the theory of stochastic difference and differential equations for

the most general case: transient solutions with a stochastic centre of attraction.

Based on a statistical interpretation of the PSO model, Chen and Jiang [9] inves-

tigated the effect of particle interaction by considering the social-only model and

derived the upper and lower bounds of the expected particle norm. Sudholt and

Witt [30] theoretically investigated the run-time of a binary PSO for optimizing

pseudo-Boolean functions. Gao and Xu proposed a new particle swarm optimizer

with its global convergence behavior in 2011 [13]. Chen and Li also proposed a

new particle swarm optimizer called PSO-CREV in 2007 [8], they mathematically

tried to prove the exploration and convergence of their algorithm.

2.4 Contribution of this thesis:

Current work analyses and generalizes the PSO dynamics in continuous time do-

main following the thread of Fernandez-Mart́ınez and Garćıa Gonzalo [23] A basic

dynamical model is obtained by means of linearization process around a critical

22



point.The notion of critical points and their nature of stability are also introduced.

The conditions for stability of system , depending on the parametric values are ob-

tained and justified, and thus the stable zone in the parametric space is calculated.

Later on a detailed expression corresponding to the solution of the dynamics is

obtained. Furthermore, it is shown that the dynamics shows similar nature irre-

spective of the simplifying assumptions made. At the end, concepts of Lyapunov

stability is introduced in case of PSO dynamics, and it is shown , it is possible to

calculate the settling time of a PSO dynamics , given initial conditions and proper

Laypunov functions.

The thesis is organized as follows:

in Chapter 3, the PSO algorithm is elaborately explained, with help of simple

examples. In Chapter 4 , the dynamics is obtained along the line of Mart́ınez and

Gonzalo [23] and linearized to study the nature of the system near the equilibrium

points. Chapter 5 consists of the simulation results which prove the claims stated.

Chapter 6 mathematically obtains an expression of the whole PSO system , without

any assumptions, and further Chapter 7, talks about Lyapunov stability and its

application in case of PSO dynamics and finally Chapter 8 shows possible options

of future works and thus concludes the thesis.

23



Chapter 3

PSO Algorithm

As the name suggests , this kind of optimization technique works with the help of a

swarm of ‘particles’. Given an optimization problem and the range of its solutions

, a number of candidate solutions are chosen randomly from the range specified.

Associated with each of the solutions, are a position and a velocity. The ‘position’

indicates where the particle does reside on the search space i.e. the range specified

previously, and the ‘velocity’ dictates where the particle is going to move in the

next iteration.

As an example, suppose we need to find out the minimum value of the quadratic

function, x2, where the search space is all over the real set. We randomly choose

10 candidate solutions. Suppose they are as follows:

x = -5 -0.5 7 5 19 -43 32 1 0.005 0.45

f(x) = x2 25 0.25 49 25 271 1849 1024 1 5 ∗ 10−4 0.2025

We call the ensemble of these candidate solutions a swarm and call each one of

them a particle. As we can clearly see, the least value of x2 occurs when x = 0.005

. So, currently the value of x giving the best value of the objective function ,

is x = 0.005. Thus, we call this value of f(x) , the global best value and the

corresponding value of x , the global best position.

Now we are not sure that whether the best position seen so far , is optimal

or not, i.e. in this case whether 0.005 is actually giving the best solution for the

optimization problem taken into consideration. Thus we try to randomly modify

these solutions, and check if some modified solutions gives better results or not. So,

we define something called ’velocity’ and add that up with the candidate solutions.

Each of the candidate solutions are going to have one velocity for themselves.

24



This velocity is determined by the global best position and the local best position

obtained until the previous iteration, and determines how much the position is

going to change in case of the current iteration from the previous ne. Hence the

name velocity.

Velocity in current iteration is computed by adding up velocity in previous

iteration, difference between local best and position in previous iteration, and

difference between global best and position in previous iteration , all scaled up by

some parameters.

Mathematically,

V (t+ 1) = ω.V (t) + a.rand1.(l(t)− x(t)) + b.rand2.(g(t)− x(t)) (3.1)

So, the position in the next iteration becomes,

x(t+ 1) = x(t) + V (t+ 1) (3.2)

So, in the current case , the particles are all 1-dimensional and holding only 1

real value. The choice of the scaling up parameters, e.g.a, b, ω, are choices of the

user. However, not every set of values of the parameters will end up producing

satisfactory results for the algorithm. This problem is discussed in the current

work.

Having a definite set of parameters in mind , we can tackle the problem of

finding min in case of f(x) = x2 , starting with the initial values of the particles

already stated. Let’s choose a = 0.5 , b = 0.7 & ω = 0.8.

Now , the next job is to assign a set of values of velocities to the particles and

let’s assume , the velocities , randomly assigned within a random boundary of

(−5, 5) are as follows:

x = -5 -0.5 7 5 19 -43 32 1 0.005 0.45

f(x) = x2 25 0.25 49 25 271 1849 1024 1 5 ∗ 10−4 0.2025

v = 3.30 0.85 0.49 4.17 -2.14 2.57 2.53 -1.19 0.67 -4.24

According to equations 3.1 & 3.2 stated above , the next values the particles

25



are going to take is, putting the values of parameters,

x(t+ 1) = x(t) + ω.V (t) + a.rand1.(l(t)− x(t)) + b.rand2.(g(t)− x(t))

⇒ x(t+ 1) = x(t) + 0.8 ∗ V (t) + 0.5 ∗ rand1.(l(t)− x(t)) + 0.7.rand2.(g(t)− x(t))

So, the table now becomes

x = -5 -0.5 7 5 19 -43 32 1 0.005 0.45

f(x) = x2 25 0.25 49 25 271 1849 1024 1 5 ∗ 10−4 0.2025

v(t) = 3.30 0.85 0.49 4.17 -2.14 2.57 2.53 -1.19 0.67 -4.24

x(t+ 1) = 0.91 0.51 2.81 5.07 4.86 -12.82 13.10 -0.60 0.54 -3.23

It’s seen that all the particles now have values coming significantly closer to

0.005, and in successive iterations, it will come more so. But , the particle with

value 0.005 itself has moved to 0.54. The reason behind this is the localbest and

globalbest attractors are compelling the particles to move in the direction towards

the attractors in action. The initial position of the initial global best ,although

dismantled initially, will be restored in the subsequent iterations. This is shown

in the figures in the next page. These figures graphically show how the PSO

algorithm converges to find the best solution. Although initially all particles are

scattered in the search space, eventually they come to an extremum, where they

all have the same local best, global best and position, which is the solution to the

problem.

26



Figure 3.1: Illustration of PSO , Iteration 5: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

Figure 3.2: Illustration of PSO , Iteration 20: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

Figure 3.3: Illustration of PSO , Iteration 30: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

27



Figure 3.4: Illustration of PSO , Iteration 45: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

Figure 3.5: Illustration of PSO , Iteration 55: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

Figure 3.6: Illustration of PSO , Iteration 70: a = 0.15, b = 0.25, ω = −0.05, number of particles
= 30 , dimension = 1

28



Chapter 4

Linearization and Equilibrium

Points of PSO

4.1 Analysis

From the idea of GPSO by Gonzalo and Martinez, let’s start with the incremental

PSO equation i.e.

vi(t+ ∆t) = (1− (1− ω).∆t).vi(t) + a.rand1.∆t.(li(t)− xi(t)

+ b.rand2.∆t.(g(t)− xi(t)

xi(t+ ∆t) = xi(t) + vi(t+ ∆t)∆t

(4.1)

where,

• xi(t) = position of ith particle at time instant t

• vi(t) = velocity of ith particle at time instant t

• li(t) = local best OR particle best of ith particle at time instant t

• g(t) = global best of the swarm at time instant t

• ∆t = any time interval

• rand1 & rand2 = two uniformly generated random numbers in the range (0, 1)

• a, b, w = real constants

29



From equation 4.1,

vi(t+ ∆t) =
xi(t+ ∆t)− xi(t)

∆t
vi(t+ ∆t)− vi(t)

∆t
= −(1− ω).vi(t) + a.rand1.(li(t)− xi(t))

+ b.rand2.(g(t)− xi(t))

(4.2)

Taking limits as lim
∆t→0

, from equation 4.2 : (discrete domain to continuous domain)

vi(t) =
d

dt
(xi(t)) = ẋi(t)

v̇i(t) = −(1− ω).vi(t) + a.rand1.(li(t)− xi(t)) +b.rand2.(g(t)− xi(t))

(4.3)

By definition, a stochastic process or random process is a collection of random

variables, which represents the evolution of some system of random values over

time.

Thus, xi(t) & vi(t) , being random variables , and initialized randomly , both

constitute stochastic processes. So the expectation or mean of these processes

should also satisfy the equations stated above. So, applying the expectation oper-

ator on the equation 4.3 , we get,

E( ˙xi(t)) = E(vi(t))

⇒ d

dt
[E(xi(t))] = E(vi(t))

⇒ d

dt
µx(t) = µv(t)

⇒ ˙µx(t) = µv(t)

(4.4)

30



where,

E(xi(t)) = µx(t)

E(vi(t)) = µv(t)

And, also by linearity & multiplicity property of expectation operator, from equa-

tion 4.3

E( ˙vi(t)) = −(1− ω).E(vi(t)) + a.E(rand1).E(li(t)− xi(t))

+ b.E(rand2).E((g(t)− xi(t))

= −(1− ω).E(vi(t)) + a.
1

2
.E(li(t)− xi(t)) + b.

1

2
.E((g(t)− xi(t))

= −(1− ω).E(vi(t)) + a.
1

2
.(E(li(t))− E(xi(t))

+ b.
1

2
.E((g(t))− E(xi(t))

= −(1− ω).E(vi(t)) + a.
1

2
.(L(t))− E(xi(t))

+ b.
1

2
.(g(t)− E(xi(t))

Since, this equation 4.1 is all about one single ith iteration, the expectation E(xi(t))

is taken over all particle bests in ith iteration.

Let’s assume E(li(t)) = L(t) and , since global best is same for all particles in one

iteration, it’s a constant. Thus, E(g(t)) = g(t). Thus,

˙µv(t) = −(1− ω).µv(t) + a.
1

2
.(L(t)− µx(t)) + b.

1

2
.(g(t)− µx(t))

= −(1− ω).µv(t) +
a+ b

2
.µx(t) +

1

2
.(a.L(t) + b.g(t))

(4.5)

31



. Writing these equations in matrix form, from equation 4.4 and equation 4.5 ˙µx(t)

˙µv(t)

 =

 0 1

−a+b
2
−(1− ω)

µx(t)
µv(t)

+

0

1

 . [a.L(t)+b.g(t)
2

]

⇒ ẏ(t) =

 0 1

−a+b
2
−(1− ω)

 y(t) +

0

1

 .r(t)
(4.6)

where,

y(t) =

µx(t)
µv(t)


r(t) =

(a.L(t) + b.g(t)

2

Thus, equation 4.6 gives us the final non linear dynamics of the PSO algorithm.

4.2 Linearization of the system

The generated system equation is not linear , as it has involvement of r(t) , in the

system equation. According to Kadirkamanathan[17] , the system has

• no equilibrium point, when l(t) 6= g(t)

• one equilibrium point, at (x, v) = (p, 0) when l(t) = g(t) = p

Thus, we get back to equation equation 4.5 and replace p for both l(t) and g(t).

˙µv(t) = −(1− ω).µv(t) + a.
1

2
.(p− µx(t)) + b.

1

2
.(p− µx(t))

(4.7)

Along the lines of Kadirkamanathan [17], we can see, the equilibrium points are

here also, µx = p, µv = 0. Also, we know that any equilibrium point can be con-

sidered as residing at the origin applying proper shift in the axes. To linearize, we

expand the functions about this equilibrium point, using Taylor’s series expansion.

32



Suppose, x1 & x2 are two state variables in the state space which have a value of

p1 & p2 of equilibrium points. Thus,

ẋ1 = f1(p1, p2) +
∂f1(x1, x2)

∂x1

∣∣
x1=p1,x2=p2

(x1 − p1)

+
∂f1(x1, x2)

∂x2

∣∣
x1=p1,x2=p2

(x2 − p2) +H.O.T

ẋ2 = f2(p1, p2) +
∂f2(x1, x2)

∂x1

∣∣
x1=p1,x2=p2

(x1 − p1)

+
∂f2(x1, x2)

∂x2

∣∣
x1=p1,x2=p2

(x2 − p2) +H.O.T

Where H.O.T = Higher Order Terms.

In current scenario,

f1(p1, p2) = 0

f2(p1, p2) = 0

as (p1, p2) is an equilibrium point. At equilibrium points in case of autonomous

systems, ẋ = 0 ⇒ f(x) = 0, as ẋ = f(x). Taking the partial derivatives at the

equilibrium point, we obtain,

∂f1(x1, x2)

∂x1

|p1,p2 =
∂µv(t)

∂µx(t)
|p,0 = 0

∂f1(x1, x2)

∂x2

|p1,p2 =
∂µv(t)

∂µv(t)
|p,0 = 1

∂f2(x1, x2)

∂x1

|p1,p2 =
∂−a+b

2
µx(t)− (1− ω).µv(t)

∂µx(t)
|p,0 = −a+ b

2

∂f2(x1, x2)

∂x2

∣∣
p1,p2

=
∂−a+b

2
µx(t)− (1− ω).µv(t)

∂µv(t)
|p,0 = −(ω − 1)

33



Thus , neglecting higher order terms, we obtain the linearized equation in the

vicinity of the equilibrium point (p, 0) as:

˙µx(t)
µv(t)

 =

 0 1

−a+b
2
−(1− ω)

 .
µx(t)
µv(t)

 (4.8)

We now relax the condition imposed previously on the system that a + b = 0

and examine other equilibrium points of this linearized system. Assuming y(t) =µx(t)
µv(t)

 , one can write the same equation as:

ẏ(t) =

 0 1

−a+b
2
−(1− ω)

 .y(t) (4.9)

Now, the solutions of autonomous equations of type ẏ(t) = A.y(t) has the form

y(t) = c1e
λ1t + c2e

λ2t

where λ1 & λ2 are eigenvalues of the matrix A and

λ =
1

2
.
(
Tr(A)±

√
(Tr(A))2 − 4.Det(A)

)
,

where, Tr(A) = sum of elements in main diagonal

Depending on the values λis take, the phase portraits are of different shapes.

This information can be used to determine the values of ω required for different

kind of phase portraits.

4.3 Finding ranges of ω

4.3.1 Case 1: λ1 6= λ2 6= 0

Both the eigenvalues of A , are real , unequal and non zero. This happens iff

det(A) 6= 0, because otherwise at least one λ would have been zero. Also, since

both are real, the discriminant must be positive.

∴ (Tr(A))2 > 4.Det(A).

34



Subcase 1: both λs are of same sign

Also, det(A) > 0, because otherwise
√

(Tr(A))2 − 4.Det(A) > Tr(A) i.e. both

eigenvalues wouldn’t be of the same sign. Thus, a+ b > 0, ∵ det(A) = a+b
2

.

Now,

Tr(A)2 > 4.det(A)

⇒ (1− ω)2 > 2(a+ b)

⇒ ω2 − 2.ω + 1 > 2(a+ b)

⇒ ω2 − 2.ω + (1− 2(a+ b)) > 0

for the expression on the LHS to be always positive, one of the following must be

true:

1. ω > ω1 & ω > ω2

2. ω < ω1 & ω < ω2

where , ω1 & ω2 are roots of the equation,

ω2 − 2.ω + (1− 2(a+ b)) = 0

and are equal to

ω1 = 1 +
√

2(a+ b), ω2 = 1−
√

2(a+ b)

• for condition 1 : ω > 1 +
√

2(a+ b), & ω > 1−
√

2(a+ b),

combining we get, ω > 1 +
√

2(a+ b), as (a+ b) > 0

• for condition 2 : ω < 1 +
√

2(a+ b), & ω < 1−
√

2(a+ b),

combining we get, ω < 1−
√

2(a+ b), as (a+ b) > 0

Subsubcase 1: λ1 > λ2 > 0

If λ1 > λ2 > 0 , λ1 + λ2 > 0, ∴ Tr(A) > 0. Thus, −(1 − ω) > 0, ∵ Tr(A) > 0.

∴ ω > 1.

35



Thus, additional conditions for both positive eigenvalues are (a + b) > 0 and

w > 1.

Condition 1 : ω > 1 +
√

2(a+ b) &ω > 1 ⇒ ω > 1 +
√

2(a+ b)

Condition 2 : ω < 1−
√

2(a+ b) &ω > 1 ⇒ impossible

An unstable node is obtained in case of both positive eigenvalues. So, for obtaining

an unstable node, ω ∈ (1 +
√

2(a+ b),∞).

Subsubcase 1: λ2 < λ1 < 0

If λ2 < λ1 < 0 , λ1 + λ2 < 0, ∴ Tr(A) < 0. Thus, −(1 − ω) < 0, ∵ Tr(A) < 0.

∴ ω < 1.

Thus, additional conditions for both negative eigenvalues are (a + b) > 0 and

ω < 1.

Condition 1 : ω > 1 +
√

2(a+ b) &ω < 1 ⇒ impossible

Condition 2 : ω < 1−
√

2(a+ b) &ω < 1 ⇒ ω < 1−
√

2(a+ b)

A stable node is obtained in case of both negative eigenvalues. So, for obtaining a

stable node, ω ∈ (−∞, 1−
√

2(a+ b)).

Subcase 2: both λs are of different sign

det(A) < 0 because otherwise both eigenvalues will have same sign. Thus, a+b < 0,

as det(A) = a + b. A saddle point is obtained in case of one negative and one

positive eigenvalues. So , to obtain a saddle point, just the condition a+ b < 0 is

sufficient. Interestingly, this does not depend on value of ω.

36



4.3.2 Case 2: both eigenvalues complex

Obviously, the discriminant will be less than zero in this case. ∴ (Tr(A))2 <

4.Det(A).By similar arguments,it leads to:

ω2 − 2.ω + (1− 2(a+ b)) < 0

Now, for the expression on the LHS to be always negative, one of the following

must be true:

1. ω < ω1 & ω > ω2

2. ω > ω1 & ω < ω2

where , ω1 & ω2 are as stated previously.

• for condition 1 :

ω < 1 +
√

2(a+ b), & ω > 1−
√

2(a+ b),

combining we get, ω ∈ (1−
√

2(a+ b), 1 +
√

2(a+ b))

• for condition 2 :

ω > 1 +
√

2(a+ b), & ω < 1−
√

2(a+ b),

which is, an impossible condition.

Subcase 1: <(λ) > 0

If <(λ) > 0, Tr(A) > 0. As Tr(A) = <(λ). Thus, additional conditions for both

complex eigenvalues with positive real part , are ω > 1.

Condition 1 : ω ∈ (1−
√

2(a+ b), 1 +
√

2(a+ b)) &ω > 1

⇒ ω ∈ (1, 1 +
√

2(a+ b))

An unstable spiral is obtained in case of both complex eigenvalues with positive

real part. So, for obtaining an unstable spiral, ω ∈ (1, 1 +
√

2(a+ b)).

37



Subcase 2: <(λ) < 0

If <(λ) < 0, Tr(A) < 0. As Tr(A) = <(λ). Thus, additional conditions for both

complex eigenvalues with negative real part , are ω < 1.

Condition 1 : ω ∈ (1−
√

2(a+ b), 1 +
√

2(a+ b)) &ω < 1

⇒ ω ∈ (1−
√

2(a+ b), 1)

A stable spiral is obtained in case of both complex eigenvalues with negative real

part. So, for obtaining a stable spiral, ω ∈ (1−
√

2(a+ b), 1).

Subcase 3: <(λ) = 0

If <(λ) = 0, Tr(A) = 0. As Tr(A) = <(λ). Thus, additional conditions for both

complex eigenvalues with no real part , are ω = 1.

Condition 1 : ω ∈ (1−
√

2(a+ b), 1 +
√

2(a+ b)) &ω = 1

⇒ ω = 1

A center is obtained in case of both complex eigenvalues with negative real part.

It is seen to have limit cyclic behavior in this case.So, for obtaining a limit cycle,

ω = 1.

4.3.3 Case 3: Non Zero multiple eigenvalue

Both eigenvalues are equal iff, the discriminant is zero. ∴ (Tr(A))2 = det(A). By

similar arguments, ω2−2.ω+(1−2(a+b)) = 0. ∴ ω = 1−
√

2(a+ b), 1+
√

2(a+ b).

38



Subcase 1: λ > 0

Again, 2λ > 0⇒ Tr(A) > 0. ∵ Tr(A) = λ1 + λ2. Thus, Tr(A) = −(1−ω) > 0⇒

ω > 1. Thus, ω = 1 +
√

2(a+ b).

The equilibrium point is called an unstable node in this case also.

Subcase 2: λ < 0

Again, 2λ < 0⇒ Tr(A) < 0. ∵ Tr(A) = λ1 + λ2. Thus, Tr(A) = −(1−ω) < 0⇒

ω < 1. Thus, ω = 1−
√

2(a+ b).

The equilibrium point is called a stable node in this case also.

4.3.4 Table of possible cases

The eigenvalues can be of the following nature:

Case (λ) (a+ b) ω
Name,

Stability
Stability

1
both real,

unequal,+ve
> 0 (1 +

√
2(a+ b),∞) Node Unstable

2
both real,

unequal, -ve
> 0 (−∞, 1−

√
2(a+ b)) Node Stable

3,4
both real,

Opposite sign
< 0 – Saddle Unstable

5
both complex,

Re(λ) 6= 0
> 0 (1−

√
2(a+ b), 1) Focus Stable

6 – > 0 1 Limit Cycle Stable

7
both complex,

Re(λ) 6= 0
> 0 (1, 1 +

√
2(a+ b)) Focus Unstable

8
Non Zero

multiple eig val
> 0 1 +

√
2(a+ b) also called node Unstable

9
Non Zero

multiple eig val
> 0 1−

√
2(a+ b) also called node Stable

39



4.3.5 Summarization:

Summarizing, the value of ω dictates the nature of the fixedpoints, which in turn,

depends on the value of the PSO parameters shown in figure next.

Figure 4.1: variation of ω for different fixed points

40



Chapter 5

Simulations

The simulations are obtained using MatLab for a number of different functions.

The cases for multidimensional sphere function are as follows:

Figure 5.1: Stable Node: a = −0.15, b = 0.25, ω = 0.1

Figure 5.2: Stable Focus: a = −0.15, b = 0.25, ω = 0.85

41



Figure 5.3: Stable Node: a = 0.15, b = 0.25, ω = 1

Figure 5.4: Limit Cycle: a = −0.15, b = 0.25, ω = 1

Figure 5.5: Limit Cycle: a = 1, b = 0.5, ω = 1

42



Figure 5.6: Saddle Point, only a is negative: a = 0.15, b = −0.25, ω = 0.8

Figure 5.7: Saddle Point, both a and b are negative: a = −0.15, b = −0.25, ω = 0.8

Figure 5.8: Saddle point: a = 0.15, b = −0.25, ω = 1 , shows that saddle point nature prevails
over limit cycle

43



Chapter 6

Solving Non Linear System

Dynamics

Now, the whole system is a non homogeneous linear system, of the following form:

ẋ = F (x) = A.x+ h(t)

where, h(t) is a function of time. The mapping F is said to be affine mapping.

Applying the matrix equivalent of ’Integrating factor method’ , [2]

ẋ = A.x+ h(t)

⇒ e−At.ẋ = e−At.Ax+ e−At.h(t)

⇒ d

dt
(x.e−At) = e−At.h(t)

Integrating from t0 to t,

e−At.x(t)− e−At0 .x(t0) =

∫ t

t0

e−As.h(s).ds

∴

⇒ x(t) = eA(t−t0).x(t0)︸ ︷︷ ︸
Complimentary Function

+ eAt.

∫ t

t0

e−As.h(s).ds︸ ︷︷ ︸
Particular Integral

(6.1)

44



∴ for the current case,

yCF (t) = eA(t−t0).y(t0)

= eA.t.y(0) , since t0 = 0;

=
[
eλ1.t.Q1 + eλ2.t.Q2

]
.

µx(0)

µv(0)

 ,

where

Q1 =
A− λ2.I

λ1 − λ2

Q1 =
A− λ2.I

λ1 − λ2

λ1 & λ2 being eigenvalues of matrix A, λ1 6= λ2 . I being identity matrix of

required order.

yPI(t) = eAt
∫ t

t0

e−Ash(s)ds

eAt

=
eλ1t

λ1 − λ2

.

−λ2 1

−a+b
2
−(1− ω)− λ2

+
eλ2t

λ1 − λ2

.

−λ1 1

−a+b
2
−(1− ω)− λ1


=

1

λ1 − λ2

.

(−λ2.e
λ1t − λ1.e

λ2t) (eλ1t + eλ2t)

−(eλ1t + eλ2t)(a+b
2

) (ω − 1− λ2).eλ1t + (ω − 1− λ1).eλ2t)



45



Replacing t by −s,

e−As

=
1

λ1 − λ2

.

(−λ2.e
−λ1s − λ1.e

−λ2s) (e−λ1s + e−λ2s)

−(e−λ1s + e−λ2s)(a+b
2

) (ω − 1− λ2).e−λ1s + (ω − 1− λ1).e−λ2s)



Now,

h(s) =

0

1

 .r(s) =

0

1

 . [a.L(s)+b.g(s)
2

]
=

 0

a.L(s)+b.g(s)
2


Thus,

∫ t

t0

e−Ash(s)ds

=

∫ t

t0

.
1

λ1 − λ2

.

(−λ2.e
−λ1s − λ1.e

−λ2s) (e−λ1s + e−λ2s)

−(e−λ1s + e−λ2s)(a+b
2

) ((ω − 1− λ2).e−λ1s + (ω − 1− λ1).e−λ2s)

 .
 0

a.L(s)+b.g(s)
2

 .ds
=

∫ t

t0

.
1

λ1 − λ2

.

 (e−λ1s + e−λ2s)a.L(s)+b.g(s)
2

((ω − 1− λ2).e−λ1s + (ω − 1− λ1).e−λ2s)a.L(s)+b.g(s)
2

 .ds
=

∫ t

t0

.
1

λ1 − λ2

.

 (e−λ1s + e−λ2s)a.L(s)+b.g(s)
2

((λ1).e−λ1s + (λ2).e−λ2s)a.L(s)+b.g(s)
2

 .ds, Since λ1 + λ2 = ω − 1

y(t) = eAt.y(t0) + eA.t.

∫ t

t0

e−As.h(s).ds

= eAt(y(t0) +

∫ t

t0

e−As.h(s).ds)

= eAt(

µx(0)

µv(0)

+

∫ t

t0

e−As.h(s).ds)

46



Thus,

y(t) = eA.t

 µx(0) + 1
λ1−λ2

∫ t
t0

(e−λ1s + e−λ2s)a.L(s)+b.g(s)
2

.ds

µv(0) + 1
λ1−λ2

∫ t
t0

(λ1.e
−λ1s + λ2.e

−λ2s)a.L(s)+b.g(s)
2

.ds


Putting values of eAt,

y(t) =
1

λ1 − λ2

.

(−λ2.e
λ1t − λ1.e

λ2t) (eλ1t + eλ2t)

−(eλ1t + eλ2t)(a+b
2

) (ω − 1− λ2).eλ1t + (ω − 1− λ1).eλ2t)

 ∗
 µx(0) + 1

λ1−λ2

∫ t
t0

(e−λ1s + e−λ2s)a.L(s)+b.g(s)
2

.ds

µv(0) + 1
λ1−λ2

∫ t
t0

(λ1.e
−λ1s + λ2.e

−λ2s)a.L(s)+b.g(s)
2

.ds



Now, since, y(t) =

µx(t)
µv(t)

,

µx(t) =
1

λ1 − λ2

(−λ2.e
λ1t − λ1.e

λ2t).
{
µx(0)

+
1

λ1 − λ2

∫ t

t0

(e−λ1s + e−λ2s)
a.L(s) + b.g(s)

2
.ds
}

+
1

λ1 − λ2

(eλ1t + eλ2t)
{
µv(0)

+
1

λ1 − λ2

∫ t

t0

(λ1.e
−λ1s + λ2.e

−λ2s)
a.L(s) + b.g(s)

2
.ds
}

=
1

λ1 − λ2

{
(−λ2.e

λ1t − λ1.e
λ2t).µx(0) + (eλ1t + eλ2t).µv(0)

}
+

1

(λ1 − λ2)2

{
(−λ2.e

λ1t − λ1.e
λ2t)

∫ t

t0

(e−λ1s + e−λ2s)
a.L(s) + b.g(s)

2
.ds
}

+
1

(λ1 − λ2)2

{
(eλ1t + eλ2t)

∫ t

t0

(λ1.e
−λ1s + λ2.e

−λ2s)
a.L(s) + b.g(s)

2
.ds
}

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

(λ1 − λ2)2

{
(−λ2.e

λ1t − λ1.e
λ2t)

∫ t

t0

(e−λ1s + e−λ2s)
a.L(s) + b.g(s)

2
.ds
}

+
1

(λ1 − λ2)2

{
(eλ1t + eλ2t)

∫ t

t0

(λ1.e
−λ1s + λ2.e

−λ2s)
a.L(s) + b.g(s)

2
.ds
}

47



=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

(λ1 − λ2)2

{∫ t

t0

(−λ2.e
λ1t − λ1.e

λ2t)(e−λ1s + e−λ2s)
a.L(s) + b.g(s)

2
.ds
}

+
1

(λ1 − λ2)2

{∫ t

t0

(eλ1t + eλ2t)(λ1.e
−λ1s + λ2.e

−λ2s)
a.L(s) + b.g(s)

2
.ds
}

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

(λ1 − λ2)2

∫ t

t0

[
− λ2e

λ1t−λ1s − λ1e
λ2t−λ1s

− λ2e
λ1t−λ2s − λ1e

λ2t−λ2s
]a.L(s) + b.g(s)

2
ds

+
1

(λ1 − λ2)2

∫ t

t0

[
λ1e

λ1t−λ1s + λ1e
λ2t−λ1s

+ λ2e
λ1t−λ2s + λ2e

λ2t−λ2s
]a.L(s) + b.g(s)

2
ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

(λ1 − λ2)2

∫ t

t0

[
− λ2e

λ1t−λ1s − λ1e
λ2t−λ2s

+ λ1e
λ1t−λ1s + λ2e

λ2t−λ2s
]a.L(s) + b.g(s)

2
ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

(λ1 − λ2)2

∫ t

t0

[
(λ1 − λ2)eλ1t−λ1s + (λ2 − λ1)eλ2t−λ2s

]
.
a.L(s) + b.g(s)

2
ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

λ1 − λ2

∫ t

t0

[
eλ1t−λ1s − eλ2t−λ2s

]a.L(s) + b.g(s)

2
ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

λ1 − λ2

∫ t

t0

[
eλ1(t−s) − eλ2(t−s)

]a.L(s) + b.g(s)

2
ds

By similar arguments, we can show that,

µv(t) =
λ2(−λ2µx(0) + µv(0))

λ1 − λ2

eλ2t +
λ1(−λ2µx(0)− µv(0))

λ1 − λ2

eλ1t

+
1

λ1 − λ2

∫ t

t0

[
eλ1(t−s) − eλ2(t−s)

]a.L(s) + b.g(s)

2
ds

Essentially , this shows that if we are able to obtain an expression for the local

and global bests, we can come up with an algebraic expression which will , in turn

48



, be a solution to the dynamics.

To find out the loci they follow, let’s consider some special cases.

6.1 Expressions of global and local bests:

6.1.1 Solitary Particle:

In case of a solitary particle in the swarm, the dynamics changes drastically. This

is the assumption we initially took to linearize the system. In this case the global

best is always equal to the local best and current position of the particle , i.e.

x(t) = l(t) = g(t) (6.2)

Thus,from equation 4.3, the state equation of the system with the solitary particle

, becomes:

˙vi(t) = −(1− ω).vi(t) + a.rand1.(li(t)− xi(t)) + b.rand2.(g(t)− xi(t))

⇒ ˙vg(t) = −(1− ω).vg(t); since , vi(t) = vg(t), x(t) = l(t) = g(t)

Also,

vi(t) = ẋi(t)

⇒ vg(t) = ġ(t)

From the two equations above, we can obtain the dynamics of the solitary particle,

which is as follows:

ẏg(t) =

0 1

0 −(1− ω)

 yg(t) (6.3)

where yg(t) =

 g(t)

vg(t)

. Note that we did not consider the expected values of the

variables here as we already have the time domain governing equations of PSO

49



system from previous analyses. The solution of the dynamics is:

g(t) = g(0) +
vg(0)

1− ω
(1− e−(1−ω)t) (6.4)

and

vg(t) = vg(0).e−(1−ω)t (6.5)

So, we can see , that the global best particle may change following exponential

variation , in the form of g(t) = p1 + p2.e
−qt.

6.1.2 Exponential Variation of r(t):

Since we’ve seen g(t) to follow an exponential variation , we assume r(t) i.e

a.L(t)+b.g(t)
2

to follow a similar variation. Thus,we assume r(t) = a.L(t)+b.g(t)
2

=

p1 + p2e
−qt. Thus the equations obtained previously for µx(t) & µv(t), become:

µx(t) =
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

λ1 − λ2

∫ t

t0

[
eλ1(t−s) − eλ2(t−s)

]a.L(s) + b.g(s)

2
ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

1

λ1 − λ2

∫ t

t0

[
eλ1(t−s) − eλ2(t−s)

]
(p1 + p2e

qs)ds

=
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

p1

λ2 − λ1

{λ2 − λ1

λ1λ2

− (
eλ1t

λ1

− eλ2t

λ2

)
}

+
p2

λ2 − λ1

{eλ2t − e−qt
λ2 + q

− eλ1t − e−qt

λ1 + q

}

In a similar fashion, we can show that,

µv(t) =
λ2(−λ2µx(0) + µv(0))

λ1 − λ2

eλ2t +
λ1(−λ2µx(0)− µv(0))

λ1 − λ2

eλ1t

+
p1

λ2 − λ1

{λ2 − λ1

λ1λ2

− (
eλ1t

λ1

− eλ2t

λ2

)
}

+
p2

λ2 − λ1

{eλ2t − e−qt
λ2 + q

− eλ1t − e−qt

λ1 + q

}

50



6.1.3 No variation of r(t) i.e. constant value:

Constant r(t) is a special case of the exponential variation we previously considered

i.e. q = 0. Thus the expressions obtained previously become:

µx(t) =
1

λ1 − λ2

{
eλ1t.(−λ2µx(0) + µv(0)) + eλ2t(−λ1µx(0) + µv(0))

}
+

p1

λ2 − λ1

{λ2 − λ1

λ1λ2

− (
eλ1t

λ1

− eλ2t

λ2

)
}

+
p2

λ2 − λ1

{eλ2t − 1

λ2

− eλ1t − 1

λ1

}

and,

µv(t) =
λ2(−λ2µx(0) + µv(0))

λ1 − λ2

eλ2t +
λ1(−λ2µx(0)− µv(0))

λ1 − λ2

eλ1t

+
p1

λ2 − λ1

{λ2 − λ1

λ1λ2

− (
eλ1t

λ1

− eλ2t

λ2

)
}

+
p2

λ2 − λ1

{eλ2t − 1

λ2

− eλ1t − 1

λ1

}

6.1.4 Expression for global best particle:

For global best particle,

x(t) = l(t) = g(t)

Thus, the equations become as follows:

v̇g(t) + (1− ω)vg(t) = 0

ġ(t) = vg(t)

Thus the state equations of the above system can be:

ẏg(t) =

0 1

0 −(1− ω)

 yg(t)

51



where, yg(t) =

 g(t)

vg(t)


Thus, the assumption of constant r(t) is valid as in this case, we can see, for

global best particle, r(t) = 0, irrespective of the objective function.

The solutions of the system defined by the above equation are as follows:

g(t) = g(0) +
vg(0)

1− ω

(
1− e−t(1−ω)

)
vg(t) = vg(0)e−t(1−ω)

6.1.5 Expression for local best particle:

For local best particle, we have,

xi(t) = li(t)

Thus, the equations governing the dynamics are given by, as xi(t) = li(t):

˙vi(t) = −(1− ω).vi(t) + a.rand1.(li(t)− xi(t)) + b.rand2.(g(t)− xi(t))

⇒v̇li(t) + (1− ω)vli(t) + b.rand2.li(t) = b.rand2.g(t)

l̇i(t) = vli(t)

Using expectation operator on both side of the equations, we obtain,

˙µvL(t) + (1− ω)µvL(t) +
b

2
L(t) =

b

2
g(t)

L̇(t) = µvL(t)

These equations, give us a dynamics as follows, which determines the locus of L(t):

ẏL(t) =

 0 1

− b
2
−(1− ω)

 yL(t) +

0

1

 b
2
g(t)

52



where, yL(t) =

L(t)

vL(t)

 The solution of this dynamics is straight forward and

can be obtained in the similar fashion which we applied in case of original PSO

dynamics. We can find, in the same way:

L(t) =
vL(0)− γ1L(0)

γ2 − γ1

eγ2t +
−vL(0) + γ2L(0)

γ2 − γ1

eγ1t+

1

γ2 − γ1

∫ t

0

(
eγ2(t−s) − eγ1(t−s)

)
r′(s)ds

vL(t) = γ2
vL(0)− γ1L(0)

γ2 − γ1

eγ2t + γ1
−vL(0) + γ2L(0)

γ2 − γ1

eγ1t

+
1

γ2 − γ1

∫ t

0

(
γ2e

γ2(t−s) − γ1e
γ1(t−s)

)
r′(s)ds

where

γ1, γ2 =
−(1− ω)±

√
(1− ω)2 − 2b

2

r′(t) =
b

2
g(t)

Since g(t) follows an exponential variation i.e.

g(t) = g(0) +
vg(0)

1− ω

(
1− e−t(1−ω)

)
putting value of g(t) in r′(t) and L(t), we obtain:

r′(t) =
b

2
g(t) =

b

2

{
g(0) +

vg(0)

1− ω

(
1− e−t(1−ω)

)}
and

L(t) =
vL(0)− γ1L(0)

γ2 − γ1

eγ2t +
−vL(0) + γ2L(0)

γ2 − γ1

eγ1t

+
1

γ2 − γ1

∫ t

0

(
eγ2(t−s) − eγ1(t−s)

) b
2

{
g(0) +

vg(0)

1− ω

(
1− e−s(1−ω)

)}
ds

53



Integrating we obtain,

L(t) =
1

γ2 − γ1

(
γ2L(0)− vL(0)− p1

γ1

− p2

γ2 + q

)
eγ1t

+
1

γ2 − γ1

(
− γ1L(0) + vL(0) +

p1

γ2

+
p2

γ2 + q

)
eγ2t

+
1

γ2 − γ1

(
γ2 − γ1

γ1γ2

p1 −
( 1

γ2 + q
− 1

γ1 + q

)
p2e
−qt

)

where,

q = 1− ω

p1 =
b

2

(
g(0) +

vg(0)

1− ω

)

p2 = − b
2

vg(0)

1− ω

. Using γ1 + γ2 = −q , we obtain,

L(t) =
1

γ2 − γ1

(
γ2L(0)− vL(0)− p1

γ1

− p2

γ2 + q

)
eγ1t

+
1

γ2 − γ1

(
− γ1L(0) + vL(0) +

p1

γ2

− p2

γ1

)
eγ2t

+
1

γ2γ1

(
p1 + p2e

−qt
)

6.2 Combined Expression incorporating both L(t) and g(t):

Thus, L(t) is seen to have the expression:

L(t) = m+m1e
γ1t +m2e

γ2t +m3e
−qt (6.6)

54



where,

m = g(0) +
vg(0)

1− ω

m1 =
1

γ2 − γ1

(
γ2L(0)− vL(0)− p1

γ1

+
p2

γ2

)

m2 =
1

γ2 − γ1

(
− γ1L(0) + vL(0) +

p1

γ2

− p2

γ1

)

m3 = − vg(0)

1− ω

So, combining the expressions of the terms L(t) & g(t) and putting them in the

expression of r(t) , we get:

r(t) =
a

2
L(t) +

b

2
g(t)

⇒ r(t) =
a

2

(
m+m1e

γ1t +m2e
γ2t +m3e

−qt

)
+
b

2

(
g(0) +

vg(0)

1− ω

(
1− e−t(1−ω)

))

Putting expression of r(t) in µx(t) and µv(t), we obtain:

µx(t) =
1

λ2 − λ1

(
µv(0)− λ1µx(0) +

m+ p1

λ2

+
m1

λ2 − γ1

+
m2

λ2 − γ2

+
m3 + p2

λ2 + q

)
eλ2t

+
1

λ2 − λ1

(
− µv(0) + λ2µx(0)− m+ p1

λ1

+
m1

λ1 − γ1

+
m2

λ1 − γ2

+
m3 + p2

λ1 + q

)
eλ1t

+
m1

λ2 − λ1

(
1

λ1 − γ1

− 1

λ2 − γ1

)
eγ1t

+
m2

λ2 − λ1

(
1

λ1 − γ2

− 1

λ2 − γ2

)
eγ2t

+
m3 + p2

λ2 − λ1

(
1

λ1 + q
− 1

λ2 + q

)
e−qt +

m+ p1

λ1λ2

55



and,

µv(t) =
λ2

λ2 − λ1

(
µv(0)− λ1µx(0) +

m+ p1

λ2

+
m1

λ2 − γ1

+
m2

λ2 − γ2

+
m3 + p2

λ2 + q

)
eλ2t

+
λ1

λ2 − λ1

(
− µv(0) + λ2µx(0)− m+ p1

λ1

+
m1

λ1 − γ1

+
m2

λ1 − γ2

+
m3 + p2

λ1 + q

)
eλ1t

+
m1

λ2 − λ1

(
1

λ1 − γ1

− 1

λ2 − γ1

)
eγ1t

+
m2

λ2 − λ1

(
λ1

λ1 − γ2

− λ2

λ2 − γ2

)
eγ2t

+
m3 + p2

λ2 − λ1

(
λ1

λ1 + q
− λ2

λ2 + q

)
e−qt

Thus we can write the PSO dynamics as follows:

µx(t) = A+ A1e
λ1t + A2e

λ2t + A3e
γ1t + A4e

γ2t + A5e
−qt

µv(t) = A1e
λ1t + A2e

λ2t + A′3e
γ1t + A′4e

γ2t + A′5e
−qt

where,

A =
m+ p1

λ1λ2

A1 =
1

λ2 − λ1

(
− µv(0) + λ2µx(0)− m+ p1

λ1

+
m1

λ1 − γ1

+
m2

λ1 − γ2

+
m3 + p2

λ1 + q

)

A2 =
1

λ2 − λ1

(
µv(0)− λ1µx(0) +

m+ p1

λ2

+
m1

λ2 − γ1

+
m2

λ2 − γ2

+
m3 + p2

λ2 + q

)

A3 =
m1

λ2 − λ1

(
1

λ1 − γ1

− 1

λ2 − γ1

)
, A′3 =

m1

λ2 − λ1

(
1

λ1 − γ1

− 1

λ2 − γ1

)

A5 =
m3 + p2

λ2 − λ1

(
1

λ1 + q
− 1

λ2 + q

)
, A′5 =

m3 + p2

λ2 − λ1

(
λ1

λ1 + q
− λ2

λ2 + q

)

A4 =
m2

λ2 − λ1

(
λ1

λ1 − γ2

− λ2

λ2 − γ2

)
, A′4 =

m2

λ2 − λ1

(
λ1

λ1 − γ2

− λ2

λ2 − γ2

)

56



Chapter 7

Lyapunov Stability

7.1 Lyapunov Stability

Lyapunov , in 1892, showed that certain functions can be used to determine sta-

bility of an equilibrium point. [20]

Let V : D → < be a continuously differentiable function defined in a domain

D ∈ <n that contains the origin.

The derivative of V (x), along the trajectories of ẋ = f(x),denoted by V (x), is

given by:

V̇ (x) =
n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x)

=
[
∂V
∂x1

∂V
∂x2

. . . ∂V
∂xn

]
.



f1(x)

f2(x)

...

fn(x)


=
∂V

∂x
f(x)

The derivative of V, along the trajectories of the dynamical system , is thus,

dependent of the system itself. So, V̇ (x) will be different for different systems.

57



7.2 Lyapunov’s Theorem

Let x = 0 be an equilibrium point for ẋ = f(x) , and D ∈ < be a domain containing

x = 0. Let V : D → < be a continuously differentible function such that

• V (0) = 0 and V (x) > 0 in D − {0}

• V̇ (x) ≤ 0 in D

Then x = 0 is stable. Moreover, if V̇ (x) < 0 in D − {0} , x = 0 is asymptotically

stable.

7.3 Lyapunov Function

Similarly, a continuously differentiable function V (x) satisfying the conditions

• V (0) = 0 and V (x) > 0 in D − {0}

• V̇ (x) ≤ 0 in D

is called Lyapunov function.

The surface V (x) = c for some c > 0 , is called a Lyapunov function or a

level surface. The curves are shown in figure 7.3. The three ellipses represent

Figure 7.1: Level surfaces of Lyapunov Function

three Lyapunov surfaces for three Lyapunov functions V (x) = c1 or V (x) = c2 or

V (x) = c3 respectively, while c1 < c2 < c3.

58



Now, the condition V̇ (x) ≤ 0 implies that, whenever a trajectory of the function

f(x) crosses a Lyapunov function from the outside, in will never come out again.

When V (x) < 0, the trajectory moves from one Lyapunov surface to an inner

Lyapunov surface with a smaller c. As c decreases , the Lyapunov surface V (x) = c

shrinks to the origin, showing that the trajectory approaches the origin as time

passes by. But in case of (̇V )(x) ≤ 0,we can’t be sure the trajectory will approach

the origin.

7.4 Definiteness

7.4.1 Positive Definite & Semidefinite Functions

A function satisfying V (0) = 0, V (x) > 0 in D−{0} is said to be positive definite.

If it only satisfies a weaker condition V (x) ≥ 0 in D− {0}, it’s said to be positive

semidefinite.

7.4.2 Negative Definite & Semidefinite Function

A function V (x) is negative definite(or semidefinite) if −V (x) is positive defi-

nite(semidefinite).

7.4.3 Indefinite

If V (x) doesn’t belong to any of the four categories mentioned above, it’s indefinite.

Keeping these definitions in mind, we can state Lyapunov’s theorem in a dif-

ferent manner.

7.5 Rephrased Lyapunov Theorem

The origin is stable if there is a continuous differentiable positive definite function

V (x) so that V̇ (x) is negative semidefinite, and it’s asymptotically stable if V̇ (x)

is negative definite.

The conditions stated in Lyapunov Theorem are only sufficient condition, which

means if these conditions are satisfied , we can say the system is stable, correspond-

ing to the particular Laypunov function candidate. The conditions are not at all

59



necessary, which means , if they are not satisfied, nothing can be said about the

stability of the system corresponding to other Lyapunov function candidates.

7.6 Generation of Lyapunov Functions

To apply the Lyapunov Theorem to determine the stability of an autonomous

system , one needs to have a Laypunov function. In case of linear systems , we

have well defined methods for generating such functions [22], whereas standard

procedures for generating a Lyapunov function for non linear systems are being

discovered recently.

7.7 Standard Method of Generating Lyapunov functions

for linear systems

Let’s consider the following autonomous linear system for the time being.

ẋ = Ax (7.1)

This is a special case of equation 1.3, where A is not a function of x, and all

elements of A are constants.

A very common scalar choice of V (x) , for which the sign definiteness can be

checked easily, is the quadratic one, of the form:

V (x) = x′Px =
n∑
i=1

n∑
j=1

pijxixj (7.2)

where P is a real symmetric matrix i.e. pij = pji.

From equation 7.2, the total derivative of V (x) is:

dV

dt
= ẋ′Px+ x′Pẋ

60



As ẋ′ = (Ax)′ = x′A′,

dV

dt
= ẋ′Px+ x′Pẋ

= x′A′Px+ x′PAx

= x′(A′P + PA)x

= −x′Qx

where , A′P + PA = −Q Thus,

V ′(x) = −x′Qx (7.3)

Since we have knowledge of A, we assume a Q which is suitable and try to find

out about P , and thereby conclude the system stable if P is positive definite.

7.8 Settling Time

Given an initial condition, the time taken to reach the optimal solution , or the

sufficient vicinity of it, is called the settling time.

In case of an LTI system, determination of settling time using Lyapunov func-

tion is trivial[22].

Let a parameter T ,be defined as follows

Tx =
V (x)

−V̇ (x)
(7.4)

where

T = max(Tx)

61



Now,

Tx ≤ T

⇒ V (x(t))

−V̇ (x(t))
≤ T

⇒−V̇ (x(t))

V (x(t))
≥ 1

T

⇒
∫ t=ts

t=0

−V̇ (x(t))

V (x(t))
dt ≥

∫ t=ts

t=0

1

T
dt

⇒− log
V (x(ts))

V (x(0))
≥ ts
T

⇒ log
V (x(0))

V (x(ts))
≥ ts
T

⇒ V (x(0))

V (x(ts))
≥ e

ts
T

⇒V (x(ts)) ≤ V (x(0))e−
−ts
T

So, this relation gives an upper bound on the value of V (x(ts)) with V (x(t))

having an initial value, V (x(0)). Thus, if we specify the time ts , we’ll be able

to know the upper bound at that time. So, if we specify the upper bound, we

can calculate the time required for V (x(t)) to reach at or below that. This time

is called the settling time. It is used to the system to reach at a certain level of

vicinity of the chosen equilibrium point.

Since V (x(t)) can be chosen according to the wish of the user, as long as it is

positive definite, and so can be V̇ (x(t)), as long as it can be negative definite. If it

is negative semidefinite , the equilibrium point is not asymptotically stable, thus

the question of settling time, becomes meaningless.

Suppose,

V (x(t)) = x′Px

V̇ (x(t)) = −x′Qx

62



Where Q and P are both positive definite matrices. ∴

T = max(
V (x(t))

−V̇ (x(t))
)

= max(
x′Px

x′Qx
)

As the relative shape and size of V (x(t)) and V ′(x(t)) remains same throughout

the space, we can set x′Qx = 1. Thus, T = max(x′Px). This is the shape of an

optimization problem as follows:

max(x′Px)

x′Qx = 1

Using the technique of Lagrangian multiplier , the problem becomes

max(x′Px− λx′Qx)

where λ is the Lagrangian multiplier. Equating the derivative of the function

(x′Px− λx′Qx) , we get,

(P − λQ)x = 0 (7.5)

Premultiplying by x′, we get

x′Px = x′λQx

⇒ x′Px = λx′Qx

⇒ x′Px = λ

since λ is a scalar and x′Qx = 1.

Now, we can see from equation 7.5 that λ is an eigenvalue of the matrix Q−1P .

And also , x′Px is maximum , if λ is maximum. Thus , T = max(x′Px) =

maximum eigenvalue of Q−1P [22].

63



7.9 Calculation of Settling time of Linearized PSO dynam-

ics

In this case , A =

 0 1

−a+b
2
−(1− ω)

. Let’s assume a positive definite Q arbi-

trarily as

1 0

0 1

 . Solving the equation A′P + PA = −Q, where a = 0.15, b =

0.25, ω = −0.05 we obtain,

P =

3.1964 2.500

2.5000 2.8571


. Now, the function V (x) becomes

V (x) = x′Px

=
[
x1 x2

]3.1964 2.500

2.5000 2.8571

x− 1

x2


= 3.1964x2

1 + 5x1x2 + 2.8571x2
2

. From the analysis of the previous section , T = maximum eigenvalue of the

matrix Q−1P .∴ T = max(0.5210, 5.5325) = 5.5325. Now , assuming the initial

conditions to be

x1

x2

 =

 0.4248

−0.3778

 , the values are arbitrarily taken the values

of one of the first iterations during the simulations, and we want the settling

time for the variables to go nearby

0.05

0.05

, V (

 0.4248

−0.3778

) = 0.1822, whereas

64



V (

0.05

0.05

) = 0.0276. Now, the settling time is given as

ts ≤ −λ log(
V (x(ts))

V (x(0))
)

= −5.5325 log(
0.0276

0.1822
)

= 10.4414

. So, at most 10.4414 seconds are required to get at the point

0.05

0.05

.

65



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This current work has studied the dynamics of PSO which can be extended to

any other form of PSO. It shows that the nature of the dynamics depends on the

parameter settings, which also determines the stability of the system. A general

control theoretic approach has been taken to conclude those results. It has also

been shown that linearization is possible in case of the non linear system dynamics.

And also, just like any other non linear dynamics, it follows the linearized dynamics

in the vicinity of the equilibrium points around which the system was linearized.

The lyapunov stability criterion is applied in case of the linear dynamics and

settling time was calculated. The settling time, thus gives us a measure of the

speed of convergence of the algorithm, which in turn , enables us to compare it

with other algorithms.

Also, in practical applications of PSO it is sometimes desired that the algorithm

must have some exploration power before it starts to converge. The exploration

power can be achieved by having an unstable dynamics and by modulating the val-

ues of the control parameters throughout the iteration procedure, one can achieve

desired amount of exploration at a desired time instance.

A general solution of the non linear dynamics is obtained, so that the effect

of both social attraction co-efficient and self attraction co-efficient can be studied

and compared.

66



8.2 Future Work

Hafstein [15] recently obtained a procedure for obtaining a piecewise affine Lya-

punov function, for determining the stability of the non linear systems. His pro-

cedure iterates over a set of possible Lyapunov function candidates and chooses

the best one. Although this procedure doesn’t give us an algebraic expression for

the function, it does give us the value of the function at certain points. Applying

Hafstein’s technique for obtaining a suitable Lyapunov function can be one obvious

extension of this work.

The extension of similar treatments to other evolutionary algorithms, like Differ-

ential Evolution (DE) can be another step forward. This approach to Evolutionary

Algorithms actually help us find the strong mathematical background they have

underneath and thus solve real life problems, more accurately and efficiently.

67



Bibliography

[1] Metaheuristics image. https://en.wikipedia.org/wiki/Metaheuristic#

/media/File:Metaheuristics_classification.svg.

[2] David K Arrowsmith and Colin M Place. An introduction to dynamical sys-

tems. Cambridge University Press, 1990.

[3] Tim M Blackwell. Particle swarms and population diversity. Soft Computing,

9(11):793–802, 2005.

[4] Bernhard Brandstätter and Ulrike Baumgartner. Particle swarm optimization-

mass-spring system analogon. Magnetics, IEEE Transactions on, 38(2):997–

1000, 2002.

[5] Daniel Bratton and James Kennedy. Defining a standard for particle swarm

optimization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages

120–127. IEEE, 2007.

[6] Emilio F Campana, Giovanni Fasano, Daniele Peri, and Antonio Pinto. Par-

ticle swarm optimization: Efficient globally convergent modifications. In Pro-

ceedings of the III European conference on computational mechanics, solids,

structures and coupled problems in engineering, Lisbon, Portugal, 2006.

[7] Emilio F Campana, Giovanni Fasano, and Antonio Pinto. Dynamic system

analysis and initial particles position in particle swarm optimization. In IEEE

Swarm Intelligence Symposium, 2006.

[8] Xin Chen and Yangmin Li. A modified pso structure resulting in high explo-

ration ability with convergence guaranteed. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 37(5):1271–1289, 2007.

68



[9] Ying-ping Chen and Pei Jiang. Analysis of particle interaction in particle

swarm optimization. Theoretical Computer Science, 411(21):2101–2115, 2010.

[10] Maurice Clerc and James Kennedy. The particle swarm-explosion, stability,

and convergence in a multidimensional complex space. Evolutionary Compu-

tation, IEEE Transactions on, 6(1):58–73, 2002.

[11] Hassan M Emara, Abdel Fattah, et al. Continuous swarm optimization tech-

nique with stability analysis. In American Control Conference, 2004. Proceed-

ings of the 2004, volume 3, pages 2811–2817. IEEE, 2004.

[12] Juan Luis Fernandez-Martinez and Esperanza Garcia-Gonzalo. Stochastic sta-

bility analysis of the linear continuous and discrete pso models. Evolutionary

Computation, IEEE Transactions on, 15(3):405–423, 2011.

[13] Hao Gao and Wenbo Xu. A new particle swarm algorithm and its globally con-

vergent modifications. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 41(5):1334–1351, 2011.

[14] David E Goldberg and John H Holland. Genetic algorithms and machine

learning. Machine learning, 3(2):95–99, 1988.

[15] Sigurdur Freyr Hafstein. An algorithm for constructing Lyapunov functions.

Department of Mathematics, Texas State University, 2007.

[16] Ming Jiang, YP Luo, and SY Yang. Stochastic convergence analysis and

parameter selection of the standard particle swarm optimization algorithm.

Information Processing Letters, 102(1):8–16, 2007.

[17] Visakan Kadirkamanathan, Kirusnapillai Selvarajah, and Peter J Fleming.

Stability analysis of the particle dynamics in particle swarm optimizer. Evo-

lutionary Computation, IEEE Transactions on, 10(3):245–255, 2006.

[18] James Kennedy and Russell Eberhart. Particle swarm optimization. In Neural

Networks, 1995. Proceedings., IEEE International Conference on, volume 4,

pages 1942–1948. IEEE, 1995.

[19] James Kennedy and Rui Mendes. Population structure and particle swarm

performance. 2002.

69



[20] Hassan Khalil. Nonlinear systems. 2002.

[21] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative stud-

ies. Journal of statistical physics, 34(5-6):975–986, 1984.

[22] Ajit K Mandal. Introduction to Control Engineering: Modeling, Analysis and

Design. New Age International, 2006.

[23] JL Mart́ınez and E Garćıa Gonzalo. The generalized pso: a new door to pso

evolution. Journal of Artificial Evolution and Applications, 2008:5, 2008.

[24] Rui Mendes and James Kennedy. Avoiding the pitfalls of local optima: how

topologies can save the day. 2003.

[25] Rui Mendes, James Kennedy, and José Neves. The fully informed particle

swarm: simpler, maybe better. Evolutionary Computation, IEEE Transac-

tions on, 8(3):204–210, 2004.

[26] Ender Ozcan and Chilukuri K Mohan. Analysis of a simple particle swarm

optimization system. Intelligent engineering systems through artificial neural

networks, 8:253–258, 1998.

[27] Ender Ozcan and Chilukuri K Mohan. Particle swarm optimization: surfing

the waves. In Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, volume 3. IEEE, 1999.

[28] Riccardo Poli. Mean and variance of the sampling distribution of particle

swarm optimizers during stagnation. Evolutionary Computation, IEEE Trans-

actions on, 13(4):712–721, 2009.

[29] Nayan R Samal, Amit Konar, Swagatam Das, and Ajith Abraham. A closed

loop stability analysis and parameter selection of the particle swarm optimiza-

tion dynamics for faster convergence. In Evolutionary Computation, 2007.

CEC 2007. IEEE Congress on, pages 1769–1776. IEEE, 2007.

[30] Dirk Sudholt and Carsten Witt. Runtime analysis of a binary particle swarm

optimizer. Theoretical Computer Science, 411(21):2084–2100, 2010.

70



[31] Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence

analysis and parameter selection. Information processing letters, 85(6):317–

325, 2003.

[32] Frans Van Den Bergh. An analysis of particle swarm optimizers. PhD thesis,

University of Pretoria, 2006.

[33] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle swarm opti-

mization. AIAA journal, 41(8):1583–1589, 2003.

71


