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@orrectlon of Data for Errors of Avera}gesj

Obtained from Small Samples

By W. A. SHEWHART
Bell Telephone Laboratories, Incorporated

SyNopsis: Recent contributions to the theory of statistics make possible
the calculation of the error of the average of a small sample—something
that cannot be done accurately with customary error theory. Obviously,
these contributions are of very general importance, because experimental
and engineering sciences alike rest upon averages which in a majority of
cases are determined from small samples, and because an average cannot be
used to advantage without its probable error being known.

The present paper attempts to show in a simple way why we cannot use
customary error theory to calculate the error of the average of a small
sample and to show what we should use instead. The points of interest are
illustrated with actual data taken for this purpose. The paper closes with
applications of the theory to four types of problems involving samples of
small size for each of which numerous examples arise in practice. These
types are:

1. Determination of error of average.
2. Determination of error of average difference.

. 3. Determination of most probable value of the root mean square de-
viation of the universe when only one sample of # pieces has been examined.

4. Determination of most probable value of the root mean square devia-
tion of the universe when several samples of # pieces each have been ex-
amined.

UseruL THEORY OVERLOOKED: WHY?

PRACTICALLY everyone uses averages—research workers and
engineers in particular. Moreover, all of us have long appre-
ciated the fact that an average is often only of value when we know
its probable error. Naturally, we turn to the theory of errors to guide
us in calculating the probable error. Naturally, because from 1733
to 1908 there was nothing else that we could turn to. Since 1908 the
recognition has been gradually making headway that to use customary
error theory for determining the probable errors of averages of small
samples is a mistake.

The story of how to calculate the probable error of a small sample
was originally told in Biometrika, a journal for the statistical study
of biological problems—a veritable mine of useful information. The
truth was given in equations involving terms familiar only to statis-
ticians and hence was concealed from many. The story, however,
with the aid of such experimental results as are used in this paper can
be told in a simple manner: it is of interest to all of us who, for one
reason or another, cannot make large numbers of observations on
every quantity that we measure, but must nevertheless estimate the
probable errors of our results. In this discussion, diagrams will be
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used instead of equations, and, because of this rather. ;.)opular pre-
sentation, many readers may want to consult, as the original sources,
the intensely interesting mathematical contributions of “Student”,!
Professor Ke-irl Pearson,? and R. A. Fisher.?

Case WHERE CustoMARY THEORY APPLIES

We start, as in customary error theory, with the assumption that
the probability distribution of errors is normal. This‘ simply means
that the probability of the occurrence of an error within any range is
assumed to be equal to the area under the so-called normal curvet
(such a curve is shown in Fig. 1) between the limits of the same range.

p
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Fig. 1—Customarily assumed law of error curve—normal law

50.000009, of area within 0= .67449¢
68.268949, of area within 0= 1o
95.44998Y, of area within 0= 2¢
99.730029, of area within 0= 3¢

The total area under the curve is, of course, unity. This curve is
plotted with the origin at the true value and with the errors measured
in units of the root mean square error o. The fractions of the area

bounded by certain multiples of the root mean square error are shown
for reference.

Let us make an experiment and see how far customary error theory

! Biometrika, Vol. VI, 1908, pp. 1-15. Vol. X1, 1917, pp. 416-417.
* Biometrika, Vol. X, 1915, pp. 522-529,

* Biometrika, Vol. X, 1915, pp. 507-521. Proc. Camb. Phil. Soc,, Vol. XXI, 1923,
pp. 655-658.

* The equation for this h

tl t Moi 1733
by Professor Paaraan o0 as recently been traced back to Abraham De Moivre ( )

e Biometrika, Vol. X VI, 1924, pp. 402404,
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carries us, see where it breaks down, see why it breaks down, and then
avail ourselves of the new theory-—a powerful tool of great value, be-
cause it makes possible for the first time the solution of many practical
problems. Here is the experiment. Take 998 small circular chips,
499 green and 499 white. Mark 20 white ones with 0, 40 white ones
with 0.1, 39 white ones with 0.2, etc., in accordance with the normal
law. Do the same for the green chips except that all numbers on the
chips are minus. Put the 998 chips in a bowl, mix thoroughly, draw
out one and record it. Replace the chip, again mix thoroughly, and
repeat the process until 4000 values are observed. A little reflection
shows that this experiment is equivalent to making 4000 measure-
ments of a quantity by a method subject to a normal law of error with
a root mean square error of approximately unity.

Let us group these 4000 values into 1000 groups of 4, and determine
the average for each group, taking the first four observations as the
first group, the second four as the second group and so on. This gives

100

NUMBER OF OBSERVATIONS

=[S0 -20 -lo 1] 1o 20 30~
Fig. 2—Curve showing customary error theory to be satisfactory on one condition
not often met in practice; i.e., ¢ is known
Distribution of 1000 averages of 4

. -4
- Normal law with root mean square error ——=
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us 1000 averages. Suppose we subtract the true value m (in this case
zero) from each average and divide this result by the root mean square
error of the frequency distribution of values within the bowl. This
gives us 1000 observations of the error of the average of 4 observations
measured in terms of ¢. Customary error theory shows that these
averages should be distributed normally as indicated by the smooth
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g
curve in Fig. 2 with a root mean square error of Vi or one half that

in Fig. 1. The dots show the experimental results.®

So far the customary error theory is satisfactory. But we do not
often have this case in practice; that is, we do not know the root mean
square error g, and instead know only the observed root mean square
error s of the sample.®

Case WHERE CustoMAarRYy THEORY DOES NOT AprLy

Let us next recall just the way we use the customary theory in prac-
tice and then see what mistake we usually make. Take the results
of drawing the first sample of 4 in the experiment previously cited.
The four observed values are .6, —.2, 1.1, — 2.0, the average X of these

400

NUMBER OF_OBSERVAT10MS

=36 -390 .24 -1.8 -12 -6 o % 1.2 1.8 2.4 30 3.6

Fig. 3—Curves showing inaccuracy of customary error theory in finding error of
average in terms of the observed standard deviation s

— — = — ~ Customary theory
— New theory
o Distribution of 1000 z's

is —.125, and the observed root mean square deviation s is 1.177.
Assymmg no knowledge of the root mean square error ¢ of the distri-
bution from which the .sample of 4 was taken and using customary

theory, we should assume the probable or 509, error to be .6745 1 \1/11

® I am indebted to Miss Victoria Mial and Miss Marion Cater for securing the ex-
perimental results, making all necessary calculations, and drawing the curves given
in this paper. ’
[ ari
Customarily we do not know the true value m, hence instead of knowing the root
mean square errors we know the root mean square or standard deviations.
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This follows from the fact that the observed values of the ratio

= X_:_r_n where m is the true value, are customarily assumed to be
distributed normally. Here we come to the crux of the discussion: these
observed values of the ratio are not distributed normally. ‘“Student”?,
in 1908, was the first to show how they are distributed.

Let us look at the observed frequency distribution of the 1000 5's
given by the above experiment (dots Fig. 3). To be normally dis-
tributed, as customarily assumed, these dots would have to lie on the
dotted normal curve. Obviously they do not. Instead they lie on a
much more peaked curve (solid line) than the normal. This was cal-
culated with the aid of ““Student’s” theory. We must therefore con-
clude: the probability that the mean of a sample of #, drawn at random
from a normal distribution, will not exceed (in the algebraic sense) the
mean of that distribution by more than z times the root mean square
deviation of the sample cannot be found from the normal law when n
is small. We must use the tables provided by “Student’ in the two
papers referred to above.

WayY THE CUSTOMARY THEORY FaILs To GIVE THE ERROR
OF THE AVERAGE IN CASE OF SMALL SAMPLES

Let us look a little further into the reason why the 2’s are not dis-
tributed normally, before we consider the question as to the magnitude

120
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Fig. 4—Data furnishing a clue to reason for inadequacy of customary error theory

» Observed distribution of standard deviations of 1000 samples of four
= Theoretical curve of asymmetrical type

of the difference between the probable error determined from one
theory and that determined from the other.
Let us look at the distribution of the 1000 standard deviations,
the s's, Fig. 4, for here we shall find the secret revealed: The distri-
7 Loc. cit.
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bution of s's, as we might expect, is asymmetrical; the most probable
standard deviation s, to be observed is not the average s. Of course,
the customary theory assumes that the average s 1s the most probable
s, and that the distribution of s is normal. We should therefore expect
t; find the #'s distributed normally for values of # such that the dis-

1.4

PROBABLE ERROR

RATIO

0 5 10 15 20 25 30
S1ZE OF SAMPLE - n
99.73% ERROR

2.5

2.0

RATIO

1.5

1.0

0 5 10 15 20 25 xn
SIZE OF SAMPLE - n

Fig. 5—Chart showing magnitude of correction for size of sample—ratio of the errors
to their customarily accepted values

tribution of observed standard deviations is approximately normal.
Now, Professor Pearson® has developed the theory underlying the
distribution of s. He finds that as # increases, the distribution of s
rapidly approaches normality. Even for » greater than 25 the distri-
bution has approached normality to such an extent that we should
expect the z's to be distributed approximately in normal fashion.
The study of the distribution of z shows this to be true, as we shall
see below.

In passing, we should note how closely the theoretical curve, Fig. 4,

fits the observed points and also note two other checks between theory
8 Loc. cit.
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and observation furnished by the new data given herein. According
to theory, the modal and mean values of s for samples of size 4 ex-
pressed in units of ¢ should be .707 and .798 respectively. The ex-
perimental results are .717 and .801.

How MucH LARGER ARE THE PROBABLE AND 99.7397, ERRORS OF
/C
AN AVERAGE THAN THE CUSTOMARILY ACCEPTED VALUES?

The difference between the error of an average and its customarily
accepted value increases as the number of observations # {or size of

6.00
5.00

4.00

3.00

= eas:

1.00
.80

<80
.40

.30 B

.20

.10
.08

.06

o] 20 40 60 80 100 120
SIZE OF SAMPLE ~ n

Fig. 6—Errors of averages of samples of size n

I —99.730029, error
11 —95.449989 error
111 —68.268949, error
IV —50.000009, error
z =the ratio of the error of the average to the observed standard deviation

sample) decreases. This fact is illustrated in Fig. 5. This figure
shows the ratios of the errors to their customarily accepted values
plotted for values of # from 4 to 30.



Curves showing the most frequently used errors of averages meas-
ured in terms of z (4.e. in terms of the ratio of the error to the observed
standard deviation) are given in Fig. 6. The error curves for n less
than 30 have been obtained with the aid of “Student's” original
tables, those for #» between 30 and 100 have been obtained from the

normal law integral tables using the standard deviation of z; 7.e.

N

ﬁ as given by “‘Student.” For »n greater than 100, customary
7n—

error theory has been used.®

TyPICAL PRACTICAL APPLICATIONS

But few, if any, recent developments of statistical theory are of
more general application in most fields of scientific research and en-
gineering than the one herein described.’® This follows because the
theory herein discussed must be used in calculating the required prob-
able error (or other measure of dispersion) of the averages obtained
from small numbers of observations. The number of applications
of this character is legion.

ProeiEM TYPE 1, DETERMINATION OF ERROR OF AVERAGE
Example 1:

Five samples of granular carbon taken from a crucible show
resistances of 47.5, 49.4, 43.2, 48.0 and 46.2 ohms respectively. What
are the probable and 99.739, errors of the average of these resistances?

Solution:

The observed values of average resistance X, and standard devia-

. (X —~X)? O
tion s= \j —Efn“) are 46.9 ohms and 2.097 ohms respectively. Hence

from Fig. 6 we see that the probable and 99.739 errors are respect-
ively .3725=.780 ohms and 3.335=6.99 ohms respectively whereas
from customary theory they would be.302s = .633 ohms and 1.34s=2.81

? For the curves in this figure as in the preceding one, I have assumed the customary

theory for the case where the true value of X is known so that the root mean square

5 . . . s
error of the average X of sample of size is the ratio —=. Of course, as we know

. n
from customary error theory, if we assume no knowledge of the true value of X, we
5
should use ——.,
Yn—1

10 Since this paper was written, a
tration,” has appeared in Nature (
to the importance of the theory o

very interesting article, * Statistics in Adminis-
V. 117, pp. 37-38, Jan. 9, 1926), calling attention
f small samples.
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ohms respectively. The true probable and 99.739, errors are 23%,
and 1489, higher respectively than those calculated by customary
theory, as is evident from Fig. 5.

Discussion of Type 1:

Examples of this type of problem are obviously so numerous that
further illustrations need not be given. They occur every day in
practically every science. We see that in such cases it is certainly
necessary to allow for the effect of the small size of sample.

PrOBLEM TYPE 2, DETERMINATION OF ERROR OF AVERAGE DIFFERENCE
Example 1:

Five instruments are measured for some characteristic X, first on
one machine and then on another, giving two sets of values Xy, Xy,,
...X1s, and Xy, Xoa, .. .xg respectively. Calculate the 5 differ-
ences Xu—Xa=x1, X12—Xo2=%, .. Xys—Xos=x5. Assume that
the average difference is ¥ and the standard deviation of the differ-
ences is 5. Assuming the two machines give the same results except
for random variations, what is the probability that the observed
difference would occur? Are we justified in the assumption that the
machines give the same results?

Solution:

The true difference is zero on this assumption. The observed

difference is z= ,and ““Student’s” tables may be used to evaluate

this probability.! If this probability is very small, let us say .001 or
less, it may be taken as indicating that the machines do not give the
same results.

Example 2:

We wish to compare the depth of penetration obtained from two
different methods of preserving chestnut telephone poles. We choose
n poles for test. A sample from each pole is treated by one process,
and a sample from each pole is treated by another process. The
depths of penetration are measured. Are we justified in assuming the
two methods to give significantly different results?

1t Approximate values can be obtained from the curves in Fig. 6.
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Solution:

If » is small, we proceed as in the previous case, to find the proba-
bility of occurrence of the observed difference. If this probability is
small, we conclude that the difference is significant; i.e., the two
methods of preservation give different results.

Example 3:

Three-holt guy clamps are used for clamping the guy wires on tele-
phone poles. These are supplied from different sources. Those from
one source fail to hold the wire as well as those from another and in-
spection shows that these same clamps fail to meet a certain specified
dimension. The force required to slip the wire in each of 10 clamps
from this source is measured. These clamps are then modified to
meet the specified dimension and the force required to slip the wire
in cach clamp is again measured. Are we justified in attributing the
failure to hold the wire to the fact that these clamps did not meet
the specification?

Solution:

The solution follows the same line as in the first case.

Discussion of Problems of Type 2:

Problems of this type are very numerous. It is obvious that sig-
nificant differences calculated as above indicated are always larger
than those calculated by customary theory.

PROBLEM TYPE 3, DETERMINATION OF MOST PROBABLE VALUE OF THE
Roor MEAN SQUARE DEVIATION OF THE UNIVERSE WHEN
ONLY ONE SAMPLE OF # PiecEs HAas BEEN EXAMINED

Example 1:

Five tool-made models are tested for their efficiency, giving values
X1, Xo, ... X5. What is the most probable value of the range within
which the efficiencies of product instruments may be expected to lie
approximately 99.79, of the time, assuming that a manufacturing

process can be developed which is the same as that used in producing
the tool-made models?
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Solution:

Customary practice would answer: the average of the five values
plus or minus 3 times their standard deviation. The better answer is:

the average plus or minus times the standard deviation.

3
7746

This follows from Professor Pearson’s work previously quoted. He
has shown that the most probable observed standard deviation § of

Ratio —r

o 20 40 60 80 100

Size oF SAaMPLE — 1

Fig. 7—Curves giving the most probable value of the true standard deviation ¢

I When theaverage 5 of standard deviations of many samples is known. rg =5
11 When the standard deviations of one sample is known. ro =5

a sample of # from a normal distribution with standard deviation o

is §= Jn;Z ¢. Substituting the value #=5 in this equation we get
$=.77460.

~

K . N
A curve of the values of = vs. % is presented in Fig. 7 for reference
o

in solving problems of this character.

PRrROBLEM TyPE 4, DETERMINATION OF MosT PROBABLE Roor MiAN
SQUARE DEVIATION OF THE UNIVERSE WHEN SEVERAL
SAMPLES oF # P1ECES EacH Have BEEN EXAMINED

Example 1:

One thousand transmitters, known to have different efficiencies,
have been tested five times each for efficiency. Find the standard
deviation of the machine method of measurement.

..._._‘_..._...
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Solution:

Calculate the standard deviation of the five tests for each trans-
mitter. Find the average value of these 1000 values and divide it by
.8407. This follows from the fact that the average 5§ of the observed
standard deviation for a series of samples of size » drawn from a
normal distribution with standard deviation o is

n—2

- 2] 2
= — ——U-
s \/n n—3

5~

where the symbol | X is equivalent to I' (X +1)
Thus for #=5 we get ? 5=.84070.

Fig. 7 also presents the values of the ratio 2 for reference and with
g

sufficient accuracy for solving problems similar to the example cited.
Greater accuracy than that afforded by the curves can be secured by
direct substitution in the equations for § and § or by referring to the
original tables.

12 We will recall with interest how closely the observed average, §=.798s, of the

1000 values of s corresponding to the 1000 samples of four herein presented checked
the theoretical average of .801s.

) .
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