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Abstract

In standard machine learning tasks, the domain of the data on which a

classifier learns and the domain on which it predicts, are usually the same.

However, this assumption may not always hold true. In such cases, we usu-

ally transfer the knowledge learnt from one domain to design a classifier on

a related domain and this task of knowledge transfer is termed as Transfer

Learning. There are many facets of Transfer Learning, many authors use

some labeled data from the target domain (test domain) in addition to the

labeled data from the source domain. There can be several different sce-

narios where knowledge may be transferred. In our method we are trying

to minimize simultaneously the MMD (Maximum Mean Discrepancy) which

measures the distance between means of two the domains after mapping the

data in a higher dimension by some non-linear transformation and classifier

objective function. In this work, our purpose is to transfer knowledge be-

tween a source domain and a target domain which lie in the same feature

space but have different distributions. In the literature we could not find any

work which optimizes the kernel parameters with respect to MMD. Here we

first investigate how effective is optimization of kernel parameters and the

minimization of MMD to achieve better performance in Transfer Learning.
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Our investigation reveals that lower MMD does not necessarily mean bet-

ter classifier performance on the target domain. It also suggests existence

of multiple local minima with almost equal value of MMD. Then we moved

to our main problem of building a classifier for the target domain. Various

authors have used minimization of MMD using multiple kernels to find a

suitable latent space. Typically, a convex combination of the kernels is used

and weights of the combination are learnt to minimize the MMD. In our

method, we cluster both source and target domain data into a predefined

number of clusters and then we establish correspondence between source and

target domain clusters using the Hungarian Algorithm. Finally, we minimize

the MMD on corresponding pairs of cluster for obtaining a latent space that

represents the source and target data in a better manner for solving our

problem. Our method shows some improvement in performance when there

are good cluster structure in the source and target domains. In our approach

we do not use any label information from the target data.
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Chapter 1

Introduction

When we use data to design a system, it can be a forecasting system or

a classification system, it is assumed that the test data and train data are

generated from the same distribution. When this assumption fails we have

to start the process from scratch. We have to again collect data and build

the model. Collection and annotation of data are very expensive and time

consuming in real world. There are application scenarios where plenty of

un-annotated(unlabeled) data are available and data labeling is quite expen-

sive. The domain in which we have labeled data will be called source domain

and a related domain where we have a lot of unlabeled data will be called

Target domain. It would be very useful if we can design a decision making

system using labeled source domain data and unlabeled Target domain data

and use the same in the target domain successfully. Note that the target

domain data may be from a different application domain or from the same

application domain but the data have a different distributional characteris-

tics than that of the source domain labeled data. In such cases, knowledge
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transfer or transfer learning between domains would be desirable. Trans-

fer Learning is very important in areas, where it is very difficult to label a

large amount of data but to build a good model we need a good amount

of label data. So Transfer Learning makes our life simple. Research on

Transfer Learning has attracted more and more attention since 1995 in dif-

ferent names: Learning to learn, Life-long learning, Knowledge consolidation,

Context sensitive learning, Knowledge-based inductive bias, Meta learning,

and Incremental learning[14, 13, 12]. Among these, a closely related learning

technique to transfer learning is the multi-task learning framework[11], which

tries to learn multiple tasks simultaneously even when they are different. A

typical approach for multi-task learning is to uncover the common(latent)

features that can benefit each individual task. This philosophy is often used

in Transfer Learning.

1.1 Category of Transfer Learning

In Transfer Learning, there are three main issues: (1) What to Transfer (2)

How to Transfer (3) When to transfer:

”What to transfer” deals with which knowledge should be transferred across

domains, There may be some features which are completely different across

domains but we should look for the knowledge which is common across do-

mains so that they may help in improving the performance. Then we should

look for the algorithm which can transfer the knowledge which comes under

”How to Transfer”.

”When to Transfer” deals with situations in which knowledge transfer
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should be performed. When we perform knowledge transfer, data in dif-

ferent domains must be related. If the data are not related and we try to

transfer knowledge, it may lead to negative transfer, which may hamper the

performance in term of accuracy.

Transfer Learning framework can be divided into several groups:

1. In the inductive transfer learning setting, the target task is different

from the source task, no matter whether the source and target domains

are the same or not. In this case, some labeled data in the target domain

are required to induce an objective predictive model fT (.) for use in the

target domain.

2. In the transductive transfer learning setting, the source and target do-

mains are different.

In this situation, no labeled data in the target domain is available while

a lot of labeled data available in the source domain. In addition, ac-

cording to different situations between the source and target domains,

we can further categorize the transductive transfer learning setting in

two cases:

The features spaces between the source and target domains are differ-

ent, Xs 6= XT
The feature space between the source and the target domains are the

same, Xs = XT , but the marginal probability distributions of the input

data are different, P (Xs) 6= P (Xs).

3. In the unsupervised transfer learning setting, similar to inductive trans-
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fer learning setting, the target task is different from but related to the

source task. However, the unsupervised transfer learning focus on solv-

ing unsupervised learning tasks in the target domain, such as clustering,

dimensionality reduction and density estimation. In this case, there are

no labeled data is available in the both source and target domains for

the training.

Here we shall be concentrating on transductive transfer learning and in this

case feature sets are the same in both domains , i.e. , Xs = XT but the

distribution characteristics are different, i.e., P (Xs) 6= P (Xs). We shall not

use any label of the target data during training.

1.2 Motivation

There are large number of areas in which Transfer Learning can be applied.

Transfer Learning is very useful in applications where data get outdated very

quickly. In this case data with same label may have different distribution

during two different time periods. For instance WiFi localization problems,

in which it is tried to estimate the location of the user based on previously

collected WiFi data. It is cumbersome to calibrate the WiFi data for building

localization because a user needs to label a large collection of WiFi signal

data at each location.WiFi signal strength may vary with device,time or

other factors. A model build at one time and used at another time may

reduce its performance. To reduce the task of re-calibration, we can adapt

the localization model trained at one time period(source domain) for a new

time period(the target domain), or adapt localization model trained on a
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particular type of mobile device for a new mobile device [10].

Another example where Transfer Learning has been be applied is senti-

ment analysis. Here the task is to automatically classify the reviews of a

product as positive or negative responses. For this first we have to collect a

lot of reviews of the product and manually annotate (label) them. After this

we need to train a classifier using the labeled data. If we design a classifier

to analyze reviews for one product and use it on another product, it may not

work because the distribution of review data is usually different for different

products. So to maintain good classification performance, we need to collect

a large amount of data for each product and label the data to train a classifier

for each product. This labeling can be cumbersome. To make life simple, we

might want to adapt a classification system that is trained on some product

say, to help learn classification model for some other product say B. In such

case Transfer Learning can play a vital role[1].

Transfer Learning has many other applications for example, it can be

applied in Web Document classification. Here the goal is to classify a given

Web document into several predefined categories. For a classification task

on a newly created Web site where the data distribution may be different,

there may be lack of labeled training data. So we cannot apply an existing

web-page classifier directly on the new Websites. In such cases, it would be

helpful if we could transfer the knowledge of an existing classifier into the

new domain.

Recall that for transfer learning application areas, the feature distribution

of training samples usually vary significantly across the domains and the

training samples from different sources have different statistical properties.
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Although large number of training data may be available in the source domain

the performance of classifier build on the training data is likely to be poor

on the target domain. So a challenging task in this whole process is how

to reduce the distribution gap between source domain and target domain

primarily projecting the data into new latent space. Intuitively, discovering

a good feature representation across the domain is crucial. A good feature

representation should be able to reduce the difference in distributions between

domains as much as possible, while at the same time preserving important

properties (such as geometric properties , statistical properties of the data[9])

so that the projected data can discriminate between classes.

1.3 Our work

Various authors have used Minimization of MMD using multiple kernels to

find the suitable latent space[5]. Typically, a convex combination of the

kernels is used and the weight of the combination is minimized. Here we first

find the learning rule for minimizing the MMD with respect to the kernel

parameters and study the effectiveness of the optimal kernel parameters on

Transfer Learning. In the second part of our investigation we cluster both

source and target data into predefined number of cluster and then apply

MMD on corresponding pairs of clusters with a view to obtaining a latent

space that represent the source and target data in a better manner for the

purpose of solving our problem.
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Chapter 2

Related works

Definition 1 (Transfer Learning) Given a source domain Ds and learning

task Ts, a target domain DT and learning task TT , transfer learning aims to

help in improving the learning of the target predictive function ft(.) in DT

using the knowledge in Ds and Ts where Ds 6= DT or Ts 6= TT

In order to exploit the information of the data form both source domain

and target domain, Daume [3] suggested a Feature Replication (FR) method

to augment features of both source and target domains. Here they use three

versions of each feature: a general version, a source version and a target

specific version for transfer learning. Now these augmented features are used

to construct a kernel function for support vector machine(SVM). Yang et

al [17] proposed an Adaptive SVM to enhance the prediction performance

of video concept detection, in which a new SVM classifier fT (x) is adapted

from the existing classifier fA(x) trained on the source domain. Following

this work cross domain SVM proposed by by Jiang et al. [9] used k-nearest

neighbours from the target domain to define a weight for each source pattern
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and the SVM classifier was trained with re-weighted patterns. All these

methods require some labeled patterns in the target domain and they do not

use unlabeled Target domain data.

In a situation when there are very less labeled data for target domain or

no labeled data then the classifier can be built only on the source domain

data. There are several cross domain learning methods which cope with the

inconsistency in data distribution between source and target domains and

design classifiers using source data and unlabeled target data. Some of these

methods re-weight the patterns from source domain with the help unlabeled

patterns from the target domain [5].

We will briefly review the two main paradigms of cross-domain learning.

The first one directly learns decision functions for the target domain based on

the labeled source domain data by minimizing the mismatch of data distri-

bution between the two domains. The second approach makes use of existing

source domain classifiers based on the source domain data which is discussed

in next two subsection.

2.1 Reduce the mismatch between distribu-

tions

In transfer learning it is very important to reduce the the mismatch between

distribution in the source and target domains. In order to reduce the mis-

match one of the ways is to estimate the distribution of each domains. But

to avoid such a non-trivial task, Borgwardt [2] proposed an effective and

non parametric criterion named as maximum mean discrepancy(MMD), to
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compare the data distribution based on the distance between the mean of

samples from two domains in a kernel k induced Reproducing Kernel Hilbert

space. Square of MMD is given by

DISTk(D
A, DT ) =

∥∥∥∥∥ 1

nA

nA∑
i=1

φ(xAi )− 1

nT

nT∑
i=1

φ(xTi )

∥∥∥∥∥
2

. (2.1)

Later we will justify the choice of this distance measure. In order to

capture the higher statistics of the data, the samples used in (2.1) are trans-

formed into higher dimensions or even infinite dimension through a non lin-

ear feature mapping φ(.) [5]. When DISTk(D
A, DT ) approaches to zero, the

higher order moments of the data from the two domains become closer, so

their data distribution become also close to each other[5]. For reducing the

mismatch between he two distributions Huang et al. [8] suggested a two

step approach called Kernel Mean Matching(KMM). The first step is used to

diminish the mismatch between the means of the samples in RKHS from the

two domains by re-weighting the samples φ(xi) in the auxiliary domain as

βiφ(xi) In [8] β is learned by MMD in (2.1). Then in the second step authors

learnt a decision function f(x)=W
′
φ(x)+b that separates the patterns from

two opposite classes in DA using the loss function re-weighted by βi.

2.2 Modifying the Auxiliary Classifier

Instead of explicitly building a classifier for the target domain, some re-

searchers make use of pre-learned classifiers built from the auxiliary data

set to learn the target classifier. Yang et al.[17] gave an Adaptive SVM in
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which a new svm classifier fT (x) was adapted from auxiliary classifier fA(x)

trained with the patterns from the auxiliary domain. In the adaptive SVM

classifier, the target classifier fT (x) is adapted from the existing auxiliary

classifier fA(x) as fT (x)=fA(x)+∆f(x) where ∆f(x) is learned from the

labeled target data. This method also assumed existence of some labeled

data for the target domain.

2.3 Invariant and Variant features across do-

mains

We can learn the invariant features across the two domains and once we are

done with learning of invariant features we can build our model on the basis

of these invariant features. Since these features in both source and target

domains are not varying this may improve the accuracy of prediction for the

target domain [15]. In [15] authors tried to find features which contribute to

the distance between two domains most. Here authors take a diagonal matrix

W where the diagonal elements define the feature weights. Let W ∈ Rd×d

be a diagonal weight matrix and x ∈ Rd be a d dimensional sample vec-

tor. Authors in [15] form a convex optimization function which returns the

weight matrix W whose diagonal elements indicate the strength of features.

In determining the separation between the two domains they use a thresh-

old. If a diagonal element is greater than the threshold then that feature

is considered a variant feature across the two domains and if the diagonal

element is less then the threshold then that feature is considered an invari-

ant feature. Then a classifier is built on invariant features. To illustrate this
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with an example, let φ(x) : X → H be a polynomial kernel with degree,

d. Then, K
′

= [k](nA+nT )×(nA+nT ), where kij = (xi
′
Wxj + 1)d. The convex

optimization problem is formulated as follows. [15]

W ∗ = argmin
w

− trace(K ′L)

subject to diag(W )T ∗ diag(W ) ≤ 1

W > 0

where L =

[A]nA×nA
[B]nA×nT

[C]nT×nA
[D]nT×nT


Aij = 1

n2
A

, Bij = −1
nA×nT

, Cij = −1
nA×nT

, Dij = 1
n2
T

. Here K
′

is a matrix

which contains the each data transformed by polynomial kernel. nA and nT

are the number of point in the source domain and target domain respectively.

2.4 Simultaneous Reduction of MMD and learn-

ing of classifier

Another method followed by researchers to solve the problem to minimize

the MMD and and learn the classifier simultaneously through multiple ker-

nel learning method[4,11].In this method in order to reduce the distribution

mismatch it is tried to bring MMD of the two distributions close in a higher

dimension through a non linear feature mapping φ(.). Since data from each

class may be distributed into several clusters, instead of minimizing the MMD
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of the entire data set, we cluster the source and target data into a predefined

number of clusters and then establish a correspondence between clusters in

the two domains and the sum of MMD’s over all corresponding pairs of clus-

ter is minimized. In our method instead of bringing only one mean of source

and target close we are trying to bring multiple means close enough by clus-

tering source and target data so that the chances of realizing a better latent

space increases. This is also expected to better maintain the ”geometry” of

the original data in the latent space. However, if the data do not have well

defined clusters, this may not give any advantage.
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Chapter 3

Proposed Method

Before moving on to the mathematical formulation of our problem, we first

discuss the necessary mathematical background. We discuss the MMD and

the method to calculate it. We will also discuss about the Hungarian match-

ing algorithm. The necessary notations for the discussion are given below in

Table 3.1

Table 3.1: Notations used in the chapter

Notations Meaning

A Source Domain
T Target Domain

nA number of samples in Source Domain

nT number of samples in Target Domain

Xs labeled source data set

XT unlabeled target data set
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3.1 MMD and Hilbert Space

Hilbert Space H: A Hilbert space is a vector space on which an inner

product is defined, along with an additional technical condition, the space

must contain the limit of all Cauchy sequences of functions.

Cauchy Sequence: A sequence x = (x1, x2....., xn) is a Cauchy sequence if

∀ ε >0 ∃ N ∈ N such that n,m > N ⇒ d(xn, xm) < ε.

Kernel Let X be a nonempty set, function K : X × X → R is a kernel if ∃

R-Hilbert space H and a map φ : X → H such that ∀x,x′ ∈ X k(x,x′) =

〈φ(x), φ(x′)〉.

Reproducing Kernel: Let H be a Hilbert space on X , k(., .): X ×X → R

is a reproducing kernel of Hilbert space H if ∀f ∈ H, ∀x ∈ X , the following

two condition is satisfied:

1. The feature map of every point is in the feature space: ∀x ∈ X , k(.,x) ∈

H

2. The Reproducing property : ∀x ∈ X ,∀f ∈ H f(x) = 〈k(x, .), f(.)〉H

RKHS is a Hilbert space with a reproducing kernel. The space of such

function is known as Reproducing Kernel Hilbert Space(RKHS).

Two defining features of RKHS

1. The feature map of every point is in the feature space: ∀x ∈ X , k(.,x) ∈

H

2. The Reproducing property : ∀x ∈ X ,∀f ∈ H, f(x) = 〈k(x, .), f(.)〉
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In particular k(x,y) = 〈k(.,x), k(.,y)〉

3.2 MMD

Our target is to minimize the mismatch between two distributions, source and

target in a latent space. In order to avoid the estimation of density for target

and source domains, we calculate the MMD(Maximum Mean Discrepancy),

which measures the distance between the means of the two distributions

in higher dimensions. So if we can reduce MMD in some projected space, it

will lead to reduction in mismatch between two distributions in the projected

space.

Suppose, we have two data sets generated from distributions p and q,

then MMD is defined by

D(p, q,F) = sup
f∈F
{Epf(x)− Eqf(y)} (3.1)

where Ep is the expectation of the data transformed by function f under the

distribution p.

Theorem1

D(p, q,F) = 0 iff p = q where F = {f | ‖f‖H ≤ 1} is a unit ball in Reproduc-

ing Kernel Hilbert space,provided that H is universal.

In RKHS function evaluation is given by f(x) = 〈K(x, .), f〉

Now the mean is
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Ep[f(x)] = E[〈K(x, .), f〉]

= 〈E[K(x, .)], f〉

= 〈 1

m

m∑
k=1

K(xk, .), f〉

= 〈µx, f〉

so equation(3.1) can be written as [7]

D(p, q,F) = sup
‖f‖≤1

[〈µx, f〉 − 〈µy, f〉]

= sup
‖f‖≤1

〈µp − µq, f〉

= ||µp − µq||H

3.3 MMD and Kernel

Using the principal of RKHS, now we will show how the square of MMD can

be written in the form of a kernel. We have already seen

D(p, q,F) = ||µp − µq||H

Now we will show how the square of MMD estimated from finite sample

can be written in the form of kernel.
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‖ 1
nA

∑nA

i=1 φ(xAi )− 1
nT

∑nT

j=1 φ(yTj )‖2

= 〈 1
nA

∑nA

i=1 φ(xAi )− 1
nT

∑nT

j=1 φ(yTj ),

1
nA

∑nA

i=1 φ(xAi )− 1
nT

∑nT

j=1 φ(yTj )〉

= 1
n2
A
〈
∑nA

i=1 φ(xAi ),
∑nA

i=1 φ(xAi )〉

− 2
nA∗nT

〈
∑nA

i=1 φ(xAi ),
∑nT

j=1 φ(yTj )〉

+ 1
n2
T
〈
∑nT

j=1 φ(yTj ),
∑nT

j=1 φ(yTj )〉

= 1
n2
A

∑nA

i=1

∑nA

j=iK(xAi ,x
A
j )

+ 1
n2
T

∑nT

i=1

∑nT

j=iK(yTi ,y
T
j )

− 2
nT ∗nA

∑nA

i=1

∑nT

j=1K(xAi ,y
T
j )

= trace(K ∗ L)

where L is same as defined in previous chapter in section 2.3.

As we have discussed previously instead of minimizing the MMD of the

source and Target data, We first cluster the source and Target data into a

predefined number of clusters. Then we establish correspondence between

clusters in the two domains and the sum of MMD’s over all corresponding

pairs of cluster is minimized. If the source and target data have well defined

cluster structure this is likely to find better kernels. Once we find the clusters

in Xs and XT , We need to establish a correspondence between clusters in

the two domains. For correspondence we are using Hungarian algorithm. We

shall learn the classifier and reduce the MMD(Maximum Mean Discrepancy)

simultaneously [5].
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But before that we want to investigate a more basic problem. Several au-

thors have used multiple kernels with different predefined values of the kernel

parameters and then made a convex combination of those kernels. In order

to minimize MMD, they learnt the weights of the linear combination. But

they did not optimize the kernel parameters. Here we first see how effective

is the optimization of kernel parameters to minimize MMD to achieve better

performance in transfer learning.

3.4 optimization of MMD with repect to the

kernel parameters

We tried to optimize the MMD with respect to all the kernel parameters. We

used three kernels, RBF kernel exp(−γ‖x− y‖2), inverse kernel 1
γ‖x−y‖+1

,

and square inverse kernel 1
γ‖x−y‖2+1

. We also learned the behaviour of kernel

parameters with the iterations. We did this experiment by selecting different

set of d and we are not optimizing d. We are studying the behaviour with a

fixed d. The optimization function is as follows:

J(γ) = min
γ

M∑
m=1

trace(dmKmL). (3.2)

We use gradient descent method for the optimization.

γit+1 = γit − η
d(J(γi))
d(γi)
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Algorithm 1 MMD With Kernel Parameter

1: initialize kernel parameters γ = {γ1, γ2...γl} for each kernel, l = Number

of kernels

2: for i← 1 to Tmax do

3: γit+1 = γit −
d(J(γi))
d(γi)

4: end for

5: return

In Table 3.2 the initial vale of γ are given in order of RBF kernel,inverse

kernel and square inverse kernel respectively.

Table 3.2: Result after 100 iteration on webcam dslr data set

d Final MMD initial γ final γ Training Accuracy Target Acc.

1/6,2/6,3/6 2.37×10−4 0.4,0.2,0.1 .64, 99.7% 4.43%

1.8×10−5

1.33×10−29

1/6,2/6,3/6 .0031 0.2,0.3,0.4 .6168, 99% 14.43%

8.5×10−5

.9045

1/3,1/3,1/3 .0025 0.2,0.3,0.4 .6998, 100% 12.83%

8.5×10−5

.8038

1/3,1/3,1/3 .0032 0.3,0.4,0.2 .7071, 99% 14.45%

.0047

.6769
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In all four cases, the source accuracies are about 100% but Table 3.2

reveals that a lower value of MMD does not necessarily yield a better accuracy

on target data. This may raise a question about effectiveness of minimum

MMD as a criterion for domain adaptation.

Figure 3.1: Variation of γ and MMD with d=[1/6,2/6,3/6] and initial
γ=[0.4,0.2,0.1]

29



Figure 3.2: Variation of γ and MMD with d=[1/6,2/6,3/6] and initial
γ=[0.2,0.3,0.4]
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Figure 3.3: Variation of γ and MMD with d=[1/3,1/3,1/3] and initial
γ=[0.2,0.3,0.4]

Figures 3.1 to 3.4 reveal that there are several distinct minimum of MMD

which are almost equally good in terms of the MMD value. But their effec-

tiveness in Transfer Learning is quite different.

3.5 Domain adaptation via clustering

There are a few domain adaptation methods which finds the kernel minimiz-

ing MMD. For real data sets, it may be possible that each class, both in the

source and target domains might be represented by several clusters in the

training data. If that happens, then instead of finding MMD between source

and target data as a whole, it might be better to minimize the sum of MMDs

between corresponding clusters in the source and target domains, In order to

do this we need to cluster the data and establish a correspondence between

clusters found in the source and target domains data. For establishing corre-

spondence we are using the Hungarian Method [16]. The Hungarian Method
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Figure 3.4: Variation of γ and MMD with d=[1/3,1/3,1/3] and initial
γ=[0.3,0.4,0.2]

is an algorithm which can find an optimal assignment between two given sets

of centroids with the given cost matrix. For this we make a N ×N matrix.

N is the number of clusters in the source and target data sets. The (i,j) entry

of the matrix contains the distance between the ith cluster in the source data

and jth cluster in the target data. The steps of the algorithm go as follows:

1. Subtract the smallest entry in each row from all the entries of its row.

2. Subtract the smallest entry in each column from all the entries of its

column.

3. Draw lines through appropriate rows and columns so that all the zero

entries of the cost matrix are covered and the minimum number of such

lines is used.

4. Test for Optimality :(1)If the minimum number of covering lines is n,an
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optimal assignment of zeros is possible and we are finished.(2)If the

minimum number of covering lines is less than n, an optimal assignment

of zeros is not yet achieved. In that case, proceed to Step 5.

5. Determine the smallest entry not covered by any line. Subtract this

entry from each uncovered row, and then add it to each covered column.

Return to Step 3.

Now we will get the proper assignment of source cluster to the target cluster.

3.6 Final Mathematical Formulation

We follow the same formulation as in [5], but we adapt it to clusters.

The optimization problem for Transfer Learning is formulated as

[k, f ] = argmin
k,f

Ω(distk(D
A, DT )) + θSVMk,f (D) (3.3)

where Ω(.) is monotonic increasing function and θ > 0 is a trade-off pa-

rameter to balance the difference of data distribution from two domains and

the structural risk functional SVMk,f (D) of SVM for labeled source domain

patterns. We want to learn the decision function f and kernel k at the same

time.

3.6.1 Multiple Kernel Learning

We are assuming the kernel function k as a linear combination of a set of a

base kernels function km, i.e., k =
∑M

m=1 dmkm

So our final optimization problem is as follows:
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min
d∈M

max
α∈A

1

2

(
no.ofcluster∑

j=1

tr(
M∑
m=1

dmkmL)j

)2

+θ

(
α

′
1− 1

2
(α � y)

′
(
M∑
m=1

dmk
L,L
m )(α � y)

)
(3.4)

where d = [d1, ...dm] and L represents the data with label and A={α ∈

Rn|c1 > 0,α
′
y = 0}

We can write equation (3.4) as follows

min h(d) = min
d

1

2
d

′
pp

′
d + θJ(d) (3.5)

where p is a row vector of sum or max of the MMD computed over matching

clusters for each kernel.

Equation(3.5) can be solved using Newton’s optimization method[6]. The

optimization algorithm is described as Algorithm 2.
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Algorithm 2

Input: (xA1 , y1), (x
A
2 , y2), ........., (x

A
n , yn), and xAi ∈Xs

(x1, x2.......xn) and xi ∈XT

M number of kernel

Output: d and classifier f(.)

1: Normalize data

2: Cluster source (Xs) and target (XT ) data separately using K-Means

algorithm.

3: Find the centroid of each cluster.

4: Find the correspondence between source and target cluster using Hun-

garian algorithm.

5: for i← 1 to M do

6: Find the sum of MMD over all corresponding pair of source and target

cluster corresponding to kernel i

7: end for

8: initialize d= 1
M

9: for i← 1 to Tmax do

10: solve for α in the dual formation of SVM shown in eq(3.6) using LIB-

SVM.

11: update d for multiple base kernel: dt+1 = dt − 0.5 ∗ gt
12: end for

13: return

where g = d+ θ(ppT + ε)−1∇J(d)

p =[MMD sum for kernel1,MMD sum for kernel2,MMD sum for kernel3]
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J(d) = max
α∈A

(α
′
1)− 1

2
(α � y)

′
(
M∑
m=1

dmk
L,L
m )(α � y) (3.6)

Algorithm 3

Input: (xA1 , y1), (x
A
2 , y2), ........., (x

A
n , yn), and xAi ∈Xs

(x1, x2.......xn) and xi ∈XT

M number of kernel

Output: d and classifier f(.)

1: Normalize data

2: Cluster source (Xs) and target (XT ) data separately using K-Means

algorithm.

3: Find the centroid of each cluster.

4: Find the correspondence between source and target cluster using Hun-

garian algorithm.

5: for i← 1 to M do

6: Find the min of MMD over all corresponding pair of source and target

cluster corresponding to kernel i

7: end for

8: initialize d= 1
M

9: for i← 1 to Tmax do

10: solve for α in the dual formation of SVM shown in eq(3.6) using LIB-

SVM.

11: update d for multiple base kernel: dt+1 = dt − 0.5 ∗ gt
12: end for

13: return
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p=[min. of MMD for kernel1,min. of MMD for kernel2,min. of MMD for kernel3]

Algorithm 3 is shows an improvement over Algorithm 2, cluster pair with the

minimum distance and with minimum MMD over all pairs, shows the im-

provement in accuracy. In this case after the correspondence between source

and target clusters, we are getting the most similar cluster, the cluster pair

with minimum MMD value is used in the optimization which increases the

chances of better latent space since we are dealing with small MMD.
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Chapter 4

Results on different Dataset

4.1 Prepossessing of Data set

We normalized every Data set by following steps

1. Subtracted mean of a feature from its corresponding feature value.

2. Divided the data point with difference of maximum and minimum of

the feature

4.2 Reuter Dataset

The Reuters-21578 dataset is a standard and widely used collection of hand-

labeled articles pulled from Reuters magazine. It’s a very well-known bench-

mark data which have been extensively used in the development of algorithms

for the task of text categorization. In text classification we use the Reuters-

21578 data set which has been used for transfer learning setting. The basic
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idea is to utilize the hierarchy of the data sets. The binary classification

task is defined as classifying top categories. Each top category is split into

two disjoint parts with different subcategories,one for training and the other

for test. In this case, distributions between the training and test data may

be very different.There are three classification problems: orgs vs people,

orgs vs places and people vs places in transfer learning setting. As we

are learning multiple kernels, we are using three kernels named RBF kernel,

inverse kernel and inverse square kernel. For selecting the parameters of the

kernels we are doing a grid search between .1 to 1. The value for which we

get the minimum MMD is taken as the parameter for the final MMD calcu-

lation. We also try to find the relationship between the MMD and the kernel

parameters. We have used the gradient descent technique to optimize the

MMD with respect to kernel parameters.

4.3 Office Dataset

This dataset has 31 different object categories collected under three domain

settings: images from Amazon, dslr camera, and webcam. There are 4652

images in total, with the object types belonging to backpack, bike, notebook,

stapler etc. The Amazon domain has, on average, 90 instances for each

category, whereas dslr and webcam have roughly around 30 instances for a

category. The domain shift is caused by several factors including change in

resolution, pose, lighting etc. There are 800 features corresponding to each

data point. Since there are 31 classes in this Dataset, we are using One

Versus One Classification. Basically we are making one classifier for each
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pair of classes then we tested whole test data with these classifiers by voting.

Table 4.1: Accuracy on Reuter Datasets

Dataset without cluster Sum of
MMD

Min. of MMD

org vs people 74.2 73.6 74.2
org vs places 68.6 63.6 66.8

people vs places 56 55.5 55.8

Table 4.2: Accuracy on Office Datasets

Dataset without cluster Sum of
MMD

Min.of MMD

webcam vs dslr 11.62 47.29 49.3
dslr vs webcam 9.17 30.78 32.16

amazon vs webcam 6.41 14.08 15.8

Tables 4.1 and 4.2 report the results when we use our algorithm, Reuter

data sets did not exhibit good cluster structure and hence there was no im-

provement. For the office data sets, we experimented with 4 clusters. These

data sets exhibited better clusters and hence improvement in performance is

quite significant.
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Chapter 5

Conclusion

Many authors have used MMD in conjunction with Multiple Kernels for

domain adaptation in transfer learning. Some of these studies used con-

vex combination of multiple kernels each with a predefined value of kernel

parameters, but no effort was made to optimize the MMD with respect to

kernel parameters. In this thesis, first we have investigated the effectiveness

of tuning kernel parameters to optimize MMD in the context of domain adap-

tation in transfer learning. This investigation has revealed a bit surprising

results - lower MMD does not necessarily mean better performance on target

data in transfer learning. However, we note that we have minimized MMD

independent of learning of any associated classifier.

In the second part of the thesis, we have studied the effectiveness of

clustering the source or target domain data sets before optimizing MMD.

In real life scenario, even each class in the source and target data might be

represented by multiple clusters. In this case, instead of minimizing MMD

of the entire data set as a whole, it might be better to minimize the sum of
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MMDs between pairs of corresponding clusters. Of course, if the source and

target data sets do not have cluster structures, such a method is not expected

to show any improvement. But if the data sets exhibit good cluster structure,

we may expect significant improvement in performance. Our experimental

results with two benchmark data sets, Reuters and Office, indeed, verify our

expectation.

In the literature, typically authors use a large number of kernels in a

multiple kernel set up. For example, in [4], authors have used a convex com-

bination of 52 kernels. In our study, due to limited computational resources,

we have used only three kernels. We believe that use of more kernels is likely

to improve the performance.
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