
Indian Statistical Institute, Kolkata

M. Tech. (Computer Science) Dissertation

No-Reference Quality Assessment for OCR’d
Documents

A dissertation submitted in partial fulfillment of the requirements
for the award of Master of Technology

in
Computer Science

Author: Supervisor:
Arnab Biswas Dr. Utpal Garain
Roll No: MTCS-1415 CVPR Unit, ISI

M.Tech(CS) DISSERTATION THESIS COMPLETION CERTIFICATE
Student: Arnab Biswas (MTCS1415)
Topic: No-Reference Quality Assessment for OCR’d Documents
Supervisor: Dr. Utpal Garain

This is to certify that the thesis titled No-Reference Quality Assessment for OCR’d
Documents submitted by Arnab Biswas in partial fulfilment for the award of the degree of
Master of Technology is a bonafide record of work carried out by him under my supervision.
The thesis has fulfilled all the requirements as per the regulations of this Institute and, in my
opinion, has reached the standard needed for submission. The results contained in this thesis
have not been submitted to any other university for the award of any degree or diploma.

Date: Dr. Utpal Garain

1

Dedicated To

I dedicate this to all the people who wishes me well in life including my brother, mother,
uncle, friends and last but not least my project guide.

2

Acknowledgements

I would like to thank my dissertation supervisor Dr. Utpal Garain for agreeing to guide me
and for helping me to undertake work in the topic.

I would also like to thank Mr. Abhisek Chakrabarty, currently pursuing his Ph.D. under
the guidance of Dr. Garain for helping me in many ways for understanding the problem and
doing this work.

Last but not the least I am grateful to Indian Statistical Institute and its CVPR unit
which provided me a very good research infrastructure that helped me all the way along.

3

Abstract

This thesis deals with predicting quality of a text document that has been generated by
an OCR system. As OCR systems are prone to make mistakes while converting an imaged
document to machine readable form, this research concerns with finding errors in an OCR’d
text and classify the OCR document accordingly. So far OCR community has dealt with
this problem by following either of these two methods: (i) manual labeling of the errors or
(ii) comparing the OCR’d document against the true text file. Manual counting of errors is
infeasible in commercial situation whereas the true text file if often not available to compare
with. This work attempts to develop methods for automatic prediction of OCR’d documents
under no-reference condition. Bengali has been taken as the reference language. Use of
lexicons and language models has been explored in several directions. Experiment with
a large corpus of OCR’d documents shows that a lexicon based approach coupled with a
suitable edit distance measure could be a viable method for no-reference quality assessment
of OCR’d documents.

4

Contents

1 Introduction 6
1.1 Problem Definition . 7
1.2 Our work . 8

2 Related works 9
2.1 Spell Checking . 9
2.2 Language Model . 9

3 Data Set Description 11
3.1 Unicode and UTF-8 . 12
3.2 Windows naming convention of Unicode text 12

4 Our Approaches 14
4.1 Predicting OCR’s behavior . 14
4.2 When OCR data not available during training 16

4.2.1 Using Lexicon only . 16
4.2.2 Using Lexicon vocabulary and Trie Data Structure 17
4.2.3 Using Lexicon vocabulary and Bi-Gram voting method 18

4.3 Pattern Recognition Approaches . 20
4.3.1 What is Random Forest . 20
4.3.2 Building a Random Forest . 20
4.3.3 Word Probability Approach . 21

4.4 Recurrent Neural Network Language Model Approach 23
4.4.1 Advantage of RNN over n-gram Language Model 23
4.4.2 Word level vs Character Level language Model 24
4.4.3 Training . 25

5 Results and Analysis 26

6 Conclusion and Future work 29

5

Chapter 1

Introduction

The job of an OCR system is to recognize each character from the a given input file or
input stream, failing to which introduces error and in this thesis we are going to discuss dif-
ferent approaches of estimating those error in order to predict the accuracy of the documents
produced by that OCR system.

The first question may arise in people’s mind is that if the same OCR is producing a
set of documents how could they differ in quality or accuracy? The answer to this question
lies in the fact that the same OCR system may have difficulty in recognizing one particular
character but not so for another. Different documents with difference in number of letters
or words of each type plays essential role determining the accuracy of the document.

The metric we used is WER(Word Error Rate). The focus of most of the experiments
are how to predict correct words in place of wrong ones in a given OCR text file 1. We have
used Bengali language. The algorithms and procedures discussed here can be incorporated
in any other language and in some cases result might differ a little.
Classifying OCR documents according to its accuracy involves scanning the entire file word
by word and find the following errors,-

(A) Spelling mistake,-
(i)True Negative.
(ii)False Positive.

(B) Unlikely combination of words.
(C) Grammatical anomalies.

If we consider OCR files are taken from be some standard corpus (as in this case the
local News Daily) then problem of having error of type (B) and (C) are rare. So our main
focus is now on error of type (A).

There can be two kinds of spelling mistakes, firstly True negative; which means the
word is correct but our program detects it as wrong word because it does not have enough

1Here OCR text file denotes those files which are scanned by an OCR system i.e files whose accuracy we
are going to predict.

6

vocabulary strength. Also in languages like Bengali it is difficult to detect named entities
and that can also be out of vocabulary word and would be considered as error. For languages
rich with inflections, it may not always be possible to have each and every word in dictionary.
So there exist possibility of True negative errors.

The other form of spelling mistake is False positive, where a wrong word can be passed
as a correct one, which happens when you have error in your training corpus. The Bengali
corpus we used as correct text documents and build our lexicon from, also contains these
errors. Some, but not all of them are manually taken care of.

1.1 Problem Definition

The purpose of the research is to build a method by which the OCR documents quality can
be measured when we have no idea about the corresponding original correct text document.

First we wrote a program that actually compares both set of files side by side and
calculates the error known as Word Error. By using that program we assign each OCR
document a class label. That class label is used as the target class for calculating accuracy
of those classifiers we build. The WER is calculated in the following fashion,

WER = (S +D + I)/N ∗ 100 (1.1)

where,
S = Number of Substitutions.
D = Number of deletions.
I= Number of Insertions.
N = Number of characters in the document

Depending on the error we can classify the documents into 3 classes A,B and C. Which
is defined as-

Class =

A, if accuracy ≥ 90%

B, if 90% >accuracy≥ 85%

C, Otherwise

(1.2)

So for each OCR document we have these class labels as target class label which we
have calculated as mentioned above using some a certain program. Our goal is to calculate
the WER and assign a class to the OCR documents without comparing it to its corre-
sponding correct text document. At the end we compare the assigned class by our method
with the already assigned (target) class and calculate how much accurately we can do this
classification.

7

1.2 Our work

Our work involves reading an input OCR file, scanning the entire file, finding errors and
finally assign a class to the document. The scanning and the measurement of error involves
the use of appropriate Data Structure and Algorithms, sometimes Pattern Recognition tech-
nique and last but not least Natural Language Processing.

• The Data Structure based approach is mostly involving lexicon, bi-Gram dictionary
and/or Trie data structure.

• The pattern recognition based approach involves feature selection and extraction and
train a Random Forest classifier.

• We also tried one approach called word probability approach where we calculated
the occurrence and probability of each word in an OCR document and tried to get
something out of it. Two methods we tried there. Results are not so good.

• The Natural Language Processing based approach involves training and using the Re-
current Neural Network Language Models.

8

Chapter 2

Related works

2.1 Spell Checking

The OCR documents accuracy prediction problem is till now unexplored territory of com-
puter science research. The first of the three approaches we made as mentioned above mostly
involves spell checking and spelling correction. Spell checking is a well-known task in com-
putational linguistics, started back in 1960s. One of the most notably work was of Damerau
(1964). The very first idea of spell checking comes from dictionary based approach. From the
corpus they build a dictionary/lexicon and given any input word, it is searched throughout
the dictionary. If not found, then it is considered as error. But the problem of this is that
dictionary can be of huge size. So people started thinking alternative approaches.

Riseman and Hanson in 1976 proposed a technique [10] that uses dictionary indirectly.
It was a trigram based approach. They have a trigram dictionary and any trigram from a
particular word not appearing in the dictionary is considered as error. To detect typograph-
ical errors, Morris and Cherry in 1975 proposed a technique [15] that does not use dictionary
at all. The algorithm described here divides the text into trigrams and creates a table of
these, noting how often each one occurs in this particular piece of text. Depending on this
frequency it assigns some peculiarity index. Based on that index it detects spelling mistakes.

Researchers so far have published a lot of papers related to this spell checking and correc-
tion. Renato Corderio and Marcos Zampieri proposed clustering algorithm based checking [5]
in 2013 which provides insights of a very new approach.Knuth 1973, and Davidson 1963 de-
vised SOUNDEX system [8] and Pollock and Zamora in 1984 proposed SPEEDCOP system
[17] both of which are very good in spell checking and correction.

2.2 Language Model

Language Models are now a days famous for word prediction and context based spell checking
process. Applications of statistical language modelling includes speech recognition (Jelinek,
1998 [20]; Schwenk, 2010 [12]), text generation (de Novais et al., 2010 [6]), machine transla-
tion (Brown et al., 1993 [3]; Och and Ney, 2002 [16]; Kirchhoff and Yang, 2005: [11]), spelling

9

correction (Ahmed et al., 2009 [1]),optical character recognition and handwriting recogni-
tion (Vinciarelli et al., 2004 [4]), syntactic (Huang et al., 2014) and semantic processing
(Deschacht et al., 2012).

The recent approaches of language model based on NGram is available as SRILM toolkit
[19]. It can be used for evaluating statistical language models and can also be used in spelling
correction or word prediction. Michal Righter and Pavel Stranak’s Korektor system [18] is
developed for context sensitive spelling correction and diacritics completion.

10

Chapter 3

Data Set Description

Selecting a good corpus is always challenging. It is a general practice to have a perfect
corpus and properly labeled training data. Also the corpus should be as big as possible or
more importantly it should be as complete as possible. The corpus we used is taken from a
collection of our local news daily ”Anandabazar Patrika”. Each file has some detailed report
based on any particular headlines appearing in a certain day. Each file is scanned later using
a faulty OCR system to generate corresponding erroneous OCR file. As mentioned earlier
we have to sets of files - correct and OCR. Their description is given below -

Total correct text Files = 62824.
Total OCR text Files = 62790.
Total number of unique words (i.e vocabulary size) = 451486.
The corpus contains a total of = 23545051 words.

The file size varies from 1KB to 23 KB having 21 as lowest number of words in a file to
maximum of over 2000 words. As the data is in UTF-8 encoding format we have 111 differnt
unicode characters in correct text files compared to only 73 different unicodes over all OCR
documents.

The data set described above is huge in terms of text document. But the first challenge
to overcome is to make sure that our training data set (in this case correct text files) is error
free and correctly labeled. But in reality this is hardly the case. For example there are still
misspelled words in correct texts-

িশিলগুিড়রিতেযািগতার/ shiligu.DipratiyogitAra
রঘুনাথগজরঘুনাথগজ/raghunAthaga njaraghunAthaga nja
কােকাদকেররসংবাদসংথা/kAkodakarerasa.nbAdasa.nsthA
পাঁচেখলাজয়রহারেগালপাথযপেয়টইটেবগল/pA.NchakhelAjaYaDrahAragolapArthakyapaYenTaisTabe Ngala

We manually corrected some of them. But with this huge corpus, it was practically
impossible to correct all. So a lot of misspelled words still remained and we had to sacrifice
accuracy a little.

11

3.1 Unicode and UTF-8

Research based on text processing or NLP has to deal with different languages. The data
structures and algorithms proposed while working on a language most of the time should
work on any other language. But sometimes results we get may differ a little. As we choose
a Bengali corpus we first have to understand how Bengali letters are stored in a text file.
Both sets of data (correct text and OCR) are of UTF-8 encoding. Now question may arise
about the difference between Unicode and UTF-8.

Actually, comparing UTF-8 and Unicode is like comparing apples and oranges: Unicode
is a character - UTF-8 is an encoding. A character set is a list of characters each assigned
with a unique numbers (these numbers are sometimes referred to as ”code points”). For
example, in the Unicode character set, the number for A is 41. An encoding on the other
hand is an algorithm that translates a list of numbers to binary so it can be stored on disk.
For example UTF-8 would translate the number sequence 1, 2, 3, 4 like this:
00000001 00000010 00000011 00000100
Once the data is translated into binary it can be saved in disk.
Lets go through an example. Say an application reads the following from the disk:
1101000 1100101 1101100 1101100 1101111
The application knows this data represent a Unicode string encoded with UTF-8 and will
show this as text to the user. First step, is to convert the binary data to numbers. The
application uses the UTF-8 algorithm to decode the data. In this case, the decoder returns
this:
104 101 108 108 111
Since the application knows this is a Unicode string, it can assume each number represents
a character. It uses the Unicode character set to translate each number to a corresponding
character. The resulting string is ”hello”.

So in conclusion we can say :: UTF-8 and Unicode cannot be compared. UTF-8 is an
encoding used to translate numbers into binary data. Unicode is a character set used to
translate characters into numbers.

3.2 Windows naming convention of Unicode text

Windows uses UTF-16LE encoding internally as the memory storage format for Unicode
strings. It considers this to be the natural encoding of Unicode text. In the Windows
world, there are ANSI strings (system’s default encoding) and there are Unicode strings
(stored internally as UTF-16LE). This was all devised in the early days of Unicode(before
UTF-8 was invented). Before that we had UCS-2 which later proved to be insufficient. So
Windows started Unicode strings(stored internally as UTF-16LE) . This is why Windows’s
support for UTF-8 is all-round poor. This misguided naming scheme became part of the
user interface. A text editor that uses Windows’s encoding support to provide this encodings
will automatically and inappropriately describe UTF-16LE as “Unicode”, and UTF-16BE

12

as “Unicode big-endian”.

Challenge of Handling Unicodes

Unlike English language, Bengali has a lot of mixed characters (also called yuktakshar) and
different fonts like Akash, Lohit Bangla, Mukti etc. Some characters in one font is defined
differently than another. For that reason sometimes two Bengali characters can be combined
to form a third character but having different number of unicodes. For example -

Figure 3.1: Unicode Combinations

We have to take care of them manually and we made sure each character has only one rep-
resentation by replacing each consecutive appearances of such unicodes by the corresponding
unicodes written in the right hand side.

13

Chapter 4

Our Approaches

4.1 Predicting OCR’s behavior

The first approach is about creating a dictionary from where we can get the idea of the
behavior of OCR and thus can figure out those particular kind of errors that were generated.
For that we need to compare both the files side by side and generate a (wrong,correct) pair
of word list. We write that pair in our dictionary. We used Hash map for this purpose. It
may use more space but it is really fast and reduces the time complexity by a huge margin.
Once we create the dictionary, we can use it to test OCR files.

The algorithm for first part i.e creation of (wrong,correct) pair dictionary is as follows,-

Algorithm 1 Predicting OCR behavior
Input: Pairs of OCR document R and its corresponding correct text documents S.
Output: A one to one mapping containing of pair of words in the form (wrong,correct).

1: for each word wi in R check whether that word occurs in S do
2: if yes then
3: that is a correct word
4: else
5: That is a wrong word
6: find a word wj from S having minimum edit distance and assign them as a pair

(wi,wj) and put them into a hash map and keep a count of how many time that
pair appears.

7: end if
8: end for
9: now for each wrong word wi we find a word wj that has the maximum count i.e with each

occurrence of misspelled wi we got wj as its closest word maximum number of times.
We choose (wi,wj) and put them into dictionary.

While making the pairs we assigned maximum allowable edit distance as 6 (which is
chosen empirically), i.e if the pair has edit distance more than 6 we don’t choose them. The
Bengali scripts are represented in UTF-8 format and average length of a word is more than

14

that English word. So an Edit distance of 6 is very very rare in English OCR but in Bengali
it can be unlikely but still possible.

Once we have the result with us the pre-processing is done. Say dictionary is written in
the file T . The dictionary 1 looks like (the 1st column is the wrong word and the 3rd column
is the corresponding correct word) -

Table 4.1: Dictionary

মবযগণ /mabaShyagaNa মনুযগণ /manuShyagaNa
িতিমরবাব /timirabAnba িতিমরবাবু /timirabAbu
েকৗন. /kauna. েকৗন' /kauna’
িছেলন. /chhilena. িছেলন /chhilena
যােয়. /yAYe. যােয়' /yAYe’
তফাসলই /taphAsalai তফিসলই /taphasilai
িমিথলার /mithilAra মুসিলম /musalima
িশষক.অিভভাবেকরা /shikShaka.abhibhAbakerA িশষক-অিভভাবেকরা /shikShaka-abhibhAbakerA
িছেলন1 /chhilena1 পড়েলন /pa.Dalena
রর..হাধা /prashra..hAndhA রন:হাকা /prashna:hAlkA
অগভিগ.সহ /a Ngabha Ngi.saha অগভিগ-সহ /a Ngabha Ngi-saha
ওাষবােসর /AShabAsera ''চাষবােসর /”chAShabAsera
অগুন /aguna আগুন /Aguna
আযভিমেত /Aryabhamite আযভূিমেত /AryabhUmite
রিড়ই /bra.Dii গুঁিড়ই /gu.N.Dii
অঘঢন /aghaDhana অঘটন /aghaTana

One interesting thing top notice here is that, from the pair (wrong,correct) word it would
be a common practice to take the node whose edit distance is minimum as that can be the
closest word. But when we deal with texts generated by OCR, it may not be true always. So
we took the pair which has maximum frequency i.e max occurrence indicating that particular
pair of (wrong, correct) word has appeared most number of times together and is a proper
pair. If we take minimum edit distance then following is an example of what can go wrong-

1Usually in UTF-8 encoding, the mixed letters appear good in text documents but not in latex. None of
the latex fonts we used actually could print the mixed words properly.

15

Table 4.2: Mistake while taking minimum edit distance

Misspelled Word Actual Word Closest Word
থিলশ/thalisha পুিলশ/pulisha থিল/thali
অবসধােনর/abasandhAnera অনুসধােনর/anusandhAnera পথসধােনর/pathasandhAnera
িসগাথর/si NgAthara িসগাপুর/si NgApura িসগার/si NgAra
আিলথর/Alithara আিলপুর/Alipura আিলর/Alira

Now we can use that to calculate the WER in test phase and assign the class to our
OCR files. The algorithm,-

Algorithm 2 Algorithm for calculating accuracy
Input: OCR file f and preprocessed text T file.
Output: WER as E of OCR file and class.

1: from T build a hash map H having key as the 1st column i.e wrong word and value as
the edit distance between the pair of (wrong,correct) word.

2: set error as E ← 0

3: for Each word wi in f do
4: if wi /∈ H then
5: E ← E +H.get(wi)

6: end if
7: end for
8: E ← E+ C(other unknown symbols)
9: E ← E/ (Total Characters in f)

10: Assign class A,B or C to F according to the value of E and conditions mentioned in
equation (1.2).

Here C(other unknown symbols) is the count of all other symbols like .,{ ,*,}, # etc that
usually do not appear in a Bengali text file.

4.2 When OCR data not available during training

The first procedure described above, we built the dictionary of pair of words using both
OCR and correct text files. So we had OCR files as training data and from there we guessed
the OCR system’s behaviour. The following procedures however, are suitable when we do
not have the OCR file beforehand and all we have is the correct text files.

4.2.1 Using Lexicon only

From the given set of correct files we build a lexicon.

16

Algorithm 3 Accuracy Calculation using Lexicon
Input: OCR file f and Lexicon L (which is stored in a Hash map or hash set).
Output: WER as E of OCR file and class.

1: set error as E ← 0

2: for Each word wi in f do
3: if wi /∈ L then
4: for Each word wj in L do
5: find the wj for which the EditDistance(wi, wj) is minimum, which is (say) de-

noted by Distmin

6: end for
7: E ← E +Distmin

8: end if
9: end for

10: E ← E+ C(other unknown symbols)
11: E ← E/ (Total Characters in f)
12: Assign class A,B or C to F according to the value of E and conditions mentioned in

equation (1.2).

The above algorithm has time complexity O(n ∗ k) where n is the size of the dictionary
and k is the number of words in OCR file. Obviously n � k and time complexity is huge.
In the following section we aim to reduce this time complexity.

4.2.2 Using Lexicon vocabulary and Trie Data Structure

We used two Trie structures, one is forward Trie Tf and another is Reverse Trie Tr (where
each word is stored in reverse order). In case when a word from OCR file is not found in
Lexicon, we can conclude that the word is wrong. Then it is searched in both Tf and Tr .
Both searches will be terminated before reaching leaf node but would return a set of words
from there. We take the union of these two set as it has very high probability of having the
corresponding correct word. Now the word which belongs to the set and has minimum edit
distance from the misspelled word is considered as our desired word.

17

Algorithm 4 Accuracy calculation using Lexicon and bi directional Trie search
Input: OCR file f and Lexicon L (which is stored in a Hash map or hash set) and two

Trie structures Tf and Tr.
Output: WER as E of OCR file and class.

1: for Each word wi in f do
2: if wi /∈ L then
3: search in Tf which will end in a non leaf node & will return a set of words F .
4: search in Tr which will end in a non leaf node & will return a set of words R.
5: S ← F ∪R

6: for each word wj in S do
7: Find the wj for which the EditDistance(wi, wj) is minimum. The min distance

is (say) denoted by Distmin

8: end for
9: E ← E +Distmin

10: end if
11: end for
12: E ← E+ C(other unknown symbols)
13: E ← E/ (Total Characters in f)
14: Assign class A,B or C to F according to the value of E and conditions mentioned in

equation (1.2).

The creation of L,Tf and Tr can be considered as preprocessing and once loaded into
memory, can be used in as many OCR file as desired. Then all we care about is processing
all the words of a single OCR file. It may bug some people why we did not take the
intersection between F and R as it could make the set S much smaller, because in that case
S may not contain the particular word we are looking for. The above algorithm runs in
O(|S| ∗ k) time., which is sure an improvement as |S| � n. The procedure is best when,-

(i) We have a single letter error in word.
(ii) The substring containing erroneous letters does not form a proper valid substring of

another correct word, in which the set of words returned after unsuccessful Trie search may
not contain the actual correct word.

The algorithm can still be improved with respect to time complexity but in the cost of
space.

4.2.3 Using Lexicon vocabulary and Bi-Gram voting method

The preprocessing part here includes first creating an Index over Lexicon, where each word
is assigned an unique integer number known as its index. Then we create another dictionary
called BiGram dictionary which contains one bi unique bigram and the index numbers of
all those words in which it has occurred. We used a simple hash map with key as bigram
string and value as Hash set of integers. This dictionary along with Index on Lexicon are

18

stored in text file. When we want to test OCR files we just need to read the file and load
the data into memory. After that we can test as many files as we wish.

The algorithm here uses more space than previous algorithm, but is much faster. Here
it goes,-

Algorithm 5 OCR accuracy prediction using Bigram Voting
Input: OCR file f and Lexicon L (which is stored in a Hash map or hash set) and a bigram

dictionary B (which is stored in a Hash map whose key is a unique bigram and value is
a Hash set of integers).

Output: WER as E of OCR file and class.
1: for Each word wi in f do
2: if wi /∈ L then
3: E ← E+ CalculateError(wi)
4: end if
5: end for
6: E ← E+ C(other unknown symbols)
7: E ← E/ (Total Characters in f)
8: Assign class A,B or C to F according to the value of E and conditions mentioned in

equation (1.2)

The function CalculateError(Wi) is defined below,-

Algorithm 6 Algorithm for Calculating Error
Input: Misspelled word w

Output: an integer dist indicating the error or the min edit distance of wrong word w from
its corresponding correct word.

1: Break w into bigrams. For each bigram get the set of indexes. Those indexes appearing
maximum number of times are put into a candidate set S.

2: From S select the word that has minimum edit distance from w. That word is our
corresponding correct word and the distance is the minimum edit distance.

3: Return that minimum distance.

The above algorithm is quickest. It uses extra space as we had to use Hash sets and Hash
maps. But once processing for one word is done the allocated memory is freed and can be
used in next word processing. It does not have problem (iii) of previous double Trie method.

All our approaches discussed here needs to calculate EditDistance (also called Lavenstein
distance). So our main aim was to prune the set of words and create as small set as possible
at the end and select the one with min distance.

19

4.3 Pattern Recognition Approaches

Pattern recognition is a branch of machine learning that focuses on the recognition of patterns
and regularities in data, although it is in some cases considered to be nearly synonymous with
machine learning. Usually pattern recognition deals with recognition of different patters or
features of training data and based on that extracting information from the data or building
suitable classifier.

The OCR document’s accuracy prediction is actually a classification problem. We classify
the documents according to some properties. Till now the approaches discussed was to find
the closest word for each wrong word and calculate the Edit distance which sum up to
WER(word error rate). The next approach is more of getting different features from the
OCR files and train a classifier for our classification purpose. We are going to use a very
well know classifier ”Random Forest”.

4.3.1 What is Random Forest

Random forests is a notion of the general technique of random decision forests that are
an ensemble learning method for classification, regression and other tasks, that operate by
constructing a multitude of decision trees at training time and outputting the class that
is the mode of the classes (classification) or mean prediction (regression) of the individual
trees.

4.3.2 Building a Random Forest

Unicode Approach

This technique uses a random forest to measure the occurrences of unicodes in OCR docu-
ment.OCR documents have 73 distinct unicodes. Here we are only considering the percentage
of each unicodes appearing in an OCR documents. Each of the 73 unicodes are considered
as one feature that has been used to train the model.

We used 1200 files of each class A,B and C. The R package we used has some limitation
in the size of feature vector and number of training samples for each forest. So we created
12 small Forests and combined them into a single one. Each forest is made of feature vector
from 100 files of each class.

fi =
Ni∑
N

(4.1)

where,
Ni = Number of times ith unicode appeared in OCR document.
N = Total number of unicodes(characters) in that OCR document.

20

We tested the the above Random Forest on 2000 files of class A and B and 500 class C
files.

Top W words Approach

It is almost same as before. First we have set a value for W. Then read all the correct
text documents we have and calculated the unigram frequency of each word. Using that
frequency we got the top W words. Each of those words acted as a single feature. While
training the random Forest, this time we used top W words and their occurrences in our
OCR documents. The feature is selected as -

fi =
Ni∑
N

(4.2)

where,
Ni = Number of times ith word appeared in OCR document.
N = Total number of characters in the OCR document.

Same as before, we tested the the above Random Forest on 2000 files of class A and B
and 500 class C files.
The value of W is taken as 20 and 50 (any one can try this procedure by using different
values of W).

More added features

Both the Pattern Recognition approaches discussed above are improved upon by adding two
extra features. The first of the two is number of spaces and the other one is number of
different of special characters (like ,.!?- etc) in a file.

4.3.3 Word Probability Approach

When you do not have a correct text file with you or you do not even have vocabulary
knowledge then this method can work. At First, from the training data (OCR document
and its assigned class) we generated a matrix called Word Statistics (Wstat) for each class of
documents. For each class(A,B or C) of documents the matrix contained each word(wi) in
its first column followed by other metrics in the next column described below,-

Total Count(Nwi
) = Number of times wi appeared in the Training set.

Document Count(Dwi
) = Number of different documents in which wi appeared.

Total Number of words in the corpus = (
∑

wi)
Total Number of Documents = (

∑
D)

Document Probability of each word P(wi) =
Nwi

Dwi

21

Corpus Probability = Nwi∑
wi

Document Corpus Probability = Dwi∑
D

Word Corpus Probability = Nwi∑
D

Here, ”Total Number of Documents” means number of documents trained for any par-
ticular class. So we had Wstat matrix for each class of documents. Then we tested these
metrics on two separate algorithm as follows,-

Algorithm 7 Accuracy Prediction using Document Probability Calculation
Input: An OCR document D and Wstat matrix for each class A,B and C, denoted by

Wstat(A), Wstat(B) and Wstat(C) .
Output: A Class assigned to the OCR document D.

1: for each word wi in D do
2: From each class of Wstat matrix get the Document Probability of wi and sum them

up i.e
SumA+← Wstat(A).getDocumentProbability(wi)

SumB+← Wstat(B).getDocumentProbability(wi)

SumC+← Wstat(C).getDocumentProbability(wi)

3: end for
4: The class of the document is assigned based on which class has maximum sum of Docu-

ment Probability i.e based on out of SumA, SumB and SumC which one is maximum.

The second algorithms a bit different,-

Algorithm 8 Accuracy Prediction using Word Classification
Input: An OCR document D and Wstat matrix for each class A,B and C, denoted by

Wstat(A), Wstat(B) and Wstat(C) .
Output: A Class assigned to the OCR document D.

1: for each word wi in D do
2: assign class to wi as A,B or C based on which one of Wstat(A), Wstat(B) and Wstat(C)

has highest Document Probability.
3: end for
4: As each word in the document D has been assigned a class, we just count which class

has been assigned to most of the word in the document and that would be assigned as
the class of the document.

We have written only Document Probability metric in the above algorithms. But we
actually tested both the algorithms on all the other metrics as well. But only Document
Probability has shown some positive result in our classification.

22

4.4 Recurrent Neural Network Language Model Ap-
proach

There are many RNN tools available these days in the internet. Among them Mikolov’s
recurrent neural network [14] is one of the best. It has faster training capabilities over large
training data compared to Theano or Pybrain. Our next approach is based on Mikolov’s
RNN toolkit.

4.4.1 Advantage of RNN over n-gram Language Model

RNN do not make the Markov assumption, n-gram models do. RNN, in theory can take
into account long-term dependencies when modeling natural language. According to Bengio
et al [2] learning Long-Term Dependencies with Gradient Descent is difficult and, to my
knowledge, Mikolov’s work is not addressing this problem. His work focuses more on storing
the entire history in the hidden layer as some kind of state which is useful in predicting
probability of the next input pattern and the use of RNN for language modeling tasks by
making them super fast to train in comparison to previous implementations. But sometimes
it is suitable to have n-gram sequences as an input to the recurrent network as it would
better learn long term dependencies.

N-gram techmique rely on simple smoothing like Kneser–Ney or Good–Turing [7]. With
the increase in size of vocabulary a number of parameters would explode. RNN on the other
hand has a greater representational power and intelligent smoothing power by taking into
account syntactic and semantic features (see for example Turian et al. [13]).

The probability of a sequence of symbols (usually words) is computed using a chain rule as

P (w) =
∑

P (wi| (w1.w2......wi−1)) (4.3)

The most frequently used language models are based on the n-gram statistics, which are
basically word co-occurrence frequencies. The maximum likelihood estimate of probability
of word A in context H is then computed as

P (A| H) =
C(HA)

C(H)
(4.4)

where C(HA) is the number of times that the HA sequence of words has occurred in the
training data. The context H can consist of several words, for H = ∅, the model is called
unigram, and it does not take into account history. For the usual trigram models |H| =
2. As many of these probability estimates are going to be zero (for all words that were not
seen in the training data in a particular context H), we apply smoothing technique. This
works by redistributing probabilities between seen and unseen (zero-frequency) events. The
problem with this approach is that we assign probability based on a single observation, which
sometimes leads to over/under estimation.

23

According to Mikolov’s work, the input layer of RNNLM consists of a vector w(t) that
represents the current word w(t) encoded as 1 of V (thus size of w(t) is equal to the size
of the vocabulary), and of vector s(t - 1) that represents output values in the hidden layer
from the previous time step. After the network is trained, the output layer y(t) represents , -

P (w) = P (wt+1| wt, s(t− 1)) (4.5)

4.4.2 Word level vs Character Level language Model

OCR documents accuracy prediction using language model again comes back to word pre-
diction and WER calculation but this time focusing more on the context of the word rather
than other means. The word level model is perhaps more suitable choice as it will predict
the probability distribution of a word given its history or context. If, on the other hand,
we apply character level model, we can only predict next character given the history, which
raises the difficulty of detecting the occurrence of a wrong character in a wrong word (the
same limitation as the a bi-directional Trie). Word level models are easier to apply in algo-
rithms but have limitations when it comes to practically running the code. The reason is
described as following, -

According to Mikolov the traditional training algorithm of RNNLM denoted as normal
backpropagation, as the RNN is trained in the same way as normal feed forward network
[9], with one hidden layer, with the only exception that the state of the input layer depends
on the state of the hidden layer from previous time step. In Mikolov’s paper [14], it was
describe that such training approach is not optimal - the network tries to optimize prediction
of the next word given the previous word and previous state of the hidden layer, but no effort
is devoted towards actually storing in the hidden layer state some information that can be
actually useful in the future. This kind of design will not be able to remember long context
information in the state of the hidden layer. However, a simple extension of the training
algorithm can ensure that the network will learn what information to store in the hidden
layer - this is the so-called Backpropagation through time algorithm.

After applying the Backpropagation through time algorithm, the output layer ’y’ repre-
sents a probability distribution of the next word wt+1 given the history. The time complexity
of one training or test step is proportional to

O = H ×H +H × V = H × (H + V) (4.6)

Where H is size of the hidden layer and V is size of the vocabulary.
For Word level Language Model, |V | = 451486 .
For Character level Language Model, |V | = 95

24

So, after training the word level model (in spite of using frequency banning [21]) we end
up getting a model of size 2.7 GB. For each word in a document(which may contain up to
1000 or more words) loading that model in memory and running the code takes a huge time
(almost 1hr to process each document). So, in order to avoid this technical limitation we
trained a char level language model.

4.4.3 Training

Typical Choice of Hyper-Parameters

Due to huge computational complexity of neural network based language models, only a
person with some experience can train the large scale model. Due to the fact that certain
parameter combinations are too expensive to explore we choose the following parameters as
suggested by Mikolov.

We ran BPTT(Backpropagation through time) algorithm for at 10 steps. Size of the
hidden layer = 400. BPTT algorithm has been run through block mode(block size of 20).
Using frequency binning approach it is desirable to make sure that class size does not exceed
sqrt(|V |). But while training a character level model we can achieve highest accuracy by
turning off the class based training by setting the -class parameter to 1.

The algorithm for predicting correct word given a wrong word from RNN model is,-

Algorithm 9 Predicting correct word using RNNLM
Input: A misspelled word wi, its previous two context words wi−1 and wi−2, the model M

and two Trie data structure Tforward and Treverse

Output: The correct output word.
1: Generate the candidate set from S from wi using Tforward and Treverse.
2: for each word w in S put wi−1, wi−2 and w in character array and feed them into M .

Get the top 10 words having the highest probability. From them select the word having
minimum edit distance from wi.

3: Return that word.

25

Chapter 5

Results and Analysis

The results for all three approaches are shown separately.

Table 5.1: Approach1 Result

Accuracy Precision Recall F1 Score
OCR Prediction 0.789 0.7875 0.789 0.787
Only Lexicon 0.7962 0.7948 0.7962 0.7947
Double Trie 0.6966 0.6991 0.6970 0.6921
Bigram Voting 0.7842 0.7826 0.7842 0.7825

OCR Prediction method is the fastest among all four methods described above. The
average processing speed for each file is given below ,

• OCR Prediction = 2.948 ms

• Only Lexicon = 11.254 sec

• Double Tri = 993 ms

• Bigram Voting = 310 ms

OCR prediction method is on the other hand takes the least memory resources while run-
ning because it just loads lexicon and (wrong,correct) word pair dictionary in memory(which
contains 365987 pairs). The better approach should be if we just store the pair character wise
i.e just keeping track of which character or bigram or trigram gets change into which cor-
responding character, bigram or trigram. The dictionary would be much smaller. But that
approach won’t work as we have found the following example while attempting that method,-

Table 5.2: Example

নাছগুিল /nAchhaguli গাছগুিল /gAchhaguli
বন.না /bana.nA বণনা /barNanA

26

We can clearly see that two misspelled words নাছগুিল and বন.না we have the ন. The changes
have taken place accordingly

• In the first example ন has become গ.

• In the second example ন has become

There are many more example not shown here. So from that we can conclude that not
all characters or character pairs change into same thing every time they occur in OCR doc-
ument. An interesting fact to notice is that পুিলশ has been changed to থিলশ many times but
not always. Also each occurrence of পু does not always change to থ in every misspelled word.

The following table shows a comparison between the closest words found corresponding
to a misspelled word using ”Only Lexicon”, ”Double Trie” and ”Bigram Voting” approach.

Table 5.3: Comparison of different approaches while predicting the correct word

Misspelled Word Lexicon Word biGram Word Double Trie Word
িফিলিপল িজিলিপই িফিলিপনস িফিলিপনস

ডরয়াগ সুরয়াস ররয়াগ ররয়াগ

পিরবযন পিরবজন পিরবদন পিরবধন

সবিট সমিট সূিট সূিট

নানাাবধ নানািবধ জানাােনা নানাভােব

কবায কূবায একবায একবায

থিটনািট রটনািট খুঁিটনািট খুঁিটনািট

ছড়েত িছড়েত ঝড়েত লড়েত

জুলাহ জুলা জুলা জুলাই

উতসব উসব এতসব উসব

The following is the result for our pattern recognition approach using Random
Forest

Table 5.4: Results:: Random Forest

Accuracy Precision Recall F Score
Unicode Approach 0.7740 0.7369 0.7843 0.7542
Top 20 Words 0.7380 0.7221 0.7556 0.7356
Top 50 Words 0.7523 0.7265 0.7668 0.7415

The following is the result for Word Probability based approach,-

27

Table 5.5: Results:: Word Probability approach

Accuracy Precision Recall F Score
Method 1 0.6111 0.5097 0.6510 0.50
Method 2 0.6148 0.5348 0.6395 0.5266

The following is the result for our character level RNNLM,-

Table 5.6: Result:: Character Level RNNLM

Accuracy Precision Recall F Score
RNNLM 0.7088 0.6623 0.665 0.6634

The word level RNNLM would give us more accurate results but we could not use it due
to its size. The word level model is better due to the fact that we only had to predict(or in
other words, calculate the probability of) a single word. In character level RNNLM we had
to predict(calculate probability of) a sequence of characters. Here also we get a candidate set
from double Trie data structure to make sure we do not have to calculate the probability over
the entire lexicon. Each word from the candidate set is converted into a character sequence
and then fed into our trained RNN model to get the probability(more accurately, to prevent
floating point underflow we used log probability). Our accuracy is low here because Double
Trie may not always return a proper candidate set which contains our desired correct word.
So the error from Double Trie method is actually added here. To get more accuracy we
had to calculate probability over the entire lexicon which will eventually come at the cost of
higher time complexity.

28

Chapter 6

Conclusion and Future work

We have approached the OCR document’s accuracy prediction problem in three different
ways, each of which has some strong point and some draw backs. But our goal always
remained the same - more accuracy in less time using lesser memory resources.

• When predicting the correct word for a misspelled word we tried to reduce the number
of times edit distance has been calculated. First we searched the entire dictionary
which caused us for every misspelled word 451486 distance calculations.

• Next, we generated a candidate set (using double Trie approach first followed by bigram
voting approach) from where we get the correct word and thus reducing the number of
distance calculations. We did sacrifice the accuracy a little (as sometimes the candidate
set may not have the required word) and used more memory space but reduced time
complexity.

The next approach we tried is based on a Random Forest classifier. This is a com-
pletely different approach where we extracted different features from our OCR documents
and created a feature vector for each file. Then we built the random forest and tested OCR
documents with a certain level of accuracy.

• Though we know that Random Forest is almost a black box approach still we have left
a space of improvement here. We can try to extract features differently.

• We can combine different features and assign different weight to them.

• We can also use other classifiers such as SVM or MLP classifiers.

There is another approach based on word statistics calculation. Where we calculated
the probability or frequency of occurrence of each word(or you can also call it pattern) of
training OCR documents(correct and misspelled word) and from that we applied two dif-
ferent approaches on test documents. To be honest, result might not always get to be the
exact same if we have different documents instead of the test set used. Also there are other
metrics we used that did not give us any positive results at all.

29

The last approach is based on RNNLM. Though in OCR documents, it is hardly the case
of grammatical anamoly or unlikely combination of words, we can still train an RNNLM and
get a good prediction.

• Usually RNNLM or any other language model is more suitable for diacritics completion.
Using that in OCR document also gave us good results but in expense time complexity.
As RNNLM is proved to be superior over other language models, using it efficiently is
an issue.

• The algorithm we used here is predicting and correcting each word from the beginning
and every time we have a candidate set corresponding to a misspelled word it will load
the model in the memory and calculate the probabilities. Some how if we can pre-load
the model once and for all in the memory and use it again again it would save us a
huge lot of time and then it would be easier for us to use word level RNNLM instead
of character level RNNLM.

30

Bibliography

[1] Ahmed, F., Luca, E. W. D., and Nürnberger, A. Revised n-gram based au-
tomatic spelling correction tool to improve retrieval effectiveness. Polibits, 40 (2009),
39–48.

[2] Bengio, Y., Simard, P., and Frasconi, P. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks 5, 2 (1994), 157–166.

[3] Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. The
mathematics of statistical machine translation: Parameter estimation. Computational
linguistics 19, 2 (1993), 263–311.

[4] Bunke, H., Bengio, S., and Vinciarelli, A. Offline recognition of unconstrained
handwritten texts using hmms and statistical language models. IEEE transactions on
Pattern analysis and Machine intelligence 26, 6 (2004), 709–720.

[5] Cordeiro De Amorim, R., and Zampieri, M. Effective spell checking methods
using clustering algorithms. In Proceedings of Recent Advances in Natural Language
Processing (2013), Association for Computational Linguistics.

[6] De Novais, E. M., Tadeu, T. D., and Paraboni, I. Improved text generation
using n-gram statistics. In Ibero-American Conference on Artificial Intelligence (2010),
Springer, pp. 316–325.

[7] Gale, W., and Sampson, G. Good-turing smoothing without tears. Journal of
Quantitative Linguistics 2, 3 (1995), 217–237.

[8] Greenfield, R., et al. An experiment to measure the performance of phonetic key
compression retrieval schemes. Meth. Inform. Med 16, 4 (1977), 230–233.

[9] Hagan, M. T., and Menhaj, M. B. Training feedforward networks with the mar-
quardt algorithm. IEEE transactions on Neural Networks 5, 6 (1994), 989–993.

[10] Hanson, A. R., Riseman, E. M., and Fisher, E. Context in word recognition.
Pattern Recognition 8, 1 (1976), 35–45.

[11] Kirchhoff, K., and Yang, M. Improved language modeling for statistical machine
translation. In Proceedings of the ACL Workshop on Building and Using Parallel Texts
(2005), Association for Computational Linguistics, pp. 125–128.

31

[12] Kuo, H.-K. J., Mangu, L., Emami, A., and Zitouni, I. Morphological and
syntactic features for arabic speech recognition. In 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing (2010), IEEE, pp. 5190–5193.

[13] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies-
Volume 1 (2011), Association for Computational Linguistics, pp. 142–150.

[14] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S.
Recurrent neural network based language model. In Interspeech (2010), vol. 2, p. 3.

[15] Morris, R., and Cherry, L. L. Computer detection of typographical errors. IEEE
Transactions on Professional Communication, 1 (1975), 54–56.

[16] Och, F. J., and Ney, H. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of the 40th Annual Meeting on Associa-
tion for Computational Linguistics (2002), Association for Computational Linguistics,
pp. 295–302.

[17] Pollock, J. J., and Zamora, A. Automatic spelling correction in scientific and
scholarly text. Communications of the ACM 27, 4 (1984), 358–368.

[18] Richter, M., StraÅák, P., and Rosen, A. Korektor-a system for contextual
spell-checking and diacritics completion. In COLING (Posters) (2012), pp. 1019–1028.

[19] Stolcke, A., et al. Srilm-an extensible language modeling toolkit. In Interspeech
(2002), vol. 2002, p. 2002.

[20] Zamora-Martinez, F., Castro-Bleda, M. J., and Schwenk, H. N-gram-based
machine translation enhanced with neural networks for the french-english btec-iwslt’10
task. In International Workshop on Spoken Language Translation (IWSLT) 2010 (2010).

[21] Zweig, G., and Makarychev, K. Speed regularization and optimality in word class-
ing. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(2013), IEEE, pp. 8237–8241.

32

	Introduction
	Problem Definition
	Our work

	Related works
	Spell Checking
	Language Model

	Data Set Description
	Unicode and UTF-8
	Windows naming convention of Unicode text

	Our Approaches
	Predicting OCR's behavior
	When OCR data not available during training
	Using Lexicon only
	Using Lexicon vocabulary and Trie Data Structure
	Using Lexicon vocabulary and Bi-Gram voting method

	Pattern Recognition Approaches
	What is Random Forest
	Building a Random Forest
	Word Probability Approach

	 Recurrent Neural Network Language Model Approach
	Advantage of RNN over n-gram Language Model
	Word level vs Character Level language Model
	Training

	Results and Analysis
	Conclusion and Future work

