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Abstract

A major assumption, that traditional machine learning algorithms make, is

that training and test data come from the same domain. In other words,

these data are represented in the same feature space and follow the same

data distribution. However, in a real world scenario, this assumption may

be violated due various reasons. These reasons include different marginal

distributions, different feature spaces, different predictive distribution and

different label spaces of the source and target domain datasets. In these

kind of scenarios, a special learning startegy, called transfer learning is use-

ful. Transfer leanring gains knowledge while performing one task, and then

applies that knowledge to improve the performance of a different but related

task.

In this thesis, we will specifically deal with transductive trasnfer learning.

In this setting, a labelled source domain dataset and an unlabelled target do-

main dataset is available. Moreover, both the domains have the same feature

space but follow different marginal distributions. Our aim is to maximize the

classification accuracy on the target domain. To accompolish this task, we

propose two methods using autoencoders. The first method is a supervised

one. In this strategy, we try to extract features which not only encodes infor-
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mation common to both the domains but also have discriminating power for

the source domain. In the second method, in an unsupervised fashion we try

to get good representation for target domain that is close to source domain.

To achieve this, at first we train an autoencoder on the source datset. Af-

ter that, we train another autoencoder on the target dataset that is similar

to the previously trained autoencoder in terms of both weights and biases.

We have tested our methods on three dataset of different type to show their

generic nature. We also analyze our methods by discussing the pros and

cons associated with them. We at last provide some ideas to improve their

performance further.
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Introduction

Data mining and machine learning algorithms work under the assumption

that the test and the training data, both belong to the same space and have

the same conditional density distribution; but this assumption need not al-

ways hold true. More so in todays world where there is an abundance of data

and sometimes the data come from similar but different sources, contradic-

tion of this assumption has become more prominent with time. Often data

get generated at multiple related sources without much additional cost, but

annotaion/labelling of such data requires manual intervention and usually it

is both time consuming and expensive. So a method for Transfer learning

or domain adpatation between related domain tasks can be quite helpful.

There are a number of real life scenario where transfer learning can be

helpful. One example [18] is the problem of image classification, where we

have to classify images taken from different devices into one of the many

classes. Suppose we have trained a classifier to classify images taken by

webcams. Can we use the same classifier to classify images taken by DSLR

cameras. The answer is expected to be no, as images from DSLR and webcam

have different processes that generate the images, so a classifier, which is

trained on certain features that are specific to webcam domain, may (usually
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will) give poor result when tested on data having features which are specific

to DSLR cameras.

Another example where transfer learning is useful is the case of brain

computer interface [9]. If a system for predicting wether a person will get a

migrain attack in the next one hour is trained using the EEG signal of one

person is applied to another person, it may (should usually) give poor results

as different individuals usually have some characteristics of brain wave which

are different. Altough training one calssifier for each individual is a soulution,

it is an expensive process both for the designer of the classifier as well as the

individual on which the classifier is being trained. Moreover, sometimes this

may not even be feasible.

A third example [17] can be seen in the case of labelling of pixels in

remotely sensed images. It is quite expensive to label a remotely sensed

image at the pixels level as there may be millions pixel in it. Also when the

sattelite files over the same area again the weather might not be the same

and thus prediction may degrade over time. So, transfer learning could be

usedful when a classifier trained on the images taken during one season is to

be tested on images taken during different season .

In this thesis we propose a few methods to tackle the problem of transfer

learning in a transductive setting using autoencoder. Our objective is to find

a representation for source and target data in a new latent space such that

distance between the distributions of source and target data in the new space

is less then that in the original space. This enables us to effectively use the

labelled source domain data for training the classifier and then test it on

target domain data.
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Chapter 1

Preliminary Knowledge

In this chapter we will review some topics which are required to understand

the proposed methods.

1.1 Transductive transfer learning

In this section, we present the notations and formal definations related to

transductive transfer learning. The problem of transductive transfer learning

can be formally defined [15] as,

given

• a set of labelled source domain data points XS = {(xs
1,ys

1), (xs
2,ys

2), . . . , (xs
m,ys

m)}

which are drawn i.i.d from a distribution Ps(x ); xs
i ∈ Xs ∀ i ∈

{1, 2, . . . ,m}, xs
i ∈ Rp.

• a set target domain data points XT = {(xt
1), (xt

2), . . . , (xt
n)} which

are drawn i.i.d from a distribution Pt(x ) such that the target domain
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class labels are not known at the time of training ; xt
i ∈ Xt ∀ i ∈

{1, 2, . . . , n}, xt
i ∈ Rq.

If either of the following conditions is satisfied

• Xs 6= Xt

• Xs = Xt but P(Xs) 6= P(Xt)

then the aim of transductive trasnfer learning is to train a classifier to maxi-

mize the classification accuracy on the target domain. Here we assume p = q

and also both source and target domains are repersented by the same set of

features.

Some of the approaches used for solving this problem are [15]

• Instance transfer [15] In this method some of the labelled data in the

source domain are reweighted by methods such as instance sampling

and importance sampling for use in target domain .

• Feature representation transfer [15] Here the main aim is to learn a

good representation for the target domain. Knowledge to be transfered

across the domains are encoded in the learned feature representation

which is expected to improve the target classification task.

There are three major issues which are to be considered in transfer learning

[15]

• What to transfer which takes into consideration which part of the

knowledge is to be transfered across domains as knowledge can be either

specific to a particular domain or can be common to both the domains.
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• How to transfer which deals with devising a learning algorithm which

transfers the knowledge across the domain after it decides what knowl-

edge is to be transfered.

• When to transfer asks in which scenario knowledge should be trans-

ferd and when it should not be transfered as in some situations source

and the target domains may be totally unrelated and forcibily trying

to transfer knowledge might lead to negetive transfer, which actually

degrades the performance on target domain.

1.2 Autoencoder

An autoencoder is a simple multilayer perceptron having an input layer, an

output layer and one or more hidden layers which tries to learn the identity

function of the input. It consists of two parts, the encoder and the decoder

which can be defined as follows:

Given an input data set X belonging to source domain space X the encoder

and decoder are mapping functions φ and ψ such that

φ : X → F

ψ : F → X

argmin
ψ,φ

‖X − X̂‖
2

where X̂ = ψ (φ (X)).

Another choice of error function which can be minimized to train an autoen-

coder is the cross entropy between the input and the reconstructed input.
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1.2.1 Notations and conventions

Here we will follow the setup as given by Nielsen in [14].

Figure 1.1: Neural network along with the notations used to refer the weights,

biases and other network parameters

For the network given in Figure 1.1, notations followed in this thesis are

given in Table 1.1
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Table 1.1: Notations used for neural networks

wljk weight of the connection from the kth neuron in the (l − 1)th layer to

jth neuron in the lth layer

blt bias of tth neuron in the lth layer

zlij weighted sum of inputs to the jth neuron in the lth layer for the ith example,

i.e.,
(∑

k w
l
jka

l−1
k + blj

)
alij activation of jth neuron in the lth layer for the ith example, i.e.,

alij = σ
(∑

k w
l
jka

l−1
ik + bl−1j

)
, where σ

(
zlj
)

is the activation function

When implementing an neural network in matrix form, the notations followed

are given in table 1.2

Table 1.2: Notations used for neural network is implemented in matrix form

Wl weight matrix for layer l whose jth row and kth column is wljk

Bl bias vector of the lth layer

Zl pre activation vector of the lth layer

Al activation vector of the lth layer, Al = σ
(
WlAl−1 + Bl

)
, here σ is applied to each

element of the vector

1.2.2 Training

The cost function we will use here to train an autoencoder is cross-entropy

as it addresses the problem of learning slowdown to some extent [21].

Corss-entropy between two discrete distributions p and q over a set X is

defined as
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H(p, q) = −
∑
x∈X

p(x) log q(x) (1.1)

So if we have data set of size n with input as {(x1,y1), (x2,y2), . . . , (xn,yn)}

such that xi ∈ Rd1 , yi ∈ Rd2 ∀ i ∈ {1, 2, . . . , n} i.e xi = [xi1, xi2, . . . , xid1 ]
T ,

yi = [yi1, yi2, . . . , yid2 ]
T and we want to train a neural network, then the cost

function to be minimized is

C = − 1

2n

n∑
i=1

d2∑
j=1

[
yij ln aLij + (1− yij) ln(1− aLij)

]
. (1.2)

Here, aLij is the output of the jth unit of the final layer for the ith input x i.

without giving the complete derivation, the expression for partial derivative

Figure 1.2: Autoencoder with x as input data, x́ as the reconstructed input

and x out as the trasnformed data

of cost with respect to weights and biases of a network with L layer is given

by
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∂C

∂wLjk
=

1

n

n∑
i=1

aL−1ik (aLij − yij), (1.3)

∂C

∂bLj
=

1

n

n∑
i=1

(aLij − yij). (1.4)

Now, if for ith training example with cost Ci

δlij =
∂Ci
∂zlij

(1.5)

then

∂C

∂wljk
=

n∑
i=1

al−1ik δlij, (1.6)

∂C

∂blj
=

n∑
i=1

δlij. (1.7)

So the updation rule for the weights and the biases for the neural network are

wljk(new) = wljk(old)− η ∂C

∂wljk(old)
, (1.8)

blj(new) = blj(old)− η ∂C

∂blj(old)
. (1.9)

The partial derivatives of cost with respect to weights and biases of non

penultimate layers are obtained by backpropagating the error from the lth

layer to the l − 1th layer as done in a multilayer perceptron, so it’s derivation

is skipped here. Note that for an autoencoder yij is nothing but the normal-

ized input xij and aLij is the output computed by the jth output node, which

we denote by x̂ij for an autoencoder. The training process of an autoencoder

is summarized in Algorithm 1.
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Algorithm 1: Autoencoder training algorithm

Data: Input data X = {x 1,x 2, . . . ,xn}

Result: Autoencoder trained for input data

1 Initialize the MLP;

2 while Termination condition is not met do

3 foreach xi ∈ X do

4 Do a feed-forward pass to compute activations at all hidden

layers;

5 At the output layer compute the output for x i;

6 Measure the instantenous cost function;

7 Backpropagate the error and update the weights and biases

using the equations mentioned;

8 end

9 end
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A major problem that we face while training an autoencoder is overfit-

ting where instead of learning a compressed representation of the input, the

network tends to memorize a mapping of input to itself. Few of the methods

which are used to prevent overfitting in an autoencoder are :

• Using tied weights [13], constraining the weights of the decoder to

be the transpose of the weights of the encoder reduces the degree of

freedom and prevents memorization.

• Using L1 or L2 regularization [14] on the weights penalizes weights

of the network to be small. Additionally L1 regularization tends to

induce sparsity in the network as reduces some of the weights to zero

and shrinks rest of the weights also by same amount.

• Using Drouput [19], where we randomly select some of the neurons

which are not in the input and the output layers and carry on the

training as if these neurons do not exist in the network and update

the weights. Then we restore the deleted neurons and again repeat the

same preocess.

• Using Denoising autoencoder [13], where the network is trained to

reconstruct the input from a corrupted version of it. Corruption can

be a additive stochastic corruption like, randomly masking entries of

the input by making them zero.
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Chapter 2

Related work

2.1 Related work

The initial motivation for study of transfer learning in the field of machine

learning was possibly first discussed in a 1995 NIPS workshop on ”Learning to

Learn” which discussed the concept of never ending learning where knowledge

gained from past experience could be utilised in the future. Feature based

methods are widely exploited in the field of transfer learning. The idea for

getting a shared representation for related tasks can be traced back to the

work of Ando el al. [2]; Argyriou et al. [3] where shared feature representation

is exploited where as the additional tasks are used as an inductive bias while

learning. In multiple domain learning, Blitzer et al. [4] described a heuristic

to construct new feature representations of the data for transfer learning.

In self-taught learning where unlabelled source data are used to improve

the supervised classification performace on labelled target data set in [16] first

a high-level set of bases is learned from an unlabeled data set which may have
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different labels from the labeled data, and then labelled data is projected on

the bases to get new feature representations for the target data’s classification

problem.

Dimensionality reduction approaches have been widely studied for trans-

fer learning problem, but they may not be very effective for transfer learn-

ing as there is no gaurentee that the distribution of both source and target

domain data in the reduced latent space will be similar. More recent dimen-

sionality reduction technique modified to be used for transfer learning used

the maximum variance unfolding (MVU) (Weinberger et al. [22]), which

is motivated by designing kernels for kernel principal component analysis

(KPCA) from the data itself. Low-dimensional feature representation of the

data is extracted by MVU to maximize the variance of the embedding while

preserving the local distances between neighboring data points. MVU can be

formulated as a semidefinite programming (Lanckriet et al. [12]) optimiza-

tion problem and solved by general optimization packages. After getting an

estimate of the kernel matrix K, PCA is applied to the kernel matrix K to

choose the top few eigen vectors on which the original data are projected to

get a low dimensional feature representation.

One important problem in trasnfer learning is to get a representation min-

imizing the distance between two distributions, i.e., minimize the Kullback

Leibler divergence . But the problem requires intermediate density east-

imation. So to tackle this problem which is expensive, a nonparametric easti-

mate of the distance between two distributions is required. Maximum Mean

Discrepancy (MMD) is one such distance measure for comparing distri-

butions based on Reproducing Kernel Hilbert space (Borgwardt et al. [8])
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(RKHS). Say X = [x 1,x 2, . . . ,xn1 ]
T and Y = [y1,y2, . . . ,yn2

]T are indepen-

dently identicall distributed random variable, such that X ∼ P and Y ∼ Q

then the eastimate of distance between X and Y using MMD can be defined

as [8]

D(X, Y ) = sup
||f ||H≤1

(
1

n1

n1∑
i=1

f(xi)−
1

n2

n2∑
i=1

f(yi)

)
where H is a universal RKHS ([20]) with the following constrains

(i) D(X, Y ) ≥ 0 ;

(ii) D(X, Y ) = 0 iff P = Q, given n1, n2 →∞

Based upon the fact that in a RKHS f(x ) can be written as f(x ) = 〈φ(x ), f(x )〉

where φ : X → H the expression for MMD between X and Y can be rewritten

as

D(X, Y ) = || 1

n1

n1∑
i=1

φ(x i)−
1

n2

n2∑
i=1

φ(y i)||H

So basically MMD theory ([8]) states that distance between distributions of

two samples is the distance between the mean of the two samples in RKHS.
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Chapter 3

Transfer learning through

simulteneous autoencoding and

classification

Our proposed method for dealing with the problem of transfer learning is

mainly based on an autoencoder trained on both source and target data

which also integrates some discriminatory information from the source data.

Thus it simultenously integrates a supervised method with an unsupervised

feature extraction scheme. We shall discuss the pros and cons related to each

method and also suggest few modifications in the methods which might lead

to improvement.

To state the problem specific to our work, we refer back to Subsection 2.1

for notation. Let Xs and Xt be the source and target input space such that

Xs ⊂ Rd1 , Xt ⊂ Rd1 but Ps(x ) 6= Pt(x ). Our aim is to design a classifier

with good performance on the target data Xt.
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3.1 Feature extraction

Most works on transfer learning state that while transferring knowledge

across domains, domain specific information should be removed while in-

formation common to both domain should be used to train the classifier.

However we think that transfer of domain specific information to certain

extent may be benificial for transfer learning task. Further all common at-

tributes may not contribute equally in discriminating between the classes

as represented by the souce data. Consequently those common attibutes

that have better discriminating power for the source data should get heigher

importancewhile transferring knowledge. So for this method we perform fea-

ture extraction such that the extracted feature tries to primarily encode the

domain invariant information but it also exploits some class specific source

domain information.
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Figure 3.1: Neural network architecture for simulteneous autoencoding

and source classification. For x = [x1, x2, . . . , xd]
T as the input x̂ =

[x́1, x́2, . . . , x́d]
T is the reconstructed output of the autoencoder, y =

[y1, y2, . . . , yq]
T is the class label of x and ŷ = [ý1, ý2, . . . , ýq]

T is computed

output by the classifier model. xout is the output from the encoder layer

(here the third layer).
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To fullfill these requirements we use a neural network architecture as shown

in Figure 3.1. In this network, the autoencoder is augmented with a classifier

module which receives input from the encoder layer. Our objective is to find

a suitable latent space (represented) by the autoencoder layer, which does a

good job of encodingof both source and target data and at the same time has

some discriminating power for the source data. To achieve this, the proposed

network in 3.1 attempts to minimize the following cost function :

C(W ; (XS, YS), XT ) = − α

2(m)

m∑
i=1

d2∑
j=1

[
yij ln aLij + (1− yij) ln(1− aLij)

]
+

λ

2(n+m)

∑
i,j,l

wlij
2 − β

2(n+m)

(m+n)∑
i=1

d1∑
j=1

[x̂ij lnxij + (1− x̂ij) ln(1− xij)]

(3.1)

In Figure 3.1, W is a vector of all learnable weights and biases of the network.

Feature extraction using the aforementioned transfer learning method is sum-

marized as an algorithm next.
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Figure 3.2: Flow of error in the network architecture as shown in Figure 3.1

for minimizing C in 3.1. Here δ1 is the error derivative backpropagated due

to the autoencoding error and δ2 is the error derivative backpropagated due

to classification error
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Algorithm 2: Autoencoder training algorithm

Data: Labelled source domain data XS = {xS1,xS2, . . . ,xSm} and

unlabelled target domain data XT = {x T1,x T2, . . . ,x Tn} such

that xSi ∈ Rd1 and x Tj ∈ Rd1 , initial value of α, β and λ as

αo, βo and λo respectively

Result: A unified encoded representation for both source and target

data as X̂S and X̂T in a latent space, such that encoded

representation has enough information to reconstruct both

source and target data as well as it has adequate

discriminatory power

1 Initialize the MLP;

2 Mix the source and target domain data such that XN = XS

⋃
XT

while Termination condition is not met do

3 foreach xi ∈ XN do

4

∂C

∂wLjk
= −α

n

∑
x i∈XS

aL−1ik (ýij − yij) +
λ

(m+ n)
wLjk

− β

(n+m)

∑
x i∈XN

aL−1ik (x́ij − xij) (3.2)

∂C

∂bLj
= −α

n

∑
x i∈XS

(ýij − yij)−
β

(n+m)

∑
x i∈XN

(x́ij − xij) (3.3)

δLij =
∂Ci
∂zlij

(3.4)

∂Ci
∂wljk

=
n∑
i=1

al−1ik δlij, (3.5)

∂C

∂blj
=

n∑
i=1

δlij. (3.6)

wljk(new) = wljk(old)− η ∂C

∂wljk(old)
, (3.7)

blj(new) = blj(old)− η ∂C

∂blj(old)
. (3.8)

5 end

6 end
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3.2 Designing the classifier

Let Si be the ith architecture selected from a set of architechtures S and

αj is the jth value of α selected from set of values α. We denote a pair of

architecture and α by (Si, αj). For each (Si, αj) we can get a unique set of

features. As for selecting the optimal architecture, some labelled validation

data are required which is not present in our problem setting. Therefore, se-

lecting a single architecture optimal for our task is not possible. Infact it was

experimentally seen that if we use the feature corresponding to each (Si, αj)

pair and design a classifier using them, then there are many (Si, αj) pairs

which, if used, would have given better result than our proposed methods

but there is no systematic way to know which particular (Si, αj) pair would

yield the best result).

Method 1 In this method we consider, only set of features generated by

(Si, αj) pair for which αj = 0. This method is primarily used to evaluate

the effectiveness of the proposed method where, we use α 6= 0 in order to

inject the class specific source data information. In the porposed method,

we assume that after the transformation, source and the target domain are

closer then they originally were. So it can be expected that preformance of

transformed target data would be similar to that of the source data. So we

choose the (Si, αj) pair for which the source domain accuracy is maximum.

Then using the source feature set generated by that (Si, αj) a classifier is

trained. Then using the target feature set corresponding to that particular

(Si, αj) pair as the test set, the classifier previously trained is tested .

28



Method2 This method is similar to method one. The only change made

here is that, the constrain that αj has to be zero is removed, i.e., we use

α 6= 0. This allows us to check the effectiveness of adding the supervised

learning part in cost function.

3.3 Experimental result

For the autoencoder used for feature extraction, we use autoencoder with

three hidden layer and sigmoidal activation function. Weights of the MLP are

initialized as Gaussian random variables with mean 0 and standard deviation

1/
√
nin where nin is the number of input weights [14]. Biases are initialized

as a Gaussian with mean 0 and standard deviation 1 inorder to prevent the

saturation of neurons. The input data (XS

⋃
XT ) for the autoencoder was

normalized between 0 and 1 by using a common transformation, where the

minimum and the maximum values used were obtained from XS

⋃
XT .

For classifier we will be using of Support Vector Machines with linear kernel.

The grid used for grid search for Linear kernel was same for all the tasks.

The parameter C for the SVM was obtained after performing 5 fold cross

validation on the transformed source domain data. Then using the param-

eter obtained from the crossvalidation we train a classifier on transformed

source domain data. This classifier is then tested using the transformed tar-

get domain data to get the accuracy. The result reported here are the mean

of accuracy obtained after repeating the experiment five times
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3.3.1 Reuters dataset

The original Reuters 21578 dataset was collected for the purpose of text cat-

egoriztion, i.e., deceiding weather a document belongs to any of the set of

prespecified categories. The documents used in the Reuters 21578 dataset

were collected from the Reuters newswire of 1987. Here we are using the

already preprocessed data in (refer the source). The dataset used here are

catergorized into top categories which are further subdivided into subcate-

gories. For the creation of source and target domain, data from the same

top category but different subcategories are treated to be different domains.

Here the three top categories are orgs, people and places.

Here we took MLP with three hidden layers and fixed the values of α =

1, λ = 0.02 and used the values of β as [0.0,.1, .2, .4, .8, 1.2, 1.6, 2.0]. Due

to computational constrain, encoder architecture which were used for feature

extraction are [[d1, 90, 30], [d1, 90, 32], [d1, 90, 34], [d1, 90, 36], [d1, 90, 38],

[d1, 90, 40], [d1, 90, 50]], where d1 is the dimension of the input data. The

result obtained using this method along with other methods is given in table

3.1

3.3.2 Office dataset

Office dataset is an image dataset used for multiclass transfer learning task.

It consists of images belonging to one of the 31 different categories such

as helmet, bike etc generated by three differnet sources DSLR, Webcam and

images collected from amazon website. Here images generated by each source

can be considered as a distinct domain and the task is given labelled images
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Dataset SVM
TSVM

[11]
C3E [1] RTriTL [24] Method 1 Method 2

Orgs-

People
72.86 76.94 81.81 81.88 74.37 ± 0.32 76.28 ± 0.48

Orgs-

Places
65.15 70.08 68.92 78.95 65.78 ± 0.21 68.78 ± 0.98

People-

People
54.69 59.72 68.61 69.68 58.46±.32 68.46 ± .98

Table 3.1: Reuter datset accuracy along with other methods

from one of the domains, predict the categoy of images from a different

domain.

As done by other investigators, SURF Bag of words histogram features of

images, vector quantized to 800 dimension as given in [18] are used. Like the

reuter data set we normalize data to values between 0 and 1.

Here we took MLP with three hidden layers, fixed the value of α = 1, λ

= 0.02 and used the values of β as [0.0,.1, .2, .4, .8, 1.2, 1.6, 2.0]. Due to

computational constrains, encoder architecture which were used for feature

extraction are [[d1, 100, 40], [d1, 100, 50], [d1, 100, 70], [d1, 100, 80], [d1, 100,

90]], where d1 is the dimension of input data. The result obtained using this

method along with other methods are given in Table 3.2
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Dataset
Gopalan

et al.[7]

Gong et

al. [6]

Jhu et al.

[10]
Method 1 Method 2

Amazon-

Webcam
39±2.0 15±0.4 50.71±0.8

17.39 ±

.29
19.26±1.04

DSLR-

Webcam
26±0.8 44.6±0.3 36.85±1.9

20.64±

.39
23.47±.85

Webcam-

DSLR
19±1.2 49.7±0.5

32.89±

.69

31.37±

.46

16.96 ±

1.24

Table 3.2: Office datset accuracy along with other methods

3.4 Some remarks

The result obtained using this method shows that it is not always necessary

that, injection of domain specific knowledge would deteriorate the transfer

learning perfromance. Infact careful transfer of domain specific knowledge

might sometimes be beneficial for transfer learning task. But how much

to transfer and when to transfer are two crucial questions that need to be

answered to make an effective use of this method. Furthermore when ratio

of number of data points in source to target domain is very high or vey low

then there is a high chance that the MLP would be more biased towards

learning the distribution of a particular domain.
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Chapter 4

Transfer learning by mirroring

autoencoder

Here we present another method for improving transductive transfer learning

using unsupervised feature extraction . We will divide the task into two sub

tasks

1. Extaction of features

2. Designing the classifier

4.1 Extaction of features

This method for feature extraction for transfer learning is based on Feature

representation principle where we will try to get a good representation for

target domain which is close to source domain. So we want our features to be

extracted in such a way that they encode information related to the target
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domain as well as resemble the source domain which we try to accomplish

using autoencoder.

Figure 4.1: Autoencoder with x as input data, x́ as the reconstructed input

and x out as the trasnformed data

As autoencoder trained on a data following a distribution encodes the

charecteristics of the distribution of data in the weights and the biases of

the network, so inspired by the work of Hal Daumé III in [5] for supervised

transfer learning, we use a regularizer in the unsupervised feature extraction

phase. Here first we train an autoencoder on the source data and then

train a seperate autoencoder on the targer data such that it is similar to

the autoencoder trained on source domain in terms of weights and biases.

Feature, extracted by the target domain autoencoder will have, as a result of

this, both the information about the target as well as the source distribution

encoded in it.

To state the problem specific to our paper, referring back to Subsec-
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tion 1.1: Xs and Xt are the source and target input space such that Xs ⊂

Rd1 , Xt ⊂ Rd1 but Ps(x) 6= Pt(x), our aim is to improve the classification

accuracy on Xt when no labelled data are available for Xt. To accomplish

this we add a regularizer λ

[∑
i,j,l

(
w
l(t)
ij − ẃlij

)2]
+

[∑
i,l

(
b
l(t)
i − b́li

)2]
along

with the normal cross entropy cost function where (w
l(t)
ij , b

l(t)
i ) and (ẃlij, b́

l
i)

are the weights and biases of the autoencoder trained on target domain and

terminal weights of autoencoder trained on source domain repspectively. So

the algorithm for our proposed method is stated as Algorithm 3 next.

35



Algorithm 3: Feature extraction algorithm

Data: Labelled source domain data XS and an unlabelled target

domain data XT

Result: Transformed source and target domain data X́S and X́T with

a hope that D(Ps(x ),Pt(x ) < D(Ṕs(x ), Ṕt(x )) where

D(P1, P2) is the distance between two distributions P1 & P2.

1 Train an autoencoder AS with weights and biases (w(s), b(s)) on the

source domain data to minimize the cost function

CS = − 1

2m

n∑
i=1

d1∑
j=1

[
xisj ln aLij + (1− xisj) ln(1− aLij)

]
+

λ

2m

∑
i,j,l

w
l(s)
ij

2
(4.1)

Let the weights and biases that minimize CS be ẃ =
{
ẃlij
}

and

b́ =
{
b́li

}
;

2 Initialize an autoencoder AT with weight and bias set (ẃ, b́) such that

the initial weights and bias of AT are equal to the final weights and

bias of AS;

3 Train AT on the target domain data to minimize the cost function

CT = − 1

2n

m∑
i=1

d1∑
j=1

[
xitj ln aLij + (1− xitj) ln(1− aLij)

]
+
λ1
2n

∑
i,j,l

w
l(t)
ij

2
+
λ2
2n

∑
i,j,l

(
ẃlij − w

l(t)
ij

)2
+
λ2
2n

∑
i,l

(
b́li − b

l(t)
i

)2
(4.2)

;

4 Feedforward the source and target data XS and XT as input to the

autoencoder AT and extract the output X́S and X́T from the encoder

part of AT to get the transformed data in the new latent feature

space.;
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4.2 Designing the classifier

After getting the source and traget data in the new feature space, as per

our hypothesis, the distribution of X́S is expected to be closer to X́T than

it originally was. So now to predict the class label of X́T we can train a

classifier on X́S and test it on X́T .

Let Si be the ith architecture selected from a set of architechtures S and λ2j is

the jth value of λ2 selected from a set of values λ2. We denote a pair of archi-

tecture and λ2 by (Si, λ2j). Now for each (Si, λ2j) we can get a unique set of

features. As for selecting the optimal architecture, some labelled validation

data are required which is not present in our problem setting. Therefore,

selecting a single architecture optimal for our task is not possible. Infact it

was experimentally seen if we use the feature corresponding to each (Si, λ2j)

pair and design a classifier using them, then there are many (Si, λ2j) pairs

which, if used, would have given better result than our proposed methods

(discussed below) but there is no systematic way to know which particular

(Si, λ2j) pair would yield the best result.

(i) Method 2: Ensemble 1

Since the set of featues representation generated by different (Si, λ2j) pairs

could be quite diverse in themselves, so in order to exploit this diversity en-

semble method comes as a natural choice as it helps in reducing the variance

in performance This is what we do, we create an ensemble of M*N classifier,

where M is the number fo architectures and N is the number of λ2 values

tried. The algorithm for designing the classifier is stated in Algorithm 4.

Method 2: Ensemble 2

As per our method it is assumed that after the transformation, source and
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Algorithm 4: Ensemble-1

Data: Labelled source domain data X́S and an unlabelled target

domain data X́T in new latent space for each (Si, λ2j) pair

Result: Given an x ∈ XT, predict the class label of x

1 For each set of source features generated by a (Si, λ2j) pair, train a

classifier Cij; i = 1, . . . ,M ; j = 1, . . . N ;

2 For each target domain data point, pass it’s corresponding

representation generated by (Si, λ2j) pair through the classifier Cij

and let the label predicted by it be Lij;

3 For a K class problem, let Lp be the number of classifiers that have

predicted the class label of a target data point under consideration as

p ∀ p ∈ {1, 2, . . . K},
∑K

p=1 Lp = MN ;

4 Class label of x i will be assigned as l such that l = argmax
p∈{1,2,...,K}

Lp.;

5 Ties can be broken randomly;
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target domain data are more similar in terms of their distributions. As per

our cost function, greater the value of λ2, more source information is encoded

in the extracted features, so if a classifier performs good on the source do-

main for a particular architecture with λ2 = 0, then it will perform better for

a higher value of λ2. So instead of creating an ensemble for all the architec-

tures, we create an ensemble of set of features corresponding to a particular

architecture and all the values of λ2 associated with that architecture. The

architecture is selected gives highest accuracy on source for λ2 = 0.

Method 3: Optimal

In this method we assume, we have an algorithm to choose the optimal

(Si, λ2j) pair. Then we use the source domain dataset corresponding to that

(Si, λ2j) pair to train the classifier, followed by testing on the target domain

data generated by that (Si, λ2j) pair.

4.3 Experimental result

For the autoencoder AS which is trained on the source dataset, we use one

hidden layer autoencoder with sigmoidal activation function. Weights of the

MLP are initialized as Gaussian random variables with mean 0 and stan-

dard deviation 1/
√
nin where nin is the number of input weight. Biases are

initialized as a Gaussian with mean 0 and standard deviation 1 inorder to

prevent the saturation of neurons. For the autoencoder AT trained on the

target domain dataset, the weights and the biases are initialized using the

terminal weights and biases of AS.

For designing the classifier we will be using an ensemble of Support Vector

39



Machines with linear kernel. We are using linear kernel. The grid used for

grid search to find the best value of C was same for all the tasks. The param-

eter C for the SVM was obtained after performing 5 fold cross validation on

the transformed source domain data and then using the optimal parameter

obtained from the crossvalidation is used to train the classifier on trans-

formed source domain using the entire source data. This classifier is then

used to test the transformed target domain data. Note that for method 1 we

get one classifier for each (Si, λ2j) pair. For method 2 The results reported

here are the mean and the standard deviation of the accuracy obtained after

repeating the experiment five times.

4.3.1 Reuters dataset

The information about the Reuters dataset is provided in Subsection 3.2.1.

For creating an ensmeble of classifiers, set of architectures for autoencoder

used here is S = {[Din, i, Din] ∀i ∈ {30, 32, 34, 36, 38, 40, 42, 44, 48, 50}}, where

[D1, D2, . . . , Dn] represents an autoencoder with D1 neurons in it’s input

layer, D2 in the first hidden layer and so on. In our experiment we used a

three layer autoencoder and the set of parameter λ2 used is λ2= { 0.0, 0.1,

0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. The result of the proposed

method along with the results of other methods is tabulated in Table 4.1
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Table 4.1: Reuter dataset accuracy along with results from other methods.

Dataset
TSVM

[11]
C3E [1]

RTriTL

[24]

Ensemble

1

Ensemble

2
Optimal

Orgs-

People
76.94 81.81 81.88 80.73±.65

79.86 ±

.49

82.67 ±

.36

Orgs-

Places
70.08 68.92 78.95 71.68±.79

71.43 ±

.59

73.85 ±

.53

People-

People
59.72 68.61 69.68 64.48±.69

65.23 ±

1.03

67.78 ±

.41

We find that for Reuter datasets, both Ensemble 1 and Ensemble 2 per-

form consistently better than TSVM. Compared to C3E, Ensemble 1 and

Ensemble 2 both provide better result for Orgs-places. For the other two

datasetC3E is slightly better. However for the other two dataset RTriTL is

much better than our method. On this context it is worth mentioning that

RTriTL is a method specifically developed for text data.
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4.3.2 Office dataset

The information about the Office dataset is provided in Subsection 3.2.2.

For creating an ensmeble of classifiers, set of architectures for autoencoder

used here is S = {[Din, i, Din] ∀i ∈ {40, 50, 60, 70, 80, 90, 100, 120, 150, 200}}.

As earlier [D1, D2, . . . , Dn] represents an autoencoder with D1 neurons in it’s

input layer, D2 in the first hidden layer and so on and the set of parameter

λ2 used is λ2= { 0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}.

The result of the proposed method is reported in table 4.2

Table 4.2: Reuter dataset accuracy along with results from other methods.

Dataset
Gopalan

et al.[7]

Gong et

al. [6]

Jhu et al.

[10]

Ensmeble

1

Ensemble

2
Optimal

Amazon-

Webcam
39± 2.0 15±0.4 50.71± 0.8 24.49±.65

21.89 ±

.78

26.27±

.36

DSLR-

Webcam
26±0.8 44.6± 0.3 36.85±1.9 31.47±.43

31.65±

.67

38.47±

.52

Webcam-

DSLR
19±1.2 49.7± 0.5 32.89±

45.09 ±

.39

48.09 ±

.53

52.85 ±

.47

For the office dataset no single method is consistently better. Given, there

is a mechanism for selecting the optimal (Si, λ2j) pair, there is a significant

improvement in the performance. Infact our method outperform most of the

methods on Webcam-DSLR data by large margin.
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4.3.3 Landmine dataset

The remote sensing problem is based on the data collected from real land-

mines. In this problem there are total of 29 sets of data, collected from fields

of different types. Each data is represented as a 9-dimensional feature vector

extracted from radar images, and the class label is either true or false. Since

each of the 29 datasets are from differnt terrains, each of the dataset corre-

sponding to a terrain can assumed to follow a distinct distribution. As per

the work reported in [23], dataset 1 to 10 are collected from foliated rocks

while 20 to 24 are collected from bare earth region. Thus we combine dataset

1 to 5 to create the source domain dataset. Datasets 20 to 24 are combined

to create the target domain dataset.

Since landmine datasets are imbalance in nature, i.e., number of positive

cases is much less than number of negetive cases. So before testing this

dataset using our proposed method for feature extraction, a prepocessing step

is required. So firstly, in the source domain, we over sample the minority class

data using the SMOTE algorithm. By using SMOTE we create D seperate

minority oversampled datasets. Each of these D data sets are then fed to

the network corresponding to (Si, λ2j) pair, let the tuple corresponding to

the dth oversampled dataset and (Si, λ2j) pair be denoted by (Si, λ2j, Dd).

Method: Bi level ensemble Now to design the classifier, we use a two

level ensemble startegy. In the first level, an ensemble for each (Si, λ2j) is

created, by training D classifier using source data generated by (Si, λ2j, Dk)

∀k ∈ {1, 2, . . . D} followed by majority voting. Then in the second level,

ensemble of classifiers of all (Si, λ2j) pair is created followed by majority

voting. Here we report the F1 score, recall score, precision score and the
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G score(geometric mean of precision and recall) for the target data using our

method as well using SVM in Table 4.3. We can observe that our method

Table 4.3: Landmine dataset performance scores along with results from

SVM

Method F1 score G score recall score precision score

SVM .0926 .1568 .2219 .1039

Bi level ensemble .1973 .2285 .3928 .1971

has led to significant improvement in all the performance measure for this

dataset.

4.4 Some remarks

Here we can see that the proposed method, lead to significant increase in

the transfer learning performance for some data sets, but not for all. Exper-

imental results also seems to solidify the hypothesis that the source domain

information can be encoded in the feature extracted for target domain data

by making the autoencoder trained on target domain similar to the autoen-

coder trained on source domain data in terms of weights and biases. This

method also helps in increasing the diversity of classifiers used for creating

ensemble of classifiers. As the autoencoders are trained seperately on source

and target domain dataset, this method can easily handle the case when

source and target data are highly disproportionate in terms of number of

instances. Furthermore, this method is very general in nature, i.e., it does

not uses any domain specific features and thus can be used for any kind of
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dataset.
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Chapter 5

Conclusion and future work

In this thesis we propose two types of schemes for transfer learning using

autoencoder. The first type of scheme is more biased towards proving the hy-

pothesis that encoding some class information in the extracted feature might

lead to improved transfer learning performance. While the result tends to

agree with the hypothesis for most of the data set there are certain data sets

for which this methods leads to performance degradation. The main obstacle

in effificiently using this method is knowing when injecting class information

might lead to performance improvement and how much to inject. Other is-

sues with this method are disproportionate source and target data size could

lead to network being biased towards a particular domain and the scenerio

where the source and target domain are extremely dissimilar. The second

problem can be easily tackled by choosing the weights of the regularizing

term.

In the second family of schemes, we try find domain invariant features by per-

forming unsupervised feature extraction using autoencoders which are known
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to be good at extracting latent hierarchial features. The approach is based

on the hypothesis that similarity of the distribution between two datasets is

”proportional” to the similarity of the autoencoders in term of the weights

and the biases. Our results indeed show that this approach significantly can

improve the transfer learning performance.

For further improving the performance, a function of distance between the

source and target domains can be included as a regularizer in the cost func-

tion. Instead of using gradient descent based optimization schemes, 2nd order

optimization methods which gives better mimima and takes lesser number

of epochs to converge can be used. Due to the promising results shown by

deep architectures, autoencoders having multiple hidden layers learned by

sequential stacking of autoencoders using greedy method can be used. As

autoencoders inherently learn hierarchical features, combination of interme-

diate representations can be used as features.
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