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INTRODUCTION

In this paper, I attempt to survey the field of inspection, to set
down some of the more important problems, to see how far we have gone in solv-
ing these problems and to see how far we have to 0.

Part I of this paper outlines three fundamental objects of insreoc-
tion, Part II outlines four steps that must be taken in attaining each one
of the three objects and Part III outlines some of the fundamental el emente
of inspection theory practically sufficient for attaining the first object
of inspection and requisite for attaining the other two objects.

I am indebted to several of my colleagues for many helpful criti-
cisms, the consideration of which has indicated the advisability of adding
some rather lengthy footnotes to clear up certain voints of a technioal nature.
Turthermore I have used footnotes and appendices to present material which is
essential to a clear understanding of some of the theoretical problems involved
and to indicate some of the limitations of the theory.

The three objects of inspection are expressed in terms of ouality:
i.e., detection of non-uniformity of quality, finding causes of non-uniform-
ity of ouslity and setting economic standards of ouslity. Raturally it is
essential that we have 8 clear understanding of the meaning of ouality.

In general quslity has been used in either of two senses: one re-
ferring to those characteristics which make a thing what it is, the other re-
ferring to the goodness or value of & thing. In either sense, however, oual-
ity is fixed when the magnitude of those characteristics reauired to define
the article are fixed.1 »

It is customary practice to specify that unite of a given kind of
product shall possess certain characteristics whose magnitudes shall 1lie with-

in fixed limitszor tolerances. The statement of the requlred characteristios

1. Thus quality Q is some function ¥ of those characteristics X,Y,Z...
required to define a thing.

2. Thus & unit is of standard guality if its characteristics X,Y,2...
f811 within intervals X'+3X, Y'#3Y, 2'+dZ,... where 80X, 8Y, and 32
are the tolerances. Another meaning of tolerance will be given later.
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and,their respective tolerances for a unit of any given kind of product de-
fines the quality standard for that unit.

RART I
THREE OBJECTS OF INSPECTIOR

1ST OBJECT: DETECTING'KON-UHIFORMITY OF QUALITY.

No matter how much care is taken in defining the production proced-
ure, & manufacturer realizes that it is impossible for him to make 811 units
of a given kind of vroduct identical one with the other. This is equivalent
to essuming the existence of non-assignable causes of variation in quality of
product.5 O0f course random fluctuations in such factors as humidity, temper-
ature, wear snd tear of machinery, and the psychological and physiological
conditions of those individuals engaged in carrying out the manufacturing pro-
cedure may glve rise to some of these apparently uncontrollable variations.
Knowing these things, the manufacturer effectively contents himself with try-
ing to produce & vproduct which is uniform - one which doces not vary with time
or rather one which does not vary from one period to another by more than an
emount which may be accounted for by the system of non-assignable causes pro-
ducing variations independent of time.

I want to pause at this point to make clear the significance of the
terms “assignable causes" and "non-gssignable causes™ as they will be used in
this paper. Suppose you and I were each given an opportunity of firing 100
rounds at a target. We all know what would probably happen - none of us would
hit the bull's~eye every time. Thus charts A end B in #ig. 1 might represent
two 6f our targets. Possibly some of the shots would hit within the first

ring, others within the second ring, and so on. Each of us has a more cor less
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N Let us consider the csse where quality is determined for all practical
purposes by one characteristie X. The standard quality will then be any-
thing within the range X'+3X. Even when we do our best to control the
manufac turing vprocess, units of product will be produced having charsoter-
istics Xl, Xgs oo ete. where, in general, X1 1 4 XJ and we attribute the

observed differences between units to non-assignable csauses,
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Fig. 1 - SCHEMATIC DIAGRAM SHOWING EFFECTS OF CAUSES.

definite picture of some of the possible reasons Why none of us would be
successful always in hitting the bull's-eye. FTe probahly cannot assign the
reasons or casuses for our missing the bull's-eye in any particular i{nstance -
"the csuses of our missing are non-assignadle. Suppose, however, that as a
result of our experiment in shooting at tﬁe target, we found that every one
of us tended to shoot to the right of the bull's-eye as is shown in charts A'
and B' of Pig. 1. Naturally we would feel thét there was some disooverable
cause for this general tendency, i.e., we would feel that the observed effeot
could be assigned to some particular cause.

0f course the object in trying to detect assignable causes is ob-
vious, because it is only through the control of such factors that we are
able to improve the product. On the other hand there is no excuse for try-
ing to ferret out or assign some cause for a fluctuation in product which 1e
no grester than that which can be accounted for by the non-assignable causes

just as there would be no excuse for trying to find the exaot manner in which
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all of the causes contributed to our missing the bull's-eye in the analogous
case of target practice just considered.

Here, then, is the problem. #hen do the observed differences be-

tween the product for one period and the product for another period indicate

non-un;formity? ‘fhen do the differences in quality of manufactured rroduct

observed from one period to another indicate fortuitous, chance or random
varistions produced by non-assignabdle causes which we cannot reasonably hore
to control without radically changing the whole manufac turing pro&eea; and
when do the observed differences in’quality indicate the nossible existence
of assignable causes which we can reasonably hope to find and control: 1{.e.
when is a product uniform and when is it non-uniform?

An example may Serve to make this problem clear. Twelve hundred
snd fifty instruments were selected each month from a vroduct manufactured
in gquantities of approximately 2,000,000 per Jear. The quality, as defined
by a characteristic X, was measured on each of the instruments in a month's
sample and the results of such measurements are presented in the frequency
polygons Pig. 2. Are we to judge from the information given in Fig. 2 that
the product was uniform throughout the year?

Obviously no two polygons are the same in resvect to average, dis-
rersion and shape, but of course we wouldn't expect them to be the same even
though the product were uniform any more than we would expect to find two
targets cshowing the same distribution of shots even though the same Individn-
el fired at both targets.4 How, then, are we to decide whether or not the

product has been uniform?
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4, In other words, non-assignable causes introduce certain differences
in the sverage, dispersion and shave of the observed polygons from
one month %10 snother, and we must set up some method of differentiat-
ing the effects of assignable from those of the non-assignadble causes.
Therefore we have the question, do the observed differences ehown in
Fig. 2 indicate the presence of effects of sssignable cauges - causes
thet it should be possible for us to discover - or are the differonces
attributable to chance, random or non-assignable causes - caufee that
possibly cannot be discovered easily?
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QUALITY, DEFINEDXBY CHARACTERISTIC

Fig. 2 ~ MONTHLY POLYGONS SHOWING DISTRIBUTICN IN QUALITY
POR SAMPLES OF APPROXIMATELY 1250 UNITS OF FRCDUCT.
DO THESE DATA PRESENT ANY EVIDENCE OF HON-UNIFCRUITY -
ANY EVIDENCE OF EFFECTS OF ASSIGNABLE CAUSKE3?

Let me now illustrate another way in which non-uniformity of product
may arise. Fig. 3 shows the frequency polygon for 15,050 instruments in re-
speet to quality defineé by a characteristiec X. The inetruments ‘vera salected
from the year's product at regular intervals and then grouped together &8s fhown

in Fig. 3. Is there any :ndication in the data given that the product had nnt

been uniform thorughout the 12-month vperiod in which the 15,050 instruments *aé



been Selected?5
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Fig. 3 - POLYGCN SHOWING DISTRIBUTION IN QUALITY *OR
15,050 UNITS OF PRODUCT. DO THESE DATA PIESENT
ANY EVIDENCE OF NON-UNIPORMITY - ANY EVIDENCE OF
EFFECTS OF ASSIGNABLE CAUSES?

2ND OBJECT: FINDING CAUSES OF HON-UNIFORMITY OF QUALITY.

Of course it is desirable to know how to detect non-uniformity of
quality, but that information alone won't enable us to produce a product of
uniform quality unless we discover the causes of non-uniformity. Now, let us
consider three typical illustrative cases where we want to know the causes of
variation.

One illustration arises in determining the insulating properties of
silks used in covering wires and cables. Here, we wish to find how the insul-

ating proverty is affected by such factors as the acidity, total water solubdble
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5. Naturally this vproblem could be broken down into the type vreviously
given, providing information a8 to the results of monthly inspections
were available. Nevertheless, for one reason or another, the inapection
engineer is often confronted by the problem stated In the form connected
with the data in ?Pig. 3.
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content, non-volatile content and ash conéent of the material, because we want
to find out how accurately these factors must be controlled in the process of
producing silk insulation.

A second illustration arises when we try to compare the results of
different procedures for creosoting telephone poles. In this instance the
depth of penetration of thée 0il is the auslity under consideration and we
wish to find how such factors as thickness of sapwood, temperature o® oil
bath, water content of the poles and so on, affect the guality.

As a third illustration I have in mind the manufacture of s certain
article where we know that the guality of the material depends upon numerous
factors such as the temperaturé of roast, the surrounding gas, and the proper-
ties of the material such as absorptive capacity, vorosity, ash content, srpe-

cific gravity and so on. I reproduce in Pig. 4 a scatter-diagram showing u0

QuaLity (Derinep 8y CHaracTerisTic X))
3

TempreraTure ofF Roas T

?ig. 4 - SCATTER-DIAGRAM OF QUALITY VS. TEMPERATRE OF
ROAST. IS TEMPERATURE VARIATION INF THIS INSTANCE
AN ASSIGNABLE CAUSE OF FLUCTUATION IN QUALITY?



-8 =

pairs of simul taneous observations of temperature of roast and quality of the

material as determined by some characteristic X. Are we to conclude from the

datea presented in this figure that there is any relationship between the quali-
ty of the material and the temperature of roast? TIf there is a relationship,
we conclude that the temperature of rosst is one of the assignable manufactur-
ing factors which must be controlled more carefully in the futufe than {t has
been in the past. If there isn't any relationship, we conclude that no greater
effort need be exercised in controlling the temperature of roast in the future
than has been exercised in the past.

Such charts are often used, but I fear that many times the resul ts
are interpreted incorrectly. For example considering the data given in Pig.4
alone, we might conclude that there is little correlation betwveen the quality
and the temperature of roast. This conclusion, however, may not be justified,
because 1t is possible that the correlation, though it exists, is masked by
the effects of other factors. To obtain the true picture, therefore, it is
necessary to consider the simul taneously observed values of all of thoee fuc-
tors which we expect to influence the quality of the manufactured article. In
the general case where there are several of these factors, the troblem {8 rore-
what complicated.6

The importance of the second object of inspection can scarcely be

over-emphasized.7

3RD OBJECT: SETTING ECONOMIC STANDARDS OF QUALITY.

Naturally we wish to do everything within our power to give ouality
at a minimum of cost, but to what limit should we go in improving quality {f we

thereby raise the cost of the prdduct?
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6. For example let us assume that X = a + blY1 + b2Y24... + bnYn vhere the

Y's are assignable groups of causes affecting X. It 1ls obvious thut, {7
we study the simultaneous pairs of X and only one of the factors Y, we ray
observe a correlation between X and Y which is in fact the effect of corre-
lations between X and certain of the other factors. The natural proceiire
is therefore, to use the theory of partial correlation, which will he cen-
sidered in & later paper.

7. Not only could this 1list of illustrations be extended indefinitely be-
cause they arise in the production of every manufactured article, bdut,
also, because the problems involved are theoretically the same a8 arire
in the calibration of machines used in testing transmitters and receivers
and certain other kinds of apparatus.



To start the discussion let us assume that the appreciation or

value of quality is the same for all individusls ana that apparatus of only

one quality is to be manufactured. Quality (Fig.5) is represented by the

horizontal axis, and both the cost and value of quality expressed in dollars

are represented by the vertical axis. Of the two curves given in this fig-

ure, one represents the value of quality to the individual: i.e., the amount
that an individual would be willing to pay for an article of 8 given quali-
ty rather than to do without that article; the other represents the cost of

a given quality, including interest, deprecistion and insurance charges.

DoLuars

QuaLiTyY (D:rm:o sy CHARACTERISTIC X>

Pig. 5 = SCHEMATIC REPRESENTATION OF THE FACTORS INPLUBNHCING
THE ECONOMIC STANDARD,

We want to supply the public with the maximum of quality which
it wants and for which it is willing to pay the actual cost. Obviously
this quality corresponds to the point on the quality axis where the coet
curve crosses the value curve, because ouality better than this would cost
more than it would be worth to the cdonsumer whose value curve i{s such as®

shown in Pig. 5, and hence the consumer would rather do without than buy
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such qusality.
intersection of the cost curvesand the
standard of quality for the conditions

Let us now try to define the
vractice,

Neither the value curve for

the manufacturer remsins constant with

as defined above actually fluctuates with tine.

We may think, therefore, of the quality corresponding to the

value curve as being the economic
assumed,

economic standard in 8 crEe nearer
an individual nor the coet curve of
time.

Hence the economic stundard

We must, therefore, de-

termine from & study of the economic conditions of the country what the

range of fluctuation in this economic standard may be exvected to be und

choose some point on the quality axis as an economic standard, which allows

for the random fluctustions in the value and cost curves.

Furthermore I assumed in drawing Fig. 5 that all people have the

same estimate of the value of quality.

cally as many different value curves as there are individuals.

Obviously, however, there are practi-

We may plc-

ture the condition somewhat after the manner indicated in Pig. 6 where each

DovLLars

I R . T e . . T

guality and would start at some cost
a quality just greater than zero.

Probably the more typical cost curve would be discontinuous at zero

appreciably greater then zero for
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point on the solid curve represents the average of the frequency distribdu-
tion of the value estimates of all individuals, and where an individual's
value ourve might look like the dotted one shown in the figure. In the ao-
tual case the distribution curves would probably extend over greater ranges
than shown in the figure. In fact the value curves of some individuals
might fall on the X axis. Hence the distribution of values must be tasen
into account in setting the economie standard (or standards, providing
difrerent groups of individuals are to be supplied with the quality which
they demand).

Thus the problem of setting economic standards is inherently very

important and incidently involves many questions of a statistical nature.9

PART 11
FOUR STEPS IN INSPECTION

Having considered the three objects of inspection, let us next
look at four of the fundamental steps which must be taken in attaining each
of the three objects, and let us consider a few typical problems encountered
in taking each of the four steps.

FIRST STEP: ESTABLISHMENT OF INSPECTION PROCEDURE

Naturally we must decide first what characteristic (or characteris-
tics) to measure and why we want to measure it (or them) in order to specify
the quality. Our decision will be determined by the object in view. Onoce
this decision is reached, we must establish the inspection procedure ocut-
lining the method of measurement which will achieve our object at a minimum
of cost. Of course this involves the choice of the best measuring apparatus
for each particular job and calls for the exercise of engineering judgment
based upon known scientific laws and past experience. But this phase of the
problem need not be considered here. Certain other types of problems arise,

however, which I do wish to discuss in some detail.
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9. Obviously, in the general case, where the guality Q 1s some frwnetion
¢ of many characteristics X, Y, Z, ..., the problem of setting eoconomiec
standards can be attacked in a manner similar to the pimple oage oon-
sidered., AgﬂCAL'*bn/ LN

s.‘
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EXAMPLE 1: HOW LARGE A SAMPLE®?

One of the first questions which arise in determining the proce-
dure is how many units. of product muist we ingspect from a given lot so that
we may insure ourselves and the customer that the risk of the tolerance
fractionlO being exceeded in the lot is not greater than some fixed value
for each kind of apparatus. This question is always present in inspection
work and arises many times in connection with the inspection of all kinda
of apparatus.

The answer to this question may be based on either 4 posteriori or
a priori probability but is subject to different limitations in the two
cases.ll Obviously the answer muast be given in terms of the size N of the
lot from which the sample of size n is drawn and in terms of the tolerance

Py set on the apparatus.lo

A little reflection shows the necessity of in-
troducing two other factors in reaching the final answer, because the choice
of the best sample size calls for a balance between the cost of inspecticon
and the value of inspection. Hence it 1snnecessary to introduce the con-
ceptions of Producers' and Consumers' risks. Obviocusly it is necessary tn
prepare extensive tables and sets of curves which can be used by those en-
gineers engaged in devising methods to cover the practically unlimited num-
ber of special cases.

' A simple discussion of some phases of this problem is iiven in
Appendix 1 of this paper. The discussion in this appendix is by no means

complete, because it is not sufficient merely to say how many should be in-

spected. Instead we also must specify the procedure to be followed when a

- e e e e e e e e w am e e em

10. Sometimes the non-assignable causes produce a unit of uniform
product falling outside of one or more of the ranges X't8§X, Y':3Y,
2'+32, ..., and hence such pieces are classed as defective. 3ometimea
the quality standard of the lot of X pieces is set by saying that not
more than pyN of a standard lot may be defective where p, is the tol-
erance fraction. A defective lot is one which contains more than p,r
defective units.

11. 4 nosteriori - influence of causes from effects. 4 priori - (nfl.-
ence of effects from causes. Of course the application of any theory.
in a sense, involves 4 posteriori reasoning unless it can be nrcved that
no other than the assumed set of caugses could give the observed data,
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sample is found defective: i.e., we must specify whether the insrector is to
reject the lot or to extend the inspection. Turthermore the choice of nro-
cedure depends upon the acceptance number,12 upon the psychological effects
of additional inspection on the inspectors, and upon the dreaxkagse and dia-
proportionate cost accompanying extended inspection.

EXAMPLE 2: WHAT IS THE CHEAPEST WAY TO MBASURE QUALITY OF PRODUCT WHWN

THE METHOD OF MEASUREMENT IS SUBJECT TO ERROR?

Suppose we select n units of a given kind of apparatus and mea-
sure the guality of each unit by a method subject to error. The true (ual
ities probably are not identieal, and the observed cualities show a greater
dispersion than the unknown true qualities would, providing the methed ¢f
measurement were not subject to error. Now, we can increase the precision
of our estimate of the gquality of product either by making more than one
measurement on each unit or by increasing the number of units measured.
Customarily the cost of making two or, in general, b measurements on a
single unit is less than the cost of making one measurement on each of twe
or, in general, b units of apparatus. The most economical sample si-=e ani
number of measurements to be made on each unit in the sample must be sourht.

Another form of the same type of problem i1s: Assume that we are
manufacturing loading coil cases, each case containing several units, -nig
that one of the steps in check inspection is the measurement cof the cuality
of each of 10% of the number of units in each of the cases manufacture-d.
Could we obtain, more economically than by the assumed present practice,
the same degree of precision of check upon the gquality of product 1f we
measure the quality of, say d units in each case, but only inspect a Ira--
tion of the total number of cases?

Analytically the last two questions involve the same theory as

does the question, how can observed data be corrected for errcrs of mea-

surement?13

e = e m m ee wm Em e e e e wm em e e o e e e e e m = e e e o e e = = = - -

12, The number of defective pieces which can be found in a sample with-
out indicating an unsatisfactory condition of the lot is termed the ac-
ceptance number.

13. Shewhart, W.A., Correction of Data for ZErrors of Measurement, Fell
System Technical Journal, Jan. 19Z6.
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EXAMPLE 3: HOW SHALL WE MEASURE QUALITY - AS A VARIABLET OR AS AN ATTRIBUTES

Let us make this question clear by assuming that we are insvectines
condensers for capacity. We can measure the cavacity of each condenser
either as so many microfarads or simply as above or below a certain cana-
city, say X,. The first method treats capacity as a variable, the second
treats it as an attnibute.

Let us consider only one. phase of this question and assume in dc-
ing so that the object of inspection is to detect the evidence of as:st.nable
causes of variation in product. Thus suppose that we inspect the same num-
ber of units of product for the months of March, April and lfay and find the
same fraction of the month's product below Xo in capacity for each month.
Upon the basis of this measurement the product is running uniformly. Tt i3
perfectly possible, however, that the product for these three months may bhe
digstributed in respect to quality (capacity) as shown in Fig. 7 where the

areas to the left of X, are equal. Even to the unskilled eye, differences

500}
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Quarity (Derineo 8y CHaracTERISTIC X)

FPig. 7 - SCHEMATIC DIAGRAM INDICATING SOME DISADVANTAGES OF
INSPECTING BY METHOD OF ATTRIBUTES.

in frequenoy distributions as great as those indicated in this figure would

> 3 . =3 - P o mi 4N 1y Yyr i ¢ Pp-
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month to another. 1In other words, the method of variables would not whereas
'the method of attributes would suggest that the product is running uniform-
1y.14

Other illustrations could be added to indicat= the inefficiency of
the method of attributes as compared with the method of variables for mea-
suring the quality of product, particularly when it becomes necessary to
correct data for errors of measurement. On the other hand it usually costs
less to measure the quality of a unit of apparatus as an attribute than it
does to measure it as a variable. Now, in a vractical case the value of a
measurehent as a variable will always be greater than that as an attribute,
but the cost of a measurement as an atiribute may be less than the ocorre-
sponding cost of the measurement as a variable. We must strike a dbalance
between these values and costs. To do this often involves the sclution cf

certain statistical problems to be discussed elsewhere.

SECOND STEP: COLLECTION OF DATA

Turning now to the collection of data we find certain principles
which must be kept continually in mind. Mention will be made of a few of
these.

OBTAIN ALL NECESSARY INFORMATION BUT NO MORE

To prepare a form calling for all necessary information isn't
quite so easy to do as it may appear. The preparation of such a form re-
guires at least two things on the part of the engineer in charze: ®irst, =
clear understanding of the physiecal and‘engineering details ot the mennre-

ments involved and, second, a clear vision of the steps to be followet in

analyzing and interpreting the results of inspection. For example, (I acre

14, It is sometimes argued that we are only interested in the percentage
below some value of quality such as X in the above examnle. There qre
many advantages, however, in malntain?ng a controlled product - one ir
which all a881gnab1e causes are found and controlled. 1In tne case
assumed above there would be real cause for alarfm in the indicated 4-wn-
ward trend in the average cuality. Who knows but what the next montn
might bring serious trouble?
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difficulty in maintaining a unifogm product is anticipated, engineering
Judgment must be called upon to suggest those factors which may possibly de
assignable causes for the anticipated non-uniformity, and a xmowledse of
theory must be called upon to specify details of inspection method such as
the number of measurements to be taken on the various factors supposed to
be assignable causes., Sometimes the lack of information such as the si-e
of the sample or the size of the lot may make it impossible to determine
whether or not observed fluctuations in product can be attributed to assi,n-
able causes, and thus render the data almost useless. Hence the preparaticn
of a suitable form for the collection of inspection data reguires the co-
operation of many groups in a manufacturing organization. One illustration
may serve to show some of the questions which must be considered in prevar-
ing a report form.

Assume that two machines are used in manufacturing the product
and that the distribution of quality given by one machine is that renre-
sented by the broken curve on the left of Fig. 8 and the distribution of
quality given by the other machine is that represented by the broken curve
on the right of Fig. 8.

-40 3¢ -20 -0 0 4 20 36 40
QuALITY (DEFINED BY CHARACTERISTIC X)

Wi Q  QNITRIT MTN TT AR T TTAWTNN TRE WO OHN TANTTENTOTIG PREOTITM v e
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Product from these two machines, when combined in equal quantities, would
give the distribution of quality outlined by the dots in Fig. 8 and approx-
imated by the solid curve. Analysis of the combined results of insnecttion
of product from the two machines would give no indication of the non-homo-
geneity of the product which actually exists.l5 If, however, the inspec-
tion results for the two machines were kept separate, it would be very easy
to detect the non-homogeneity. Therefore, whenever an inspection engineer
wishes to detect non-homogeneity of product, he should use a report form
classifying the data according to the causes of non-homogeneity. This i3
only one of many ways in which the problem of detecting the effeats of ccm-
ponent systems of causes arises in practice but it serves to illustrate the
necessity of the use of foresight in collecting the data.

In addition to the principles already noted, care should be tarxen
in recording the data so as to make the cost of analysis a mnminimum. ‘l3ao
the data should be recorded in sequence wherever possible so that the analy-
sis may reveal the presence of any cyclic or long time trend fluctuations in
the quality. In those instances where several characteristiocs are measured
on each instrument, it is often highly desirable to reccrd the data sc that
all of the characteristies belonging to a given instrument may be kent
separate from the others, because a study of the data may, then, reveal a
correlation between some of the factors which will make it possible to re-
duce the total amount of inspection.

THIRD STEP: ANALYSIS OF DATA

How useless is an unclassified set of several thousand (or for
that matter a set of only 100) data before they are classified and analyzed!
It is seemingly difficult for the mind to grasp the significance of a large
number of figures., Therefore, we must try to reduce the observed data to a

few figures or statistics which give us the essential information. This

15. See Appendix 2 for a more complete discussion of the nroblem of
detection of non-homogeneity, and for an explanation of the notation
on Fig. 8.
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calls for the development and standardization of methods for analyzing data
to determine the essential statistics at a minimum of cost.

FORMS FOR ANALYSIS OF DATA

Customarily the mind seeks measures of the central tendency, dis-
persion and asymmetry (skewness) of a set of data. Commonly aoccepted men-
sures of these are the arithmetic mean ¥, root mean square deviation o, and
skewness k,v/?;z . These factors are caloulated as shown in the sample analy-
sis sheet16 presented in Pig, 9. Another statistioc 85 given in Fig. 9 is
often used as a measure of the degree of flatness of the distribution of the

observed data. This statistic is technically known as a measure of kurtosis.
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The graphical significance of these four statistiocs 1s pictured in
the schematic diagrams presented in Fig. 10. Fig. 10-a shows two symmetrical

distributioris differing in the average X but not in the root mean square de-

- m e e e e e e e 4 mun e v s e o e w wm m e m W e e m e e = e e e e .

1s. This sheet represents one of several forms which have been standard-
ized for the analysis of inspection data. I am indebted to Mr. '.F.Dodge
for assistance in the preparation of this form.

The data given on this sheet will be referred to in a later secttion
nf thia n rer
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viation ¢ (k=0 and B, = 3 for both). Fig. 10-b shows symmetrical distribu-
tions differing in the root mean square deviation o but not in the average
X (k=0 ana B,=3 for both). Fig. 10-c¢ represents non-symmetrical distridbu-
tions differing in skewness k but not in either the average Y or the root

mean square deviation g (8,=3 for both). Fig. 10-d represents symmetrical

a. DiFFERENCE \N Averace X .

a. DIFFERENCE IN STANDARD Deviation O 0. DirrgAaENCE 1N KunTO:y p.

Fig. 10 - SCHEMATIC DIAGRAMS SHOWING GEOMETRICAL S>IGHNI-
FICANCE OF COMMONLY USED STATISTICS.

distributions differing in kurtosis 8o but not in the average Y, skewness
and standard deviation o. 'I’hese17 curves may be used fo.~ reference in helr-
ing an individual form a mental picture of the distribution of A large nunmber
of data from a knowledge of the values of these four statistics.ls

EXAMPLE 1: CORRECTION COF DATA FOR ERROR OF MEASUREMENT.

Suppose the method of measurement used in obtaining original dats

is subjeet to error. In this case the observed distribution of auality is

- e m wr e em e e e e e e ms B e mm 2w 4 @ s e e s e e = = e = = = = = = -

17, These curves were obtained by using the first four terms of the
Gram-Charlier series. See Eq. 3 in Part III.

18. In some instances a greater number of statistics may be resuireg
to give the essential characteristics of the observed data.



not the true one. This follows from the fact that the number ot instruments
actually having values of quality within any vair of limits will probadl; ve
observed as distributed over mueh wider limits. Hence the rour statistics
calculated from the observed data do not represent the true distribution ¢

quality unless corrections ar: made to allow for the error ol meusurement.

The need for such corrections arises in practically every phase of en.irnecer-

ing inspection work and the theory has been given in a naver alrend: referred
19 X

to. Corrections of this nature are particularly necessiary in estanhlizhin.

limits, as we shall see in a future section.

EXAMPLE 2: EFFICIENT USE OF DATA

There is always a best way of analyzing data to make the mont afti-
cient use of them. This point can be made clearer by 11lustration.“” Sun-

pose we make 10 measurements of the impedance of a coil and get the follewing

values.
TABLE I.

Number of Impedance
Measurement in Ohms

1 teeeecocnsansaese 100.9

2 CICRE B R I B B BN BN BN B BN B BN A 10005

5 ® 06 06 5 6 8 % 0 0o 99.9

4 ® ® & " & 060 505 0000 101.0

5 ...lt;..ll.l‘." 101.4

B seesescscasceecas 108.7

7 ® 68 9 8 0 0 " 60 a oo 100.5

8 . 5 806 0 & 0 "9 S0 00 s 99.0

9 P I I I 3 B SN B B B BN BE BE AN ) 99.9

lo ® 0 5 0 6 0 0 OO 60 0 %O 99.6
Ave. = 100.54

Textbooks on the theory of errors tell us that the root mean scunre

deviation of the average can be estimated in either of two ways (they mirnt

19. See footnote 13, It should be pointed out also that datna must
be corrected for error of averages obtained from small samnles asg
discussed in my paper in the April 1926 issue of the Bell Systen
Technical Journal on Correction of Data for Errors of Averages
Obtained from Small Samples.

20. See Appendix 3 for a more complete discussion.
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have said truthfully in an infinite number of ways). The two ways are the

so-called root mean square error and the mean error methods as illustrated
below:
TABLE I

Showing Two Methods of Estimating

the Standard Deviation of the Average.

Root Mean 3quare Error Method

¥ean Error ¥ethod
Cbserved Dev. [Dev. )2‘ Chserved Dev,
Values from (from) Values from
in Ohms Ave. (Ave.) in Chms Ave.
100.9 RET) .1296 R ~
100.5 .04 .0016 100.5 .04
99.9 .64 .4096 99.9 . 04
101.0 46 .2116 101.0 .46
101.4 .86 .7396 101.4 .86
102.7 2.16 4,6656 10L.7 L.16
100.5 .04 .0016 1N0.5 .04
99.0 1.54 2.3716 99.n 1.54
99.9 .64 .4096 99.9 .64
99.6 .94 .8836 99.0 .94
Total 9.8240 Total 1005.4 7.08
Average 9824 Average 1NN.5 .768
Estimate of Standard Estimate of Standard T
Deviation = +.9822% = .9912 Deviation = .768 = = .9628
Tstimate of mgtimate of
Standard Standard
Deviation Deviation
of Average = -912 . 3304 of Average . 2580 = 2208
v10-1 VI0-1

Which one then shall we choose? The obvious answer is that cne

having the smallest error, Now it turns out that the root mean saquare method
used above gives the best estimate under the condition that the law of error
is nc:rma.l.z1 In general it can be shown that this method is 14% more effi-
cient than the mean error method. In other words, to obtain the same decree
of precision with the mean error method as with the root mean square errcr
method would require 1.14 times as many observations as would be required bdy
the root mean square method.

O0f course, we often use sampling methods to detect non-unifornity

of product. ILet us assume a case in which we inspect daily 114 instruments

- e # = e m e = m wm wm ee wm wm wm e e = =

21. See Part III for equation of normal law.
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of a given kind and analyze the measurements by the mean error method to de-
termine the dispersion. In this instance we could get just as good an es-
timate of dispersion by teking a sample of only 100 instead of 114 instru-
ments providing the measurements on these were analyzed bdy the root mean
square method. To make 100 observations serve the purpose of 114 is obvious-
ly to be desired.?®

The above case in which we assume that the true distribution from
which the samples were drawn was normal and that the sample sizes were larpe
is a very special one. The study of the most efficient methods of usin.
data is one of the very important problems of modern mathematical statistics
and is receiving much attention at the present time. Naturally enoush, an
organization making millions of measurements per year is keenly intere:ated
in results of such work, because the application of the theory may be ex-
pected to give maximum efficiency in the use of inspection data.

FOURTH STEP: INTERPRETATION OF RESULTS

This fourth step is the cerucial one in inspection work. 1In fact,

interpretation of results is the crucial step in all experimental work.

Without it the three other steps are useless, for what good does it do us
to make inspection programs, collect data and analyze data if we do not
follow these steps by the interpretation of the results.

In general we wish to know whether or not the differences between
units of product have been modified by assignable causes. To do this, how-

ever, we must set up some basis for detecting the existence of variations in

22, The eccnomic importance of efficient use of data 1s again toucheu
upon in Part III, and in Appendix 3. Of course the computations in-
volved in the root mean Square method as indicated in Table II are
longer than those involved in the mean error method therein indicateq.
In practice, short cuts are available for both methcds ancd thege mini-
mize the apparent advantages of the mean error over the root mean -quure
method in respect to time required in making calculations. TIn most
cases the cost of analysis of the data by either method is but 1 zmall
fraction of the cost of taking the data. An example is given in Vvart
III where the yearly saving effected by using the root mean scuare
method instead of the mean error method is approximately %2000 per
year.,



- 23 -

quality of produet which cannot be attributed to random or sampling fluctua-
tions produced by non-assignable sauses. This carries us into the theory of

sampling treated in Part III of this paper.

PART III
OUTLINE OF THEORETICAL BASIS FCR MEASURING QUALITY OF

PRODUCT AND DETECTING NON-UNIFORMITY THEREIN

BASIS FOR DETECTING NON-UNIFORMITY IN PRODUCT

As previously noted, it goes without saying that we oannot control
the manufacturing processes so a3 to make all units of product identical.

The best that we can do is to control the product so that the Aifferences
which occur between the distribution of produet for one period and that for
another can be attributed to the action of fortuitous, chance or random non-
asgignable causes which we cannot reasonably hope to control without radioally
changing the whole manufacturing process. Typical non-asgignable causes vnre-
viously mentioned are such factors as humidity, temperature, wear and tear on
machinery and the physiological and psychological conditions of those indi-
viduals engaged in carrying out the manufacturing process.

The first object of inspection, as we recall, is to detect in the
results of inspection any effects which camot be attributed to non-assigna-
ble causes. But what is the distinguishing feature between the effects of
non-assignable and assignable causes? The pasis for answering this question
is proposed in the following parégraph and may be justified upon the bdasis
of both 4 priori and a posteriori reasoning as indiocated.

On the one hand it may be shown analytically that a multiplicity
of causes acting in g fashion similar to the way in which we have reason to
believe the non-assignable causes of variation in the manufacturing vorocessen
to act, will give rise to a unimodal distribution of produst which can be
described quite accurately in terms of the well known probability curves to
be considered below. ILet us, therefore, define'a uniform product as one fcr

which the probability of production of a unit with quality X, 1lying within
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the interval X to X + dX, is independent of time. We shall call a system of
causes producing such a product constant, because so long as a produot is
produced by sucn a set of causes the variations in product from one period
to another are independent of time and can be explained as sampling fluctun-
tions. This constitutes the 4 priori method of laying the basis for detec-
tion of non-uniformity and goes back to the theory of causation associated
with the names of Laplace, Poisson, Gram, Charlier, Thiele, Edgeworth and
others.

On the other hand, we may start from the & posteriori point ot
view. Following in the footsteps of that great English statistioian,
Pearson, we find a preponderance of evidence to indicate that frequenecy dis-
tribvutions of measurable quantities, not affected by ecyoclic, random or long
time trenus, are characdteristically unimodal and of certain standard types,
We may assume thereforé that such distributions represent the effects of

natural groups of causes.
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rrisutep By ChHance triBuTeEp WwHen Chance
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DiscoverasLe Causes

Fig. 11 - SCHEMATIC CONTRAST BETWEEN DISTRIBUTIOKRS OF
EFFECTS OF NON-ASSIGNABLE AND A COMBINATION
OF ASSIGNABLE AND NON-ASSIGNABLE CAUSES.
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Thus by either the a priori or 4 posteriori method, we may justify,
by taking many long and rather complicated steps, the assumption that the
effects of non-assignable causes acting alone will be distributed in a uni -
modal fashion which can be approximated closely by a smooth curve such as is
schematically represented in Fig. ll-a, and that the effects of agsignable
causes superposed upon the effects of non-assignable canses will be distri-
buted as is schematically represented in Fig. ll-b.23 We shall return to a
quantitative consideration of the differences between the two types of ourves
shown in Fig. 11, but, before taking up the outline of the general theory
for detecting non-uniformity of produet according to the basis outlined in
this paragraph, let us see how the theory works in a very simple case 11-
lustrated with expérimental data.

CALCULATION OF SAMPILING FLUCTUATIONS: KNOWN DISTRIBUTION FROM WHICH SALPLES
ARE DRAWN.

In our illustration let us assume that the product is controlled
by a constant system of causes for which the probability dy\', of produocing
a unit with the quality X within the range X to X + dX is given by the bell
shaped curve (Fig. 12) which we recognize as the well known normal law of

error whose equation is

(X-m)?
2

- 2o
dypat = —L1 e A 1
a'v/2n
where m is the true average quality and ¢' is the true standard deviation
of quality. Samples of product manufactured under such a constant syasten
ot causes will differ in respect to each of the four statistics, averase
¥, standard deviation o, skewness k and kurtosis B3(Fig.10).
23. This conception of the differences between the effects of non-
assignable and assignable causes has been developed more in detail

in a recent paper: Shewhart, W.A.,, "Finding Causes of Quality Varia-
tion", Management and Administration, February, 1926.
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-3¢ -2¢ -le 67 0 8% lo 2 3e

Fig. 12 - CUSTOMARILY ASSUMED LAW OF ERROR CURVE - Normal Law.
50,00000% of area within O t .67449¢

68.26894% " n " 0+ 1o.
95.44998% " ® " 0+ &o.
99.73002% " ¢ " D+ Jdo.

Let us set up an experiment wherein we actually draw samples and
compare the observed fluctuations in the four statistics with the ranges of
sampling fluctuations which can be easily calculated for these statistics.
Suppose we take 998 small circular cardboard chips, half of which are green
and half white. Suppose we mark 20 of the white chips with 0, 40 with .1,

3% with .2 and so forth as indicated in Table III. Let us mark the green
ones in a similar way except that the numbers are negative., The distribution
of'numbers on the chips, as indiocated in this table, corresponds apnroximately
to the normal curve, Fig. 1X2. \

Suppose we take one out and record the number, put it baock and
stir the chips thoroughly. Suppose we take out another chip, record its num-
ber, pﬁt it back in the bowl and mix the chips thoroughly and so continue

the process until we have made 1000 observations. Now, the effect of replac-



- TABLE III

!)1s‘t:ri‘nuticz:zz4 from which Samples of 1000
were Drawn with Replacement

Marking X . Number of Marking X Number of
on Chips _ Chips on Chips Chips
0 20 1.5 o
1 40 1.6 11
2 39 1.7 9
3 38 1.8 8
o4 37 1.9 7
b 35 2.0 5
o6 33 2.1 4
7 31 2.2 4
.8 29 2.3 3
.9 a7 2.4 2
1.0 24 2.5 2
1.1 22 2.6 l
1.2 19 2.7 1
1.3 17 2.8 1
l.4 15 2.9 1

3.0 1

ing each chip before drawing another obviously keeps the probability of
drawing a chlp with a given number on it the same for all of the drawings.
Hence this method of sampling corresponds to the case where the causes oon-
trolling the manufacture of product remain the same from one unit to another
in respect to the probability of producing a unit with the characteristio

of magnitude within a certain specified 1nterva1325 The resultsz6 of draw-

ing four such samples are given in Fig. 13. In general the samples differ

- er m e e em e am an e wm e e mm e e s e o W e w @ s e w = e - @ = @ e -

24. This distribution gives o0=,9966, kz-Bl-O, and 32-2.9278 instead
of unity, zero and three which are the reSpective values of these
statisties for the normal law.

25. The sample size 1000 was chosen so that we ocould use customary
error theory and thus avoid complications which arise for smaller
samples. (See footnote 19).

26. I am indebted to Miss Viectoria L. Mial and Miss Marion B. Cater
for obtaining these and other experimental results of a similar
nature quoted in this paper. They also oconstruated the figures and
made the caloculations.



- 28 -

200} 200
160 180
1ST SAMPLE 3RD SAMPLE

120
. 120
z
9 80 80
[
< 40 40
>
x 4 0
:: ~30 -20 -0 0 0w 20 30 -a0 -20 -0 O 10 20 AD
o
'S
o 200 200
[ 4
w (60 160
o 2ND SAMPLE 4TH SAMPLE
b3
580 120
Z 80 30

40 4Q

o] 0

-30 -2 -10 0 10 20 30 -30 -20 -0 O W0 20 W

Fig. 13 - DISTRIBUTIONS OF FOUR SAMPLES OF 1000 EACH DRAWN
IN SUCH A WAY THAT THE OBSERVED DIFFERENCES IN
THE DISTRIBUTIONS WERE PRODUCED BY SAMPLING.
in respect to each of the four statisties ¥, o, k (/B]) and 5. Now, sta-
tistical theory enables us to caloulate the limits of sampling fluoctuations
of these factors. Thus the theory of sampling tells us, as will be shown
below, that the average of samples of 1000 drawn in the way indicated above

should not differ from the true average (in this case zero) by more than

three times the standard deviation of the average 7]’.%&5 except in about 27
cases out of every 10,000. Limits with similar meaning can be caloulated

for the fluctuations in each of the other three factors, Fig. 14 shows the
observed variations (irregular solid line) in the four statistics to be well
within their respective limits (dotted lines).

If we had extended the experiment to include pany thousands of
drawings of 1000 each, we should probably have found approximately 0.3% of
the observed statistics to have fallen outside their respective limits.

Carrying this line of reasoning over o the practical ocase, we should expeot



- 29 -~

occasionally to find a sample of a uniform product possessing one or even
more of the four statistics which fall outside the theoretical limits. 1In
other words, the fact thet an observed value falls outside these limits does
not mean that it is not a sampling .fluctuation, but means that it is very
probgbly not a sampling fluctuation. Furthermore, a manufacturing process

may actually change, because of some assignable cause, without the effeot
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Fig. 14 - OBSERVED FLUCTUATIONS IN THE FOUR STATISTIC3 [ AVERAGF,
STANDARD DEVIATION, SKEWNESS AND FLATNES3 (KURTOSIS))
FOR FOUR SAMPLES DRAWN FROM THE APPROXIMATELY NORMAL
DISTRIBUTION GIVEN IN TABLE III. DOTTED LINES REPRFGENT
THEORETICAL LIMITS TO SAMPLING FLUCTUATIONS: 1.e.,
LIMITS WITHIN WHICH OBSERVED VALUES SHOULD FALL
APPROXIMATELY 99.73% OF THE TIMES THAT THE EXPERIMYNT
IS TRIED.

of this cause beiag detected unless the effeot 1s sufficiently large to pro-
duce in one or more of the statistics a displacement outside the limits.

CALCUILATION OF SAMPLING FLUCTUATIONS: UNKNOWN DISTRIBUTION FROM WHICH

SAMPLE IS DRAWN.

The case just considered, however, is slightly different from

that which arises in practice, because we have assumed the true fregquency
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distribution, from which the sample is drawn, to be known whereas in prac-

tice the true frequency distribution is almost never known. This maxes cur

practical problem a 1ittle more complicated, as we can illustrate by means
of the above mentioned experiment. To do this, we must start in ignorance
of the markings of the chips contained in the bowl except insofar as this
information is revealed by the 4000 drawings (with replacement) to which we
have referred already. Let us examine the procedure, therefore, to be
followed in calculating the sampling fluctuations under these conditions.
Looking at the four polygons in Fig. 13, one would probably
assume that the observed distributions might have arisen as samples from a

symmetrically distributed universe27

possibly normal in form. Assuming the
universe to be normal for the 1st sample of 1000 data, we find the normal
distribution having the same value of average and standard deviation as

has the observed distribution. The analysis sheet showing the results was
presented in Fig. 9. Column 5 of this sheet gives the observed distribution
and column 10 gives the theoretical distribution assuming that the sample
came from a normal universe. Column 11 shows the observed differences in
cell distribution. How probable is it that such a difference in cell dis-
tribution would have been observed if the original distribution had been
normal? Pearson's test for goodness of fit gives us the answer, the pro-
bability .760. In other words the probadbility of getting a value of
z(y-yl)z

y1
is .760 and our guess that the original distribution was normal in form can

be assumed to be reasonably justified.28 Both the theoretical and observed

equal to or greater than 6.612 as a result of random sampling

frequency distridbutions are presented graphically in Fig. 15 by the smooth
curve and the dots respectively. ILet us note carefully for the sake of em-
phasis the meaning of the smooth curve. It represents our best guess as to

the distribution of numbers on the chips in the bowl providing we as3ume

57: o ;h; distribution from which the sample is drawn is referred to
sometimes as the universe or population. In this oase the universe ia
the distribution of numbers on the chips in the bowl.

28. See Appendix 4 for a discussion of the goodness of fit test as it
applies to inspection work.
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that these are distributeq normally and that we do not know the value of the

average m and of the standard deviation o' of the distribution in the bowl

2
" 00 L
4
o
-
« 160}
>
@ |
w
']
© 120]
O
.
o)

80}
@x
w
o I A
3
2 40
Z

| |
o —
-3.0 ~-2.0 -1.0 0 1.0 20 30

Fig. 15 - COMPARISON OF THE OBSERVED AND THEORETICAL
DISTRIBUTION FOR SAMPLE OF 1000 DRAWN FROM
A NORMAL UNIVERSE WHOSE EXACT FORM IS UNKNOWN.

except as these are estimated from the sample of 1000. We feel that our
guess is Jjustified because the probability of fit i3 high., To ocalculate the
sampling fluctuations of the statisties X, o0, k and B, we proceed as in the
previocus case except that, since the true values X, o', k' and kb are not
Xnown, we may choose to place sampling limits upon the aifferences to be ex-
pected in each of these statistics. This point will be made clearer in
footnote 39.

Thus, when the sample is drawn from a population of unknown ais-
tribution., we find, for this unknown distribution, an approximate form having
a high degree of fit, and then proceed to calculate the sampling fluctuations

upon the basis of this agssumed form of distribution in the population.
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OUTLINE OF GENERAL THEORY
ILet us assume .

as before, that uniform product is one such that

the probability dya+ of a unit having a quality X within the range X to

X + 4X is

dynr = £HUX, M, Ay, ... 7\;1) ax, 0

where the L' 's represent €] unknown parameters. Suppose we inspeot a sam-
ple of n units of apparatus drawn from a uniform prodquect distributed acoord-
ing to Eq. 2. In the general case represented by Eq. 2, there are ¢, para-
meters, all of which are, of course, unknown, whereas in the case treated in
the previous section there were only two parameters m and o' (See Eg. 1).

In the general case we know only the n observed values of quality and we do
not know either the true functional relationship £' or any of the ¢y para-
meters., Our problem is therefore to find the most probable values for both
the functional relationship f representing the law of distribution £’ and
the ¢ parameters of this equaticn where in general ¢y may not be equal to

¢ unless the assumed form f is the true form f£f'. Theoretically there are
three fundamental steps to the solution of this problem.29 They are:

1. The Problem of Specification: This consists in finding

the most probable form f of the distribution of the popu-

lation.

2. The Problem of Estimation: This consists in finding ways

of estimating each of the ¢ parameters from the data given

by the sample.

29. See, for example, Fisher, R.A., on the Mathematical Foundation

of Theoretical Statistics - Phil. Trans. Roy. Soc. of Lon., Series
. 309-368.

A Vzl%oéﬁfﬁ g%ep should really be included here. This 13 the
application of some tegst. to determine the probability of fit de-
tween theory and observation. To outline it in sufficient detail
at this point would bdbreak the general outline of the theory and
hence its discussion is given in Appendix 4. A more gnecific state-
ment than that given above for the three steps will be given also

in that appendix.
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3. The Problem of Distribution: This consists in studying

the distribution of the estimates of the parameters de-
rived from the sample.zo

THE PROBLEM OF SPECIFICATION

Since, in the practical case, we 4o not know the exact form f'
and the values of the ¢, parameters of the distribution we must follow the
ocustomary scientific procedure ofr adopting an hypothesis, deducing its con-
sequences and comparing the results with the known facts or experimental
data. Thus, when we assumed no & priori knowledge of the distribution of
the numbers on the chips in the bowl, we empiriocally chose the normal law
as a trial specification, calculated the theoretioal distribution and then
compared the theoretical and observed distributions by means of the goodness
of fit test. In other words, we chose an assumed form f for the daistridu-
tion, calculated certain results on the basis of the assumed form and oom-
pared the theoretical and observed results in order to see if our assumed
form could be justified.

In general the choice of the empirical function to be substituted

for £' in Tq. 2 is found to be either of two forms as represented by Eqs. 3

and 4,
i 0 1l 2 3
£(X) = Cy9 (x) + Cltp (x) + Cch (X) + o0 = == - =
and
X-a
LT o £ - e eme e .
X7 T PRI T

where the C's and a's are parameters and q:i(x) represents the 1th derivative

of the normal error funoction

R (X-m) %
1 e 20"2 Gy =~ == == e e === 1
AT -

o' being the root mean square deviation from the average m of the universe

- e s = = e
- W e e = a W e

te of a parameter upon the basis of a finite sample is
30,temeéng :z:gfgtio. Inpgeneral primes are used to denote parameters,
thus we have Xt=m, o', k' and B3 as parameters and X, o, k and £, as

statistias.
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The systems of curves glven by Eq. 3 and Eq. 4 are well known and

’ X 31 .
need not be considered here. Other forms of specification may be used

later, but, for most instances, these have been found quite aatisfactory.32

THE PROBLEM OF ESTIMATION

How shall we estimate the ¢ parameters? This question has not
been studied 'so extensively as the problem of specification, but one general
principle may be laid down: the estimates of the parameters must be symmet-
ric functions of the n observed values of X. We naturally try to use one of
the three common types of integral rational symmetric functions. Probdabdly
the simplest form of this function, at least from the viewpoint of ocaloula-
tion, is the power-sum. Thus the ith power sum 1is

i i i
i=Xl+X2+...+Xn, ------------- 5

where Xl, Xz, e Xn represent the n observed values of the quantity X and
i is a positive integer. This chocice of function can be justified, because
the other two classes of symmetric functions can be expressed in terms of
the power-sums.

Now, in general there are many ways of calculating any parameter
of an infinite population. Thus the parameter o' of a normal distribution

can be calculated in an infinite number of ways by the equation

- - - e e m w w m m oam m e = o=
- - w - .
- e e e - Em e e e e

Eq. ives the infinite series which has been studied by
33 Gram th?e%e, Charlier, BEdgeworth and others. It is generally
9
ran-Charlier series.
knownEqas‘Lt?g ?;hgndifferential equation of Pearson's generalized
uency ocurves.
SyStgieoieggg% whyycurves belonging to one of these two general
tvpes have been used so extensively is that tables which simplify
t}{p arithmetical calculations are available through the efforts
ofenumerous investigators of whom Pearson has been the greatest

contributor.
32 Thus we have the method of translation and other methods

f Representing
Edgeworth, See "Untried Methods o
%Eg&:gzg"bgy F% Y. Edgeworth. Jour. Roy. Stat. Soc., Vol.

ILXXXVII, Part IV, July 1924.
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rm
e za'E 1 1 2 %
i g (i+1)
x e ax = r s 6
o' Jan i d 2
Jo

where x=X-m and i is any integral number. Why, then, can't we use the

same methods to estimate the parameters of the infinite population from the
n observed data constituting the sample? For example in the experimental
determination of the distribution within the bowl, why ocan't we estimate
the parameters from the sample equally well in any one of the infinite num-
ber of ways assuming that there is no difference in the amount of labor in-
volved? The answer is that we can, but all of the estimates do not have the
same precision and hence we must use that estimate for which the error cf
sampling is a minimum, providing this can be found.zz’ However, before we

can do this, we must solve the problem of distribution.

PROBLEM OF DISTRIBUTIOR

In other words, we must find the equation of the distribution of
each of the possible estimates for a given parameter and use that estimate
with the smallest amount of dispersion. To do this constitutes one of the
rather complicated problems of modern statistics, because the distribution
of a statistic depends among other things upon the form f' of the dAistridu-
tion of the population and upon the size of the sample.

In practice we customarily use a form of hypothetiocal frequenoy
distribution which does not involve more than four parameters, X'sm, o',

2

k'=,/-3-'- and 8'. TEstimates defined on the analysis sheet Fig. 9 generally are
1 ‘
used. The distribution of these four estimates has been shown to be approxi-

- ew s mr e = me e = e = -

33, The importance of making efficient use of data is discussed in
Appendix 3.
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mately normal when the sample size is large®® and where the distribution

from which the samples are drawn is approximately normal. The standard de-

viations of the four estimates, X, o, Xk = ,/BI and Bz are as follows:

standard deviation of ¥ = g = _g_; Y
X /n
standard deviation of the standard deviation ¢ = o. = AL s
o /?n

standard deviation of the skewness k = 0y = ,//}'1'6 ,

standard deviation or the flatness (kurtosis) By=o, = /24
2 v 1

This gives us the necessary information for setting sampling limite
upon each of the four estimates of the parameters, and. although no absolute
rules can be formulated to indicate the limitations imposed by the assump-
tions made in deriving the standard deviations presented in the previous
paragraph, the following considerations have proved helpful guldes.

2. If the number n of observations is at least 1000, we may assume
that all of the statistics are distributed in approximately nor-
mal fashion so that the normal law integral table may be used in
indicating the significance of deviations measured in terms of

0'k and O'Bzo

b. If the number n of observations lies between 100 and 1000 we
may assume the distributions of X and o to be normal but we
may not assume the distributions of the estimates k and L to

be normal.

c. If n is less than 100, none of the four estimates may be assumed
to be distributed in normal fashion. Allowance must be made

- e e e e e o e e m m - m e e e = e e -

. rgon, Karl, and others "On the Probable Errors of Frequenoy
a4 Consigits" z Biométrika, vol. IT, 1903, p. 273 - Vol. IX, 1913, p. 1.

Isserlis, L. - "On the Conditions Under which the Probable Errors

of Frequency Distributions have a Real Significance" - Proceedings
Royal Society, Series A. Vol. XCIT, 1915, p.23.
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accordingly in the interpretations of deviations measured in terms

of the standard deviations of the estimate.35

" PRACTICAL APPLICATION OF THE THEORY

IN ATTAINING THE FIRST OBJECT OF INSPECTION

Let us return to the questions originally raised in respect to the

data presented in Figs. 2 and 3. We shall treat these two cases together,

because Fig. 3 represents the distribution of the 12 months!' vroduct shown

in Fig. 2. 'le want to use the theory already outlined to show whether or

OB
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Fig. 16

not this product was uniform. We assume that if it had been uniform, it

cdbuld be represented by some one of the well known types of frequenoy ourves

such as given by Egs. 3 and 4. Our first step in the deteotion of non-uni-

35. Joc. cit.

footnote 19.
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formity is, therefore, to see if the distribution presented in Fig. 3 can

be fitted by such a smooth curve.

The original grouped data are presented on the analysis sheet in
Fig. 16. The values of the estimates By and B, suggest that we try either

type IV of the Pearson family of curves, or the first few terms of the Cram

Charlier series. This has been done.. Column 10 represents the theoretically

derived distribution making use of only three terms of the Gram-Charlier ser-

ies. Column 14 gives the distribution making use of the type 1V Pearson

curve. The probabilities of fit in both instances are practically negligi-

ble, arid hence we have reason to believe that the distribution of product is

not un:!.form.:36 This is assumed %to be true even though the theoretiocal dis-

tribution given in column 10 and represented by the solid ourve in ¥ig. 17

37
may indicate comparatively close agreement.

4000}

3200

2400}

1200}

800}

NumBer oFf INSTRUMENTS

Quacity (Derinep sy CHARACTERISTIC X)

Fig. 17 - DATA OF FIG. 3 FITTED WITH THEORETICAL FREQUENCY
CURVE. ALTHOUGH FIT MAY APPEAR TO BE FAIR, THE
PROBABILITY OF FIT TEST SHOWS IT TO BE POOR.

- - s m w @ -
- e @ E e e ws e wm wm = e =

> w m e e e e w e e e - = o= e

36. See Appendix 2 for cases where a good fit may be found even though
the product is not uniform.

37. The theoretical distribution calculated with the aid of four terms

P ++ fy m Ch rlier series did 10t cive as hieh a fit as the cne
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The attempt to fit each of the monthly distribuvions also mei with
failure. Then the statistics X, o, k and B, were caleculated for each of the
12 monthly samples and the monthly observed valueé of these four factors
were plotted as indicated in Fig. 18. The ordinates are given in terms of
observed deviations from the values for these four factors presented on the
analysis sheet in Fig. 16. The dotted lines drawn on each of the four charts

in Fig. 18 show the limits within whigh these factors might be expected to
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Fig. 18 - VARIATIONS IN THE MONTHLY ESTIMATES OF THE
3TATISTICS . o, k and 85 FOR THE DATA IN

FIG. 2.
fluctuate, because of s;amrpling.58 But, since the factors fluctuate ocutside
these limits, Fig. 18 presents practically conclusive evidence that

- e e e e m m = e = e e e e e o™
- e e e e e ar owm - S
- wn em es an o me em s we e

> 3% ‘the obgserved values for each factor
38, In other words, 99.73% of
should lie within t,'.he limits for this fastor.
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the product was not uniform over this neriocl.39

CONTROL CHARTS: VARTABLES.

Charts such as that shown in Fig. 18 are thought of as control
charts. So long as deviations from month to month fall within the limits
shown on this form of chart we may feel quite certain that the variations
may have been produced by some complex system of non-assignable causes which
it4 would be very impractical to try to control. 1If, however, some one or
more of the factors shown in the chart fall outside these limits, it is rea-
sonable to believe that there may be some assignable cause for the observed
effect, Hence such a chart is helpful in indicating trouble whioh it should
be possible to find and probably control. |

CONTROL CHARTS: ATTRIBUTES:

Let us now consider the application of the theory to the establish-
ment of a form of eontrol chart which applies when the method of attributes
is used in inspectlon or, in other words, the chart which applies when a
piece of apparatus is classed as being either above -or below a certain stan-
dard quality. Customarily the quality standard is so chosen that instruments
whose quality is less than the standard are termed defective. It usually
proves to be economically unsound to refine the production procedure to an
extent requisite for insuring that all units of product will conform to the
quality standard, and hence even in a uniform product we may expect to find
in the long run a certain fraction of the total number of instruments to be
defective. This fraction p' of the number of units of product must be re-

jected and later modified or junked. However, the observed number pn found

biection may be raised to the conclusion derived from a oon-
39 sideigﬁog gg rig. 18}{ because it may be argued that the grand average
for each of -the four factors used as bases for measuring the deviationm,
would not be the true value even though the product had been uniform.
We may, of course, get around this difficulty by finding the standard
deviations of monthly differences from the grand average, and using
these to set up limits for the differences. This has been done and
leads essentially to the same conclusion as to the non-uniformity of
product. In the practiocal case we felt Justified in using the ohart
of Fig. 18, because previous experience based upon many hundred thou-
sands of observations had established averages for each of the four
factors which were practically the same as those shown on the chart.
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defective in samples of n pieces of apparatus will show variations about the
true average D'n even though the product is uniform or, in other words, even
though the product is being manufactured under a constant system of causes.
We must, therefore, set up certain limits within which we may expeot observed
values of p to fluctuate because of sampling. Essentially this is the same
type of problem as the one already considered, and it differs only in cer-
tain technical details as to the way of carrying out the caleylations.
Naturally we do mnot know the true value p', but we do kxnow that the standard
deviation of an observed value of this factor is equal to/i'—-,(-l—l——-i:)
where n is the size of the sample which is measured. Thus, in cases where
millions of pieces of a given kind of apparatus are inspected each year, the
precision with which the process average p' can be estimated is very high
1ndeed.40 Fig. 19 presents a copy of a summary analysis sheet which provides:
a. A summary of past data for as long a period as
desired.
b. A monthly record for the current year requiring
less than five minutes calculation each month to
bring it up to date.
c. A chart similar to the final form of the monthly

report.

The middle line in the chart, Fig. 19, is the grand average of the percent
found defective between January 1, 1923 and December 31, 1923. The 1limit
lines are so set4l that, providing the product is running uniform with a

process average which is the sameé as that observed over the period indicated,

- e ee E e e e e o am w m e m @ m e m o= = o=
- - - am em wm wm e = e e =

40 0f course we must gubstitute the observed value of ' in the
expression — —
p' _(1-p")
n
a1 These limits are generally set with the aid of the law of small

numbers.
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Pig. 19 - ANALYSIS SHEET USED IN PREPARING CONTROL CHART -
METHOD OF ATTRIBUTES.

the observed values of P'will fall between the limits in approximately 99%
of the cases 42 Of course, if sufficient data are not available to assure

a comparatively high degree of precision in the determination of the process

average p', it is possibdle, as in the case of variables (footnote 39), to

gset limits on the differences between the observed value of p' for the en-

tire previous perioa and the monthly observed values of .

Pigure 20 presents siX typical examples of control charts vrenared
g

from analysis sheets such as shown in Pig. 19. These s8ix examples cover a

42 Of course 1limit lines can be set which would include more or
. c
less than 99% of the cases.
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wide range of conditions. 4 fluctuation of the observed estimate of pP' ocut-
side »the limits indicates the existence of assignable causes of variation in

the product whereas fluctuations within the limits can be attributed to

' sa.mpling.‘l:‘5

EFFECT OF ERROR OF OBSERVATION UPON CONTROL CHARTS

Making use of the theory for correction of observed data for errors

44 . X
of measurement, ‘1t is possible to determine the effect of errors of mea-

— LIMITS WiTH ERROR

------ LIMITS WITHOUT ERROR

Deviation From A VERAGE

. - CHART SHOWING EFFECT OF ERRORS OF MEASUREMENT
rig. 2 UPON SPACING OF LIMIT LINES ON CONTROL CHART.

- w P e m wm ae m m wm e @ e @ W e = e & - -
- e wm = e wm e A = =

_ ourse ., negessary in preparation of such control charts
43. to t;ﬁeiiﬁtgfa:c%unt,several minor details in the way of calculation
but no attempt need be made here to go into these details,

44, Loe. cit. TFootnote 13.
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surement upon the limits within whiech product may be expected to vary with-
out indicating the presence of effects of assignable causes. Thus, Fig. 21

shows how errors of measurement modify the spacing between the limit lines

for the average shown in Fig, 18. 1In Fig. 21 the dotted lines show the

limits which would actually have existed had it not been that the method ot

measurement was subject to error. A chart such as that given in Fié. 21

shows the effect of errors of measurement in increasing the range over which
produet may vary without indicating the existence of assignable causes of

variation.

EFFICIENT USk OF DATA IN ESTABLISHING CONTROL CHARTS

Naturally we are interested in maintaining the best possidle con-
trol of product at a minimum of cost. Ways of making efficient use of data
discussed in some detail in Appendix 3, will now be applied to the problem
of establishing control charts. As already pointed out in conneoction with
the study of analysis of data, one or the other of two methods for caleculat-
ing the estimate of o' of the population is used customarily. Now, in the
preparation of the limit lines for the average in Fig. 18 the root mean
square method was used. Approximately 1250 units of apparatus had to be in-
speated each month in order to maintain the limits indicated in this figure.
If we had used the mean deviation method we should have had to make on an
average (1.14) x (1250) or 1425 measurements each month in order to maintain

45 For Type A apparatus,

the same degree of preoision, i.e., the same limits.
for which the control chart Fig. 18 was made, the cost of making one measure-
ment is approximately one dollar so that the yearly saving acoruing from us-
ing the root mean square deviation instead of the mean deviation estimate of
o' is $2000. Such savings become even more significant when many kinds of
apraratus are being inspected.

POSSIBLE MODIFICATIONS OF THE CONTROL CHARTS

Naturally certain modifications of the control charts suggest

themselves.

- = e e W @ m m w m e m w ® e oa e e e e o= o-
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For example it is conceivable that control charts may prove

if we had used other powers in accord with Eq. 5 we
45. shouizmiiszlgéa to make correspondingly more observations.
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useful even when regular or long time trend novements are superposed upon

the effects of some constant system of causes. For example we may have a

It should

be possible to disceover such g trend, providing data are available over a

seasonal variation such as represented schematically in Fig. 22.

suffieiently long time, and to allow for the effects of sampling fluotua-

tions as indicated schematically in this figure. Other instances may arise

where even irregular charts must be used. Thus the product may be known to

change because of some assignable cause. Such a change would necessitate

Quavity (DeFined By CHARACTERISTIC X)

o, 22 - SCHEMATIC FORM OF CONTROL CHART TO TAKE
rig. ® SEASONAL OR CYCLIC FIUCTUATIONS.

the establishment of a new set of parameters and this fact would need to be
taken into account in the preparation of the chart. As an example let us
cénsider the manufacture of timber products such as poles, cross-arms, and
pins. Of course the quality of guch products depends upon certain character-
istics of the standing timber. But the quality of standing timber may not

be uniform even over comparatively small areas. Thus the wood in trees grow-
e uni
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ing on a mountain range may depend upon whether the trees grow on the east

or west slope. Product memufactureq from trees on one slope may, therefore,

give one set of 1limit lines and produet manufactured from trees on the

other slope may give another set. Similar conditions may arise in a manu-

facturing plant where the source of raw material is not regular or where

some step in the manufacturing process must of necessity be modified at

times throughout the year. All of these elements must be taken into account

in the preparation and interpretation of the control charts.

CONTROL CHARTS BASIS FOR RATING

Not only do control charts indicate the presence of assignable
causes of variation in quality of product, but they alsc form the basis for
rating quality.

It may not be out of place to outline the way in which these con-
trol charts form the basis for rating. In the general case quality is de-
termined by those characteristics which make a thing what it is and, custom-
arily, more than one characteristic is considered necessary to determine the
quality of a unit of apparatus. Thus if there be e different characteristics
we may say that quality Q is a functlion of these e characteristics, as for
examplé, Q-9 (X,¥,Z,...) where X, Y, Z, .... represent the e characteristics.
Even for a controlled precduct, X, Y, Z, ... will vary within certain limits,
because of the effects of non-assignable causes. Hence the quality Q will
be subject to sampling fluctuations, the determination of which depend upon
whether or not X, Y, Z, ... are independent.

Now, the rate ig in turn a funetion of the quality Q, and hence
the effects of non-assignesble causes upon the quality Q are mirrored in the
Therefore we must use the information revealed in the ceontrol charts

rate,

as a basis for establishing a control chart for the rate: i.e., limits with-

in whioh the rate may be expected to fluetuate, because of the effects of

non-assignable causes.



- 48 -

PART IV - SUMMARY

The viewpoint taken in respect to inspection is considerably diff-
erent from that whioh looks upon inspection as the routine process of weed-

ing out defective pieces of apparatus.46 The viewpoint taken is that in-

spection is the scientifiec process of collecting and interpretating data
in terms of the controlling causes constituting the manufacturing prooess.
A theory of inspection must necessarily guide each of the four steps in
attaining any one of the three objects of inspection.

Inspection is essentially different from she so-called exaoct
sciences insofar as the data cannot be completely explained in terms of
assignable causes or known natural laws. Instead the interpretation of in-
spection data involves the application of laws of chance. Essentially an
ingpector believes that every observed effect or phenomenon is a neoessary
tmnsequence of a previous state of things even though he is not able to
trace this connection in termsﬁ of assignable causes., Therefore, to make
the best use of inspection data, it is necessary for the inspection engineer
to be acquainted not only with the known natural laws but also with the

47

theory of statisties. The essential characteristic of the theoretioal

basis proposed for attaining the first object of inspection consists in the

definition of a uniform product as one whose variations are controlled by
non-assignable causes. It is assumed that the probability dy,. of produc-

ing a unit having a ouality X within the range X to X + 4X will be given by

R Y R e R 2

so long as the product is uniform. To detect the effects of non-uniformity

we must show that the observed distribution of product is not consistent

- = am e o e
—— - e = e
P
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uld inspection weed out defective pieces, but it

46 shoulilv.gtagrsl:éywzgg out the causes of defective pieces.

47 This idea is amplified in the paper referred to in footnote 23.
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with sueh an assumed law.

It 1s hoped that the outline of the theory given in this paper will
be helpful in making possible the application of this method to inspeoction

problems, particularly through the use of gontrol charts.

Much remains to be done by way of amplification of the statistiocal

methods referred to in the discussion presented in this paper. 1In ocertain
instances the mathematical theory developed for analyzing and interpreting

data in fields of bioIOgy,’ psychology, meteorology, physices, eto., may be

carried over to the field of engineering inspection. In other instances

engineering inspection offers problems which apparently have not been con-
gsidered elsewhere.

We have considered the three objects of inspestion:

1. The detection of the existence of assignable causes

of wvariation in product.

2. The discovery of the assignable causes.

%, The establishment of economic standards.

We have considered four steps which must be taken in attaining
each of the three steps:

a. Establishment of the inspection procedure.

b. Collection of data.

¢. Analysis of data.

d. Interpretation of data.
Inspection theory makes it possible to take each step at a minimum of cost
and hence to attain the objects of inspection at a minimum of cost., It
shows how large a sample to choose, i. e., 1t shows when the sample is just
large enough to givevthe desired precision but not larger than is necessary
to give this precision; it shows how many measurements to make on each
unit; it shows whether or not any saving can be effected by treating the
measurements as variables jnstead of attributes. It shows how to keep from

taking unnecessary data, to record data so as to save time in analysis, to
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make possible the separation of the effects of assignable from those of
non-agsignable causes and to detect trends and cyclic causes of variation;
how to analyze data in order to make the most efficient use of them, there-

by reducing to a minimum the number of measurements required; how to oorreot

data for errors of measurement; how to make allowance for the size of the

sample and how to rate the quality of product.

In other words Inspection theory makes possible a comparison of
the efficiencies of different inspection methods and a calculation of the
risks and advantages of sampling inspection. The theory helvs to detect

the effects of assignable causes of variation in product and to find those

causes at a minimum of cost.

APPENDIX 148
SIZE OF SAMPLE

To reduce the cost of inspection of manufactured product, care-
ful consideration of the factors involved indicates that partial or sampling
inspection frequently may be employed. From each group or lot of N items, a
sample of n items may be selected and examined. If the sample satisfactor-
11y meets the tests made upon it, the entire lot may be approved. If the
sample does not meet the tests, then either the lot may be rejected or ad-
ditional inspection be made.

When any scheme for sampling inspection is to be established, the
first question which arises is: How much inspection should be made; should
504 of the product be inspected or only 104 say? This is often a difficult
question to answer. Even when one's Jjudgment is backed by a considerable
amount of experience, it is not easy to state decisively that a certain sam-
ple size is economically the best. The reason for this, of course, is that
the most economical sample size is not the one that results in the cheapest

inspection but the one which provides the best balance between cost of in-

spection and the benefit derived from inspection.

- ew am W W e a m e w em wm m w o @ e m @ om e . e . o .-
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48 I am indebted to Mr. A. 0. Beckman for the preparation of this
Annerdix
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The benefit whien results from inspection lies in the information

which is obtained. When each item in the lot of product is inspected, the

benefit is the greatest, for the in‘formation is complete. But, at the same

time, the cost is a maximum. With sampling inspection the cost is reduoced,

but the information obtained is incomplete. Thus, if we inspect a sample

of n units of a produet taken from a lot containing N units, we know only
the status of the n units and ean merely guess at the nature of the remain-
ing N-n units which are not inspected. Obviously the guess is not a bd1lind
one, for usually the uninspected portion of the lot is similar to the por-
tion which is inspected, but we can never be certain of this faet without
complete inspection. The sample may, and usually will, because of errors
of sampling, have a ocomposition somewhat different from that of the lot,
and we may easily make a serious mistake in accepting a lot merely because
the sample is acceptable. There is this chance that the sample may prove
satisfactory although the lot from which the sample is drawn contains ac-
tually an excessive number of defective units and is therefore not aocept-
able. This chance alﬁvays exists in sampling inspection, and detracts from
the value of this kind of inspection.

Thus we see that the saving effected by sampling inspection is
not a pure profit, for sampling inspection always involves a potential loss

in the risk that the sample will represent a bad lot as being good.

RISK IN SAMPLING INSPECTION

What is the risk encountered in sampling inspeoction, and how is

it to be evaluated? |
As an example let us econgider the following situation: A con-

sumer is about to purchase & 1ot of N units of a certain product. He has

stipulated that a certain requirement must be met. Any unit failing to

meet this requirement is gefective. Now, a certain number of defective

its in the lot will be tolerated, but, if this number is exceeded, the
units in

lot will be rejected. Let us call this number the tolerance number PN,



- 52 -

where p, 1s the tolerance fraction for defective units. Obviously, if the

product is completely inspected, the consumer assumes no risk, for he knows

exactly the number of defective units in the lot. If he examines only a
sample of n units, however, he knows only the number of defective unita in
the sample, and he must guess at the number in the remainder of the lot.
The uncertainty attendant to this guess is his risk.

Let us define the rigk in a more precise fashion. Suppose the
consumer selects a sample of n units under the condition that, if ¢ or
less defective units are found in the sample, the lot is to be accepted,
but, if more than c¢ defective units are found, the lot is to be rejected.

This is, of course, the condition usually oceurring in practice. The oon-

sumer's risk, then, is the chance or probability that ¢ or less defective

units will be found in a sample of n units selected from a lot of N units

containing pN defective units, where p is greater than py; i.e., the chance

that the sample will indicate a bad lot to be good. The caloulation of the
risk so defined involves i posteriori probability theory. iWe can, however,
find the maximum value of this risk by simple & priori probability theory

as follows: Assume that we xnow the value of p. In this case the prodabdbil-

ities that 0, 1, 2, ... ¢ ... n defective units will be found in the sample

are given by the successive terms of the series

¢

1 7 { ~DN anN PN pN - - -
n

where ci is the number of combinations of 1 things taken J at a time. The

J

sum of the first c+l terms of this series is greater when P=p, than the

similar sum for any values of p greater than Dy Hence we shall use this

sum as the maximum value of the consumer's risk throughout the nresent dis-

cussion.
FINDING THE CORRECT SAMPLE SIZE

In many cases N is fixed Dby tne size of the lot which the consumer
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is to buy, Py is set by the standard of quality he desires to maintain and

the risk P 1s taken as the maximum risk which ne may safely assume. The
problem is to find the size of the sample to be insvected.

This, of course, is influenced also by the choice of ¢, the maxi-
mum number of defective units to be allowed in a satisfactory sample. 71t
two defective units are to be allowed, then the sample will be larger than
the sample for which only one defective unit is allowed. We shall not enter
here into a discussion of the factors underlying the best choice of ¢ excent
to point out that for the very simple case where the lot is accepted cr re-
Jected on the basis of one sample, ¢ should be the minimum, namely 0, for
the most economical inspection. 1If, as in many cases, additional inspec-
tion ig made when the sample indicates that the lot is unsatisfactory, the
most esonomical inspection often demands a value of ¢ larger than 0. This
subjeet will be reserved for future discussion. For the present let us
assume the value of ¢ to be zero. This means, of course, that the presence
of one or more defective units in the sample stamps the lot as unacceptable.

The problem of finding the -prOper sample size is easily solved by
the use of Zg. 7. We need only the first term, since we are concerned only

with the probability of finding O defective units in the samnle. We have

then the relation

where |gN = (qN)(qN-l)(qN—Z) ves 3.2.,1, ete. By solving for n, the sample

size is determined.

A convenient method is %o establish ocurves for the values of X,

P and P which occur in practice. For example, a risk of P=.10 is fre-
t
quently assumed. If we plot curves for this value of risk where c¢=0, we

obtain the chart shown in Fig. 23.

As an illustration of how the curves can be used, let us assume

a lot of N=1000 units and & tolerance fraction of py=.02. How many units
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shall be inspected so that the maximum risk of accepting a lot which contains

a fraction of defective units greater than the tolerance is P,=.12? The

chart gives the answer immediately, n=107. That is, 107 units are to be

selected from the lot of 1000 wunits., If no defective units are found in

the sample, the 1ot is to be accepted. If one or more defective units are

found, the lot is to be rejected.

SAVING AND RISK WHEN REJECTED ILOTS ARE COMPLETELY INSPECTED

Let us consider a slight extension of the preceding simple sampling
inspection scheme. Iet us assume that the consumer is buying many lots of
1000 units each and is selecting a sample of 107 units from each lot. In
addition, however, to avold rejecting good lots which the samples indicate
are bad, the rejected lots are completely inspec'ted; i.e., the remaining
893 units in each lot are examined. What will be the saving and the risk”
Piz. 24 is a schematic representation of the saving in the cost of inspec-
tion snd the consumer's risk (both in percentage) when the fraction of de-

fective units in the lots ranges from zero to the tolerance, py, and beyond.

That is, if we assume that the manufacturer produces uniform lots in which
]

100
[=Te I 2
o s SAVING
2 60 /
[
2 o}
4
B
w b
0
(]
p » PERCENTAGE OF DEPECTIVE ITEMS IN LOT

SK AND THE

/¢ HOW THT CONSUMER'S RI

Pig. 24 - CURVES SHOWITG o GF INSPECTION DEPEND UPON
SAVING IN oF DEFECTIVE UNITS IN LOTS,

F )
V%I:IE‘IPIHgEg.%ég‘g%OLOTS ARE COMPLE?E?OC INSPECTED.
N=1000, n=107, pt=.02, and Py=.10.
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the actual fraction of defective units is P, then, as shown in the figure:

& If there are no defective units (p=0), the total amount

. 107
of inspection is only Yooy ©f that involved in com-

plete inspection, or a saving of 89.3d. The consumer's

risk is obviously zero, for all the lots are good and

there is no possibility of getting a bad lot.

b. If the fraction of defective units exactly equals the
tolerance (p=p,=.02), then 109 of the lots will be
accepted on the basis of the sample and 99% must be com-
pletely inspected. The saving is therefore only 8.93%.
The risk is again zero, for the tolerance has not been
exceeded. When the tolerance is just exceeded, however,
the risk as we have defined it becomes the maximum or
10%. |

c. As the fraction of defective units increases beyond the
tolerance fraction, both the saving and the risk become
less. In the limit, when all of the units are defective
(p=1.00) all of the lots will be rejected and must be
completely inspeoted. Hence the saving and risk are both

Zero Actually, for all practical purposes, this rondi-

tion is reached at p=.05.

Incidentally, the nsaving" curve in Fig. 24 has another point of
b

fnterest. In case the manufacturer has to pay the cost of inspection, this

gurve shows the incentive for the manufacturer to produce uniformly good

product. In the long run % is the average percentage of defective units in
u . & s L

th duct 1 this is xept well velow the tolerance percentage, the manu-
e product. £ :

facture v considerably on the cost of insvection, but, if on the aver-
I 88gVes

erance percentage of defective units,

he tol
age, the product contains nearly t

the saving is slight.
PRODUCER 'S RISK
PRODUM A 2 o

i d the consumer's risk in sampling
nave considere v
In this article we



It cannot be en-

tirely neglected by the consumer, however, for if a large amount of ood

product is rejected, the cost of the accepted product must necessarily bve

increased. To avoid this, elaborate inspection schemes are often provided

for reinsvecting rejected product. In such cases the relations existing

between the various factors are not S0 simple as in the case considered
here, but the application of the principles of probability usually enables
one to choose the best scheme and to determine the best conditions for its

successful operation.

SUMMARY
The amount of inspection which should be made in a given case de-
pends primarily upon the risks to be assumed, the standard of quality to
be maintained ~nd the amount of product under investigation. Wwhen these

factors are fixed, it is possible to compute the proper sample size.

APPENDIX 2
DETECTION CF NON-HOMOGENEITY OF PRODUCT.

Sometimes the conclusion is drawn that product is homogeneous 1f

it is aistributed in accord with one of the well-known types of probadility

but important instane
curves in Zgs. 3 and 4. In general this is Justified, but imp n a8

may arise when this conclusion is not justified as we shall now see.

Given a set of n observed values of some quantity X we proceed,

as indicated in Parts II and IIT, t0 ealoulate certain statistics. IXnowing

the 1 f B8 and B85, we use standard methods for choosing the type of
values © 1 ’

probability curve with which to fit the data. As an example, for a normal

population £ and b;'a are O and 3 respectively. Hence, if & pair of statis-
: 1

are found to be approx’imatel
with a normal curve. We then apply the criterion

y 0 and 3, we usually try to fit

tics Bl and 62’

the observed distribution

for ing the goocaness of £1t tb give us some idea whether or not our
measuring
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assumption o
ssumption of a normal universe is justified. If the it is g0od, we usually
assume homogeneisty.

Now let us suppose that a product is produced by two machines, that

the product from one machine is distributeq normally about an average quality

X, with standard deviation 0y and that the product from the other machine is

distributed in the same manner about another average i'z.

if azl = ?:2, Byl = aNl = aEyz = aNz and ny13= Moy

) - 2
B, = 9 _ I+a * “I+a
T 2 3 T T i
2 r a( u21+7{'1) ‘_322 *‘Kg—
1+a 1+a
A
" (g +4Tyug 6T 11 Ty) , (HagreXoty 25T )
B, = 4 _ 1+a 1+a ——- 10
2" F - - — :
a(ug+X5) , te2tXe
1+a 1+a

where all symbols refer to the population.
Fig. 8 shows two component distributions (equal in area or

1
§y = §,) with averages separated by 1y 0. Using Eqs. 9 and 10 we oan find

al and ﬁz for the compound distribution. These caloulated valuea are approx-

imately those of the normal curve. Hence fitting a normal ocurve to the ocom-

pound distribution (dots) we get the smooth curve shown in Fig. 8.

N Tig. £5 shows two component distributions with averages sepa-
ow Fig.

i i e ratio 10 to 1. The solid curve is the
rated by z% ¢ and with areas 11 th

Gram-Charlier curve having the same values of standard deviation, B, and fg

as the compound distridution.
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e
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Quatity (Derineo 8y Craracteristic X)

Fig. 25 - SCHEMATIC DIAGRAM SHOWING HOW NON-HOMOGENEITY MAY
ESCAPE DETECTION. COMPONENT DISTRIBUTIONS OF
UNEQUAL SIZE.

Obviously the fit in the two cases is very good indeed, and it is

doubtful if we should detect non-homogeneity by analyzing the data represent-

ing the compound distribution. On the other hand it would be a very simple

matter to detect non-homogeneity if the data for one of the components were

kept separate from those of the other.
'0f course the practical case of detecting non-homogeneity 1s much

more complicated than the one considered. The illustrations should indi-

cate, however, the necessity of carefully plamming the inspection procedure
4 ’

to detect non-homogeneity of the character noted.
APPTINDIX 3
DISTRIBUTION OF STATISTICS

observed values of quallty X, Xa' cer Xy, we

Gtiven a set of n

try to find the equation of the curve
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dy)\" = f'(Xi)\-i’ Ké, es e 7\-&1) dx, _______ 2

where dy;, , represents the probability of producing a unit with quality X
within the range X to X + 4X and the A' 's represent the parameters. As
indicated in the paper, our first step consists in finding the distribution
f and the second step consists in estimating the ¢ parameters from the

n observed results.

Now, in general, there are many ways of estimating each of the
parameters, and, naturally, we want to know which method to use. Two ori-
teria must be used in reaching a decision as to the method of estimate to
use in g particular case. These are:

1. The cost of the analysis involved in making the

estimate.

2. The precision of the estimate.

It is an easy matter to compare two or more methods of estimating a para-

meter in respect to cost, but it is not such an easy matter to compare them

in respect to precision.

To determine the precision of an estimate, we must find the dis-

tribution of that estimate or statistic. In general, the distribution of a

statistic depends upon two factors, the distribution f£' of the population,

and the size n of the sample used in ealeculating the statistic. Tet us

illustrate the effect of the size of the sample upon the distribution.

Tet us assume that the population is normal, %q. 1, and hence that

it involves only two parameters m and g'. We shall consider only two of the

- - e e = e = - -
- e ws wm e -
e . T I Tt

f this subject. The
a general discussion o ‘
49, I hope to presentdégtggly %o call attention to the problem 1? its
present note is inten the experimental results are in

. 0Of course I
igizziﬁﬁgtgniﬁigggzigzs to the extent ijndicated in the text.
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many possible estimates for each of these varameters. They are the median

—' P TY A
and arithmetiec mean for = /1 ZIZ|X-X . /Z(X-T)

for o', where the summation ¥ extends over all of the n values in the

sample and X 1is the average of these n values.

When n 1is large, the four distributions of these statistics
N ]
are all approximately normal with standard deviations _1_._22751_:_5_@' ’ %
O' vT=Z gpg O respectively.50
/2n V2R
Hence the arithmetic mean X of a large sample is the more efri-

'

cient estimate of the mean m of the population, because the same precision
can be obtained from the mean of 100 observed values of X as can be obtained
from the median of 157 observed values of X. The median of large samples
18 therefore only ,]f:—g% = 63.7% efficient.

Obviously, however, the efficiency of the median is 1005 when
n=g2. What, then, is the efficiency of the median for small samples, but
larger than 2., No general answer to this question is apparently available
S0 the 4000 drawings given in Fig. 13 have been used to determine the effi-

ciency for n=4. This was done in the following way.

The 4000 drawings were available in the sequence in which they were

taken. These observations were divided into 1070 groups of four each, tak-

ing the first 4 observations as the first sample, the second 4 observations

as the second sample and SO on. The arithmetic means and medians were cal-

culated for each sample. From normal law ‘theory we know that the distribu-

tion of the means should pe given by the equation

~4(X~-m) -2(x-0)°
2ot 2
} ax. - - 11
07 = e R
50 Whittaker and Robinson, "The caloulus of Observations™, Chapter
. a -

VIIT.
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A e
omparison of the theoretical ang observed distribution of the

neans gives a probadbility of fit of .92 (Fig. 26-a). 1o theoretical distrt-

bution is known for the medians, but the observed distribution (Fis. £6-b)

gives a probability of fit O .60 with the normal law

St mRVe
1 e 2( .55)

dy, =
1 55 =7 1’

where X1 is the median value and .55 is the observed standard deviation of

the medians.
Now the probable error of the observed standard deviation .55 of

the medians is .0lZ, and hence the empirically determined efficiency of the
2
)

median is (g% x 100 = 83% with the 3 doubtful. Furthermore, even for sam-

ples of size 4 or greater, the arithmetic mean is more efficient than the

51
median, providing, of course, the population is normal.

Let us next consider the distributions of o; and Og for small

sized samples. Since for large samples, the standard deviations of the es-
A-2 o' !

tims tes oy and oy are ﬁ3§%5—~ and —7§§f—

with oy is (/W—Z)z x 100 = 114%. Hence the advantage of op

respectively, the efficiency of

0z as compared

over 0. in the way of efficiency, usually far outweighs the disadvantage of

1

tation.
og compared with oy accruing from the slightly more involved compu

In vractical inspection work, however, we often have small samples

conditions.
and hence we want to know the efficiency of ¢y under these

2
1 distribution of oy was firat given by "3tudent"

The theoretica

54
and later checked by pearson>’ and R. A. Fisher. For our case this theo-

- em am e = e wm w = = = = = e -

- - = e
- - - = -
[ - -

i fficient than the arithmetic mean
the median is more € 4
o1 if tgg cguiigéion is distributed according to the law
pop ‘ izl o
dy = c¢€
ts.
here ¢ and h are gonstan

" mrror of the Mean”, Biometrika, Vol. 6, PP.

52. "Student™, "Probable
- 08. “
1-25, 19 . the Distribution of Standard Deviations of Small
53. Pearson, K.P., "0n 528-529, 1915.

Samples”, Blometrika, Vol. 10, DD o
nmpe Frequency Distributionde
* Pisher, Eestfiol t in Samples from an In

n Coefficien .
Correlation oo 3 °p. 507, 1915
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retical distribution becones

2
- —262
¥y = 6383.0640% e do

By empirical methods I find the distribution of 0y to be a Pearson Tyne IV

or
2.4385 11.767
a .
dy, = 203.44(1 + 1l ) 1 - 9 - - - 1D
8 374758 N e A 4y 1o-c

The results are shown grapvhically in ®ig. 27. "he nrobabilities of fit in

the two cases are .84 for 62 and .59 for oq- The obsgserved standard devia-
tions of Gl and 02 were .375 and .337 with probable errors of .0084 and
.0075 resvectively. Hence the observed efficiency of 0, a3 compared with
o; is 100 (f%%g)z = 124%, and, even for samples of size n = 4, the o, method
1s more efficient that the o, method.

This, however, is not the only point of interest as we shall now
see. Suppose we wished to establish a control chart for the two estimates
X and oo of m and ¢! respectively, for the above case where n = 4. Aig we

have already seen (Part III) the bases of the limits on these two charts are
el and o respectively. Would we be justified in substituting for o'
/M JEn

;ﬁe average of the 1000 observed values of 0,7 The answer is no, becauss,

as we see from Fig. 27 and from the equation of the distribution of o,, the

', In fact
most probable observed value of o, 18 less than o

P(E%é+l) ]'ﬁ
z

. his is a compara-
where T. 1s the mean of the 1000 observed values of gp. This P
2

te 19).
tively large correction for small values of n(see footinote

erimental results are useful in showing the nature of the
These eXD

chart.
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APPENDIX o

Al m
PPLICATION OF GOODNESS OF FIT TEST TC INSPECTION PROBLEMS

How Need for the Test Arises

Suppose we measure the quality ¥ of each unit in a sample of n

pieces of apparatus and then ask ourselves the question: Is the product
uniform, and, if so, what is the probability dy, . that a unit of product
will be produced with a quality within the range X to X + dX where a3 before

we write

t

A¥os = (X, A, Ng, e x‘cl) X, = =~ = === = = 2

f' and 7\; being unknown® For example this gquestion arose in our study of

the measurements presented in Fig. 3. The data given in this figure repre-
sent the distribution of quality obgerved in a sample of 15.0_50 instruments
of a given type. In answering the gquestion, the first step was to assume a
trial form f for the function f' of Eq. 2. ILet us write this assumed true
probability 4y, that a unit of product will be produced within the interval

X to X + dX in the symbolic form
ay, = (X, My gy eer o) Ao =m0 oo 13

The next step was to obtain the best estimate or statistic for each of the

¢ parameters in Eq. 13. This gave us & theoretical curve

- - - 14
dye = f(x' 81, 82, P 80) dX

i timate of the probability that a unit
where dyg was our pest theoretical es

of product will be produced within the interval X to X + dX based upon the
P T
of the probability distribution for

1
assumption that f is the true form £

55
N 7\‘ .
th 1P roduct (8 being the best estimate or statistic for Aq)
e uniform product (6, being »u% “=7~° = = = - _ _ o - .- - - == - -
"""" ""——-’—- d not be the same
arameters in Bg., 13 nee
55. Obviously theinurlx‘:xgerzc ;Iil'dp T if 0=, 7‘1 eed not be the same
n . ’

as the number ci’s tne same 88 £,

as Aj unless £
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Fig. 28
2t ©C Presents four othep typical observeq distributions (cots)

c¢hosen from the field of televhone bPractice. 1In this case the assumed forms

£ for the distrivutiong of quality of type A apparatus, thickness of sap-

wood in chestmut poles, life of telephone poles56 and length of subsoriber

_y D7
ealls are three termg of the gram Charlier series (®g. 3) for the first

two and Pearson Types I ana 1v (Bq. 4) respectively for the last two. mhe
smooth theoretieal curves irn FPig. 28 are of the type shown in Zg. 14 where
estimates of the assumed true parameters are substituted in the forms of ¢,

Is the fit vetween the observed ang theoretical distributions
go0od? Does a good fit necessarily mean a uniform produet? These are the
questions to be settled. Let us consider the steps necessary to answer
these questions assuming the product to bhe uniform from which a sample of
n units is drawn.

Let us assume the following distributions into m+l cell frequen-

cies:

observed

ny,s nyy, nyz, “oe nym - - -
- true (Eq. 2),

nyo']\“ ] nyl%! ) nygh' s soe nymk'

- (®q.
N¥on» DY1As DVps  see OV agsumed true !%q.13),

nyoe, nyle, nyze, cee nym8 - - - - theoretical (Eq.14).

The first of the above questions calls for some method of comparing the ob-

served and theoretical cell frequencies. ILargely thru the labors of Pearson

Such a8 method has bYeen developed. Applied with care thig test for goodness

- e e e e e e o e
- e e as ws mr ms o e = e -

Original data given in the artliecle, Replacement Insurance, Admin-
igtration, July 1921, p.55.

Company's Statistical Bulletin,
. data given in A. T. & T. T a1
i Intrgngifi?zi to Frgquency Curves and Averages, Table o, p

Given System of Deviations
%8 Poaran, el ; Ozéh:hgagzi‘ggr;ogog'lg;a%ed System of Varia;;gx;; is
fro§ :getPfgb‘z:iebenReasona.bly Supposed to hi%rs i;;sen from r
:ggplinz - Phil. Mag. S. 5, Vol. 1, 1900, p. . et ormata for
Karl. - On a Brief Proof of the Fundamen :1 rmus
Pearson'Goidnéss of Fit of Freguency Distributions ag $o15"%, . 369.
g:-z:;g]g.etg:ror of "P" - Phil. Mag. and Journal of Science. ’



taken in applylng this test. 4 feyw paragraphs will now be devoted to a dis-

cussion which should prove of value as a popular supplement to the original

highly technical memoirs cited. Such a digression is necessary to give an

understanding of the applications to follow.

Description of the Test.

Pearson's first contribution®® was a method of comparing the true
distribution with the observed distribution when the former is assumed to
be known & priorily. ILet us form the differences, nyix, - Byy = x;,. Then,

obviously,

xo+x1+x2+,,,+xm=0' ________ 15

80 that there are m degrees of freedom for the set of correlated differences
between the observed and true cell frequencies. If no prcbability of the
type Tine is sSmall, we may assume that the deviations in x; will be nor-
mally distributed. Hence the probability surface for the simple oase where
there are three cells is that shown in Fig. 29, where z dxy dxz is the pro-
bability of ocourrence of a value of xy within the range x, to X+ dxl
similtaneously with the occurrence of & value of x, within the range x, to

X, + dX2~ The equation of this surface is of the form

2 - -
where X2 is a function of the values of x For, X = constant, z is con
stant, say and the plane, z = 21, Fig. 29 cuts the probability surface

1 th
- 3png within the projection of this
in an ellipse. For values of X4 and X, lying
ellipse upon the base of the solid, the value of z will be greater than z,.
pon
the
Similarly for values of xj and X lying outside this same ellipse,
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Fig. £9 - PROBABILITY SURFACE FOR INTERPRETING (OODNESS
O FIT FOR THI SIMPLEST CASE.

values of z will be smaller than Zq . Suppose, now, that z) corresponds to

an observed set of values xi and xé. The plane z = z, cuts off, as it were,
the cap of the surface. The volume under this cap and extending to the
base z = O renresents the probability of getting a set of values of x, and
Xp more probable than the observed set x]" and x'2 whereas the remainder of

the volume under the surface represents the probability of getting sets of

A
values less probable than the observed set xi and Xp. This second probabil-

ity is taken by Pearson59 as a measure of the Goodness of Fit.

A simple illustration will serve to make oclear the method of
14 be noted that the test calls for an & priorily

applying the test. It shou

P
- - - e e am m wm e =

m+1l cells is treated in a similar manner

ntation calls for m dimensi:onal
except that the geometrical rigﬁgggnty of fit P covering a wide range

space. Tables of valued Ofoljé m+l from 4 to 30 are available in Pearson's
3 I

of values of X< and value a
Tables for Statisticians and piometrician

59. The ecase where there are
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known law of distribution, hence we may apply it to the results of the 4000

drawings from the known law of distribution given in Table ITI of this

paper. Table IV below presents the results.

The third colum givea the
2

values of X™ and P for a comparison of the observed frequencies in the 13

cells with the corresponding kmown cell frequencies. The observed values

TABLE IV
GOODNESS OF FIT: SAMPLES DRAWN FROM

. 13 Cells 13 Cells 13 Cells
4 priori Theory 4 posteriori Theory 4 posteriori Theory
Assuming Assuming
12 Degrees 12 Degrees 10 Degrees
of Preedom of Freedom of Freedom
x& 9.983 6.612 6.612
1st Sample
P .617 .880 .760
X2 11.579 8.694 8.694
2nd Sample
P .481 .728 .562
x# 4.184 3.360 3.360
3rd Sample P 979 991 .969
XZ 8.776 6.146 6.146
X2 9.940 6.737 6.737
Four Samples
Combined P .622 -873 =749
x? 8.892 6.310 6.310
Average P .684 .876 .768

orresponding values
of X% 11e within the interval 4.184 to 11,579 and the © P g

2
of P lie within the interval .979 to .481, the average values of X° and P

being 8.892 and .684. Now, what values of X2 and P should we expect to find

from the theory? Are the observed values of these two factors consistent
rom

C?
with those which we should expect to find?

se questions we must consider the probability ais-

To answer the

umber of cell frequenoies m+1l, in this oase 13.

tribution of x for the given num



we should expect to find for Some sample or samples every value of x2

between O and ® , that we should not f£ind either O or ® very often and

that we should find some value of %2 more often than any other value. Theory

checks common sense., The distribution of x

2 43 skew, the degree of skewness

deoreasing as the number of cells m+1 increases. Hence the most probadble

2
value of X® is not equal to the average value of X© as determined from the

distribution of Xz. In general the most probable value is less than this

average value, but as m+1l increases the distribution curve for )(2 approaches
normality so that the most probable value of xz approaches the average value
and incidently approaches that vé.lue of xz for which P = ,5. Henoe for
large values of m+1l the value of P to be exnected most often is .5, whereas
for small values of m+l, values of P to be expected most often are greater
than .5. The distribution curve computed for the case, m+l = 30, i8 shown in

Fig. 30 by the solid line. The average, standard deviation and skewness of

a2
.10
, 08
[
2
: .06
[ L
b4 D «
< O W
0 o4 : s
.02
o0 8 16 24 32 40 48 56 a4
IZ
Fig. 30
pistribution of x2 for, ml = 30.
Gram-Charlier Series of three Terms Fitted to

the pigtribution.
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this distribution of X% are respectively 28.98, 7.57 and .48. 7hen these

values are substituted in the first three terms of the Gram-Charlier series
“’: get the dots shown in Fig. 30. Ve see that the most probable value of
X~ 1is displaced approximately 1.83 units to the left of the average of the
distribution indicating that even for, m*l = 30, the most probable value
of P is slightly greater than .5. we see, however, that either very large
values or very small values of P are very improbable. Hence we 3ee that
the observed values of X° and P shown in column 3 of Table IV are consis-
tent with theory.

Let us now assume that we do not kmow the true distribution with
which to compare the five observed disiributions of Table IV. ILet us in-
stead find the theoretical distributions assuming the distridbution, from
which the samples were drawn, to be normal. We then get an equation of the
type given by Bg. 14. Colum 4 of Table IV gives the observed values of
Xz upon this basis. Values of P given in this column were ohtained by enter-
ing the goodness of fit tables with a value of m+l = 13 as in the previous
case. We note, however, that the observed values of P are on an average
mich larger than those given in column 3. This 1s accounted for by the faot
that the theoretical equations each contained two statistics calculated from

the data, thereby deoreasing the number of degrees of freedom of the set of

values of x by two.60 Hence we should enter the tables for a value of,

m+l = 11, and doing this we get the set of values of P shown in oolugm 5.
?

These valyes more nearly check the set of values given in column 3. This

1 2
1llustrates a very important principle in the application of the X test

which has only recently been established; i.e. we should always enter the

oodness of £fit tables with a value equal to the number of cell frequencies
e e

(m+1) minus the mumber of statistics used in calculating the theoretieal

- - e e e e e ew = = e o m e = e - = -
- - -

-
e
- e - e e - -

On the Interp
lation of P,

2
tation of X© from Contingency
60. Fisher, R.A., r](;roc:. of Roy. Stat. Soc., Vol.

Tables and the Calou

IL.XXXV, p.93, 1922. . .

1 e in engineering work lor we se m,

o1 This}g]iiwpgr;iﬁﬁ.{;ytﬁle‘udistribution from which the sample is
if ever,

drawn.
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‘distribution.

Let us compare the physical interpretation of P calculated from
differences (xi=yi7\,"yi) between true and observed cell frequencies with the
interpretation of P calculated from differences (xi=y19-yi) between theo-
retical and observed cell frequencies, In the first case P is the probabil-
ity of occurrence of as likely or less likely complex system of the values
of cell deviations x being produced by random sampling from the true distri-
bution (Eq. 2). 1In the second case P is the probability of ocourrence of
as likely or less likely complex system of the values of cell deviations x
being produced by random sampling from the assumed true distribution (®q.13),
for which our best guess is an equation of the type of Eq. 14.

Before passing to the application862 we must consider one other
extension of the use of the xz test., Assume that we draw two samples from
supposedly the same universe. We can use the XZ test to determine the
probability that the two samples came from the same universxe63 or we can
measure the probability that two samples camer from a uniform product. Wwe
need not go into details of the calculation of the value of xz. Obviously,

however, we may calculate the limits within which the observed values of xz

mé.y be exvected to fluctuate because of sampling variations. If we wish to

compare several samples, one way is to add the first two and compare this
resultant set of frequencies with those given by the third sample and so on.

- - . o e e am m e w m m m = e m e = = e e e e e e = e e e .
P -

Note should be made of certain other facts which must be taken

62.
4t in the application of the test. TFor example the
%gigozggguﬁeasons maypge given for an abnormally large value of )(2.
1. The assumed true distribution =q. 13 is not the true
tion.
2 g‘lixzt;ig;od of estimate of the parameters is inconsistent;
) i.e the method of estimate should be such that if applied
t<; a..ﬁ jnfinite sample a statistioc 84 should become identioal
orresponding parameter N
3 ;ihghm:ilgog Ic;f egtimating the parameters is inefficient.
’ he Probability that Two Independent Distribu-
63. Pearson,X. P., On tRZa]J.y Ly e o San voveietion.

tions of Frequency are
Biometrika, Vol. VIII, 1911.
o Samples Drawn from the Same Population,

Rhodes, E. C., Are Tw O RD. 1024,

Biometrika, Vol. XVI, pp.239



- 75 -

a
Such a test has been applied to the four samples of 100 drawings already

referred tov several times. The results are plotted in Fig. 31 on the part

PROCESS AVER.AGE
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of the control chart marked chi sSquare. The values of xa lie well within

the limits (dotted lines) of Sampling indicating that the samples probably
(or at least possibly) came from the same universe as, of course, they did.
The observed fluctuations of the four statistics average L, standard devia-

tion o, skewness k and kurtosis ﬁz given in Fig. 14 are shown also in Fig.

31 to make it complete. This form of chart is called a control chart, be-

cause when applied to samples of product it shows us (under limitations set

forth in Part ITII) whether or not the product is controlled. Since the

fluctuations in the statisties and in xz resulted from random sampling they

should fall within their respective limits, and they do.

PRACTICAL APPLICATIONS

Applying the x2 test to each of the four distributions shown in
Fig. 28, we found negligible fit in each case although there appeared to
be a close fit between some of the theoretical curves and the correspond-
ing observed distridutions (dots). 1In fact the £it appeared so good in the
case of the type A' apparatus that the validity of the xz was questioned
by the engineer applying the test. It so happened, however, that this dis-
tribution could be broken up into its'monthly components., When this was
done and the control chart such as that shown in Fig. 31 was constructed,
the evidence was very conclusive that the product had not been uniform and
hence the Xz test gave very valuable results which might have been over-
looked otherwise.

Returning, now, to the application of the xz test to the distri-
bution of product showm in Fig. 17, we have already noted the lack of fit
as shown on the analysis sheet Fig. 16. Iet us go one step further and
compare one month's product with the resultant product of all months pre-
ceding it as suggested above. Doing this we get the part of the control
chart in Fig. 32 marked chi square. In every instance the observed value
of Xz is outside its sampling limits thus indicating non-uniformity of

product. The other forms of charts considered in Part III are reproduced
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in this figure for reference and comparison with the chi square chart. Ob-
viously there can be little doubt, in the light of the data given in the
control chart, that the product from which the 15,050 instruments were drawn
was not uniform. Hence there can be 1little doubt that the observed poor
fit shown on the analysis sheet Fig. 16 had a real significance. This 1l-
lustrates the value of the xz test in inspection engineering. TFurthermore,
where a poor fit is found, it is usually not difficult to find the assign-
able causes of the variations.

So far we have considered practical cases only where the fii was

bad. Fig. 33 has been included, therefore, to give a typical example of a

400/

300

200

FREQUENCY

100!

24 Y) 32 36 40 44
TENSION IN OUNCES

Jacks

_ EXAMPLE OF UNIFORM PRODUCT AS INDICATED
Fig. 33 - LONHE CHT SQUARE TEST.

distribution of a uniform product (Jacks) for which the probability of fit

is good (.495).

huhnmmumﬁcuumﬂﬁ
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