Some Conjugacy Problems in Algebraic Groups

Anirban Bose

Thesis Adviser: Maneesh Thakur

A thesis in Mathematics submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2014

Indian Statistical Institute
7, S.J.S. Sansanwal Marg, New Delhi-110016, India email: anirban.math@gmail.com

To My Father

Acknowledgments

I take this opportunity to thank various people for their support and encouragement, without which it would have been impossible to write this thesis.

First, I would like to thank my thesis adviser Maneesh Thakur, from whom I got my first exposition to the theory of algebraic groups. During the course of my research work at ISI, he has always been a source of encouragement for me, showing me the right path to walk on and making me aware of possible pit falls. The innumerable discussion sessions that I had with him, were of immense help to me. He had always been extremely patient with me, thereby explaining the most trivial doubts which came to my mind. The questions answered in this thesis were suggested by him.

I thank Dipendra Prasad for his valuable remarks and criticisms on the work done in this thesis. I had been fortunate enough to have useful discussions with several mathematicians and I thank them for their precious time and support. In particular I would like to thank Donna Testerman for her valuable inputs on the work done in [Bo]. I would also like to thank Shripad Garge and Anupam Singh for their constant encouragement. I thank B. Sury and Riddhi Shah for many useful correspondences I had with them.

I thank Amartya Datta and Amit Roy for the algebra courses taught by them at the Ramakrishna Mission Vidyamandir, Belur Math.

I am grateful to many of my teachers for introducing me to various branches of this beautiful subject. Particularly I would like to thank Partha Pratim Roy, Kiran Chandra Das, Tarun Bandyopadhyay and Dhrubajyoti Bhattacharya.

I thank the administrative staff at ISI (Bangalore and Delhi Centres) for their co operation in several official matters.

I warmly thank all my friends, with whom I have shared some memorable years of my life. My stay at ISI would not have been so interesting without them.

I thank my father and my sister Deyashini for their love and encouragement. And finally, I thank Gargee for letting me dream of a wonderful life together.

Contents

Chapter 1. Introduction 1
Main Results 3
Results on computation of genus number 3
Results on real elements in F_{4} 4
Chapter 2. Lie Groups and Algebraic groups 5
2.1. Lie groups: Definition and examples 5
2.2. Compact Lie groups 6
2.3. The Compact Classical Lie groups 8
2.4. Linear Algebraic Groups: Definitions and examples 9
2.5. The Lie Algebra of an Algebraic Group 10
2.6. The Jordan-Chevalley decomposition 11
2.7. Semisimple and Reductive groups 12
2.8. Clifford algebras and Spin groups 13
2.9. Classification of simple algebraic groups 14
Chapter 3. Groups of type G_{2} and F_{4} 19
3.1. Octonion algebras and groups of type G_{2} 19
3.2. The principle of triality 21
3.3. Albert algebras and groups of type F_{4} 22
Chapter 4. Genus number of Lie groups and algebraic groups 25
4.1. Introduction 25
4.2. Preliminaries 25
4.3. A_{n} 33
4.4. B_{n} 35
4.5. C_{n} 37
4.6. D_{n} 38
4.7. F_{4} 41
4.8. G_{2} 56
4.9. Computations for the Lie algebras 58

Chapter 5. Real elements in $F_{4} \quad 65$
5.1. Introduction 65
5.2. Reality in compact $F_{4} \quad 65$
5.3. F_{4} from Albert division algebras 68
5.4. F_{4} from reduced Albert algebras 71

Chapter 6. Further Questions 75
Bibliography $\quad 77$
Index 81

CHAPTER 1

Introduction

In this thesis we address two problems related to the study of algebraic groups and Lie groups. The first one deals with computation of an invariant called the genus number of a connected reductive algebraic group over an algebraically closed field and that of a compact connected Lie group. The second problem is about characterisation of real elements in exceptional groups of type F_{4} defined over an arbitrary field.

Let G be a connected reductive algebraic group over an algebraically closed field or a compact connected Lie group. Let $Z_{G}(x)$ denote the centralizer of $x \in G$. Define the genus number of G as the cardinality of the set $\left\{\left[Z_{G}(x)\right]: x \in G\right\}$, where $\left[Z_{G}(x)\right]$ denotes the conjugacy class of $Z_{G}(x)$ in G. It turns out that the number of conjugacy classes of centralizers of elements in a connected reductive algebraic group over an algebraically closed field is finite ([St]). It is therefore natural to pose the following problem: Given a connected reductive algebraic group G, compute the genus number. Although this problem may be implicit in Dynkin's papers [D1], [D2], the explicit knowledge of genus number is difficult to extract from these works.

Semisimple conjugacy classes for finite groups of Lie type have been studied by Fleischmann and Carter (see $[\mathbf{F}],[\mathbf{C 1}]$). K. Gongopadhyay and R. Kulkarni have computed the number of conjugacy classes of centralizers in $I\left(\mathbb{H}^{n}\right)$ (the group of isometries of the hyperbolic n-space) [GK]. See $[\mathbf{K}]$ where the author discusses a related notion of z-classes. Conjugacy classes of centralizers in anisotropic groups of type G_{2} over \mathbb{R}, have been explicitly calculated by A. Singh in $[\mathbf{S i}]$.

In this thesis we describe a method of computing this number by looking at the Weyl group of the group in question and its action on a fixed maximal torus. We explicitly compute the genus number for all the classical groups and for G_{2} and F_{4} among the exceptional ones, as far as semisimple elements are concerned.

Let G be a group. An element $x \in G$ is said to be real in G if there exists $g \in G$ such that $g x g^{-1}=x^{-1}$ and x is called strongly real in G if there exists $g \in G$ such that $g^{2}=1$ and $g x g^{-1}=x^{-1}$. Note that $x \in G$ is strongly real if and only if there exist elements $g_{1}, g_{2} \in G$ such that $x=g_{1} g_{2}$ and $g_{1}^{2}=g_{2}^{2}=1$. Let G be an algebraic group defined over a field k and $G(k)$ be the set of all k-rational points of G. We say
that $x \in G(k)$ is k-real if there exists $g \in G(k)$ such that $g x g^{-1}=x^{-1}$ and x is called strongly k-real if there exists an element $g \in G(k)$ with $g^{2}=1$ and $g x g^{-1}=x^{-1}$.

The problem of characterising real elements in a group is directly related to studying the representation theory of the group. Let G be a finite group. observe that if $g \in G$ is real then every element in the conjugacy class of g is real. Such a conjugacy class is called a real conjugacy class. Consider representations of G over \mathbb{C}. A character χ of G is said to be real if $\chi(g) \in \mathbb{R}$ for all $g \in G$. A representation $\rho: G \longrightarrow G L(V)$ is said to be realizable if it is defined over \mathbb{R}. In fact, the number of real irreducible characters of G is equal to the number of real conjugacy classes of G ([JL], Theorem 23.1). In $[\mathbf{P r} \mathbf{1}]$ and $[\mathbf{P r} \mathbf{2}]$, Prasad has studied self- dual representations of finite groups of Lie type and p-adic groups.

It was proven by Wonenburger that for a field k, any element in $G L_{n}(k)$ is real if and only if it is strongly real in $G L_{n}(k)([\mathbf{W} 1]$, Theorem 1$)$. For $n \not \equiv 2(\bmod 4)$, an element of $S L_{n}(k)$ is real if and only if it is strongly real in $S L_{n}(k)$ ([ST2], Theorem 3.1.1). For a finite dimensional vector space V over a field k with a non degenerate quadratic form Q, every semisimple element in the special orthogonal group $S O(V, Q)$ is real if and only if it is strongly real in $S O(V, Q)$ ([ST2], Theorem 3.4.6). In [W], Wonenburger proved that in an anisotropic group of type G_{2}, which is obtained as the group of automorphisms of an octonion division algebra over a real closed field, every element is strongly real (Corollary 2, $[\mathbf{W}]$). Reality for groups of type G_{2} was further studied by Singh and Thakur in [ST1]. It is worthwhile to mention the reality properties known for the classical compact simple Lie groups: In the special unitary group $S U(n)$ with $n \not \equiv 2(\bmod 4)$, an element is real if and only if it is strongly real (Corollary 3.6.3, [$\mathbf{S T 2} \mathbf{2}]$). In the special orthogonal group $S O(n)$ of an n-dimensional real quadratic space, an element $t \in S O(n)$ is real if and only if it is strongly real (Theorem3.4.6, [ST2]). However, in compact symplectic groups $S p(n)$, there exist real elements that are not strongly real ([ST2], refer to the remark following Theorem 3.5.3).

In an algebraic group G defined over a field k, an element $x \in G$ is called strongly regular if $Z_{G}(x)$ is a maximal torus in G. It is known that in a connected adjoint semisimple algebraic group over a perfect field, with -1 in the Weyl group, any strongly regular k-real element is strongly k-real ([ST2], Theorem 2.1.2). In this thesis we characterise real elements in groups of type F_{4} which are not necessarily strongly regular.

Chapter 2 and Chapter 3 cover preliminary material for the chapters that follow. In Chapter 2 we give a brief exposition on the theory of Lie groups, algebraic groups and other related notions. Chapter 3 discusses the construction of exceptional groups of type G_{2} and F_{4} starting from octonion and Albert algebras respectively. We have briefly described the principle of triality for the norm on an octonion algebra in Section 3.2 .1 as this principle is quite crucial in the study of these groups. For proofs of the main results one can directly look up Chapters 4 and 5.

Main Results

In this section, we state the main results proved in this thesis.

Results on computation of genus number

Let G be a compact connected Lie group or a connected algebraic group over an algebraically closed field. The cardinality of the set $\left\{\left[Z_{G}(x)\right]: x \in G, x\right.$ semisimple $\}$, where $Z_{G}(x)$ is the centralizer of x in G, is defined as the semisimple genus number of G. We call this simply the genus number as we shall consider only semisimple elements here. If G is not simply connected, then the cardinality of the set $\left\{\left[Z_{G}(x)^{\circ}\right]\right.$: $x \in G, x$ semisimple $\}$, is called the connected genus number of G. Here $Z_{G}(x)^{\circ}$ denotes the connected component of identity in $Z_{G}(x)$.
Theorem 4.2.4: For a simply connected compact Lie group G with maximal torus T and Weyl group W, there exists a bijection

$$
\left\{\left[Z_{G}(x)\right]: x \in T\right\} \longrightarrow\left\{\left[W_{x}\right]: x \in T\right\}
$$

given by

$$
\left[Z_{G}(x)\right] \longmapsto\left[W_{x}\right]
$$

Here $\left[Z_{G}(x)\right]$ and $\left[W_{x}\right]$ respectively denote the conjugacy class of the centralizer $Z_{G}(x)$ of x in G and the conjugacy class of the stabilizer W_{x} of x in W.
Theorem 4.2.7: For a simply connected algebraic group G over an algebraically closed field, with maximal torus T and Weyl group W, there exists a bijection

$$
\left\{\left[Z_{G}(x)\right]: x \in T\right\} \longrightarrow\left\{\left[W_{x}\right]: x \in T\right\}
$$

given by

$$
\left[Z_{G}(x)\right] \longmapsto\left[W_{x}\right]
$$

Here $\left[Z_{G}(x)\right]$ and $\left[W_{x}\right]$ respectively denote the conjugacy class of the centralizer $Z_{G}(x)$ of x in G and the conjugacy class of the stabilizer W_{x} of x in W.

Corollary 4.2.8: Let G be a compact simply connected Lie group (resp. a simply connected algebraic group over an algebraically closed field), $T \subset G$ a maximal torus. The genus number (resp. semisimple genus number) of G equals the number of orbit types of the action of the Weyl group $W(G, T)$ on T.
Theorem 4.2.12: Let G be a compact connected semisimple Lie group or a connected semisimple algebraic group over an algebraically closed field k. Let \widetilde{G} be the simply connected cover of G. Then the connected genus number of G is equal to the genus number of \widetilde{G}.
Theorem 4.2.13: Let G be a connected reductive algebraic group over an algebraically closed field. Let G^{\prime} be the commmutator subgroup of G. Then the connected genus number of G is equal to the connected genus number of G^{\prime}.
Theorem 4.9.1: Let G be a compact connected Lie group (or a connected reductive algebraic group over an algebraically closed field) with the Lie algebra denoted by \mathfrak{g}. With respect to the action, $A d: G \longrightarrow A u t(\mathfrak{g})$ defined by $g \mapsto A d_{g}$, where $A d_{g}(x)=g x g^{-1}$, (having embedded G in a suitable $G L_{n}$) there is a bijection between the conjugacy classes of centralizers of semisimple elements in \mathfrak{g} in G and the conjugacy classes of centralizers of elements of a Cartan subalgebra in $W G$.

Apart from these general results, explicit computation of the genus number has been done for all the classical simple groups and groups of type G_{2} and F_{4} among the exceptional groups (refer to the table at the end of Section 4.9). The proofs of the above results make up Chapter 4 of this thesis.

Results on real elements in F_{4}

For real elements in groups of type F_{4} we have the following results:
Theorem 5.2.4: Every element of the compact connected Lie group of type F_{4} is strongly real.
Theorem 5.3.5: Let A be an Albert division algebra over a perfect field k and $G=\operatorname{Aut}(A)$ be the corresponding algebraic group of type F_{4}. Then $G(k)$ does not have any k-real element.
Theorem 5.4.2: Let A be a reduced Albert algebra over a perfect field $k(\operatorname{char}(k) \neq$ $2)$ where -1 is a square and $G=\operatorname{Aut}(A)$. If ϕ be a k-real automorphism of A, then either ϕ is strongly k-real in $G(k)$ or it is a product of two involutions in the group of norm similarities of A.

The proofs of these results are the contents of Chapter 5 .

CHAPTER 2

Lie Groups and Algebraic groups

In this chapter, we give a brief introduction to the theory of Lie groups and linear algebraic groups. We start with definition and examples Lie groups. Section 2.2 deals with compact connected Lie groups. We introduce the notion of a maximal torus and the associated finite group called the Weyl group. We also define the simply connected cover of a connected Lie group and see some examples. Explicit descriptions of simply connected covers of the compact classical simple Lie groups are given in Section 2.3. From Section 2.4 onwards, we briefly discuss the structure theory of algebraic groups and we conclude this chapter with the classification of simple algebraic groups. For a detailed account of the theory, the reader may refer to $[\mathbf{B D}],[\mathbf{F H}],[\mathbf{H}],[\mathbf{B 1}]$ and [Hu].

2.1. Lie groups: Definition and examples

Let G be a group. Let $\mu: G \times G \longrightarrow G$ and $\iota: G \longrightarrow G$ denote the product and inverse operations respectively i.e., $\mu(a, b)=a b$ and $\iota(a)=a^{-1}$ for all $a, b \in G$. A group G is called a topological group if G is a topological space and the maps μ and ι are continuous. Here, one considers the space $G \times G$ equipped with the product topology.

A topological group G is called a Lie group if G is a C^{∞}-manifold and the operations μ and ι are C^{∞}-functions. By dimension of a Lie group G, we mean the dimension of the underlying manifold.

Let G_{1} and G_{2} be two Lie groups. A homomorphism of G_{1} into G_{2} is a map $f: G_{1} \longrightarrow G_{2}$, such that f is a group homomorphism as well as a C^{∞} _map of manifolds. Given a Lie group G, the connected component at the identity is denoted by G°. We denote the center of G by $Z(G)$. For any element $g \in G$, let $Z_{G}(g):=$ $\{x \in G: x g=g x\}$ denote the centralizer of g in G.

The most basic example of a Lie group is $G L_{n}(\mathbb{R})$, the group of $n \times n$ invertible real matrices. Clearly, $G L_{n}(\mathbb{R})$ is an open subset of the space of all $n \times n$ real matrices. This makes $G L_{n}(\mathbb{R})$ a C^{∞}-manifold and it can be checked that the operations of
matrix multiplication and inversion are C^{∞}-maps. Other interesting examples occur as various closed subgroups of $G L_{n}(\mathbb{R})$ such as:

1. $S L_{n}(\mathbb{R}):=\left\{x \in G L_{n}(\mathbb{R}): \operatorname{det}(x)=1\right\}$
2. $S O_{n}(\mathbb{R}):=\left\{x \in S L_{n}(\mathbb{R}): x x^{t}=1\right\}$, where x^{t} denotes the transpose of the matrix x.
3. The subgroup of all upper triangular matrices in $G L_{n}(\mathbb{R})$.
4. $D_{n}(\mathbb{R}):=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right): a_{i} \in \mathbb{R}^{*}, i=1, \ldots, n\right\}$.

The latter example is of particular interest and we shall see some important properties of such Lie groups in the following section. These were some examples of real Lie groups. Similar constructions can be made with complex matrices i.e., $G L_{n}(\mathbb{C})$, $S L_{n}(\mathbb{C}), S O_{n}(\mathbb{C})$, etc.

2.2. Compact Lie groups

We now restrict ourselves to the study of Lie groups, which are compact and connected as topological spaces. Let G be a compact connected Lie group. A subgroup S of G is called a torus if there exists $n \in \mathbb{N}$, such that $S \cong(\mathbb{R} / \mathbb{Z})^{n}$ as Lie groups. A maximal torus of G is a torus $T \subset G$ such that, if H is another torus of G with $T \subset H$, then $T=H$. Note that, a torus is a compact, connected abelian Lie group. Also, maximal tori are maximal abelian subgroups of a given Lie group. However, it is worthwhile to note that not all maximal abelian subgroups are tori.

For example, consider the Lie group $S O_{2 n}(\mathbb{R})$. A maximal torus of $S O_{2 n}(\mathbb{R})$ can be described as follows: Consider the subgroup of all block diagonal matrices of the form $\operatorname{diag}\left(B_{1}, \ldots, B_{n}\right)$, where

$$
B_{i}=\left[\begin{array}{cc}
\cos 2 \pi x_{i} & -\sin 2 \pi x_{i} \\
\sin 2 \pi x_{i} & \cos 2 \pi x_{i}
\end{array}\right]
$$

with $x_{i} \in(0,1), i=1, \ldots, n$. This subgroup forms a maximal torus in $S O_{2 n}(\mathbb{R})$. However, the subgroup consisting of diagonal matrices $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)$, such that $\alpha_{i}= \pm 1$ for all i and $\alpha_{1} \ldots \alpha_{2 n}=1$, is a maximal abelian subgroup of $S O_{2 n}(\mathbb{R})$ but it is not a torus.

We are now in a position to state the following important theorem.
Theorem 2.2.1. ([BD], Chapter IV, Theorem 1.6) Let G be a compact, connected Lie group. Then, for every $g \in G$, there exists a maximal torus $T \subset G$, such that $g \in T$. If T_{1} and T_{2} are maximal tori in G, then there exists $h \in G$, such that $h T_{1} h^{-1}=T_{2}$.

As an easy consequence of the above theorem, we have
Corollary 2.2.2. Let G be a compact connected Lie group. Then $Z(G)$ is the intersection of all maximal tori in G.

Corollary 2.2.3. Let G be a compact connected Lie group. For $g \in G, Z_{G}(g)^{\circ}$ is the union of all maximal tori of G containing g.

Also, since any two maximal tori in a compact connected Lie group G are conjugate, the dimension of a maximal torus is uniquely determined. This number is defined as the rank of G.

Now, let T be a maximal torus in a compact, connected Lie group G. Define the normalizer of T in G as $N_{G}(T):=\left\{g \in G: g T g^{-1}=T\right\}$. The group $W(G, T)=$ $N_{G}(T) / T$ is called the Weyl group of G. By Theorem 2.2.1, since any two maximal tori are conjugate in G, different maximal tori give rise to isomorphic Weyl groups. Henceforth, whenever the choice of the maximal torus is clear from the context, we shall denote the Weyl group by W. Observe that, $N_{G}(T)$ acts on the maximal torus T by conjugation; $N_{G}(T) \times T \longrightarrow T,(n, t) \mapsto n t n^{-1}$. Since T acts on itself trivially by conjugation, one obtains an induced action of the Weyl group W on T as

$$
W \times T \longrightarrow T, \quad(n T, t) \mapsto n t n^{-1} .
$$

Thus W acts on T by automorphisms. Let us denote the group of automorphisms of the maximal torus T by $\operatorname{Aut}(T)$.

Theorem 2.2.4. ([BD], Chapter IV) Let G be a compact, connected Lie group and $T \subset G$, a maximal torus. Then the Weyl group W is finite and the homomorphism $W \longrightarrow \operatorname{Aut}(T)$ defined by the action of W on T is injective.

The Weyl group of $S O_{2 n}(\mathbb{R})$ can be shown to be isomorphic to $(\mathbb{Z} / 2)^{n-1} \ltimes S_{n}$, where S_{n} denotes the symmetric group corresponding to a set of n elements. However, the Weyl group of $S O(2 n+1)$ is isomorphic to $(\mathbb{Z} / 2)^{n} \ltimes S_{n}$. Detailed description of Weyl groups for the classical simple groups and their corresponding actions on maximal tori will be taken up in Chapter 4.

The following theorem will be needed in the sequel.
Theorem 2.2.5. ([BD], Chapter IV, Theorem 2.9) Let $f: G_{1} \longrightarrow G_{2}$ be a surjective homomorphism of compact, connected Lie groups. Then, if $T \subset G_{1}$ be a maximal torus, so is $f(T) \subset G_{2}$. Furthermore, $\operatorname{ker}(f) \subset T$ if and only if $\operatorname{ker}(f) \subset$ $Z\left(G_{1}\right)$. In this case, f induces an isomorphism of the Weyl groups of G_{1} and G_{2}.

Recall that a topological space X is said to be simply connected if the fundamental group $\pi_{1}(X)$ of X is trivial. Let G be a connected (not necessarily compact) Lie group. Then, a universal cover of G is a simply connected Lie group \widetilde{G} together with a homomorphism of Lie groups $\rho: \widetilde{G} \longrightarrow G$, which is a covering map of topological spaces. Let us denote this universal cover by (\widetilde{G}, ρ).

Theorem 2.2.6. ([H], Theorem 3.10) For a connected Lie group G, a universal cover exists. If $\left(\widetilde{G_{1}}, \rho_{1}\right)$ and $\left(\widetilde{G_{2}}, \rho_{2}\right)$ be two universal covers of G, then there exists a Lie group isomomorphism $\phi: \widetilde{G_{1}} \longrightarrow \widetilde{G_{2}}$ such that, $\phi \circ \rho_{2}=\rho_{1}$.

For example, let $G=S^{1}$, the unit circle in the plane. Here, the universal cover \widetilde{G} is isomorphic to \mathbb{R}. The covering homomorphism is given by $\rho(\alpha)=e^{i \alpha}$ for all $\alpha \in \mathbb{R}$. For $S O(n)$, the universal cover is $\operatorname{Spin}(n)$.

2.3. The Compact Classical Lie groups

There are four infinite families of compact connected Lie groups, which are called classical groups and are denoted by A_{n}, B_{n}, C_{n} and D_{n}. Apart from these, there are up to isomorphism, five exceptional groups $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. The subscripts appearing in the symbols, denote the rank of each group. In this section we shall describe all the classical simple Lie groups.

Type A_{n} : This family of compact simply connected classical groups are given by the special unitary groups $S U(n)$. Let $U(n):=\left\{x \in G L_{n}(\mathbb{C}): \bar{x}^{t} x=1\right\}$, where \bar{x}^{t} denotes the conjugate transpose of the matrix x. Then $S U(n):=\{x \in U(n):$ $\operatorname{det}(x)=1\}$.

Types B_{n} and D_{n} : Consider the special orthogonal group $S O(n):=\{x \in$ $G L_{n}(\mathbb{R}): x^{t} x=1$ and $\left.\operatorname{det}(x)=1\right\}$. These groups are compact and connected but however, they are not simply connected. Simply connected cover of $S O(n)$ is the $\operatorname{Spin} \operatorname{group} \operatorname{Spin}(n)$, which we shall describe in Section 2.8. Compact simply connected Lie groups of type B_{n} are given by $\operatorname{Spin}(2 n+1)$ and those of type D_{n} are given by $\operatorname{Spin}(2 n)$.

Type C_{n} : The compact simply connected Lie group of type C_{n}, denoted by $S p(n)$ and is defined as follows: Consider $U(n)$ the group of $n \times n$ unitary matrices. Define $S p(n):=\left\{A \in U(2 n): A^{t} J A=J\right\}$, where $J=\left[\begin{array}{cc}0 & -I \\ I & 0\end{array}\right], I$ is the identity matrix in $G L_{n}(\mathbb{C})$.

2.4. Linear Algebraic Groups: Definitions and examples

We shall now give a brief exposition on the theory of linear algebraic groups and other related concepts. For details and proofs of the results discussed, the reader can refer to the books $[\mathbf{B 1}],[\mathbf{H u}],[\mathbf{S}],[\mathbf{C} 2]$.

Let k denote a field and \bar{k} be its algebraic closure. Consider the polynomial ring $\bar{k}\left[x_{1}, \ldots, x_{n}\right]$ of n variables over \bar{k}. For a subset $S \subset \bar{k}\left[x_{1}, \ldots, x_{n}\right]$, define the zero locus of S as $\mathcal{V}(S):=\left\{x \in \bar{k}^{n}: f(x)=0 \forall f \in S\right\}$. A subset of \bar{k}^{n} of the form $\mathcal{V}(S)$ for some subset $S \subset \bar{k}\left[x_{1}, \ldots, x_{n}\right]$ is called an affine variety. The collection of subsets $\left\{\mathcal{V}(S): S \subset \bar{k}\left[x_{1}, \ldots, x_{n}\right]\right\}$ satisfy the axioms of closed sets in a topology. The resulting topology on \bar{k}^{n} is called the Zariski topology.

A group G is called an affine algebraic group if G is an affine variety and the maps $\mu: G \times G \longrightarrow G$ and $\iota: G \longrightarrow G$ defined by $\mu(a, b)=a b$ and $\iota(a)=a^{-1}$ for all $a, b \in G$ are variety morphisms. Let G_{1}, G_{2} be affine algebraic groups. A map $f: G_{1} \longrightarrow G_{2}$ is a homomorphism of affine algebraic groups if f is a group homomorphism as well as a morphism of varieties, f is an isomorphism if it is bijective and both f and f^{-1} are homorphism of algebraic groups. From now onwards, the mention of any topological property, associated to affine algebraic groups, will be with respect to the Zariski topology.

Interesting examples of affine algebraic groups can be obtained as groups of nonsingular matrices over \bar{k} :
(1.) $G L_{n}(\bar{k}):=\left\{x \in \mathbb{M}_{n}(\bar{k}): \operatorname{det}(x) \neq 0\right\}$.
(2.) $S L_{n}(\bar{k}):=\left\{x \in G L_{n}(\bar{k}): \operatorname{det}(x)=1\right\}$.
(3.) The subgroup of all diagonal matrices in $G L_{n}(\bar{k})$.
(4.) The subgroup of upper triangular matrices in $G L_{n}(\bar{k})$ with all eigen values equal to 1, i.e., upper triangular unipotent matrices.
(5.) $S O_{2 n+1}(\bar{k}):=\left\{x \in S L_{2 n+1}(\bar{k}): x^{t} s x=s\right\}$, where $s=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & J \\ 0 & J & 0\end{array}\right]$ and J is the $2 n \times 2 n$ matrix with all off diagonal entries equal to 1 and 0 otherwise.
(6.) $S p_{2 n}(\bar{k}):=\left\{x \in G L_{2 n}(\bar{k}): x^{t} a x=a\right\}$, where $a=\left[\begin{array}{cc}0 & J \\ -J & 0\end{array}\right], J$ as in example (5) above.

In fact we have,
Theorem 2.4.1. (Theorem 8.6, $[\mathbf{H u}]$) Let G be an affine algebraic group. Then G is isomorphic to a closed subgroup of $G L_{n}(\bar{k})$ for some n.

By virtue of Theorem 2.4.1, affine algebraic groups are also called linear algebraic groups. In this thesis, we shall deal with only linear algebraic groups and we will refer to such groups simply as algebraic groups.

Let $X \subset \bar{k}^{n}$ be an affine variety. We say that X is defined over k if there exists a subset S of $k\left[x_{1}, \ldots, x_{n}\right]$ such that $X=\mathcal{V}(S)$ (see [Hu], Chapter XII). We shall denote the set (possibly empty) of k-rational points of X by $X(k)$. Let $X_{1} \subset \bar{k}^{n}, X_{2} \subset \bar{k}^{m}$ be affine varieties defined over k. A morphism $\phi: X_{1} \longrightarrow X_{2}$ is said to be defined over k if the cordinate functions of ϕ lie in $k\left[x_{1}, \ldots, x_{n}\right]$. Now let G be an affine algebraic group over \bar{k}. We say that G is a k-group or defined over k if G together with the morphisms $\mu: G \times G \longrightarrow G$ and $\iota: G \longrightarrow G$ are all defined over k. In this case, the subgroup of k-rational points in G is denoted by $G(k)$.

For an algebraic group G, there exists a unique irreducible component of G containing the identity element. We denote this irreducible component by G°. It can be shown that G° is a normal subgroup of finite index in G and every closed subgroup of finite index in G contains G° (see $[\mathbf{H u}], \S 7.3$). We say that an algebraic group G is connected if $G=G^{\circ}$. For example, consider the algebraic group $O_{n}(\bar{k}):=\left\{x \in G L_{n}(\bar{k}): x^{t} s x=s\right\}$, where s is as in Example 5 above. This group is not connected and $O_{n}(\bar{k})^{\circ}=S O_{n}(\bar{k})$.

2.5. The Lie Algebra of an Algebraic Group

We now want to associate a Lie algebra to a given algebraic group. Let k be a field and \bar{k} its algebraic closure. A k-vector space L, together with a binary operation $L \times L \longrightarrow L$ denoted by $(x, y) \mapsto[x, y]$, called the bracket of x and y, is called a Lie algebra over k if the following axioms hold:
(1) The bracket operation is k-bilinear.
(2) $[x, x]=0$ for all $x \in L$.
(3) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in L$. This equation is called the Jacobi identity.

An immediate example is $\mathbb{M}_{n}(k)$, the algebra of all $n \times n$ matrices over k equipped with the bracket operation $[x, y]:=x y-y x$ for all $x, y \in \mathbb{M}_{n}(k)$.

Now let G be an algebraic group. Consider the cordinate ring $\bar{k}[G]$ of G. Then G acts on $\bar{k}[G]$ in the following way: For any $f \in \bar{k}[G]$ and $x \in G$, define the map $\lambda: G \times \bar{k}[G] \longrightarrow \bar{k}[G]$ by $\lambda(x, f)=\lambda_{x} f$, where $\lambda_{x} f(y):=f\left(x^{-1} y\right)$ for all $y \in G$. Given a \bar{k}-algebra A, a \bar{k}-derivation of A is a \bar{k}-linear map $d: A \longrightarrow A$ such that $d\left(\alpha_{1} \alpha_{2}\right)=\alpha_{1} d\left(\alpha_{2}\right)+\alpha_{2} d\left(\alpha_{1}\right)$. Let $\operatorname{Der}(A)$ denote the set of all \bar{k}-derivations of A.

Now define the set $\mathcal{L}(G):=\left\{\delta \in \operatorname{Der}(\bar{k}[G]): \delta \lambda_{x}=\lambda_{x} \delta \forall x \in G\right\}$. It can be easily checked that $\left[\delta_{1}, \delta_{2}\right] \in \mathcal{L}(G)$ whenever $\delta_{1}, \delta_{2} \in \mathcal{L}(G)$. This space $\mathcal{L}(G)$ is called the Lie algebra of G.

Given an algebraic group G, consider the tangent space $\mathcal{T}(G)_{e}$ of G at the identity element e. This is defined as follows: Let $A=\bar{k}[G]$ and let $M=\mathcal{I}(e)$ be the maximal ideal of A at e. Consider the local ring $\mathcal{O}_{e}:=A_{M}$ and its unique maximal ideal $\mathfrak{m}_{e}:=M A_{M}$. Then the tangent space of G at e is defined as the dual vector space $\left(\mathfrak{m}_{e} / \mathfrak{m}_{e}^{2}\right)^{*}$ over the field $\mathcal{O}_{e} / \mathfrak{m}_{e}$. From now on, we shall denote the tangent space of G at e by \mathfrak{g}. Define a point derivation of \mathcal{O}_{e} as a map $\delta: \mathcal{O}_{e} \longrightarrow \mathcal{O}_{e} / \mathfrak{m}_{e}$, such that δ is $\mathcal{O}_{e} / \mathfrak{m}_{e}$-linear and it satisfies $\delta(f g)=\delta(f) g(e)+f(e) \delta(g)$ for all $f, g \in \mathcal{O}_{e}$. Let \mathcal{D}_{e} denote the space of all point derivations of \mathcal{O}_{e}. It can be shown that $\mathfrak{g} \cong \mathcal{D}_{e}$.

Let $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism of algebraic groups. Let e_{1} and e_{2} be the identity elements of G_{1} and G_{2} respectively. Note that ϕ induces a homomorphism $\widetilde{\phi}:\left(\mathcal{O}_{e_{2}}, \mathfrak{m}_{e_{2}}\right) \longrightarrow\left(\mathcal{O}_{e_{1}}, \mathfrak{m}_{e_{1}}\right)$ of the corresponding local rings. Recall that $\mathfrak{g}_{1}=$ $\left(\mathfrak{m}_{e_{1}} / \mathfrak{m}_{e_{1}}^{2}\right)^{*}$ and $\mathfrak{g}_{2}=\left(\mathfrak{m}_{e_{2}} / \mathfrak{m}_{e_{2}}^{2}\right)^{*}$. Define the differential of the morphism ϕ as the $\operatorname{map} d \phi: \mathfrak{g}_{1} \longrightarrow \mathfrak{g}_{2}, d \phi(X)(a):=X(\widetilde{\phi}(a))$ for all $X \in \mathfrak{g}_{1}$ and $a \in \mathfrak{m}_{e_{2}} / \mathfrak{m}_{e_{2}}^{2}$.

We are now in a position to state the following useful theorem,

Theorem 2.5.1. ([Hu], Theorem 9.1) Let G be an algebraic group. Define θ : $\mathcal{L}(G) \longrightarrow \mathfrak{g}$ by $\theta(\delta)(f):=(\delta f)(e)$ for all $\delta \in \mathcal{L}(G)$ and $f \in \bar{k}[G]$. Then θ is a vector space isomorphism. If $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism of algebraic groups, then $d \phi: \mathfrak{g}_{1} \longrightarrow \mathfrak{g}_{2}$ is a homomorphism of Lie algebras ($\mathfrak{g}_{1}, \mathfrak{g}_{2}$ being given the bracket product of $\mathcal{L}\left(G_{1}\right)$ and $\mathcal{L}\left(G_{2}\right)$ respectively $)$.

Now, for an algebraic group G, consider the inner automorphism Int $_{g}: G \longrightarrow G$, defined by $\operatorname{Int}_{g}(x)=g x g^{-1}$ for all $x \in G$. Define $A d_{g}:=d\left(\right.$ Int $\left._{g}\right): \mathfrak{g} \longrightarrow \mathfrak{g}$. Therefore, by Theorem 2.5.1, $g \mapsto A d_{g}$ gives a representation $A d: G \longrightarrow A u t(\mathfrak{g}) \subset G L(\mathfrak{g})$. This is called the adjoint representation of G.

2.6. The Jordan-Chevalley decomposition

Let V be a finite dimensional vector space over \bar{k} and $x \in \operatorname{End}(V)$. We define x as semisimple if x is diagonalizable over \bar{k}. We say that x is nilpotent if $x^{n}=0$ for some integer n and unipotent if $x-1$ is nilpotent(or equivalently, all eigen values of x are eaqual to 1). Now let $x \in G L(V)$. Then there exists unique elements $x_{s}, x_{u} \in G L(V)$ such that x_{s} is semisimple, x_{u} is unipotent and $x=x_{s} x_{u}=x_{u} x_{s}$.

This is called the multiplicative Jordan decomposition for V. The elements x_{s} and x_{u} are called the semisimple and unipotent parts of x respectively.

Let $X \in \operatorname{End}(V)$. Then there exists unique elements $X_{s}, X_{n} \in \operatorname{End}(V)$ such that X_{s} is semisimple, X_{n} is nilpotent, $X=X_{s}+X_{n}$ and $X_{s} X_{n}=X_{n} X_{s}$. This is called the additive Jordan decomposition for V. The elements X_{s} and X_{n} are called the semisimple and nilpotent parts of X.

Remark: For any $x \in G L(V)$, the semisimple part x_{s} of x is same for both the additive and multiplicative Jordan decompositions. So, if $x=x_{s} x_{u}$ and $x=x_{s}+x_{n}$, then the unipotent and nilpotent parts of x are related as $x_{u}=1+x_{s}^{-1} x_{n}$.

Now let G be an algebraic group defined over a field k. Let V be finite dimensional vector space over \bar{k}. A rational representation of G is an algebraic group homomorphism $\rho: G \longrightarrow G L(V)$. We can now state the following theorem.

Theorem 2.6.1. ([S], Theorem 2.4.8) Let $x \in G$. There there exists unique elements $x_{s}, x_{u} \in G$ such that $x=x_{s} x_{u}=x_{u} x_{s}$. For any rational representation $\rho: G \longrightarrow G L(V), \rho\left(x_{s}\right)$ is semisimple and $\rho\left(x_{u}\right)$ is unipotent.

For each $x \in G$, call x_{s} and x_{u} as the semisimple and unipotent parts of x respectively.

2.7. Semisimple and Reductive groups

We now briefly describe the structure theory of simple, semisimple and reductive algebraic groups. First, we need the notion of an algebraic torus. An algebraic group T is called diagonalizable if it is isomorphic to a closed subgroup of the group of all $n \times n$ invertible diagonal matrices over \bar{k} for some n, T will be called a torus if T is isomorphic to the group of all $n \times n$ invertible diagonal matrices over \bar{k} for some n. It can be shown that any connected algebraic group T, consisting of only semisimple elements, is a torus. We have,

Theorem 2.7.1. ([B1], Proposition 8.7) Let G be diagonalizable group, defined over a field k. Then $G=G^{\circ} \times H$, where G° is a torus defined over k and H, a finite group of order prime to char (k).

Let G be a connected algebraic group. A subgroup T of G is called a maximal torus if T is a torus and for any torus $T^{\prime} \subset G, T \subset T^{\prime} \Longrightarrow T=T^{\prime}$. Any semisimple element $x \in G$ is contained in some maximal torus of G. Also, if T_{1}, T_{2} be two maximal tori in G, then there exists $g \in G$, such that $g T_{1} g^{-1}=T_{2}$. Hence, the
dimension of a maximal torus in a connected algebraic group is uniquely determined. We call this number the rank of G.

Now, given a connected algebraic group G and a maximal torus $T \subset G$, it can be shown that the quotient $N_{G}(T) / Z_{G}(T)$ is finite (see [Hu], Chapter IX). Here, $N_{G}(T)$ and $Z_{G}(T)$ are the normalizer and centralizer of T in G, respectively. Define this group as the Weyl group of G with respect to T. Since any two maximal tori are conjugate in G, different maximal tori gives rise to isomorphic Weyl groups. Hence, we shall refer to this finite group as the Weyl group of G.

Define the radical of a connected algebraic group G as the maximal closed, connected, solvable normal subgroup of G. Denote this subgroup by $R(G)$. We call G semisimple if $R(G)$ is trivial. The unipotent radical $R_{u}(G)$ of G is defined as the largest closed, connected, unipotent, normal subgroup of G. Note that, $R_{u}(G)$ is the subgroup of all unipotent elements in $R(G)$. If $R_{u}(G)$ is trivial, we say that G is reductive. Thus, any semisimple group is necessarily reductive but the converse is not true in general. For example, $G L_{n}(\bar{k})$ is reductive but not semisimple. In fact, we have,

Theorem 2.7.2. ([Hu], Theorem 27.5) Let G be a semsimple algebraic group. Then $G=[G, G]$, where $[G, G]$ denotes the commutator subgroup of G.

It immediately follows that,
Corollary 2.7.3. Let G be a connected reductive algebraic group. Then $G=$ $[G, G] . Z(G)^{\circ}$, where $Z(G)$ is the center of $G, Z(G)^{\circ}$ is a torus and $Z(G) \cap[G, G]$ is finite.

2.8. Clifford algebras and Spin groups

In this section we shall introduce the notion of a spin group. A spin group is the universal cover of a special orthogonal group and is defined by certain structures called Clifford algebras. For a detailed exposition, the reader may refer to [SV].

Let Q be a non degenerate quadratic form on a finite dimensional vector space V over a field k. Consider the tensor algebra

$$
T(V):=k \oplus V \oplus(V \otimes V) \oplus \ldots
$$

Let $I:=\langle v \otimes v-Q(v)\rangle$ be the ideal of V, generated by the elements $v \otimes v-Q(v)$, $v \in V$. We define the Clifford algebra of V with respect to Q as the quotient $C(V, Q)=T(V) / I$. Now V can be canonically identified as a subspace of $C(V, Q)$.

For a basis $\left\{e_{1}, \ldots e_{n}\right\}$ of V, it is easy to check that a basis of $C(V, Q)$ is given by $\left\{e_{i_{1}} \ldots e_{i_{l}}: 1 \leq i_{1}<\ldots<i_{l} \leq n\right\}, 0 \leq l \leq n$. Therefore, if dimension of V is n, the dimension of $C(V, Q)$ is 2^{n}.

The even Clifford algebra $C(V, Q)^{+}$is defined as the subalgebra of $C(V, Q)$ generated by the set $\{v w: v, w \in V\}$. Define the Clifford group of Q as the group $\Gamma(V, Q)$ of all invertible elements $x \in C(V, Q)$ such that $x V x^{-1}=V$. Then the even Clifford group is defined as $\Gamma^{+}(V, Q)=\Gamma(V, Q) \cap C(V, Q)^{+}$. For every $x \in \Gamma(V, Q)$, define $t_{x}: V \longrightarrow V$ by $v \mapsto x v x^{-1}$, for all $v \in V$. Then we have an exact sequence

$$
1 \rightarrow k^{*} \rightarrow \Gamma^{+}(V, Q) \xrightarrow{\chi} S O(V, Q) \rightarrow 1
$$

where χ denotes the homomorphism $x \mapsto t_{x}$ and $S O(V, Q)$ denotes the orthogonal group of V with respect to Q. Thus, every element of $\Gamma^{+}(V, Q)$ is of the form $x=$ $v_{1} \ldots v_{2 l}$ for $v_{1}, \ldots, v_{2 l} \in V$ with $Q\left(v_{i}\right) \neq 0$ and each such $x \in \Gamma^{+}(V, Q)$ is determined up to a scalar factor in k^{*} by the map t_{x}.

Let $\iota: C(V, Q) \longrightarrow C(V, Q)$ defined by $\iota\left(v_{1} \ldots v_{r}\right)=v_{r} \ldots v_{1}$, for $v_{1}, \ldots, v_{r} \in V$, denote the main involution (anti automorphism of order 2) of $C(V, Q)$. Now, for $x=v_{1} \ldots v_{2 l} \in \Gamma^{+}(V, Q)$, define $N(x):=x \iota(x)=Q\left(v_{1}\right) \ldots Q\left(v_{2 l}\right) \in k^{*}$. It can be easily checked that $N: \Gamma^{+}(V, Q) \longrightarrow k^{*}, x \mapsto N(x)$ is a homomorphism. Define $\operatorname{ker}(N)$ as the the spin group $\operatorname{Spin}(V, Q)$. Alternatively, we denote the spin group of an n-dimensional vector space V over k by $\operatorname{Spin}_{n}(k)$.

Now, consider $V_{\bar{k}}=\bar{k} \otimes_{k} V$ together with the quadratic form $Q_{\bar{k}}$, which is just the extension of Q to $V_{\bar{k}}$. It follows that $C\left(V_{\bar{k}}, Q_{\bar{k}}\right)=\bar{k} \otimes_{k} C(V, Q)$. We thus have an algebraic group $\Gamma\left(V_{\bar{k}}, Q_{\bar{k}}\right)$ which is defined over $k, \Gamma^{+}\left(V_{\bar{k}}, Q_{\bar{k}}\right)$ and $\operatorname{Spin}\left(V_{\bar{k}}, Q_{\bar{k}}\right)$ are closed subgroups of $\Gamma\left(V_{\bar{k}}, Q_{\bar{k}}\right)$.

The covering map from $\operatorname{Spin}(V, Q)$ to $S O(V, Q)$ is given by the restriction of the homomorphism χ to $\operatorname{Spin}(V, Q)$, i.e., $\rho: \operatorname{Spin}(V, Q) \longrightarrow S O(V, Q)$, defined by $\rho\left(v_{1} \ldots v_{2 l}\right)=s_{v_{1}} \ldots s_{v_{2 l}}$, where $v_{1}, \ldots, v_{2 l} \in V$ and $Q\left(v_{1}\right) \ldots Q\left(v_{2 l}\right)=1$ and s_{v} denotes the reflection in the hyperplane orthogonal to $v \in V$.

In particular, if we consider the vector space $V=\mathbb{R}^{n}$ over \mathbb{R} with the Euclidean inner product, the resulting spin group is the compact simply connected simple Lie group of type B_{n} or D_{n}, according as the dimension of V is $2 n+1$ or $2 n$ respectively.

2.9. Classification of simple algebraic groups

For the material described in this section, the reader may consult $[\mathbf{B 1}],[\mathbf{H u}]$ and [KMRT].

A connected algebraic group G defined over a field k, is said to be simple if there does not exist any proper closed connected normal subgroup of G. A homomorphism of algebraic groups $f: G_{1} \longrightarrow G_{2}$ is called an isogeny if $\operatorname{ker}(f)$ is finite. If this finite kernel is contained in the center of G_{1}, we call f a central isogeny. We need the notion of a root datum associated to a connected algebraic group, which we now describe.

Let G be a connected reductive algebraic group. Fix a maximal torus $T \subset G$ and let W be the Weyl group. By a character of T we mean an algebraic group homomorphism $\chi: T \longrightarrow \mathbb{G}_{m}$, where $\mathbb{G}_{m}:=\bar{k}^{*}$ and a cocharacter of T is defined as a homomorphism $\gamma: \mathbb{G}_{m} \longrightarrow T$. Let $X(T):=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right)$ be the group of all characters of T under the multiplication $\left(\chi_{1}+\chi_{2}\right)(t)=\chi_{1}(t) \chi_{2}(t)$, for all $\chi_{1}, \chi_{2} \in X(T)$ and $t \in T$. Simialarly, we have the group $Y(T):=\operatorname{Hom}\left(\mathbb{G}_{m}, T\right)$, of all cocharacters of T and the group operation is given by $\left(\gamma_{1}+\gamma_{2}\right)(\alpha)=\gamma_{1}(\alpha) \gamma_{2}(\alpha)$, for all $\alpha \in \mathbb{G}_{m}$ and $\gamma_{1}, \gamma_{2} \in Y(T)$. If the rank of T is n, then it easily follows that $X(T)$ and $Y(T)$ are free abelian groups of rank n.

Now, for $\chi \in X(T)$ and $\gamma \in Y(T)$, we can define an integer $\langle\chi, \gamma\rangle$ in the following way: note that $\chi \circ \gamma$ is a homomorphism of \mathbb{G}_{m} to itself. Since any homomorphism $f: \mathbb{G}_{m} \longrightarrow \mathbb{G}_{m}$ is given by $f(\alpha)=\alpha^{n}$ for all $\alpha \in \mathbb{G}_{m}$, we define $\langle\chi, \gamma\rangle$ to be the integer such that $\chi(\gamma(\alpha))=\alpha^{\langle\chi, \gamma\rangle}$ for all $\alpha \in \mathbb{G}_{m}$. Thus, we have a bilinear map $\langle\rangle:, X(T) \times Y(T) \longrightarrow \mathbb{Z}$. One can check that this map is non degenerate and hence, we have $X(T) \cong \operatorname{Hom}(Y(T), \mathbb{Z})$ and $Y(T) \cong \operatorname{Hom}(X(T), \mathbb{Z})$.

The maximal torus T acts on the Lie algebra \mathfrak{g} of G via the adjoint action. So \mathfrak{g} decomposes as a direct sum of T-invariant subspaces,

$$
\mathfrak{g}=\bigoplus_{\chi \in X(T)} \mathfrak{g}_{\chi}
$$

where $\mathfrak{g}_{\chi}:=\left\{x \in \mathfrak{g}: A_{t}(x)=\chi(t) x, \forall t \in T\right\}$. Now those $\chi \in X(T)$ for which $\mathfrak{g}_{\chi} \neq 0$, are called the weights of T in G and the non zero ones are called roots of G with respect to T. Let Φ denote the set of all roots. It turns out that Φ is independent of the choice of maximal torus T. We define Φ to be the root system of G. Given a group G, the root system Φ is unique up to isomorphism. Also $X(T)$ and $Y(T)$ are independent of the maximal torus T. So we shall denote them respectively by X and Y.

Every root $r \in \Phi$ of a connected reductive algebraic group G gives rise to a unique (up to scalars) homomorphism $\epsilon_{r}: \mathbb{G}_{a} \longrightarrow G$ such that $t \epsilon_{r}(x) t^{-1}=\epsilon_{r}(r(t) x)$ for all $x \in \mathbb{G}_{a}$ and $t \in T$. Also, G is generated by the groups U_{r} and $T([\mathbf{H u}]$, Theorem 26.3).

Here, $\mathbb{G}_{a}:=\bar{k}$. The image U_{r} of ϵ_{r} is called the root subgroup of G corresponding to $r \in \Phi$.

To each root $r \in \Phi$, in a canonical way, one can associate a cocharacter $r^{*} \in Y(T)$, such that $\left\langle r, r^{*}\right\rangle=2$. Call $\Phi^{*}:=\left\{r^{*}: r \in \Phi\right\}$ the set of all coroots of G. Consider the vector space $V:=\mathbb{R} \otimes X$. It can be shown that Φ generates V over \mathbb{R}. Now there exists a subset Δ of Φ such that Δ is a basis of V and also every element $r \in \Phi$ can be uniquely expressed as $r=\sum c_{i} \delta_{i}$, where $\delta_{i} \in \Delta$ and c_{i} are integers having the same sign. Call Δ the set of simple roots of G. Define the set Φ^{+}(resp. Φ^{-}) of positive roots (resp negative roots) as those roots in Φ, which are obtained as non-negative (resp. non-positive) linear combinations of Δ. For a root $r \in \Phi$, let s_{r} denote the reflection in the hyperplane orthogonal to r in the vector space V. Reflections with respect to simple roots are called simple reflections. It can be shown that the Weyl group W of G is isomorphic to the group generated by all simple reflections. Thus, W acts on the root system Φ. There exists a unique element $w_{0} \in W$ of order 2 , such that $w_{0}\left(\Phi^{+}\right)=\Phi^{-}$. Define w_{0} to be the longest element of W. The root system Φ is called reducible if there exist proper subsets Φ_{1}, Φ_{2} of Φ such that $\Phi=\Phi_{1} \cup \Phi_{2}$ and each root in Φ_{1} is orthogonal to each root in Φ_{2}. Otherwise, we call Φ irreducible.

We now are in a position to define the Dynkin diagram of the group G. It is a graph $\Gamma(G)$ with the set of vertices being $\Delta=\left\{\delta_{1}, \ldots, \delta_{n}\right\}, n$ being the rank of G. For any two vertices $\delta_{i}, \delta_{j} \in \Delta$, the number of edges is $\left\langle\delta_{i}, \delta_{j}^{*}\right\rangle\left\langle\delta_{j}, \delta_{i}^{*}\right\rangle$. An arrow is put from δ_{i} to δ_{j} if δ_{i} has a bigger length than δ_{j}. Here, the length is given by the norm in the \mathbb{R}-vector space V.

Let G be a semisimple algebraic group defined over a field k. By the type of G we mean the Cartan-Killing type of the root system of the group $G_{\bar{k}}$ obtained by extension of scalars to an algebraic closure \bar{k} of k. For a reductive group G, its type is defined as the type of its commutator subgroup $[G, G]$.

A connected semisimple algebraic group G is called simply connected if the character group X is isomorphic to $\operatorname{Hom}\left(\mathbb{Z} \Phi^{*}, \mathbb{Z}\right)$ and it is called adjoint if $X \cong \mathbb{Z} \Phi$. It turns out that a connected semisimple algebraic group G over \bar{k} is simple if and only if its Dynkin diagram is connected ([KMRT], Proposition 25.8). Up to central isogeny, there are only finitely many classes of connected simple algebraic groups, which we now enumerate.

The classical groups: There exists four infinite families of simple algebraic groups which are denoted by the symbols A_{n}, B_{n}, C_{n} and D_{n}, where the subscript n denotes the rank of the group. They are also called Classical groups.

Groups of type $A_{n}(n \geq 1)$ are given by the $S L_{n+1}(\bar{k})$, the group of all $n+$ $1 \times n+1$ matrices over \bar{k} with determinant 1 . This group is simply connected. The corresponding adjoint group is $P S L_{n+1}(\bar{k})$ which is $S L_{n+1}(\bar{k})$ modulo its center. The Weyl group of $S L_{n+1}(\bar{k})$ is isomorphic to S_{n+1}, the symmetric group corresponding to a set with $n+1$ elements. The Dynkin diagram is given by:

Groups of type $B_{n}(n \geq 2)$ correspond to the special orthogonal groups $S O_{2 n+1}(\bar{k}):=$ $\left\{x \in S L_{2 n+1}(\bar{k}): x^{t} s x=s\right\}$, where $s=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & J \\ 0 & J & 0\end{array}\right]$ and J is the $2 n \times 2 n$ matrix with all off diagonal entries equal to 1 and 0 otherwise. This group is adjoint. The simply connected cover of $S O_{2 n+1}(\bar{k})$ is $\operatorname{Spin}_{2 n+1}(\bar{k})$. The Weyl group of $\operatorname{Spin}_{2 n+1}(\bar{k})$ is isomorphic to $(\mathbb{Z} / 2)^{n} \rtimes S_{n}$ and the Dynkin diagram is given by:

The classical groups of type $C_{n}(n \geq 3)$ are the symplectic groups $S p_{2 n}(\bar{k})=$ $\left\{x \in G L_{2 n}(\bar{k}): x^{t} a x=a\right\}$, where $a=\left[\begin{array}{cc}0 & J \\ -J & 0\end{array}\right]$, where J is the matrix used in the definition of $S O_{2 n+1}(\bar{k})$ above. These are simply connected groups. The corresponding adjoint group in this class is the projective conformal symplectic group $P C S p_{2 n}(\bar{k})$, which is the conformal symplectic group $C S p_{2 n}(\bar{k})$ modulo its center. $C S p_{2 n}(\bar{k})$ is defined as the group of all symplectic similitudes of a $2 n$-dimensional vector space V over \bar{k}, equipped with a non singular skew symmetric form $<,>$. A nonsingular endomorphism $T: V \longrightarrow V$ is called a symplectic similitude if there exists $\alpha \in \bar{k}$, such that $<T(x), T(y)>=\alpha<x, y>$ for all $x, y \in V$. The Weyl group in this case, is isomorphic to $(\mathbb{Z} / 2)^{n} \rtimes S_{n}$ and the Dynkin diagram is given by:

Finally, the simple groups of type $D_{n}(n \geq 4)$ are given by $S O_{2 n}(\bar{k})$. This group is neither simply connected nor adjoint. The simply connected cover of $S O_{2 n}(\bar{k})$ is $\operatorname{Spin}_{2 n}(\bar{k})$. The adjoint group in this isogeny class is the projective group of the connected component of $C O_{2 n}(\bar{k})$, the group of all orthogonal similitudes on a $2 n$ dimensional orthogonal space V over \bar{k} with maximal Witt index n. If $<,>$ be the non degenerate symmetric bilinear form on V, a non singular endomorphism $T: V \longrightarrow V$ is called an orthogonal similitude if $<T(x), T(y)>=\beta<x, y>$ for all $x, y \in V$
and a fixed β independent of x, y. The Weyl group of $\operatorname{Spin}_{2 n}(\bar{k})$ is isomorphic to $(\mathbb{Z} / 2)^{n-1} \rtimes S_{n}$. The Dynkin diagram is given by:

The exceptional groups: In addition to the four families of classical groups, there are five exceptional groups denoted by $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. In Chapter 3 we shall describe the groups of type G_{2} and F_{4}. However, the remaining exceptional groups E_{6}, E_{7} and E_{8} are beyond the scope of this thesis. Presently, we shall give the Dynkin diagrams of these groups:
G_{2} :

CHAPTER 3

Groups of type G_{2} and F_{4}

In this chapter we give a brief description of the exceptional groups of type G_{2} and F_{4}. These groups are obtained as automorphism groups of Octonion algebras and Albert algebras respectively. For a detailed exposition on these constructions, one may refer to $[\mathbf{S V}]$ and $[\mathbf{K M R T}]$. Throughout this chapter unless otherwise stated, we consider a field k with $\operatorname{char}(k) \neq 2$.

3.1. Octonion algebras and groups of type G_{2}

A composition algebra \mathfrak{C} over a field k is a non associative algebra over k with an identity element 1, equipped with a non degenerate quadratic form N such that N is multiplicative, i.e., $N(x y)=N(x) N(y)$ for all $x, y \in \mathfrak{C}$.

The bilinear form associated to N is given by $\langle x, y\rangle:=N(x+y)-N(x)-N(y)$. We call the quadratic form N the norm on \mathfrak{C} and the bilinear form \langle,$\rangle as the inner$ product. A k-subspace \mathfrak{D} of \mathfrak{C} is called a subalgebra of the composition algebra \mathfrak{C}, if it is non singular with respect to the inner product, closed under multiplication and contains the identity element 1 of \mathfrak{C}.

Any element $x \in \mathfrak{C}$ satisfies the equation $x^{2}-\langle x, 1\rangle x+N(x) 1=0$, also called the minimum equation of x, if x is not a scalar multiple of the identity $1 \in \mathfrak{C}$. Conjugation on a composition algebra \mathfrak{C} is a map ${ }^{-}: \mathfrak{C} \longrightarrow \mathfrak{C}$, defined by $\bar{x}=$ $\langle x, 1\rangle 1-x$, for all $x \in \mathfrak{C}$. This map is an involution (anti automorphism of order 2) on \mathfrak{C}. It is easy to see that an element $x \in \mathfrak{C}$ is invertible if and only if $N(x) \neq 0$ and in this case, $x^{-1}=N(x)^{-1} \bar{x}$.

We are now in a position to state the following two results about the structure and dimension of a composition algebra.

Theorem 3.1.1. ([SV], Proposition 1.5.3) Let \mathfrak{D} be a composition algebra over a field k, with norm N and $\lambda \in k^{*}$. Define on $\mathfrak{C}=\mathfrak{D} \oplus \mathfrak{D}$ a product by

$$
(x, y)(u, v):=(x u+\lambda \bar{v} y, v x+y \bar{u}), \forall x, y, u, v \in \mathfrak{D}
$$

and a quadratic form N_{1} by

$$
N_{1}((x, y)):=N(x)-\lambda N(y), \forall x, y \in \mathfrak{D} .
$$

If \mathfrak{D} is associative, then \mathfrak{C} is a composition algebra. \mathfrak{C} is associative if and only if \mathfrak{D} is commutative and associative.

The process of constructing a composition algebra \mathfrak{C}, starting from a given composition algebra \mathfrak{D} as seen in the above theorem, is known as doubling. In fact, we have,

Theorem 3.1.2. ([SV], Theorem 1.6.2) Every composition algebra \mathfrak{C} is obtained by repeated doubling starting from $k 1$ in characteristic $\neq 2$ and from a 2-dimensional composition algebra in characteristic 2. The possible dimensions of a composition algebra are 1 (in characteristic $\neq 2$ only), 2, 4 and 8 . Composition algebras of dimension 1 or 2 are commutative and associative, those of dimension 4 are associative but not commutative and those of dimension 8 are neither commutative nor associative.

Composition algebras of dimension 4 are called quaternion algebras and those of dimension 8 are called octonion algebras.

Let \mathfrak{C} be an octonion algebra over a field k. Consider the group of its automorphisms $\operatorname{Aut}(\mathfrak{C})$. Any automorphism of \mathfrak{C} is necessarily an isometry of the norm N on $\mathfrak{C}([$ SV $]$, Corollary 1.2.4). Therefore, $\operatorname{Aut}(\mathfrak{C}) \subset O(\mathfrak{C}, N)$, the orthogonal group of \mathfrak{C} with respect to N. In fact,

Theorem 3.1.3. ([SV] Theorem 2.3.5 and Proposition 2.4.6) Let \mathfrak{C} be an octonion algebra over k and $\mathfrak{C}_{\bar{k}}:=\mathfrak{C} \otimes \bar{k}$, where \bar{k} is the algebraic closure of k. Then the group $\mathcal{G}:=\operatorname{Aut}\left(\mathfrak{C}_{\bar{k}}\right)$ is the connected, simple algebraic group of type G_{2}, defined over k. Also, any algebraic group of type G_{2} defined over a field k is isomorphic to Aut $\left(\mathfrak{C}_{\bar{k}}\right)$ for some octonion algebra \mathfrak{C} over k.

Compact real form of G_{2} : Let us now consider an octonion algebra defined over \mathbb{R}. This is constructed by the doubling method as seen in Theorem 3.1.1 starting from \mathbb{R}. Let $\mathbb{H}:=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}$ denote the space of real quaternions, where $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$. For a typical element $x=x_{1}+x_{2} i+x_{3} j+x_{4} k \in \mathbb{H}$, define the conjugate of x as $\bar{x}=x_{1}-x_{2} i-x_{2} j-x_{3} k$ and a norm on \mathbb{H} by $N(x):=x \bar{x}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{3}^{2}$.

Now, consider the \mathbb{R}-vector space $\mathfrak{C}=\mathbb{H} \oplus \mathbb{H}$ and we define a multiplication on \mathfrak{C} by $(x, y)(u, v):=(x u-\bar{v} y, v x+y \bar{u})$ for all $x, y, u, v \in \mathbb{H}$. Define a norm on \mathfrak{C} by
$N_{1}(x, y):=N(x)+N(y)$, for all $x, y \in \mathbb{H}$. Thus, if $x=\left(x_{1}, \ldots, x_{8}\right)$, with $x_{i} \in \mathbb{R}$, be a typical element in the 8 -dimensional space \mathfrak{C}, then $N_{1}(x)=x_{1}^{2}+\ldots+x_{8}^{2}$. It is easy to see that, the above multiplication together with the norm N_{1} gives the structure of an octonion division algebra on \mathfrak{C}. The group $\mathcal{G}=\operatorname{Aut}(\mathfrak{C})$ is the compact connected simple Lie group of type G_{2} (see $[\mathbf{P}]$, Lecture 14).

3.2. The principle of triality

We now describe the principle of triality in the group of similarities and the orthogonal group of the norm N on an octonion algebra \mathfrak{C} over k. For a detailed exposition on this principle, refer to [SV], Chapter 3.

Let \mathfrak{C} be an octonion algebra over a field k and N be the norm on \mathfrak{C}. A similarity of \mathfrak{C} with respect to N is a linear map $t: \mathfrak{C} \longrightarrow \mathfrak{C}$, such that $N(t(x))=n(t) N(x)$, for all $x \in \mathfrak{C}$, where $n(t) \in k^{*}$ is called the multiplier of t. An immediate consequence of the definition is that any similarity t is necessarily a bijective linear transformation. Denote the group of all similarities of \mathfrak{C} with respect to N by $G O(N)$. Note that, the map $n: G O(N) \longrightarrow k^{*}, t \mapsto n(t)$ is a homomorphism. Therefore, the kernel of n is the orthogonal group $O(N)$ of \mathfrak{C} with respect to N. The principle of triality states the following:

Theorem 3.2.1. ([SV], Theorem 3.2.1) Let \mathfrak{C} be an octonion algebra over k with norm N.
(i) The elements $t_{1} \in G O(N)$ such that there exist $t_{2}, t_{3} \in G O(N)$ with

$$
\begin{equation*}
t_{1}(x y)=t_{2}(x) t_{3}(y) \forall x, y \in \mathfrak{C} \tag{*}
\end{equation*}
$$

\qquad
form a normal subgroup $S G O(N)$ of index 2 in $G O(N)$, called the special similarity group. If $\left(t_{1}, t_{2}, t_{3}\right)$ and $\left(s_{1}, s_{2}, s_{3}\right)$ satisfy $(*)$, then so do $\left(t_{1} s_{1}, t_{2} s_{2}, t_{3} s_{3}\right)$ and $\left(t_{1}^{-1}, t_{2}^{-1}, t_{3}^{-1}\right)$.
(ii) If $t_{1} \in G O(N)$, there exist $t_{2}, t_{3} \in G O(N)$ such that

$$
t_{1}(x y)=t_{2}(y) t_{3}(x) \forall x, y \in \mathfrak{C} \ldots \ldots \ldots(* *)
$$

if and only if $t_{1} \notin S G O(N)$.
(iii) The elements t_{2} and t_{3} in $(*)$ and ($* *$) are uniquely determined by t_{1} up to scalar factors λ and λ^{-1} in k^{*}.
(iv) If a triple $\left(t_{1}, t_{2}, t_{3}\right)$ satisfy either $(*)$ or $(* *)$, then $n\left(t_{1}\right)=n\left(t_{2}\right) n\left(t_{3}\right)$.
(v) Every element $t \in G O(N)$ is a product of a left multiplication by an invertible element of \mathfrak{C} and an orthogonal transformation t^{\prime}. Then $t \in S G O(N)$ if and only if t^{\prime} is a rotation.
(vi) If t_{1}, t_{2}, t_{3} are bijective linear transformations of \mathfrak{C} such that they satisfy $(*)$ or $(* *)$, then they are necessarily similarities of \mathfrak{C} with respect to N.

From now on, we shall refer to any triple $\left(t_{1}, t_{2}, t_{3}\right)$ of similarities of \mathfrak{C}, satisfying $(*)$, as a related triple. We shall see in Chapter 4, that the principle of triality helps us define two automorphisms of the spin group of an octonion algebra. These automorphisms are outer and they generate a group isomorphic to S_{3}.

3.3. Albert algebras and groups of type F_{4}

To define groups of type F_{4}, we need the notion of an Albert algebra. Let \mathfrak{C} be an octonion algebra over a field k with norm N and $x \mapsto \bar{x}$ be the canonical involution on \mathfrak{C} as in Section 3.1. Let $\gamma_{1}, \gamma_{2}, \gamma_{3} \in k^{*}$ be fixed scalars. Denote the k algebra (non associative) of all 3×3 matrices over \mathfrak{C} by $\mathbb{M}_{3}(\mathfrak{C})$. Define an involution $\sigma: \mathbb{M}_{3}(\mathfrak{C}) \longrightarrow \mathbb{M}_{3}(\mathfrak{C})$, by $X \mapsto \Gamma^{-1} \bar{X}^{t} \Gamma$ for all $X \in \mathbb{M}_{3}(\mathfrak{C})$, where $\Gamma=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ and $\bar{X}=\left(\overline{X_{i j}}\right)$ and X^{t} denotes the transpose of X. Let us denote the subset of all σ-hermitian matrices in $\mathbb{M}_{3}(\mathfrak{C})$ by $H_{3}(\mathfrak{C}, \Gamma)$, i.e., $H_{3}(\mathfrak{C}, \Gamma)=\left\{X \in \mathbb{M}_{3}(\mathfrak{C}): X=\right.$ $\sigma(X)\}$. Then it can be shown that any $X \in H_{3}(\mathfrak{C}, \Gamma)$ is of the form

$$
X=\left[\begin{array}{ccc}
\alpha_{1} & c_{3} & \gamma_{1}^{-1} \gamma_{3} \overline{c_{2}} \\
\gamma_{2}^{-1} \gamma_{1} \overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \gamma_{3}^{-1} \gamma_{2} \overline{c_{1}} & \alpha_{3}
\end{array}\right]
$$

where $\alpha_{i} \in k, c_{i} \in \mathfrak{C}$ for $1 \leq i \leq 3$. Clearly, $H_{3}(\mathfrak{C}, \Gamma)$ is a 27 - dimensional k-vector space and we define a multiplication on it by

$$
X Y:=\frac{1}{2}(X . Y+Y . X)
$$

where $X . Y$ denotes the usual product of matrices. With this multiplication, $H_{3}(\mathfrak{C}, \Gamma)$ is a commutative, non associative algebra over k. Define a trace T on $H_{3}(\mathfrak{C}, \Gamma)$ by $T(X)=\alpha_{1}+\alpha_{2}+\alpha_{3}$. This trace map defines a quadratic form Q on $H_{3}(\mathfrak{C}, \Gamma)$ as

$$
Q(X):=\frac{1}{2} T\left(X^{2}\right)=\frac{1}{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)+\gamma_{3}^{-1} \gamma_{2} n\left(c_{1}\right)+\gamma_{1}^{-1} \gamma_{3} n\left(c_{2}\right)+\gamma_{2}^{-1} \gamma_{1} n\left(c_{3}\right)
$$

for every X as above. There exists a cubic form N on $H_{3}(\mathfrak{C}, \Gamma)$ defined as

$$
N(X)=\alpha_{1} \alpha_{2} \alpha_{3}-\gamma_{3}^{-1} \gamma_{2} \alpha_{1} n\left(c_{1}\right)-\gamma_{1}^{-1} \gamma_{3} \alpha_{2} n\left(c_{2}\right)-\gamma_{2}^{-1} \gamma_{1} \alpha_{3} n\left(c_{3}\right)+n\left(c_{1} c_{2}, \overline{c_{3}}\right),
$$

where $n($,$) is the bilinear form associated to the norm n$ of \mathfrak{C} (Chapter $5,[\mathbf{S V}]$). We call $H_{3}(\mathfrak{C}, \Gamma)$ a reduced Albert algebra over k. More generally, an Albert algebra over k is defined to be a k-algebra A, such that $A \otimes_{k} L \cong H_{3}(\mathfrak{C}, \Gamma)$ over some field extension L of k, where \mathfrak{C} is an octonion algebra over L and Γ, an invertible diagonal matrix in $\mathbb{M}_{3}(L)$. Albert algebras are given up to isomorphism by Tits' first and second constructions, which we now describe briefly.

Tits' first construction: Let k be a field with $\operatorname{char}(k) \neq 2,3$. Let D be a central simple associative algebra over k of degree 3 and let $\mu \in k^{*}$ be arbitrary. Consider the vector space

$$
J(D, \mu):=D_{0} \oplus D_{1} \oplus D_{2}
$$

$D_{i}=D$ for $i=0,1,2$ and define a multiplication on $J(D, \mu)$ by

$$
\begin{gathered}
\left(a_{0}, a_{1}, a_{2}\right)\left(b_{0}, b_{1}, b_{2}\right) \\
=\left(a_{0} \cdot b_{0}+\widetilde{a_{1} b_{2}}+\widetilde{b_{2} a_{2}}, \tilde{a_{0}} b_{1}+\tilde{b_{0}} a_{1}+(2 \mu)^{-1} a_{2} \times b_{2}, a_{2} \tilde{b_{0}}+b_{2} \tilde{a_{0}}+\frac{1}{2} \mu a_{1} \times b_{1}\right),
\end{gathered}
$$

where, for $a, b \in D$,

$$
a \cdot b=\frac{1}{2}(a b+b a), a \times b=2 a \cdot b-T_{D}(a) b-T_{D}(b) a+T_{D}(a) T_{D}(b)-T_{D}(a \cdot b),
$$

$\tilde{a}=\frac{1}{2}\left(T_{D}(a)-a\right)$ and T_{D} denotes the reduced trace on D. The algebra $J(D, \mu)$ is an Albert algebra over k. It is a division algebra if and only if μ is not a norm from D (Theorem 20, Chapter IX, [J1])
Tits' second construction: Let K / k be a quadratic extension and let (B, σ) be a central simple K-algebra of degree 3 with a unitary involution σ over K. Let $u \in B^{*}$ be such that $\sigma(u)=u$ and $N_{B}(u)=\mu \bar{\mu}$ for some $\mu \in K^{*}$. Here, N_{B} is the reduced norm on B and bar denotes the nontrivial k-automorphism of K. Let $H(B, \sigma)$ denote the subspace of σ-symmetric elements of B, with multiplication defined by $x y:=(x \cdot y+y \cdot x) / 2$, for $x, y \in H(B, \sigma)$. With the notation as in Tits' first construction, define a multiplication on the vector space $J(B, \sigma, u, \mu):=H(B, \sigma) \oplus B$ by

$$
\left(a_{0}, a\right)\left(b_{0}, b\right):=\left(a_{0} \cdot b_{0}+\widetilde{a u \sigma(b)}+\widetilde{b u \sigma(a)}, \tilde{a_{0}} b_{0}+\tilde{b_{0}} a+\bar{\mu}(\sigma(a) \times \sigma(b)) u^{-1}\right) .
$$

With this multiplication, $J(B, \sigma, u, \mu)$ is an Albert algebra and and it is a division algebra if and only if μ is not a norm from B.

Algebraic groups of type F_{4} are determined by Albert algebras. We have

Theorem 3.3.1. ([SV], Theorem 7.2.1) Let A be an Albert algebra over a field k and K be the algebraic closure of k. Then $\mathcal{G}=\operatorname{Aut}\left(A_{K}\right)$ is the connected simple algebraic group of type F_{4} defined over k. Conversely, any algebraic group of type F_{4} defined over k is isomorphic to $\operatorname{Aut}\left(A_{K}\right)$ for some Albert algebra A over k.

Compact real form of F_{4} : For compact connected Lie groups of type F_{4}, let us first consider the octonion division algebra \mathfrak{C} over \mathbb{R} as in Section 3.1. Let $A=H_{3}(\mathfrak{C}):=$ $H_{3}(\mathfrak{C}, I)$, where I is the 3×3 identity matrix. Hence, A is the set of all 3×3 matrices in $\mathbb{M}_{3}(\mathfrak{C})$ of the form $\left[\begin{array}{lll}\alpha_{1} & c_{3} & \overline{c_{2}} \\ \overline{c_{3}} & \alpha_{2} & c_{1} \\ c_{2} & \overline{c_{1}} & \alpha_{3}\end{array}\right]$, where $\alpha_{i} \in \mathbb{R}, c_{i} \in \mathfrak{C}$ and $x \mapsto \bar{x}$ is the canonical involution in \mathfrak{C}. As before, we define a multiplication on $H_{3}(\mathfrak{C})$ by $x y:=\frac{1}{2}(x \cdot y+y \cdot x)$, where $x . y$ denotes the usual matrix multiplication. Then $\operatorname{Aut}\left(H_{3}(\mathfrak{C})\right)$ is the compact connected simple Lie group Lie group of type F_{4} (see $[\mathbf{P}]$, Lecture 16).

Groups of type E_{6} : Let A be an Albert algebra over a field k. Then $A_{\bar{k}} \cong H_{3}(\mathfrak{C}, \Gamma)$ is a reduced Albert algebra over \bar{k}. Let N be the cubic norm on $A_{\bar{k}}$. Consider $H:=\left\{f \in G L\left(A_{\bar{k}}\right): N(f(X))=N(X)\right\}$, the full group of isometries of N. Then we have,

Theorem 3.3.2. ([SV], Theorem 7.3.2) H is a connected, quasisimple, simply connected algebraic group of type E_{6} defined over k.

The following result gives an embedding of a group of type F_{4} in that of type E_{6} (see [SV], Chapter 7).

Theorem 3.3.3. $\operatorname{Aut}\left(A_{\bar{k}}\right)=\left\{f \in H: f\left(1_{A_{\bar{k}}}\right)=1_{A_{\bar{k}}}\right\}$, where $1_{A_{\bar{k}}}$ denotes the identity element in $A_{\bar{k}}$.

CHAPTER 4

Genus number of Lie groups and algebraic groups

4.1. Introduction

Let G be a group acting on a set M. Let for $x \in M, G_{x}$ denote the stabilizer of x in G. Two elements $x, y \in M$ are said to have the same orbit type if the orbits of x and y are isomorphic as G-sets. This can be seen to be equivalent to the conjugacy of G_{x} and G_{y} in G. When one considers the action of a group G on itself by conjugacy, this amounts to computing the conjugacy classes of centralizers of elements in G. In the 1950s Mostow proved that for a compact Lie group acting on a compact manifold, the number of orbit types is finite $[\mathbf{M}]$, which was initially conjectured by Montgomery ([E], problem 45). Though this problem for Lie groups has been studied by Dynkin in his exhaustive works [D1], [D2], there is still considerable interest in the subject.

It is known that the number of conjugacy classes of centralizers of elements in a reductive algebraic group G over an algebraically closed field (with char G good), is finite ($[\mathbf{S t}]$, Corollary 1 of Theorem 2, Chapter 3). From the expanse of Dynkin's aforementioned works, the number of conjugacy classes of centralizers of elements in Lie groups, though implict, is difficult to extract. In this chapter we compute the number of conjugacy classes of centralizers in a compact simply connected simple Lie group as well as for a simply connected simple algebraic group (for semisimple elements) over an algebraically closed field. We also compute the number of orbit types of the adjoint action of G on its Lie algebra \mathfrak{g}. We mainly do this for all classical groups and for G_{2} and F_{4} among the exceptional groups. We hope that, apart from the explicit computations, the techniques and some of the results proved are new and would be of interest to the community. The results proved in this chapter can be found in $[\mathbf{B o}]$.

4.2. Preliminaries

Let G denote a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field and $T \subset G$ be a maximal torus of G. Let
W be the Weyl group of G with respect to T, i.e. $W=N_{G}(T) / T$, where $N_{G}(T)$ denotes the normalizer of T in G. Conjugation induces an action of W on T. For $x \in T$ let W_{x} denote the stabilizer of x in W for this action i.e. $W_{x}=\left\{g \in W: g x g^{-1}=x\right\}$. In what follows, we shall denote the conjugacy class of a subgroup $H \subset G$, in G by $[H]$. The cardinality of the set $\left\{\left[Z_{G}(x)\right]: x \in G, x\right.$ semisimple $\}$, where $Z_{G}(x)$ is the centralizer of x in G, is defined as the semisimple genus number of G. Since we shall deal with only semisimple elements, we call this number simply as the genus number of G. If G is not simply connected, then the cardinality of the set $\left\{\left[Z_{G}(x)^{\circ}\right]: x \in G, x\right.$ semisimple $\}$, is called the connected genus number of G. Here $Z_{G}(x)^{\circ}$ denotes the connected component of identity in $Z_{G}(x)$.
The following results are known:
Proposition 4.2.1. ([B], Theorem 3.4) Let G be a simply connected compact Lie group and $\sigma \in \operatorname{Aut}(G)$. Then the set F of all fixed points of σ in G is connected. In particular, if σ is the inner conjugation by an element $x \in G$, then the centralizer $Z_{G}(x)$ is connected.

Proposition 4.2.2. ([Hu1], Theorem 2.11) If G be a simply connected algebraic group over an algebraically closed field, the centralizer of any semisimple element of G is connected.

For a compact connected Lie group G with maximal torus T and Weyl group W, define the following subsets with respect to a reflection $s \in W: T^{s}$ is the the subset of T fixed by the action of $s \in W$ and $\left(T^{s}\right)^{\circ}$ is the connected component at the identity of T^{s}. Let $K(s)=\left\{x^{2} \in T \mid x \in N_{G}(T), x T=s \in W\right\}$ and $\sigma(s)=\left(T^{s}\right)^{\circ} \cup K(s)$. Then we have,

Proposition 4.2.3. ([DW], Theorem 8.2) Suppose that G is a compact connected Lie group with maximal torus T and Weyl group W. Then the centre of G is equal to the intersection $\bigcap_{s} \sigma(s)$, where s runs through the reflections in W.

We have the following basic result:
Theorem 4.2.4. For a simply connected compact Lie group G with maximal torus T and Weyl group W, there exists a bijection

$$
\left\{\left[Z_{G}(x)\right]: x \in T\right\} \longrightarrow\left\{\left[W_{x}\right]: x \in T\right\}
$$

given by

$$
\left[Z_{G}(x)\right] \longmapsto\left[W_{x}\right]
$$

Here $\left[Z_{G}(x)\right]$ and $\left[W_{x}\right]$ respectively denote the conjugacy class of the centralizer of x in G and the conjugacy class of the stabilizer of x in W.

Proof. First we show that the map is well-defined.
Let $x, y \in T$ such that $\left[Z_{G}(x)\right]=\left[Z_{G}(y)\right]$ i.e. there exists some $g \in G$ such that $g Z_{G}(x) g^{-1}=Z_{G}(y)$. Since T is a maximal torus in $Z_{G}(x)$ containing $x, g T g^{-1} \subset$ $Z_{G}(y)$ and also $T \subset Z_{G}(y)$. Hence there exists $g_{1} \in Z_{G}(y)$ such that $g_{1} g T g^{-1} g_{1}^{-1}=T$. Let $g_{1} g=h \in G$. Then $[h]=h T \in W$ and $[h] W_{x}\left[h^{-1}\right]=W_{y}$ since, for $\left[h_{1}\right] \in W_{x}$ we have

$$
\begin{aligned}
\left(h h_{1} h^{-1}\right) y\left(h h_{1}^{-1} h^{-1}\right) & =\left(g_{1} g h_{1} g^{-1} g_{1}^{-1}\right) y\left(g_{1} g h_{1}^{-1} g^{-1} g_{1}^{-1}\right) \\
& =\left(g_{1}\left(g h_{1} g^{-1}\right) g_{1}^{-1}\right) y\left(g_{1}\left(g h_{1}^{-1} g^{-1}\right) g_{1}^{-1}\right) \\
& =y
\end{aligned}
$$

since $h_{1} \in Z_{G}(x)$ and $g Z_{G}(x) g^{-1}=Z_{G}(y)$. Hence $g h_{1} g^{-1} \in Z_{G}(y)$. Also, $g_{1} \in Z_{G}(y)$. Therefore $\left[h h_{1} h^{-1}\right] \in W_{y}$. Similarly we have the other inclusion. Thus the given map is well defined.

Surjectivity of the map is clear from the definition. Hence we only need to check injectivity.

Let $x, y \in T$ such that W_{x} is conjugate to W_{y}, i.e. for some $[h] \in W,[h] W_{x}\left[h^{-1}\right]=$ W_{y}, i.e. $W_{h x h^{-1}}=W_{y}$, where $h \in N_{G}(T)$ is a representative of $[h] \in W$. We denote $h x h^{-1} \in T$ by a. We intend to show that $Z_{G}(a)=Z_{G}(y)$. Clearly for any element $x \in T, W_{x}=N_{Z_{G}(x)}(T) / T$. Therefore by Proposition 4.2.3, $Z\left(Z_{G}(a)\right)=\bigcap_{s \in W_{a}} \sigma(s)$ and $Z\left(Z_{G}(y)\right)=\bigcap_{s \in W_{y}} \sigma(s)$. Since $W_{a}=W_{y}$, we have

$$
Z\left(Z_{G}(a)\right)=Z\left(Z_{G}(y)\right) \ldots \ldots \ldots . .(*)
$$

Observe that for any $x \in T, Z_{G}(x)$ is the union of all maximal tori of G containing x. So let T_{1} be any maximal torus in $Z_{G}(a)$. Since $y \in Z\left(Z_{G}(a)\right)$ by $(*), y \in T_{1}$, which implies $T_{1} \subset Z_{G}(y)$. Similarly any maximal torus of $Z_{G}(y)$ is contained in $Z_{G}(a)$. Therefore $Z_{G}(y)=Z_{G}(a)=Z_{G}\left(h x h^{-1}\right)=h Z_{G}(x) h^{-1}$. This shows that the map is injective.

Next we prove an analogue of Theorem 4.2.4 for simply connected algebraic groups over an algebraically closed field. But before that, we note the following results:

Proposition 4.2.5. ([C2], Theorems 3.5.3 and 3.5.4) Let G be a connected reductive algebraic group, with maximal torus T, Weyl group W and root system Φ,
then, for a semisimple element $x \in G, Z_{G}(x)^{\circ}$ is a reductive group and $Z_{G}(x)^{\circ}=<T, U_{\alpha}, \alpha(x)=1>$, where $\alpha \in \Phi$ and U_{α} is the root subgroup corresponding to α.
The root system of $Z_{G}(x)^{\circ}$ is $\Phi_{1}=\{\alpha \in \Phi \mid \alpha(x)=1\}$.
The Weyl group of $Z_{G}(x)^{\circ}$ is $W_{1}=<w_{\alpha} \mid \alpha \in \Phi_{1}>$, where w_{α} is the reflection at α.
Lemma 4.2.6. Let G be a simply connected algebraic group with maximal torus T and Weyl group W. If w_{α} be a reflection in W, such that $w_{\alpha} \in W_{x}$, where $x \in T$ and $\alpha \in \Phi$, the root system of G, then $\alpha(x)=1$.

Proof. Let $\left(X(T), \Phi, Y(T), \Phi^{*}\right)$ be the root datum for G. Since G is simply connected,
$X(T)=\operatorname{Hom}\left(\mathbb{Z} \Phi^{*}, \mathbb{Z}\right)$ and $Y(T)=\mathbb{Z} \Phi^{*}$. Therefore for a system of simple roots $\left\{\alpha_{i}\right\}$ of G, there exists a basis $\left\{\lambda_{j}\right\}$ of $X(T)$ such that $\left.<\lambda_{i}, \alpha_{j}^{*}\right\rangle=\delta_{i j}, \alpha_{j}^{*}$ being the coroot corresponding to α_{j} (see $[\mathbf{S S t}]$, Chapter 2, Section 2.)

Now let $w_{\alpha} \in W$ be a reflection such that, $w_{\alpha} \in W_{x}$, i.e. $w_{\alpha}(x)=x$. There exists $s \in W$ such that $s(\alpha)$ is a simple root. Consider $\lambda \in X(T)$ such that $<\lambda, s(\alpha)^{*}>=1$. Note that,

$$
w_{s(\alpha)}(s(x))=s w_{\alpha} s^{-1}(s(x))=s w_{\alpha}(x)=s(x) \ldots \ldots \ldots . .(1)
$$

Applying λ to equation (1) we get,

$$
\begin{aligned}
& \lambda\left(w_{s(\alpha)}(s(x))\right)=\lambda(s(x)) \\
\Rightarrow & \left(w_{s(\alpha)} \lambda\right)(s(x))=\lambda(s(x)) \\
\Rightarrow & \left(\lambda-<\lambda, s(\alpha)^{*}>s(\alpha)\right)(s(x))=\lambda(s(x)) \\
\Rightarrow & \lambda(s(x)) s(\alpha)(s(x))^{-1}=\lambda(s(x)) \\
\Rightarrow & s(\alpha)(s(x))=1 \\
\Rightarrow & \alpha\left(s^{-1}(s(x))=1\right. \\
\Rightarrow & \alpha(x)=1
\end{aligned}
$$

Theorem 4.2.7. For simply connected algebraic group G over an algebraically closed field, with maximal torus T and Weyl group W, there exists a bijection

$$
\left\{\left[Z_{G}(x)\right]: x \in T\right\} \longrightarrow\left\{\left[W_{x}\right]: x \in T\right\}
$$

given by

$$
\left[Z_{G}(x)\right] \longmapsto\left[W_{x}\right]
$$

Here $\left[Z_{G}(x)\right]$ and $\left[W_{x}\right]$ respectively denote the conjugacy class of the centralizer of x in G and the conjugacy class of the stabilizer of x in W.

Proof. The proof of well-definedness and surjectivity of the map is same as that in Theorem 4.2.4. We prove that this map is injective.

Let $x, y \in T$ such that W_{x} is conjugate to W_{y}, i.e. for some $[h] \in W,[h] W_{x}\left[h^{-1}\right]=$ W_{y}, i.e. $W_{h x h^{-1}}=W_{y}$, where $h \in N_{G}(T)$ is a representative of $[h] \in W$. We denote $h x h^{-1} \in T$ by a. We intend to show that $Z_{G}(a)=Z_{G}(y)$. To achieve this, we first show that $Z_{G}(a)$ and $Z_{G}(y)$ have the same roots. Let Φ_{a} and Φ_{y} respectively denote the root systems of $Z_{G}(a)$ and $Z_{G}(y)$ with respect to the common maximal torus T. Since G is simply connected, by Proposition 4.2 .2 , both $Z_{G}(a)$ and $Z_{G}(y)$ are connected. Hence by Proposition 4.2.5, we have, $\Phi_{a}=\{\alpha \in \Phi \mid \alpha(a)=1\}$ and $\Phi_{y}=\{\beta \in \Phi \mid \beta(y)=1\}$.

Let $\alpha \in \Phi_{a}$. Hence $w_{\alpha} \in W_{a}=W_{y}$. Therefore by Lemma 4.2.6, $\alpha(y)=1$ which implies $\alpha \in \Phi_{y}$. This shows that $\Phi_{a} \subset \Phi_{y}$. Similarly the other inclusion. Hence $\Phi_{a}=\Phi_{y}$ which implies $Z_{G}(a)=Z_{G}(y)$ by Proposition 4.2.5.

Corollary 4.2.8. Let G be a compact simply connected Lie group (resp. a simply connected algebraic group over an algebraically closed field), $T \subset G$ a maximal torus. The genus number (resp. semisimple genus number) of G equals the number of orbit types of the action of $W(G, T)$ on T.

Proof. By Theorem 4.2.4 and Theorem 4.2.7, the number of orbit types of elements belonging to a fixed maximal torus T is equal to the number of orbit types of elements from T in the Weyl group. Any (semisimple) element $x \in G$ is contained in some maximal torus of G. Let $y \in G$ be any other (semisimple) element and let T^{\prime} be a maximal torus of G such that $y \in T^{\prime}$. Now T is conjugate to T^{\prime}, i.e. $\exists g \in G$ such that $g T g^{-1}=T^{\prime}$. Therefore $Z_{G}(y)$ is conjugate to $Z_{G}(x)$, where $x=g^{-1} y g \in T$. Hence each (semisimple) element of G is orbit equivalent to an element of T. The result now follows.

Next we want to investigate connected groups which are not necessarily simply connected. It turns out that the connected genus number of a connected semisimple group is equal to the genus number of its simply connected cover, which we shall see (Theorem 4.2.12). We note the following two results, which are known:

Proposition 4.2.9. ([BD], Chapter 4, Theorem 2.9) Let $f ; G \rightarrow H$ be a surjective homomorphism of compact Lie groups. If $T \subset G$ is a maximal torus, then $f(T) \subset H$
is a maximal torus. Furthermore, $\operatorname{ker}(f) \subset T$ iff $\operatorname{ker}(f) \subset Z(G)$. In this case f induces an isomorphism of Weyl groups.

A similar result holds for algebraic groups also, which we now quote ([Hu], Chapter 9, Proposition B),

Proposition 4.2.10. Let $\phi: G \rightarrow G^{\prime}$ be an epimorphism of connected algebraic groups, with T and $T^{\prime}=\phi(T)$ respective maximal tori. Then ϕ induces a surjective map $W G \rightarrow W G^{\prime}$, which is also injective in case Ker ϕ lies in all Borel subgroups of G. Here, $W G$ and $W G^{\prime}$ denote the Weyl groups of G and G^{\prime} respectively.

Let G be a compact connected semisimple Lie group or a connected semisimple algebraic group over an algebraically closed field. Let \widetilde{G} be the simply connected cover of G with the covering map,

$$
\rho: \widetilde{G} \longrightarrow G
$$

Then, for a maximal torus $\widetilde{T} \subset \widetilde{G}, \rho(\widetilde{T})=T$ is a maximal torus in G. Since $k e r \rho$ is contained in all the maximal tori of \widetilde{G}, ρ induces an isomorphism of $W \widetilde{G}$ and $W G$ by the above cited propositions.

Let $\left(X(T), \Phi, Y(T), \Phi^{*}\right)$ be the root datum of G. Let $V=(Y(T) \otimes \mathbb{R})$ and $\overline{Y(T)}=$ $\{v \in V: \alpha(v) \in \mathbb{Z}, \forall \alpha \in \Phi\}$. We associate a finite group $C:=\overline{Y(T)} / \mathbb{Z} \Phi^{*}$ with the isogeny class of G. Then C is a finite abelian group. Let $C^{\prime}(G):=Y(T) / \mathbb{Z} \Phi^{*} \subset C$. It can be shown that any subgroup of C is of the form $C^{\prime}(H)$, for some group H belonging to the isogeny class of G. (see $[\mathbf{T}]$, Section 1.5)

We first make the following observation:
Lemma 4.2.11. Let G be a compact connected semisimple Lie group or a connected semisimple algebraic group over an algebraically closed field K and \widetilde{G} be its simply connected cover. Let $\rho: \widetilde{G} \rightarrow G$ be the covering map. Assume that, char (K) does not divide the order of $C(G)$. Then $\rho\left(Z_{\widetilde{G}}(\tilde{x})\right)=Z_{G}(x)^{\circ}$, where $\tilde{x} \in \widetilde{T}$, a fixed maximal torus in \widetilde{G} and $x=\rho(\tilde{x})$.

Proof. For an algebraic group or a Lie group G, let us denote the corresponding Lie algebra by $\mathbf{L}(G)$. Since char (K) does not divide the order of $C^{\prime}(G), \rho$ is a separable morphism. Hence, the differential $d \rho: \mathbf{L}(\widetilde{G}) \rightarrow \mathbf{L}(G)$, is an isomorphism of Lie algebras. Since $Z_{\widetilde{G}}(\tilde{x})$ is connected, $\rho\left(Z_{\widetilde{G}}(\tilde{x})\right) \subset Z_{G}(x)^{\circ}$. If we show that the dimensions are equal, we would be through. For this, we look at the corresponding Lie algebras. Now since $A d_{x} v=v$ for all $v \in \mathbf{L}\left(Z_{G}(x)^{\circ}\right), d \rho A d_{\tilde{x}} d \rho^{-1} v=A d_{x} v=v$. Therefore,
for every $v \in \mathbf{L}\left(Z_{G}(x)^{\circ}\right), A d_{\tilde{x}} d \rho^{-1} v=d \rho^{-1} v$. Hence $d \rho^{-1}\left(\mathbf{L}\left(Z_{G}(x)^{\circ}\right)\right) \subset \mathbf{L}\left(\rho\left(Z_{\widetilde{G}}(\tilde{x})\right)\right)$. Since $d \rho$ is an isomorphism, we have $\operatorname{dim}\left(\mathbf{L}\left(Z_{G}(x)^{\circ}\right)\right) \leq \operatorname{dim}\left(\mathbf{L}\left(\rho\left(Z_{\widetilde{G}}(\tilde{x})\right)\right)\right)$. Therefore $\operatorname{dim}\left(Z_{G}(x)^{\circ}\right) \leq \operatorname{dim}\left(\rho\left(Z_{\widetilde{G}}(\tilde{x})\right)\right)$. Hence the equality.

Remark: Note that, the covering map $\rho: S L_{2}(K) \longrightarrow P S L_{2}(K)$, is not separable if $\operatorname{char}(K)=2$, since $C^{\prime}\left(P S L_{2}(K)\right)=\mathbb{Z}_{2}$. Hence in this case, $d \rho$ is not an isomorphism.

Theorem 4.2.12. Let G be a compact connected semisimple Lie group or a connected semisimple algebraic group over an algebraically closed field k. Let \widetilde{G} be the simply connected cover of G. Then the connected genus number of G is equal to the genus number of \widetilde{G}.

Proof. Let $\rho: \widetilde{G} \longrightarrow G$ be the covering map. Fix a maximal torus \widetilde{T} in \widetilde{G}. Then $T=\rho(\widetilde{T}) \subset G$ is a maximal torus. If $\tilde{g} \in \widetilde{G}$, then we shall denote $\rho(\tilde{g})$ by g. To prove the result, it suffices to show that the map

$$
\left\{\left[Z_{\widetilde{G}}(\tilde{t})\right]: \tilde{t} \in \widetilde{T}\right\} \rightarrow\left\{\left[Z_{G}(x)^{\circ}\right]: x \in T\right\}
$$

defined by,

$$
\left[Z_{\widetilde{G}}(\tilde{t})\right] \mapsto\left[Z_{G}(\rho(\tilde{t}))^{\circ}\right]
$$

is a bijection.
We first show that the map is well-defined. So let, $\left[Z_{\widetilde{G}}(\tilde{t})\right]=\left[Z_{\widetilde{G}}\left(\tilde{t_{1}}\right)\right]$ with $\tilde{t}, \tilde{t_{1}} \in \widetilde{T}$. Therefore there exists $\tilde{g} \in \widetilde{G}$ such that, $Z_{\widetilde{G}}(\tilde{t})=\tilde{g} Z_{\widetilde{G}}\left(\tilde{t_{1}}\right) \tilde{g}^{-1}=Z_{\widetilde{G}}\left(\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}\right)$. Take $a \in Z_{G}(t)^{\circ}$, where $\rho(\tilde{t})=t$. Consider any lift $\tilde{a} \in Z_{\widetilde{G}}(\tilde{t})$ of a (such a lift exists by Lemma 2.2). Therefore, $\tilde{a} \tilde{g} \tilde{t}_{1} \tilde{g}^{-1} \tilde{a}^{-1}=\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}$. Applying ρ on both sides we get, $a g t_{1} g^{-1} a^{-1}=g t_{1} g^{-1}$. Thus, $Z_{G}(t)^{\circ} \subset Z_{G}\left(g t_{1} g^{-1}\right)^{\circ}$. Similarly $Z_{G}\left(g t_{1} g^{-1}\right)^{\circ} \subset Z_{G}(t)^{\circ}$.

That the map is onto is clear from the definition.
To prove that the map is injective, let $Z_{G}\left(t_{1}\right)^{\circ}=g Z_{G}\left(t_{2}\right)^{\circ} g^{-1}=Z_{G}\left(g t_{2} g^{-1}\right)^{\circ}$ for some $g \in G$. If $\tilde{a} \in Z_{\widetilde{G}}\left(\tilde{t_{1}}\right)$, the $a=\rho(\tilde{a}) \in Z_{G}\left(t_{1}\right)^{\circ}=Z_{G}\left(g t_{2} g^{-1}\right)^{\circ}$. Therefore, $a g t_{2} g^{-1} a^{-1}=g t_{2} g^{-1}$. If we show that $\tilde{a} \in Z_{\widetilde{G}}\left(\tilde{g} \tilde{t}_{2} \tilde{g}^{-1}\right)$ then we are through. So let \tilde{a}_{1} be any lift of a in $Z_{\widetilde{G}}\left(\tilde{g} \tilde{t}_{2} \tilde{g}^{-1}\right)$. Then, $\rho\left(\tilde{a}{\tilde{a_{1}}}^{-1}\right)=1 \Rightarrow \tilde{a} \tilde{a}_{1}^{-1} \in \operatorname{Ker} \rho \subset Z(\widetilde{G})$. Therefore, $\tilde{a} \tilde{a}_{1}^{-1} \tilde{g} \tilde{t}_{2} \tilde{g}^{-1}{\tilde{a_{1}}}_{1} \tilde{a}^{-1}=\tilde{g} \tilde{t}_{2} \tilde{g}^{-1} \Rightarrow \tilde{a} \tilde{g} \tilde{t}_{2} \tilde{g}^{-1} \tilde{a}^{-1}=\tilde{g} \tilde{t}_{2} \tilde{g}^{-1}$. Hence, $\tilde{a} \in Z_{\widetilde{G}}\left(\tilde{g} \tilde{t}_{2} \tilde{g}^{-1}\right)$, which shows that $Z_{\widetilde{G}}\left(\tilde{t}_{1}\right) \subset Z_{\widetilde{G}}\left(\tilde{g} \tilde{t}_{2} \tilde{g}^{-1}\right)$. Similarly the other inclusion follows. This completes the proof.

Remark: It is important to note that if the group is not simply connected, then the number of classes of centralizers might be larger than the number of isotropy classes of the Weyl group. For example if we consider the group $P S L_{2}(K)(\operatorname{char}(K) \neq$

2), the number of isotropy subgroups in the Weyl group S_{2} is 2 but the number of conjugacy classes of centralizers is 3 . However, by Theorem 4.2.12, the connected genus number of $P S L_{2}(K)$ is 2 which is equal to the genus number of its simply connected cover $S L_{2}(K)$.

We have the following result on reductive algebraic groups:
Theorem 4.2.13. Let G be a connected reductive algebraic group over an algebraically closed field. Let G^{\prime} be the commmutator subgroup of G. Then the connected genus number of G is equal to the connected genus number of G^{\prime}.

Proof. Since G is reductive, we have $G=G^{\prime} . Z(G)^{\circ}$, where $Z(G)^{\circ}$ is the connected component of the centre of G. For any $g \in G$, we shall write $g=g^{\prime} s_{g}$, with $g^{\prime} \in G^{\prime}$ and $s_{g} \in Z(G)^{\circ}$. Observe that for any $g^{\prime} \in G^{\prime}$ and $s \in Z(G)^{\circ}$, $Z_{G}\left(g^{\prime} s\right)=Z_{G}\left(g^{\prime}\right) \ldots \ldots .(* *)$.

Define a map:

$$
\left\{\left[Z_{G}(x)^{\circ}\right]: x \text { is semisimple }\right\} \rightarrow\left\{\left[Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}\right]: x^{\prime} \text { is semisimple }\right\}
$$

by, $\left[Z_{G}(x)^{\circ}\right] \mapsto\left[Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}\right]$, where $x=x^{\prime} s_{x}, x^{\prime} \in G^{\prime}$ and $s_{x} \in Z(G)^{\circ}$. We prove that this map is a bijection.

To show that the above map is well defined, assume that $Z_{G}(x)^{\circ}=Z_{G}\left(g y g^{-1}\right)^{\circ}$, for some $g \in G$. Then by $(* *), Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ} \subset Z_{G}\left(x^{\prime}\right)^{\circ}=Z_{G}(x)^{\circ}=Z_{G}\left(g y g^{-1}\right)^{\circ}=$ $Z_{G}\left(g y^{\prime} g^{-1}\right)^{\circ}$. Hence $Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ} \subset Z_{G^{\prime}}\left(g y^{\prime} g^{-1}\right)^{\circ}$. Similarly $Z_{G^{\prime}}\left(g y^{\prime} g^{-1}\right)^{\circ} \subset Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}$, which shows that the above map is well defined.

It is clear from the definition that the map is onto.
We now prove the injectivity. So assume that, $Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}=Z_{G^{\prime}}\left(g^{\prime} y^{\prime} g^{\prime-1}\right)^{\circ}$, for some $g^{\prime} \in G^{\prime}$. Let $a \in Z_{G}\left(x^{\prime}\right)^{\circ}$, where $a=a^{\prime} s_{a}$. Then $a^{\prime} \in Z_{G}\left(x^{\prime}\right)$ as s_{a} is central. Also note that $s_{a} \in Z(G)^{\circ} \subset Z_{G}\left(x^{\prime}\right)^{\circ}$. Therefore, $a^{\prime}=a s^{\prime-1} \in Z_{G}\left(x^{\prime}\right)^{\circ}$. In particular, $a^{\prime} \in Z_{G^{\prime}}\left(x^{\prime}\right)$.

We claim that $a^{\prime} \in Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}$. If a^{\prime} is unipotent, then $a^{\prime} \in Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}$, since G^{\prime} is a connected semisimple group(see [Hu1], Chapter 1, Section 12). So let a^{\prime} be semisimple. Choose a maximal torus $T \in Z_{G}\left(x^{\prime}\right)^{\circ}$ such that $a^{\prime} \in T$. Let $T=T^{\prime} . Z(G)^{\circ}$, where T^{\prime} is a maximal torus in G. Therefore, $T^{\prime} \subset Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}$. Write $a^{\prime}=a_{1} b$ with $a_{1} \in T^{\prime}$ and $b \in Z(G)^{\circ}$. Since both a_{1} and b are in $Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}$, so is a^{\prime}. Hence the claim. Therefore, by assumption, $a^{\prime} \in Z_{G^{\prime}}\left(x^{\prime}\right)^{\circ}=Z_{G^{\prime}}\left(g^{\prime} y^{\prime} g^{\prime-1}\right)^{\circ} \subset Z_{G}\left(g^{\prime} y^{\prime} g^{\prime-1}\right)^{\circ}$. Since $a_{s} \in$ $Z(G)^{\circ}, a=a^{\prime} a_{s} \in Z_{G}\left(g^{\prime} y^{\prime} g^{\prime-1}\right)^{\circ}$. Thus we have shown that, $Z_{G}\left(x^{\prime}\right)^{\circ} \subset Z_{G}\left(g^{\prime} y^{\prime} g^{\prime-1}\right)^{\circ}$. Similarly the other inclusion follows. Hence the map is injective.

Remark: By Theorem 4.2.13, the genus number of $G L_{n}(k)$ is equal to the genus number of $S L_{n}(k)$.

Disconnected centralizers. In general, for a connected semisimple group we can derive a necessary and sufficient condition for connectedness of centralizers of semisimple elements. Let G be a connected semisimple algebraic group, with the simply connected cover \widetilde{G} and $\rho: \widetilde{G} \longrightarrow G$ be the covering map. Let $T \subset G$ be a fixed maximal torus. Consider $t \in T$ and let $\rho^{-1}(t)=\left\{\tilde{t}_{1}, \ldots, \tilde{t_{l}}\right\} \subset \widetilde{G}$. Then we have the following:

Theorem 4.2.14. Fix a lift $\tilde{t_{1}} \in \widetilde{G}$ of $t \in T$. Then $Z_{G}(t)$ is disconnected if and only if there exists $\tilde{g} \in \widetilde{G}$ such that, $\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}=\tilde{t}_{i}$, for some $i \neq 1$.

Proof. Let $Z_{G}(t)$ be disconnected. Therefore, there exists $g \in Z_{G}(t) \backslash Z_{G}(t)^{\circ}$. Let $\tilde{g} \in \widetilde{G}$ be a lift of g. Observe that $\rho\left(\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}\right)=g t g^{-1}=t$. So, $\tilde{g} \tilde{t}_{1} \tilde{g}^{-1} \in \rho^{-1}(t)$. Also note that $\tilde{g} \tilde{t}_{1} \tilde{g}^{-1} \neq \tilde{t_{1}}$. For else, $\tilde{g} \in Z_{\widetilde{G}}\left(\tilde{t}_{1}\right)$, which implies $\rho(\tilde{g}) \in \rho\left(Z_{\widetilde{G}}\left(\tilde{t}_{1}\right)\right) \Rightarrow$ $g \in Z_{G}(t)^{\circ}$ (since $Z_{\widetilde{G}}\left(\tilde{t_{1}}\right)$ is connected). Hence $\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}=\tilde{t}_{i}$ for some $i \neq 1$.

Conversely, let there exist $\tilde{g} \in \widetilde{G}$, such that, $\tilde{g} \tilde{t}_{1} \tilde{g}^{-1}=\tilde{t}_{i}$, for some $i \neq 1$. Therefore $g=\rho(\tilde{g}) \in Z_{G}(t)$. Define $S_{j}=\left\{x \in Z_{G}(t) \mid \tilde{x} \tilde{t}_{1} \tilde{x}^{-1}=\tilde{t}_{j}\right\}$, where $\rho(\tilde{x})=x$. Then clearly, $Z_{G}(t)=\bigcup_{j=1}^{n} S_{j}$. Note that, $S_{1}=\rho\left(Z_{\widetilde{G}}\left(\tilde{t_{1}}\right)\right)=Z_{G}(t)^{\circ}$ and by hypothesis, S_{i} is non empty. Hence $Z_{G}(t)$ is not connected.

In what follows, we shall compute the genus number of all the compact simply connected simple Lie groups and simply connected simple algebraic groups of Classical type and of types G_{2} and F_{4}.
Notation: We define a partition of a positive integer n as a set $\left\{n_{1}, \ldots, n_{k}: n_{i} \in \mathbb{N}\right\}$ such that $n_{1}+\ldots+n_{k}=n$. Define $p(n)$ to be number of all partitions of n and we set $p(0)=1$. The function p is sometimes referred to as the unrestricted partition function (see $[\mathbf{N}]$).

4.3. A_{n}

In this section, we compute the genus number for the compact Lie group $S U(n+1)$ and the semisimple genus number of the algebraic group $S L(n+1)$ over an algebraically closed field. We fix a maximal torus T of $S U(n+1)$ consisting of all matrices of the form

$$
\left[\begin{array}{ccc}
z_{1} & & \\
& \ddots & \\
& & z_{n+1}
\end{array}\right]
$$

where $z_{i} \in S^{1}$ and $z_{1} \ldots z_{n+1}=1$. If we write $z_{l}=\exp \left(2 \pi i \gamma_{l}\right)$, then the above matrix can be represented by the $(n+1)$-tuple $\left(\gamma_{1}, \gamma_{2} \ldots, \gamma_{n+1}\right)$, where $\gamma_{i} \in \mathbb{R} / \mathbb{Z}$. The Weyl group of $S U(n+1)$ is S_{n+1} and it acts on the diagonal maximal torus in the following way: let $\alpha \in S_{n+1}$ and $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+1}\right) \in T$, then $\alpha^{-1}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+1}\right)$ $=\left(\gamma_{\alpha(1)}, \gamma_{\alpha(2)}, . ., \gamma_{\alpha(n+1)}\right)$.

We wish to compute the number of conjugacy classes of isotropy subgroups of S_{n+1} with respect to its action on T.

Let $\gamma \in T$. By the action of a suitable element of S_{n+1} we can assume γ to be such that, $\gamma_{1}=\gamma_{2}=\ldots=\gamma_{k_{1}} ; \gamma_{k_{1}+1}=\ldots=\gamma_{k_{1}+k_{2}} ; \ldots ; \gamma_{k_{1}+\ldots+k_{l-1}+1}=\ldots=\gamma_{k_{1}+\ldots k_{l}}$ and $k_{1}+k_{2}+\ldots k_{l}=n$, with $\gamma_{1} \neq \gamma_{k_{1}+1} \neq \ldots \neq \gamma_{k_{1}+\ldots+k_{l-1}+1}$. Hence, for this γ, the isotropy subgroup in S_{n+1} is $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{l}} \subset S_{n+1}$, where $S_{k_{i}}=\left\{\rho \in S_{n+1} \mid \rho(j)=\right.$ j for $\left.j=1, \ldots,\left(k_{1}+\ldots+k_{i-1}\right),\left(k_{1}+\ldots+k_{i}+1\right), \ldots, n+1\right\}$. Note that $S_{k_{i}} \cap S_{k_{j}}=\{1\}$ for $i \neq j$ and $S_{k_{i}} S_{k_{j}}=S_{k_{j}} S_{k_{i}}$. So, $S_{k_{i}} S_{k_{j}}$ is a subgroup of S_{n} and hence by induction $S_{k_{1}} \ldots S_{k_{n}}$ is a subgroup of S_{n}.

More precisely, any element $\rho \in W_{\gamma}$, necessarily has a cycle decomposition of the type $\left(k_{1}, \ldots, k_{l}\right)$, i.e. $\rho \in S_{k_{1}} S_{k_{2}} \ldots S_{k_{l}}$ and conversely any element of $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{l}}$ is clearly a stabilizer of γ. In other words, we have the following isomorphism :

$$
\begin{gathered}
W_{\gamma} \longrightarrow S_{k_{1}} \ldots S_{k_{l}} \\
\rho \longmapsto\left(\left.\left.\left.\rho\right|_{k_{1}} \cdot \rho\right|_{k_{2}} \ldots \rho\right|_{k_{l}}\right),
\end{gathered}
$$

where $\left.\rho\right|_{k_{i}}$ denotes the restriction of ρ on to the k_{i} many entries of γ, which are equal modulo \mathbb{Z}.

Let $\left(n_{1}, \ldots, n_{l}\right)$ and $\left(m_{1}, \ldots, m_{k}\right)$ be two ordered partitions of $n+1$ and suppose they correspond to elements $\gamma_{1}, \gamma_{2} \in T$ respectively. If $l=k$ and $n_{i}=m_{i}$ for all $1 \leq i \leq l$, clearly $W_{\gamma_{1}}=W_{\gamma_{2}}$. Now suppose that the two partitions are different. Then $n_{i} \neq m_{i}$ for some i. We observe that any element in $W_{\gamma_{1}}$ has a cycle type (n_{1}, \ldots, n_{l}) and any element in $W_{\gamma_{2}}$ has cycle type (m_{1}, \ldots, m_{k}) and since conjugation in S_{n} must preserves cycle types, $W_{\gamma_{1}}$ is not conjugate to $W_{\gamma_{2}}$.

Thus the number of conjugacy classes of isotropy subgroup is precisely $p(n+1)$, i.e. the number of partitions of $n+1$.

For $S L(n+1)$ over an algebraically closed field k, the semisimple genus number is similarly obtained by computing the number of isotropy subgroups of the Weyl group (up to conjugacy) with respect to its action on a maximal torus. In this situation again we consider the diagonal maximal torus $T \subset S L(n+1)$, i.e the subgroup of matrices of the form $\operatorname{diag}\left(a_{1}, \ldots, a_{n+1}\right)$ such that $a_{1} \ldots a_{n+1}=1, a_{i} \in k$. Following a similar argument as in the case of $S U(n+1)$, we see that the number of conjugacy classes of isotropy subgroups of Weyl group is $p(n+1)$.

We record this as :
Theorem 4.3.1. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type A_{n} is $p(n+1)$.

4.4. B_{n}

We consider the simply connected group $\operatorname{Spin}(2 n+1)$ and a maximal torus

$$
T=\left\{\prod_{i=1}^{n}\left(\operatorname{cost}_{i}-e_{2 i-1} e_{2 i} \sin t_{i}\right): 0 \leq t_{i} \leq 2 \pi\right\}
$$

To simplify notations let us denote a typical element of T by $t=\left(t_{1}, \ldots, t_{n}\right)$, with $0 \leq t_{i} \leq 2 \pi$.

For a description of the Weyl group of $\operatorname{Spin}(2 n+1)$, we fix the following notation:

$$
t_{-i}=-t_{i}, \quad \text { for } \quad \mathrm{i}=1, \ldots, \mathrm{n}
$$

The Weyl group of $\operatorname{Spin}(2 n+1)$ is $W=(\mathbb{Z} / 2)^{n} \rtimes S_{n}$, where S_{n} acts on $(\mathbb{Z} / 2)^{n}$ by permuting the coordinates. The group W can be identified with the group of permutations ϕ of the set $\{-n, \ldots,-1,1, \ldots, n\}$, which satisfy $\phi(-i)=-\phi(i)$. W acts on the fixed maximal torus T of $\operatorname{Spin}(2 n+1)$ in the following way:

$$
\phi\left(t_{1}, \ldots, t_{n}\right)=\left(t_{\phi^{-1}(1)}, \ldots, t_{\phi^{-1}(n)}\right),
$$

where $\phi \in W$ and $\left(t_{1}, \ldots, t_{n}\right) \in T$.
A useful interpretation: The action of W on the maximal torus of $\operatorname{Spin}(2 n+1)$ can be described in the following way:
An element $\phi \in G(n)$ acts on a toral element $t \in T$ by permuting the parameters and changing the sign of some of them. If $\phi=(\alpha, \beta)$, with $\alpha \in(\mathbb{Z} / 2)^{n}$ and $\beta \in S_{n}$, then β permutes the parameters of t and α changes the signs of the parameters.

In order to compute the number of conjugacy classes of isotropy subgroups of W, we start with an element $t=\left(t_{1}, \ldots, t_{n}\right) \in T$ and find the isotropy subgroup W_{t}.

Let $n=n_{1}+\ldots+n_{k}$, where, $t_{i}=0$ or π, for $i=1, \ldots, n_{1}^{\prime}, t_{i}=\pi / 2$ or $3 \pi / 2$, for $i=n_{1}^{\prime}+1, \ldots, n_{1}$, and $t_{i} \neq 0, \pi, \pi / 2,3 \pi / 2$ for $i \geq n_{1}+1$. The remaining integers n_{2}, \ldots, n_{k} denote the number of parameters which are equal.

Note that, for $i=1, \ldots, n_{1}^{\prime}$, a non- trivial $(\mathbb{Z} / 2)^{n}$ action on t_{i} fixes the factor $\left(\right.$ cost $\left._{i}-e_{2 i-1} e_{2 i} \operatorname{sint}_{i}\right)$, which is 1 or -1 according as $t_{i}=0$ or π. However, for $i=$ $n_{1}^{\prime}+1, \ldots, n_{1}$, a non-trivial $\left(\mathbb{Z} / 2^{n}\right)$ action on t_{i} inverts the factor $\left(\operatorname{cost}_{i}-e_{2 i-1} e_{2 i} \operatorname{sint} t_{i}\right)$, which is $e_{2 i-1} e_{2 i}$ or $-e_{2 i-1} e_{2 i}$, according as $t_{i}=\pi / 2$ or $3 \pi / 2$. For the rest of the parameters, only the S_{n} part of the Weyl group contributes to the isotropy. Therefore the isotropy subgroup for such an element of T is

$$
\begin{equation*}
\left((\mathbb{Z} / 2)^{n_{1}^{\prime}} \rtimes S_{n_{1}^{\prime}}\right) \times\left((\mathbb{Z} / 2)^{n_{1}-n_{1}^{\prime}-1} \rtimes S_{n_{1}-n_{1}^{\prime}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}, \tag{*}
\end{equation*}
$$

Therefore for each choice of n_{1} we have $\left(n_{1}+1\right) p\left(n-n_{1}\right)$ many non-conjugate isotropy subgroups. (Here we assume $n \geq 3$ since for $n=1,2$, the above enumeration does not give distinct subgroups. This happens because the first two factors in $(*)$ are not symmetric. For example, if we take $n=2$ and $n_{1}=2$, then we get the isotropy subgroups as $\mathbb{Z} / 2 \rtimes S_{2},(\mathbb{Z} / 2)^{2} \rtimes S_{2}$ and $\mathbb{Z} / 2$ and for $n_{1}=1$, we get the isotropy subgroup $\mathbb{Z} / 2$, which is a repetition. So we explicitly enumerate the isotropy subgroups for B_{1} and B_{2} below.) Hence the total number of conjugacy classes of isotropy subgroups of W for $S O(2 n+1)(n \geq 3)$, is

$$
\sum_{i=0}^{n}(i+1) p(n-i)
$$

When we consider $\operatorname{Spin}(2 n+1)$ over an algebraically closed field k, we take a maximal torus $T=\left\{\prod_{i=1}^{n}\left(t_{i}^{-1}+\left(t_{i}-t_{i}^{-1} e_{2 i-1} e_{2 i}\right), t_{i} \in k^{*}\right\}\right.$. We can calculate the number of conjugacy classes of isotropy subgroups of the Weyl group using similar arguments.

Now, for $n=1,2$ by $(*)$, we list all the isotropy subgroups (up to conjugacy). For B_{1}, the isotropy subgroups are $\{1\}$ and $\mathbb{Z} / 2$. For B_{2}, the isotropy subgroups are $\{1\}$, $S_{2}, \mathbb{Z} / 2,(\mathbb{Z} / 2)^{2} \rtimes S_{2}$ and $\mathbb{Z} / 2 \rtimes S_{2}$.

We record this discussion as:

Theorem 4.4.1. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type B_{n} is $\sum_{i=0}^{n}(i+1) p(n-i)$, for $n \geq 3$. The genus number for B_{1} is 2 and that for B_{2} is 5 .

Corollary 4.4.2. The connected genus number of $S O(2 n+1)$ is equal to the genus number of $\operatorname{Spin}(2 n+1)$.

Proof. Follows from Theorem 4.2.12.
4.5. C_{n}

Let k be an algebraically closed field. The symplectic group over k of rank n, is defined as $S p(n, k):=\left\{A \in G L_{2 n}(k): A^{t} J A=J\right\}$, where $J=\left[\begin{array}{cc}0 & -I \\ I & 0\end{array}\right], I$ being the identity matrix in $G L_{n}(k) . S p(n, k)$ is the simply connected algebraic group of type C_{n}.

When $k=\mathbb{C}$, the field of complex numbers, $S p(n, \mathbb{C})$ is the complex symplectic group of rank n. The compact simply connected Lie group of type C_{n}, denoted by $S p(n)$ is defined as follows: let $U(n)$ denote the group of $n \times n$ unitary matrices. Define $S p(n):=\left\{A \in U(2 n): A^{t} J A=J\right\}$, where $J=\left[\begin{array}{cc}0 & -I \\ I & 0\end{array}\right], I$ is the identity matrix in $G L_{n}(\mathbb{C})$. Therefore, $S p(n)=S p(2 n, \mathbb{C}) \cap U(2 n)$. We have the inclusion $U(n) \longrightarrow S p(n)$, given by $A \mapsto\left[\begin{array}{cc}A & 0 \\ 0 & \bar{A}\end{array}\right]$.
Consider the maximal torus

$$
T(n)=\left\{\left[\begin{array}{ccc}
z_{1} & & \\
& \ddots & \\
& & z_{n}
\end{array}\right] \in U(n): z_{i} \in S^{1}\right\} \subset U(n) .
$$

Then the image of this maximal torus in $S p(n)$ under the above inclusion gives a maximal torus $T \subset S p(n)$, a typical element of which is of the form,

$$
t=\left[\begin{array}{cccccccc}
z_{1} & & & & & & & \\
& z_{2} & & & & & & \\
& & \ddots & & & & & \\
& & & z_{n} & & & & \\
& & & & \overline{z_{1}} & & & \\
& & & & & \overline{z_{2}} & & \\
& & & & & & \ddots & \\
& & & & & & & \overline{z_{n}}
\end{array}\right]
$$

Let $z_{k}=\exp \left(2 \pi i t_{k}\right)$. Then we can represent each $t \in T$ by an n-tuple $\left(t_{1}, \ldots, t_{n}\right)$, where $t_{k} \in \mathbb{R} / \mathbb{Z}$.

The Weyl group of $S p(n)$ is $W=(\mathbb{Z} / 2)^{n} \rtimes S_{n}$, where S_{n} acts on $(\mathbb{Z} / 2)^{n}$ by permuting the coordinates, as noted in Section 4. The action of W on T is given by, $\phi\left(t_{1}, \ldots, t_{n}\right)=\left(t_{\phi^{-1}(1)}, \ldots, t_{\phi^{-1}(n)}\right)$, where $\phi \in W$ and $\left(t_{1}, \ldots, t_{n}\right) \in T$. We follow the same convention: $t_{-i}=-t_{i}$, for $i=1, \ldots, n$ (see Section 4.4).

To compute the isotropy subgroup of $t \in T$ in W, first note that, if $t_{i}=0$ or $1 / 2$, a non-trivial $(\mathbb{Z} / 2)^{n}$ action fixes t_{i}. Therefore, we can assume without loss of generality that, $t_{i} \neq-t_{j}$ unless $t_{i}=t_{j}=0,1 / 2$. For, if there exist $t_{i}=-t_{j}$ for some i, j with $t_{i}, t_{j} \neq 0,1 / 2$ then we can change the sign of t_{j} by suitable element from $(\mathbb{Z} / 2)^{n}$.

Let $n=n_{1}+\ldots+n_{k}$ be a partition of n with n_{1} being the total number of 0 s and $1 / 2$'s and n_{2}, \ldots, n_{k} are the sizes of the blocks of parameters t_{i} which are equal. The isotropy subgroup for this particular t is

$$
\left((\mathbb{Z} / 2)^{i} \rtimes S_{i}\right) \times\left((\mathbb{Z} / 2)^{n_{1}-i} \rtimes S_{n_{1}-i}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}
$$

where i and $n_{1}-i$ respectively denote the number of 0 s and $1 / 2 \mathrm{~s}$ in t. Therefore for this partition of n, we have $\left(\left[n_{1} / 2\right]+1\right) p\left(n-n_{1}\right)$ many distinct isotropy subgroups (by varying the number of 0 s $)$. Hence the total number of conjugacy classes of isotropy subgroups is

$$
\sum_{i=0}^{n}([i / 2]+1) p(n-i)
$$

Over an algebraically closed field k, the diagonal maximal torus of $S p(n)$ can again be parametrized by n coordinates $\left(a_{1}, \ldots, a_{n}\right) a_{i} \in k^{*}$. The calculation for genus number follows exactly as above.Thus we have the following:

Theorem 4.5.1. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type C_{n} is $\sum_{i=0}^{n}([i / 2]+1) p(n-i)$.

4.6. D_{n}

Here, as in the case of $\operatorname{Spin}(2 n+1)$, we work with the maximal torus $T=$ $\left\{\prod_{i=1}^{n}\left(\right.\right.$ cost $\left.\left.\left._{i}-e_{2 i-1} e_{2 i} \sin t_{i}\right): 0 \leq t_{i} \leq 2 \pi\right)\right\}$. The Weyl group is $W=(\mathbb{Z} / 2)^{n-1} \rtimes S_{n}$, the subgroup of even permutations in the Weyl group of $\operatorname{Spin}(2 n+1)$ and it acts on a typical element $\left(t_{1}, \ldots, t_{n}\right) \in T$, by permuting the entries and changing the signs of even number of them. We discuss two separate cases:
Case 1: n is odd.

Let $t=\left(t_{1}, \ldots, t_{n}\right) \in T$ be an arbitrary element of the torus. As in the case of B_{n}, we consider a partition of n as $n=n_{1}+\ldots+n_{k}$, where the $n_{i}^{\prime} \mathrm{s}$ are as in $\S 4$. Thus looking at the torus element t, we can read off the isotropy subgroup, which is

$$
\left.\left((\mathbb{Z} / 2)^{n_{1}^{\prime}-1} \rtimes S_{n_{1}^{\prime}}\right)\right) \times\left((\mathbb{Z} / 2)^{n_{1}-n_{1}^{\prime}-1} \rtimes S_{n_{1}-n_{1}^{\prime}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}},
$$

Thus for each n_{1} the number of non-conjugate isotropy subgroups is $\left(\left[n_{1} / 2\right]+\right.$ 1) $p\left(n-n_{1}\right)$. This is because the number of partitions of n_{1} which give non -conjugate isotropy subgroups for a fixed choice of $n_{2}, . ., n_{3}$ is $\left[n_{1} / 2\right]$. Hence the total number is

$$
\sum_{i=0}^{n}([i / 2]+1) p(n-i)
$$

Case 2: n is even.
First let us investigate the following situation: $t=\left(t_{1}, \ldots, t_{n}\right) \in T$, where $t_{1}=$ $\ldots=t_{n-1}=-t_{n}$ and $t_{i} \neq 0, \pi, \pi / 2,3 \pi / 2$, for $1 \leq i \leq n$. We have the Weyl group $W=(\mathbb{Z} / 2)^{n-1} \rtimes S_{n}$. The action of an element $(\tau, \rho) \in W$ on any $t \in T$ is given by,

$$
(\tau, \rho)\left(t_{1}, \ldots, t_{n}\right)=\left(t_{(\rho)^{-1}(\tau)^{-1}(1)}, \ldots, t_{(\rho)^{-1}(\tau)^{-1}(n)}\right),
$$

If $(\tau, \rho) \in W_{t}$, then $(\tau, \rho)\left(t_{1}, \ldots, t_{n}\right)=\left(t_{(\rho)^{-1}(\tau)^{-1}(1)}, \ldots, t_{(\rho)^{-1}(\tau)^{-1}(n)}\right)=\left(t_{1}, \ldots, t_{n}\right)$. Therefore,
(a) if $\rho(n)=n$ then $\tau=(0, \ldots, 0) \in(\mathbb{Z} / 2)^{n-1}$
(b) if $\rho(n)=i \neq n$ then necessarily τ is an n-tuple with 1 at the n-th and $\rho(n)$-th positions and 0 everywhere else.

The isotropy subgroup of t therefore has exactly n ! many elements and as we will see, is not conjugate to S_{n} (since S_{n} is the only other isotropy subgroup of order $n!$).

Let if possible $(\tau, \rho) \in W$ be such that

$$
(\tau, \rho) S_{n}(\tau, \rho)^{-1}=W_{t}
$$

Then, for an arbitrary $(1, \sigma) \in S_{n} \subset W$ we have,

$$
\begin{aligned}
& (\tau, \rho)(1, \sigma)\left(\rho^{-1}(\tau), \rho^{-1}\right) \\
= & (\tau, \rho \sigma)\left(\rho^{-1}(\tau), \rho^{-1}\right) \\
= & \left(\tau \rho \sigma \rho^{-1}(\tau), \rho \sigma \rho^{-1}\right) \in W_{t} .
\end{aligned}
$$

Note that τ cannot be $(0, \ldots, 0)$ or $(1, \ldots, 1)$ because in that case $\tau \rho \sigma \rho^{-1}(\tau)$ is necessarily equal to $(0, \ldots, 0)$ for any chosen σ; and we can suitably choose a $\sigma \in S_{n}$ such that $\rho \sigma \rho^{-1}(n) \neq n$, in which case the above element cannot belong to W_{t}. Thus τ must contain both 0 and 1 as its parameters. Moreover, since $(\tau, \rho) \in W, \tau$ must be a permutation changing an even number of signs. Since there is at least one 1 in the n-tuple representing τ, there must be at least two of them. Similar argument holds for the number of 0 's occurring in τ. Now let the n-th and the i-th positions in τ be 1. Then we simply choose a suitable σ such that $\rho \sigma \rho^{-1}=(1 n)$ (the transposition flipping 1 and n). This shows that the element $\left(\tau \rho \sigma \rho^{-1}(\tau), \rho \sigma \rho^{-1}\right) \notin W_{t}$ because $\tau \rho \sigma \rho^{-1}(\tau)=(1, \ldots, 1)$ in this case again.

With this in hand, we carry out the computation for the number of conjugacy classes in a way similar to that of $\operatorname{Spin}(2 n+1)$. If $n=n_{1}+\ldots+n_{k}$ is a partition consisting of at least one odd integer, then by the action of a suitable Weyl group element the computation can be carried out as in Case 1.

If the partition $n=n_{1}+\ldots+n_{k}$ consists of only even integers, and also let us assume that none of the parameters are 0 or π, then we can have the following possibility:
$t_{1}=\ldots=t_{n_{1}-1}=-t_{n_{1}}$ and the remaining blocks containing equal parameters with $t_{i} \neq-t_{j}$ for $n_{1}<i, j \leq n$. By the argument at the beginning of Case 2 , the isotropy subgroup for such an element is obtained as: Let $n=2 l$. If $l=l_{1}+\ldots+l_{k}$, then $W_{t}=H_{2 k_{1}} \cdot S_{2 k_{2}} \ldots S_{2 k_{l}}$, where $H_{2 k_{1}}$ is a subgroup of order $\left(2 k_{1}\right)$! as described in the beginning of Case 2.

So if $n=2 l$ then the total number of conjugacy classes of isotropy subgroups is :

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}([i / 2]+1) p(n-i)\right)+p(n)-p(l)+2 p(l) \\
= & \left(\sum_{i=0}^{n}([i / 2]+1) p(n-i)\right)+p(l) .
\end{aligned}
$$

As noted in the previous section, over an algebraically closed field, the number of conjugacy classes of isotropy subgroups of the Weyl group can be obtained exactly as above. Thus we have the following theorem:

Theorem 4.6.1. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type D_{n} is $\sum_{i=0}^{n}([i / 2]+1) p(n-i)$ for n odd and $\left.\sum_{i=0}^{n}([i / 2]+1) p(n-i)\right)+p(l)$ for $n=2 l$.

Corollary 4.6.2. The connected genus number of $\operatorname{SO}(2 n)$ is equal to the genus number of $\operatorname{Spin}(2 n)$.

Proof. Follows from Theorem 4.2.12.

4.7. F_{4}

Let \mathfrak{C} be the octonion division algebra over \mathbb{R} with norm N. We fix an orthogonal basis $\mathfrak{B}=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$, where $v_{1}=1, v_{6}=v_{2} v_{5}, v_{7}=v_{3} v_{5}$ and $v_{8}=v_{4} v_{5}([\mathbf{P}]$, Lecture 14). Let $\operatorname{Spin}(N)$ and $S O(N)$ respectively denote the spin group and the special orthogonal group of (\mathfrak{C}, N). With respect to the basis \mathfrak{B}, the matrix of the bilinear form associated with N is diagonal.

Consider the \mathbb{R}-algebra $A:=H_{3}(\mathfrak{C})$, consisting of all 3×3 matrices of the form

$$
\left[\begin{array}{lll}
\alpha_{1} & c_{3} & \overline{c_{2}} \\
\overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \overline{c_{1}} & \alpha_{3}
\end{array}\right],
$$

where $\alpha_{i} \in \mathbb{R}, c_{i} \in \mathfrak{C}$ and $x \mapsto \bar{x}$ is the canonical involution on \mathfrak{C}. The multiplication in A is given by

$$
x y=(x \cdot y+y \cdot x) / 2
$$

where dot denotes the standard matrix multiplication.
Then $\operatorname{Aut}(A)$ is the compact connected Lie group of type F_{4} (see Chapter 3). For this discussion we need an explicit embedding of $\operatorname{Spin}(N)$ in F_{4}. Consider the subalgebra $S=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \subset A$. Then $\operatorname{Spin}(N)$ sits inside $A u t(A)$ as the subgroup of all automorphisms ϕ, such that $\phi(s)=s$ for all $s \in S([\mathbf{J}]$, Theorem 6).

We first discuss an explicit description of $\operatorname{Spin}(N)$. Let as before \mathfrak{C} denote an octonion algebra over \mathbb{R} and consider a subgroup $R T(\mathfrak{C}) \subset S O(N)^{3}$, defined as,

$$
R T(\mathfrak{C}):=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in S O(N)^{3} \mid t_{1}(x y)=t_{2}(x) t_{3}(y) \quad \forall x, y \in \mathfrak{C}\right\}
$$

Any element of $R T(\mathfrak{C})$ is called a related triple (see Chapter 3) We need the following result from $[\mathbf{S V}]$ (Proposition 3.6.3).

Proposition 4.7.1. There is an isomorphism,

$$
\Phi: \operatorname{Spin}(N) \longrightarrow R T(\mathfrak{C})
$$

defined by ,

$$
\Phi\left(a_{1} \circ b_{1} \circ \ldots \circ a_{r} \circ b_{r}\right)=\left(s_{a_{1}} s_{b_{1}} \ldots s_{a_{r}} s_{b_{r}}, l_{a_{1}} l_{\overline{b_{1}}} \ldots l_{a_{r}} l_{\overline{b_{r}}}, r_{a_{1}} r_{\overline{b_{1}}} \ldots r_{a_{r}} r_{\overline{b_{r}}}\right),
$$

where $a_{i}, b_{i} \in \mathfrak{C}, \prod_{i} N\left(a_{i}\right) N\left(b_{i}\right)=1,\left(N\right.$ being the norm on the octonion algebra), s_{v} is the reflection in the hyperplane orthogonal to $v \in \mathfrak{C}$, l_{v} and r_{v} are the left and right homotheties on \mathfrak{C} respectively.

Remark: Henceforth in the subsequent discussion we shall identify the groups $\operatorname{Spin}(N)$ and $R T(\mathfrak{C})$ via the above isomorphism. We note that a related triple $t=$ $\left(t_{1}, t_{2}, t_{3}\right) \in R T(\mathfrak{C})$ acts on an element of A as

$$
t\left[\begin{array}{ccc}
\alpha_{1} & c_{3} & \overline{c_{2}} \\
\overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \overline{c_{1}} & \alpha_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} & t_{1}\left(c_{3}\right) & t_{2}\left(\overline{c_{2}}\right) \\
\overline{t_{1}\left(c_{3}\right)} & \alpha_{2} & t_{3}\left(c_{1}\right) \\
\overline{t_{2}\left(\overline{c_{2}}\right)} & \overline{t_{3}\left(c_{1}\right)} & \alpha_{3}
\end{array}\right]
$$

(refer to $[\mathbf{J}], \S 6$).
Consider the following automorphisms of $R T(\mathfrak{C})$:

$$
\begin{align*}
& \tau_{1}:\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(\hat{t_{1}}, \hat{t_{3}}, \hat{t_{2}}\right), \\
& \tau_{2}:\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(t_{3}, \hat{t_{2}}, t_{1}\right), \tag{4.7.1}\\
& \tau_{3}:\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(t_{2}, t_{1}, \hat{t_{3}}\right),
\end{align*}
$$

where $\hat{t}(x)=\overline{t(\bar{x})}$, for $t \in S O(N)$ and $x \in \mathfrak{C}$. We note the following result from [SV] (Proposition 3.6.4).

Proposition 4.7.2. τ_{2} and τ_{3} generate a group of automorphisms of $R T(\mathfrak{C})$ isomorphic to S_{3} and the non trivial elements of this group are outer automorphisms.

Lemma 4.7.3. Let T be a maximal torus in $S O(N)$. Then

$$
\widetilde{T}:=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in T^{3} \mid\left(t_{1}, t_{2}, t_{3}\right) \text { is a related triple }\right\}
$$

is a maximal torus in $\operatorname{Spin}(N)$.
Proof. If we take $t_{1} \in T$, then the fiber of t_{1} in a maximal torus \widetilde{T} of $\operatorname{Spin}(N)$ consists of $\left(t_{1}, t_{2}, t_{3}\right)$ and $\left(t_{1},-t_{2},-t_{3}\right)$, such that $\left(t_{1}, t_{2}, t_{3}\right)$ is a related triple. Since the Weyl group acts on the maximal torus, $\tau_{3}\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{2}, t_{1}, \hat{t_{3}}\right) \in \widetilde{T}$, which when projected onto $S O(N)$ via the two sheeted covering map, we gives $t_{2} \in T$. Similarly by considering the automorphism τ_{2} we can conclude $t_{3} \in T$. Hence the proof.

Lemma 4.7.4. For a maximal torus $\widetilde{T} \subset F_{4}, A^{\widetilde{T}} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Here $A^{\widetilde{T}}$ denotes the subalgebra of A, fixed point wise by \widetilde{T}.

Proof. Let T be the diagonal maximal torus of $S O(N)$. If \widetilde{T}_{1} and \widetilde{T}_{2} be two maximal tori in F_{4}, then $A^{\widetilde{T}_{1}} \cong A^{\widetilde{T}_{2}}$ since \widetilde{T}_{1} and \widetilde{T}_{2} are conjugate. So we can assume without loss of generality that, $\widetilde{T} \subset \operatorname{Spin}(N)$ and hence by Lemma 4.7.3, $\widetilde{T}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \operatorname{Spin}(N) \mid t_{i} \in T \subset S O(N)\right\}$. Now suppose that

$$
t\left[\begin{array}{lll}
\alpha_{1} & c_{3} & \overline{c_{2}} \\
\overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \overline{c_{1}} & \alpha_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} & t_{1}\left(c_{3}\right) & t_{2}\left(\overline{c_{2}}\right) \\
\overline{t_{1}\left(c_{3}\right)} & \alpha_{2} & t_{3}\left(c_{1}\right) \\
\overline{t_{2}\left(\overline{c_{2}}\right)} & \overline{t_{3}\left(c_{1}\right)} & \alpha_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} & c_{3} & \overline{c_{2}} \\
\overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \overline{c_{1}} & \alpha_{3}
\end{array}\right]
$$

holds for all $t \in \widetilde{T}$. This means that $t_{1}\left(c_{3}\right)=c_{3}$ for all $t_{1} \in T$. Note that t_{1} is a block diagonal matrix consisting of 2×2 rotation matrices along the diagonal. Let if possible $c_{3} \neq 0$. We can assume without loss of generality that at least one of the first two coordinates of c_{3} (say x_{1}, x_{2}) with respect to the basis \mathfrak{B} of \mathfrak{C}, is non zero.

Now if we take the first 2×2 diagonal block of t_{1} as

$$
\left[\begin{array}{cc}
\cos 2 \theta_{1} & -\sin 2 \theta_{1} \\
\sin 2 \theta_{1} & \cos 2 \theta_{1}
\end{array}\right]
$$

then $t_{1}\left(c_{3}\right)=c_{3}$ implies that

$$
\left[\begin{array}{cc}
\cos 2 \theta_{1} & -\sin 2 \theta_{1} \\
\sin 2 \theta_{1} & \cos 2 \theta_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

which forces $\cos 2 \theta_{1}=1$. But we can choose a t_{1} with $\theta_{1} \neq 0$, for which $\cos 2 \theta_{1} \neq 1$. Hence $c_{3}=0$. By similar arguments we can say the same for c_{1} and c_{2}. Hence the proof.

Lemma 4.7.5. The Weyl group of F_{4} is $W \operatorname{Spin}(N) \rtimes S_{3}, W \operatorname{Spin}(N)$ being the Weyl group of $\operatorname{Spin}(N)$.

Proof. Let us denote the group F_{4} by G. Consider the \mathbb{R}-subalgebra $S=$ $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \subset A$ and define,

$$
\begin{gathered}
\operatorname{Aut}(A / S):=\{\phi \in \operatorname{Aut}(A): \phi(s)=s, \forall s \in S\} \\
\operatorname{Aut}(A, S):=\{\phi \in \operatorname{Aut}(A): \phi(S)=S\}
\end{gathered}
$$

Then $\operatorname{Aut}(A, S) \cong \operatorname{Aut}(A / S) \rtimes \operatorname{Aut}(S)([\mathbf{J}]$, Theorem 8). We have $\operatorname{Aut}(A / S)=$ $\operatorname{Spin}(N)$ and $\operatorname{Aut}(S)=S_{3}$ and therefore, $\operatorname{Aut}(A, S)=\operatorname{Spin}(N) \rtimes S_{3}$.

First let us fix a maximal torus $T \subset G$. Then $A^{T} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ (by Lemma 4.7.4). Let $\phi \in N_{G}(T)$. Then $\phi \in \operatorname{Aut}\left(A, A^{T}\right)$, since, for $s \in A^{T}$ and for any $t \in T$ we have $t(\phi(s))=(t \phi)(s)=\phi\left(\phi^{-1} t \phi\right)(s)=\phi(s)\left(\right.$ as $\phi^{-1} t \phi \in T$ and $\left.s \in A^{T}\right)$. Hence
$\phi(s) \in A^{T}$. Therefore we have shown that $N_{G}(T) \subset \operatorname{Aut}\left(A, A^{T}\right)=\operatorname{Spin}(N) \rtimes S_{3}$. Thus $N_{G}(T) \subset N_{\operatorname{Spin}(N)}(T) \rtimes S_{3}$, which implies that $W G=N_{G}(T) / T \subset W \operatorname{Spin}(N) \rtimes S_{3}$. Both the groups being finite and of the same order, are therefore equal.

Remark: Note that, the S_{3} factor arising in the Weyl group of F_{4} is the group of outer automorphisms of $\operatorname{Spin}(N)$ and its action on the maximal torus is given by $\tau_{1}, \tau_{2}, \tau_{3} \in \operatorname{Aut}(R T(\mathfrak{C}))$ (refer to the remark preceding Proposition 4.7.2).

Computation of the genus number for F_{4} :

Let us denote the maximal torus in F_{4} by \widetilde{T} and the Weyl group by W. We work with the chosen orthogonal basis $\mathfrak{B}=\left\{v_{1}, \ldots, v_{8}\right\}$ of \mathfrak{C}, such that, $v_{1}=1, v_{6}=v_{2} v_{5}$, $v_{7}=v_{3} v_{5}$ and $v_{i}^{2}=-1,1 \leq i \leq 8$. Let $T \subset S O(N)$ be the diagonal maximal torus and without loss of generality we can assume $\widetilde{T} \subset \operatorname{Spin}(N)$. If $t=\left(t_{1}, t_{2}, t_{3}\right) \in \widetilde{T}$, with $t_{1}=\left(\theta_{1} / \pi, \theta_{2} / \pi, \theta_{3} / \pi, \theta_{4} / \pi\right), \theta_{i} / 2 \pi \in \mathbb{R} / \mathbb{Z}$, we wish to compute t_{2} and t_{3} in terms of the $\theta_{i} \mathrm{~s}$.

First note that for $t=\left(\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right) \in T, \hat{t}=\left(-\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right)$. This is evident from the following calculation: Let $x=\left(x_{1}, \ldots, x_{8}\right) \in \mathfrak{C}, x_{i} \in \mathbb{R}$. Then $\bar{x}=\left(x_{1},-x_{2}, \ldots,-x_{8}\right)$ (considered as a column vector). By definition, $\hat{t}(x)=\overline{t(\bar{x})}$. Now, $t=\left(\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right)$ is an 8×8 block diagonal matrix with the i-th diagonal block being:

$$
\left[\begin{array}{cc}
\cos 2 \gamma_{i} & -\sin 2 \gamma_{i} \\
\sin 2 \gamma_{i} & \cos 2 \gamma_{i}
\end{array}\right] .
$$

Let $s=\left(-\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right) \in \widetilde{T}$. Then, a direct computation shows that,

$$
\hat{t}(x)=\overline{t(\bar{x})}=\left[\begin{array}{c}
\cos 2 \gamma_{1} x_{1}+\sin 2 \gamma_{1} x_{2} \\
-\sin 2 \gamma_{1} x_{1}+\cos 2 \gamma_{1} x_{2} \\
\cos 2 \gamma_{2} x_{3}-\sin 2 \gamma_{2} x_{4} \\
\sin 2 \gamma_{2} x_{3}+\cos 2 \gamma_{2} x_{4} \\
\cos 2 \gamma_{3} x_{5}-\sin 2 \gamma_{3} x_{6} \\
\sin 2 \gamma_{3} x_{5}+\cos 2 \gamma_{3} x_{6} \\
\cos 2 \gamma_{4} x_{7}-\sin 2 \gamma_{4} x_{8} \\
\sin 2 \gamma_{4} x_{7}+\cos 2 \gamma_{4} x_{8}
\end{array}\right]=s(x)
$$

Therefore,

$$
\begin{equation*}
\hat{t}=\left(-\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right) . \tag{4.7.2}
\end{equation*}
$$

If $t_{1}=\left(\theta_{1} / \pi, 0,0,0\right)$ then a direct computation gives $t_{1}=s_{a} s_{b}$, with $a=\sin \theta_{1} v_{1}-$ $\cos \theta_{1} v_{2}$ and $b=v_{2}$. We now calculate t_{2} and t_{3}. Recall that t_{1} in matrix notation is an 8×8 matrix consisting of four 2×2 identity diagonal blocks, the first block being

$$
\left[\begin{array}{cc}
\cos 2 \theta_{1} & -\sin 2 \theta_{1} \\
\sin 2 \theta_{1} & \cos 2 \theta_{1}
\end{array}\right]
$$

and 2×2 identity blocks in the next three diagonal positions. So in order to calculate t_{2} and t_{3} we just evaluate these on the basis vectors, look at the matrices and get the parameters. We have,

$$
\begin{aligned}
& l_{a} l_{\bar{b}}\left(v_{1}\right)=a \bar{b}=\left(\sin \theta_{1} v_{1}-\cos \theta_{1} v_{2}\right)\left(-v_{2}\right)=-\cos \theta_{1} v_{1}-\sin \theta_{1} v_{2} \\
& l_{a} l_{\bar{b}}\left(v_{2}\right)=a\left(\bar{b} v_{2}\right)=-a\left(v_{2}^{2}\right)=\sin \theta_{1} v_{1}-\cos \theta_{1} v_{2} \\
& l_{a} l_{\bar{b}}\left(v_{3}\right)=a\left(\overline{v_{2}} v_{3}\right)=-a v_{4}=-\cos \theta_{1} v_{3}-\sin \theta_{1} v_{4} \\
& l_{a} l_{\bar{b}}\left(v_{4}\right)=-a\left(v_{2} v_{4}\right)=a v_{3}=\sin \theta_{1} v_{3}-\cos \theta_{1} v_{4} \\
& l_{a} l_{\bar{b}}\left(v_{5}\right)=-a\left(v_{2} v_{5}\right)=a v_{6}=-\cos \theta_{1} v_{5}-\sin \theta_{1} v_{6} \\
& l_{a} l_{\bar{b}}\left(v_{6}\right)=-a\left(v_{2} v_{6}\right)=a v_{5}=\sin \theta_{1} v_{5}-\cos \theta_{1} v_{6} \\
& l_{a} l_{\bar{b}}\left(v_{7}\right)=-a\left(v_{2} v_{7}\right)=a v_{8}=-\cos \theta_{1} v_{7}+\sin \theta_{1} v_{8} \\
& l_{a} l_{\bar{b}}\left(v_{8}\right)=-a\left(v_{2} v_{8}\right)=-a\left(v_{7}\right)=-\sin \theta_{1} v_{7}-\cos \theta_{1} v_{8} .
\end{aligned}
$$

This gives us t_{2}. Next we compute t_{3} as:

$$
\begin{aligned}
& r_{a} r_{\bar{b}}\left(v_{1}\right)=-v_{2} a=-\cos \theta_{1} v_{1}-\sin \theta_{1} v_{2} \\
& r_{a} r_{\bar{b}}\left(v_{2}\right)=-v_{2}^{2} a=\sin \theta_{1} v_{1}-\cos \theta_{1} v_{2} \\
& r_{a} r_{\bar{b}}\left(v_{3}\right)=-\left(v_{3} v_{2}\right) a=v_{4} a=-\cos \theta_{1} v_{3}+\sin \theta_{1} v_{4} \\
& r_{a} r_{\bar{b}}\left(v_{4}\right)=-\left(v_{4} v_{2}\right) a=-v_{3} a=-\sin \theta_{1} v_{3}-\cos \theta_{1} v_{4} \\
& r_{a} r_{\bar{b}}\left(v_{5}\right)=-\left(v_{5} v_{2}\right) a=v_{6} a=-\cos \theta_{1} v_{5}+\sin \theta_{1} v_{6} \\
& r_{a} r_{\bar{b}}\left(v_{6}\right)=-\left(v_{6} v_{2}\right) a=-v_{5} a=-\sin \theta_{1} v_{5}-\cos \theta_{1} v_{6} \\
& r_{a} r_{\bar{b}}\left(v_{7}\right)=-\left(v_{7} v_{2}\right) a-v_{8} a=-\cos \theta_{1} v_{7}-\sin \theta_{1} v_{8} \\
& r_{a} r_{\bar{b}}\left(v_{8}\right)=-\left(v_{8} v_{2}\right) a=v_{7} a=\sin \theta_{1} v_{7}-\cos \theta_{1} v_{8}
\end{aligned}
$$

So t_{1}, t_{2}, t_{3} in their possible parametric forms are given as follows:

$$
\begin{aligned}
& t_{1}=\left(\theta_{1} / \pi, 0,0,0\right) \\
& t_{2}=\left(\left(\pi+\theta_{1}\right) / 2 \pi,\left(\pi+\theta_{1}\right) / 2 \pi,\left(\pi+\theta_{1}\right) / 2 \pi,-\left(\pi+\theta_{1}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(\pi+\theta_{1}\right) / 2 \pi,-\left(\pi+\theta_{1}\right) / 2 \pi,-\left(\pi+\theta_{1}\right) / 2 \pi,\left(\pi+\theta_{1}\right) / 2 \pi\right) \\
& t_{1}=\left(0, \theta_{2} / \pi, 0,0\right) \\
& t_{2}=\left(\left(\pi+\theta_{2}\right) / 2 \pi,\left(\pi+\theta_{2}\right) / 2 \pi,-\left(\pi+\theta_{2}\right) / 2 \pi,\left(\pi+\theta_{2}\right) / 2 \pi\right) \\
& t_{3}=\left(-\left(\pi+\theta_{2}\right) / 2 \pi,\left(\pi+\theta_{2}\right) / 2 \pi,-\left(\pi+\theta_{2}\right) / 2 \pi,\left(\pi+\theta_{2}\right) / 2 \pi\right) \\
& t_{1}=\left(0,0, \theta_{3} / \pi, 0\right) \\
& t_{2}=\left(\left(\pi+\theta_{3}\right) / 2 \pi,-\left(\pi+\theta_{3}\right) / 2 \pi,\left(\pi+\theta_{3}\right) / 2 \pi,\left(\pi+\theta_{3}\right) / 2 \pi\right) \\
& t_{3}=\left(-\left(\pi+\theta_{3}\right) / 2 \pi,-\left(\pi+\theta_{3}\right) / 2 \pi,\left(\pi+\theta_{3}\right) / 2 \pi,\left(\pi+\theta_{3}\right) / 2 \pi\right) \\
& t_{1}=\left(0,0,0, \theta_{4} / \pi\right) \\
& t_{2}=\left(-\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi,\left(\pi+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

Therefore in general we have,

$$
\begin{aligned}
t_{1}= & \left(\theta_{1} / \pi, \theta_{2} / \pi, \theta_{3} / \pi, \theta_{4} / \pi\right) \\
t_{2}= & \left(\left(\theta_{1}+\theta_{2}+\theta_{3}-\theta_{4}\right) / 2 \pi,\left(\theta_{1}+\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\right. \\
& \left.\quad\left(\theta_{1}-\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi,\left(-\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi\right) \\
t_{3}= & \left(\left(\theta_{1}-\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(-\theta_{1}+\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\right. \\
& \left.\quad\left(-\theta_{1}-\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

We record the above set of equations as $(*)$. These parameters are written modulo \mathbb{Z}. Now we analyse all the possibilities for θ_{i}^{\prime} s to compute the non conjugate isotropy classes.
Case1:(At least one θ_{i} is 0 or $1 / 2$)
(a) If $\theta_{i}=0 \quad \forall i$, then by $(*), t_{1}=t_{2}=t_{3}=(0,0,0,0)$ and hence $W_{t}=W$.
(b) If $\theta_{i} / \pi=1 / 2 \quad \forall i$, then by $(*)$, we have,
$t_{1}=t_{2}=(1 / 2,1 / 2,1 / 2,1 / 2)$ and $t_{3}=(0,0,0,0)$. Note that only τ_{3} from $S_{3}=$ $\operatorname{Out}(\operatorname{Spin}(N))$ occurs in the stabilizer since it leaves t stable and any other element from S_{3} brings t_{3} in the first place from which we cannot get back t_{1} by the action of any element from $W \operatorname{Spin}(N)$ (see 4.7.1, 4.7.2). Thus $W_{t}=\left((\mathbb{Z} / 2)^{3} \rtimes S_{4}\right) \rtimes\left\{1, \tau_{3}\right\}$.
(c) If $t_{1}=(0,0,0,1 / 2)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(-1 / 4,1 / 4,1 / 4,1 / 4) \\
& t_{3}=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Note here that $\tau_{1}(t)=t$ and hence $\tau_{1} \in W_{t}$ and no other element from S_{3} can occur because t_{1} has 0 's as parameters but t_{2}, t_{3} do not (see 4.7.1, 4.7.2). Hence $W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right) \rtimes\left\{1, \tau_{1}\right\}$.
(d) If $t_{1}=(1 / 2,1 / 2,1 / 2,0)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(3 / 4,1 / 4,1 / 4,1 / 4) \\
& t_{3}=(3 / 4,3 / 4,3 / 4,1 / 4)
\end{aligned}
$$

Here $W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right)$, because any element from $\operatorname{Out}(\operatorname{Spin}(N))$ will alter t_{2}, t_{3} and as a result we cannot get back t by a subsequent action of $W \operatorname{Spin}(N)$ (see 4.7.1, 4.7.2).
(e) If $t_{1}=(0,0,1 / 2,1 / 2)$ then by $(*), t_{1}=t_{2}=t_{3}$ and the isotropy is $\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times\right.$ $\left.(\mathbb{Z} / 2)) \rtimes S_{2}\right) \rtimes S_{3}$.
(f) If $t_{1}=\left(0,0,0, \theta_{4} / \pi\right)$ with $\theta_{4} / \pi \neq 0,1 / 2$ then by $(*)$,

$$
\begin{gathered}
t_{2}=\left(-\theta_{4} / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi\right) \\
t_{3}=\left(\theta_{4} / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi\right) .
\end{gathered}
$$

In this case apart from τ_{1} no other element from S_{3} can contribute to the isotropy since t_{1} contains 0 and t_{2}, t_{3} do not (see 4.7.1. 4.7.2). So $W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right) \rtimes\left\{1, \tau_{1}\right\}$, being same as case (c).
(g) If $t_{1}=\left(1 / 2,1 / 2,1 / 2, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(3 / 4-\theta_{4} / 2 \pi, 1 / 4+\theta_{4} / 2 \pi, 1 / 4+\theta_{4} / 2 \pi, 1 / 4+\theta_{4} / 2 \pi\right) \\
& t_{3}=\left(-1 / 4+\theta_{4} / 2 \pi,-1 / 4+\theta_{4} / 2 \pi,-1 / 4+\theta_{4} / 2 \pi, 3 / 4+\theta_{4} / 2 \pi\right)
\end{aligned}
$$

Here, just as in (d), we have $W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right) \subset \operatorname{Spin}(N)$.
(h) If $t_{1}=(0,0, \theta / \pi, \theta / \pi)$, then by $(*), t_{1}=t_{2}=t_{3}$.

Clearly here, the whole of S_{3} leaves t stable (by 4.7.1, 4.7.2) and hence $W_{t}=$ $\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times S_{2}\right) \rtimes S_{3}$.
(i) If $t_{1}=(1 / 2,1 / 2, \theta / \pi, \theta / \pi)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(1 / 2,1 / 2, \theta / \pi, \theta / \pi) \\
& t_{3}=(0,0,1 / 2+\theta / \pi, 1 / 2+\theta / \pi)
\end{aligned}
$$

Now $\left(t_{1}, t_{2}, t_{3}\right)=\tau_{2}\left(s_{1}, s_{2}, s_{3}\right)=\left(s_{3}, \hat{s_{2}}, s_{1}\right),($ by 4.7.2 $)$ where,

$$
\begin{aligned}
& s_{1}=(0,0,1 / 2+\theta / \pi, 1 / 2+\theta / \pi) \\
& s_{2}=(1 / 2,1 / 2, \theta / \pi, \theta / \pi) \\
& s_{3}=(1 / 2,1 / 2, \theta / \pi, \theta / \pi)
\end{aligned}
$$

If $s=\left(s_{1}, s_{2}, s_{3}\right), W_{t}$ is conjugate to W_{s} in W. Since any element of S_{3} other than τ_{1} removes s_{1} from the first position, τ_{1} is the only element from S_{3} which contributes to the isotropy of s (see 4.7.1) Hence $W_{s}=\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times S_{2}\right) \rtimes\left\{1, \tau_{1}\right\}$.
(j) If $t_{1}=(0, \theta / \pi, \theta / \pi, \theta / \pi)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(\theta / 2 \pi, \theta / 2 \pi, \theta / 2 \pi, 3 \theta / 2 \pi) \\
& t_{3}=(-\theta / 2 \pi, \theta / 2 \pi, \theta / 2 \pi, 3 \theta / 2 \pi)
\end{aligned}
$$

Here $\tau_{1}(t)=t$ and no other element from $S_{3}=\operatorname{Out}(\operatorname{Spin}(N))$ can contribute to the isotropy, since t_{1} has a 0 and $\hat{t_{2}}=t_{3}$ (4.7.1. 4.7.2). Thus $W_{t}=S_{3} \rtimes\left\{1, \tau_{1}\right\}$. (\mathbf{k}) If $t_{1}=(1 / 2, \theta / \pi, \theta / \pi, \theta / \pi)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(1 / 4+\theta / 2 \pi, 1 / 4+\theta / 2 \pi, 1 / 4+\theta / 2 \pi,-1 / 4+3 \theta / 2 \pi) \\
& t_{3}=(1 / 4-\theta / 2 \pi,-1 / 4+\theta / 2 \pi,-1 / 4+\theta / 2 \pi, 1 / 4+3 \theta / 2 \pi)
\end{aligned}
$$

Here, $\theta / \pi \neq 0,1 / 2$. Therefore t_{2}, t_{3} does not contain 0 or $1 / 2$ as parameters. Hence, $\tau_{2}, \tau_{3} \in S_{3}$ does not contribute to the isotropy. As $t_{2} \neq \hat{t_{3}}, \tau_{1} \in S_{3}$ cannot belong to the isotropy (see 4.7.1, 4.7.2). Therefore, $W_{t}=S_{3} \subset W \operatorname{Spin}(N)$.
(l) If $t_{1}=\left(0,0, \theta_{3} / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(\left(\theta_{3}-\theta_{4}\right) / 2 \pi,\left(-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

We assume here $\theta_{3} / \pi \neq \theta_{4} / \pi$ modulo \mathbb{Z}. Therefore 0 does not occur in t_{2} and t_{3}, so the only non trivial element from S_{3} which lies in the isotropy is τ_{1} (see 4.7.1, 4.7.2). Thus, $W_{t}=\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \rtimes\left\{1, \tau_{1}\right\}$
(m) If $t_{1}=\left(1 / 2,1 / 2, \theta_{3} / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(1 / 2+\left(\theta_{3}-\theta_{4}\right) / 2 \pi, 1 / 2+\left(\theta_{4}-\theta_{3}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(\theta_{4}-\theta_{3}\right) / 2 \pi,\left(\theta_{4}-\theta_{3}\right) / 2 \pi, 1 / 2+\left(\theta_{3}+\theta_{4}\right) / 2 \pi, 1 / 2+\left(\theta_{3}+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

Here $\hat{t_{3}} \neq t_{2}$ and $\hat{t_{2}} \neq t_{3}$ and t_{1}, contains $1 / 2$ as a parameter. So $S_{3}=\operatorname{Out}(\operatorname{Spin}(N))$ does not contribute to the isotropy (see 4.7.1, 4.7.2). Hence $W_{t}=\mathbb{Z} / 2 \rtimes S(2)$.
(n) If $t_{1}=\left(0, \theta / \pi, \theta / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(\left(2 \theta-\theta_{4}\right) / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi,\left(2 \theta+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(-2 \theta+\theta_{4}\right) / 2 \pi, \theta_{4} / 2 \pi, \theta_{4} / 2 \pi,\left(2 \theta+\theta_{4}\right) / 2 \pi\right) .
\end{aligned}
$$

We have $W_{t}=S_{2} \rtimes\left\{1, \tau_{1}\right\}$ in this case, because again $\hat{t_{2}}=t_{3}$ and $\hat{t_{3}}=t_{2}$. And if $\theta / \pi=\theta_{4} / 2 \pi$, we have by $(*), t_{1}=t_{2}=t_{3}$ and $W_{t}=S_{2} \rtimes S_{3}$ (see 4.7.1, 4.7.2).
(o) If $t_{1}=\left(1 / 2, \theta / \pi, \theta / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(1 / 4+\left(2 \theta-\theta_{4}\right) / 2 \pi, 1 / 4+\theta_{4} / 2 \pi, 1 / 4+\theta_{4} / 2 \pi,-1 / 4+\left(2 \theta+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(1 / 4+\left(-2 \theta+\theta_{4}\right) / 2 \pi,-1 / 4+\theta_{4} / 2 \pi,-1 / 4+\theta_{4} / 2 \pi, 1 / 4+\left(2 \theta+\theta_{4}\right) / 2 \pi\right) .
\end{aligned}
$$

Here $W_{t}=S_{2} \subset W \operatorname{Spin}(N)$ because no element from S_{3} can contribute to the isotropy of this element, as we have taken $\theta / \pi \neq \theta_{4} / \pi$ and hence $1 / 2$ does not occur in t_{2} and t_{3} (see 4.7.1, 4.7.2).
(p) If $t_{1}=\left(0, \theta_{2} / \pi, \theta_{3} / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(\left(\theta_{2}+\theta_{3}-\theta_{4}\right) / 2 \pi,\left(\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(-\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(-\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{2}-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(-\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{2}+\theta_{3}+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

If none of the coordinates in t_{2}, t_{3} are $0,1 / 2$ then $W_{t}=\left\{1, \tau_{1}\right\}$, otherwise the only non trivial possibility is $W_{t}=S_{3} \subset W \operatorname{Spin}(N)$, which occurs if $\left(\theta_{2}+\theta_{3}\right) / \pi=\theta_{4} / \pi$, in which case $t_{1}=t_{2}=t_{3}$ holds by $(*)$ (refer to 4.7.1, 4.7.2).
Case 2:(no θ_{i} in t_{1} are $0,1 / 2$) Here, however the isotropy subgroups for various possibilities for θ_{i} are conjugate to certain subgroups already occurring in Case 1, except the situation when all $\theta_{i}^{\prime} \mathrm{s}$ are distinct, which yields the trivial isotropy subgroup.
(a) If $t_{1}=(\theta / \pi, \theta / \pi, \theta / \pi, \theta / \pi)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=(\theta / \pi, \theta / \pi, \theta / \pi, \theta / \pi) \\
& t_{3}=(0,0,0,2 \theta / \pi)
\end{aligned}
$$

Then clearly $W_{t}=S_{4} \rtimes\left\{1, \tau_{3}\right\}$ since τ_{3} contributes to the isotropy from S_{3} (see 4.7.1, 4.7.2) and this isotropy is conjugate to that in case 1 (c).
(b) If $t_{1}=\left(\theta_{1} / \pi \cdot \theta_{1} / \pi, \theta_{2} / \pi, \theta_{2} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(\theta_{1} / \pi \cdot \theta_{1} / \pi, \theta_{2} / \pi, \theta_{2} / \pi\right) \\
& t_{3}=\left(0,0,\left(\theta_{2}-\theta_{1}\right) / \pi,\left(\theta_{1}+\theta_{2}\right) / \pi\right)
\end{aligned}
$$

Note that, $\left(t_{1}, t_{2}, t_{3}\right)=\tau_{2}\left(s_{1}, s_{2}, s_{3}\right)$, where,

$$
\begin{aligned}
& s_{1}=\left(0,0,\left(\theta_{2}-\theta_{1}\right) / \pi,\left(\theta_{1}+\theta_{2}\right) / \pi\right) \\
& s_{2}=\left(-\theta_{1} / \pi \cdot \theta_{1} / \pi, \theta_{2} / \pi, \theta_{2} / \pi\right) \\
& s_{3}=\left(\theta_{1} / \pi, \theta_{1} / \pi, \theta_{2} / \pi, \theta_{2} / \pi\right)
\end{aligned}
$$

which case has already been considered before (case 1(l)).
(c) If
$t_{1}=\left(\theta_{1} / \pi, \theta_{1} / \pi, \theta_{3} / \pi, \theta_{4} / \pi\right)$, then by $(*)$,

$$
\begin{aligned}
& t_{2}=\left(\left(2 \theta_{1}+\theta_{3}-\theta_{4}\right) / 2 \pi,\left(2 \theta_{1}-\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi,\left(\theta_{3}+\theta_{4}\right) / 2 \pi\right) \\
& t_{3}=\left(\left(\theta_{4}-\theta_{3}\right) / 2 \pi,\left(\theta_{4}-\theta_{3}\right) / 2 \pi,\left(-2 \theta_{1}+\theta_{3}+\theta_{4}\right) / 2 \pi,\left(2 \theta_{1}+\theta_{3}+\theta_{4}\right) / 2 \pi\right)
\end{aligned}
$$

If $\theta_{1} / \pi \neq\left(\theta_{3}+\theta_{4}\right) / 2 \pi$ or $\theta_{1} / \pi \neq\left(\theta_{4}-\theta_{3}\right) / 2 \pi$ modulo \mathbb{Z}, then $W_{t}=S_{2}$ (which has already occurred in case (o) of case 1). If θ_{1} / π is equal to any one of the above two elements (modulo \mathbb{Z}) then t_{2} or t_{3} has 0 as one of it's co-ordinates. Accordingly t_{2} or t_{3} can be brought to the first position of the related triple (see 4.7.1). Note that for all related triples $\left(t_{1}, t_{2}, t_{3}\right)$ such that t_{1} has at least one 0 as a parameter, the isotropy subgroups have been computed in Case 1. Hence, this does not give us any new isotropy subgroup.

Now we consider $\left(t_{1}, t_{2}, t_{3}\right)$ such that t_{i} has all the parameters distinct and not equal to zero. For this situation we record the following lemmas.

Lemma 4.7.6. If $t_{i} \in S O(N)$ does not have any of the parameters equal to zero, then $\mathfrak{C}^{t_{i}}=\{0\}$.

Proof. Let $x \in \mathfrak{C}^{t_{i}}$ with $x \neq 0$ for some i. Without loss of generality we can assume that $x_{1} \neq 0$, where x_{1} denotes the first coordinate of x with respect to the chosen basis $\mathfrak{B}=\left\{v_{1}, \ldots, v_{8}\right\}$. Hence the first 2×2 block

$$
\left[\begin{array}{cc}
\cos 2 \theta_{1} & -\sin 2 \theta_{1} \\
\sin 2 \theta_{1} & \cos 2 \theta_{1}
\end{array}\right]
$$

of t_{1} has a non zero eigenvector $\left(x_{1}, x_{2}\right)$ which implies that $\theta_{1} / \pi=0$, which is a contradiction to the assumption that no parameter of t_{i} is 0 .

An element x in a connected group G is called strongly regular if $Z_{G}(t)=T$.
Lemma 4.7.7. If $t_{1} \in S O(N)$ be strongly regular then $\left(t_{1}, t_{2}, t_{3}\right)$ is strongly regular in $\operatorname{Spin}(N)$.

Proof. Let $t_{1} \in S O(N)$ be strongly regular and $T \subset S O(N)$ be the maximal torus containing t_{1}. Then $Z_{S O(N)}\left(t_{1}\right)=T$. Let $s=\left(s_{1}, s_{2}, s_{3}\right) \in \operatorname{Spin}(N)$ and $s t=t s$. Therefore,
$s_{1} t_{1}=t_{1} s_{1} \Rightarrow s_{1} \in T \Rightarrow s_{2}, s_{3} \in T \Rightarrow\left(s_{1}, s_{2}, s_{3}\right) \in \widetilde{T}$ (by Lemma 4.7.3) \Rightarrow $Z_{\operatorname{Spin}(N)}(t)=\widetilde{T}$. Hence $\left(t_{1}, t_{2}, t_{3}\right)$ is strongly regular in $\operatorname{Spin}(N)$.

Theorem 4.7.8. If t_{i} does not have any parameter equal to 0 , and all parameters in t_{i} are distinct, $1 \leq i \leq 3$, then $\left(t_{1}, t_{2}, t_{3}\right)$ is strongly regular in F_{4} and hence $W_{t}=\{1\}$.

Proof. Since t_{i} does not have 0 for all i, by Lemma 4.7.6, $\mathfrak{C}^{t_{i}}=\{0\} \forall i$. Hence by this and the remark preceding Proposition $8.2, A^{t}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. So if $\phi \in Z_{F_{4}}(t)$, then $\phi(\mathbb{R} \times \mathbb{R} \times \mathbb{R})=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$
$\Rightarrow \phi \in \operatorname{Aut}(A, \mathbb{R} \times \mathbb{R} \times \mathbb{R}) \cong \operatorname{Spin}(N) \rtimes S_{3}($ by $[\mathbf{J}]$, Theorem 8.)
$\Rightarrow Z_{F_{4}}(t) \subset \operatorname{Spin}(N) \rtimes S_{3}$
$\Rightarrow Z_{F_{4}}(t) \subset \operatorname{Spin}(N)$ (since F_{4} is simply connected, $Z_{F_{4}}(t)$ is connected by Proposition 4.2.1).
$\Rightarrow Z_{F_{4}}(t) \subset Z_{\operatorname{Spin}(N)}(t)$.
Since all parameters of t_{1} are distinct and none of them is 0 , the isotropy subgroup of t_{1} in $W S O(N)$ is trivial. Note that $W S O(N)_{t_{1}}=Z_{S O(N)}\left(t_{1}\right) / T$, where T is the diagonal maximal torus in $S O(N)$. Therefore, $W S O(N)_{t_{1}}=\{1\} \Rightarrow Z_{S O(N)}\left(t_{1}\right)=T$, which means t_{1} is strongly regular in $S O(N)$. Hence by Lemma 4.7.7, $t=\left(t_{1}, t_{2}, t_{3}\right)$ is strongly regular in $\operatorname{Spin}(N)$. Therefore, $Z_{F_{4}}(t) \subset Z_{\operatorname{Sin}(N)}(t)=\widetilde{T}$. This is in fact an equality since, $\widetilde{T} \subset Z_{F_{4}}(t)$ for all $t \in \widetilde{T}$. Thus t is strongly regular in F_{4}.

We now proceed to calculate the semisimple genus number of a connected algebraic group of type F_{4} over an algebraically closed field k of characteristic different from 2 . Let \mathfrak{C} and \mathbb{H} be respectively the (split) octonion and quaternion algebras over k, i.e. $\mathfrak{C}:=\mathbb{H} \oplus \mathbb{H}$, where

$$
\mathbb{H}:=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in k\right\},
$$

under the usual matrix addition and multiplication with the norm $N: H \rightarrow k$, defined as $N(x)=\operatorname{det}(x)$, for $x \in \mathbb{H}$. The norm for \mathfrak{C} is given by $N((x, y))=\operatorname{det}(x)-\operatorname{det}(y)$, for $x, y \in \mathbb{H}$. The conjugation in \mathbb{H} is given by

$$
\overline{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

The multiplication and conjugation in \mathfrak{C} are as follows:

$$
\begin{aligned}
& (x, y)(u, v):=(x u+\bar{v} y, v x+y \bar{u}), \\
& \overline{(x, y)}:=(\bar{x},-y),
\end{aligned}
$$

where $x, y, u, v \in \mathbb{H}$.
We consider the following basis $\left\{v_{1}, \ldots, v_{8}\right\}$ of $\mathfrak{C}:-$

$$
\begin{gathered}
v_{1}=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], 0\right), v_{2}=\left(\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right], 0\right), v_{3}=\left(0,\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\right), v_{4}=\left(0,\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right), \\
v_{5}=\left(0,\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right), v_{6}=\left(0,\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right), v_{7}=\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], 0\right), v_{8}=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], 0\right) .
\end{gathered}
$$

The multiplication table for \mathfrak{C} with respect to this basis is:

\cdot	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
v_{1}	v_{1}	v_{2}	v_{3}	0	v_{5}	0	0	0
v_{2}	0	0	v_{4}	0	$-v_{6}$	0	$-v_{1}$	v_{2}
v_{3}	0	$-v_{4}$	0	0	v_{7}	$-v_{1}$	0	v_{3}
v_{4}	v_{4}	0	0	0	$-v_{8}$	$-v_{2}$	v_{3}	0
v_{5}	0	v_{6}	$-v_{7}$	$-v_{1}$	0	0	0	v_{5}
v_{6}	v_{6}	0	$-v_{8}$	v_{2}	0	0	$-v_{5}$	0
v_{7}	v_{7}	$-v_{8}$	0	$-v_{3}$	0	v_{5}	0	0
v_{8}	0	0	0	v_{4}	0	v_{6}	v_{7}	v_{8}

With respect to the above basis of \mathfrak{C} the matrix of the bilinear form for the norm N is

$$
\left[\begin{array}{lll}
& & 1 \\
& \ddots & \\
1 & &
\end{array}\right]
$$

and

$$
T:=\left\{\operatorname{diag}(a, b, c, d, 1 / d, 1 / c, 1 / b, 1 / a) \in S O(N) \mid a, b, c, d \in k^{*}\right\} \subset S O(N)
$$

is a maximal torus. With the notation used for compact F_{4}, any element of $\operatorname{Spin}(N)$ corresponds uniquely to $\left(t_{1}, t_{2}, t_{3}\right) \in S O(N)^{3}$ such that $t_{1}(x y)=t_{2}(x) t_{3}(y)$ for all $x, y \in \mathfrak{C}$.

Let $t_{1}=\operatorname{diag}(a, b, c, d, 1 / d, 1 / c, 1 / b, 1 / a) \in T$. We can write $t_{1}=s_{x_{1}} s_{y_{1}} \ldots s_{x_{4}} s_{y_{4}}$, where $s_{x_{i}}$ denotes the reflection in the hyperplane perpendicular to x_{i} and

$$
\begin{aligned}
& x_{1}=\sqrt{a} v_{1}+\sqrt{a}^{-1} v_{8}, y_{1}=v_{1}+v_{8}, x_{2}=\sqrt{b} v_{2}+\sqrt{b}^{-1} v_{7}, y_{2}=v_{2}+v_{7} \\
& x_{3}=\sqrt{c} v_{3}+\sqrt{c}^{-1} v_{6}, y_{3}=v_{3}+v_{6}, x_{4}=\sqrt{d} v_{4}+\sqrt{d}^{-1} v_{5}, y_{4}=v_{4}+v_{5} .
\end{aligned}
$$

Therefore, by Proposition 7.1, the corresponding t_{2}, t_{3} are given by $t_{2}=l_{x_{1}} l_{\overline{y_{1}}} \ldots l_{x_{4}} l_{\overline{y_{4}}}$ and
$t_{3}=r_{x_{1}} r_{\bar{y}_{1}} \ldots r_{x_{4}} r_{\overline{y_{4}}}$. So if we calculate t_{2} and t_{3} using these formulas and the above multiplication table we get (henceforth we shall denote an 8×8 diagonal matrix of the form $\operatorname{diag}(a, b, c, d, 1 / d, 1 / c, 1 / b, 1 / a)$ by $(a, b, c, d))$,

$$
\begin{aligned}
& t_{1}=(a, b, c, d) \\
& t_{2}=(\sqrt{a} \sqrt{b} \sqrt{c} / \sqrt{d}, \sqrt{a} \sqrt{b} \sqrt{d} / \sqrt{c}, \sqrt{a} \sqrt{c} \sqrt{d} / \sqrt{b}, \sqrt{b} \sqrt{c} \sqrt{d} / \sqrt{a}) \\
& t_{3}=(\sqrt{a} \sqrt{d} / \sqrt{b} \sqrt{c}, \sqrt{b} \sqrt{d} / \sqrt{a} \sqrt{c}, \sqrt{c} \sqrt{d} / \sqrt{a} \sqrt{b}, \sqrt{a} \sqrt{b} \sqrt{c} \sqrt{d})
\end{aligned}
$$

Let us denote the above equations by $(* *)$.
Now we can compute the isotropy classes in the Weyl group with respect to a maximal torus in F_{4}. Let T denote the diagonal maximal torus in $S O(N)$. Since any a maximal torus of F_{4} sits inside a copy of $\operatorname{Spin}(N) \subset F_{4}$, we may work with $\widetilde{T}:=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in T^{3} \mid t_{1}(x y)=t_{2}(x) t_{3}(y), \forall x, y \in T\right\} \subset R T(\mathfrak{C}) \cong \operatorname{Spin}(N)$.

With this we can compute the isotropy subgroups of the Weyl group (the action of the Weyl group on the torus had already been discussed before and we shall follow the same notations here). Recall that $W=\left((\mathbb{Z} / 2)^{3} \rtimes S_{4}\right) \rtimes S_{3}$ is the Weyl group of F_{4}. In all the following cases the arguments for W_{t} are exactly similar to the ones we had in the case for compact F_{4}, only the roles played by 0 and $1 / 2$ are replaced by 1 and -1 respectively. With each of the following possibilities we refer to the corresponding calculation done in the discussion on compact F_{4}. In what follows, we denote a fixed square root of -1 by i.

1. $t_{1}=(1,1,1,1)=t_{2}=t_{3}$. In this situation clearly $W_{t}=W$ (case $\left.1(\mathrm{a})\right)$.
2.

$$
\begin{aligned}
& t_{1}=t_{2}=(-1,-1,-1,-1) \\
& t_{3}=(1,1,1,1)
\end{aligned}
$$

$W_{t}=\left((\mathbb{Z} / 2)^{3} \rtimes S_{4}\right) \rtimes\left\{1, \tau_{3}\right\}($ case $1(\mathrm{~b}))$.
3.

$$
\begin{aligned}
t_{1} & =(1,1,1,-1) \\
t_{2} & =(-i, i, i, i) \\
t_{3} & =(i, i, i, i)
\end{aligned}
$$

$W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right) \rtimes\left\{1, \tau_{1}\right\}($ case $1(\mathrm{c}))$.
4.

$$
t_{1}=t_{2}=t_{3}=(1,1,-1,-1)
$$

Note that all elements of S_{3} fix this element t and hence we have $W_{t}=(((\mathbb{Z} / 2) \rtimes$ $\left.\left.S_{2}\right) \times\left((\mathbb{Z} / 2) \rtimes S_{2}\right)\right) \rtimes S_{3}($ case $1(\mathrm{e}))$.
5.

$$
\begin{aligned}
& t_{1}=(-1,-1,-1,1) \\
& t_{2}=(-i, i, i, i) \\
& t_{3}=(-i,-i,-i,-i)
\end{aligned}
$$

Clearly no element from S_{3} can belong to the isotropy, therefore $W_{t}=(\mathbb{Z} / 2)^{2} \rtimes S_{3}$. (case 1(d)).
6. $t_{1}=t_{2}=t_{3}=(1,1, c, c)$, where $c \neq 1,-1$. Since any S_{3} element leaves this fixed, we have $W_{t}=\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times S_{2}\right) \rtimes S_{3}($ case 1 (h) $)$.
7.

$$
\begin{aligned}
& t_{1}=t_{2}=(-1,-1, c, c) \\
& t_{3}=(1,1, c, c)
\end{aligned}
$$

Here we observe that only $\tau_{3} \in S_{3}$ can contribute to the isotropy. Hence $W_{t}=$ $\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times S_{2}\right) \rtimes\left\{1, \tau_{3}\right\}($ case $1(\mathrm{i}))$.
8.

$$
\begin{aligned}
& t_{1}=(1, b, b, b) \\
& t_{2}=(\sqrt{b}, \sqrt{b}, \sqrt{b}, b \sqrt{b}) \\
& t_{3}=(1 / \sqrt{b}, \sqrt{b}, \sqrt{b}, b \sqrt{b})
\end{aligned}
$$

For this $W_{t}=S_{3} \rtimes\left\{1, \tau_{1}\right\}($ case $1(\mathrm{j}))$.
9.

$$
\begin{aligned}
& t_{1}=(-1, b, b, b) \\
& t_{2}=(i \sqrt{b}, i \sqrt{b}, i \sqrt{b},-i b \sqrt{b}) \\
& t_{3}=(i / \sqrt{b},-i \sqrt{b},-i \sqrt{b}, i b \sqrt{b})
\end{aligned}
$$

where $b \neq 1,-1 . W_{t}=S_{3}($ case $1(\mathrm{k}))$.
10.

$$
\begin{aligned}
& t_{1}=(1,1, c, d) \\
& t_{2}=(\sqrt{c} / \sqrt{d}, \sqrt{d} / \sqrt{c}, \sqrt{c} \sqrt{d}, \sqrt{c} \sqrt{d}) \\
& t_{3}=(\sqrt{d} / \sqrt{c}, \sqrt{d} / \sqrt{c}, \sqrt{c} \sqrt{d}, \sqrt{c} \sqrt{d})
\end{aligned}
$$

$W_{t}=\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \rtimes\left\{1, \tau_{1}\right\}($ case $1(\mathrm{l}))$.
11.

$$
\begin{aligned}
& t_{1}=(-1,-1, c, d) \\
& t_{2}=(-\sqrt{c} / \sqrt{d},-\sqrt{d} / \sqrt{c}, \sqrt{c} \sqrt{d}, \sqrt{c} \sqrt{d}) \\
& t_{3}=(\sqrt{d} / \sqrt{c}, \sqrt{d} / \sqrt{c},-\sqrt{c} \sqrt{d},-\sqrt{c} \sqrt{d})
\end{aligned}
$$

$W_{t}=\mathbb{Z} / 2 \rtimes S_{2}($ case $1(\mathrm{~m}))$.
12.

$$
\begin{aligned}
& t_{1}=(1, b, b, d) \\
& t_{2}=(b / \sqrt{d}, \sqrt{d}, \sqrt{d}, b \sqrt{d}) \\
& t_{3}=(\sqrt{d} / b, \sqrt{d}, \sqrt{d}, b \sqrt{d})
\end{aligned}
$$

$W_{t}=S_{2} \rtimes\left\{1, \tau_{1}\right\}$ and if $b=\sqrt{d}$, we have $t_{1}=t_{2}=t_{3}$ and hence $W_{t}=S_{2} \rtimes S_{3}$ (case $1(\mathrm{n})$).
13.

$$
\begin{aligned}
& t_{1}=(1, b, c, d) \\
& t_{2}=(\sqrt{b} \sqrt{c} / \sqrt{d}, \sqrt{b} \sqrt{d} / \sqrt{c}, \sqrt{c} \sqrt{d} / \sqrt{b}, \sqrt{b} \sqrt{c} \sqrt{d}) \\
& t_{3}=(\sqrt{d} / \sqrt{b} \sqrt{c}, \sqrt{b} \sqrt{d} / \sqrt{c}, \sqrt{c} \sqrt{d} / \sqrt{b}, \sqrt{b} \sqrt{c} \sqrt{d})
\end{aligned}
$$

$W_{t}=\left\{1, \tau_{1}\right\}$ and if $\sqrt{b} \sqrt{c}=\sqrt{d}$ then $t_{1}=t_{2}=t_{3}$ and $W_{t}=S_{3}($ case $1(\mathrm{p}))$.
14.

$$
\begin{aligned}
& t_{1}=(-1, b, b, d) \\
& t_{2}=(i b / \sqrt{d}, i \sqrt{d}, i \sqrt{d},-i b \sqrt{d}) \\
& t_{3}=(i \sqrt{d} / b,-i \sqrt{d},-i \sqrt{d}, i b \sqrt{d})
\end{aligned}
$$

$W_{t}=S_{2}($ case $1(\mathrm{o}))$.
Next we consider $\left(t_{1}, t_{2}, t_{3}\right)$ such that none of the coordinates have 1 as a parameter and all parameters of t_{i} are distinct. Since we are over an algebraically closed field k, Theorem 4.7.8 holds in this case with the following modification:

Theorem 4.7.9. If t_{i} does not have 1 as a parameter and all parameters in t_{i} are distinct, $1 \leq i \leq 3$, then $\left(t_{1}, t_{2}, t_{3}\right)$ is strongly regular in F_{4}.

Proof. Note that with the hypothesis on $t_{i}, \mathfrak{C}^{t_{i}}=\{0\}$ for all i. For if not, let $x(\neq 0) \in \mathfrak{C}^{t_{i}}$ for some i. Then $t_{i}(x)=x \Rightarrow$ some parameter of t_{i} is 1 since x is assumed to be non zero, a contradiction. Also note that Lemma 4.7.7 holds in this case too. The rest of the proof is the same as that of Theorem 4.7.8, with \mathbb{R} replaced by k.

We record the above discussion as
Theorem 4.7.10. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type F_{4} is 17 .
4.8. G_{2}

Definition 4.8.1. Let \mathfrak{C} denote the octonion division algebra over \mathbb{R}. Then $\operatorname{Aut}(\mathfrak{C})$ is the compact connected Lie group of type G_{2}.

Conjugacy classes of centralizers in anisotropic forms of G_{2} have been explicitly calculated in $[\mathbf{S i}]$. Here we count the number of such classes using a different technique. Consider a maximal torus $T \subset G_{2}$. Then T sits inside a copy of $S U(3) \subset G_{2}$. If $K \subset \mathfrak{C}$ be a quadratic extension of \mathbb{R}, then $\operatorname{Aut}(\mathfrak{C} / K) \cong S U(3)$, where $\operatorname{Aut}(\mathfrak{C} / K)$ is the group of automorphisms of \mathfrak{C} fixing K point wise. The Weyl group of G_{2} is $W G_{2} \cong W S U(3) \rtimes S_{2}$, note that $S_{2}=\operatorname{Out}(S U(3))$. Let us consider the diagonal maximal torus T in $S U(3)$ i.e. the one consisting of all diagonal matrices $t=\left(z_{1}, z_{2}, z_{3}\right)$, $z_{i} \in S^{1}$ and $z_{1} z_{2} z_{3}=1$. The action of $W G_{2}$ on T is given by

$$
(\alpha, \beta)\left(z_{1}, z_{2}, z_{3}\right)=\left(\beta z_{\alpha^{-1}(1)}, \beta z_{\alpha^{-1}(2)}, \beta z_{\alpha^{-1}(3)}\right)
$$

where $\alpha \in S_{3}, \beta \in S_{2}$ and $\beta\left(z_{i}\right)=\overline{z_{i}}$ for $\beta \neq 1 \in S_{2}$. With this action, we now consider the various possibilities for an element $\operatorname{diag}\left(z_{1}, z_{2}, z_{3}\right) \in S U(3)$ and calculate their stabilizers in $W G_{2}$.
(a) If $z_{1} \neq z_{2} \neq z_{3}, z_{i}$ then clearly $\left(W G_{2}\right)_{t}=\{1\}$.
(b) If $z_{1}=z_{2}=z_{3} \in \mathbb{R}$ then $\left(W G_{2}\right)_{t}=S_{3} \rtimes S_{2}$.
(c) If $z_{1}=z_{2}=z_{3} \in \mathbb{C}-\mathbb{R}$ then $\left(W G_{2}\right)_{t}=S_{3}$, since $\operatorname{Out}(S U(3))$ acts non trivially.
(d) If $z_{1}=z_{2} \neq z_{3}, z_{i} \in \mathbb{C}-\mathbb{R}$ then $\left.\left(W G_{2}\right)_{t}=S_{2} \subset W S U(3)\right)$ as $\operatorname{Out}(S U(3))$ acts non trivially.
(e) If $z_{1}=z_{2} \neq z_{3}, z_{i} \in \mathbb{R}$ then $\left(W G_{2}\right)_{t}=S_{2} \rtimes S_{2}$ as S_{2} leaves this element fixed and $S_{2} \subset W S U(3)$ further acts trivially on it.
(f) If $t=(1, \exp (i \theta), \exp (-i \theta))$ with $\theta \neq k \pi$ for any integer k, then $\left(W G_{2}\right)_{t}=$ $\{(1,1),(\alpha, \beta)\} \equiv \mathbb{Z} / 2$, where $\alpha \in S_{3}$ is the transposition (2 3) and $\beta \in S_{2}$ is the transposition (12).

If we consider a connected algebraic group of type G_{2} over an algebraically closed field k, the semisimple genus number is the same. In this case, we work with the Zorn matrix model of split octonions and consider $k \times k \subset \mathfrak{C}$ as the diagonal subalgebra. Then $\operatorname{Aut}(\mathfrak{C}) /(k \times k) \cong S L(3$.) Consider the diagonal maximal torus $T:=\left\{\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right) \in S L(3) \mid a_{1} a_{2} a_{3}=1\right\} \subset S L(3)$, then T is a maximal torus in G_{2}. The Weyl group G_{2} is $W G_{2} \cong W S L(3) \rtimes S_{2} \cong S_{3} \rtimes S_{2}$. The action of $W G_{2}$ on T is given by

$$
(\alpha, \beta)\left(a_{1}, a_{2}, a_{3}\right)=\left(\beta a_{\alpha^{-1}(1)}, \beta a_{\alpha^{-1}(2)}, \beta a_{\alpha^{-1}(3)}\right)
$$

where $\alpha \in S_{3}, \beta \in S_{2}$ and $\beta\left(a_{i}\right)=1 / a_{i}$ for $\beta \neq 1 \in S_{2}$. The conjugacy classes of isotropy subgroups of $W G_{2}$ are as listed below: (the arguments being same as the previous ones.)
(a) If $a_{1} \neq a_{2} \neq a_{3}, a_{i} \neq 1,-1$ and $a_{i} \neq 1 / a_{j}$ for $i \neq j$, then $\left(W G_{2}\right)_{t}=\{1\}$
(b) If $a_{i}=1$ for all i, with, $W_{t}=\left(W G_{2}\right)$.
(c) If $a_{i}=\omega$ for all i, where ω is a cube root of unity other than $1,\left(W G_{2}\right)_{t}=S_{3}$.
(d) If $a_{1}=a_{2} \neq a_{3}$ with $a_{1} \neq 1,-1,\left(W G_{2}\right)_{t}=S_{2}$.
(e) If $a_{1}=a_{2}=1=-a_{3}$ then $\left(W G_{2}\right)_{t}=S_{2} \rtimes S_{2}$.
(f) If $a_{1}=1, a_{2}=1 / a_{3}$ with $a_{2} \neq 1,-1$ then $\left(W G_{2}\right)_{t}=\{(1,1),(\alpha, \beta)\} \equiv \mathbb{Z} / 2$, where $\alpha \in S_{3}$ is the transposition (23) and $\beta \in S_{2}$ is the transposition (12).

The preceding discussion is recorded as,
Theorem 4.8.2. The genus number of a compact simply connected Lie group or a simply connected algebraic group over an algebraically closed field, of type G_{2} is 6 .

4.9. Computations for the Lie algebras

If G be a compact connected Lie group (or a connected reductive algebraic group over an algebraically closed field) with the Lie algebra denoted by \mathfrak{g}, the orbit structure of the action of $A d_{G}$ on \mathfrak{g} can be neatly described in terms of the action of $W G$ on the Cartan subalgebra $\mathfrak{t} \subset \mathfrak{g}$. In this section we calculate the conjugacy classes of isotropy subgroups of $W G$ with respect to its action on \mathfrak{t}. We begin with the following result ;

Theorem 4.9.1. With respect to the action, $A d: G \longrightarrow A u t(\mathfrak{g})$ defined by $g \mapsto A d_{g}$, where $\operatorname{Ad}_{g}(x)=g x g^{-1}$, (having embedded G in a suitable $G L_{n}$) there is a bijection between the conjugacy classes of centralizers of semisimple elements in \mathfrak{g} in G and the conjugacy classes of centralizers of elements of a Cartan subalgebra in $W G$.

Proof. Consider the map $\left[G_{x}\right] \mapsto\left[W G_{x}\right]$, where $x \in \mathfrak{t}$. To show this map a bijection we follow exactly the same line of argument as in Theorems 4.2.4 and 4.2.7.

For determining the stabilizers in the Weyl group we follow the same line of argument as in the case of groups in the previous sections.
4.9.1. A_{n}. When G is the Lie group $S U(n+1)$, the corresponding Lie algebra $\mathfrak{s u}(n+1)$ is the set of all $(n+1) \times(n+1)$ trace zero skew-hermitian matrices, while for $G=S L(n+1)$, \mathfrak{g} consists of all trace zero $(n+1) \times(n+1)$ matrices. The Cartan subalgebra in the above cases are given by:

$$
\mathfrak{t}=\left\{\left(a_{1} i, \ldots, a_{n+1} i\right) \in \mathbb{M}_{n}(\mathbb{C}) \mid a_{1}+\ldots+a_{n+1}=0\right\} \subset \mathfrak{s u}(n+1)
$$

and,

$$
\mathfrak{t}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{M}_{n}(k) \mid a_{1}+\ldots+a_{n+1}=0\right\} \subset \mathfrak{s l}(n+1) .
$$

We have $W G=S_{n+1}$ and it acts on \mathfrak{t} by permuting the entries in both cases. Hence by the argument followed in Section 4.3, we see that the number of conjugacy classes of isotropy subgroups is $p(n+1)$. The subgroups are of the form $S_{n_{1}} \ldots S_{n_{k}}$ for a partition $\left(n_{1}, \ldots, n_{k}\right)$ of $(n+1)$.
4.9.2. B_{n}. For the Lie algebra of type B_{n}, the Cartan subalgebra \mathfrak{t} consists of all block diagonal matrices of the form $\left(A_{1}, \ldots, A_{n}, 0\right)$, where

$$
A_{i}=\left[\begin{array}{cc}
0 & a_{i} \\
-a_{i} & 0
\end{array}\right]
$$

is the $i-$ th block with $a_{i} \in \mathbb{R}$. And for B_{n} over an algebraically closed field k the Car\tan subalgebra consists of all diagonal matrices of the form $\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}, 0\right)$, where $a_{i} \in k$. So in either situation we note that the elements of the Cartan subalgebra can be parametrized by the n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in k$. The Weyl group $W=(\mathbb{Z} / 2)^{n} \rtimes S_{n}$ acts on \mathfrak{t} by permuting the elements, followed by a change of sign.

Let $\left(n_{1}, \ldots, n_{k}\right)$ be a partition of n such that n_{1} denotes the number of 0 's and n_{i} for $i \neq 1$ denotes the number of equal parameters. For such an element the isotropy subgroup is $\left((\mathbb{Z} / 2)^{n_{1}-1} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$ by an argument similar to one seen in Section 4.4. Hence the number of isotropy classes is

$$
\sum_{i=0}^{n} p(n-i)
$$

4.9.3. C_{n}. The Cartan subalgebra \mathfrak{t} consists of all diagonal matrices of the form $\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right)$ with $a_{i} \in k$. The Weyl group being the same as that of B_{n}, we have the same number of isotropy classes in this case also,i.e

$$
\sum_{i=0}^{n} p(n-i)
$$

4.9.4. D_{n}. Here the Cartan subalgebra is same as that of B_{n} and the Weyl group $W=(\mathbb{Z} / 2)^{n-1} \rtimes S_{n}$ acts on \mathfrak{t} by permuting the parameters and changing the signs of an even number of them.

If n is odd, then for a partition $\left(n_{1}, \ldots, n_{k}\right)$ of n, where $n_{i} s$ are as in Section 9.2, the isotropy subgroup of the Weyl group is $\left((\mathbb{Z} / 2)^{n_{1}-1} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$ and hence the total number of isotropy classes is

$$
\sum_{i=0}^{n} p(n-i)
$$

However if $n=2 k$, then if at least one zero occurs as one of the parameters of $t \in \mathfrak{t}$, then the isotropy subgroup is obtained as above. But if no zero occurs i.e $n_{1}=0$, then for each partition of n containing only even integers we have a isotropy subgroup not conjugate to any one of the above, as we have seen in the group case (see Section 4.6). Thus the total number of isotropy classes for $n=2 k$ is

$$
\sum_{i=0}^{n} p(n-i)+p(k)
$$

4.9.5. G_{2}. In this case, we consider a subalgebra $\mathfrak{s u}(3)$ (over reals) or $\mathfrak{s l}(3)$ (over an algebraically close field k) inside \mathfrak{g}_{2} and a Cartan subalgebra of \mathfrak{g}_{2} embeds in one such subalgebra. Hence, each element of the Cartan subalgebra can be considered as all tuples $\left(a_{1}, a_{2}, a_{3}\right), a_{i} \in k$, such that $a_{1}+a_{2}+a_{3}=0$. The Weyl group $W G_{2} \cong S_{3} \rtimes S_{2}$ (see Section 4.8) acts on these tuples as,

$$
(\alpha, \beta)\left(a_{1}, a_{2}, a_{3}\right)=\left(\beta a_{\alpha^{-1}(1)}, \beta a_{\alpha^{-1}(2)}, \beta a_{\alpha^{-1}(3)}\right),
$$

where $\alpha \in S_{3}, \beta \in S_{2}$ and $\beta\left(a_{i}\right)=-a_{i}$ for $\beta \neq 1 \in S_{2}$. Thus we have the following possibilities:
(a) If $t=(0,0,0)$ then clearly, $\left(W G_{2}\right)_{t}=W G_{2}$.
(b) If $t=(a, a,-2 a)$ then $\left(W G_{2}\right)_{t}=S_{2} \subset W S L(3)$ since the other S_{2} factor acts non trivially.
(c) If $t=(a, b,-a-b)$ with $a \neq b \neq-(a+b)$, then clearly, $\left(W G_{2}\right)_{t}=\{1\}$.
(d) If $t=(0, a,-a)$ with $a \neq 0$ then $\left(W G_{2}\right)_{t}=\{(1,1),(\alpha, \beta)\} \cong \mathbb{Z} / 2$, where $\alpha=$ (2 3) $\in S_{3}$ and $\beta=(12) \in S_{2}$.
4.9.6. F_{4}. Here we will use the notations used in Section 4.7. We work with the basis $\left\{v_{1}, \ldots, v_{8}\right\}$ of \mathfrak{C}. We reorder this basis as $e_{1}=v_{1}, e_{2}=v_{2}, e_{3}=v_{3}, e_{4}=v_{4}, e_{5}=$ $v_{8}, e_{6}=v_{7}, e_{7}=v_{6}, e_{8}=v_{5}$ so that with respect to the new ordered basis $\left\{e_{1}, \ldots, e_{8}\right\}$, the matrix of the bilinear form associated with the norm N of \mathfrak{C} becomes

$$
\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right] .
$$

Also, the Cartan subalgebra of $\mathfrak{s o}(N)$ is in the diagonal form with respect to the above bilinear form, i.e. $\mathfrak{t} \subset \mathfrak{s o}(N)$ will consist of all diagonal matrices of the form $\left(a_{1}, \ldots, a_{4},-a_{1}, \ldots,-a_{4}\right), a_{i} \in k$. Henceforth we shall parametrize this diagonal matrix as $\left(a_{1}, a_{2}, a_{3}, a_{4}\right), a_{i} \in k$. The Cartan subalgebra of \mathfrak{f}_{4} is contained in a copy of the Lie algebra of $\operatorname{Spin}(N)$, i.e. $\mathfrak{s p i n}(N) \cong \mathbf{L}(R T(\mathfrak{C}))$, where $\mathbf{L}(R T(\mathfrak{C}))=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in\right.$ $\left.\mathfrak{s o}(8)^{3} \mid t_{1}(x y)=t_{2}(x) y+x t_{3}(y), x, y \in \mathfrak{C}\right\}$. It is known that $\mathfrak{s o}(N)$ is generated as a vector space by $t_{a, b}, a, b \in \mathfrak{C} ; t_{a, b}$ is defined as $t_{a, b}(x)=\langle x, a\rangle b-\langle x, b\rangle a$ for $x \in \mathfrak{C}$ where \langle,$\rangle is the bilinear form of the norm N$ ([SV], Chapter 3).

If $t_{1}=t_{a, b}$, then $t_{2}=1 / 2\left(l_{b} l_{\bar{a}}-l_{a} l_{\bar{b}}\right)$ and $t_{3}=1 / 2\left(r_{b} r_{\bar{a}}-r_{a} r_{\bar{b}}\right)$ satisfy the property,

$$
\begin{equation*}
t_{1}(x y)=t_{2}(x) y+x t_{3}(y) . \tag{4.9.1}
\end{equation*}
$$

Also note that if $\left(t_{1}, t_{2}, t_{3}\right)$ and $\left(s_{1}, s_{2}, s_{3}\right)$ are related triples (in the Lie algebra sense) then so is $\left(t_{1}+s_{1}, t_{2}+s_{2}, t_{3}+s_{3}\right)$. With this, we can now carry out the computation.

Let $t_{1}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Then by a direct computation using the multiplication table for the basis $\left\{v_{i}\right\}$ in Section 4.7 and (4.9.1), one can show that $t_{1}=\sum_{i=1}^{4} t_{x_{i}, y_{i}}$, where x_{i}, y_{i} are given by $x_{i}=a_{i}\left(e_{i}+e_{4_{i}}\right)$ and $y_{i}=\left(e_{i}-e_{4+i}\right) / 2$. Using this, the above formulas for t_{2} and t_{3} and the multiplication table for the $v_{i}^{?} s$, we get,

$$
\begin{aligned}
& t_{1}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
& t_{2}=\left(\left(a_{1}+a_{2}+a_{3}-a_{4}\right) / 2,\left(a_{1}+a_{2}-a_{3}+a_{4}\right) / 2,\right. \\
& \left.\left(a_{1}-a_{2}+a_{3}+a_{4}\right) / 2,\left(-a_{1}+a_{2}+a_{3}+a_{4}\right) / 2\right) \\
& t_{3}=\left(\left(a_{1}-a_{2}-a_{3}+a_{4}\right) / 2,\left(-a_{1}+a_{2}-a_{3}+a_{4}\right) / 2,\right. \\
& \left.\left(-a_{1}-a_{2}+a_{3}+a_{4}\right) / 2,\left(a_{1}+a_{2}+a_{3}+a_{4}\right) / 2\right)
\end{aligned}
$$

Also note that if $t=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ then $\hat{t}=\left(-a_{1}, a_{2}, a_{3}, a_{4}\right)$. This is evident from the fact that $\overline{e_{1}}=e_{5}$ and $\overline{e_{i}}=-e_{i}$ whenever $i \neq 1,5$ and the definition of \hat{t} i.e. $\hat{t}(x)=\overline{t(\bar{x})}, x \in \mathfrak{C}$. We refer to the above set of equations by (A). Recall that the Weyl group of F_{4} is $W \cong W \operatorname{Spin}(N) \rtimes S_{3} \cong\left((\mathbb{Z} / 2)^{3} \rtimes S_{4}\right) \rtimes S_{3}$ and the action of W on $\mathbf{L} R T(\mathfrak{C})$ is given by (4.7.1).

We now calculate the stabilizers of elements of $\mathbf{L}(R T(\mathfrak{C}))$ in W, the arguments being similar to those for the group F_{4}.
(1) By (A),

$$
t_{1}=t_{2}=t_{3}=0
$$

Then clearly $W_{t}=W F_{4}$.
(2) If
$t_{1}=\left(0,0,0, a_{4}\right)$, then by (A),

$$
\begin{aligned}
& t_{2}=\left(-a_{4} / 2, a_{4} / 2, a_{4} / 2, a_{4} / 2\right) \\
& t_{3}=\left(a_{4} / 2, a_{4} / 2, a_{4} / 2, a_{4} / 2\right)
\end{aligned}
$$

Here we observe that only τ_{1} fixes t since t_{2}, t_{3} do not have 0 as a parameter, no other element from $S_{3}=\operatorname{Out}(\operatorname{Spin}(N))$ can contribute to the isotropy (see 4.7.1). Thus $W_{t}=\left((\mathbb{Z} / 2)^{2} \rtimes S_{3}\right) \rtimes\left\{1, \tau_{1}\right\}$.
(3) If $t_{1}=\left(0,0, a_{3}, a_{3}\right)$, then by (A),

$$
t_{1}=t_{2}=t_{3}=\left(0,0, a_{3}, a_{3}\right)
$$

Therefore, $\hat{t_{1}}=\hat{t_{2}}=\hat{t_{3}}$. Hence all of $S_{3}=\operatorname{Out}(\operatorname{Spin}(N))$ fixes t (see 4.7.1). Therefore, $W_{t}=\left(\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \times S_{2}\right) \rtimes S_{3}$
(4) If $t_{1}=\left(0,0, a_{3}, a_{4}\right)$, then by (A)

$$
t_{2}=\hat{t_{3}}=\left(\left(a_{3}-a_{4}\right) / 2,\left(a_{4}-a_{3}\right) / 2,\left(a_{3}+a_{4}\right) / 2,\left(a_{3}+a_{4}\right) / 2\right) .
$$

We have, $W_{t}=\left(\mathbb{Z} / 2 \rtimes S_{2}\right) \rtimes\left\{1, \tau_{1}\right\}$, because apart from τ_{1} any other element of S_{3} sends t_{2} or t_{3} to the first position (see 4.7.1) and hence they cannot fix t.
(5) If $t_{1}=\left(0, a_{2}, a_{2}, a_{2}\right)$, then by (A),

$$
t_{2}=\hat{t_{3}}=\left(a_{2} / 2, a_{2} / 2, a_{2} / 2, a_{2} / 2\right)
$$

Since $t_{2}=\hat{t_{3}}$, only $\tau_{1} \in S_{3}$ appears in the isotropy subgroup (see 4.7.1). Therefore, $W_{t}=S_{3} \rtimes\left\{1, \tau_{1}\right\}$.
(6) If $t_{1}=\left(0, a_{2}, a_{2}, a_{4}\right)$, then by (A),

$$
t_{2}=\hat{t_{3}}=\left(\left(2 a_{2}-a_{4}\right) / 2, a_{4} / 2, a_{4} / 2,\left(2 a_{2}+a_{4}\right) / 2\right) .
$$

We have, $W_{t}=S_{2} \rtimes\left\{1, \tau_{1}\right\}$ if $2 a_{2} \neq a_{4}$ and if $a_{4}=2 a_{2}$ then $t_{1}=t_{2}=t_{3}$ and S_{3} will clearly fixes t (see 4.7.1). Hence $W_{t}=S_{2} \rtimes S_{3}$.
(7) If $t_{1}=\left(0, a_{2}, a_{3}, a_{4}\right)$, then by (A),

$$
\begin{aligned}
& t_{2}=\left(\left(a_{2}+a_{3}-a_{4}\right) / 2,\left(a_{2}-a_{3}+a_{4}\right) / 2,\left(-a_{2}+a_{3}+a_{4}\right) / 2,\left(a_{2}+a_{3}+a_{4}\right) / 2\right) \\
& t_{3}=\hat{t_{2}}
\end{aligned}
$$

If t_{2}, t_{3} does not contain 0 as a parameter, then $W_{t}=\left\{1, \tau_{1}\right\} \subset S_{3}$ since any other element of S_{3} removes t_{1} from the first position of the related triple by 4.7.1. Otherwise, let $a_{2}+a_{3}-a_{4}=0$, then by (A), $t_{1}=t_{2}=t_{3}$ and therefore, S_{3} stabilizes t. In this case, $W_{t}=\{1\} \rtimes S_{3}$. For the other three possibilities the related triple can be made Weyl group equivalent to the latter by a suitable permutation of a_{2}, a_{3}, a_{4}.
(8) If $t_{1}=\left(a_{1}, a_{1}, a_{3}, a_{4}\right)$, then by (A),

$$
\begin{aligned}
& t_{2}=\left(\left(2 a_{1}+a_{3}-a_{4}\right) / 2,\left(2 a_{1}-a_{3}+a_{4}\right) / 2,\left(a_{3}+a_{4}\right) / 2,\left(a_{3}+a_{4}\right) / 2\right) \\
& t_{3}=\left(\left(-a_{3}+a_{4}\right) / 2,\left(-a_{3}+a_{4}\right) / 2,\left(-2 a_{1}+a_{3}+a_{4}\right) / 2,\left(2 a_{1}+a_{3}+a_{4}\right) / 2\right)
\end{aligned}
$$

We have $W_{t}=S_{2} \subset W \operatorname{Spin}(N)$, since every element of S_{3} other than 1, acts non trivially on t (see 4.7.1).
(9) If $t_{1}=\left(a_{1}, a_{1}, a_{1}, a_{4}\right)$, then by (A)

$$
\begin{aligned}
& t_{2}=\left(\left(3 a_{1}-a_{4}\right) / 2,\left(a_{1}+a_{4}\right) / 2,\left(a_{1}+a_{4}\right) / 2,\left(a_{1}+a_{4}\right) / 2\right) \\
& t_{3}=\left(\left(-a_{1}+a_{4}\right) / 2,\left(-a_{1}+a_{4}\right) / 2,\left(-a_{1}+a_{4}\right) / 2,\left(3 a_{1}+a_{4}\right) / 2\right) .
\end{aligned}
$$

We have, $W_{t}=S_{3} \subset \operatorname{Spin}(N)$ because $a_{1} \neq a_{4}$ and hence only elements from $W \operatorname{Spin}(N)$ fixes t (see 4.7.1).
(10) If $t_{1}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then by (A),

$$
\begin{aligned}
& t_{2}=\left(\left(a_{1}+a_{2}+a_{3}-a_{4}\right) / 2,\left(a_{1}+a_{2}-a_{3}+a_{4}\right) / 2,\right. \\
& \left.\left(a_{1}-a_{2}+a_{3}+a_{4}\right) / 2,\left(-a_{1}+a_{2}+a_{3}+a_{4}\right) / 2\right) \\
& t_{3}=\left(\left(a_{1}-a_{2}-a_{3}+a_{4}\right) / 2,\left(-a_{1}+a_{2}-a_{3}+a_{4}\right) / 2,\right. \\
& \left.\left(-a_{1}-a_{2}+a_{3}+a_{4}\right) / 2,\left(a_{1}+a_{2}+a_{3}+a_{4}\right) / 2\right)
\end{aligned}
$$

Here, the isotropy subgroup is trivial if none of the $t_{i} \mathrm{~s}$ contain 0 as parameter, because in that case all non trivial elements of S_{3} act non trivially on $\left(t_{1}, t_{2}, t_{3}\right)$ (see 4.7.1).

Hence there are 12 conjugacy classes of isotropy subgroups in the Weyl group.
We conclude this chapter by collecting the results obtained thus far in the following tables.

Computation of the number of orbit types for Lie algebras:

Lie algebra	Weyl group	Stabilizers	number of orbit types	
A_{n}	S_{n+1}	$S_{n_{1}} \ldots S_{n_{k}}$ for a partition n_{1}, \ldots, n_{k} of $n+1$	$p(n+1)$	
B_{n}	$(\mathbb{Z} / 2)^{n} \rtimes S_{n}$	$\left((\mathbb{Z} / 2)^{n_{1}-1} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$	$\sum_{i=0}^{n}$	$p(n-i)$
C_{n}	$(\mathbb{Z} / 2)^{n} \rtimes S_{n}$	$\left((\mathbb{Z} / 2)^{n_{1}} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$	$\sum_{i=0}^{n}$	$p(n-i)$
D_{n} for n odd	$(\mathbb{Z} / 2)^{n-1} \rtimes$ S_{n}	$\left((\mathbb{Z} / 2)^{n_{1}-1} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$	$\sum_{i=0}^{n}$	$p(n-i)$
D_{n} for $n=2 k$	$(\mathbb{Z} / 2)^{n-1} \rtimes$ S_{n}	$\left((\mathbb{Z} / 2)^{n_{1}-1} \rtimes S_{n_{1}}\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}$, and for each partition $k_{1}, . ., k_{s}$ of $k, H_{2 k_{1}} \cdot S_{2 k_{2}} \ldots S_{2 k_{s}}$, where $H_{2 k_{1}}$ is a subgroup of order $\left(2 k_{1}\right)!$ not con- jugate to $S_{2 k_{1}}$.	$\sum_{i=0}^{n} \quad p(n-i)+p(k)$	
G_{2}	$S_{3} \rtimes S_{2}$	As noted in $\S 4.9 .5$	4	
F_{4}	$\left((\mathbb{Z} / 2)^{3} \rtimes\right.$ $\left.S_{4}\right) \rtimes S_{3}$	As noted in $\S 4.9 .6$	12	

Computation of genus number:

Group	Weyl group	Stabilizers	Genus Number
A_{n}	S_{n+1}	$S_{n_{1} \ldots} S_{n_{k}}$, where $n_{1}+\ldots n_{k}=n+1$	$p(n+1)$
B_{1}	$\mathbb{Z} / 2$	$\{1\}, \mathbb{Z} / 2$	2
B_{2}	$(\mathbb{Z} / 2)^{2} \rtimes S_{2}$	$\begin{aligned} & \{1\}, S_{2}, \mathbb{Z} / 2,(\mathbb{Z} / 2)^{2} \rtimes S_{2} \text { and } \mathbb{Z} / 2 \rtimes \\ & S_{2} \end{aligned}$	5
$B_{n}, n \geq 3$	$(\mathbb{Z} / 2)^{n} \rtimes S_{n}$	$\begin{aligned} & \left(\left((\mathbb{Z} / 2)^{i-1} \rtimes S_{i}\right) \times\left((\mathbb{Z} / 2)^{n_{1}-i} \rtimes\right.\right. \\ & \left.\left.S_{n_{1}-i}\right)\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}, \text { where }, \\ & n_{1}+\ldots+n_{k}=n \end{aligned}$	$\sum_{i=0}^{n}(i+1) p(n-i)$
C_{n}	$(\mathbb{Z} / 2)^{n} \rtimes S_{n}$	$\begin{aligned} & \left(\left((\mathbb{Z} / 2)^{i} \rtimes S_{i}\right) \times\left((\mathbb{Z} / 2)^{n_{1}-i} \rtimes\right.\right. \\ & \left.\left.S_{n_{1}-i}\right)\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}, \text { where } \\ & n_{1}+\ldots n_{k}=n \end{aligned}$	$\sum_{i=0}^{n}([i / 2]+1) p(n-i)$
D_{n}, n odd	$\begin{aligned} & (\mathbb{Z} / 2)^{n-1} \rtimes \\ & S_{n} \end{aligned}$	$\begin{aligned} & \hline\left(\left((\mathbb{Z} / 2)^{i-1} \rtimes S_{i}\right) \times(\mathbb{Z} / 2)^{n_{1}-i-1} \rtimes\right. \\ & \left.\left.S_{n_{1}-i}\right)\right) \times S_{n_{2}} \times \ldots \times S_{n_{k}}, \text { where } n_{1}+ \\ & \ldots+n_{k}=n \end{aligned}$	$\sum_{i=0}^{n}([i / 2]+1) p(n-i)$
$D_{n}, n=2 k$	$\begin{aligned} & (\mathbb{Z} / 2)^{n-1} \rtimes \\ & S_{n} \end{aligned}$	$\left(\left((\mathbb{Z} / 2)^{i-1} \rtimes S_{i}\right) \times\left((\mathbb{Z} / 2)^{n_{1}-i-1} \rtimes\right.\right.$ $\left.S_{n_{1}-i}\right) \times S_{n_{2}} \times \ldots \times S_{n_{l}}$, where $n_{1}+$ $\ldots+n_{l}=n$ with at least one n_{i} odd and $H\left(2 k_{1}\right) \times S_{2 k_{2}} \times \ldots \times S_{2 k_{s}}$, where $k_{1}+\ldots+k_{s}=k$ and $H\left(2 k_{1}\right)$ is a subgroup of order ($2 k$)! not conjugate to $S_{2 k_{1}}$	$\begin{aligned} & \sum_{i=0}^{n}([i / 2]+1) p(n-i)+ \\ & p(k) \end{aligned}$
G_{2}	$S_{3} \rtimes S_{2}$	As noted in Section 4.8	6
F_{4}	$\begin{aligned} & \left((\mathbb{Z} / 2)^{3} \quad \rtimes\right. \\ & \left.S_{4}\right) \rtimes S_{3} \end{aligned}$	As noted in Section 4.7	17

CHAPTER 5

Real elements in F_{4}

5.1. Introduction

Let G be a group. An element $x \in G$ is called real if x is conjugate to x^{-1} in G. For an algebraic group G defined over a field k, let $G(k)$ denote the group of k-rational points in G. An element $g \in G(k)$ is said to be k-real if g is conjugate to g^{-1} in $G(k)$. An involution in $G(k)$ is an element $g \in G(k)$ such that $g^{2}=1$. An element $g \in G(k)$ is called strongly k-real if there exists involutions $h_{1}, h_{2} \in G(k)$ such that, $g=h_{1} h_{2}$. It follows that an element $g \in G(k)$ is strongly k-real if and only if there exists an involution $h \in G(k)$ such that $h g h^{-1}=g^{-1}$.

The study of conjugacy classes of real elements in algebraic groups is important from representation theoretic point of view. In this chapter we study real elements in certain groups of type F_{4}. In Section 5.2, we prove that in the compact connected Lie group of type F_{4}, every element is strongly real. In Section 5.3, we consider algebraic groups of type F_{4}, that occur as groups of automorphisms of Albert division algebras over a field k. We show that there are no non trivial k-real elements in such groups. This was conjectured by A. Singh in his doctoral thesis. Finally, in Section 5.4, we give a characterisation of k-real elements in anisotropic algebraic groups of type F_{4}, that are obtained from reduced Albert algebras.

The results proved in this chapter can be found in [Bo1].

5.2. Reality in compact F_{4}

Let \mathfrak{C} be the octonion division algebra over \mathbb{R} with norm N. We fix an orthogonal basis $\mathfrak{B}=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$, where $v_{1}=1, v_{6}=v_{2} v_{5}, v_{7}=v_{3} v_{5}$ and $v_{8}=v_{4} v_{5}$ ($[\mathbf{P}]$, Lecture 14). Let $\operatorname{Spin}(N)$ and $S O(N)$ respectively denote the spin group and the special orthogonal group of (\mathfrak{C}, N). With respect to the basis \mathfrak{B}, the matrix of the bilinear form associated with N is diagonal.

Consider the reduced Albert algebra $A:=H_{3}(\mathfrak{C})$ over \mathbb{R}. We have seen in Chapter 3 , that $\operatorname{Aut}(A)$ is the compact connected Lie group of type F_{4}.

Consider the diagonal subalgebra $S=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \subset A$. Then $\operatorname{Spin}(N)$ sits in $A u t(A)$ as the subgroup of all automorphisms ϕ of A, such that $\phi(s)=s$ for all $s \in S$ ($[\mathbf{J}]$, Theorem 6). We consider an explicit description of $\operatorname{Spin}(N)$ in the following way: Let, as before, \mathfrak{C} denote an octonion algebra over \mathbb{R} and consider the subgroup $R T(\mathfrak{C}) \subset S O(N)^{3}$, defined as,

$$
R T(\mathfrak{C}):=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in S O(N)^{3} \mid t_{1}(x y)=t_{2}(x) t_{3}(y) \quad \forall x, y \in \mathfrak{C}\right\}
$$

Any element of $R T(\mathfrak{C})$ is called a related triple (Chapter 3, Section 3.2). We need the following result from $[\mathbf{S V}]$ (Proposition 3.6.3).

Proposition 5.2.1. There is an isomorphism,

$$
\Phi: \operatorname{Spin}(N) \longrightarrow R T(\mathfrak{C})
$$

defined by,

$$
\Phi\left(a_{1} \circ b_{1} \circ \ldots \circ a_{r} \circ b_{r}\right)=\left(s_{a_{1}} s_{b_{1}} \ldots s_{a_{r}} s_{b_{r}}, l_{a_{1}} l_{\overline{b_{1}} \ldots} \ldots l_{a_{r}} l_{\overline{b_{r}}}, r_{a_{1}} r_{\overline{b_{1}} \ldots} r_{a_{r}} r_{\overline{b_{r}}}\right),
$$

where $a_{i}, b_{i} \in \mathfrak{C}, \prod_{i} N\left(a_{i}\right) N\left(b_{i}\right)=1$, (N being the norm on the octonion algebra), s_{v} is the reflection in the hyperplane orthogonal to $v \in \mathfrak{C}$, l_{v} and r_{v} are respectively the left and right homotheties with respect to v on \mathfrak{C}.

Remark: Henceforth, in the subsequent discussion, we shall identify the groups $\operatorname{Spin}(N)$ and $R T(\mathfrak{C})$ via the above isomorphism.

Lemma 5.2.2. (Lemma 4.7.3) Let T be a maximal torus in $S O(N)$. Then

$$
\widetilde{T}:=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in T^{3} \mid\left(t_{1}, t_{2}, t_{3}\right) \text { is a related triple }\right\}
$$

is a maximal torus in $\operatorname{Spin}(N)$.
Lemma 5.2.3. Every element in $\operatorname{Spin}(N)$ is strongly real.
Proof. We fix the maximal torus $T=S O(2) \times S O(2) \times S O(2) \times S O(2) \subset S O(N)$, consisting of block diagonal matrices, with blocks belonging to $S O(2)$. Denote a typical element of T by $\left(\gamma_{1} / \pi, \gamma_{2} / \pi, \gamma_{3} / \pi, \gamma_{4} / \pi\right)$, which represents a block diagonal matrix, where the i-th block is

$$
\left[\begin{array}{cc}
\cos 2 \gamma_{i} & -\sin 2 \gamma_{i} \\
\sin 2 \gamma_{i} & \cos 2 \gamma_{i}
\end{array}\right], i=1,2,3,4
$$

Therefore, by Lemma 5.2.2,

$$
\widetilde{T}:=T^{3} \cap R T(\mathfrak{C})=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in T^{3} \mid\left(t_{1}, t_{2}, t_{3}\right) \text { is a related triple }\right\}
$$

is a maximal torus in $\operatorname{Spin}(N)$.
So, let $\left(t_{1}, t_{2}, t_{3}\right) \in \widetilde{T}$. Consider the block diagonal matrix $m_{1} \in S O(N)$, made up of four 2×2 blocks, each of which is equal to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Clearly, $m_{1}^{2}=1$ and there exists $s_{1} \in T$, such that m_{1} is conjugate to s_{1} in $S O(N)$. This is because $S O(N)$ is a compact connected Lie group and hence any two maximal tori in $S O(N)$ are conjugate. Observe that, the characteristic polynomial of m_{1} is $(x-1)^{4}(x+$ $1)^{4}$. Therefore, m_{1} is conjugate to the element $s_{1}=\left(0,0, \frac{1}{2}, \frac{1}{2}\right) \in T$ in $S O(N)$. Following ([Bo], Section 7), there exists an element $s=\left(s_{1}, s_{2}, s_{3}\right) \in \widetilde{T}$ with $s_{1}=$ $\left(0,0, \frac{1}{2}, \frac{1}{2}\right), s_{2}=\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$ and $s_{3}=\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$. Since s_{1} is conjugate to m_{1} in $S O(N)$, it is clear that m_{1} lifts to an involution $\left(m_{1}, m_{2}, m_{3}\right) \in \widetilde{T}$.

Now $m_{1} t_{1}=\operatorname{diag}\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$, a block diagonal matrix in $S O(N)$, where

$$
B_{i}=\left[\begin{array}{cc}
\sin 2 \gamma_{i} & \cos 2 \gamma_{i} \\
\cos 2 \gamma_{i} & -\sin 2 \gamma_{i}
\end{array}\right], i=1,2,3,4 .
$$

Observe that the characteristic polynomial of $m_{1} t_{1}$ is again $(x-1)^{4}(x+1)^{4}$. Therefore $m_{1} t_{1}$ is also conjugate to the involution $\left(0,0, \frac{1}{2}, \frac{1}{2}\right) \in T$ in $S O(N)$. Hence, $m_{1} t_{1} \in S O(N)$ also lifts to the involution $\left(m_{1} t_{1}, m_{2} t_{2}, m_{3} t_{3}\right)$ in $\operatorname{Spin}(N)$. Thus any element $\left(t_{1}, t_{2}, t_{3}\right) \in \widetilde{T} \subset \operatorname{Spin}(N)$ is a product of two involutions i.e., $\left(t_{1}, t_{2}, t_{3}\right)=$ $\left(m_{1}, m_{2}, m_{3}\right)\left(m_{1} t_{1}, m_{2} t_{2}, m_{3} t_{3}\right)$ and hence strongly real. Since any element of $\operatorname{Spin}(N)$ is contained in a maximal torus and any two maximal tori of $\operatorname{Spin}(N)$ are conjugate (since $\operatorname{Spin}(N)$ is a compact connected Lie group), the result follows.

Theorem 5.2.4. Every element of the compact connected Lie group of type F_{4} is strongly real.

Proof. Let $G=\operatorname{Aut}\left(H_{3}(\mathfrak{C})\right)$ be the compact connected Lie group of type F_{4}. Let $g \in G$ be any element. Since G is a compact Lie group, every element is semisimple and is contained in a maximal torus. Thus there exists a maximal torus $T_{1} \subset G$, such that $g \in T_{1}$. Now $\operatorname{Spin}(N) \subset G$ is a maximal rank subgroup of G. Let $T \subset \operatorname{Spin}(N)$ be a maximal torus. Then there exists $h \in G$ such that $h T_{1} h^{-1}=T$ and hence $h g h^{-1} \in T$. By Lemma 5.2.3, every element of $\operatorname{Spin}(N)$ is strongly real. Hence the result holds for any element of G.

5.3. F_{4} from Albert division algebras

Let k be any field and A an Albert algebra over k. Then either A is a division algebra or it is reduced. In the latter case, A is isomorphic to $H_{3}(\mathfrak{C}, \gamma)$, the space of all γ-hermitian matrices in $\mathbb{M}_{3}(\mathfrak{C})$ for a 3×3 invertible diagonal matrix γ over \mathfrak{C}. We have seen in Chapter 3 that, up to isomorphism, Albert algebras are given by Tits' first and second constructions. We first record the following result due to Jacobson ([J], Theorem 13).

Proposition 5.3.1. Let A be an Albert algebra over a field k and suppose A possesses an automorphism η of order 2 . Then A is reduced i.e., $A \cong H_{3}(\mathfrak{C}, \gamma)$ for an octonion algebra \mathfrak{C} over k and either η is a reflection in a subalgebra $B=H_{3}(\mathfrak{D}, \Gamma)$, where \mathfrak{D}, a quaternion subalgebra of \mathfrak{C} or η is in the center of a subgroup $A u t(A / k e)=$ $\{f \in \operatorname{Aut}(A): f(e)=e\}$, where e is a primitive idempotent in A.

Corollary 5.3.2. If A is an Albert division algebra, then $A u t(A)$ does not contain an involution other than the identity.

Proof. The result follows directly from Proposition 5.3.1.
Lemma 5.3.3. Let D be a division algebra of degree 3 over k. Let K be a quadratic extension of k and B, a central simple K-algebra of degree 3 with a unitary involution σ over K. Let $G=S L_{1}(D)$ or $S U(B, \sigma)$. Then any automorphism θ of G, defined over k, is given by conjugation by an element of D^{*} or B^{*} respectively.

Proof. Let $\theta: G \longrightarrow G$ be an automorphism and $d \theta: \mathfrak{g} \longrightarrow \mathfrak{g}$, the induced Lie algebra automorphism. Then by Theorems 10 and 11, of [J2], Chapter X, $d \theta$ extends to automorphism of D or (B, σ) according as $G=S L_{1}(D)$ or $S U(B, \sigma)$. Thus, there exists $a \in D^{*}$ or $b \in B^{*}$ such that $d \theta(x)=a x a^{-1}$ or $d \theta(x)=b x b^{-1}$ respectively, for all $x \in \mathfrak{g}$. Therefore, if $G=S L_{1}(D)$ or $S U(B, \sigma)$, then θ is given by $\theta(g)=a g a^{-1}$ or $\theta(g)=b g b^{-1}$ respectively, for all $g \in G$.

Before we prove the next theorem, we need the following result from $[\mathbf{H o}]$, which rules out A_{1} type subgroups from the possible types of a non-toral reductive k subgroup of $\operatorname{Aut}(A)$ for an Albert division algebra A. For the sake of completeness, we include from $[\mathbf{H o}]$ the proof that A_{1} type subgroups do not occur in $\operatorname{Aut}(A)$.

Theorem 5.3.4. ([PST], Proposition 6.1, [Ho], Theorem 3.10) Let A be an Albert division algebra over a field k. Let $H \subset A u t(A)$ be a proper connected reductive non toral subgroup defined over k. Then $[H, H]$ is of type $A_{2}, A_{2} \times A_{2}$ or D_{4}.

Proof. In ([PST], Proposition 6.1), it was shown that other than the types listed above, one may have H as $R_{L / k}(S)$, where L / k is a cubic field extension, S is a simple group of type A_{1} defined over L and $R_{L / k}$ denotes the Weil's restriction of scalars. We rule out this possibility now. Observe that such a subgroup H has a maximal k-torus of dimension 3. Hence, by (Lemma 2.3, [GG]), it follows that $\operatorname{Aut}(A)$ then contains a rank $1 k$-torus. Any rank $1 k$-torus is of the form $K^{(1)}$, the norm torus of a quadratic extension K of $k([\mathbf{V}]$, Chapter II, § IV, Example 6) and hence splits over K. Therefore, $\operatorname{Aut}(A)$ is isotropic over K. Hence, A becomes reduced over a quadratic extension K of k ([PR], page 205), which is impossible since A, being an Albert division algebra, cannot be reduced over an extension of degree $2^{l}([\mathbf{P R}]$, Corollary, page 205).

Theorem 5.3.5. Let A be an Albert division algebra over a perfect field k and $G=\operatorname{Aut}(A)$ be the corresponding algebraic group of type F_{4}. Then $G(k)$ does not have any non trivial k-real element.

Proof. Let $g \in G(k)$ be a non trivial k-real element. Then there exists $h \in$ $G(k)$ such that $h g h^{-1}=g^{-1}$. This implies that $h^{2} g h^{-2}=g$. Note that $h^{2} \neq 1$ by Corollary 5.3.2. Thus, $h, g \in Z_{G}\left(h^{2}\right)$, the centralizer of h^{2} in G. Now since A is an Albert division algebra, $G=\operatorname{Aut}(A)$ is an anisotropic group of type F_{4}, defined over k (see [KMRT], Chapter IX). Therefore, since k is perfect, every element of $G(k)$ is semisimple by (Propostion 6.3, $[\mathbf{R}]$). Since G is a group of type F_{4}, it is simply connected and hence the centralizer of any semisimple element in G is a connected subgroup of G (see $[\mathbf{S S t}]$, Chapter II, Section 3). Thus, $Z_{G}\left(h^{2}\right)$ is a connected reductive k-subgroup of G of maximal rank.

Observe that $Z_{G}\left(h^{2}\right)$ is not a torus. For if not, then $h g h^{-1}=g$ since $h, g \in Z_{G}\left(h^{2}\right)$. Therefore, we have $g^{-1}=h g h^{-1}=g$, which implies that g is an involution in $G(k)$, a contradiction by Corollary 5.3.2. Hence by Theorem 5.3.4, $Z_{G}\left(h^{2}\right)$ has the following possible types: $A_{2} \times A_{2}, D_{4}$ or A_{2}.

Case1. Let $Z_{G}\left(h^{2}\right)$ be of type $A_{2} \times A_{2}$ or D_{4}. Now since $Z_{G}\left(h^{2}\right)$ is reductive, $Z_{G}\left(h^{2}\right)=\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] . Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$, where $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right]$ is semisimple and $Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$ is a torus. In this case, $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right]$ is of type $A_{2} \times A_{2}$ or D_{4}, and hence, a maximal rank subgroup of $\operatorname{Aut}(A)$. Therefore, the rank of the
torus $Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$ is 0, i.e., $Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$ is trivial. Thus, $Z_{G}\left(h^{2}\right)$ is semisimple and has a finite center. Now, observe that $h^{2} \in Z\left(Z_{G}\left(h^{2}\right)\right)$. Let the order of $\left(h^{2}\right)$ be n. If $n=2 k$ for some integer k, then h^{k} is an involution, which is a contradiction by Corollary 5.3.2. If $n=2 k+1$ for some integer k, then $h=h^{2 k+2}$. Hence, $g^{-1}=h g h^{-1}=h^{2 k+2} g h^{-(2 k+2)}=g$. Therefore, $g^{2}=1$, again a contradiction by Corollary 5.3.2.

Case 2. Let $Z_{G}\left(h^{2}\right)$ be of type A_{2}. Therefore, $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right]$ is semisimple of type A_{2} and $Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$ is torus of rank 2. Thus, $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right]$ is isomorphic to either $S L_{1}(D)$ or $S U(B, \sigma)$ or the corresponding adjoint groups, where D, B and σ are as in Lemma 5.3.3.

Let us first assume that $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] \cong S L_{1}(D)$. Observe that, $g, h \in Z_{G}\left(h^{2}\right)$, hence, $h g h^{-1} g^{-1}=g^{-2} \in S L_{1}(D)$. Now if possible, let $g^{-2} \in Z\left(S L_{1}(D)\right)$. Let $h=a b$, where $a \in S L_{1}(D)$ and $b \in Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$. Then clearly, $h g^{-2} h^{-1}=a\left(b g^{-2} b^{-1}\right) a^{-1}=$ $a g^{-2} a^{-1}=g^{-2}$. But on the other hand, $h g h^{-1}=g^{-1} \Rightarrow h g^{-2} h^{-1}=g^{2}$. Therefore, $g^{2}=g^{-2} \Rightarrow g^{2}$ is an involution and hence a contradiction. Hence g^{-2} does not belong to the center of $S L_{1}(D)$, in particular $g^{-2} \notin k$. Hence $k\left(g^{2}\right) / k$ is an extension of k of degree 3 since D is a division algebra of degree 3 over k.

Now, note that, for any $g \in Z_{G}\left(h^{2}\right),\left(h g h^{-1}\right) h^{2}\left(h g^{-1} h^{-1}\right)=h^{2}$. Therefore, $h Z_{G}\left(h^{2}\right) h^{-1}=Z_{G}\left(h^{2}\right)$. Hence, $h\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] h^{-1}=\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right]$. Thus, we have an automorphism of $S L_{1}(D)$, which is given by conjugation by h. By Lemma 5.3.3, this automorphism is given by conjugation by some element $a \in D^{*}$. Therefore, $h g^{2} h^{-1}=a g^{2} a^{-1}=g^{-2}$. Thus we have a k-automorphism $f: k\left(g^{2}\right) \longrightarrow k\left(g^{2}\right)$, given by $g^{2} \mapsto a g^{2} a^{-1}=g^{-2}$. Clearly, f is of order 2 . But we have seen that the extension $k\left(g^{2}\right) / k$ is of degree 3 over k, a contradiction. A similar line of argument holds for the case when $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] \cong S U(B, \sigma)$. Here one argues with respect to K, the quadratic extension of k, such that B is a central simple K-algebra of degree 3 .

Now let $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] \cong P S L_{1}(D)=S L_{1}(D) / Z\left(S L_{1}(D)\right)$, the adjoint group corresponding to $S L_{1}(D)$. Let $h=a b$, where $a \in P S L_{1}(D)$ and $b \in Z\left(Z_{G}\left(h^{2}\right)\right)^{\circ}$. Then $g^{-2}=h g^{2} h^{-1}=a b g^{2} b^{-1} a^{-1}=a g^{2} a^{-1}$ since $b \in Z\left(Z_{G}\left(h^{2}\right)\right)$ and hence it commutes with all elements of $Z_{G}\left(h^{2}\right)$. As before, g^{2} cannot belong to the center of $P S L_{1}(D)$. Now, there exist elements $x, y \in D^{*}$ such that, $a=\bar{x}$ and $g^{2}=\bar{y}$, where \bar{x} and \bar{y} denote the cosets of x and y respectively in $P S L_{1}(D)$. Therefore, the equation $a g^{2} a^{-1}=g^{-2}$ implies $x y x^{-1}=\alpha y^{-1}$, where $\alpha \in Z\left(S L_{1}(D)\right) \subset k^{*}$. Hence, $x^{2} y x^{-2}=\alpha\left(\alpha^{-1} y\right)=y$. Therefore, we get an automorphism $f: k(y) \longrightarrow k(y)$, given by $f(y)=x y x^{-1}$ of order 2 . But D being a division algebra of degree 3 over k, we
have a contradiction. The proof for the case $\left[Z_{G}\left(h^{2}\right), Z_{G}\left(h^{2}\right)\right] \cong P G U(B, \sigma)$ is along similar lines.

5.4. F_{4} from reduced Albert algebras

Let us consider exceptional groups of type F_{4}, which are given by automorphisms of reduced Albert algebras. So let k be a field with $\operatorname{char}(k) \neq 2$ and \mathfrak{C} be an octonion algebra over $k, \gamma=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, where $\gamma_{i} \in k^{*}$. Following the notation of Chapter 3, Section 3.3, let $A=H_{3}(\mathfrak{C}, \gamma)$ be a reduced Albert algebra over a perfect field k. We further assume that A has no non trivial nilpotents and let $G=\operatorname{Aut}(A)$ be the group of automorphisms of A. Then G is an anisotropic group of type F_{4}, defined over k. Therefore, by Proposition 6.3, $[\mathbf{R}]$, every element in $G(k)$ is semisimple. Hence, if $x \in G(k), \overline{\langle x\rangle}$ is a diagonalisable group. Therefore, $\overline{\langle x\rangle}=H \times \overline{\langle x\rangle}^{\circ}$, where H is a finite group and $\overline{\langle x\rangle}^{\circ}$ is a torus (see $[\mathbf{H u}], 16.2$).

A reduced Albert algebra $A=H_{3}(\mathfrak{C}, \gamma)$, is equipped with a cubic form N, called the norm of A. Let

$$
X=\left[\begin{array}{ccc}
\alpha_{1} & c_{3} & \gamma_{1}^{-1} \gamma_{3} \overline{c_{2}} \\
\gamma_{2}^{-1} \gamma_{1} \overline{c_{3}} & \alpha_{2} & c_{1} \\
c_{2} & \gamma_{3}^{-1} \gamma_{2} \overline{c_{1}} & \alpha_{3}
\end{array}\right]
$$

be a typical element in $H_{3}(\mathfrak{C}, \gamma)$. Then the norm of X is given by,

$$
N(X)=\alpha_{1} \alpha_{2} \alpha_{3}-\gamma_{3}^{-1} \gamma_{2} \alpha_{1} n\left(c_{1}\right)-\gamma_{1}^{-1} \gamma_{3} \alpha_{2} n\left(c_{2}\right)-\gamma_{2}^{-1} \gamma_{1} \alpha_{3} n\left(c_{3}\right)+n\left(c_{1} c_{2}, \overline{c_{3}}\right)
$$

where n is the norm on \mathfrak{C} and $n($,$) is the bilinear form associated to n$ (Chapter 5 , $[\mathbf{S V}])$. We define a quadratic form Q on A by

$$
Q(X)=\frac{1}{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)+\gamma_{3}^{-1} \gamma_{2} n\left(c_{1}\right)+\gamma_{1}^{-1} \gamma_{3} n\left(c_{2}\right)+\gamma_{2}^{-1} \gamma_{1} n\left(c_{3}\right)
$$

A bijective k-linear mapping $f: A \longrightarrow A$ is called a norm similarity of A if there exists $\alpha \in k^{*}$, such that $f(N(X))=\alpha N(X)$ for all $X \in A$. We call α the multiplier of f. Let $M(A)$ denote the group of all norm similarities of the Albert algebra A. Observe that, a norm similarity f of A with multiplier 1 , is an isometry. Let

$$
H:=\{f \in M(A): f(N(X))=N(X) \forall X \in A\} .
$$

Then H is a closed connected subgroup of $M(A)$ and it is a simply connected algebraic group of type E_{6} defined over k (Theorem 7.3.2, $[\mathbf{S V}]$). We are now in a position to prove the following crucial lemma.

Lemma 5.4.1. Let $\phi \in G(k)$ be a k-real automorphism. Then there exists an element $\psi \in G(k)$ of finite order such that $\psi \phi \psi^{-1}=\phi^{-1}$.

Proof. Let $x \in G(k)$ be such that $x \phi x^{-1}=\phi^{-1}$. Observe that $\overline{\langle\phi\rangle}$ and $\overline{\langle x\rangle}$ are diagonalisable groups since ϕ and x are semisimple. If x is of finite order, we have nothing to prove. So let x be of infinite order. Therefore, $\overline{\langle x\rangle}=D \times S$, where D is a finite abelian group and $S=\overline{\langle x\rangle}^{\circ}$ is a non trivial torus.

Now $x \phi x^{-1}=\phi^{-1} \Longrightarrow x \overline{\langle\phi\rangle} x^{-1}=\overline{\langle\phi\rangle}$. Therefore, $x \in N_{G(k)}(\overline{\langle\phi\rangle})$ which implies that $\overline{\langle x\rangle} \subset N_{G(k)}(\overline{\langle\phi\rangle})$. By rigidity of the diagonalisable group $\overline{\langle\phi\rangle}$, we have $N_{G(k)}(\overline{\langle\phi\rangle})^{\circ}=Z_{G(k)}(\overline{\langle\phi\rangle})^{\circ}$. Hence $S=\overline{\langle x\rangle}^{\circ} \subset Z_{G(k)}(\overline{\langle\phi\rangle})^{\circ}$. Let $x=(d, s)$, where $d \in D, s \in S$. Therefore, $\phi^{-1}=x \phi x^{-1}=(d, 1) \phi\left(d^{-1}, 1\right)$ since S acts trivially on ϕ by conjugation. We have thus produced a finite order element $\psi=(d, 1) \in G(k)$ such that $\psi \phi \psi^{-1}=\phi^{-1}$.

Thus, if the order of ψ is $2 k+1, \phi^{-1}=\psi \phi \psi^{-1}=\psi^{2 k+1} \phi \psi^{-(2 k+1)}=\phi$. Therefore ϕ is an involution in G. If ψ is of order $2 k$ for k odd, then ψ^{k} is an involution in G, which conjugates ϕ to ϕ^{-1}. Hence, without loss of generality, we can assume that the order of ψ is 2^{l} with $l \geq 2$. Let us further assume that -1 is a square in the field k.

Let $\theta=\psi^{2^{l-1}}$. Then $\theta^{2}=1$ and $\phi, \psi \in Z_{G}(\theta)$. Therefore, by Proposition 5.3.1, either $Z_{G}(\theta) \cong \operatorname{Spin}(9)$ or $Z_{G}(\theta)$ is of type $A_{1} \times C_{3}$. Here, $\operatorname{Spin}(9) \cong \operatorname{Aut}(A / k e):=$ $\{f \in \operatorname{Aut}(A): f(e)=e\}$, where $e \in A$ is a primitive idempotent. In the other case when $Z_{G}(\theta)$ is of type $A_{1} \times C_{3}$, it is given by $\operatorname{Aut}\left(H_{3}(\mathfrak{D}, \gamma)\right)$ up to isomorphism, where \mathfrak{D} is a quaternion subalgebra of the octonion algebra \mathfrak{C}.

If $Z_{G}(\theta)$ is of type $A_{1} \times C_{3}$, then ϕ is strongly real in $Z_{G}(\theta)$ and hence in $G(k)$. This follows from the proof of (Theorem 1.2, [AE]).

Suppose that $Z_{G}(\theta) \cong \operatorname{Spin}(9)$. Here, $\operatorname{Spin}(9)$ is the Spin group of the 9dimensional subspace $V \subset A$, consisting of matrices of the form

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha & c \\
0 & \gamma_{3}^{-1} \gamma_{2} \bar{c} & -\alpha
\end{array}\right], \alpha \in k, c \in \mathfrak{C},
$$

with the quadratic form being the restriction of the quadratic form Q to V, where Q is as defined before Lemma 5.4.1. We shall now denote $\operatorname{Spin}(9)$ by $\operatorname{Spin}(V, Q)$. Let $\Gamma^{+}(V, Q)$ be the even Clifford group associated to the quadratic space (V, Q). Also, $\Gamma^{+}(V, Q) \subset M(A)$, the group of norm similarities of the Albert algebra A (refer to Chapter IX, $[\mathbf{J} 1])$. We have $\operatorname{Spin}(V, Q) \subset \Gamma^{+}(V, Q)$ and an exact sequence

$$
1 \rightarrow k^{*} \rightarrow \Gamma^{+}(V, Q) \xrightarrow{\rho} S O(V, Q) \rightarrow 1
$$

Now, ϕ is a real element in $\operatorname{Spin}(V, Q)(k)$. Hence $\rho(\phi)$ is strongly real in $S O(V, Q)(k)$. Thus there exist $a_{1}, a_{2} \in S O(V, Q)(k)$ with $a_{1}^{2}=a_{2}^{2}=1$, such that $\rho(\phi)=a_{1} a_{2}$. Since ρ is onto, there exist elements $b_{1}, b_{2} \in \Gamma^{+}(V, Q)(k)$ such that $\rho\left(b_{i}\right)=a_{i}, b_{i}^{2}= \pm 1$. Therefore, $b_{1} b_{2}=\phi$. If $b_{i}^{2}=-1$, for $i=1,2$, consider $c \in k$ such that $c^{2}=-1$. Then $\phi=\left(c b_{1}\right)\left(c^{-1} b_{2}\right)$, a product of involutions in $\Gamma^{+}(V, Q)$.

We claim that $b_{1}^{2}=b_{2}^{2}= \pm 1$. So if possible, let $b_{1}^{2}=-1$ and $b_{2}^{2}=1$. Then we have

$$
\begin{equation*}
b_{1} \phi b_{1}^{-1}=b_{1}\left(b_{1} b_{2}\right)\left(-b_{1}\right)=b_{2} b_{1}=-\left(b_{2}^{-1} b_{1}^{-1}\right)=-\phi^{-1} \ldots \ldots \tag{*}
\end{equation*}
$$

Let 1_{A} denote the identity element in the Albert algebra A. Then by $(*)$, we have $b_{1} \phi b_{1}^{-1}\left(1_{A}\right)=-\phi^{-1}\left(1_{A}\right)=-1_{A}$. Therefore, $\phi\left(b_{1}^{-1}\left(1_{A}\right)\right)=-b_{1}^{-1}\left(1_{A}\right)$. Taking norm of both sides, we have $N\left(\phi\left(b_{1}^{-1}\left(1_{A}\right)\right)\right)=N\left(-b_{1}^{-1}\left(1_{A}\right)\right) \Longrightarrow N\left(b_{1}^{-1}\left(1_{A}\right)\right)=$ $-N\left(b_{1}^{-1}\left(1_{A}\right)\right) \Longrightarrow N\left(b_{1}^{-1}\left(1_{A}\right)\right)=0$. But $N\left(b_{1}^{-1}\left(1_{A}\right)\right)=\beta N\left(1_{A}\right) \neq 0$, where β is the multiplier of the norm similarity b_{1}^{-1}. Hence we have a contradiction.

Thus we have shown,
Theorem 5.4.2. Let A be a reduced Albert algebra over a perfect field k with $\operatorname{char}(k) \neq 2$, such that -1 is a square in k and $G=\operatorname{Aut}(A)$. If ϕ be a k-real automorphism of A, then either ϕ is strongly k-real in $G(k)$ or it is a product of two involutions in $M(A)$.

CHAPTER 6

Further Questions

Genus number: Theorems 4.2 .4 and 4.2 .7 give a recipe for computing the genus number of a compact simply connected Lie group as well as for simply connected algebraic group over an algebraically closed field. However, for the exceptional groups of type E_{6}, E_{7} and E_{8}, this method is quite hard. One has to find a possibly different way of computing the genus number of these groups. In [BDS], Borel and De Siebenthal describe an algorithm to calculate the maximal rank maximal subgroups (which turn out to be centralizers of certain elements) of a compact Lie group by looking at the root datum of the group. As a result, one can list up to isomorphism, all maximal rank subgroups in a compact Lie group. The problem of computing semisimple genus number is to list all maximal rank subgroups up to conjugacy. So it will be interesting to know if one can extract the genus number directly from the root datum. For a finite group of Lie type, Fleischmann described in $[\mathbf{F}]$ a method of computing genus number by considering stable subsystems of the root system of the group. It will be interesting to investigate whether similar interpretations work in the general case.

Reality: Chapter 5 deals with reality in certain forms of the exceptional group of type F_{4}. This description is far from being complete. Let A be a reduced Albert algebra over a field k with $\operatorname{char}(k) \neq 2$. Then if A has no non zero nilpotents, Theroem 5.4.2 asserts that every k-real element $\phi \in \operatorname{Aut}(A)$ is either strongly k-real in $\operatorname{Aut}(A)$ or strongly k-real in a bigger group $M(A)$ containing $A u t(A)$. It perhaps can be shown that ϕ is necessarily strongly k-real in $\operatorname{Aut}(A)$. Characterization of real elements in $\operatorname{Aut}(A)$ for a reduced Albert algebra having non zero nilpotents and for a split group of type F_{4} over \mathbb{R} is yet to be done. We also wish to characterize real elements in the exceptional groups E_{6}, E_{7} and E_{8} in the future.

We hope that the work done in this thesis will be of interest to the community.

Bibliography

[AE] P.C. Austin and E.W. Ellers, Products of involutions in the finite Chevalley groups of type F_{4}, Communications in Algebra, Vol. 30, No. 8, 2002, 4019-4029.
[B] A. Borel, Sous groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J., (2) 13, 1961, 216-240.
[B1] A. Borel, Linear algebraic groups, Graduate texts in mathematics, 126, Springer-Verlag, New York, 1991.
[BDS] A. Borel and J. De Siebenthal, Les sous-groupes ferms de rang maximum des groupes de Lie clos, Vol. 23, Commentarii mathematici Helvetici, 1949, 200-221.
[Bo] Anirban Bose, On the genus number of algebraic groups, J. Ramanujan Math. Soc. 28, No.4, 2013, 443-482.
[Bo1] Anirban Bose, Real elements in groups of type F_{4}, To appear in Israel Journal of Mathematics. [BD] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate texts in mathematics, 98, Springer-Verlag, New York, 1985.
[C1] R.W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London math. Soc. 42, 1981, 1-41.
[C2] R.W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters ,John Wiley And Sons, 1985.
[D1] E. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Mat. Sbornik 30, 1952, 349462. Am. Math. Soc. Transl, Ser. 2, 6, 1957, 111-244.
[D2] E. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obshchestva 1, 1952, 39-166. Am. Math Soc. Transl., Ser. 2, 6, 1957, 245-378.
[DW] W.G. Dwyer and C.W. Wilkerson, The elementary geometric structure of compact Lie groups, Bull. London Math. Soc. 30, 1998, 337-364.
[E] S.Eilenberg, On the problems of topology, Annals of Mathematics, 50(2), 1949, 247-260.
[F] Peter Fleischmann, Finite fields, root systems and orbit numbers of Chevalley groups, Finite Fields And Their Applications, 3, 33-47, Academic Press, 1997.
[FH] W. Fulton and J. Harris, Representation Theory, A first Course Graduate texts in mathematics 129, Springer-Verlag, New York, 1991.
[GG] Skip Garibaldi and Philippe Gille, Algebraic groups with few subgroups, J. London Math. Soc. (2) 80, 2009, 405-430.
[GK] K. Gongopadhyay and R. Kulkarni, z-classes of isometries of the hyperbolic space, Conform. Geom. Dyn. 13, 2009, 91-109.
[H] Brian C. Hall, Lie groups, Lie algebras and representations, an elementary introduction, Graduate texts in mathematics, 222, Springer-Verlag, New York, 2003.
[Ho] Neha Hooda, Invariants mod-2 and subgroups of G_{2} and F_{4}, Journal of Algebra, 411, 2014, 312-336.
[Hu] James E. Humphreys, Linear algebraic groups, Graduate texts in mathematics, 21, SpringerVerlag, New York, 1981.
[Hu1] J. Humphreys, Conjugacy classes in semisimple algebraic groups, Math. Surveys Monographs, Vol.43, Amer. Math. Soc., Providence, RI, 1995.
[J] Nathan Jacobson, Some groups of transformations defined by Jordan algebras.II.Groups of type F_{4}, Journal für die reine und angewandte, Mathematik-204, periodical, July 31, 1959, 74-98.
[J1] Nathan Jacobson, Structure and representations of Jordan algebras, AMS. Colloquium Publications, Providence, RI, 1968.
[J2] Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979.
[JL] G. James and M. Liebeck, Representations and characters of groups, Second edition, Cambridge University Press, New York, 2001.
[K] R. Kulkarni, Dynamical types and conjugacy classes of centralizers in groups, J. Ramanujan Math. Soc. 22, No. 1, 2007, 35-56.
[KMRT] M. A. Knus, Alexander Merkurjev, Markus Rost and Jean-Pierre Tignol, The book of involutions, AMS. Colloquium Publications, Providence, RI, 1998.
[M] G.D. Mostow, On a conjecture of Montgomery, Ann. of Math., 65(2), 1957, 513-516.
[P] M. Postnikov, Lectures in geometry, semester V, Lie groups and Lie algebras, Mir Publishers, Moscow, 1986.
[N] Melvyn B. Nathanson, Elementary methods in number theory, Graduate texts in mathematics, 195, Springer-Verlag, New York, 2000.
[Pr1] D. Prasad, On the self-dual representations of finite groups of Lie type, Journal of Algebra, 210, No. 1, 1998, 298-310.
[Pr2] D. Prasad, On the self-dual representations of a p-adic group, Internat. Math. Res. Notices, No. 8, 1999, 443-452.
[PR] H.P. Petersson and M. Racine, Albert algebras, Proceedings of a conference on Jordan Algebras (W. Kaup and K. McCrimmon, eds), Oberwolfach 1992, de Gruyter, Berlin, 1994.
[PST] R. Parimala, R. Sridharan, and M.L. Thakur, Tits' constructions of Jordan algebras and F_{4} bundles on the plane, Compositio Mathematica, 119, 1999, 13-40.
[R] R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Annals of Mathematics, Second Series, Vol. 86, No. 1(Jul., 1967), 1-15.
[S] T. A. Springer, Linear algebraic groups, Second Edition, Progress in Mathematics 9, Birkhäuser Boston, Boston, MA, 1998.
[Si] Anupam Singh, Conjugacy classes of centralizers in G_{2}, J. Ramanujan Math. Soc. 23, No. 4, 2008, 327-336.
[St] Robert Steinberg, Conjugacy classes in algebraic groups, Notes by Vinay V. Deodhar, Lecture notes in mathematics, 366, Springer-Verlag, 1970.
[SSt] T.A. Springer and Robert Steinberg, Conjugacy classes, seminar on algebraic groups and related finite groups, Lecture notes in mathematics, 131, Springer-Verlag, 1970.
[ST1] A. Singh and M. Thakur, Reality properties of conjugacy classes in G_{2}, Israel Journal Of Mathematics, 145, 2005, 157-192.
[ST2] A. Singh and M. Thakur, Reality properties of conjugacy classes in algebraic groups, Israel Journal Of Mathematics, 165, 2008, 1-27.
[SV] Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer monographs in mathematics, Springer-Verlag, Berlin Heidelberg, 2000.
[T] J. Tits, Classification of algebraic semisimple groups, algebraic groups and discontinuous subgroups, Proceedings of Symposia in PURE MATHEMATICS, Vol. 9, American Mathematical Society, 1966.
[V] V.E. Voskresenskii, Algebraic groups and their birational invariants, Translation of math. monographs, Vol. 179, AMS, Providence, RI,1998.
[W] M. J. Wonenburger, Automorphisms of Cayley algebras, Journal of Algebra, 12, 1969, 441-452.
[W1] M. J. Wonenburger, Transformations which are products of two involutions, Journal of Mathematics and Mechanics, 16, 1966, 327-338.

Index

adjoint group, 16
adjoint representation, 11
affine algebraic group, 9
affine variety, 9
Albert algebra, 23
central isogeny, 15
character, 15
Clifford algebra, 13
Clifford group, 14
cocharacter, 15
composition algebra, 19
connected genus number, 3,26
coroots, 16
defined over $k, 10$
derivation, 10
diagonalizable group, 12
dimension of a Lie group, 5
Dynkin diagram, 16
genus number, 1,26
group of type $F_{4}, 24$
group of type $G_{2}, 20$
isogeny, 15

Lie algebra, 10
Lie group, 5
maximal torus, 6,12
octonion algebra, 20
radical, 13
rank, 7, 13
real, 1
reduced Albert algebra, 23
reductive group, 13
root subgroup, 16
root system, 15
roots, 15
semisimple element, 11
semisimple genus number, 3,26
semisimple group, 13
simple algebraic group, 15
simple reflections, 16
simple roots, 16
simply connected group, 16
special orthogonal group, 8
special unitary group, 8
spin group, 14
strongly real, 1
strongly regular, 2
tangent space, 11
Tits' constructions, 23
topological group, 5
torus, 6, 12
triality, 21
type of a group, 16
unipotent element, 11
unipotent radical, 13
weights, 15
Weyl group, 7, 13

Zariski topology, 9

