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Abstract

Unlike multiple regression, in switching regression, data are assumed to have

come from more than one regression model but the association between the

sample points and the models is not known. One approach to obtain the

parameters of the switching regression model, is to formulate the problem

using a mixture distribution. The estimators for this kind of distribution can

be obtained using an iterative maximum likelihood method. The second ap-

proach is to obtain a fuzzy partition of the data using the fuzzy c-regression

model (FCRM) algorithm. Here, the prototypes of the clusters are in the

form of regression models. For switching regression, although there are ev-

idences/reasons to believe that the data are generated by more than one

model, usually it is not known whether all predictors are important for all

regimes. This work is based around identifying useful predictors, independent

variables, and eliminating the irrelevant ones in the fuzzy switching regres-

sion setup. We employ two different regularizers in the FCRM objective

function to induce sparsity in the models and thereby select useful features.

In the first case, the ordinary FCRM objective function is regularized using

the least absolute shrinkage and selection operator (lasso) penalty i.e., using

the `1 norm of the parameters of the regression models as the regularizer.

In order to deal with the `1 norm, each parameter is modelled using two
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non-negative variables. For a given partition matrix, it leads to a bound

constraint quadratic optimization problem. In the second case, we formulate

the non-negatve garrotte penalty for the fuzzy c-regression model. In this

case, for each variable we associate a non-negative weight or importance. We

consider two versions of the problem: (1) for every model we use a different

set of weights, (2) only one common set of weights is used for all models. We

test both approaches on synthetic as well as real datasets. After comparing

results of both the cases on these datasets, we conclude that garrotte is more

effective in inducing sparisty, maintaining the same level of root mean square

error. Lastly, we discuss a method to evaluate goodness of the feature selec-

tion methods. This evaluation method affirms that features selected by the

non-negative garrotte penalty are useful.
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Chapter 1

Introduction

Multiple linear regression model can be used to learn about the relationship

between several independent or predictor variables and a dependent variable.

The dependent variable is assumed to be a linear combination of the predictor

variables. Assuming the data set (X,y) = {(xi, yi); i = 1, 2, . . . , n}, where

xi = (xi1, ..., xid)
T is the vector of predictor variables and yi is the dependent

variable, a multiple linear regression model can be written as,

yi = a+ b1xi1 + b2xi2 + ...+ bdxid + εi (1.1)

where (b1, b2, . . . , bd) are the predictor coefficients and εi’s follows N ∼ (0, σ2)

distribution.

Unlike multiple regression, in switching regression data are assumed to

have come from more than one regression model. Consequently, in switching

regression, instead of one regression model we consider l different models to

account for each data pair mj = (xj , yj). Here, xj ∈ Rd, y ∈ R and n is the

number of data points. Here we assume the following holds:

yj = fi(xj ;βj) + εi, 1 ≤ i ≤ l (1.2)
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where βi is the predictor coefficient of ith model and εi’s are random noise,

having zero mean and variance σ2
i , such that the jth data point mj has come

from the ith model. The probability density function of εi can be written as,

p(εi;µ, σ) =
1

σ
√

2π
e−

(εi−µ)
2

2σ2 (1.3)

Switching regression has been widely studied and applied in economics,

social science and engineering. Let us discuss some application of switching

regression studies in various research papers. Hosmer[2] illustrates switching

regression using the following example. The sex of halibut fish, a major com-

mercial catch, cannot be determined without dissecting it. After these fish

have been cleaned, their length and age are measured. We say that a sample

is labeled if its sex (population of origin) is known, otherwise the sample is

unlabelled. The fisheries department wants to determine estimates of the

mean and standard deviation of length and proportion of each sex for each

year. It is known that the average length of a female halibut for a particular

age is greater than that of its male counterpart and this difference increases

with age. Therefore, the average length of each sex can be represented using

a density function of age and its parameter estimated by maximum likelihood

approach. Assuming the function is linear in age and l = 2, the distribution

of length may be represented as

y = f1(x,β1) + ε1 = β11x+ β12 + ε1

y = f2(x,β2) + ε2 = β21x+ β22 + ε2
(1.4)

where y = length, x = age. The values of ε1 and ε2 are independent for

different data, and distributions of ε1 and ε2 are normal with mean 0 and

(unknown) standard deviations σ1 and σ2 respectively. In this example, if

the data were labeled then the parameter estimation would be very simple.
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But here the data are unlabeled. A maximum likelihood based method cou-

pled with expectation maximization algorithm can be employed to obtain

the parameters of eq(1.4). Given length and age, the sex of an unknown

fish can now be predicted using the estimated switching regression model.

Alternatively, the mean length of either the male or female catches over a

year which can also be determined. The information that for any age the

average length of females exceeds the average length of male and this differ-

ence increases with age is vital. It should be noted that estimation of the

mean and standard deviation of length and proportion of each sex for each

year is not possible without this information.

In another study[14] to understand the factors that determine the wages

in public and private sectors, a switching regression model was employed.

Two separated equations of wage rate each for public and private sector

were assumed. Data used here are labeled and the predictor coefficients were

estimated using ordinary least squared error method.

One method of estimating the predictor coefficients of the switching re-

gression model is to formulate the problem using mixture distribution. Using

the fish example case of eq(1.4), the switching regression (also called mixture

of regression) model can be written as:

yi =

f1(xi,β1) + ε1i with probability λ,

f2(xi,β2) + ε2i with probability 1− λ,
(1.5)

where εji ∼ N(0, σ2
j ) are independent, j = 1, . . . , l; i = 1, . . . , n. Given an xi,

density of yi can be written as,

p(yi) = λp1(yi) + (1− λ)p2(yi) (1.6)

where pj(yi) ∼ N(f1(xi, βj), σ
2
j ), j = 1, 2. The parameter vector of this model

is denoted by θ = (λ, β11, β12, β21, β22, σ1, σ2). It is a mixture of normals.
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Day[3] (1969) described an iterative method to obtain the maximum likeli-

hood estimators for the case of equal variances for this kind of mixture dis-

tribution. Later, Hathaway[7] showed that the method employed by Day[3]

is an instance of expectation maximization (EM)[5] algorithm. In the EM

setup, the probability of data to the two component populations are equal

to the current conditional probability of component’s membership.

A second approach for estimation of the parameters {βij} in eq(1.4),

where data are unlabeled, is by first finding a crisp l partition using any

conventional clustering algorithm and then separately solve each of the l

models using the partitioned data.

1.1 Fuzzy c-Regression Model (FCRM)

Hathaway et al.[6] suggested an alternative framework to fit switching regres-

sion models. It is called Fuzzy c-Regression Model (FCRM). It gives a fuzzy

cluster wise regression model of the data based on how well the dependent

variable of each data sample is approximated by the switching models. We

again refer to the fishery example to discuss FCRM. As evident in eq(1.5), the

classical approach of solving switching regression problem using mixture dis-

tribution makes a distributional assumption on εi. Fuzzy c-Regression Model

makes no such assumption, instead the estimates are obtained by minimizing

an objective function which consists of measure of the error done by a model

in predicting the dependent variable. The measure of error in fi(xk;βi) as

an approximation to yk is denoted by Eik(βi). Lets define fuzzy l-partition

(U) of the data, such that, Uik is the membership of kth data sample in the

ith fuzzy cluster of the dataset. For switching regression problem, we inter-

pret Uik as the importance or weight attached to the extent to which the
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prediction model fi(xk;βi) matches yk, i.e., the degree of membership of xk

to the ith model. This permits an observation partially belong to more than

one regression model. Crisp membership place all weight to one model for

each k in the approximation of yk by fi(xk;βi). This approach formulates

the two problems (fuzzy partition of the data and estimate β = {β1,. . . ,βl})
so that a simultaneous solution may be obtained. The general family of fuzzy

c regression models objective functions is defined as,

min Jm(U, β) =
n∑

k=1

l∑
i=1

Um
ikEik(βi),

subject to
l∑

i=1

Uik = 1,∀k = 1, . . . , n; 0 ≤ Uik ≤ 1; 0 <
∑
k

Uik < n,∀i.

(1.7)

The regression parameters (βis) are learnt in conjunction with the fuzzy

partition (U) using the FCRM algorithm[6]. Hathaway et al. argued that

FCRM converges more rapidly than EM, but sometimes terminated at un-

desirable estimates when poor initializations of U matrix were used. But the

two methods produced very similar quality results on the datasets that they

tested.

There are several points of difference between the classical mixture dis-

tribution approach to switching regression and the FCRM approach. In

FCRM, the fuzzy l-partition matrix consists of the membership values (Uik),

which is a measure of degree of belongingness of the feature vector xk to ith

cluster/regression model. In the classical case of estimation by mixture dis-

tribution, the following can be interpreted as the posterior probability that

xk came for ith model [4]

wik =
λjpj(xk)∑l
i=1 λipi(xk)

(1.8)
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We emphasize that in certain scenario, interpretation of result is more mean-

ingful when FCRM is employed for fitting data. Let us illustrate the last

point using an example. Consider the case where we want to cluster an

object into two clusters and it has characteristics of both the cluster, say

a pixel in satellite image. Here fuzzy membership of the object belonging

to each class is more meaningful than speaking about probability that the

object came from either of the two clusters. For example, in a problem of

clustering individuals into artist and scientist, diVinci might be assigned the

memberships (0.6, 0.4). On the other hand, saying that he was a artist with

probability 0.6 and scientist with 0.4 is not appealing!

In other cases, the benefit of using fuzzy c-regression model is modelling

advantage. Let us consider the study[11] which aims at understanding the

determinants of yield spread on new agency bonds and Treasury securities,

which uses a switching regression model. It deals with the case of a single

explanatory variable whose relationship with the dependent variable changed

at some point in time. The problem of estimating the breakpoint in the

coefficient of independent variable, as mentioned in the work, involves the

use of a multiplicative dummy variable. We observed that an alternative

way is to fit a fuzzy c-regression model. Figure 1 shows a scenario where

FCRM identifies the true model, and hence the breakpoint. Data for the

figure is generated synthetically. It should be noted that the data for a

particular model were generated only upto a threshold of the independent

variable. Data for the other model was generated when the independent

variable took values greater than the threshold. Note that, there could be

many switching points. In Table 1, we show the terminal objective values of 3

runs to emphasize that such algorithms sometimes may land at poor minima.

Hence, it is necessary to run a few times for different initial conditions and
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use the best solution.

Table 1.1: FCRM result on dataset with a breakpoint

Objective value Objective value Objective value

(Run-1) (Run-2) (Run-3)

Iteration-1 807.83 210.63 210.63

Iteration-2 210.63 - -

Figure 1.1: Regression clusters obtained by FCRM

1.2 Motivation of our work

Suk and Hwang[12] proposed a method, called regularized fuzzy clusterwise

ridge regression,. It combines ridge regression with regularized fuzzy clus-

tering in a unified framework. The method is useful in handling potential

multicollinearity among predictor variables.

In supervised learning, let us consider the case where input feature space

is large, but a small subset of the features is sufficient to approximate the
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target concept. Special mechanisms such as regularization, which forces the

parameters to be small in magnitude, is usually employed to simplify the

model. Such a mechanism also helps to reduce overfitting of the learning

algorithm[9].

For switching regression, although there are evidences/reasons to believe

that the data are generated by more than one model, usually it is not known

whether all predictors are important for all regimes. Identification of unnec-

essary predictor variables brings more transparency to the models and result

in better understanding of the underlying process. So, our objective is to find

useful predictor independent variables with a view to obtain more transpar-

ent models. Before presenting how irrelevant variables can be eliminated for

fuzzy switching regression, we discuss how to solve the problem for ordinary

regression.
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Chapter 2

Methods Proposed

2.1 Lasso for ordinary regression

Suppose that we have data set (X,y) = {(xi, yi); i = 1, 2, . . . , N}, where

xi = (xi1, ..., xid)
T is the vector of predictor variables and yi is the response

variable. We assume that xij are standardized. So, the intercept term can

be neglected. Letting β̂ = (β̂1, . . . , β̂d)
T , the least absolute shrinkage and

selection operator (lasso) estimate of (β̂) is obtained by solving the following

optimizatiom problem

β̂ = argmin
β

N∑
i=1

(yi −
d∑

j=1

βjxij)
2, subject to

d∑
j=1

|βj| ≤ t (2.1)

The above constrained optimization problem can be transformed into an

equivalent unconstrained one

β̂ = argmin
β

{ N∑
i=1

(yi −
d∑

j=1

βjxij)
2 + λ(

d∑
j=1

|βj|)
}

(2.2)

where λ is the Lagrangian multiplier. Lasso penalty in high dimension will

bias towards sparse solutions[13] thereby increasing interpretability of model.
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It exhibits stability of ridge regression. We shall now extend the idea of lasso

to fuzzy c-regression model.

2.2 Lasso for fuzzy c-regression model

The lasso regularizer when applied to the FCRM objective function can be

writen as

argmin
{βi},U

Jm(U, {βi}) = argmin
{βi},U

l∑
i=1

( n∑
k=1

umikEik(βi)

)

subject to
( d∑

j=1

|βij|
)
≤ ti; i = 1, . . . , l;

l∑
i=1

uik = 1,∀k = 1, . . . , n; 0 ≤ uik ≤ 1; 0 <
∑
k

uik < n,∀i.

where

Eik(βi) = (yk − (xk)Tβi)
2

(2.3)

Equation (2.3) contains a number of variables. These are defined below.

X = {xT1 ,x
T
2 , ...,x

T
n}

T = the data (n× d) matrix, (2.4a)

xi = (xi1, xi2, ..., xid)
T = feature vector, xij are standardized, xijεR (2.4b)

y = {y1, y2, ..., yn}T ⊂ Rn = dependent variable (2.4c)

l = number of models; 2 ≤ l < n, (2.4d)

βi = (βi1, βi2, ..., βid)
T = ith model (d× 1) parameter vector, (2.4e)

U = fuzzy partition (l × n) matrix of the data, (2.4f)

uik = degree of membership of data point xk in ith regression model,

(2.4g)

m = fuzzifier/weighing components, 1 < m <∞ (2.4h)
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For a given {βi}, the update equation for uik remains the same as that of

FCRM. Since the optimization algorithm for (2.3) alternates between update

of U (for a fixed {βi}) and update of {βi} for a fixed U , from now on, for

notational simplicity, we shall not include U as a parameter for optimization.

Following is the equivalent unconstrained objective function of the opti-

mization problem in eq(2.3).

Jm(U, {βi}) =
l∑

i=1

n∑
k=1

{
umikEik(βi) + λi

( d∑
j=1

|βij|
)}

(2.5)

So, the predictor coefficients of regularized FCRM with lasso are the one

which minimizes the objective function in eq(2.5). We rewrite eq(2.5) in

matrix notation by introducing new variables.

argmin
{βi}

Jm(U, {βi}) = argmin
{βi}

l∑
i=1

{
‖Diy −DiXβi‖22 + λi‖βi‖1

}
(2.6)

where Di =
[
dikk
]
n×n is a (n × n) diagonal matrix whose kth diagonal entry

dikk = (uik)
1
2 ; λi is the Lagrangian multiplier of the ith model associated with

the `1 penalty. Given a fixed U eq(2.6) can be separated into l objective

functions and the predictor coefficients of all l models can be obtained by

optimizing each one of them separately. This is possible because for a fixed

U the parameters of a particular model βi occur with objective function of

one model.

The optimization problem in eq(2.6) is a bound-constrained quadratic

programming that can be solved using Gradient Projection for Sparse Re-

construction (GPSR)[10] method. This is done by splitting the variable βi

into its positive and negative parts[10]. Formally, we introduce the vectors

v (d× 1) and w (d× 1) and make the substitution

β = v −w; v ≥ 0; w ≥ 0; i = 1, ..., l (2.7)
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Note that, for each βi, there are two sets of variables vi and wi. Here,

the following relations are satisfied by vi = (βi)+ and wi = (−βi)+ for

all i = 1, . . . , d, where (x)+ = max{0, x}. Since each problem is solved

separately, for notational clarity, we have dropped the subscript i from v

and w. Thus we have ‖βi‖1 = 1T
d v + 1T

dw, where 1d = [1, 1, ..., 1]T is the

vector consisting of d ones, so eq(14) can be written as the following bound-

constrained quadratic program:

argmin
v,w

‖Diy −DiX(v −w)‖22 + λ1T
d v + λ1T

dw

subject to v ≥ 0,w ≥ 0

(2.8)

Substituting b = Diy, A = DiX in eq(2.8), it can rewritten into a standard

bound-constrained quadratic (BCQP) program. Following are the steps for

conversion of the objective function in eq(2.8) into the objective function

of standard BCQP. We can discount bTb from the objective function in the
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derivation below since it is a constant.

‖b− A(v −w)‖22 + λ1T
d v + λ1T

dw

=
(
b− A(v −w)

)T (
b− A(v −w)

)
+ λ1T

2d

 v

w


=
(
bTb− 2bTA(v −w) + (v −w)TATA(v −w)) + λ1T

2d

 v

w


=
(
− 2bTA(v −w) + (v −w)TATA(v −w)) + λ1T

2d

 v

w


= (v −w)TATA(v −w) + (−2bTA)v + (2bTA)w + λ1T

2d

 v

w


= (v −w)TATA(v −w) +

(
−2bTA 2bTA

) v

w

+ λ1T
2d

 v

w


=
(
vT wT

) ATA −ATA

−ATA ATA

 v

w

+

{(
−2bTA 2bTA

)
+ λ1T

2d

} v

w


(2.9)

Rewriting the optimization problem in eq(2.8) using the new objective func-

tion form of eq(2.9).

argmin
v,w

{(
−2bTA 2bTA

)
+ λ1T

2d

} v

w

+

(
vT wT

) ATA −ATA

−ATA ATA

 v

w


subject to v ≥ 0,w ≥ 0

(2.10)

Comparing eq(2.10) with the following standard bound-constrained quadratic
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program (BCQP) form,

argmin
z

cTz +
1

2
zTBz

subject to z ≥ 0

(2.11)

we have,

z =

 v

w

 , c = λ12d +

 −a
a

 , a = 2(DiX)T (Diy)

B =

 2(DiX)T (DiX) −2(DiX)T (DiX)

−2(DiX)T (DiX) 2(DiX)T (DiX)

 (2.12)

Note that we have resubstituted b = Diy and A = DiX above. This prob-

lem now can be solved using any package that supports solution to BCQP.

Here the solution for regularized FCRM with lasso is obtained using python

optimization package.

The algorithm used to obtain the estimates of predictor coefficients of

the regularized FCRM with `1 penalty is similar to unregularized FCRM

algorithm[6]. In ordinary FCRM, for a given partition matrix U , the FCRM

objective function is optimized with respect to predictor coefficients βi’s and

estimators of the predictor coefficients are obtained. However, in regularized

FCRM case, the FCRM objective function is replaced by regularized objec-

tive function in eq(2.5). Following is the formal algorithm used to obtained

the estimates of regularized RFCRM with `1 penalty.
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Algorithm 1: Regularised FCRM with `1 regularizer

1 Given data S = {(x1, y1), ..., (xn, yn)}. Select m > 1, specify

regression model of the form in eq(1.2), and choose a measure of error

E = {Eik} so that Eik(βi) ≥ 0 for ith model and kth sample. Initialize

a termination threshold ε > 0 and an initial partition of data U (0).

Then for r = 0, 1, 2, ... ;

2 Calculate the l model parameters βi = β
(r)
i that globally minimizes

the unrestricted objective function in eq(2.5). As discussed before

each of the l objective functions are separately fed into a quadratic

programming solver and the corresponding l predictor coefficients are

obtained ;

3 Update U (r+1) = U (r), with Eik = Eik(β
(r)
i ), such that

Uik =
1∑l

j=1(
Eik
Ejk

)
1

m−1

if Eik > 0 for 1 ≥ i ≥ l

otherwise ,

if Eik = 0 for exactly one i then , Uik = 1 and

Ujk = 0 if Ejk > 0, so that Ujk ∈ [0, 1]

with (U1k + ...+ Ulk) = 1

else if Eik = 0 for more than one i, i.e. for i ∈ I = {i1, i2, . . . , iz} then,

Uik = 0 for all i with Eik > 0

and Ujk = αj, αj > 0, with
∑
j∈I

αj = 1

(2.13)

;

4 Calculate tolerance = ‖U (r) − U (r+1)‖ ;

5 Check for termination, if tolerance ≤ ε, then stop; otherwise set

r = r + 1 and return to step 2.
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Also when there is multicolinearity, least squares estimates have a high

variance. Use of `2 regularizer helps to deal with this problem. `2 shrinks

the coefficients but doesnot reduce to zero.

2.3 Combined `1 and `2-norm

If number of features is much larger than the number of samples (p >> n),

lasso can select almost n variables[16]. When there are some highly correlated

variables, lasso tends to select one of them and rejecting the others. In such a

case the variable selection can be unstable as with minor change in data the

selected variable may be different. For usual n > p situations, if there exist

high correlations among predictors, it has been empirically observed that

the prediction performance of the lasso is dominated by ridge regression[13].

`2-norm is able to avoid outliers and the `1-norm is helpful for achieving

the sparseness, which are both beneficial to accurate classification[15]. We,

therefore, analyse the model parameter estimates obtained using regularized

FCRM with combined `1 and `2-norm. Such models are sometimes called

elastic net. The unconstrained objective function for regularized FCRM with

combined `1 and `2 regularizer is

argmin
{βi}

Jm(U, {βi}) = argmin
{βi}

l∑
i=1

{
‖Diy −DiXβi‖22 + λi‖βi‖1 + γi‖βi‖22

}
(2.14)

where ‖.‖ = `2 norm, λ and γ are the Lagrangian multipliers of the `1 and `2

regularizer respectively. The optimization problem in eq(2.14) can similarly

22



be written in standard bound constrained quadratic program form

argmin
z

cTz +
1

2
zTBz

subject to z ≥ 0

where

z =

 v

w

 , a = 2ATb, c = λi12d +

 −a
a


B =

 2
{

(DiX)T (DiX) + γiI
}
−2
{

(DiX)T (DiX) + γiI
}

−2
{

(DiX)T (DiX) + γiI
}

2
{

(DiX)T (DiX) + γiI
}


(2.15)

Here I is (d × d) identity matrix. We have used Algorithm-2 to obtain the

parameter estimates for regularized FCRM with combined `1 and `2 norm.

Algorithm-2 is similar to the `1 regularized FCRM algorithm described earlier

with the modification of objetive functsion in step(2).
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Algorithm 2: Regularised FCRM with combined `1 and `2 regularizer

1 Given data S = {(x1, y1), ..., (xn, yn)}. Select m > 1, specify

regression model of the form in eq(1.2), and choose a measure of error

E = {Eik} so that Eik(βi) ≥ 0 for ith model and kth sample. Initialize

a termination threshold ε > 0 and an initial partition of data U (0).

Then for r = 0, 1, 2, ... ;

2 Calculate the l model parameters βi = β
(r)
i that globally minimizes

the unrestricted objective function in eq(2.5). As discussed before

each of the l objective functions are separately fed into a quadratic

programming solver and the corresponding l predictor coefficients are

obtained ;

3 Update U (r+1) = U (r), with Eik = Eik(β
(r)
i ), such that

Uik =
1∑l

j=1(
Eik
Ejk

)
1

m−1

if Eik > 0 for 1 ≥ i ≥ l

otherwise ,

if Eik = 0 for exactly one i then , Uik = 1 and

Ujk = 0 if Ejk > 0, so that Ujk ∈ [0, 1]

with (U1k + ...+ Ulk) = 1

else if Eik = 0 for more than one i, i.e. for i ∈ I = {i1, i2, . . . , iz} then,

Uik = 0 for all i with Eik > 0

and Ujk = αj, αj > 0, with
∑
j∈I

αj = 1

(2.16)

;

4 Calculate tolerance = ‖U (r) − U (r+1)‖ ;

5 Check for termination, if tolerance ≤ ε, then stop; otherwise set

r = r + 1 and return to step 2.
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2.4 Learning of feature weight: Garrotte es-

timates

In this section we shall generalize another feature selection method which

explicitly finds a weight for each variable, to fuzzy switching regression.

2.4.1 Ordinary regression case:

As discussed earlier, subset selection is a method of selecting a subset of

features which does a good job in prediction to the target concept. Breimen

(1995)[1] developed a method for subset selection in ordinary regression prob-

lems. Suppose that we have a data set (X,y) = {(xi, yi); i = 1, 2, . . . , N},
where xi = (xi1, ..., xid)

T is a vector of predictor variables and yi’s are the

responses. Let {β̂} be the original OLS estimates. Let ck ≥ 0 be the weight

of kth variable indicating its importance. The problem is to find find c = {ck}
to minimize

J(c,β) =
∑
n

(
yn −

d∑
k=1

ckβ̂kxnk

)2

such that ck ≥ 0,
∑
k

ck ≤ s (2.17)

After having obtained c = {c1, ..., cd} which minimizes eq(2.17), β̃k(s) = ckβ̂k

is calculated, which are the new predictor coefficients for the kth feature.

Higher the value of s, more the {ck} nears zero and therefore β̃k(s) are

shrunken. This procedure is called non-negative garrotte[1]. Here we ex-

plore the possibility of extending this concept for successful feature selection

in a fuzzy switching regression paradigm.
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2.4.2 Fuzzy Switching Regression case

Let us call the vector c = {c1, ..., cd} as the feature weights/multipliers.

These weights are multiplied to predictor coefficients of a model. We explore

two cases. Case 1: there are l set of feature weight vectors, one for each model

of the switching regression. Case 2: there is just one feature weight vector

for all l models. We explore these two cases by separate algorithms towards

the end of this section. We now formulate objective function regularized

FSRM with non-negative garrotte. The optimization problem for case 1 can

therefore be written as,

argmin
{ci}

Jm(U, {ci}) = argmin
{ci}

l∑
i=1

( n∑
k=1

umik
(
yk −

d∑
j=1

cijβ̂ijxkj
)2)

subject to cij ≥ 0, ∀i = 1, . . . , l and j = 1, . . . , d;
d∑

j=1

cij ≤ si.

(2.18)

As done for the lasso mode, for the same reason we donot show U as a

parameter for optimization to simplify notations. For notational simplicity,

we write ci ≥ 0 to indicate cij ≥ 0, ∀j = 1, . . . , d After introducing new

variables (defined later in eq(2.21)) we can rewrite the objective function in

(2.18) as

Jm(U, {ci}) =
l∑

i=1

‖Diy −DiXBici‖22

such that ci ≥ 0,∀i = 1, .., l;
d∑

j=1

cij ≤ si,∀i = 1, . . . , l.

(2.19)

Equation(2.19) can be converted into an equivalent unconstrained optimiza-

tion problem by introducing l Lagrangian multipliers. The optimization
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problem of the ith model of the switching regression thus becomes,

argmin
ci

Jm(U, ci) = argmin
ci

{
‖Diy −DiXBici‖22 + λi1

T
d ci

}
subject to ci ≥ 0.

(2.20)

The new variables used in eq(2.19) and (2.20) are defined below.

β̂i = (β̂i1, ..., β̂id)
T = ith cluster coefficient estimated by FCRM, (2.21a)

ci = (ci1, cid, ..., cid)
T = vector of feature weights for ith model (2.21b)

Bi =
[
bikk
]
d×d = (d× d) diagonal matrix constructed using bikk = βik

(2.21c)

The other terms have the usual meaning. The new predictor coefficients of

the ith model are β̃ik(λ) = cikβ̂ik,∀k = 1, ..., d; ∀i = 1, ..., l.

Following are the steps for conversion of eq(2.20) into a standard bound

constrained quadratic program; letting b = Diy;A = DiXBi; c = ci, λ = λi

we rewrite eq(2.20) as,

argmin
c

‖b− Ac‖22 + λ1T
d c

= argmin
c

(
b− Ac

)T (
b− Ac

)
+ λ1T

d c

= argmin
c

(
bTb− bTAc− cTATb+ cTATAc

)
+ λ1T

d c

= argmin
c

(
− 2bTAc+ cTATAc

)
+ λ1T

d c

= argmin
c

cTATAc+ (−2bTA+ λ1T
d )c

(2.22)

The standard BCQP form is,

argmin
z

1

2
zTBz + aTz

such that z ≥ 0

(2.23)
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Comparing eq[2.22] and eq[2.23] we have,

z = c

a = λ1d − 2ATb

B = 2ATA

(2.24)

We now propose an algorithm, Algorithm 3 to obtain the model param-

eters of regularized FSRM with non-negative garrotte. In case 1, l different

feature weight vectors, one for each l model, are considered. The optimiza-

tion problem in eq(2.18) is separated into l parts. Each such part has the

form as in eq(2.20). The algorithm loops l times to optimize over the l dif-

ferent models. In step 3, β̂i is initialized using the ordinary FCRM solution

and then ci, the coefficient multiplier of the ith model, is calculated by solv-

ing the optimization problem in eq(2.20). The conversion from the form in

eq(2.20) to standard BCQP has been already derived above. For solving the

problem the quadratic optimization package provided by Python Software

Foundation is used. Using the new predictor coefficients (β̃k(λ) = ckβ̂k),

the membership matrix is calculated. The algorithm is said to have con-

verged if between two consecutive iterations, the U ’s calculated in step 9

are similar. The matrix frobenius norm is used as a measure of this sim-

ilarity. A check for convergence on the norm of the membership matrix is

done. And if not converged already, the coefficient multiplier ci is recalcu-

lated using the membership matrix which was calculated in the last step.
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Algorithm 3: Algorithm to estimate parameters of regularized FSRM

with non-negative garrotte

1 Initialize r = 0, membership matrix U r and ε;

2 for <each model i, i=1,..,l> do

3 Initialize β̂i with the ordinary FCRM solution;

4 Initialize tolerence = ε ;

5 while tolerence ≥ ε do

6 Estimate ci by solving the optimization problem in eq(2.20)

using U = U r;

7 Set r = r + 1 ;

8 Calculate β̃ik(s) = cikβ̂ik;

9 Calculate U using β
(r)
i = β̃

(r)
i and update rule in Step 3 of the

Algorithm 1 for regularised FSRM with `1-norm. Call this U as

U r;

10 Calculate tolerence = ‖U r − U (r−1)‖ ;

11 end

12 end
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Algorithm 4: an alternative algorithm to estimate parameters of reg-

ularized FSRM with non-negative garrotte

1 Initialize membership matrix U.;

2 for <each model i, i=1,..,l> do

3 Initialize β̂i with the ordinary FCRM solution;

4 Estimate ci by solving the optimization problem in eq(2.20) ;

5 Calculate β̃ik(s) = cikβ̂ik;

6 Calculate U using β
(r)
i = β̃

(r)
i and update rule in Step 3 of the

Algorithm 1 for regularised FSRM with `1-norm. ;

7 end

We explore the possibility that with a good initialization of partition

matrix U , a single iteration of step 6−9 of Algorithm 3 would give estimates

that are close to its global optimum solution. So one can think of a simplified

version of Algorithm 3. We call this Algorithm 4. For this purpose, a slight

alteration in Algorithm 3 is made to get Algorithm 4. Instead of repeating

the estimation of β̃is and U until convergence, they are estimated only once.

We compare the quality of estimates obtained by Algorithm 3 and 4. Later

we shall compare result of these two versions.

Next we consider case 2, where a single feature weight vector is used

for all the l models of the switching regression problem. The unconstrained

optimization problem for the same is formulated in eq(2.25). To solve this

we propose an algorithm similar to Alogrithm 3 with a slight change that the

optimization problem in step 9 is replace by eq(2.25). This approach may be

30



useful for selecting a common subset of features across all the l models.

argmin
c

Jm(U, c) = argmin
c

{ l∑
i=1

(
‖Diy −DiXBic‖22

)
+ λ1Td c

}
subject to c ≥ 0

(2.25)

Algorithm 5: algorithm to estimate parameters of regularized FCRM

with single feature weight vector non-negative garrotte

1 Initialize membership matrix r = 0, U r, ε;

2 Initialize β̂i with the FCRM solution, i = 0, .., l;

3 Initialize tolerence = ε ;

4 while tolerence ≥ ε do

5 Estimate c by solving the optimization problem in eq(2.25) using

U = U r;

6 Set r = r + 1 ;

7 Calculate β̃ik(s) = ckβ̂ik;

8 Calculate U using β
(r)
i = β̃

(r)
i and updation rule in Step 3 of the

Algorithm 1 for regularised FSRM with `1-norm. Call this U as U r;

9 Calculate tolerence = ‖U r − U (r−1)‖ ;

10 end
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Chapter 3

Synthetic and Real World Data

3.1 Synthetic data generation

To ascertain the performance of our proposed method, we first fit our method

to synthetically generated data. Four different synthetic datasets are gener-

ated.

The first dataset (SYNT-1) is simulated using 100 observations from

each of the two models,

y = βT1 x+ ε1, for model-1

and

y = βT2 x+ ε2, for model-2

(3.1)

where β1 = (20, 5, 0, 0, 2)T , β2 = (50, 10,−7, 0, 0)T , ε1 and ε2 are noise gen-

erated by standard normal distribution with zero mean and unit variance.

The dataset is 4-dimensional unnormalized and the first component of β is

the intercept. So, X is augmented by an additional component with value 1.

We construct a fuzzy c-regression model on this dataset.
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A second dataset (SYNT-2) having multicolinearity is obtained using

100 observations generated from each of the two models in eq(3.1) where

β1 = (20, 5, 0, 0, 2, 0)T , β2 = (50, 10,−7, 0, 0, 0)T , ε1 and ε2 are noise terms

generated by standard normal distribution with zero mean and unit variance.

In this five dimensional dataset, the first and fifth dimensions (note that the

first component of β is the intercept term) are linearly dependent. That

is, if xi1 and xi5 are respectively the first and fifth feature of the ith sample

then xi5 = 2.2xi1 + εi where εi follows standard normal distribution with

zero mean and unit variance, i = 1, ..., 200. This dataset was used to fit an

ordinary fuzzy c-regression model and subsequently illustrate that the later

cannot detect correlated feature problem for unnormalized data. Also this

un-normalized data was used to show that FCRM can get good estimates of

the parameter.

A third dataset (SYNT-3) is generated using 100 observations from each

of the two models in eq(3.1) where β1 = (20, 5, 0, 2)T , β2 = (50, 10,−7, 0)T ,

ε1 and ε2 are noise as for the other two datasets. This 4-dimensional dataset

is then z-score normalized.

A fourth normalized dataset (SYNT-4) having dependent feature is sim-

ulated using 100 observations from each of the two models in eq(3.1) with

β1 = (20, 5, 0, 2, 0)T , β2 = (50, 10,−7, 0, 0)T , ε1 and ε2 are N(0, 1) noise.

The first and fifth dimension of this 4-dimensional data are linearly depen-

dent. That is, if xi1 and xi5 are the first and fifth features of the ith sample

then xi5 = 2.2xi1 + εi where εi follows N(0, 1), i = 1, ..., 200. The dataset is

then normalized using z-score normalization. SYNT-4 is used to explore the

performance of regularized FSRM on normalized dataset having correlated

feature problem.

xij is picked to be a uniform random number in (−5, 5), i = 1, . . . , n;
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j = 1, . . . , l. Next we describe a real life dataset.

3.2 Usercars data

The present data came from [8].The data were collected to predict the re-

tail price of 804 general motors (GM) cars produced in 2005. We used six

characteristics of the used cars as predictor variables: Mileage, the number

of cylinders (Cylinders), engine volume (Liter), cruise control (Cruise), up-

graded speakers (Speaker), and leather seats (Leather). A detailed descrip-

tion of the variables is provided in Table 3.1. We used six characteristics

of the used cars as predictor variables: Mileage, the number of cylinders

(Cylinders), engine volume (Liter), cruise control (Cruise), upgraded speak-

ers (Speaker), and leather seats (Leather). We chose l = 2 as the number

of clusters, m = 2 and (ε) = 0.0000005. Other authors have also used this

dataset for modelling by switching regression[12].
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Table 3.1: variables involved in the used cars dataset

No. Variable name Desciption

1 Price Suggested retail price of the used 2005

GM cars in dollars

2 Mileage number of miles the car has been driven

3 Make manufacturer of the car such as Saturn, Pontiac,

and Chevrolet

4 Model specific models for each car manufacturer such

as Ion, Vibe, Cavalier

5 Trim (of car) specific type of car model such

as SE Sedan 4D,

Quad Coupe 2D

6 Type body type such as sedan, coupe, etc.

7 Cylinder number of cylinders in the engine

8 Liter a more specific measure of engine size

9 Doors number of doors

10 Cruise indicator variable representing whether the car

has cruise control (1 = cruise)

11 Sound indicator variable representing whether the car

has upgraded speakers (1 = upgraded)

12 Leather indicator variable representing whether the car

has leather seats (1 = leather)
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Chapter 4

Results

4.1 Results on synthetic dataset

The synthetic data are generated assuming l = 2 switching regression model

in eq(3.1). Strictly speaking m > 1, but the limit m→ 1+ leads to hard (or

crisp) partitions[6]. The following initialization was used in the estimation

of model parameters: m = 2, termination condition(ε) = 0.5 × 10−6 and

U is intialized randomly. Table 4.1 shows the estimates of the unknown

parameters of SYNT−1 dataset obtained using fuzzy c-regression models.

The objective value mentioned in all the tables are calculated using

objective value =
l∑

i=1

n∑
k=1

UikEik(βi). (4.1)

To calculate the crisp objective value, each terminal partition matrix was

converted to a hard partition matrix using maximum hardening membership

rule as follows

Crisp objective value =
l∑

i=1

∑
∀k in cluster i

UH
ikEik(βi), (4.2)
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where UH
ik ∈ {0, 1} is the hardened membership value. Root mean square

error (RMSE) is obtained by dividing the crisp objective using the hardened

partition.

Table 4.1: unregularized FCRM on SYNT 1

model parameters true model

β model−1 model−2 objective rmse model1 model2

(i = 1) (i = 2) value(crisp)

βi0 19.851 49.889 326.92 0.638 20 50

βi1 5.004 10.004 (81.457) 5 10

βi2 0.005 −6.998 0 −7

βi3 −0.016 −0.017 0 0

βi4 2.040 −0.062 2 0

Table 4.2 shows the model parameters when FCRM is applied to the

dataset SYNT 2 having colinearity between features. After examining Ta-

ble 4.2 and Table 4.3 (λ = 0 case) it is clear that FCRM fails to detect

the dependent feature problem. Note that in Tables 4.1 and 4.2 we have

used un-normalized data first to show that FCRM can get good estimates of

the parameter. An explanation for the same is that it is based around or-

dinary least squares regression[12]. Tables 4.3 and 4.4 respectively tabulate

the results when regularised FCRM with `1 penalty and regularized FCRM

with non-negative garrote was used to fit the normalised synthetic dataset

(SYNT−4) having dependent features. Note that here we are using z-score

normalized data. The results in Tables 4.2 and 4.3 corresponds to some typ-

ical runs. In some runs the solution could be poor due to local minima. In

Table 4.8, we report the average of the regression coeffcients for non-negative
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garrotte coefficient when applied to SYNT-3 over 25 runs. Comparing Ta-

ble 4.8 with Table 4.7, we find that the estimates are quite consistent over

different runs. Results of regularised FCRM with combined `1 and `2 penalty

are shown in Table 4.6. Results show that `2 penalty does not particularly

help in achieving sparsity.

Table 4.2: FCRM on dataset SYNT 2

model parameters true model

β model−1 model−2 objective rmse model1 model2

(i = 1) (i = 2) value(crisp)

βi0 20.04 50.03 393.33 0.644 20 50

βi1 4.70 9.76 (83.09) 5 10

βi2 −0.01 −7.01 0 −7

βi3 0.04 −0.003 0 0

βi4 1.98 −0.05 2 0

βi5 0.13 0.08 0 0

Table 4.5 shows the result of regularised FCRM with `1 penalty fitted to

normalized dataset SYNT-3. In terms of model sparsity, not much benefit

is observed which is consistent with the fact that there is no poor/correlated

feature. Tables 4.7, 4.9 and 4.10 show results for regularised FCRM with

non-negative garrotte on SYNT-3 using Algorithm 3, Algorithm 4 and Algo-

rithm 5, respectively. These results suggest that the two algorithms produce

similar result except at higher values of the penalty weight. At higher values

of the penalty weight λ, certain predictor coefficients are brought down to

zero by Algorithm 3. Note that, Algorithm 3 cycles between feature weight

estimation and estimation of βis. This enables it to realize sparsity by drop-
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ping less useful features. It should be noted that this sparsity is achieved at

the cost of higher root mean square error.

Table 4.3: regularised FCRM with `1 penalty on dataset SYNT-4. Model

parameter is abbreviated as M.P, objective value is abbreviated as O.V 2

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

(crisp) (crisp)

β0 0.48 1.21 0.045 0.798 0.47 1.19 0.046 0.837

β1 0.11 0.23 (0.4) 0.11 0.22 (0.42)

β2 0.0 -0.16 0.0 -0.16

β3 0.05 -0.01 0.04 0.0

β4 -0.01 -0.01 0.0 0.0

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

(crisp) (crisp)

β0 0.48 1.2 0.045 0.799 0.46 1.18 0.048 0.95

β1 0.11 0.23 (0.4) 0.1 0.22 (0.47)

β2 0.0 -0.16 0.0 -0.15

β3 0.05 -0.01 0.04 0.0

β4 0.0 0.0 0.00 0.0
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The single feature weight case of non-negative garrotte is not significantly

different from multiple feature weight garrotte (where separate feature vector

is used for each switching regression model) for the synthetic datasets we

tried.

The Lagrangian multiplier λ controls the extent to which parameters are

shrunk. Higher values of λ encourages more sparse models and this sparseness

may be induced at the cost of increased RMS error.

Sometimes our algorithm terminated at extrema different from those ob-

tained using the true initialization. Apparently the minimum of the FCRM

function most of the time occurred for parameter values near the true values,

but the algorithm was sometimes trapped at a bad local solution.

Since, the FSRM is not convex w.r.t the partition matrix U , depending on

the initial condition, the final partition may be close to the best solution or

could also be a very poor solution. In order to verify that the feature selection

by regularized FCRM is useful, we performed the following exercise. A Fuzzy

partition of the data was first obtained using unregularized FCRM algorithm

using all features. Next, a second fuzzy clustering was obtained using the

subset of features selected by regularized FCRM. We compare the similarity

of these two partitions. A high value of this similarity measure suggests a

reasonably good feature selection. We use Adjusted rand index (ARI) as

a measure of similarity between two data clusterings. The ARI values are

then analysed to comment on the usefulness of feature selection by the two

methods. Table 4.17 reports ARI results for different subsets of features

selected by regularized FCRM on SYNT-3.
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4.2 Results on real world data: used cars

data[8]

Next we discuss effectiveness of the proposed methods on the used cars data.

The used cars dataset is normalised beforehand using z-score normalization.

Tables 4.11 and 4.12 respectively show results when the used cars dataset is

fitted to unregularized FCRM and regularised FCRM with `1 penalty. Tables

4.13, 4.14 and 4.15 respectively show results of regularized FCRM with non-

negative garrotte using Algorithm 3, Algorithm 4 and single feature weight

non-negative garrotte when fitted to usedcars data. The model coefficients

are estimated using the following parameters: c = 2,m = 2, termination

condition(ε) = 0.0000005.

The single feature weight garrrotte regularizer selects a subset of features

which are common to both the models assumed for the used cars dataset. As

described earlier, a comparison between the partitions obtained by FCRM

using (1) all features and (2) selected features by regularized FSRM is nec-

essary to test the quality of feature selection. In both cases the algorithms

are run with the same initial partition. Table 4.16 shows this comparison

using ARI which is a the measure of similarity between two partitions on the

same data. Note that the ARI value decreases for each run as the number of

selected features decreases. A total of 30 runs are made and ARI values are

calculated. Since the FCRM cost function is a non convex one, algorithm

terminated at extrema other than the desirable one in several cases. Table

4.16 reports the maximum ARI value, i.e., maximum similarity between the

clustering among all the 30 runs. The average ARI is shown within paren-

thesis.

Tables 4.11 and 4.12 suggest that although `1 regularizer does some
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shrinkage of the coefficients, with λ = 1.0 it eliminates one feature from

one model. While with λ = 10.0 two different features, one each from the

two models and a common feature is eliminated. Tables 4.13 and 4.14 on the

other hand, shows that garrotte is much more effective than lasso in induc-

ing sparsity, maintaining the same level of root mean square error (RMSE).

Comparing Tables 4.13 and 4.14, again we find that Algorithm 3 is more

effective in inducing sparsity than Algorithm 4.

Table 4.15 reports the results on used cars data by non-negative garrotte

(Algorithm 3) when a single weight vector is used for both models. For this

dataset, we find that it is equally effective as the case with different weight

vectors for different models, but at the cost of a significantly higher RMS

error .
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Table 4.4: regularised FCRM with non-negative garrotte on dataset SYNT-

4 using Algorithm 3

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

(crisp) (crisp)

β0 0.48 1.21 0.045 0.798 0.47 1.19 0.06 1.44

β1 0.11 0.23 (0.4) 0.08 0.21 (0.718)

β2 0.0 -0.16 0.0 -0.14

β3 0.05 -0.01 0.0 0.0

β4 -0.01 -0.01 0.0 0.0

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

(crisp) (crisp)

β0 0.48 1.19 0.045 0.808 0.48 1.22 0.12 5.81

β1 0.11 0.23 (0.4) 0.08 0.14 (2.9)

β2 0.0 -0.16 0.0 0.0

β3 0.05 0.0 0.0 0.0

β4 0.0 0.0 0.0 0.0
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Table 4.5: Regularised FCRM with `1 penalty fitted to normalized dataset

SYNT−3

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

β0 0.49 1.23 0.02 0.13 0.49 1.23 0.02 0.13

β1 0.11 0.22 (0.06) 0.11 0.21 (0.07)

β2 0.00 -0.16 0.00 -0.15

β3 0.04 0.00 0.04 0.00

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

β0 1.23 0.49 0.02 0.13 0.49 1.23 0.02 0.16

β1 0.22 0.11 (0.06) 0.10 0.21 (0.08)

β2 -0.16 0.00 0.00 -0.15

β3 0.00 0.04 0.04 0.00
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Table 4.6: Regularised FCRM with combined `1, `2 penalty fitted to normal-

ized dataset SYNT−3 using algorithm−4

β
M.P (λ = 0, γ = 0) M.P (λ = 0.5, γ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

β0 1.23 0.49 0.02 0.13 0.49 1.23 0.02 0.16

β1 0.22 0.11 (0.06) 0.11 0.21 (0.08)

β2 -0.16 0.00 0.00 -0.15

β3 0.00 0.04 0.04 0.00

β
M.P (λ = 0.01, γ = 0.01) M.P (λ = 1.0, γ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

β0 0.49 1.23 0.02 0.13 0.48 1.22 0.024 0.24

β1 0.11 0.22 (0.06) 0.1 0.21 (0.12)

β2 0.00 -0.16 0.00 -0.15

β3 0.04 0.00 0.04 0.00
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Table 4.7: Regularised FCRM with non-negative garrotte applied to normal-

ized dataset SYNT−3 using algorithm−3. Feature weight is abbreviated as

F.wt

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

(F.wt) (F.wt)

β0 0.49 1.23 0.02 0.13 1.23 (0.97) 0.49 (0.99) 0.05 0.83

β1 0.11 0.22 (0.06) 0.21 (0.93) 0.07 (1.02) (0.42)

β2 0.00 -0.16 -0.14 (0.76) 0.00 (0.0)

β3 0.04 0.00 0.00 (0.0) 0.00 (0.0)

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

(F.wt) (F.wt) (F.wt) (F.wt)

β0 1.23 (0.97) 0.49 (1.0) 0.02 0.13 1.23 (0.97) 0.48 (0.97) 0.07 1.95

β1 0.22 (0.99) 0.11 (1.55) (0.06) 0.19 (0.87) 0.03 (0.42) (0.98)

β2 -0.16 (0.82) 0.00 (0.0) -0.13 (0.70) 0.0 (0.00)

β3 0.0 (0.0) 0.04 (2.06) 0.0 (0.00) 0.0 (0.00)
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Table 4.8: Average Predictor coefficients of RFCRM with non-negative gar-

rotte applied to normalized dataset SYNT−3 (λ = 1.0) and used cars

dataset using algorithm−3 (λ = 1.0) over 25 runs. The values within ()

are standard deviation over 25 runs.

SYNT-3 dataset used cars dataset

model-1 model-2 β model-1 model-2

β̂0 1.236 0.487 β̂0 -0.13 -0.11

(0.008) (0.003) (0.0) (0.0)

β̂1 0.199 0.075 β̂1 0.95 0.0

(0.016) (0.01) (0.0) (0.0)

β̂2 -0.13 0.0 β̂2 0.0 -0.56

(0.035) (0.0) (0.0) (0.0)

β̂3 0.0 0.0 β̂3 0.0 0.24

(0.0) (0.0) (0.0) (0.0)

β̂4 0.0 0.0

(0.0) (0.0)

β̂5 0.0 0.0

(0.0) (0.0)
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Table 4.9: Regularised FCRM with non-negative garrotte applied to normal-

ized dataset SYNT−3 using algorithm−4

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 model2 rmse O.V

(F.wt) (F.wt) (F.wt) (F.wt)

β0 1.23 0.49 0.02 0.13 0.49 (0.99) 1.23 (1.00) 0.04 0.64

β1 0.22 0.11 (0.06) 0.09 (0.83) 0.21 (0.94) (0.32)

β2 -0.16 0.00 0.00 (0.00) -0.14 (0.92)

β3 0.00 0.04 0.00 (0.00) 0.00 (0.00)

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 model2 rmse O.V model1 model2 rmse O.V

(F.wt) (F.wt) (F.wt) (F.wt)

β0 0.49 (1.00) 1.23 (1.00) 0.02 0.13 0.48 (0.97) 1.23 (1.00) 0.05 1.11

β1 0.11 (1.00) 0.22 (1.00) (0.06) 0.07 (0.63) 0.19 (0.88) (0.56)

β2 0.00 (0.00) -0.16 (1.00) 0.00 (0.00) -0.13 (0.83)

β3 0.04 (0.98) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Table 4.10: Regularised FCRM with non-negative garrotte (single feature

weight) fitted to SYNT−3 using algorithm−5

β
M.P (λ = 0) M.P (λ = 0.5)

model1 model2 rmse O.V model1 (F.wt) model2 rmse O.V

β0 1.234 0.492 0.018 0.126 1.234 (1.00) 0.492 0.037 0.560

β1 0.218 0.109 (0.063) 0.208 (0.96) 0.105 (0.280)

β2 -0.155 0.0 -0.142 (0.91) 0.0

β3 0.002 0.044 0.0 (0.00) 0.0

β
M.P (λ = 0.01) M.P (λ = 1.0)

model1 (F.wt) model2 rmse O.V model1 (F.wt) model2 rmse O.V

β0 1.234 (1.00) 0.492 0.018 0.126 1.235 (1.00) 0.493 0.045 0.794

β1 0.218 (1.00) 0.109 (0.063) 0.197 (0.91) 0.099 (0.397)

β2 -0.155 (1.00) 0.0 -0.126 (0.81) 0.0

β3 0.002 (0.97) 0.043 0.0 (0.00) 0.0

Table 4.11: FCRM on usedcars data

model parameters

β model-1 model-2 objective rmse no. of iterations

value(crisp)

β0 −0.15 −0.125 230.71 0.379 64

β1 1.14 −0.54 (115.35)

β2 −0.18 −0.02

β3 0.0 0.235

β4 0.07 −0.01

β5 0.08 0.09
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Table 4.12: regularised FCRM with lasso on the usedcars data. Absolute

value sum is abbreviated as A.V.S.

M.P(λ = 0.5) A.V.S

β model-1 model-2 rmse model-1 model-2 O.V

β0 -0.123 -0.151 0.379 1.0 1.55 230.8

β1 -0.558 1.112 (115.4)

β2 -0.001 -0.144

β3 0.228 0.0

β4 -0.007 0.064

β5 0.089 0.077

M.P(λ = 1.0) A.V.S

β model-1 model-2 rmse model-1 model-2 O.V

β0 -0.149 -0.121 0.379 1.475 0.99 231.07

β1 1.080 -0.559 (115.54)

β2 -0.114 0.0

β3 0.0 0.223

β4 0.059 -0.007

β5 0.073 0.084

M.P(λ = 10.0) A.V.S

β model-1 model-2 rmse model-1 model-2 O.V

β0 -0.076 -0.121 0.386 0.776 1.1 240.34

β1 -0.525 0.938 (120.17)

β2 0.0 0.0

β3 0.148 0.0

β4 0.0 0.011

β5 0.027 0.034
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Table 4.13: regularised FCRM with garrotte on the usedcars data using

algorithm-3. F.Wt is abbreviation for Feature weight

M.P(λ = 0.01) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.149 (1.886) -0.125 (0.722) 0.383 1.240 1.095 236.477

β1 0.965 (2.871) 0.0 (0.0) (118.239)

β2 0.0 (0.0) -0.551 (4.794)

β3 0.0 (0.0) 0.309 (1.113)

β4 0.039 (19.676) 0.0 (0.0)

β5 0.087 (7.277) 0.11 (27.389)

M.P(λ = 0.1) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.148 (1.873) -0.119 (0.688) 0.386 1.162 1.011 239.44

β1 0.949 (2.824) 0.0 (0.0) (119.72)

β2 0.0 (0.0) -0.585 (5.091)

β3 0.0 (0.0) 0.264 (0.949)

β4 0.0 (0.0) 0.0 (0.0)

β5 0.065 (5.383) 0.043 (10.693)

M.P(λ = 1.0) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.131 (1.663) -0.105 (0.609) 0.391 1.084 0.905 245.749

β1 0.952 (2.834) 0.0 (0.0) (122.874)

β2 0.0 (0.0) -0.563 (4.897)

β3 0.0 (0.0) 0.236 (0.851)

β4 0.0 (0.0) 0.0 (0.0)

β5 0.0 (0.0) 0.0 (0.0)
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Table 4.14: regularised FCRM with garrotte on the usedcars data using

algorithm-4

M.P(λ = 0.01) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.125 (1.003) -0.153 (0.995) 0.379 1.009 1.603 230.721

β1 -0.545 (1.065) 1.145 (0.993) (115.361)

β2 -0.014 (0.0) -0.175 (0.951)

β3 0.236 (0.991) 0.0 (0.0)

β4 -0.007 (0.0) 0.068 (0.968)

β5 0.094 (0.978) 0.082 (0.979)

M.P(λ = 0.1) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.124 (1.003) -0.152 (0.995) 0.379 1.021 1.622 230.763

β1 -0.559 (1.065) 1.137 (0.993) (115.382)

β2 0.0 (0.0) -0.167 (0.951)

β3 0.235 (0.991) 0.0 (0.0)

β4 0.0 (0.0) 0.066 (0.968)

β5 0.091 (0.978) 0.080 (0.979)

M.P(λ = 1.0) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.145 (1.663) -0.112 (0.609) 0.38 1.405 0.965 231.720

β1 1.059 (2.834) -0.556 (0.0) (115.86)

β2 -0.091 (0.0) 0.0 (4.897)

β3 0.0 (0.0) 0.22 (0.851)

β4 0.045 (0.0) 0.0 (0.0)

β5 0.065 (0.0) 0.076 (0.0)
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Table 4.15: regularised FCRM with single feature weight vector garrotte on

the usedcars data using algorithm-3

M.P(λ = 0.01) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.08 (1.011) -0.175 0.424 1.129 1.710 288.822

β1 0.23 (0.686) 0.335 (144.411)

β2 0.707 (6.432) -0.740

β3 -0.02 (1.538) 0.428

β4 0.001 (0.256) 0.003

β5 0.091 (7.583) 0.03

M.P(λ = 0.1) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.079 (1.0) -0.173 0.424 1.105 1.681 289.041

β1 0.227 (0.677) 0.33 (144.521)

β2 0.711 (6.465) -0.744

β3 -0.019 (1.481) 0.412

β4 0.0 (0.0) 0.0

β5 0.068 (5.654) 0.023

M.P(λ = 1.0) A.V.S

βi model-1(F.Wt) model-2(F.Wt) rmse model-1 model-2 O.V

β0 -0.074 (1.663) -0.162 0.426 1.027 1.597 292.098

β1 0.22 (2.834) 0.319 (146.049)

β2 0.716 (0.0) -0.748

β3 -0.017 (0.0) 0.367

β4 0.0 (0.0) 0.0

β5 0.0 (0.0) 0.0
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Table 4.16: ARI values for the used cars data when different sets of features

are selected

feature number {2,7,8,10,12} {2,7,8,10} {7,8,10}
(as in Table 6)

ARI 0.99 (0.925) 0.907 (0.51) 0.46 (0.42)

Table 4.17: ARI values for synthetic data SYNT-3 when different sets of

features are selected

selected features {x1, x2} {x1, x2, x3}

similarity 0.446 (0.446) 0.92 (0.92)
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Chapter 5

Discussion

In this work, we attempt to simplify switching regression models by applying

different regularizers to the ordinary FCRM objective function. After solving

the regularized FSRM, we expect that the magnitude of predictor coefficients

are reduced. Effect of the following three regularizers on model sparsity are

analysed −(1) `1 penalty, (2) `1 and `2 penalty, and (2) non-negative garrotte.

In all the cases, suitable optimization algorithms are proposed. Regularized

FSRM with non-negative garrotte is found to outperform regularized FSRM

with `1 penalty in terms of feature selection. For non-negative garrote with

multiple feature weight vectors, significant model sparsity is attained. But

the subset of selected features may not be common across all the models

of switching regression. Among the two variations of non-negative garrote -

single feature weight vector and l feature weight vectors, the former selects

a commom subset of feature. We have demonstrated the effectiveness of the

proposed models on both synthetic and real datasets. Table 4.8 shows the

case when FSRM with non-negative garrotte is fitted to the used cars data

and the SYNT-3 dataset. It is evident from the table that the variance of
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the model fitted to the used car data is lower than the synthetic data. Non-

negative garrotte has two versions: (1) in the first version (Algorithm 3),

the partition matrix U is estimated by holding the feature weights constant,

next the feature weights are estimated holding U constant and this steps are

repeated until convergence, (2) in the second version (Algorithm 4), both the

partition matrix U and feature weights are estimated only once. Of the two,

Algorithm 3 is found to yield better sparsity.
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