
Indian Statistical Institute, Kolkata

M. Tech. (Computer Science) Dissertation Thesis

A Study on Cryptographic Key Exchange
Protocols

A dissertation submitted in partial fulfillment of the requirements
for the award of Master of Technology

in
Computer Science

July, 2016

Author: Supervisor:
Subhadip Singha Dr. Rishiraj Bhattacharyya
Roll No: CS1410 CSRU Unit, ISI

CERTIFICATE

This is to certify that the dissertation entitled “A Study on Cryptographic Key
Exchange Protocols” submitted by Subhadip Singha to Indian Statistical In-
stitute, Kolkata, in partial fulfillment for the award of the degree of Master of
Technology in Computer Science is a bonafide record of work carried out by him
under my supervision and guidance. The dissertation has fulfilled all the requirements
as per the regulations of this institute and, in my opinion, has reached the standard
needed for submission.

Dr. Rishiraj Bhattacharyya
Cryptology and Security Research Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr. Rishiraj
Bhattacharyya for the continuous support for my M.Tech dissertation and related
research, for his patience, motivation, and in depth knowledge. His guidance helped
me in all the time of research and writing of this thesis. It was his support that led
me through to complete the anticipated work. He is open to new ideas and through
out the course of my dissertation he steered me in the right direction whenever he
thought I needed it.

Besides my guide, I would like to thank all the professors who taught me various
subjects during last two years and I genuinely thank all my classmates who also
helped me in learning and motivated me to do good research.

Subhadip Singha
M.Tech. II Year
Discipline of Computer Science
ISI Kolkata

Abstract

Key-exchange protocol are one of the interesting fields of study in Cryptography.
These are the mechanisms by which two or more parties that communicate over an
adversarially-controlled network can generate a common secret key. In my desertion
thesis, I tried to focus on two aspects of key-exchange protocols. First is the behaviour
of these protocols when they are exposed to related randomness attacks (RRA) or
when the adversary partially controls the the randomness pool to be used by the
parties and how to secure those protocols in these scenarios to make them useful. The
second aspect is to extend two party Non-interactive Key-exchange (NIKE) protocols
to three party in standard model extending the underlying model with proper security
bound.

Contents

1 Introduction 2
1.1 Introduction . 2
1.2 Foundation . 2
1.3 Varieties of Key Exchange Protocol 3
1.4 Our Result . 5

2 Interactive Key Exchange Protocol 6
2.1 Introduction and Preliminaries . 6
2.2 Different Classes of Attacks . 7
2.3 Security Model . 7
2.4 Security Model under Reset randomness 8
2.5 Brief Review of existing work . 9
2.6 Proposed Model (Related Randomness) 10

2.6.1 Attack . 11
2.6.2 Preliminaries . 12
2.6.3 Construction of RRA secure KE Protocol 14

3 Non-Interactive Key Exchange Protocol 16
3.1 Basic Definitions . 16
3.2 Security Model . 17
3.3 Our Result . 19

4 Conclusion and Future Work 29

1

Chapter 1

Introduction

1.1 Introduction

Key-exchange protocols are mechanisms by which two parties that communicate over
an adversarially-controlled network can generate a common secret key. Key-exchange
protocols are essential for enabling the use of shared-key cryptography to protect
transmitted data over insecure networks. As such they are a central piece for building
secure communications or secure channels. The most commonly used cryptographic
protocols include SSL, IPSec, SSH, etc. Design and analysis of Key exchange proto-
cols has been proved to be non trivial with lots of work done on this topics, such as
[6], [4], [3], [5], [2].

1.2 Foundation

Cryptographic key exchange protocol is a method of securely exchanging crypto-
graphic keys over a public channel. The first key exchange protocol was originally
conceptualized by Ralph Merkle and named after Whitfield Diffie and Martin Hell-
man as DiffieHellman (DH) [1] Key exchange protocol. DH is one of the earliest
practical examples of public key exchange implemented within the field of cryptog-
raphy. Traditionally, secure encrypted communication between two parties required
that they first exchange keys by some secure physical channel, such as paper key lists
transported by a trusted courier. The DiffieHellman key exchange method allows
two parties that have no prior knowledge of each other to jointly establish a shared
secret key over an insecure channel. This key can then be used to encrypt subsequent
communications using a symmetric key cipher.

In 2002, Hellman suggested the algorithm be called DiffieHellmanMerkle key ex-
change in recognition of Ralph Merkle’s contribution to the invention of public-key

2

cryptography.

Overview of Diffie-Hellman Key Exchange Protocol

Diffie-Hellman Key Exchange establishes a shared secret between two parties that
can be used for secret communication for exchanging data over a public network.

The simplest and the original implementation of the protocol uses the multiplica-
tive group of integers modulo p, where p is prime, and g is a primitive root modulo
p. These two values are chosen in this way to ensure that the resulting shared secret
can take on any value from 1 to p− 1.

1. Alice chooses a secret integer a, then sends Bob A = ga mod p

2. Bob chooses a secret integer b, then sends Alice B = gb mod p

3. Alice calculates secret key as s1 = Ba mod p = gab mod p

4. Alice calculates secret key as s2 = Ab mod p = gba mod p

Both Alice and Bob have arrived at the same value s = s1 = s2, under mod p,
Note that only a, b, and (gab mod p = gba mod p) are kept secret. All the other values
p, g, ga mod p, andgb mod p are sent in the clear. Once Alice and Bob compute the
shared secret they can use it as an encryption key, known only to them, for sending
messages across the same open communications channel.

1.3 Varieties of Key Exchange Protocol

Key exchange protocols can be of two types.

1. Interactive Key Exchange Protocol

2. Non-Interactive Key Exchange Protocol

Interactive Key Exchange Protocol

The fundamental approach to key exchange protocols is interactive.Interactive Key-
exchange protocols are mechanisms by which two parties that communicate over an
adversarially-controlled network can generate a common secret key by interacting
with each others. Following are the few concepts which are central to the idea of
interactive key exchange protocol. Here are the few basic notions related to interactive
key exchange protocol.

3

Protocols : We consider a set of parties (probabilistic polynomial-time machines),
which we usually denote by P1,, Pn, interconnected by point-to-point links over
which messages can be exchanged. Protocols are collections of interactive procedures,
run concurrently by these parties, that specify a particular processing of incoming
messages and the generation of outgoing messages. Protocols are initially triggered
at a party by an external “ call ” and later by the arrival of messages. Upon each
of these events, and according to the protocol specification, the protocol processes
information and may generate and transmit a message and/or wait for the next
message to arrive. We call these message-driven protocols.

Sessions : We call each copy of a protocol run at a party a session. Technically, a
session is an interactive subroutine executed inside a party. Each session is identified
by the party that runs it, the parties with whom the session communicates and by a
session-identifier.

Key-exchange protocols : Interactive Key-exchange protocols are message-driven
protocols where the communication takes place between pairs of parties and which
return, upon completion, a secret key called a session key.

More specifically, the input to a interactive key exchange protocol within each
party Pi is of the form (Pi, Pj, s, role), where Pj is the identity of another party, s is
a session id, and role can be either initiator or responder. A session within Pi and a
session within Pj are called matching if their inputs are of the form (Pi, Pj, s, initiator)
and (Pj, Pi, s, responder). The inputs are chosen by a higher layer protocol that calls
the interactive key exchange protocol. We require the calling protocol to make sure
that the session id′s of no two sessions in which the party participates are identical.

Non-Interactive Key Exchange Protocol

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables two
parties, who know each others public keys, to agree on a symmetric shared key with-
out requiring any interaction. The canonical example of a NIKE scheme can be found
in the seminal paper by Diffie and Hellman [1].

For example, let G be a group of prime order p with generator g, and assume that
Alice has public key gx ∈ G and private key x ∈ Zp, while Bob has public key gyG
and private key y ∈ Zp. Then Alice and Bob can both compute the value gxy ∈ G
without exchanging any messages. More properly, Alice and Bob should hash this key
together with their identities in order to derive a symmetric key H(Alice, Bob, gxy)
where H is a cryptographic hash function.

4

1.4 Our Result

In this thesis, we have looked into the following

1. We formalize the security model for a key exchange protocol to be secure against
Related Randomness Attacks (RRA).

2. We also studied the Three party NIKE protocol, secure in standard model.

5

Chapter 2

Interactive Key Exchange Protocol

In this section we will talk about security models of different types of key exchange
protocols.

2.1 Introduction and Preliminaries

We follow the model of Canetti and Krawczyk [8], which has been considered as a
standard definition of key exchange protocols.

The unauthenticated-link adversarial model (UM)

In order to talk about the security of a protocol we need to define the adversarial
setting that determines the capabilities and possible actions of the attacker. We want
these capabilities to be as generic as possible while not posing unrealistic require-
ments. We call this model the Unauthenticated Links Model (UM).

Basic attacker capabilities: We consider a probabilistic polynomial-time (ppt)
attacker that has full control of the communications links: it can listen to all the
transmitted information, decide what messages will reach their destination and when,
change these messages at will or inject its own generated messages. The formalism
represents this ability of the attacker by letting the attacker be the one in charge of
passing messages from one party to another. The attacker also controls the schedul-
ing of all protocol events including the initiation of protocols and message delivery.
In addition to these basic adversarial capabilities, we let the attacker obtain secret
information stored in the parties memories via explicit attacks. we classify attacks
into three categories depending on the type of information accessed by the adversary.

6

2.2 Different Classes of Attacks

Session-State Reveal : The attacker provides the name of a party and a session
identifier of a yet incomplete session at that party and receives the internal states of
that session. The information, included in the local state of a session, is specified by
each key exchange protocol. Therefore, our definition of security is parameterized by
the type and amount of information revealed in this attack. Typically, the revealed
information will include all the local state of the session and its subroutines, except for
the local state of the subroutines that directly access the long-term secret information,
e.g. the local signature/decryption key of a public-key cryptosystem, or the long-term
shared key.

Session-Key Query : In this attack, the attacker provides a party’s name and a
session identifier of a completed session at that party and receives the value of the key
generated by the named session. This attack provides the formal modeling for leakage
of information on specific session keys that may result from events such as break-ins,
cryptanalysis, careless disposal of keys, etc. It will also serve, indirectly, to ensure
that the unavoidable leakage of information produced by the use of session keys in
a security application (e.g., information leaked on a key by its use as an encryption
key) will not help in deriving further information on this and other keys.

Party corruption : The attacker can decide at any point to corrupt a party, in
which case the attacker learns all the internal memory of that party including long-
term secrets (such as private keys or master shared keys used across different sessions)
and session-specific information contained in the party’s memory (such as internal
state of incomplete sessions and session-keys corresponding to completed sessions).
Since by learning its long term secrets the attacker can impersonate a party in all
all its actions then a party is considered completely controlled by the attacker from
the time of corruption and can, in particular, depart arbitrarily from the protocol
specifications.

2.3 Security Model

Here we discuss a new security models of key exchange protocol in authenticated-link
adversarial model (AKE). An AKE protocol consists of two probabilistic polynomial
time algorithms: the Long-Lived Key generation algorithm SKG and a protocol exe-
cution algorithm P. Here we focus on the public key setting where the algorithm SKG
returns a public key and a private key upon each invocation. An adversary can make
the following oracle queries.

7

Register(U, pkU) : This oracle query allows the adversary A to register a new user
U with public key pkU . Here we only require that neither the user identity U nor the
public key pkU exists in the system. In particular, we do not require the adversary
to provide a proof of knowledge on the secret key with regard to pkU .

NewInstance(U, i,N) : This oracle query allows A to initialize a new instance πiU
within party U with a binary string N which serves as the random tape of πiU .

Send(U, i,Min) : This oracle query invokes instance i of U with message Min. The
instance then runs the protocol and sends the response back to the adversary.

Reveal(U, i) : If oracle πiU has accepted and generated a session key sskiU , then
sskiU is returned to the adversary.

Corrupt(U) : By making this oracle query, adversary A obtains the long-lived
secret key skU of party U .

Test(U, V, sid) : A new session is created between party U and V and a session key
is generated ssk. A coin b is flipped. if b = 1, the adversary is given the actual session
key ssk. If b = 0, then a random session key is drawn from the session key space
and returned to the adversary. This query is only asked once during the whole game.
The success of an adversary is measured by its ability to distinguish a real session
key from a random key in the session key space.

Definition of Session Key Security : A KE protocol P is called (Session Key)
SK-secure if the following properties hold for any KE-adversary A in the UM.

1. Protocol P satisfies the property that if two uncorrupted parties complete
matching sessions then they both output the same key.

2. the probability that any adversary A guesses correctly the bit b (i.e., outputs
b′ = b) is no more than 1/2 plus a negligible fraction in the security parameter.

If the above properties are satisfied for all KE-adversaries in the UM then we say
that P is SK-secure.

2.4 Security Model under Reset randomness

In some practical situations however, the randomness may be controlled by an ad-
versary and the seeds may no longer be fresh or truly random. For example, if an
adversary has physical access to a hardware source or may be able to manipulate the

8

randomness used in Key exchange protocols.

Adversarial reset of machines could make an AKE protocol reuse the same random
coins in different sessions. In [12] these threats have been properly modelled.

Reset Model : We need to perform some modification to the Test query, Adversary
A selects two parties U and V which had successfully completed few sessions with each
other. These parties are asked to create a new session and use the randomness that
they had already used in one of their completed sessions. So, NewInstance(U, i,N1)
and NewInstance(V, j,N2) are called. Here both the parties choose binary string or
the random tape Ni randomly from the previously completed sessions. Here, the
adversary does not control the randomness directly but the randomness is reused.
After completion of the session one of the parties is chosen. A coin b is flipped. if
b = 1, the adversary is given the actual session key. If b = 0, then a random session
key is drawn from the session key space and returned to the adversary. This query
is only asked once during the whole game. The success of an adversary is measured
by its ability to distinguish a real session key from a random key in the session key
space.

2.5 Brief Review of existing work

In this section, we recall some of the important key-exchange protocols proposed in
the literature.

Two-move Diffe-Hellman(2DH) : Common information: Primes p, q, q/p−1, andg
of order q in Z∗p .

1. The initiator, Pi, on input (Pi, Pj, s), chooses x
$← Zq and sends (Pi, s, α = gx)

to Pj.

2. Upon receipt of (Pi, s, α) the responder, Pj chooses y
$← Zq, sends (Pj, s, β = gy)

to Pi, erases y, and outputs the session key γ = αy under session-id s.

3. Upon receipt of (Pj, s, β), party Pi computes γ′ = βx, erases x, and outputs the
session key γ′ under session-id s.

Theorem : Assuming the Decisional Diffie-Hellman (DDH) assumption, protocol
2DH is SK-secure in the AM.

9

Signature based Diffe-Hellman(2DH) : Common information: Primes p, q, q/p−
1, andg of order q in Z∗p . Each player has a private key for a signature algorithm sig,
and all have the public verification keys of the other players.

1. The initiator, Pi, on input (Pi, Pj, s), chooses x
$← Zq and sends (Pi, s, α = gx)

to Pj.

2. Upon receipt of (Pi, s, α) the responder, Pj , chooses y
$← Zq, sends (Pj, s, β =

gy) to Pi, erases y together with the signature sigj(Pj, s, β, α, Pi), and outputs
the session key γ = αy under session-id s.

3. Upon receipt of (Pj, s, β) and Pj’s signature, party Pi verifies the signature
and the correctness of the values included in the signature (such as players
identities, session id etc.). If the verification succeeds then Pi sends to Pj the
message (Pi, s, sigj(Pi, s, α, β, Pj)), γ

′ = βx, erases x, and outputs the session
key γ′ under session-id s.

4. Upon receipt of (Pj, s, sig), Pj verifies Pi’s signature sig and the values it in-
cludes. If the check succeeds it outputs the session key γ under session-id s.

The signature-based Diffe-Hellman paradigm has been used to design many pop-
ular AKE protocols, such as the ISO protocol [7], the SIGMA (SIGn-and-MAc) [10]
and JFK (Just Fast Keying) [9]. These protocols are all proven secure in the SK
model.

2.6 Proposed Model (Related Randomness)

Our Proposed model is same as before the only difference is in the adversarial ca-
pabilities. Here adversary can provide an index to choose a randomness from the
randomness pool and it can also choose a function that will be used on that chosen
randomness to get of a new randomness to be used to build the shared key in any
session. If we try to figure out the connection between our proposed model and Re-
set model, we’ll find that when the function is an identity function and the chosen
index is an used one for the set of parties, we are in Reset model. Other than this
situation the function can be any arbitrary one, hence here we capture capabilities of
more powerful adversary. We need to figure out the pool of functions φ ∈ Φ for which
adversary can trivially break the Key exchange protocol. We’ll consider key exchange
protocol of the form of A = (SKG,P), where SKG is key generation algorithm of
users (public key and private key of a party) and P is a shared key generation algo-
rithm.

The Register, New Instance, Send, Reveal and Corrupt queries will be same as before
but we need to define Test query for our related randomness model.

10

Test(U, V, sid, φ1, φ2, i1, i2) : By making this oracle query, Adversary A selects two
parties U and V . These parties are asked to create a new session. So, NewInstance(U,
i, φ1(Ni1)) and NewInstance(V, j, φ2(Ni2)) are called. After completion of the session
one of the parties is chosen. A coin b is flipped. if b = 1, the adversary is given the
actual session key. If b = 0, then a random session key is drawn from the session key
space and returned to the adversary. This query is only asked once during the whole
game. The success of an adversary is measured by its ability to distinguish a real
session key from a random key in the session key space.

We formalize the Related Randomness security of a key exchange protocol through
the following subroutine used during the Test query. CoinTab is a table which con-
tains the random strings used in the past sessions.

proc.Test(ID1, ID2, φ1, φ2, i1, i2):
If CoinTab[i1] = ⊥ then

CoinTab[i1] =
$← Rnd

If CoinTab[i2] = ⊥ then

CoinTab[i2] =
$← Rnd

ri1 ← CoinTab[i1]
ri2 ← CoinTab[i2]

c = P (φ1(ri1), φ2(ri2))

b
$← {0, 1}

if b = 1 return c.
else c

$← Keysλ
else return c.

We define the RRA advantage of an adversary A against a protocol P as

Advrra−atkP,A (λ) = |Pr[P,A][b = b′]− 1/2|

2.6.1 Attack

Here we show that key exchange schemes which are secure in Reset-1 and Reset-2
model can be easily attacked in our proposed Related Randomness Model, showing
the necessity of a new construction.

Attack against PKEDH-R2 : Consider a past session i of a user U with the user
V session j. Let ssk ← SessionReveal(U, i). Next, the adversary runs the test query

11

Figure 2.1: PKEDH-R2

Test(U, V, φ1, φ2, i, j) where φ1(x)
def
= 2x and φ2(x)

def
= x/2. Let K ′ be the response.

The adversary outputs 1 if K ′ = ssk. Indeed, the session key generated during the
test query is ssk.

2.6.2 Preliminaries

Here we define some necessary to tools which are required for the security proof of
our protocol. We follow the definitions according to [14]

PRFReal Game

proc.Initialise(λ):

K
$← Keysλ

proc.Function(x):
Retrun F (K, x).

proc.Finalise(b):
Retrun b.

PRFRand Game

proc.Initialise(λ):
FunTab ← φ

proc.Function(x):
If FunTab[x] = ⊥ then

FunTab[x] =
$← Rngλ

12

Return FunTab[x].

proc.Finalise(b):
Retrun b.

Pseudorandom Functions :

Let F : Keysλ × Domλ → Rngλ be a family of functions. The advantage of a
RKA-PRF adversary A against F is

AdvprfF,A(λ) = Pr[PRFRealAF (λ)⇒ 1]− Pr[PRFRandA$ (λ)⇒ 1]

We say F is a secure PRF family if the advantage of any polynomial-time adversary
is negligible in the security parameter λ.

RKA-PRFReal Game

proc. Initialise(λ):

K
$← Keysλ

proc. Function(φ, x):
Retrun F (φ(K), x).

proc. Finalise(b):
Retrun b.

RKA-PRFRand Game

proc. Initialise(λ):
G← FF (Keysλ, Domλ, Rngλ)

K
$← Keysλ

proc. Function(x):
Return G(φ(K), x).

proc. Finalise(b):
Retrun b.

13

Related Key Secure Pseudorandom Functions :

Let F : Keysλ ×Domλ → Rngλ be a family of functions. The advantage of a PRF
adversary A against F is

Advrka−prfF,A (λ) = Pr[RKA− PRFRealAF (λ)⇒ 1]− Pr[RKA− PRFRandA$ (λ)⇒ 1]

We say F is a secure Φ-RKA-PRF family if the advantage of any Φ-restricted,
polynomial-time adversary is negligible in the security parameter λ.

2.6.3 Construction of RRA secure KE Protocol

Given a key exchange protocol KE = (SKG, P) that is secure in public key set-
tings, and a Φ restricted pseudorandom function family F = {Fr : {0, 1}δ(k) →
{0, 1}ρ(k)|K ∈ {0, 1}δ(k)}, where ρ(k) and δ(k) are polynomials of k. We construct a
new protocol KE′ = (SKG′, P′) as follows:

1. SKG′(1k): run SKG(1k) to generate (pk, sk), select K
$← {0, 1}δ(k). Set pk′ = pk

and sk′ = (sk,K).

2. P′: get a ρ(k) bit random string r, then compute r′
$← Fr(K) and run P with

random coins r′.

Theorem 1 Suppose A is a Φ-restricted adversary in the RRA-KE game against the
scheme PRF-KE defined as per our construction. Suppose A makes qLR proc.Test
queries. Then there exists a Φ-restricted RKA-PRF adversary B and an IND-ATK-
KE adversary C such that

Advrra−atkPRF−KE,A(λ) ≤ qLR.Adv
ind−atk−ke
PKE,C (λ) + 2/qLAdv

rka−prf
F,B (λ)

Proof:

Let G0 be the real RRA-ATK-KE security game played by an adversary A against the
challenger correctly simulating the scheme PRF-KE and let G2 be the game where
outputs of the PRF F are replaced with values chosen uniformly at random.

We define an intermediate game G1, where the challenger during the test query sim-
ulation replaces Fφ1(ri)(KU) by a uniform random string r′U . We claim that there is
an adversary B against the Φ-RKA-PRF security of F such that:

|Pr[GA
0 = 1]− P [GA

1 = 1]| ≤ 1/qLAdv
rka−prf
F,B (λ)

14

where qL is the number of reveal query of A.

The adversary B to the RKA-PRF security of F works as follows. Adversary B
creates an instance of KE and runs A. Moreover, B chooses an i uniformly at ran-
dom from [qL]

When A submits the ith reveal query for (ID′, ID′′), B queries Fid(K) and uses the
returned string to execute a session between ID′ and ID′′. For other reveal queries,
B chooses r on its own, and computes Fr(K) to compute the required randomness.
To simulate Corrupt query B outputs the corresponding secret key, sampled by B
during the instance creation.

When A submits a test query (., ., φ1, ., i1), B checks whether i = i1. If i 6= i1,
B aborts. Otherwise, B uses its RKA oracle to get the required r′ = Fφ1(ri)(K).
Hence,conditioned on i1 = i

|Pr[GA
0 = 1]− P [GA

1 = 1]| = |Prr′←RR[B[r′] = 1]− Prr′=Fφ1(ri)(K)[B[r′] = 1]| ≤ Advrka−prfF,B (λ).

Now, using Pr[i1 = i] = 1/qL, we get

|Pr[GA
0 = 1]− P [GA

1 = 1]| ≤ 1/qLAdv
rka−prf
F,B (λ)

By symmetry, we get

|Pr[GA
1 = 1]− P [GA

2 = 1]| ≤ 1/qLAdv
rka−prf
F,B (λ)

Hence, by triangle inequality,

|Pr[GA
0 = 1]− P [GA

2 = 1]| ≤ 2/qLAdv
rka−prf
F,B (λ)

Hence,

Advrra−atkPRF−KE,A(λ) ≤ qLR.Adv
ind−atk−ke
PKE,C (λ) + 2/qLAdv

rka−prf
F,B (λ)

�

15

Chapter 3

Non-Interactive Key Exchange
Protocol

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables two
parties, who know each others public keys, to agree on a symmetric shared key without
requiring any interaction. The canonical example of a NIKE [13] scheme can be found
in the seminal paper by Diffie and Hellman [1].

3.1 Basic Definitions

Non-Interactive Key Exchange (NIKE) scheme in the public key setting is collection of
three algorithms: CommonSetup, KeyGen and SharedKey together with an identity
space IDS and a shared key space SHK.

Common Setup : On input 1k, outputs params, a set of system parameters.

KeyGen : On input params and an identity ID ∈ IDS, outputs a public key/secret
key pair (pk, sk). This algorithm is probabilistic and can be executed by any user.
We assume without loss of generality, that params is included in pk.

SharedKey : On input an identity ID1 ∈ IDS and a public key pk1 along with
another identity ID2 ∈ IDS and a secret key sk2, outputs either a shared key in
SHK for the two identities, or a failure symbol ⊥. This algorithm is assumed to
always output ⊥ if ID1 = ID2.

For correctness, we require that, for any pair of identities ID1, ID2, and correspond-
ing key pairs (pk1, sk1) and (pk2, sk2), algorithm SharedKey satisfies the constraint:

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1)

16

3.2 Security Model

We work on the security model proposed by Cash, Kiltz and Shoup, or in short CKS
model [11]. The power of an adversary is modeled through four function calls.

Register honest user ID : A supplies an identity ID ∈ IDS. On input params
and ID, the challenger runs KeyGen to generate a public key/secret key pair (pk, sk)
and records the tuple (honest, ID, pk, sk). The challenger returns pk to A.

Register corrupt user ID : In this type of query, A supplies both an identity
ID ∈ IDS and a public key pk. Challenger records the tuple (corrupt, ID, pk,). We
stress that A may make multiple Register corrupt user ID queries for the same ID
during the experiment. In that case, only the most recent (corrupt, ID, pk,⊥) entry
is kept.

Extract : Here A supplies an identity ID that was registered as an honest user.
The challenger looks for a tuple (honest, ID, pk, sk) containing ID and returns sk to
A.

Reveal : Here A supplies a pair of registered identities ID1, ID2, subject only to
the restriction that at least one of the two identities was registered as honest. The
challenger runs SharedKey using the secret key of one of the honest identities and
the public key of the other identity and returns the result to A. Note that here the
adversary is allowed to make reveal queries between two users that were originally
registered as honest users. Honest reveal the queries are those which involve two
honest users and corrupt reveal queries involve an honest user and a corrupt user.

Test : Here A supplies two distinct identities ID1, ID2 that were both registered
as honest. The challenger returns ⊥ if ID1 = ID2. Otherwise, it uses the bit b to
answer the queries. If b = 0, the challenger runs SharedKey using the public key for
ID1 and the secret key for ID2 and returns the result to A. If b = 1, the challenger
generates a random key, records it for later, and returns that key to the adversary.
In this case, to keep things consistent, the challenger returns the same random key
for the pair ID1, ID2 every time A queries for their paired key, in either order.

A’s queries may be made adaptively and are arbitrary in number. To prevent trivial
wins for the adversary, no query to the reveal oracle is allowed on any pair of identities
selected for test queries (in either order), and no extract query is allowed on any of
the identities involved in test queries. Also, we demand that no identity registered as
corrupt can later be the subject of a register honest user ID query, and vice versa.

17

When the adversary finally outputs b′, it wins the game if b′ = b. For an adver-
sary A, we define its advantage in this security game as:

AdvCKSA (k) = |Pr[b′ = b]− 1/2|

Modified CKS Model

We extend the original CKS model for three party NIKE. We have three different
models as CKS-light, CKS-heavy, m-CKS-heavy other than CKS itself. We’ll give
the adversarial capabilities for each of these models.

Model Register
Honest

Register
Corrupt

Extract Honest
Reveal

Corrupt
Reveal

Test

CKS-light 3 3 7 7 3 1
CKS 3 3 7 7 3 3

CKS-heavy 3 3 3 3 3 1
m-CKS-heavy 3 3 3 3 3 3

Table 3.1: Adversarial capabilities in different models

Notation : 3 means that an adversary is allowed to make an arbitrary number of
queries and 7 means that no query can be made, numbers represent the number of
queries allowed to an adversary.

New Constraints : In the three party model the function calls which remain same
are Register honest user ID, Register corrupt user ID and Extract. The nature of the
Reveal query remains the same, except that adversary will provide three identities
and among them at least two identities should be registered as honest. In case of the
Test query the adversary has to provide three honest identities in place of two. The
nature of the function call remains the same.

Theorem : The m-CKS-heavy, CKS-heavy, CKS and CKS-light security models
are all polynomially equivalent. We’ll provide the proof in the later section.

The Decisional Bilinear Diffe-Hellman Assumption (DBDH)

Our pairing based scheme will be parameterized by a Type 1 pairing parameter gen-
erator. This is a polynomial time algorithm that on input a security parameter 1k,
returns the description of two multiplicative cyclic groups G1, and GT of the same
prime order p, generator g1, for G1, and a bi-linear non-degenerate and efficiently

18

computable pairing e : G1×G1 → GT . Throughout, we write PG = (G1, GT , g1, p, e)
for a set of groups and other parameters with the properties just described.

We consider the following version of the Decisional Bi-linear Diffie-Hellman prob-
lem for type 1 pairings: Given (g1, g

a
1 , g

b
1, g

c
1, T) ∈ G4

1 ×GT

we associate the following experiment to a Type 1 pairing parameter generator G1
and an adversary B.

ExperimentExpdbdhB,G1

PG
$← G1(1k)

a, b, c, d
$← Zp

β
$← {0, 1}

If β = 1 then T ← e(g1, g1)
abc else e(g1, g1)

z

β′
$← B(1k, PG, ga1 , g

b
1, g

c
1, T)

If β = β′ 0 then return 0 else return 1

The advantage of B in the above experiment is defined as

AdvdbdhB,G1(k) = |Pr[ExpdbdhB,G1(k) = 1]− 1

2
|

3.3 Our Result

Construction of Three User Key Exchange Protocol in Stan-
dard Model

We construct a 3 user NIKE scheme, NIKE3USER, that is secure in the CKS-light
security model under the DBDH assumption in the standard model. Our construction
makes use of a tuple PG = (G1, GT , g1, p, e), output by a parameter generator G1,
and a chameleon hash function ChamH : {0, 1}∗ × RCham → Zp. The component
algorithms of the scheme NIKE3USER are defined as follows:

CommonSetup(1k) :

PG
$← G1{1}k,

where PG = (G1, GT , g1, p, e)

u0, u1, u2, u3
$← G∗1,

hk, ck
$← Cham.KeyGen(1k)

19

params← (PG, u0, u1, u2, u3, hk)
Return param

KeyGen(params, ID) :

x
$← Zp, r

$← RCham

Z ← gx1
t← ChamHhk(Z||ID; r)
Y ← u0u

t
1u

t2

2 u
t3

3 ;X ← Y x

pk ← (X,Z, r), sk ← x
Return (pk, sk)

SharedKey(ID1, pk1, ID2, pk2, ID3, sk3) :

If IDi = IDj where i 6= j return ⊥
Parse pk1 as (X1, Z1, r1), pk2 as (X2, Z2, r2) and sk3 as x3
t1 ← ChamHhk(Z1||ID1; r1) and t2 ← ChamHhk(Z2||ID2; r2)
If e(X1, g1) 6= e(u0u

t1
1 u2t

2
1u

t3

3 , Z1) OR e(X2, g1) 6= e(u0u
t2
1 u2t

2
2u

t3

3 , Z2)
then K1,2,3 ← ⊥
else K1,2,3 ← {e(Z1, Z2)}x3
Return K1,2,3

The check in the SharedKey algorithm for valid public keys can be implemented
by evaluating the bilinear map twice. It is clear that SharedKey defined in this way
satisfies the requirement that entities ID1, ID2 and ID3 are able to compute a com-
mon key. To see this, note that {e(Z1, Z2)}x3 = e(g1, g1)

x1x2x3 . We will prove the
above NIKE3USER scheme to be secure under the DBDH assumption.

Relationships between NIKE3USER Security Models

We show that the NIKE3USER security models discussed, are polynomially equivalent
to each other.

Theorem 2 (CKS-light ⇐⇒ CKS) A NIKE scheme NIKE3USER is secure in
the CKS model if and only if it is also secure in the CKS-light model. In more detail,
for any adversary A against NIKE3USER in the CKS model, there is an adversary
B that breaks NIKE3USER in the CKS-light model with

Proof:

Clearly, security in the CKS model implies security in the CKS-light model as

AdvCKSA (k, 2, qC , qCR, 1) = AdvCKS−lightB (k, qC , qCR)

20

Hence we concentrate on the other side of the proof which is non trivial. We as-
sume that there exists an adversary A against NIKE3USER in the CKS model with
advantage

AdvCKSA (k, qH , qC , qCR, qT) = |Pr[b′ = b]− 1/2|

We consider a sequence of games G0, G1, , , , GqT all defined over the same probability
space. Starting from the actual adversarial game G0 (attack game with respect to
an adversary A against NIKE3USER in the CKS model), when b = 1 (that is, test
queries will always be answered with random keys), we make slight modifications
between successive games, in such a way that the adversary’s view is still indistin-
guishable among the games. The last game, Game GqT , will be exactly like Game
G0, except that this time A’s challenger will use b = 0 to answer A’s test queries.
Note that this means that A can distinguish games Game G0 and Game GqT with
advantage AdvCKSA (k, qH , qC , qCR, qT) = |Pr[A(G0) = 1]−Pr[A(GqT) = 1]|. We write
A(Gi) to denote adversary A playing in game Gi. For every 0 ≤ i ≤ qT , we define a
hybrid variable H i where the first i elements are the actual shared keys associated to
the corresponding users involved in the first i test queries, and the qT − i following
elements are random keys.

Game G0, be the original game as described in the CKS security model when b = 1.
Game Gi (1 ≤ i ≤ qT). This game is identical to game Game Gi−1, except that
whenever A makes its ith Test query on a tuple of three identities, say IDA, IDB and
IDC , A’s challenger will return to A the actual shared key, K(IDA,IDB ,IDC), between
those identities. Note that Games Gi and Gi+1 differ in only one single test query.

Now, we construct an adversary B against NIKE3USER in the sense of the CKS-
light model. B plays the CKS-light security game with challenger C and acts as a
challenger for A. C takes as input the security parameter 1k, runs algorithm Com-
monSetup of the NIKE3USER scheme and gives B params. C then takes a random
bit b and answers oracle queries for B until B outputs a bit b′

Let qT and qH be bounds on the number of test queries and register honest user
ID queries, respectively, made to B by A in the course of its attack. Without loss of
generality, we assume that the qT test queries are all distinct. B chooses a random
i ∈ {0,qT − 1} and three distinct indices I, J and K uniformly at random from
{1, 2, 3,, qH}. Effectively B is guessing that the I-th, J-th and K-th identities to
be honestly registered by A will be involved in the (i + 1)-st test query made by A.
A makes a series of queries which B answers as follows:

21

Register corrupt user ID : If Amakes a Register corrupt user ID query, supplying
(ID, pk), then B makes the same register corrupt user ID query to C. C records the
tuple (corrupt, ID, pk,⊥).

Register honest user ID : Here A supplies a string ID to B. If this is the I-th or
J-th or K-th such query, then B makes the same register honest user ID query to C,
setting IDI = ID or IDJ = ID or IDK = ID as appropriate. On input params and
ID, C runs KeyGen, generating a key pair (pk, sk), records (honest, ID, pk, sk) and
returns pk to B. If ID /∈ {IDI , IDJ , IDK} then B generates a key pair (pk, sk) by
running algorithm KeyGen on input params and ID, and makes a Register corrupt
user ID query to C on inputs the string ID and the public key pk. B then gives pk
to A.

Corrupt reveal : Whenever A supplies three identities ID, ID′, ID′′, where ID
was registered by A as corrupt and ID′andID′′ were registered as honest, B will check
if ID′ ∈ {IDI , IDJ , IDK} or ID′′ ∈ {IDI , IDJ , IDK}. If so, B will make the same
corrupt reveal query to C, obtaining K(ID,ID′,ID′′), and give the result to A else, B
runs SharedKey on input (ID, pkID, ID

′, skID′ , ID′′, pkID′′). Note that in this case, B
has skID′ because it generated for itself the pair (pkID′ , skID′). B gives K(ID,ID′,ID′′)

to A.

Test : B will answer A’s first i Test queries with the actual shared keys associated
to the corresponding users involved in those test queries, the (i+ 1)st test query with
a value that can be either the actual shared key associated to the users involved in
that test query or a random value, and the other qT − i−1 Test queries with random
values. Next, we explain in more detail exactly how B handles A’s Test queries.

When A makes its jth (j ≤ i) Test query on a tuple of identities {ID, ID′, ID′′}, that
were registered as honest users, B will check if {ID, ID′, ID′′} = {IDJ , IDJ , IDK}. If
so, B aborts the simulation. Otherwise, suppose |{ID, ID′, ID′′}∩{IDJ , IDJ , IDK}| ≤
2. B gives K(ID,ID′,ID′′) to A.

When A makes its (i + 1)st Test query on a tuple of identities {ID, ID′, ID′′}, B
checks if {ID, ID′, ID′′} = {IDJ , IDJ , IDK}. If not, B aborts the simulation. If
{ID, ID′, ID′′} = {IDJ , IDJ , IDK} , B makes the same Test query to C receiving
α. B gives α to A. For all other Test queries B will respond with a random value.

Whenever A terminates by outputting a bit b′, then B outputs the same bit. Now,
if α is the actual key K(IDA,IDB ,IDC) associated to (IDA, IDB, IDC) (the identities
involved in the (i+1)st Test query made by A), then A was playing game Game Gi+1.
Otherwise, if α is a random value, A was playing game Gi.

22

Let G′0 and G′1 be the games played by B against NIKE3USER in the CKS-light
model when b = 0 and b = 1, respectively. Let F denote the event that B is not
forced to abort during its simulation. So, Pr(F) ≥ 1/

(
qH
3

)
≥ 6/qH3.

And we have

Pr[B(G′0) = 1] = Pr[F]
1

qT

qT−1∑
i=0

Pr[A(Gi+1) = 1]

and

Pr[B(G′1) = 1] = Pr[F]
1

qT

qT−1∑
i=0

Pr[A(Gi) = 1]

So,

AdvCKS−lightB (k, q′C , q
′
CR) = |Pr[B(G′0) = 1]− Pr[B(G′1) = 1]|

=
Pr[F]

qT
|
qT−1∑
i=0

Pr[A(Gi) = 1−
qT−1∑
i=0

Pr[A(Gi+1) = 1|

=
Pr[F]

qT
|Pr[A(G0) = 1− Pr[A(G1) = 1|

=
Pr[F]

qT
AdvCKSB (k, qH , qC , qCR, qT)

≥ 2.AdvCKSB (k, qH , qC , qCR, qT)/q3HqT

(3.1)

This concludes the proof.
�

Theorem 3 (CKS-heavy ⇐⇒ CKS-light) A NIKE scheme NIKE3USER is se-
cure in the CKS-heavy model if and only if it is also secure in the CKS-light model.
In more detail, for any adversary A against NIKE3USER in the CKS-heavy model,
there is an adversary B that breaks NIKE3USER in the CKS-light model with

AdvCKS−lightB (k, q′C , q
′
CR) ≥ 2.AdvCKS−heavyB (k, qH , qC , qE, qHR, qCR,)/q

3
H

Proof:

Security in the sense of the CKS-heavy model implies security in the sense of the

23

CKS-light model. Here we prove that if a NIKE scheme NIKE3USER is secure in the
CKS-light model, it is also secure in the CKS-heavy model.

Suppose there is an adversary A against NIKE3USER in the CKS-heavy model with
advantage AdvCKS−heavyA (k, qH , qC , qE, qHR, qCR,), like the previous proof we show how
to construct an algorithm B against NIKE3USER in the CKS-light model that uses
A to break NIKE3USER with advantage

AdvCKS−lightB (k, q′C , q
′
CR) ≥ 2.AdvCKS−heavyB (k, qH , qC , qE, qHR, qCR,)/q

3
H

where k is the security parameter.

B plays the CKS-light security game with challenger C and acts as a challenger
for A. C takes as input the security parameter 1k, runs algorithm CommonSetup
of the NIKE3USER scheme and gives B params. C then takes a random bit b and
answers oracle queries for B until B outputs a bit b′.

Let qH be a bound on the number of register honest user ID queries made to B
by A in the course of its attack. B chooses three distinct indices I, J and K uni-
formly at random from {1, 2,qH}. A makes a series of queries which B answers as
follows:

Register corrupt user ID : If A makes a register corrupt user ID query supplying
(ID, pk) as input, B makes the same register corrupt user ID query to C. C records
the tuple (corrupt, ID, pk,⊥).

Register honest user ID : Here A supplies a string ID to B. If this is the I th or J th

or Kth such query, then B sets IDI = ID or IDJ = ID or IDK = ID as appropriate.
Then B makes the same register honest user ID query to C. On input params and
ID, C runs KeyGen, generating a key pair (pk, sk), records (honest, ID, pk, sk) and
returns pk to B. B gives pk to A. Otherwise, when this is not the I th or J th or Kth

such query, B generates a key pair (pk, sk), by running algorithm KeyGen on input
params and ID, and makes a register corrupt user ID query to C on inputs the string
ID and the public key pk. B then gives pk to A.

Extract : Whenever A makes an extract query on a user identity ID, that was
registered by A as honest, B checks if ID ∈ {IDI , IDJ , IDK}. If so, B aborts the
simulation. If ID /∈ {IDI , IDJ , IDK}, B finds ID in the list (honest, ID, pk, sk) and
returns sk to A.

24

Honest reveal : Whenever A supplies three identities ID, ID′, ID′′, where ID, ID′

and ID′′ were registered by A as honest users, B will check if {ID, ID′, ID′′} =
{IDJ , IDJ , IDK}. If so, B aborts the simulation. (Note that in this case B does
not have either of the secret keys needed to compute the paired key among the three
identities.) Otherwise, B runs SharedKey on the appropriate inputs. (Note that in
this case, B has at least one of the secret keys needed to execute SharedKey.)

Corrupt reveal : Now, if A supplies three identities ID, ID′, ID′′ where ID was
registered by A as corrupt and ID′, ID′′ were registered as honest, B will check if
ID′ ∈ {IDI , IDJ , IDK} or ID′′ ∈ {IDI , IDJ , IDK}. If so, B will make a Corrupt
reveal query to C obtaining the shared key between ID, ID′andID′′, K(ID,ID′,ID′′). B
then returns the result to A. If ID′ /∈ {IDI , IDJ , IDK} and ID′′ /∈ {IDI , IDJ , IDK},
then this means that B has skID′ and skID′′ . Then B runs SharedKey using skID′

and skID′′ as an input and returns K(ID,ID′,ID′′) to A.

Test : WheneverAmakes its Test query on a set of three of user identities {IDA, IDB

, IDC}, B checks if {IDA, IDB, IDC} = {IDJ , IDJ , IDK}. If so, B makes a Test
query to C on {IDA, IDB, IDC} and gives the result to A. If not, B aborts simulation.

This completes our description of B’s simulation. When A terminates by outputting
a bit b′ then B outputs the same bit. We now assess B’s success probability. Let F
denote the event that B is not forced to abort during its simulation. So,

Pr(F) ≥ 1/

(
qH

3

)
≥ 6/qH3

Hence we conclude that

AdvCKS−lightB (k, q′C , q
′
CR) ≥ 2.AdvCKS−heavyB (k, qH , qC , qE, qHR, qCR,)/q

3
H

�
In the same way we can prove that CKS-heavy andm-CKS-heavy models are

polynomially equivalent. Hence it follows from the above theorems that all the NIKE
models are polynomially equivalent.In the next theorem we’ll prove the security of
NIKE3USER only for CKS-light model and the security follows for other models
accordingly.

Theorem 4 Assume ChamH is a family of chameleon hash functions. Then NIKE3USER
is secure under the DBDH assumption relative to generator G1. In particular, sup-
pose A is an adversary against NIKE3USER in the CKS-light security model. Then
there exists a DBDH adversary B with:

25

AdvdbdhB,G1(k) ≥ AdvCKS−lightA,NIKE3USER(k)− AdvcollACH ,ChamH
(k)

Proof:

Game 0 : Let Game 0 be the original attack game as described in the CKS-light
security model. By definition, we have that:

AdvCKS−lightA,NIKE3USER(k) = |Pr[S0]− 1/2|

Game 1 (Eliminate Hash Collision) : In this game, the challenger changes its
answers to registercorruptuserID queries as follows: let A, B and C be the identities
of the two honest users, and let their public keys be (XA, ZA, rA), (XB, ZB, rB), (XC , ZC
, rC) respectively. Let D be the identity of a user that is the subject of a register
corrupt user ID query with pkD = (XD, ZD, rD). If tD = ChamHhk(ZD||D; rD) =
ChamHhk(ZA||A; rA) or tD = ChamHhk(ZD||D; rD) = ChamHhk(ZB||B; rB) or tD =
ChamHhk(ZD||D; rD) = ChamHhk(ZC ||C; rC), the challenger aborts, otherwise it
continues as in the previous game.

Let abortChamH be the event that a collision was found. Until abortChamH happens,
Game 0 and Game 1 are identical. By the difference lemma, we have :

|Pr[S1]− Pr[S0]| ≤ Pr[abortChamH]

and

Pr[abortChamH] ≤ AdvcollACH ,ChamH
(k)

Game 2 : In this game a DBDH adversary B on inputs (g1, g
a
1 , g

b
1, g

c
1, T) ∈ G4

1×GT ,
where a, b, c,∈ Zp, runs adversary A against NIKE3USER simulating the challenger’s
behaviour as in Game 1. B’s job is to determine whether T equals e(g1, gl)

abc or a ran-
dom element from GT , where g1 is the generator of G1. B runs Cham.KeyGen(1k) to
obtain a key pair for a chameleon hash function, (hk, ck) (here ck is the trapdoor infor-

mation for the chameleon hash). It then selects m1,m2,m3
$← {0, 1}∗ and r1, r2, r3

$←
RCham, where RCham is the chameleon hash function’s randomness space. B com-
putes tA = ChamHhk(m1; r1), tB = ChamHhk(m2; r2) and tC = ChamHhk(m3; r3).

Let p(t) = p0 + p1t + p2t
2 + p3t

3 be a polynomial of degree 3 over Zp such that

26

p(tA) = p(tB) = p(tC) = 0. Let q(t) = q0 + q1t+ q2t
2 + q3t

3 be a random polynomial

of degree 3 over Zp. Then B sets ui = (gc1)
pigqi1 . Since qi

$← Zp, we have ui
$← G1.

Note that then u0u
t
1u

t2

2 = (gc1)
p(t)g

q(t)
1 . In particular, YA = g

q(tA)
1 , YB = g

q(tB)
1 and

YC = g
q(tC)
1 , where q(tA), q(tB) and q(tC) are known values. B then answers the

following queries:

Register honest user ID : When B receives a register honest user ID query for
identity A from adversary A, it uses the trapdoor information ck of the chameleon
hash function to obtain rA ∈ RCham such that ChamHhk(g

a
1 ||A; rA) = ChamHhk(m1;

r1) = tA. According to the definition of chameleon hash functions rA is uniformly
distributed over RCham and independent from r1. Similarly, when B receives a sec-
ond register honest user ID query for identity B from A, it obtains rB ∈ RCham such
that ChamHhk(g

b
1||B; rB) = ChamHhk(m2; r2) = tB. Then rB is also uniformly dis-

tributed over RCham. Similiarly when B receives the third register honest user ID
query for identity C from A, it obtains rC ∈ RCham such that ChamHhk(g

c
1||C; rC) =

ChamHhk(m3; r3) = tC . Then rC is also uniformly distributed over RCham. Now B
sets:

pkA = ((ga1)q(tA), ga1 , rA), pkB = ((gb1)
q(tB), gb1, rB) and pkC = ((gc1)

q(tC), gc1, rC)
These are correct public keys since p(tA) = p(tB) = p(tC) = 0.

Register corrupt user ID : When B receives a public key pk and a string ID
from A, and registers them. As in the original attack game, B aborts if ID equals
one of the honest identities, A,B or C.

Corrupt reveal queries : Here we allow adversary to corrupt either A or B. Let
D be the corrupt user. B first checks if pkD = (XD, ZD, rD) is a valid public key
using the pairing. If not, it rejects the query. This makes sure that pkD is of the form
(Y d

D, g
d
1 , rD) for some d ∈ Zp, where YD = (gc1)

p(tD)g
q(tD)
1 and rD ∈ R. This means that

XD = (gcd1)p(tD)g
q(tD)
1 . Thus, gcd1 can be computed from XD, ZD = gd1 and rD by:

gcd1 = (XD/Z
q(tD)
D)1/p(tD) mod p

where we use the property that p(tD) 6= 0 mod p, which follows from the facts that p
is a polynomial of degree 3 with roots tA, tB, tC and that tD 6= tA, tB, tC (because we
have eliminated hash collisions already in Game 1). Now writing pkA = (XAZA, rA),
pkC = (XCZC , rC) for the public key of the honest user A,C respectively, the shared
key among A,C and D can be correctly computed as:

KA,C,D = e(gcd1 , ZA)

27

Test query : Return T .

This completes our description of B’s simulation. Note that distinguishing the real
case from the random case for A in Game 2 is equivalent to solving the DBDH prob-
lem. To see this, note that for user A, we have ZA = ga1 and XA = Z

q(tA)
A , for user B

we have ZB = gb1 and XB = Z
q(tB)
B and for user C, we have ZC = gc2 and XC = Z

q(tC)
C .

Hence KA,B,C = e(g1, g2)
abc.

Now, since B’s simulation properly handles all of A’s queries and sets up all val-
ues with the correct distributions, we have: Pr[S2] = Pr[S1].

Game 3 : In this game B replaces the value T with a random element from GT

. Since T is now completely independent of the challenge bit, we have: Pr[S3] = 1
2
.

Game 2 and Game 3 are identical unless adversary A can distinguish e(g1, g2)
abc from

a random element. Therefore we have:

|Pr[S3]− Pr[S2]| ≤ AdvdbdhB,G1
(k).

By collecting the probabilities relating the different games, we have

AdvdbdhB,G1
(k) ≥ AdvCKS−lightA,NIKE3USER(k)− AdvcollACH ,ChamH

(k)

This concludes our proof.
�

28

Chapter 4

Conclusion and Future Work

In this thesis, we tried the extend the formal study on Authenticated Key Exchange
(AKE) protocols under related randomness for more general scenarios. Our model
captures situations where the randomness of an AKE protocol goes bad and proposed
a generic transformation of any secure key exchange protocol in public key setting to
be secured in related randomness attack scenarios.

Secondly, We provided a different security model for three user NIKE protocols and
explored the relationships among them. We provided a specific constructions for se-
cure three user NIKE in the standard model.

As for future work, we hope to construct three user ID based secure NIKE scheme in
standard model under DBDH assumption which can easily extended from our pro-
posed model.

At the end, we need to mention that three user AKE/NIKE from twin Bilinear
Diffe-Hellman assumption is another interesting problem which we have looked and
can be formalized in the near future.

29

Bibliography

[1] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654.

[2] Christoph G. Günther. “An Identity-Based Key-Exchange Protocol”. In: Ad-
vances in Cryptology – EUROCRYPT’89. Ed. by Jean-Jacques Quisquater and
Joos Vandewalle. Vol. 434. Lecture Notes in Computer Science. Houthalen, Bel-
gium: Springer, Heidelberg, Germany, 1990, pp. 29–37.

[3] Ray Bird et al. “Systematic Design of Two-Party Authentication Protocols”.
In: Advances in Cryptology – CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, 1992, pp. 44–61.

[4] Mihir Bellare and Phillip Rogaway. “Provably Secure Session Key Distribu-
tion: The Three Party Case”. In: 27th Annual ACM Symposium on Theory of
Computing. Las Vegas, Nevada, USA: ACM Press, 1995, pp. 57–66.

[5] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. “Key Agreement Pro-
tocols and Their Security Analysis”. In: 6th IMA International Conference on
Cryptography and Coding. Ed. by Michael Darnell. Vol. 1355. Lecture Notes
in Computer Science. Cirencester, UK: Springer, Heidelberg, Germany, 1997,
pp. 30–45.

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to the
Design and Analysis of Authentication and Key Exchange Protocols. Cryptology
ePrint Archive, Report 1998/009. http://eprint.iacr.org/1998/009. 1998.

[7] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels. Cryptology ePrint Archive, Report
2001/040. http://eprint.iacr.org/2001/040. 2001.

[8] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels”. In: Advances in Cryptology – EURO-
CRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. Lecture Notes in Computer
Science. Innsbruck, Austria: Springer, Heidelberg, Germany, 2001, pp. 453–474.

30

http://eprint.iacr.org/1998/009
http://eprint.iacr.org/2001/040

[9] William Aiello et al. “Efficient, DoS-Resistant, Secure Key Exchange for Inter-
net Protocols”. In: ACM CCS 02: 9th Conference on Computer and Commu-
nications Security. Ed. by Vijayalakshmi Atluri. Washington D.C., USA: ACM
Press, 2002, pp. 48–58.

[10] Ran Canetti and Hugo Krawczyk. Security Analysis of IKE’s Signature-based
Key-Exchange Protocol. Cryptology ePrint Archive, Report 2002/120. http:
//eprint.iacr.org/2002/120. 2002.

[11] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem
and Applications”. In: Journal of Cryptology 22.4 (Oct. 2009), pp. 470–504.

[12] Guomin Yang et al. Authenticated Key Exchange under Bad Randomness. Cryp-
tology ePrint Archive, Report 2011/688. http://eprint.iacr.org/2011/688.
2011.

[13] Yu Chen, Qiong Huang, and Zongyang Zhang. “Sakai-Ohgishi-Kasahara Identity-
Based Non-Interactive Key Exchange Revisited and More”. In: ACISP 14: 19th
Australasian Conference on Information Security and Privacy. Ed. by Willy
Susilo and Yi Mu. Vol. 8544. Lecture Notes in Computer Science. Wollon-
gong, NSW, Australia: Springer, Heidelberg, Germany, 2014, pp. 274–289. doi:
10.1007/978-3-319-08344-5_18.

[14] Tsz Hon Yuen et al. “Related Randomness Attacks for Public Key Cryptosys-
tems”. In: ASIACCS 15: 10th ACM Symposium on Information, Computer and
Communications Security. Ed. by Feng Bao et al. Singapore: ACM Press, 2015,
pp. 215–223.

31

http://eprint.iacr.org/2002/120
http://eprint.iacr.org/2002/120
http://eprint.iacr.org/2011/688
http://dx.doi.org/10.1007/978-3-319-08344-5_18

	Introduction
	Introduction
	Foundation
	Varieties of Key Exchange Protocol
	Our Result

	Interactive Key Exchange Protocol
	Introduction and Preliminaries
	Different Classes of Attacks
	Security Model
	Security Model under Reset randomness
	Brief Review of existing work
	Proposed Model (Related Randomness)
	Attack
	Preliminaries
	Construction of RRA secure KE Protocol

	Non-Interactive Key Exchange Protocol
	Basic Definitions
	Security Model
	Our Result

	Conclusion and Future Work

