
INDIAN STATISTICAL INSTITUTE

M. TECH. THESIS

A Transportation Scheduling
Algorithm

Author:
Arghya Bhattacharjee

Supervisor:
Dr. Sandip Das

A thesis submitted in fulfillment of the requirements
for the degree of Master of Technology

in the

Computer Science Department
Indian Statistical Institute

July 19, 2016

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship
I, Arghya Bhattacharjee, declare that this thesis titled, “A Transportation
Scheduling Algorithm” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for an M.
Tech. degree in Computer Science at this institute.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this institute or any other institution,
this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“Thanks to my solid academic training, today I can write hundreds of words on
virtually any topic without possessing a shred of information, which is how I got a
good job in journalism.”

Dave Barry

vii

Abstract

Suppose there are pick-ups and drops along a line. Each pick-up has
weight to be transported to its corresponding drop. A carriage with a finite
capacity is assigned to carry out this transportation job. Our objective is to
find out the traversal route for the carriage for which the distance traversed
by the carriage is minimum. Here we have tried to find out algorithms
which can serve our objective.

ix

Acknowledgements
I take this opportunity to thank Prof. Sandip Das (ACMU Unit, ISI

Kolkata) for his valuable guidance and inspiration. As a mentor, his work
is exceptional. He suggested me to work on this problem and motivated
me throughout the process. Finding the right problem is really a tough task
in research and he has done this favour for me. He introduced this problem
to me and showed me the right path wherever I got stuck. He gave me his
valuable time and provided me basic structure to the problem on which I
became able to add more results. I am grateful to him for giving me chance
to work under his supervision and will feel myself lucky if I could work
with him in future.

I would like to thank all my faculties for providing me enough time to
think on this problem

Finally I would like to thank all my batch mates for their amazing com-
pany.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Problem Definition . 1
1.2 Some Possible Generalizations 1
1.3 Some Useful Definitions . 2

1.3.1 Segment . 2
1.3.2 Bridge . 2
1.3.3 Island . 2

2 Algorithm for the Basic Scenario 3
2.1 An Observation . 3
2.2 The Algorithm . 3
2.3 Proof of the Algorithm . 3

2.3.1 Another Observation 4
2.3.2 Proof of termination 4
2.3.3 Proof of the fact that once terminated, all the points

are served . 4
2.3.4 Proof of traversing the path of minimum possible length 4

3 A Possible Generalization 7
3.1 The Setup . 7
3.2 The Algorithm . 7
3.3 Lemmas . 8
3.4 Proof of the Algorithm . 8
3.5 Discussion . 9

xiii

To you. . .

1

Chapter 1

Introduction

Suppose there are pick-ups and drops along a line. Each pick-up has weight
to be transported to its corresponding drop. A carriage with a finite capac-
ity is assigned to carry out this transportation job. Our objective is to find
out the traversal route for the carriage for which the distance traversed by
the carriage is minimum. Another way to state our objective is that, we
want to minimize the fuel cost of the carriage. Here we have tried to find
out algorithms which can serve our objective. In this chapter, we will define
one very basic and special scenario of this problem, and discuss about what
other generalizations can be done over that scenario.

1.1 Problem Definition

Suppose we place 2n number of points on a line, where n is any natural
number. We mark any n of those 2n points as pick-ups and the rest n points
as drops. Now, from left to right, we mark the pick-ups as pi, and the drops
as di, where i varies from 1 to n in each case. The only constraint we follow
until now is that, for every value of i, di lies somewhere to the right of pi on
the line. Now, suppose, for every value of i, there is a unit weight placed
at pi, which is to be transported to di. The carriage, which is assigned to do
this transportation job, is also of unit capacity. It will start from the left most
of the 2n points, do the whole transportation job, and then return to the
starting point again. Our objective is to come up with an algorithm, which
will determine the traversal route for the carriage of minimum length.

1.2 Some Possible Generalizations

Here are some possible generalizations we can think about, over the sce-
nario we just defined.

1. The carriage capacity can be more than one.

2. For any value of i, di may be placed somewhere to the left of pi as well.

3. Any pick-up can have any number of unit weights.

4. All the unit weights from one pick-up may not have to be delivered
to a single drop, i.e., there can be more than one drops corresponding

2 Chapter 1. Introduction

to a single pick-up.

5. Unit weights from more than one pick-ups may have to be delivered
to a single drop, i.e., there can be one drop corresponding to more
than one pick-ups.

6. The carriage may have to start from any of the 2n points, and end up
at any one of them as well.

1.3 Some Useful Definitions

Here are some definitions which we have used throughout our subsequent
discussions.

1.3.1 Segment

A segment is a part of the line in between two consecutive points.

1.3.2 Bridge

A bridge is a segment such that there is no pick-up anywhere to the left of
that segment whose corresponding drop is somewhere to the right of that
segment.

1.3.3 Island

An island is any maximum possible stretch of points containing no bridge.
In the next chapter, we will propose an algorithm for the basic scenario

and prove its correctness.

3

Chapter 2

Algorithm for the Basic
Scenario

Here is the algorithm proposed for the basic scenario we discussed about
in the last chapter.

2.1 An Observation

The left most point of any island cannot be a drop, because its correspond-
ing pick-up must lie somewhere to the left of that drop, but inside the same
island. Similarly, the right most point of any island cannot be a pick-up, be-
cause its corresponding drop must lie somewhere to the right of that pick-
up, but inside the same island. So, it is clear that, the left most point of any
island is a pick-up and the right most point of any island is a drop.

2.2 The Algorithm

The carriage follows the following instructions throughout its traversal.

1. Whenever the carriage encounters an unserved pick-up, it picks up
its weight, goes to its corresponding drop and drops the weight there.

2. Whenever the carriage drops an weight, it checks if the segment at-
tached to that drop to its right is a bridge or not. If it is a bridge, the
carriage starts moving towards right. Otherwise, the carriage starts
moving towards left.

The carriage starts by picking up the weight from the left most pick-up,
i.e., the point it starts from, goes to its corresponding drop, and drops the
weight there.

2.3 Proof of the Algorithm

We will prove the algorithm in three parts. First, we will prove that the
algorithm will terminate after a finite time. Then we will prove that, once
the algorithm terminates, all the points are served. Finally we will prove
that the carriage traverses the path of minimum possible length. But first of
all we will go through another observation before going into the detail of
proof.

4 Chapter 2. Algorithm for the Basic Scenario

2.3.1 Another Observation

Suppose at some point of time, the carriage has come to a point on the
line. Let us call that point x. And suppose there is a point y which lies
somewhere to the left of x on the line. Now, if we know that the algorithm
has terminated, i.e., the carriage has returned to its starting point, and we
also know that at some point of time, the carriage was at the point x, then
we can say that the point y must has been served by the carriage. Because,
if y is a pick-up, the carriage must have gone through it during a backward
journey. If y was unserved until that time, the carriage must have served
it then. Similarly, if y is a drop, then the carriage must have gone through
its corresponding pick-up during a backward journey, because that pick-up
lies somewhere to the left of y. If that pick-up was unserved until that time,
the carriage must have served it then. So, in any case, y must have been
served by the carriage.

2.3.2 Proof of termination

The carriage moves towards right only in two cases. Firstly, if it encounters
an unserved pick-up, and secondly, if it drops weight in a drop which has a
bridge attached to it to its right. In the first case, the journey towards right
terminates when the corresponding drop is reached, and in the second case,
the journey towards right terminates just after crossing the bridge. So, in
each of the cases, the journey towards right terminates after a finite time. As
both the number of pick-ups and the number of drops are finite, the overall
journey towards right is also finite. As it moves towards left otherwise,
after a finite time, it returns to the left most point.

2.3.3 Proof of the fact that once terminated, all the points are served

Suppose the algorithm has terminated and there is a pick-up which is still
unserved. Let that pick-up be pj . Let us consider the right most drop of that
island, which has been served. Let that drop be dk. We already know that,
once the carriage reaches a point on the line, it will certainly serve all the
pick-ups to the left of it. Now, if dk is the right most drop of its island, then
pj must have been served. Else, let us consider all the drops which are in the
same island of dk but to the right of dk. Now, if all of their corresponding
pick-ups are towards right of dk as well, then there is a bridge attached
to dk to its right, which contradicts the definition of an island. Else, there
is at least one drop in the same island of dk and to the right of dk, whose
corresponding pick-up is to the left of dk. Then, dk cannot be the right most
drop of that island which is served. So, dk must be the right most drop
of that island, and as a result, all the pick-ups of that island are served.
Also, as the carriage goes to the corresponding drop to drop the weight
immediately after picking up an weight from any pick-up, all the drops of
that island are also served. Now, as the argument is valid for any island on
the line, it proves that, once the algorithm terminates, all the points on the
line are served.

2.3.4 Proof of traversing the path of minimum possible length

Here are two simple observations.

2.3. Proof of the Algorithm 5

1. Each bridge is traversed only once towards right. Because, a bridge
is traversed towards right only when the drop attached to that bridge
to its left is served. As one drop is served exactly once, a bridge is
traversed exactly once towards right.

2. Whenever each non-bridge segment is traversed towards right, the
carriage is carrying weight. This is clearly ensured from our algo-
rithm.

Now, we can see that, each bridge is traversed minimum number of
times, i.e., once, towards right. Also, each non-bridge segment is traversed
minimum number of times towards right. Because, if a non-bridge segment
is traversed more than minimum number of times towards right, the car-
riage must cross the segment towards right with no weight at least once.
But our algorithm ensures that, whenever each non-bridge segment is tra-
versed towards right, the carriage is carrying weight. So, the carriage tra-
verses each segment minimum number of times, which ensures that the
carriage overall traverses the path of minimum possible length.

In the next chapter, we will discuss about one possible generalization of
the already discussed scenario.

7

Chapter 3

A Possible Generalization

Now we will discuss about the first possible generalization that we men-
tioned in chapter 1, i.e., the carriage has capacity which is not necessarily
1, but anything greater or equal to 1. Let us call our new carriage capacity
c where c is any natural number. This time we will describe the setup in
a slightly different way first. Then we will proceed to try to achieve our
objective.

3.1 The Setup

This time we add two more segments to the line. One is attached to the left
of the left most point and the other is attached to the right of the right most
point. We define a variable y for each segment as the minimum number of
times the carriage must cross that segment towards right in order to carry
out the whole transportation job. Suppose there are x pick-ups to the left
of any segment, such that, each of their corresponding drops is somewhere
to the right of that segment. Then the value of y of that segment is equal to
the ceiling value of x

c . Let us call the value of y of the segment attached to
any point to its left as yleft of that point and the value of y of the segment
attached to any point to its right as yright of that point. Now, if for any point,
yright is greater than yleft, we put an up arrow over that point. Similarly, if
for any point, yright is less than yleft, we put a down arrow over that point.
As of now, we will limit our discussion only within the case where there is
no bridge on the line. Later we will introduce bridges on the line.

3.2 The Algorithm

The carriage performs two kinds of journey, forward (towards right) and
backward (towards left). During a forward journey, it serves each and every
point it encounters, if possible, including the starting and finishing points of
that forward journey. During a backward journey, it doesn’t serve any point
it encounters. The carriage starts from the left most point towards right
to start the first forward journey. Each forward journey ends, and a new
backward journey starts, when the carriage serves a drop which already has
a down arrow. Each backward journey ends, and a new forward journey
starts, when the carriage encounters an unserved pick-up which already
has an up arrow. Whenever the carriage reaches a point during a forward
journey, at the time of leaving that point, it decreases the yleft of that point
by 1, and accordingly updates the arrow of that point, if required.
Let us go through some lemmas first, before discussing about the proof of
the algorithm.

8 Chapter 3. A Possible Generalization

3.3 Lemmas

Lemma 3.3.1. An up arrow is always on a pick-up.

Proof. This is simply because of the fact that the value of y cannot increase
after a drop.

Lemma 3.3.2. A down arrow is always on a drop.

Proof. This is simply because of the fact that the value of y cannot decrease
after a pick-up.

Lemma 3.3.3. The number of up arrows is equal to the number of down arrows.

Proof. The value of y of the left most segment is 0. Similarly, the value of
y of the right most segment is 0. Now, at each up arrow, the value of y
increases by 1 and at each down arrow, the value of y decreases by 1. The
value of y does not change at any other point. As the left most and the right
most values of y are equal, the total number of up arrows must be equal to
the total number of down arrows.

Lemma 3.3.4. Once a point has no arrow, it will never have any arrow.

Proof. Suppose at some point of time, a point has no arrow over it. So,
there will never be any change of direction of the carriage from that point.
So, whenever the carriage will encounter that point, it will traverse both the
segments attached to the point, one immediately after the other. So, when-
ever the value of yleft will decrease, the value of yright will also decrease
immediately after that. As a result, an up arrow will be generated over that
point, only to get cancelled out immediately after generation. So, effectively
no arrow will be generated over that point ever again.

Lemma 3.3.5. The carriage cannot reach the right most point with weight of any
other drop.

Proof. Suppose the carriage reaches the right most point with at least one
weight of any other drop. Now, the drop of that weight is somewhere in
between its pick-up and the last point, and as the carriage has been at its
pick-up some time before reaching the last point, it must have already en-
countered its drop in a forward journey at least once, with the weight in the
carriage. Then, the weight must have already been dropped. So, the car-
riage cannot reach the right most point with weight of any other drop.

3.4 Proof of the Algorithm

Suppose the carriage traverses in such a way such that the number of times
each segment is crossed in the forward direction is equal to the value of
y of that segment. Then we say that theoretically minimum amount of
path has been traversed. Now, a drop can be served in two ways. First,
the carriage reaches the drop during a forward journey, serves it, and then
continues its forward journey. Second, the carriage reaches the drop dur-
ing a forward journey, serves it, and then starts the next backward jour-
ney. Similarly, a pick-up can be served in two ways. First, the carriage

3.5. Discussion 9

reaches the pick-up during a forward journey, serves it, and then contin-
ues its forward journey. Second, the carriage reaches the pick-up during
a backward journey, serves it, and then starts the next forward journey.
Now, suppose there is a down arrow on a drop. Then, whenever the drop
will be reached during a forward journey and served, the next backward
journey will start. So, if a drop has a down arrow, it cannot be served
in the first way. But, if a pick-up has an up arrow, it can be served in
both the ways. Now, if a pick-up has an up arrow, and is served in the
first way, then the situation is beyond the scope of our algorithm. Such
an example is p1p2p3p4d1d3p5d2d4d5(c = 2). Now, the carriage can only
reach the right most point in two ways. First, with only the weight of
the last point. Second, with no weight. Now, if the carriage reaches the
right most point with no weight, then the situation is beyond the scope
of our algorithm. Two such examples are p1p2p3p4d1d3d2d4(c = 2) and
p1p2p3p4d1d2p5p6d3d5d4d6(c = 2). In case of the first example, the carriage
never changes its direction. And in case of the second example, the car-
riage changes its direction before reaching the right most point with no
weight. Now, suppose the algorithm does not terminate. Then it can do
so in two ways. First, with no change in direction. Second, with at least
one change in direction. The first case is not possible. Because, it implies
that the carriage ultimately reaches the last point with its weight, which
will cause a change in direction. Similarly, the second case is also not pos-
sible. So, the algorithm will terminate. Now, suppose the algorithm has
terminated, and at least one pick-up is still unserved. If this happens, then
the situation is beyond the scope of our algorithm. Such an example is
p1p2p3p4d4d1d2d3(c = 2). Now, suppose the algorithm has terminated, all
the pick-ups have been served, but at least one drop is still unserved. Then,
the carriage will return to the left most point with at least one weight. If
this happens, then the situation is beyond the scope of our algorithm. Such
an example is p1p2p3p4p5d1d2d3d4d5(c = 2). We assume that we never face
any of the above mentioned situations which are beyond the scope of our
algorithm. In that case, the algorithm will terminate, and once it terminates,
all the points will be served. Now, suppose the algorithm has terminated.
Then all the arrows are gone. Then y of each segment is equal. As y of the
left most segment is 0, then y of each segment is 0. So, the carriage traverses
theoretically minimum amount of path.

3.5 Discussion

1. It can easily be observed that, in each of the examples given here,
it’s impossible for the carriage to serve all the points traversing the-
oretically minimum amount of path. But such examples can also be
constructed where it is possible for the carriage to serve all the points
traversing theoretically minimum amount of path, but not by follow-
ing our algorithm. Such an example is p1p2p3p4p5d3d1d2d4d5(c = 2).
So, we can conclude the following about the working of our algo-
rithm:

(a) Whenever it’s impossible for the carriage to serve all the points
traversing theoretically minimum amount of path, our algorithm
will not work.

10 Chapter 3. A Possible Generalization

(b) Whenever our algorithm will work, it’s possible for the carriage
to serve all the points traversing theoretically minimum amount
of path.

(c) Whenever it’s possible for the carriage to serve all the points
traversing theoretically minimum amount of path, there is no
guarantee that our algorithm will work.

2. Another observation is that, after starting from the left most point, if
the carriage changes direction from all the arrows, then the algorithm
terminates and the carriage serves all the points traversing theoret-
ically minimum amount of path, whatever the order is. But some-
times, it’s impossible to do so whatever order we use, and sometimes,
our algorithm doesn’t follow the correct order, like in case of the last
example given.

3. We have already seen that the carriage cannot reach the right most
point with weight of any other drop. So, in any case, the carriage will
be empty after reaching there and serving it, if possible. So, if there are
bridges in the line, the carriage comes to the right most point of one
island, serves it if possible, crosses the bridge, serves the next island
and then comes back to the right most point of the previous island
to do the remaining transportation work. This part is similar to the
algorithm discussed in chapter 2.

4. In any of the algorithms discussed so far, there has never been any
case where we have to consider the length of any segment. This is
because of the fact that the lengths of the segments have no effect in
determining the path with minimum possible length.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem Definition
	Some Possible Generalizations
	Some Useful Definitions
	Segment
	Bridge
	Island

	Algorithm for the Basic Scenario
	An Observation
	The Algorithm
	Proof of the Algorithm
	Another Observation
	Proof of termination
	Proof of the fact that once terminated, all the points are served
	Proof of traversing the path of minimum possible length

	A Possible Generalization
	The Setup
	The Algorithm
	Lemmas
	Proof of the Algorithm
	Discussion

