
On Rational Subgroups of Exceptional

Groups

Neha Hooda

Indian Statistical Institute

November 2015

http://www.isical.ac.in




Indian Statistical Institute

Doctoral Thesis

On Rational Subgroups of Exceptional

Groups

Author:

Neha Hooda

Supervisor:

Maneesh Thakur

A thesis submitted to the Indian Statistical Institute

in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy (in Mathematics)

Theoretical Statistics & Mathematics Unit

Indian Statistical Institute, Delhi Centre

November 2015

http://www.isical.ac.in
http://WEBPAGE-OF-SUPERVISOR"
http://www.isid.ac.in/~statmath
http://www.isid.ac.in




To My Husband





Acknowledgements

This thesis owes its existence to the help, support and inspiration of several people.

Firstly, I would like to gratefully and sincerely thank my thesis adviser Prof. Maneesh

Thakur for his guidance, understanding, patience and most importantly his belief in me.

The problems of my thesis were suggested by him. During the course of my research

work at ISI he contributed to a rewarding research experience by giving me individual

freedom in my work, supporting my attendance at various workshops and conferences,

engaging me in new ideas, and demanding a high quality of work in all my endeavors.

For everything you have done for me, Prof. Thakur, I thank you.

I am very grateful to all the people I have met along the way and have contributed to

the development of my research. I thank Prof. Dipendra Prasad for his discussions and

valuable comments on the work done in this thesis. I would also like to thank Shripad

Garge and Anupam Singh for many useful correspondences I had with them. I thank

Prof. Arup pal, Prof. Rajendra Bhatia, Prof. B. Sury, Prof. Ajit Iqbal Singh, Prof.

Riddhi Shah and Prof. Raghvan for their encouragement. I would like to thank Prof.

Philippe Gille for his valuable remarks on some of the work done in this thesis.

I thank the Council of Scientific and Industrial Research, Govt. of India, for its

financial support. This research is part of my Ph.D. work and was supported by the

C.S.I.R. fellowship. I thank the administrative staff at ISI Delhi Centres for their co

operation in several official matters.

I thank my friends at ISI, with whom I have shared some enjoyable and memorable

years of my life.

My deepest gratitude goes to my family for their love and encouragement. I especially

thank my mother to whom have I always turn in an hour of need. I thank her for her

love and support in all my endeavors. I thank my mother-in-law and father-in-law for

their love and care. My little brother, Nikhil, no matter where I am around the world,

you are always with me!!

And finally, I thank my husband, Saurabh for a promise of a beautiful life together.





Contents

Acknowledgements v

Contents vii

Introduction 1

0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Pfister forms and algebras 15

1.1 Theory of Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Composition algebras and Doubling . . . . . . . . . . . . . . . . . . . . . 19

1.3 Structure of composition algebras . . . . . . . . . . . . . . . . . . . . . . . 20

2 Involutions on algebras 23

2.1 Central simple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Reduced norm and reduced trace . . . . . . . . . . . . . . . . . . . 25

2.2 Involutions of the second kind . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Distinguished involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Étale algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Linear Algebraic groups 31

3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Classification of simple groups . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Borel-De Siebenthal algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Quasi-split groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Quasi-split groups of type An . . . . . . . . . . . . . . . . . . . . . 43

4 Galois Cohomology 45

4.1 Cohomology sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Cohomology sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Galois Cohomology of Algebraic groups . . . . . . . . . . . . . . . . . . . 49

4.4.1 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Jordan algebras 53

5.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Albert algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



viii Contents

5.3 Étale Tits processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Groups G2 and F4 61

6.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Subgroups of G2, F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Embeddings in F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Mod-2 invariants of groups 67

7.1 Mod-2 invariants of A1 and A2 . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Octonion algebras of A2, G2 and F4 . . . . . . . . . . . . . . . . . . . . . 68

8 Maximal Tori 71

8.1 Maximal tori of special unitary groups . . . . . . . . . . . . . . . . . . . . 71

8.2 Unitary and Distinguished tori . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Maximal tori in G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Factorization results 75

9.1 Embedding of A1, A2 in F4 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Embeddings of A1, A2 in G2 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Embeddings of rank-2 tori 87

10.1 Embeddings of Distinguished tori . . . . . . . . . . . . . . . . . . . . . . . 87

10.2 Groups arising from division algebras . . . . . . . . . . . . . . . . . . . . . 92

10.3 Embeddings of Unitary tori . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Generation results 103

11.1 Generation of A2 by rank-2 tori . . . . . . . . . . . . . . . . . . . . . . . . 104

11.2 Generation of F4 by A1, A2 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.3 Generation of F4 by rank-2 tori . . . . . . . . . . . . . . . . . . . . . . . . 108

11.4 Generation of G2 by A1, A2 . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.5 Generation of G2 by rank-2 tori . . . . . . . . . . . . . . . . . . . . . . . . 113

12 Cohomology of unitary tori and applications 115

12.1 Cohomology of unitary k-tori . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.2 Application to Tits processes . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.3 Application to algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 135



Introduction

The main theme of this thesis is the study of exceptional algebraic groups via their

subgroups. This theme has been widely explored by various authors (Martin Leibeck,

Gary Seitz, Adam Thomas, Donna Testerman to mention a few), mainly for split groups

([26], [27], [28], [60] ). When the field of definition k of the concerned algebraic groups

is not algebraically closed, the classification of k-subgroups is largely an open problem.

In the thesis, we mainly handle the cases of simple groups of type F4 and G2 defined

over an arbitrary field. These may not be split over k. We first determine the possible

simple k-subgroups of a fixed simple k-algebraic group of type G2 or F4 and then, find

conditions for a simple k-algebraic group to embed in a given group of type G2 or F4.

One knows that a group of type G2 over a field k arises as the group of automorphisms

of an octonion algebra over k and similarly, groups of type F4 over k arise from Albert

algebras. We exploit the structure of these algebras to derive our results. On the way we

also obtain some results on these algebras, which may be of independent interest. For

example, we derive a group theoretic characterization of first Tits construction Albert

algebras (Theorem 10.2.3). We also prove a group theoretic characterization of Albert

algebras A with f5(A) = 0 (Theorem 9.1.2). Other than these results, we prove some

results on generation of the groups discussed above by their simple k-subgroups and

k-tori, determining the number of such subgroups required in each case. The results in

this thesis have been partly published in ([10]) and partly under submission ([9]).

We now sketch below an outline of the work done in this thesis, introducing some

notation on the way, which will be necessary in the Main results section. Let K be an

algebraically closed field. The classification of semisimple algebraic groups over K is

well understood.

Theorem 0.0.1 (Chevalley Classification Theorem) Two semisimple linear algebraic

groups are isomorphic if and only if they have isomorphic root data. For each root

1



2 Introduction

datum there exists a semisimple algebraic group which realizes it.

The simple algebraic groups have irreducible root systems or equivalently, have con-

nected Dynkin diagrams. Irreducible root systems fall into nine types, called the Cartan-

Killing types, labelled as An, Bn, Cn, Dn, E6, E7, F4, G2. The first four types exisit for

each natural number n, while the remaining five types are just one in each case. Simple

groups with root system or Dynkin diagram of types An, Bn, Cn, Dn are called classical

groups and the simple groups with root systems of type E6, E7, E8, F4, G2 are called

exceptional groups. Let G be a simple algebraic group over a field k. By the type of

G we mean the Cartan-Killing type of the root system of the group G⊗ k, obtained by

extending scalars to an algebraic closure k of k.

Let G be a simple linear algebraic group over K. Then corresponding to any subdiagram

of the Dynkin diagram of G, there exists a subgroup of G which realizes it, i.e. has the

subdiagram as its Dynkin diagram. But this fails to hold for a non-algebraically closed

field. For example, over a non-algebraically closed field k a connected simple algebraic

group G may not have any subgroup of type A1, though the Dynkin diagram of G always

has A1 as a subdiagram (see Remark 10.2.2). Hence over a non-algebraically closed field

k, it is important to know what are all simple k-subgroups of G. In the thesis we answer

this for groups of type A2, G2 and F4. We prove that when G is a k-group of type F4

(resp. G2) arising from an Albert (resp. octonion) division algebra then the possible

type of a simple k-subgroup of G is A2 or D4 (resp. A1 or A2). The knowledge of these

simple k-subgroups is a useful tool in studying these groups. This motivates the

Problem : Find conditions under which a given simple k-group of type A1 or A2 embeds

over k in a simple k-group of type G2 or F4.

In the thesis we study conditions which control the k-embeddings of simple algebraic

groups of type A1 and A2 in simple groups of type G2 and F4 as well as k-embeddings

of rank-2 k-tori in simple groups of type A2, G2 and F4. This is done via the mod-2

invariants attached to these groups.

Let us briefly recall the mod-2 invariants of these groups. To a given simple al-

gebraic group H of type A2 (resp. A1) defined over k, one attaches an invariant

f3(H) ∈ H3(k,Z/2Z) (resp. f2(H) ∈ H2(k,Z/2Z)), which is the Arason invariant

of a 3-fold (resp. 2-fold) Pfister form over k, namely the norm form of an octonion (resp.

quaternion) algebra (see Remark 7.1.2 of the thesis and [19], Thm. 30.21). For a simply

connected, simple algebraic group H of type A2 defined over k, there exists a unique (up
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to isomorphism) degree 3 central simple algebra with center a quadratic étale algebra

K and with an involution σ of the second kind, such that H ∼= SU(B, σ). We call the

involution σ as distinguished if f3(H) = 0.

Let G be a group of type F4 defined over k. Then there exists an Albert algebra A over k

such that G = Aut(A) = Aut(A⊗k k), the full group of automorphisms of A. Given an

octonion algebra C over k, it is determined by its norm form nC , which is a 3-fold Pfis-

ter form over k. The groups of type G2 defined over k are precisely of the form Aut(C)

for a suitable octonion algebra C over k. These are classified by the Arason invariant

e3(nC) ∈ H3(k,Z/2Z). To any Albert algebra A, one attaches a certain reduced Albert

algebra H3(C,Γ), for an octonion algebra C over k and Γ = Diag(γ1, γ2, γ3) ∈ GL3(k),

called the reduced model of A, such that for any reducing field extension L/k of A, we

have A⊗k L ∼= H3(C ⊗k L,Γ) ([37]). The reduced model of an Albert algebra is unique

up to isomorphism and defines two mod-2 invariants for G = Aut(A):

f3(G) = f3(A) := e3(nC) ∈ H3(k,Z/2Z),

f5(G) = f5(A) := e3(nC).e2(〈1, γ−1
1 γ2〉 ⊗ 〈1, γ−1

2 γ3〉)

= e5(nC⊗ << −γ−1
1 γ2,−γ−1

2 γ3 >>) ∈ H5(k,Z/2Z).

Let G be a k-group of type A2, G2 or F4. Then the invariant f3(G) as defined above is

a 3-fold Pfister form which is the norm form of a unique octonion algebra C over k. We

call C the octonion algebra of G and denote it by Oct(G). Let G be a simple, simply

connected k-group of type A2. We will refer to G as arising from a division algebra if

either G ∼= SU(D,σ) for some degree 3 central division algebra D over a quadratic field

extension F of k, with an involution σ of the second kind or G ∼= SL1(D) for some

degree 3 central division algebra D over k. Let G be a k-group of type F4. We will refer

to G as arising from a division algebra if G ∼= Aut(A), where A is an Albert division

algebra over k. Let G be a k-group of type G2. We will refer to G as arising from a

division algebra if G ∼= Aut(C), where C is an octonion division algebra over k.

In the thesis we derive a necessary (resp. necessary and sufficient) condition for a k-

group H of type A1 or A2 to embed in a k-group of type F4 (resp. G2) over k, in terms

of certain factorization of f5(G) (resp. f3(G)) with a factor the mod-2 invariant of H.

Owing to these results, importance of groups of type A1, A2 becomes evident in study-

ing exceptional groups. The theme of irreducible subgroups and A1-type subgroups of
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algebraic groups has been thoroughly investigated by several authors over algebraically

closed fields and finite fields, see for example ([24], [55], [56], [59], [22], [23], [62], [25]).

Since the Galois cohomological invariants of any group of type G2 and F4 over finite

fields or algebraically closed fields are all trivial, our results are valid also over such

fields.

The next topic of interest in the thesis is the generation of simple k-groups of type G2

and F4 by their k-subgroups over an arbitrary field k. As an easy consequence of sim-

plicity we prove the following:

Let G be a simple algebraic group over a perfect (infinite) field k and X be a fixed type.

Suppose G contains a k-subgroup of type-X. Then G is generated by all k-subgroups of

type-X. Moreover if G(k) is simple then G(k) is generated by the groups of k-points of

type-X subgroups. Hence, over a prefect (infinite) field k, a simple group of type F4 or

G2 is generated by all k-subgroups of type A2 and similarly A1.

This motivates the following

Question: What is the number of k-subgroups of a given type required to generate G

over k?

We answer this for simple k-groups of type A2, G2 and F4 (see the table below), in fact

we exhibit explicit subgroups of each type generating the group in question. We shall see

that the behavior of the D4 type subgroups for groups of type F4 is somewhat analogous

to the behavior of the A2 type subgroups for groups of type G2, as far as generation of

these groups is our concern.

We also calculate the number of rank-2 k-tori required (in fact exhibit such tori explic-

itly) for the generation of groups of type A2, G2 and F4 arising from division algebras

and subgroups of type D4 of Aut(A), for A an Albert division algebra, over perfect

fields (see the table below).

These results motivate the following

Problem : Find conditions so that a rank-2 k-torus embeds in a k-group of type A2,

G2 or F4.

We give a solution of this for some special rank-2 tori which we refer to as unitary tori.

We describe these below:

Let L,K be étale algebras over k of dimensions 3, 2 resp. and T = SU(L ⊗K, 1 ⊗ ¯),

where ¯ denotes the non-trivial involution on K. Then T is a torus defined over k, re-

ferred to in the thesis as the K-unitary torus associated with the pair (L,K). For this

torus, we let qT :=< 1,−αδ >= Nk(
√
αδ)/k, where Disc(L) = k(

√
δ) and K = k(

√
α).
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Such tori are important as they occur as maximal tori in simple, simply connected groups

of type A2 and G2 (cf. [52]. [6], [4]). We derive conditions under which such tori embed

in groups of type A2, G2 or F4 defined over k. We shall see that these embeddings are

controlled by the mod-2 invariants of these groups. The behavior of the invariant f3 for

groups of type A2 and G2 is somewhat analogous to the behavior of the invariant f5 for

groups of type F4, as far as embeddings of unitary tori in such groups is our concern.

Towards the end of the thesis, we calculate H1(k, T ) for a unitary rank-2 torus T and

see some applications to algebraic groups and étale Tits processes. Let L,K be étale

algebras over k of dimensions 3, 2 resp. and let (E, τ) = (L⊗K, 1⊗ ¯), where x 7→ x is

the non-trivial k-automorphism of K. We define étale Tits process algebras J1 and J2

arising from the pair (L,K) to be L-isomorphic, if there exists a k-isomorphism J1 → J2

which restricts to an automorphism of the subalgebra L of J1 and J2 (see §5.3).

We establish a relation between H1(k,SU(E, τ)) and the set of L-isomorphism classes

of étale Tits process algebras arising from (L,K). We study the effect of the presence

of a unitary k-torus T in groups of type A2, G2 and F4 when H1(k, T ) = 0.

By a result of Steinberg (see Theorem 4.4.5) it follows that a k-group G of type G2

contains a maximal k-torus T ⊂ G such that H1(k, T ) = 0 if and only if the associated

mod-2 invariant f3(G) vanishes, i.e, G splits. We give a simpler proof of this result

using explicit cohomology computation of T . Similarly, let G be a simply connected,

simple k-group of type A2: if G has a maximal k-torus T with H1(k, T ) = 0, then

f3(G) = Oct(G) splits. The converse holds in the case when the group arises from a

matrix algebra. This gives an algebraic characterization of quasi-split groups of type A2

and G2.

Remark: After submission of our paper ([9]), we discovered the paper ([4]) by C. Beli, P.

Gille and T.-Y, Lee, posted recently on the math arXiv. The authors of this paper have

studied maximal tori in groups of type G2 in terms of the associated octonion algebra

C. Some of our results on groups of type G2 in ([9]) partially match with results in this

paper (see [4], Proposition 4.3.1., Corollary 4.4.2., Remarks 5.2.5. (b), Proposition 5.2.6

(i)), however the scope of our paper and methods of proofs are very different.
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0.1 Main results

In this section we state the main results proved in the thesis, these are contained in

chapters 10, 11, 12 and 13. Let k be a field of characteristic different from 2 and 3.

Results on Factorization

We begin with the main results proved in chapter 9. We derive a necessary (resp.

necessary and sufficient) condition for a k-group H of type A1 or A2 to embed in a

k-group G of type F4 (resp. G2) over k in terms of certain factorization of f5(G) (resp.

f3(G)) with a factor the mod-2 invariant of H.

Theorem. (Theorem 9.1.2) Let A be an Albert algebra over k and G = Aut(A).

Then f5(A) = 0 if and only if there exists a k-embedding SU(B, σ) ↪→ G for some

degree 3 central simple algebra B with center a quadratic étale k-algebra K and with a

distinguished involution σ.

More generally, we have

Theorem. (Theorem 9.1.1) Let K be a quadratic étale k-algebra and B be a degree

3 central simple algebra over K with an involution σ of the second kind. Let A be an

Albert algebra over k. Let G = Aut(A) be the algebraic group of type F4 associated to

A. Suppose SU(B, σ) ↪→ G over k. Then f5(A) = f3(B, σ) ⊗ τ for some 2-fold Pfister

form τ over k.

Theorem. (Theorem 9.1.9) Let Q be a quaternion algebra over k and A be an Albert

algebra over k. Let G = Aut(A) be the algebraic group of type F4 associated to A.

Suppose SL(1, Q) ↪→ G over k. Then f5(A) = f2(nQ) ⊗ τ for some three fold Pfister

form τ over k.

It turns out that G2 enjoyes stronger results in comparison to the case of F4, which

needs a lot more care.

Theorem. (Theorem 9.2.3) Let C be an octonion algebra over k. Let B be a degree

3 central simple algebra over K, a quadratic étale extension of k, with an involution σ

of the second kind. Then there exists a k-embedding SU(B, σ) ↪→ Aut(C) if and only

f3(B, σ) = nC and B ∼= M3(K).
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Theorem (Theorem 9.2.1) Let C be an octonion algebra over k and Q be a quaternion

algebra over k. Then the following are equivalent.

(a) Q embeds in C as a k-subalgebra.

(b) nC = nQ ⊗ τ , where τ is a 1- fold Pfister form over k.

(c) SL1(Q) ↪→ Aut(C) over k.

The proofs of the above results make up chapter 9 of the thesis.

Results on Embeddings of rank-2 tori

Let L,K be étale algebras of k-dimensions n, 2 resp. Let E = L ⊗ K and τ be the

involution 1 ⊗¯on E. Let SU(E, τ) be the K-unitary torus associated to the ordered

pair (L,K). It turns out that embeddings of unitary k-tori in groups of type A2, G2 and

F4 are intricately linked to the mod-2 invariants of these groups. We investigate this in

chapter 10 of the thesis. We state below the main results in this regard. The proofs of

these results form chapter 10 of the thesis.

Theorem. (Theorem 10.3.3) Let G be a simple, simply connected k-group of type G2

or A2. Let L,K be étale algebras of dimension 3, 2 resp. and T be the K-unitary torus

associated with the pair (L,K).

(a) Suppose there exists a k-embedding T ↪→ G. Then K ⊆ Oct(G).

(b) If G is a simple, simply connected k-group of type F4 or A2 arising from a division

algebra and T ↪→ G over k, then L must be a field extension.

Let A be an Albert algebra over k and G = Aut(A). Let L,K be étale algebras of

dimension 3, 2 resp. and T be the K-unitary torus associated with the pair (L,K).

Suppose there exists a k-embedding T ↪→ G, then K need not embed in Oct(G) (i.e,

< 1,−α > need not divide f3(G)). However,

Theorem. (Theorem 10.3.10) Let A be an Albert algebra over k and G = Aut(A). Let

K = k(
√
α) be a quadratic étale k-algebra and L be a cubic étale k-algebra. Let T be

the K-unitary torus associated with the pair (L,K). Suppose there exists a k-embedding

T ↪→ G. Then f5(A) =< 1,−α > ⊗γ for some 4-fold Pfister form γ over k.
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Theorem. (Theorem 10.3.6) Let A be an Albert algebra over k and G = Aut(A).

Let K = k(
√
α) be a quadratic étale k-algebra and L be a cubic étale k-algebra with

discriminant δ. Let T be the K-unitary torus associated with the pair (L,K). Suppose

T ↪→ G over k. Then f5(A) = qT ⊗ γ for some 4-fold Pfister form γ over k.

On exactly similar lines we derive a necessary condition for a rank-2 unitary torus to

embed in a connected simple algebraic group of type A2 or G2:

Theorem. (Theorem 10.3.8) Let G be a simple, simply connected k-group of type A2

or G2. Let C := Oct(G) and nC denote the norm form of C. Let K = k(
√
α) be a

quadratic étale k-algebra and L be a cubic étale k-algebra with discriminant δ. Let T be

the K-unitary torus associated with the pair (L,K). Suppose there exists a k-embedding

T ↪→ G. Then nC = qT ⊗ γ for some two fold Pfister form γ over k.

Theorem. (Theorem 10.3.11) Let G be a simple, simply connected algebraic group

defined over k. Let L be a cubic étale k-algebra with discriminant K0. Suppose there

exists an k-embedding L(1) ↪→ G. We then have:

(a) if G is of type G2 or A2 then Oct(G) splits.

(b) if G is of type F4 then f5(G) = 0 and K0 ⊂ Oct(G).

Apart from these results we study embeddings of distinguished k-tori in simply con-

nected, simple algebraic groups of type A2, G2 and F4, defined over a field k, in terms

of the mod-2 Galois cohomological invariants attached with these groups (see Theorems

10.1.6, 10.1.5, 10.1.4). The next theorem gives criterion for groups of type A2 and F4 to

arise from central division algebras.

Theorem. (Theorem 10.2.1) Let G be a simple, simply connected group of type A2 or

F4 defined over k, arising from a division algebra over k. Then,

(1) G(k) contains no non-trivial involution over k.

(2) There does not exists any rank-1 torus T over k such that T ↪→ G over k.

(3) G is k-anisotropic.

Moreover, these conditions hold over any field extension of k of degree coprime to 3.

Theorem. (Theorem 10.2.3) Let A be an Albert algebra over k and G = Aut(A). Then

the following are equivalent.

(a) f3(A) = 0 (i.e, Oct(G) is split).
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(b) There exists a cubic étale k-algebra L of trivial discriminant such that L(1) ↪→ G

over k.

(c) SL1(D) ↪→ G over k, for a degree 3 central simple algebra D over k.

(d) A is a first Tits construction Albert algebra.

Results on generation

Let k be a perfect (infinite) field and G be an algebraic group of type F4 (resp. G2)

defined over k, arising from an Albert (resp. octonion) division algebra. We show as an

easy consequence of simplicity that G is generated by all k-subgroups of type A2 and

similarly by all k-subgroups of type A1. More precicely,

Lemma. (Lemma 11.2.5) Let G be a simple algebraic group over a perfect (infinte)

field k and X be a fixed type. Suppose G contains a k-subgroup of type-X. Then G

is generated by all k-subgroups of type-X. Moreover if G(k) is simple then G(k) is

generated by the groups of k-points of type-X subgroups.

As a corollary to the above we have the following,

Theorem. (Theorem 11.2.6, 11.4.4) Let G be an simple algebraic group of type G2 or F4

defined over k. Then G is generated by subgroups of type A2, defined over k. Similarly,

G is generated by subgroups of type A1, defined over k.

In chapter 11 we answer the following question: What is the number of k-subgroups

of type A2 and similarly A1 required to generate G as above? We prove that if k is a

perfect (infinite) field and G is an algebraic group of type F4 defined over k, arising from

an Albert division algebra, then G is generated by two k-subgroups of type D4 and three

k-subgroups of type A2. Similarly, if G is an algebraic group of type G2 defined over

k, arising from an octonion division algebra, then G is generated by two k-subgroups

of type A2 and three k-subgroups of type A1. Let A be a finite dimensional k-algebra

and S ⊂ A be a k-subalgebra. Then Aut(A) is an algebraic group defined over k. We

shall denote by Aut(A/S) the (algebraic) k-subgroup of all automorphisms of A fixing

S pointwise.

The precise results are as follows:
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Theorem. (Theorem 11.2.2) Let A be an Albert division algebra over a perfect (infinite)

field k and G = Aut(A). Let L ⊆ A be a cubic subfield and H = Aut(A/L). Then H

is generated by two k-subgroups of type A2.

Theorem. (Theorem 11.2.7) Let A be an Albert division algebra over a perfect (infinite)

field k and G = Aut(A). Let Hi := Aut(A/Li) ⊆ G, i = 1, 2, where L1 6= L2 are cubic

subfields of A. Then G is generated by Hi, i = 1, 2.

Theorem. (Theorem 11.2.8) Let A be an Albert division algebra over k and G =

Aut(A). Then G is generated by three k-subgroups of type A2.

Along similar lines we have the following results for groups of type G2;

Theorem. (Theorem 11.4.3) Let C be an octonion division algebra over a perfect (infi-

nite) field k and G = Aut(C). Let K ⊆ C be a quadratic subfield and H = Aut(C/K).

Then H is generated by two k-subgroups of type A1.

Theorem. (Theorem 11.4.5) Let C be an octonion division algebra over k, where k is

a perfect (infinite) field. Then G = Aut(C) is generated by two k-subgroups of type A2.

Theorem. (Theorem 11.4.6) Let C be an octonion division algebra over k, where k is a

perfect (infinite) field. Then G = Aut(C) is generated by three k-subgroups of type A1.

We summarize these results in the table below, which gives the number of k-subgroups

(k a perfect field) generating simple groups of type G2, and F4, arising from division

algebras and for k-subgroups of type D4 of Aut(A), where A is an Albert division

algebra and k-subgroups of type A2 of Aut(C), where C is an octonion division algebra.

Table 1: Number of k-subgroups required for generation of groups

Type of group Type of k-subgroup Number of k-subgroups required for generation

F4 A2 3
F4 D4 2
D4 A2 2
G2 A1 3
G2 A2 2
A2 A1 2

Next we compute the number of rank-2 k-tori (k a perfect field) generating simple,



0.1. Main results 11

simply connected k-groups of type A2, G2, and F4, arising from division algebras and

for k-subgroups of type D4 of Aut(A), where A is an Albert division algebra. In fact, we

explicitly exhibit such k-tori in each case (see Theorems 11.1.1, 11.3.1, 11.3.2, 11.5.1). It

seems likely that these numbers are minimal in each case. The numbers are mentioned

in the table below.

Table 2: Number of k-tori required for generation of groups

Type of group Number of rank-2 k-tori required for generation

A2 2
G2 3
D4 3
F4 4
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Results on Cohomology and applications

Let K be a quadratic étale k-algebra and L be an étale k-algebra of dimension n = 2r+1.

Let T be the K-unitary torus associated with the pair (L,K). In chapter 12, we calculate

H1(k, T ) and see some applications to algebraic groups and étale Tits processes. We

state below the main results in this regard. The proofs of these results form chapter 12

of the thesis.

Theorem. (Theorem 12.1.3, 12.1.5) Let K be a quadratic étale k-algebra and L be an

étale k-algebra of dimension n = 2r + 1. Let E be the K-unitary algebra and T the

K-unitary torus associated with the pair (L,K). Let K(1) (resp. L(1)) denote the norm

1 elements of K (resp. L). Then,

H1(k, T ) ∼=
K(1)

NE/K(U(E, τ))
× S

NE/L(E∗)
.

Also,

H1(k, T ) ∼=
L(1)

NE/L(E(1))
× M

NE/K(E∗)
,

where

S := {u ∈ L∗| NL/k(u) ∈ NK/k(K
∗)}, M = {µ ∈ K∗| µµ ∈ NL/k(L

∗)}

.

Theorem. (Theorem 12.2.4) There exists a surjective map from H1(k,SU(E, τ)) to

the set of L-isomorphism classes of étale Tits process algebras arising from (L,K).

Theorem. (Theorem 12.2.5) Let L,K be a étale k-algebras of dimension 3, 2 resp.

and (E, τ) be the K-unitary algebra and T the K-unitary torus associated with the pair

(L,K). Then H1(k, T ) = 0 if and only J(E, τ, u, µ) ∼=L J(E, τ, 1, 1), for all admissible

pairs (u, µ) ∈ L∗ ×K∗.

We study next the effect of the presence of a unitary torus T with H1(k, T ) = 0 in

groups of type A2, G2 and F4.

Theorem. (Theorem 12.3.2) Let F = k(
√
α) be a quadratic étale k-algebra and B be a

degree 3 central simple algebra over F with an involution σ of the second kind. Let T be

a maximal k-torus of SU(B, σ). If H1(k, T ) = 0 then σ is distinguished.
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Theorem. (Theorem 12.3.7) Let L,K be étale algebras over k of dimension 3, 2 resp.

and E be the K-unitary algebra and T the K-unitary torus associated with the pair

(L,K). Let G be a group of type F4 (resp. G2 or a simple, simply connected group of

type A2) defined over k. Assume that there is a k-embedding T ↪→ G. If H1(U(E, τ)) = 0

then f5(A) = 0 (resp. Oct(G) splits).





Chapter 1

Pfister forms and algebras

In this chapter we review some basic results on quadratic forms and composition alge-

bras. The exposition in this chapter is mostly based on two books, for the theory of

quadratic forms we refer to [20] and [53] for the theory of composition algebras. The

first section covers definitions and basic results on quadratic forms that are needed later

in the thesis. In the second section we introduce composition algebra and the concept

of doubling. In the final section we discuss some results on structure of composition

algebras. We fix a field k of characteristic 6= 2 for this chapter.

1.1 Theory of Quadratic forms

An (n-ary) quadratic form q over a field k is a polynomial f in n variables over k

that is homogeneous of degree 2. It has a general form

f(X1, · · · , Xn) =

n∑
i,j=1

aijXiXj ∈ k[X1, · · · , Xn] = k[X].

We can make the coefficients symmetric and rewrite f as

f(X) =
∑
i,j

1

2
a′ijXiXj ,

where a′ij = 1
2(aij + aji). In this way, f determines uniquely a symmetric matrix (a′ij),

which we call as the matrix associated with the quadratic form q and denote it by Mq.

We shall denote by < d1, · · · , d2 > the diagonal form d1X
2
1 + · · ·+ dnX

2
n.

A quadratic space over k is a pair (V, q) where V is a vector space over k equipped

15
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with a quadratic form q on V. The dimension of the quadratic space is the dimension

of the underlying vector space. Let V be a finite dimensional vector space over k and

B : V × V → k a symmetric bilinear form on V . We associate with it a quadratic form

q = qB : V → k, defined as q(x) := B(x, x) for all x ∈ V . Note that q and B determine

each other. Hence any vector space admitting a bilinear form has an induced quadratic

form and thus is a quadratic space. We say qB is a regular (or non-degenerate) quadratic

form, if for x ∈ V , B(x, y) = 0 for all y ∈ V implies that x = 0.

Two quadratic spaces (V1, q1) and (V2, q2) are said to be isometric if there exists a

linear isomorphism T : V1 → V2 such that for any v ∈ V1, q1(v) = q2(Tv).

Definition 1.1.1 Let (V1, q1) and (V2, q2) be quadratic spaces. Let V = V1 ⊕ V2 and

qB : V → k be defined as,

q(x1, x2) = q1(x1) + q2(x2),

for (x1, x2) ∈ V . Then (V, q) is called the orthogonal sum of (V1, q1) and (V2, q2) and

we write (V, q) = (V1, q1) ⊥ (V2, q2).

Definition 1.1.2 Let (V, q) be a quadratic space and v be a non-zero vector in (V, q).

We call v ∈ V isotropic if q(v) = 0 and call v anisotropic otherwise. The quadratic

space (V, q) is said to be isotropic if it contains a non-zero isotropic vector and said to

be anisotropic otherwise. (V, q) is said to be totally isotropic if all nonzero vectors

in V are isotropic. Let (V, q) be a two dimensional quadratic space. If V is isometric to

< 1,−1 > we call (V, q) a hyperbolic plane. A quadratic form which is an orthogonal

sum of hyperbolic planes is called a hyperbolic space.

Theorem 1.1.3 (Witt Decomposition theorem)([20], Theorem 4.1) Any quadratic space

(V, q) splits into an orthogonal sum

(Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa),

where Vt is totally isotropic, Vh is hyperbolic and Va is anisotropic. Furthermore, the

isometry types of Vt, Vh, Va are uniquely determined.

Definition 1.1.4 The integer m = (1/2)dimVh, uniquely determined in the Witt de-

composition above, is called the Witt index of the quadratic space (V, q).
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Let d ∈ k∗. We say a quadratic form q represents d if there exists a1, · · · , an ∈ k such

that q(a1, · · · , an) = d. We shall denote by Dk(q) the set of values in k∗ represented

by q. In general Dk(q) is not a subgroup of k∗. Let [Dk(q)] denote the subgroup of k∗

generated by Dk(q). Let Gk(q) be the group,

Gk(q) := {a ∈ k∗| a.q ∼= q}.

The tensor product of two quadratic forms is given by,

< a1, · · · an > ⊗ < b1, · · · , bn >=< a1b1, · · · aibj , · · · , anbn > .

Definition 1.1.5 Let a1, · · · , an ∈ k∗. An n-fold Pfister form over k, denoted by

<< a1, a2, .., an >>, is the 2n-dimensional quadratic form < 1,−a1 > ⊗ < 1,−a2 >

⊗...⊗ < 1,−an >.

Let K be an extension of a field k. For a given quadratic space (V, q) over k we construct

a quadratic space (VK , qK) over K as follows: the underlying vector space VK is taken

to be K ⊗k V , and the K-quadratic form qK is uniquely given by

qK(a⊗ v) = a2q(v),

for a ∈ K, v ∈ V . Note that the symmetric matrix of q with respect to a k-basis

{v1, · · · , vn} on V is the same as that of qK with respect to the K-basis {1⊗ v1, · · · , 1⊗

vn}. In particular if q is non-degenerate, so is qK ([20], Chapter VII).

We list below few useful results about Pfister forms.

Theorem 1.1.6 ([20], Theorem. 1.7) If a Pfister form q over k is isotropic, then it is

hyperbolic.

Theorem 1.1.7 ([20], Theorem. 1.8) For any Pfister form q over k, Dk(q) = Gk(q).

Theorem 1.1.8 (Knebusch norm principle) ([20], Chap. VII, Thm. 5.1) Let K/k be

a finite field extension of degree n and q be a quadratic form over k. Let x ∈ K∗. If

x ∈ DK(qK) then NK/k(x) is a product of n elements of Dk(q). (In particular NK/k(x) ∈
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[Dk(q)]). Hence if q is a Pfister form over F and qK is isotropic, then NK/k(K
∗) ⊆

DF (q).

Theorem 1.1.9 ( [20], Chap. IX, Pg. 305, Chap. X, Cor. 4.13) For any quadratic

form φ and any anisotropic quadratic form γ over k, the following are equivalent,

(i) φ ⊆ γ ( i.e, φ is isometric to a subform of the form γ over k).

(ii) DK(φ) ⊆ DK(γ) for any field K ⊇ k. Moreover, if φ and γ are both Pfister forms,

then the above conditions are also equivalent to

(iii) γ = φ ⊗ τ for some Pfister form τ over k (In this case we will call φ as a factor

of γ).

Theorem 1.1.10 Let φ be a nonzero anisotropic quadratic form and ψ be an irreducible

anisotropic quadratic form. Let k(φ) denotes the function field of φ. Suppose that the

form φ⊗ k(ψ) is hyperbolic. Let a ∈ Dk(φ) and b ∈ Dk(ψ). Then abψ is isometric to a

subform of φ.

Remark 1.1.11 A regular quadratic form φ is irreducible if and only if dim φ ≥ 3 or

dim φ = 2 and φ is anisotropic.

Theorem 1.1.12 ( [20], Chap. VII, Cor. 4.4) Suppose K/k is a finite field extension,

and q is a regular quadratic form over k. If qK is hyperbolic over K, then NK/k(K
∗) ⊆

Gk(q), where Gk(q) is the group of factors of similitudes of q. If, in addition, q is a

Pfister form, then NK/k(K
∗) ⊆ Dk(q), since Gk(q) equals Dk(q) for Pfister forms ([20],

Chap. X, Thm. 1.8).

Remark 1.1.13 Ler q1, q2 be Pfister forms over k. We say q2 divides q1 over k if

there exists a Pfister form q3 over k such that q1 = q2 ⊗ q3 over k. If q2 divides q1 over

k then by Theorem 1.1.9, q2 is a subform of q1 over k.

Arason invariants of Pfister forms:

Let ks be a fixed separable closure of k. Then Z/2Z is a trivial Gal(ks/k)-group. Let

Hn(k,Z/2Z) denote the nth Galois cohomology group with mod-2 coefficients (see Chap-

ter 4 for Galois cohomology). For an n-fold Pfister form q =<< a1, a2, · · · , an >> the

Arason invariant en(q) is given by,

en(q) = (a1) ∪ (a2) ∪ · · · ∪ (an) ∈ Hn(k,Z/2Z),
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where, for a ∈ k∗, (a) denotes the class of a in H1(k,Z/2Z) (see [1], Pg. 453).

Definition 1.1.14 ([19], §2.C) Let V be a finite rank free module over a quadratic étale

algebra K over k and let ι denote the non-trivial k-automorphism of K. A hermitian

form on V (with respect to ι) is a bi-additive map

h : V × V → K

such that

h(αv, βw) = ι(α)h(v, w)β for v, w ∈ V and α, β ∈ K

and

h(w, v) = ι(h(v, w)) for v, w ∈ V.

Similarly, one can also define hermitian modules over central simple algebras with unitary

involutions. We call h to be non-degenerate if the only element x ∈ V such that h(x, y) =

0 for all y ∈ V is x = 0. The pair (V, h) is called a hermitian space.

1.2 Composition algebras and Doubling

A composition algebra C over k is a finite dimensional k-algebra with identity element

together with a regular quadratic form N , called the norm form such that

N(x)N(y) = N(xy) for all x, y ∈ C.

On a composition algebra C there exists an involution ¯ : C → C such that xx = xx =

N(x). Note that the norm form N of C is a Pfister form, therefore is either hyperbolic

over k or anisotropic over k. It follows that any two composition algebras of the same

dimension over k, which both have isotropic norms, are isomorphic. We call these as

split composition algebras.

Theorem 1.2.1 ([53], Cor. 1.2.4) The norm N on a composition algebra is uniquely

determined by its algebra structure.

The following results on on the concept of doubling will be needed in the sequel.
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Proposition 1.2.2 ([53], Prop. 1.5.1)(Cayley-Dickson doubling) Let C be a compo-

sition algebra and D be a finite dimensional composition subalgebra, D 6= C. Choose

a ∈ D⊥ with N(a) = −γ 6= 0. Then A = D ⊕Da is a composition subalgebra of C of

dimension twice that of D, with multiplication given by;

(u+ vt)(x+ yt) = (ux+ γyv) + (yu+ vx)a,

for u, v, x, y ∈ D.

As a converse to the above proposition we have the following,

Proposition 1.2.3 ([53], Prop. 1.5.3) Let D be an associative composition algebra over

k with norm ND and λ ∈ k∗. Define on C = D ⊕D a product given by

(x, y)(u, v) = (xu+ λvy, vx+ yu)

for all x, y, u, v ∈ D and a quadratic form N by

N((x, y)) = ND(x)− λND(y)

for all x, y ∈ D. Then C is a composition subalgebra with N as its norm.

1.3 Structure of composition algebras

The results in the previous section enable us to prove a key result on the structure of

a composition algebra. In this section we discuss some basic results on structure and

dimension of compositions algebras.

Theorem 1.3.1 ([53], Theorem 1.6.2) The possible dimensions of a composition algebra

over k are 1, 2, 4 or 8.

As a corollary to Proposition 1.2.2 and Theorem 1.3.1 we see that there are no composi-

tion algebras of infinite dimension. If not then with such an algebra we could construct

a composition subalgebra of dimension 16, which will be a contradiction.
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Theorem 1.3.2 ([53], Theorem 1.8.1) In each dimension 2, 4 or 8 there is, up to iso-

morphism, exactly one split composition algebra (i.e, composition algebra with isotropic

norm). These are the only composition algebras with zero divisors.

A composition algebra of dimension 2 is isomorphic to either k⊕k or is a quadratic field

extension of k. A composition algebra of dimension 4 is called a quaternion algebra.

The split quaternion algebra over k is isomorphic to the algebra of 2 × 2 matrices over

k with the determinant as norm. Let M2(k) denote the 2 × 2 matrix algebra. For

x ∈M2(k), Let x be the adjugate matrix of x, i.e,

a b

c d

 =

 d −b

−c a

 .

Then x 7→ x is the involution on M2(k) with xx = xx = det(x).

Definition 1.3.3 An octonion algebra over k is a composition algebra over k of di-

mension 8.

Let C be an octonion algebra over k and let nC denote its norm form. Then C is

determined, up to isomorphism by nC , which is a 3-fold Pfister form over k. Conversely,

any 3-fold Pfister form is the norm form of a unique (up to isomorphism) octonion

algebra over k. Recall that an octonion algebra C over k is split if and only if the

associated norm form nC is isotropic over k. We now describe a model for the split

octonion algebra over k. Let C = M2(k)⊕M2(k). We define the product on C by

(x, y)(u, v) = (xu+ vy, vx+ yu)

and norm form by

N((x, y)) = det(x)− det(y).

By Proposition 1.2.3 C is an octonion algebra and is split since N is isotropic. Let C be

an octonion algebra over k and K ⊆ C be a quadratic étale subalgebra. Then K⊥ in C

with respect to the norm form on C, has a rank-3 hermitian module structure over K.

We record this below:

Proposition 1.3.4 ([12], §5) Let C be an octonion algebra over k and K ⊆ C be a

quadratic étale subalgebra. Then K⊥ ⊆ C has a rank-3 K-hermitian module structure
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given as follows:

Let K = k(
√
α), α ∈ k∗. Define h : K⊥ ×K⊥ −→ K by

h(x, y) = N(x, y) + α−1N(αx, y),

where N(x, y) is the norm bilinear form of C and K acts on K⊥ from the left via the

multiplication in C.



Chapter 2

Involutions on algebras

In this chapter, we will mainly focus on central simple algebras of degree 3 and discuss

their involutions of the second kind. These play a central role in the theory of exceptional

algebraic groups. Involutions of the second kind on a given central simple algebra of

degree 3 are classified, up to conjugation, by a 3-fold Pfister form. The exposition in

this chapter is mainly based on [19], [7], [63].

In the first and second section we discuss the theory of central simple algebras and

involutions of the second kind on central simple algebras of degree 3. In the third

section we introduce the notion of distinguished involutions. In the final section we

discuss some basic results on étale algebras.

We fix a field k of characteristic 6= 2, 3 for this chapter.

2.1 Central simple algebras

A finite dimensional k-algebra is called a central simple algebra over k if the center

Z(A) of A satisfies Z(A) = k and A has no proper two sided ideals. The set of invertible

elements of A is denoted by A∗. We call a central simple algebra A over k to be split

over k if A ∼= Mr(k) as k-algebras, for some r ∈ N. By Aut(A) we denote the group of

all k-algebra automorphisms of A.

Example 2.1.1 A = Mn(k) is a central simple algebra over k.

23
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Example 2.1.2 Consider the algebra of Hamilton quaternions H ⊂M2(C),

H =
{ a b

−b −a

 : a, b ∈ C
}

Then H is a central simple algebra over R. Also H splits over C.

Example 2.1.3 We can substitute the field R in Example 2.1.2 by any field k of char-

acteristic 6= 2 and C by a quadratic field extension K of k. More generally, let a, b ∈ k∗.

Define (a,bk ) to be the algebra k ⊕ ks⊕ kt⊕ kst with multiplication defined by st = −ts,

s2 = a, t2 = b. Then (a,bk ) is a four dimensional central simple algebra over k which is a

quaternion algebra, and all quaternion algebras over k arise this way. In this notation,

H as above is isomorphic to (−1,−1
R ). Note that quadratic forms and quaternion algebras

are strongly related to each other. Some of the important invariants of quadratic forms

are defined in terms of quaternion algebras. Also the theory of central simple algebras

with involutions interacts strongly with quaternion algebras.

Theorem 2.1.4 (Wedderburn) Let A be a central simple algebra over k. There is a

unique central division algebra D and a positive integer n such that A ∼= Mn(D).

Let A be a finite dimensional central simple algebra over k. Then there is a field

extension K of k such that A ⊗k K ∼= Mn(K), for some n, where A ⊗k K denotes the

scaler extension of A to K. The field K is called a splitting field for A. Since the

dimension of an algebra does not change under an extension of scalers, it follows that the

dimension of every central simple algebra is a square: dimk(A) = n2 if A⊗kK ∼= Mn(K)

for some extension K/k. The integer n is called the degree of A. Note that since over an

algebraically closed field F there are no finite dimensional division algebras, any central

simple algebra over an algebraically closed field F is necessarily split, i.e, A ∼= Mr(F )

for some r ∈ N.

We now describe the structure of central simple algebras of degree 3. We state Wedder-

burn’s theorem which shows that these algebras are cyclic. We begin with the definition

of cyclic algebras,

Definition 2.1.5 ([19], §30.A) Set Cn = Z/nZ and ρ = 1 + nZ ∈ Cn. Given a Galois

Cn-algebra L over k and an element a ∈ k∗, the cyclic algebra (L, a) is defined as
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follows:

(L, a) = L⊕ Lz ⊕ · · · ⊕ Lzn−1

where z is subject to relations

zl = ρ(l)z, zn = a

for all l ∈ L.

Theorem 2.1.6 (Wedderburn) Every central simple k-algebra of degree 3 is cyclic.

The following theorem classifies all automorphisms of a central simple algebra.

Theorem 2.1.7 (Skolem- Noether theorem)([19], Theorem 1.4) Let A be a central sim-

ple algebra over k and let B ⊆ A be a simple subalgebra. Every k-algebra homomorphism

f : B → A extends to an inner automorphism of A, i.e, there exists a ∈ A∗ such that

f(b) = aba−1 for all b ∈ B. In particular, every automorphism of A is inner.

As a corollary we have our next theorem:

Theorem 2.1.8 Let A be a central simple algebra over k. Then Aut(A) ∼= A∗/k∗.

Taking A = Mn(k) we immediately deduce that Aut(Mn(k)) ∼= GLn(k)/k∗ = PGLn(k).

2.1.1 Reduced norm and reduced trace

Let A be a central simple algebra over k and let L be a splitting field for A. Choose an

L-isomorphism

φ : A⊗k L→Mn(L).

For any x ∈ A det φ(1 ⊗ x) belongs to k and is independent of the isomorphism φ as

well as L. We will call det φ(1 ⊗ x) the reduced norm of x and denote it by NA(x).

Similarly, the element trace φ(1⊗x) belongs to k and is independent of the isomorphism

φ. as well as L. We will call trace φ(1 ⊗ x) the reduced trace of x and denote it by

TA(x).

2.2 Involutions of the second kind

We know discuss involutions of the second kind on central simple algebras. We first fix

some notations. Let K = k(
√
α) = k[X]/(X2 − α) (either K ∼= k × k or K is a field
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extension) be a quadratic étale algebra. Let B be a finite dimensional k-algebra whose

center is K, and assume that either B is simple (if K is a field) or a direct product of

two simple algebras (if K = k × k). An involution of the second kind (also called a

unitary involution) on B is a k-linear map σ : B → B such that for all x, y ∈ B,

(1) σ(xy) = σ(y)σ(x),

(2) σ2(x) = x

(3) σ|K 6= 1.

For example, Take K = C, B = Mn(C) and σ : B → B be given by the map X → X
t
.

For convenience, we refer to (B, σ) as a central simple algebra over K with involution

of the second kind, even though the algebra B may not be simple. A homomorphism

f : (B, σ)→ (B′, σ′) is a k-algebra homomorphism f : B → B′ such that σ′ ◦ f = f ◦σ.

Proposition 2.2.1 ([19], Proposition 2.14) Let (B, σ) as a central simple algebra over

K with involution of the second kind. If K = k × k, there is a central simple k-algebra

E such that

(B, τ)σ(E × E, ε),

where the involution ε is defined by ε(x, y) = (y, x).

This involution ε as above is called the switch involution. Note that K ⊗ K ∼=

K ×K as K-algebras (More generally, let ¯ denote the non-trivial involution of K then

(K ⊗K, ¯ ⊗ 1) ∼= (K ×K, ε) where ε : K ×K → K ×K is given by ε(x, y) = (y, x).

This isomorphism is given by x ⊗ y 7→ (xy, xy)). Hence if the center K of B is a field

then (B ⊗K,σ ⊗ 1) ∼= (B × Bop, ε), where Bop is the opposite algebra of B. We now

classify all involutions of the second kind on a given central simple algebra,

Proposition 2.2.2 ([19], Proposition 2.18) Let K be a quadratic étale extension of k

and (B, σ) be a central simple algebra over K with involution of the second kind.

(1) For every unit u ∈ B∗ such that σ(u) = λu with λ ∈ K∗, the map Int(u) ◦ σ is an

involution of the second kind on B.

(2) Conversely, for every involution σ′ on B which restricts to the non-trivial automor-

phism of K/k, there exists some u ∈ B∗, uniquely determined up to a factor in k∗, such

that

σ′ = Int(u) ◦ σ and σ(u) = u.
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2.3 Distinguished involutions

We now collect together some results from the theory of unitary involutions on cen-

tral simple algebras of degree 3 from ([7]) and introduce the notion of a distinguished

involution. Let K be a quadratic étale extension of k and let B be a central simple

algebra of degree 3 over K with σ an involution of the second kind. Let (B, σ)+ denote

the k-subspace of σ-symmetric elements in B. Let TB denote the reduced trace on B

and Qσ denote the restriction of the trace quadratic form x 7→ TB(x2) to (B, σ)+. Let

< u >B be the B-hermitian form on B (as a right B-module) given as

< u >B (x, y) = σ(x)uy,

for u ∈ (B, σ)+ ∩ B∗ and x, y ∈ B. The B-hermitian forms < u1 >B and < u2 >B are

isometric, written < u1 >B∼< u2 >B, if there exists v ∈ B∗ such that σ(v)u2v = u1

and are similar if there is λ ∈ k∗ such that λσ(v)u2v = u1.

Proposition 2.3.1 ([7], Lemma 1) Let u1, u2 ∈ (B, σ)+ ∩B∗ and let σi = Int(ui) ◦ σ.

Then

(1) An isomorphism (B, σ1) ∼= (B, σ2) of algebras with involutions induces an isometry

Qσ1
∼= Qσ2.

(2) (B, σ1) and (B, σ2) are isomorphic (as K-algebras with involution) if and only if the

hermitian forms < u1 >B and < u2 >B are similar.

Next result provides a decomposition of Qσ;

Proposition 2.3.2 ( [7], §4) Let K = k(
√
α) := k[x]/(x2 − α). Then there exist

b, c ∈ k∗ such that,

Qσ ∼=< 1, 1, 1 > ⊥ < 2 > . << α >> . < −b,−c, bc > .

Proposition 2.3.3 ( [7], Thm. 15) Let B and σ be as above and let σ′ be another

involution of the second kind on B over K/k with, Qσ′ ∼=< 1, 1, 1 > ⊥ < 2 > . <<

α >> . < −b′,−c′, b′c′ >.

Then the following are equivalent,

(i) The involutions σ and σ′ are isomorphic.

(ii) The quadratic forms Qσ and Qσ′ are isometric.
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(iii) The quadratic forms << α >> ⊗ < −b,−c, bc > and << α >> ⊗ < −b′,−c′, b′c′ >

are isometric.

(iv) The Pfister forms << α, b, c >> and << α, b′, c′ >> are isometric.

In view of this, one can assign to an involution σ of the second kind on B, an invariant

in H3(k,Z/2Z) denoted by f3(B, σ), which is the Arason invariant of the 3-fold Pfister

form << α, b, c >> associated to σ as above i.e, f3(B, σ) = (a) ∪ (b) ∪ (c).

Remark 2.3.4 ([19], Remark 19.7) Let K be a quadratic étale extension of k and let

(B, σ) and (B′, σ′) be central simple algebras of degree 3 over K with an involution of

the second kind. Then f3(B, σ) ∼= f3(B′, σ′) does not imply that (B, σ) ∼= (B′, σ′). For

example, choose B � B′ and K = k×k. In this case f3(B, σ) ∼= f3(B′, σ′) are hyperbolic

(since both contain the factor of << α >>=< 1,−1 >) but (B, σ) and (B′, σ′) are not

isomorphic.

Following ([7], §4), we have,

Definition 2.3.5 A unitary involution σ on a central simple algebra B of degree 3 over

K is called a distinguished involution if f3(B, σ) = 0.

One can show that if σ is distinguished then either K = k × k or < −b,−c, bc >K∼=<

1,−1,−1 >K ( [7], Thm. 16). For B = M3(K), up to automorphisms of (B, σ), we have

σ = Int(a) ◦ τ , where τ(xij) = (xij)
t with a = diag(a1, a2, a3) ∈ GL3(k). It also follows

([7], Prop. 2) that,

Qσ ∼=< 1, 1, 1 > ⊥ < 2 > . << α >> . < a1a2, a1a3, a2a3 > .

In this case f3(B, σ) =<< α,−a1a2,−a2a3 >>. Hence, if σ is distinguished and K is

a field, then < a1a2, a1a3, a2a3 >K∼=< 1,−1,−1 >K . We state below few results which

will be essential for our work.

Proposition 2.3.6 ( [7], Prop. 17) Let K be a quadratic étale algebra over k and let

B be a central simple algebra of degree 3 over K which admits a unitary involution over

K/k. Then B admits a distinguished involution over K/k.

Proposition 2.3.7 ( [7], Cor. 18) The space (B, σ)+ contains an isomorphic copy of

every cubic étale k-subalgebra L of B if and only if σ is distinguished.
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Proposition 2.3.8 ( [7], Prop. 17) Let B be as above. For every cubic étale k-

subalgebra L ⊆ B, there is a distinguished involution σ on B such that L ⊆ (B, σ)+.

2.4 Étale algebras

A finite dimensional commutative k-algebra L such that L ∼= K1 × ... × Kr for some

finite separable field extensions Ki of k, is called an étale algebra. Equivalently, an

étale algebra is a finite dimensional commutative k-algebra L such that L ⊗ ksep ∼=

ksep × ... × ksep. Let k be a field of characteristic different from 2, 3 and L be an étale

k-algebra of dimension n. Let T : L×L→ k be the bilinear form induced by the trace,

T (x, y) = TL/k(xy) for x, y ∈ L, where TL/k denotes the trace map of L. Let d ∈ k∗

represents the square class of the determinant of the bilinear form T .

Definition 2.4.1 ([19], Prop. 18.24) Let L be an étale k-algebra of dimension n. Then

the discriminant algebra δ(L) of L over k, is defined to be k[T ]/(t2 − d).

For the special case when L is a cubic étale k-algebra, by ([19], Prop. 18.25) we have,

Proposition 2.4.2 Let L be an étale algebra of dimension 3 over k. There is a canonical

k-isomorphism L⊗ L ∼= L× L⊗ δ(L) of k-algebras.

In this thesis we will denote δ(L) by Disc(L) and at times also write Disc(L) = d.





Chapter 3

Linear Algebraic groups

In this chapter we review some results on linear algebraic groups which will be needed

in the thesis. The exposition in this chapter is mostly based on the books [3], [11], [54].

The first section covers definition and examples of algebraic groups. The second section

covers results on tori. In the third section we introduce the notion of root systems. The

forth section describes the classification of simple algebraic groups. The fifth section

gives a brief summary of the Borel-De Siebenthal algorithm. In the final section we

study quasi-split groups, especially those of type G2 and A2.

3.1 Definition and examples

Fix an algebraically closed field K.

Definition 3.1.1 An affine algebraic group is an affine variety G defined over K

with a group structure such that the product m : G × G → G given by (x, y) 7→ xy and

the inversion i : G→ G given by x 7→ x−1 are morphisms of varieties.

Let the general linear group, denoted by GLn be the group consisting of all n × n

matrices with non-zero determinant with entries in K, together with matrix multipli-

cation as group operation. It can be easily seen that GLn is an affine algebraic group.

Moreover we have,

Proposition 3.1.2 Any affine algebraic group G is a Zariski closed subgroup of GLn

for some n.

31
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For this reason affine algebraic groups are called linear algebraic groups.

For a subfield k of K, an algebraic group G is said to be defined over k or a k-group

if, as an algebraic variety, it is defined over k. Let L/k be a field extension and G be a

k-group. Note that the underlying variety of G is also defined over L. The L-group G

thus obtained is denoted by G⊗k L. Also G(L) denotes the group of L-rational points

of G. We now give some examples of k-groups:

Example 3.1.3 Consider the group GL1 over k. It is a k-group and we denote it by

Gm and call it the multiplicative group over k. When we need to specify the field k we

also write Gm,k. We define another k-group Ga, the additive group over k, for which

Ga(L) = L for every extension L of k.

Example 3.1.4 The group of non-singular diagonal matrices, Dn := {X = (xij) ∈

GLn : xij = 0 if i 6= j}.

Example 3.1.5 The group of non-singular upper triangular matrices, Tn := {X =

(xij) ∈ GLn : xij = 0 if i > j}.

Example 3.1.6 The special linear group, SLn := {X ∈ GLn : det(X) = 1}.

Example 3.1.7 The orthogonal group, On := {X ∈ GLn : X.Xt = 1}.

Example 3.1.8 The special orthogonal group, SOn := On ∩ SLn.

Example 3.1.9 Let (V,Q) be a quadratic space over k and Q be a non degenerate

quadratic form. Define a k-group SO(V,Q), the special orthogonal group of Q, for

which SO(V,Q)(L) = {g ∈ SL(V ⊗ L)| Q(g(v)) = Q(v)}, for all v ∈ V ⊗ L, where

SL(V ⊗ L) denotes the group of all bijective linear transformations V ⊗ L → V ⊗ L

of determinant one, for any finite dimensional commutative k-algebra L. Note that the

group SOn defined in Example 3.1.8 is the special orthogonal group corresponding to

q =<< 1, ..., 1 >>.

Example 3.1.10 Unitary groups: Let K be a quadratic étale extension of a field k

and let B be either a central simple K-algebra or an étale K-algebra in the sense of ([19],

§18.A). Assume that there is an involution σ on B of the second kind over K, i.e. σ

restricts to K as the non-trivial k-automorphism of K. Let NB denote the reduced norm
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map of the central simple algebra B or the norm map on the étale algebra B. We then

define the algebraic groups U(B, σ) and SU(B, σ), by specifying the group of L-rational

points, for any finite dimensional commutative k-algebra L, as follows :

U(B, σ)(L) = {x ∈ B ⊗L| xσ(x) = 1}, SU(B, σ)(L) = {x ∈ U(B, σ)(L)| NB(x) = 1}.

We will denote U(B, σ)(k) by U(B, σ) and SU(B, σ)(k) by SU(B, σ).

Notation: For a finite dimensional k-algebra A, the full group of automorphisms

Autk(A⊗k k), is an algebraic group defined over k. We will denote this algebraic group

by Aut(A) and its group of k-rational points will be denoted by Aut(A).

Let G be a connected linear algebraic group. We call x ∈ G a semisimple (resp. unipo-

tent) if and only if for any isomorphism φ of G onto a closed subgroup of some GLn we

have that φ(x) is semisimple (resp. unipotent). The group G is said to be unipotent if all

its elements are unipotent. The maximal closed, connected, solvable, normal subgroup

of G is called the radical of G, denoted by R(G) and the maximal closed, connected,

unipotent subgroup of G is called the unipotent radical of G, denoted by Ru(G). We

call a group G semisimple if R(G) is trivial. The group G is called reductive if Ru(G)

is trivial. A torus is a reductive group which is not semisimple.

Example 3.1.11 The Weil restriction: Let G be an algebraic group defined over

a finite separable field extension L of a field k. The Weil’s restriction of scalars

of G from L to k, denoted by RL/k(G) is an algebraic group over k with the property

RL/k(G)(k) = G(L). More generally, for any extension M of k, RL/k(M) = G(L⊗M).

Also,

DimkRL/k(G) = [L : k]DimLG.

One can also define RL/k(Gm) for a finite étale extension L of k. For more details see

([64], §3.12).

3.2 Tori

A k-torus is a k-group which is k−isomorphic to Gnm for some n. A k-torus T is

said to be k-split if it is k-isomorphic to some Gnm. By the rank of a torus T we

mean its dimension. A character of a torus T is an algebraic group homomorphism
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χ : T −→ Gm. We denote the character group of T by X(T ) = Hom(T,Gm). The

multiplication here is defined as (written additively), (χ1 + χ2)(t) = χ1(t)χ2(t), for all

χ1, χ2 ∈ X(T ) and t ∈ T . Let X(T )k denote the subgroup of X(T ) consisiting of

characters of T defined over k. We say T is k-isotropic if X(T )k 6= {1}, k-anisotropic

otherwise. Note the T is k-split if and only if X(T )k = X(T ). Let G be an algebraic

group defined over k. A torus T ⊆ G is called a maximal torus of G if it is not properly

contained in any other torus in G. A maximal k-torus need not be k-split in general. Let

T be a torus in G which is maximal with respect to being split over k. The dimension

of such a torus T is called the k-rank of G over k. Note that all k-tori split over k. By

the absolute rank of an algebraic group G defined over k we mean the dimension of a

maximal torus in G.

Definition 3.2.1 Let G be a connected reductive group defined over k. We say G is k-

anisotropic if G contains no non-central k-split tori and k-isotropic otherwise. When

G is semisimple, G is k-isotropic if and only if the k-rank of G is positive.

Proposition 3.2.2 ([47], Prop. 6.3) Let G be a connected reductive algebraic group

defined over a perfect (infinite) field k, then G is k-anisotropic if and only if G(k)

contains no non-trivial unipotents .

We give some examples of tori below:

Example 3.2.3 Let [L : k] = n. Let T = RL/k(Gm) over L. Then T is a torus defined

over k.

Example 3.2.4 Let L be a finite separable field extension of k. The norm map NL/k :

L∗ → k∗ induces a surjective morphism of k-tori RL/k(Gm,L)
N−→ Gm,k → 1. We denote

Ker(N) by R
(1)
L/k(Gm,L) and occasionally also by L(1) and call it the norm torus of L.

Note that RL/k(Gm,L) is k-isotropic while R
(1)
L/k(Gm,L) is anisotropic over k.

Example 3.2.5 Over the complex numbers, the group SO2 is conjugate to the diagonal

subgroup, since if a2 + b2 = 1, then

c

 a b

−b a

 c−1 =

a+ bi 0

0 a− bi

 , with c =
1√
2i

1 i

1 −i

 .

Thus SO2 ⊆ SL2 is a maximal non-split torus, defined over R.
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Example 3.2.6 SO2 × SO2 is a two-dimensional R-anisotropic torus.

Example 3.2.7 Let K be a quadratic étale extension of k and B be an étale algebra

over K of dimension n, then U(B, σ) and SU(B, σ), as defined in the previous section,

are tori defined over k (of rank resp. n and n− 1).

Next we describe the structure of rank-1 tori over k.

Theorem 3.2.8 ([64], Chap.II, §IV, Example 6) Let T be a rank-1 torus over k. Then

T ∼= K(1), the norm torus of a quadratic étale extension K/k.

3.3 Root systems

Let E be a finite dimensional vector space over R. Define a reflection, relative to a

non-zero vector α ∈ E, to be a linear transformation which sends α to −α and fixes

pointwise a subspace of codimension 1.

Definition 3.3.1 ([11], Appendix) A root system in the real vector space E is a subset

Φ of E satisfying:

(1) Φ is finite, spans E, and does not contain 0 (The elements of Φ are called roots).

(2) If α ∈ Φ, the only multiples of α in Φ are +α,−α.

(3) If α ∈ Φ, there exists a reflection τα relative to α which leaves Φ stable.

(4) If α, β ∈ Φ, then τα(β)− β is an integral multiple of α.

If Φ′ is a root system in E′, then φ′ is said to be isomorphic to Φ if there exists an

isomorphism of vector spaces from E′ onto E which maps Φ′ to Φ and preserves the

integers which occur in (4). In particular we can talk of an automorphism of a root

system Φ in E. The reflections τα for α ∈ Φ, are automorphisms of Φ. The subgroup

W (Φ) of Aut(Φ) generated by the τα, α ∈ Φ, is a finite subgroup of GL(E), called the

Weyl group of Φ. There is an inner product (α, β) on E with respect to which W (Φ)

consists of orthogonal transformations.

A subset ∆ of Φ is called a base if ∆ = {α1, · · · , αl} is a basis of E, relative to which

each α ∈ Φ has a (unique) expression α = Σciαi, where the ci are integers of like sign.

One can prove that a basis ∆ ⊂ Φ always exists. The roots belonging to a fixed basis

∆ are called simple roots.
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To a root system Φ as above we associate a diagram as follows:

We fix a basis ∆ of Φ. We form a graph with vertex set as ∆ and we join two simple

roots α, β by 4(α,β)2

(α,α)(β,β) many edges. It is easily seen that the number of edges between

two vertices is 0, 1, 2 or 3. The diagram thus obtained is called the Dynkin diagram

of Φ.

By a subsystem Φ′ of Φ we mean a subset Φ′ ⊂ Φ which itself forms a root system.

A proper subsystem Φ1 of Φ is called maximal if there is no subsystem Φ2 satisfying

Φ1 ⊂ Φ2 ⊂ Φ.

Definition 3.3.2 Let Φ be a root system. The height of the root β = Σα∈∆cαα ∈ Φ is

defined as ht(β) := Σα∈∆cα. The root α0 which has the largest height among all roots

in Φ, is called the highest root of Φ. One can see that there is a unique root with this

property.

A root system is reducible if there exist proper subsets Φ1,Φ2 of Φ such that Φ = Φ1∪Φ2

and each root in Φ1 is orthogonal to each root in Φ2. Otherwise, we call Φ irreducible.

Note that every root system is decomposed into a disjoint union of irreducible root

systems.

Now we shall classify root systems of algebraic groups. Let G be a connected algebraic

group over k. We call G to be simple if G has no proper closed connected normal

subgroups. Let G be a connected reductive algebraic group over k. Fix a maximal torus

T in G. We denote the character group of T by X(T ). If rank of G is r (i.e, dimension

of T is r) then, X ∼= Zr. A cocharacter of T is an algebraic group homomorphism

γ : Gm −→ T . We denote the co-character group of T by Y (T ) = Hom(Gm, T ). The

multiplication here is defined (written additively) as, (γ1 + γ2)(t) = γ1(t)γ2(t), for all

γ1, γ2 ∈ Y (T ) and t ∈ Gm.

Let χ ∈ X(T ) and γ ∈ Y (T ), then χ ◦ γ is a homomorphism of Gm to itself. Note that

any homomorphism f : Gm → Gm is of the form f(x) = xn for all x ∈ Gm and some

n ∈ Z. We denote by < χ, γ > the integer such that χ(γ(α)) = α<χ,γ> for all α ∈ Gm.

Thus we have a non-degenerate bilinear map 〈, 〉 : X(T )× Y (T )→ Z.

Let g denote the Lie algebra of G. Then T acts on g via the representation Ad : G →

GL(g) where, for g ∈ G, Ad(g) = d(Int(g)), the differential of the inner conjugation

automorphism of G is given by g. Note that since T is a commuting set of semisimple
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elements, it acts diagonally on g ([54], §7.1) and g decomposes as a direct sum of T -

invariant subspaces,

g = ⊕χ∈X(T )gχ,

where gχ := {x ∈ g : Ad(t)(x) = χ(t)x, ∀t ∈ T}. The subspaces gχ 6= 0 are called the

root spaces and any non-zero vector in it is called a root vector. Those χ ∈ X(T )

for which gχ 6= 0 are called the roots of G with respect to T . Let Φ(G,T ) := {χ ∈

X(T )| gχ 6= 0}. Note that X(T ), Y (T ),Φ(G,T ) are independent of the chosen maximal

torus T and we denote these simply by X,Y,Φ resp. One can show the Φ ⊆ X(T )⊗Z R

is a root system. Given a group G, Φ is defined to be the root system of G.

To each root α ∈ Φ we associate a cocharacter α∗ ∈ Y such that < α,α∗ >= 2. The

set Φ∗ := {α∗ : α ∈ Φ} the called the set of coroots of G with respect to T . Let

V := R⊗X. It follows that there exists a subset ∆ of Φ such that ∆ is a basis of V and

any element in Φ is an integral linear combination of elements of ∆, with all coefficients

of the same sign. The elements of ∆ are called simple roots.

A homomorphism of algebraic groups f : G1 → G2 is called an isogeny if ker(f) is

finite. If ker(f) is contained in the center of G1, we call f a central isogeny.

Theorem 3.3.3 ([54], §9.6) A connected, split, semisimple k-group G is determined,

up to a central isogeny, by the isomorphism class of its root system.

3.4 Classification of simple groups

Simple groups correspond to irreducible root systems which eventually can be classified

into one of the following Cartan Killing types: An, Bn, Cn, Dn, E6, E7, E8, F4, G2. The

four infinite family of simple groups An, Bn, Cn and Dn called the classical simple

groups. Here the subscript n denotes the rank of the group. In each diagram of type

Xn below, there are n vertices, corresponding to the rank of the corresponding group.

Type An (n ≥ 1):

This family of simple k-groups corresponds to the special linear group SLn+1. This

group is simply connected whereas the corresponding adjoint group is PSLn+1.

Let K be a quadratic étale extension of k. Note that the group SU(B, σ) is a simple,

simply connected algebraic group of type An defined over k when B is a central simple
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k-algebra of degree n + 1, with an involution σ on B of the second kind over K. The

Dynkin diagram is given by:

• · · ·• • • • •

Type Bn (n ≥ 2):

This family of simple k-groups correspond to the special orthogonal groups SO2n+1.

This group is adjoint and the corresponding simply connected group is Spin2n+1. The

Dynkin diagram is given by:

• · · ·• • • • •>

Type Cn (n ≥ 3):

This family of simple k-groups correspond to the symplectic groups Sp2n. This group

is simply connected whereas the corresponding adjoint group is PGSpn. The Dynkin

diagram is given by:

• · · ·• • • • •<

Type Dn (n ≥ 4):

This family of simple k-groups correspond to the special orthogonal groups SO2n. This

group is neither simply connected nor adjoint. The corresponding simply connected

group is given by Spin2n and the corresponding adjoint group is given by PGSO2n.

The Dynkin diagram is given by:

• • • . . . • •�
�
•

@
@•

Exceptional groups:

In addition to these four families of classical groups there are five exceptional groups.

These are difficult to handle than the classical groups, since these arise from non-

associative algebras. The groups of type G2, F4 arise from octonion algebras and Albert

algebra resp. We describe these in Section 5.2. Some groups of type E6, E7, E8 can

be described using octonion and Albert algebras, see [53]. We are not going to say

much about the rest three exceptional groups E6, E7, E8 in this thesis. Following are
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the Dynkin diagrams of these groups.

Type E6:

• • • • •

•

Type E7:

• • • • •

•

•

Type E8:

• • • • •

•

•• •

Type F4:

• • •> •

Type G2:

• •>

Let G be a semisimple algebraic group over a field k. By the type of G we mean the

Cartan-Killing type of the root system of the group G ⊗ k, obtained by extending the

scalars to an algebraic closure k. Let G be a reductive algebraic group over a field k.

By the type of G we mean the type of its commutator subgroup [G,G].

3.5 Borel-De Siebenthal algorithm

For this section we mainly refer to [2],[30]. The Borel-De Siebenthal algorithm an-

swers the following question: given a root system, what are all the possible closed subroot

systems? (More precisely, the possible maximal closed subroot systems of an irreducible

root system). We first define closed subsystems.
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Definition 3.5.1 A subsystem Φ′ ⊂ Φ is closed if for any α, β ∈ Φ′, α+β ∈ Φ implies

α+ β ∈ Φ′

A proper subsystem Φ′ of a root system Φ is called a maximal closed subsystem if

Φ is closed and if there is no closed subsystem Φ′′ satisfying Φ′ ⊂ Φ′′ ⊂ Φ.

Let Φ be an indecomposable root system with base ∆. Let α0 be the highest root of Φ

with respect to ∆. An extended Dynkin diagram of Φ can be obtained from the set

∆∪ {−α0} in the same way as the ordinary Dynkin diagram of Φ can be obtained from

∆. We now state the Borel-De Siebenthal theorem:

Theorem 3.5.2 (Borel-De Siebenthal) Let Φ be an indecomposable root system with

base ∆ and the highest root α0 = Σα∈∆nαα with respect to ∆. Then the maximal closed

subsystems of Φ, up to conjugation by W , the Weyl group of Φ, are those with basis:

(1) ∆ \ {α} ∪ {−α0} for α ∈ ∆ with nα a prime and,

(2) ∆ \ {α} for α ∈ ∆ with nα = 1.

This Theorem helps us in calculating explicitly all maximal closed subsystems of an

indecomposable root system.

We now state the algorithm of Borel-De Siebenthal for the determination of all closed

subsystems of a root system.

(1) For any proper subset of ∆ ∪ {α0}, corresponding to a subdiagram of the extended

Dynkin diagram, we form the extended Dynkin diagram of each indecomposable part of

that subdiagram and repeat this process.

(2) At any stage of the process, the set of nodes of the current diagram is a subset

J ⊆ Φ and Ψ := ZJ ∩ Φ is a closed subset of Φ.

Definition 3.5.3 A subsystem subgroup of a connected reductive group G is a semisim-

ple subgroup normalized by a maximal torus of G.

Remark 3.5.4 Let G be a connected reductive group. Note that any maximal rank

reductive subgroup of G is a subsystem subgroup since it contains a maximal torus of G.

Proposition 3.5.5 ([30], Proposition 13.5) Let G be a connected reductive group with

root system Φ and let H ≤ G be a subsystem subgroup. Then the root system of H can

be naturally regarded as a subsystem of Φ.
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We now discuss the extent to which closed subsystems account for all subsystems sub-

groups.

Theorem 3.5.6 Let k be a field of characteristic different from 2, 3 and G be a simple

algebraic group with root system Φ. The algorithm of Borel-de Siebenthal described above

gives all subsystem subgroups of G.

Since by Remark 3.5.4, any maximal rank reductive subgroup of G is a subsystem sub-

group, the algorithm of Borel-de Siebenthal gives all maximal rank reductive subgroup

of G.

In the extended diagrams below, the node 0 corresponds to −α0, where α0 is the highest

root.

Example 3.5.7 We begin with the most simple case, take the root system of type A2.

Consider the corresponding extended Dynkin diagram Ã2.

•1 • 2

•
0

@
@
@

�
�
�

We first remove one node. Observe that on removal of any of the nodes 0, 1, 2 of Ã2 we

again get the root system of type A2. Lets remove two nodes. Note that removal of any

two nodes leads to a Dynkin diagram of type A1. Hence A2-root system contains a closed

subsystem of type A1. Since the algorithm of Borel-de Siebenthal gives all maximal rank

semisimple subgroups, we see that A1 ×A1, B2, G2 * A2.

Example 3.5.8 Lets start with the root system of type G2. Consider the corresponding

extended Dynkin diagram G̃2.

•
1

•< •
2

0

We first remove one node. Observe that on removal of node 0 we again get the root

system of type G2. On removal of node 2, we get a the root system of type A1 × A1.
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On removal of node 1 we get a the root system of type A2. Hence G2 contains closed

subsystems of type A1, A1×A1 and A2. Since the algorithm of Borel-de Siebenthal gives

all maximal rank semisimple subgroups, we see that B2 * G2.

Example 3.5.9 We start with the root system of type D4. Consider the corresponding

extended Dynkin diagram D̃4.

•
�
�
•

@
@••

•
2

�
�

@
@

0

1 44

3

We first remove one node. Observe that on removal of any of the nodes 0, 1, 3 or 4 of

D̃4 we again get the root system of type D4. Lets remove node 2. Removal of node 2

leads to a Dynkin diagram of type A1×A1×A1×A1. Hence D4-root system contains a

closed subsystem of type A1 × A1 × A1 × A1. Now we remove two nodes at a time. On

removal of nodes 2, 3 we get a Dynkin diagram of type A1 × A1 × A1. On removal of

nodes 3, 4. We get a Dynkin diagram of type A3.

•1
2
• • 3

Hence D4-root system contains a closed subsystem of type A3
∼= D3. Again consider

the corresponding extended Dynkin diagram Ã3.

•1
2
• • 3

•
0

@
@
@

�
�
�

By removing any of the nodes 0, 1, 2 or 3 we get a Dynkin diagram of type A3. Hence

D4-root system contains a closed subsystem of type A3. By removing nodes 2, 0 we get

a Dynkin diagram of type A1 × A1. In particular we have inclusions of the subsystem

subgroups of D4 as follows:

A1 ⊆ A1 ×A1 ⊆ A1 ×A1 ×A1 ⊆ A1 ×A1 ×A1 ×A1 ≤ D4, A2 ≤ A3 ≤ D4.

Since the algorithm of Borel-de Siebenthal gives all maximal rank semisimple subgroup

of G, A2 ×A2 * D4.
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3.6 Quasi-split groups

A k-group G is said to be quasi-split over k if there exists a Borel subgroup (a

maximal connected closed solvable subgroup) of G that is defined over k. Clearly, if G

splits over k then G is quasi-split over k. Another characterization of quasi-siplit groups

is given in ( see [61]),

Theorem 3.6.1 A semisimple group G over k is quasi-split if and only if the centralizer

of a maximal k-split torus S of G is a torus.

Proposition 3.6.2 ([19], Proposition 27.8) Let G be an algebraic group of type Bn, Cn, E7, E8, F4

or G2. If G is quasi-split over k then G splits over k.

3.6.1 Quasi-split groups of type An

Let G = SU(V, h) be a special unitary group, where dimension of V is 2n + 1 (or 2n).

Then G is quasi-split over k if and only if its k-rank is n ([61],Table of Tits indices). In

particular, for a simple, simply connected group G of type A2 defined over k, G is quasi-

split (non-split) over k if and only its k-rank is 1. Let G be a simple, simply connected

group of type A2 defined over k. In the thesis we will give another characterization of

G being quasi-split.

We now give another characterization of being quasi-split for the A2-type group.

Theorem 3.6.3 Let G = SU(B, σ) be a simple simply connected group of type A2

defined over k, where B is a degree 3 central simple algebra with center a quadratic étale

k-algebra K and with an involution σ of the second kind. Then G is quasi-split over k

if and only if B = M3(K) and σ is distinguished.

Proof. Note that G is quasi-split (non-split) over k if and only its k-rank is 1 ([61],

Table on Tits indices). Assume that G is quasi-split (non-split) over k. Hence k-rank of

G is 1 and therefore G is isotropic over k. If follows from Theorem 10.2.1 and Theorem

10.1.1 that B = M3(K) and σ is distinguished. Conversely, assume that B = M3(K)

and σ is distinguished. Since σ is distinguished, σ ∼= σh, where σh is the involution

on M3(K) given by X → hX
t
h−1, for h = diag(1,−1,−1) ∈ GL(3, k). From this it

follows that SU(M3(K), σh) = SU(K3, h) is k-isotropic. Therefore k-rank of G is ≥ 1
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and hence G is quasi-split over k. �

Example of a quasi-split non-split group:

Consider the group G = SU(2, 1) = {X ∈ M3(C)| det(X) = 1, XJXt = J} , where

J =


0 0 1

0 1 0

1 0 0

 defined over R. Note that G has a rank-1 R-split torus T ∼= Gm over

R, an isomorphism is given by x 7→ Diag(x, 1, x−1) ⊆ SU(2, 1), x ∈ Gm. Hence G is

quasi-split over R. But G has no split maximal (rank-2) torus.



Chapter 4

Galois Cohomology

In this chapter we introduce Galois cohomology and discuss some results on Galois

cohomology of algebraic groups. There are several excellent references for this, [18],

[46], [19] to mention a few.

In the first section we introduce the cohomology sets H i and list few examples. In

the second section we describe some cohomological sequences. In the third section we

introduce the concept of twisting. The final section mainly deals with Galois cohomology

of linear algebraic groups

4.1 Cohomology sets

In this section we revise some general constructions of non-abelian cohomology. Let G

be a group acting on a set A. We call A to be a G-set. If A is a group on which G acts

such that g(ab) = g(a)g(b) for all g ∈ G, a, b ∈ A, then we call A to be a G-group.

Definition 4.1.1 Let A be a G-group. The cohomology set H0(G,A) is defined as

follows:

H0(G,A) = AG := {a ∈ A : g(a) = a ∀g ∈ G},

Note that H0(G,A) forms a subgroup of A.

Definition 4.1.2 Let A be a G-group. Define,

Z1(G,A) := {φ : G→ A : φ(g1g2) = φ(g1)g1(φ(g2))}.

45



46 Chapter 4. Galois Cohomology

An element of Z1(G,A) is called a 1-cocycle. Define an equivalence on the set of 1-

cocycles as, φ1 ∼ φ2 if there exists a ∈ A such that φ1(g) = a−1φ2(g)g(a) for all g ∈ G.

Define H1(G,A) to be the set of equivalence classes of 1-cocycles.

Note that when A is abelian, the set Z1(G,A) is an abelian group with the product

(φ1φ2)(g) := φ1(g)φ2(g) for all g ∈ G. This operation is compatible with the equivalence

relation on 1-cocycles, hence it induces an abelian group structure on H1(G,A).

We will now define general cohomology sets H i. We refer to [18], §1.2 for details.

Definition 4.1.3 A topological group G is said to be profinite if it is a projective limit

of finite groups, the latter carrying discrete topology.

Let G be a profinite group and A be any G-group with discrete topology. In such a

case we shall always assume that the action of G on A is continuous. We shall modify

the definition of H i(G,A) in this case by requiring the cocycles to be continuous. If

U ⊂ V are open normal subgroups of G then the inclusion ι : AV ↪→ AU and the

natural projection π : G/U → G/V are compatible (i.e, ι(π(gU)(a)) = gU(ι(a)) for

all a ∈ AV and gU ∈ G/U), hence we get the induced map ρVU : H i(G/V,AV ) →

H i(G/U,AU ) called inflation. The sets H i(G/U,AU ) together with the inflation map

form an inductive system and

H i(G,A) := lim
−→

H i(G/U,AU ),

4.2 Cohomology sequences

Let A,B,C be G-groups. If

0 −→ A −→ B −→ C −→ 0

is an exact sequence of groups, then we have an exact sequence of pointed sets

0 −→ H0(G,A) −→ H0(G,B) −→ H0(G,C) −→ H1(G,A) −→ H1(G,B) −→ H1(G,C).

Since the given sequence is exact we can view C ∼= B/A, where B/A := {bA| b ∈ B}

is a homogeneous space for B. The inclusion map i : A ↪→ B induces a map from

H0(G,A) −→ H0(G,B). Similarly the projection map π : B → B/A, induces a map
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from H0(G,B) = BG −→ H0(G,C) = (B/A)G. We now describe the connecting map

from H0(G,C) −→ H1(G,A) explicitly. Given an element of H0(G,B/A) = (B/A)G,

choose a representative b of it in B. Define as = b−1s(b) for all s ∈ G. Since s(bA) =

sbA = bA, as = b−1s(b) ∈ A. It is easy to check that (as) ∈ H1(G,A).

Few Examples:

(1) If G acts trivially on A, then Z1(G,A) = Hom(G,A) is the set of all homomorphisms

from G to A. Two cocycles φ1 and φ2 in Z1(G,A) are equivalent if and only if φ2 =

Int(a) ◦ φ1 for some a ∈ A. Let ∼ denote this equivalence relation. Then H1(G,A) ∼=

Hom(G,A)/ ∼.

(2) ([19], Theorem 29.2) (Hilbert Theorem 90) For any separable and associative k-

algebra A,

H1(k,GL1(A)) = 0.

In particular, H1(k,GLn) = 0 and H1(k,Gm) = 0.

(3) H1(k,SLn) = 0. More generally, ([19], Corollary 29.4) Let A be a central simple

k-algebra.

H1(k,SL1(A)) ∼= k∗/NA(A∗).

(5) ([54], Ex. 13.2.8) If T is a k-split torus then H1(k, T ) = 0.

4.3 Twisting

Let A be a G-group and E be a G-set on which A acts. For x ∈ A, a ∈ E let x.a denote

the action of A on E. We call this action to be G-compatible if, g(x.a) = g(x)g(a)

for all g ∈ G, x ∈ A, a ∈ E. For two G-sets E,F and a map of sets f : E → F ,

define sf : E → F for s ∈ G as follows, sf(e) = s(f(s−1e)) for all e ∈ E. Note that

(sf)(s(e)) = s(f(e)). Let Aut(E) denote the group of all set bijections from E onto

itself. In the particular case, when E = F , the above action makes Aut(E) into a G-

group. Define a map φ : A → Aut(E) as φ(x)(e) := x.e. It is easy to check that φ is a

G-homomorphism. Hence it induces a mapping of cohomologies

H i(G,A)→ H i(G,Aut(E)).

Let A be a G -group and E be a set on which A-acts G-compatibly. Let (as) ∈ H1(G,A)

be a 1-cocycle. Let F be a copy of E with a bijection f : E → F , namely the identity
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map. Define an operation of G on F as follows: s(f(x)) = f(as.s(x)) for x ∈ E and

s ∈ G. With this operation F is a G-set and F together with the mapping f : E → F

is said to be obtained from E by twisting with the cocycle (as) and is denoted by aE.

If we replace (as) by an equivalent cocycle, f is changed by an automorphism of E. If

E has, in addition, some algebraic structures and as preserves these, then the twisted

set aE will carry them. In particular, let A be a G-group and (as) ∈ H1(G,Aut(A)).

Define a new G-action on A by,

s ∗ a = as.s(a) for all s ∈ G.

With this new G-action A is called the twist of A by (as) and is denoted by aA.

Example 4.3.1 Let k be a field and B = k × k considered as a k-algebra. Let Aut(B)

denote the group of k-algebra automorphisms of B⊗k ∼= k×k. Note that these k-algebra

automorphisms correspond to permuting the components, hence Aut(B⊗k) ∼= S2, where

S2 denotes the symmetric group on two symbols. Note that Gal(k/k) acts trivially on

S2, hence a 1-coclycle (as) ∈ H1(Gal(k/k), S2) is a group homomorphism from Gal(k/k)

into S2. Let (as) be the non-trivial cocycle in H1(Gal(k/k),Aut(B)) (i.e, the non-

trivial homomorphism). Then B twisted by (as) is a quadratic field extension of k (with

notations as above A = Aut(B) and E = k × k).

Example 4.3.2 Let (as) ∈ H1(Gal(k/k),Aut(Mn+1)) be a 1-cocycle. We twist Mn+1

by the 1-cocycle (as). The twisted algebra aMn+1 is a central simple k-algebra A and

we have an isomorphism g : Mn+1 ⊗ k → A ⊗ k such that s(g(x)) = g(ass(x)) for all

x ∈Mn+1.

Example 4.3.3 Consider the algebra Mn+1 ⊕ Mn+1. It has an involution I of the

second kind given by (X,Y ) → (Y t, Xt) where t denotes the transpose. Consider the

group Aut(Mn+1 ⊕Mn+1, I) of those automorphisms of Mn+1 ⊕Mn+1 commuting with

the involution I. Let (as) ∈ H1(Gal(k/k),Aut(Mn+1 ⊕Mn+1, I) be a 1-cocycle. We

now twist Mn+1 ⊕ Mn+1 by (as). We get a twisted algebra A and an isomorphism

g : Mn+1(k)⊕Mn+1(k)→ A⊗ k. Note that A will carry an involution J of the second

kind. Also the center k ⊕ k of Mn+1 ⊕Mn+1 will get twisted into the center of A. By

Example 4.3.1 above we see that the center k ⊕ k of Mn+1 ⊕ Mn+1 gets twisted into
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a quadratic extension K of k. Hence A is a simple k-algebra with involution J of the

second kind with center a quadratic extension K of k.

4.4 Galois Cohomology of Algebraic groups

In this section we will use some definitions and results from ([19], §29). Fix a separable

closure ksep of k and let Γ = Gal(ksep/k). Let G be an algebraic group defined over

k and let ρ : G −→ GL(W ) be a representation of G in a finite dimensional k-vector

space W. Fix an element w ∈W and identify W with a k-subspace of Wsep = W ⊗ ksep.

An element w′ ∈ Wsep is called a twisted ρ-forms of w if w′ = ρsep(g)(w) for some

g ∈ G(ksep), where ρsep = ρ⊗ ksep. Let A(ρ, w) denote the groupoid whose objects are

the twisted ρ-form of w and whose morphisms w′ → w′′ are the elements g ∈ G(ksep)

such that ρsep(g)(w′) = w′′. Let A(ρ, w) denote the groupoid whose objects are the

twisted ρ-forms of w which lie in W and morphisms w′ → w′′ are the elements g ∈ G(k)

such that ρ(g)(w′) = w′′. Let X denote the Γ-set of objects of A(ρ, w). Then XΓ the

set of Γ-fixed points in X, is the set of objects of A(ρ, w). Also, the set of orbits of

G(k) in XΓ is the set of isomorphism classes Isom(A(ρ, w)) of objects of A(ρ, w). Let

w′ ∈ A(ρ, w). By [w′] ∈ Isom(A(ρ, w)) we will denote the isomorphism class of w′. Let

AutG(w) denote the stabilizer of w in G.

Proposition 4.4.1 ([19], Prop. 29.1) If H1(k,G) = 0, there is a natural bijection of

pointed sets

Isom(A(ρ, w))↔ H1(k,AutG(w))

which maps the isomorphism class of w to the base point of H1(k,AutG(w)).

The bijection between these sets is as follows: for w′ ∈ A(ρ, w), choose g ∈ G(ksep) such

that ρsep(g)(w) = w′. Define a 1-cocycle class [ασ] ∈ H1(k,AutG(w)) by ασ = g−1σ(g).

Conversely let [α] ∈ H1(k,AutG(w)). Since H1(k,G) = 0, α = g−1σ(g) for some

g ∈ G(ksep). The corresponding object in A(ρ, w) is ρsep(g)(w).

The next lemma determines the cohomology sets with coefficients in RL/k(G), where

L/k is a finite separable field extension of k and G is an algebraic group defined over L.

Lemma 4.4.2 (Shapiro’s Lemma)([19], Lemma 29.6) Let L/k be a finite separable

field extension and let G be an algebraic group defined over L. Then there is a natural
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bijection of pointed sets

H1(k,RL/k(G))→ H1(L,G).

4.4.1 Forms

Let L/k be an Galois extension. Let A be an algebraic group defined over k and AL

denote the set of L-rational points of A. Note that the Galois group Gal(L/k) acts on

AL. If L = ks, we denote H i(Gal(L/k), AL) simply by H i(k,A). An L/k form of A is

an algebraic group defined over k which is isomorphic to A as an algebraic group over

L. Let Φ(k,A) denote the set of k-isomorphism classes of ks/k-forms of A.

Theorem 4.4.3 ([50], §III.1.3) There exists a bijection from H1(k,Aut(A)) onto

Φ(k,A), the set of k-isomorphism classes of ks-forms of A.

Let A, B be algebraic varieties defined over k. Let L be a field extension of k and

(Aut(A))L denote the group of all automorphisms of A defined over L. An algebraic

variety B defined over k and isomorphic to A over L is called a L/k-form of A. Suppose

A is quasi projective (i.e. isomorphic to a locally closed subvariety of some projective

space), then there exists an isomorphism between H1(L/K,Aut(A)L) and the set of

k-isomorphism classes of L/k-forms of A. Now we see this explicitly in the case of some

algebraic groups ([18], §1.6).

We describe first the classification of ks/k forms of groups of type An (i.e, ks/k forms

of SLn+1). These are classified into two subtypes,

(a) Subtype 1- These correspond bijectively to central simple k-algebras A of dimension

(n+ 1)2, that is, A⊗ks isomorphic to Mn+1(ks). The twisted forms of SLn+1 belonging

to the subtype 1 are given by H = {x ∈ A| NA(x) = 1}.

(b) Subtype 2- These correspond bijectively to simple k-algebras A of dimension (n+1)2

over the center of A which is a quadratic field extension of k, with an involution σ of the

second kind, namely, the twisted forms of SLn+1 belonging to the subtype 2 are given

by H = {x ∈ A| Xσ(X) = 1, NA(x) = 1}.

The homomorphism ψ : A(ks) → Aut(A) defined as x → Int(x) induces a map

from θ : H1(k,A) → Φ(k,A). An L/k-form G′ of G, is said to be an inner form if

G′ ∈ Image(θ). A form that is not inner is called an outer form. We shall need
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Proposition 4.4.4 ([54], Proposition 16.4.9) Let G be an connected, reductive group

defined over k. Then G is an inner k-form of a quasi-split k-group.

We now recall the following well known result:

Theorem 4.4.5 (Steinberg)([46], Theorem 6.23) Let G0 be a semisimple group defined

and quasi-split over a perfect field k. Let ξ ∈ Z1(k,G0) and let G = ξG0 be the corre-

sponding twisted group. Then for any maximal torus T of G defined over k there is a

cocycle µ ∈ Z1(k, T ) such that G0 = µG.





Chapter 5

Jordan algebras

The aim of this chapter is to give a quick introduction to the theory of Jordan algebras,

especially Jordan algebras of degree 3. The set of symmetric elements in an associative

algebra with involution admits the structure of a Jordan algebra. For a detailed expo-

sition on Jordan algebras we refer to ([17]), ([53]) and ([33]), the Fields Institute notes

on Albert algebras by H. P. Petersson for an excellent recent survey.

In the first section we define Jordan algebra and give a few examples. In the second

section we study Albert algebras and Tits constructions. In the final section we study

structure of étale Tit’s constructions.

Let k be a field of characteristic different from 2 and 3.

5.1 Basic definitions

Definition 5.1.1 A commutative algebra over a field k of characteristic 6= 2 in which

the Jordan identity x2(xy) = x(x2y) holds is called a Jordan algebra.

Examples:

(1) Let A be an associative algebra. We define a new product on A as following,

a ∗ b := 1
2(ab+ ba). With this new product A becomes a Jordan algebra and is denoted

by A+.

(2) Let B be an associative algebra with an involution τ . Let (B, τ)+ denote the set of

τ -symmetric elements of B. The set (B, τ)+ is a Jordan subalgebra of B+.

(3) As a special case of example (2), the set of hermitian real, complex or quaternion

matrices with multiplication, X ∗ Y = XY+Y X
2 forms a Jordan algebra.

53
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5.2 Albert algebras

In this subsection, we recall briefly some basic results on Albert algebras needed in the

thesis. Let C be an octonion algebra over k. Let M3(C) denote the space of 3 × 3

matrices with entries in C. Let Γ = diag(γ1, γ2, γ3) ∈ GL3(k) be a diagonal matrix and

let

H3(C,Γ) = {X ∈M3(C)|Γ−1X
t
Γ = X},

where, for X = (xij), X = (xij), x 7→ x denotes the involution on C and Xt is the

transpose of X. With the multiplication X ◦ Y = 1
2(XY + Y X), H3(C,Γ) is an Jordan

algebra over k. These are called reduced Albert algebras. It follows that H3(C,Γ)

consists of all 3× 3 matrices

X =


α1 c γ−1

1 γ3b

γ−1
2 γ1c α2 a

b γ−1
3 γ2a α3

 ,

where αi ∈ k, a, b, c ∈ C. It is known that the octonion algebra C is determined, up to

isomorphism, by the algebra H3(C,Γ) and is called the coordinate octonion algebra

of H3(C,Γ).

For X = (xij) ∈ H3(C,Γ), we define its trace by T (X) =
∑3

i=1 xii ∈ k. A k-algebra

A is called an Albert algebra if A⊗k k ∼= H3(C, I) for the (split) octonion algebra C

over k and I ∈ GL3(k) the identity matrix, k denotes an algebraic closure of k. The

split Albert algebra over k is an Albert algebra A isomorphic over k to H3(C, I), where

C is the split octonion algebra over k and I ∈ GL3(k) is the identity matrix. An Albert

algebra is either reduced or a division algebra ( [17], Chap. IX, §1, Pg. 359). Tits has

given two rational constructions of Albert algebras, which are exhaustive, i.e, all Albert

algebras arise from these constructions. We briefly describe these for the convenience of

the reader.

Tits’s first construction

Let A be a central simple algebra of degree 3 over a field k and let µ ∈ k∗ := k − {0}.
For a, b ∈ A define,

a.b =
1

2
(ab+ ba), a× b = a.b− 1

2
t(a)b− 1

2
t(b)a+

1

2
(t(a)t(b)− t(a.b)),
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here t = TA is the reduced trace on A. Further, for x ∈ A, x = 1
2(t(x) − x). To this

data, one attaches an Albert algebra J(A,µ) as follows: J(A,µ) = A0⊕A1⊕A2, where

Ai = A for i = 1, 2, 3, with multiplication,

(a0, a1, a2)(b0, b1, b2) = (a0.b0 +a1b2 + b1a2, a0b1 + b0a1 +µ−1a2× b2, a2b0 + b2a0 +µa1× b1).

With this multiplication, J(A,µ) is an Albert algebra over k and is referred to as a first

Tits construction Albert algebra. The Albert algebra J(A,µ) has (1, 0, 0) as identity

and

N(x, y, z) = NA(x) + µNA(y) + µ−1NA(z)− TA(xyz), x, y, z ∈ A,

as cubic norm. Moreover, J(A,µ) is a division algebra if and only if A is a division

algebra and µ is not a reduced norm from A. Note that A+ = A0 is a Jordan subalgebra

of J(A,µ). A first construction Albert algebra is either split or division ( [17], Chap.

IX, Thm. 20).

Tits’s second construction

Let K be a quadratic field extension of k and B be a central simple algebra of degree 3

over K and let σ be an involution of the second kind on B. Let x 7→ x be the non-trivial

Galois automorphism of K/k. Let (B, σ)+ denote the k-subspace of B of σ-symmetric

elements in B. Fix a unit u in (B, σ)+ such that N(u) = µµ for some µ ∈ K∗. Let

J(B, σ, u, µ) = (B, σ)+ ⊕B. We define a multiplication on J(B, σ, u, µ) as follows,

(a0, a)(b0, b) = (a0.b0 + auσ(b) + buσ(a), a0b+ b0a+ µ(σ(a)× σ(b))u−1),

where the notation is same as above. With this multiplication, J(B, σ, u, µ) is an Albert

algebra over k and is referred to as a second Tits construction Albert algebra. The

Albert algebra J(B, σ, u, µ) has (1, 0) as identity and

N(a, x) = NB(a) + µNB(x) + µNB(σ(a))− TB(axuσ(a)), a ∈ (B, σ)+, x ∈ B,

as cubic norm. Moreover J(B, σ, u, µ) is a division algebra if and only if B is a division

algebra and µ is not a reduced norm from B. Note that (B, σ)+ is a Jordan subalgebra

of J(B, σ, u, µ). The second construction becomes a first construction over K, more

precisely, J(B, σ, u, µ) ⊗K ∼= J(B,µ) as K-algebras ( [29], [17], Chap. IX, Exercise 5,

Pg. 422).
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We call a field extension F/k a reducing field of an Albert algebra A over k if the

extended algebra A⊗k F over F is reduced.

Let B be a degree 3 central simple algebra over a quadratic étale extension K of k with

an involution σ of the second kind. Let A = J(B, σ, u, µ) be a second Tits construction

Albert algebra and G = Aut(A). Then we have a k-embedding of the special unitary

group SU(B, σ) in G,

SU(B, σ) ↪→ G via p→ φp, where φp : (x, y)→ (pxσ(p), py), for all (x, y) ∈ A.

Remark 5.2.1 An Albert algebra A over k is a pure first (resp. second) construction

if it cannot be expressed as a second (resp. first) construction. It is known that A is a

first construction if and only if f3(A) = 0. Hence if f3(A) 6= 0 then A must be a pure

second construction ([19], Chap. IX, Prop. 40.5). Albert algebras of both pure types as

well as mixed types exist (see [42], [39]).

Theorem 5.2.2 ([43], §7) For an Albert algebra A over k, there exists, up to a k-

isomorphism, a unique reduced Albert algebra H3(C,Γ) over k, such that for any reducing

field L/k of A, A⊗k L ∼= H3(C ⊗k L,Γ).

The reduced Albert algebra in the theorem is called the reduced model of A. The

coordinate octonion algebra of a reduced model of an Albert algebra A is called the

octonion algebra of A and denoted by Oct(A). We note that when A is the reduced

Albert algebra H3(C,Γ) over k, then Oct(A) = C. In particular, when A is split, Oct(A)

is split as well.

Let A be an absolutely simple Jordan algebra of degree 3 and dimension 9 over k. By

the structure theory, there exists a central simple associative algebra (B, ∗) of degree 3

over k with an involution ∗ of the second kind, unique up to isomorphism, satisfying A ∼=

(B, ∗)+. We define the octonion algebra of A, written as Oct(A), to be the coordinate

octonion algebra of the reduced Albert algebra J(B, ∗, 1, 1) (see [37], 1.11).

Let K/k be a quadratic extension. Let ∗Γ denote the involution on M3(K) given by

∗Γ(X) = Γ−1X
t
Γ, where Γ = diag(γ1, γ2, γ3) ∈ GL3(k) with γ1γ2γ3 = 1 and ¯ denotes

the entrywise action of the automorphism ¯ of K. Let V ∈ GL3(K) with ∗Γ(V ) =

V . Suppose further that det V = µµ for some µ ∈ K∗. Then one has the second

Tits construction J(M3(K), ∗Γ, V, µ) with the underlying vector space (M3(K), ∗Γ)+ ⊕

M3(K).
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The matrix U = V Γ−1 is hermitian, i.e, U
t

= U . Further, det U = det V = µµ. Let

h denote the hermitian form on K3 given by h(x, y) = xUyt. Then the discriminant of

h, denoted disc h, is trivial. Let ψ : (∧3K3,∧3h) ' (K,< 1 >) be the trivialization of

disc h given by e1 ∧ e2 ∧ e3 7→ µ, ei being the standard basis vectors of K3. We then

have the octonion algebra C = C(K3, h, ψ) = K ⊕K3, with the multiplication given by

(a, v)(a′, v′) = (aa′ − h(v, v′), av′ + a′v + θ(v, v′)),

where θ is defined by the identity

h(v′′, θ(v, v′)) = ψ(v′′ ∧ v ∧ v′),

for all v, v′, v′′ ∈ K3. Also, the norm nC is given by nC(a, v) = nK/k(a) + h(v), where

h(v) = h(v, v). The involution on C = K ⊕K3 is given by (α, v) = (α,−v). For more

details see ([58]). Then one has the reduced Albert algebra H3(C,Γ).

Note that H3(C,Γ) contains H3(K,Γ) = (M3(K), ∗Γ)+ as a Jordan subalgebra. For

more details see ( [34], §1).

Theorem 5.2.3 ( [34], §1, Thm. 1.1 ) With notations as above, there exists an isomor-

phism of Jordan algebras between J(M3(K), ∗Γ, V, µ) and H3(C,Γ). Further, the norm

form nC of C = K ⊕K3 is given by nC = trK/k(< 1 >⊥ h), where h is the hermitian

form given by the matrix V Γ−1.

Proposition 5.2.4 Let D be a degree 3 central division algebra or an Albert division

algebra over k. Then D remains a division algebra over field extensions of degree coprime

to 3.

Proof. First, let D be a degree 3 central division algebra over k. By ([13], Exercise 9,

Section 4.6), it follows that, for a field extension L of k of degree coprime to 3, D⊗L is

a division algebra. When D is an Albert division algebra, the result follows from ([39],

Cor., p. 205). �
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5.3 Étale Tits processes

Let L be a cubic étale algebra and K be a quadratic étale algebra over an arbitrary base

field k and E = L⊗K. Let τ = 1⊗ ,̄ where¯denotes the non-trivial involution on K.

Suppose (u, µ) ∈ L∗×K∗ is such that NL/k(u) = NK/k(µ), we then call the pair (u, µ) an

admissible pair. The étale Tits process produces an absolutely simple Jordan algebra

J = J(E, τ, u, µ) of degree 3 and dimension 9, with the underlying vector space L ⊕ E

and with L = {(l, 0)| l ∈ L} as a subalgebra. The Jordan algebra J = J(E, τ, u, µ) has

a cubic norm given by,

N((a, b)) = NL/k(a) + µNE/k(b) + µNE/k(b)− tL/k(abuτ(b)),

for a ∈ L, b ∈ E. Let (B, σ) be a central simple algebra over K with an involution σ

of the second kind and suppose (B, σ)+ contains a cyclic étale algebra L over k. Then

there exists z ∈ B∗ such that B = L ⊗K ⊕ (L ⊗K)z ⊕ (L ⊗K)z2 with z3 = µ ∈ K∗

and NK/k(µ) = 1. Also the involution σ is given by σ(z) = uz−1 with u ∈ L such that

NB(u) = 1. In this case (B, σ)+
∼= J(L⊗K, τ, u, µ) (see [19], Pg. 527 for details). The

next theorem gives us the center of B in the above situation.

Theorem 5.3.1 ([44], Theorem 1, cf. [36], Theorem 1.4) Let L,K be étale k-algebras

of dimension 3, 2 respectively, and suppose (u, µ) is an admissible pair. If (B, σ) is a

central simple algebra of degree 3 over k with involution of the second kind such that

J(L ⊗ K, τ, u, µ) becomes isomorphic over k to (B, σ)+, then the center of B, as a

quadratic étale k-algebra, corresponds to the element δ(L) + δ(K) ∈ H1(k,Z/2Z) where

δ(L) (resp. δ(K)) denotes the discriminant algebra of L (resp. K) over k.

We saw that starting with a cubic étale k-algebra L and a quadratic étale k-algebra K,

as well as an admissible pair (u, µ), the étale Tits process produces an absolutely simple

Jordan algebra J(L ⊗ K, τ, u, µ) of degree 3 and dimension 9, which turns out to be

the Jordan algebra of symmetric elements of a central simple algebra of degree 3, with

involution of the second kind. The theorem below provides a converse to this result.

Theorem 5.3.2 (Extension Theorem)([36], Theorem 1.6) Let L be a cubic étale k-

algebra, (B, σ) a central simple algebra of degree 3 with an involution of the second kind

over k and suppose ι is an isomorphic embedding from L to J = (B, σ)+, the Jordan
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algebra over k of σ-symmetric elements in B. Writing K for the center of B and E for

the quadratic étale k-algebra corresponding to the element

δ(K) + δ(L) ∈ H1(k,Z/2Z),

there are invertible elements u ∈ L, µ ∈ E satisfying NL/k(u) = NE/K(µ) such that ι

extends to an isomorphism from the étale Tits process J(L⊗ E, τ, u, µ) onto J .

We define étale Tits processes J1 and J2 arising from étale algebras L and K of dimen-

sions 3, 2 resp., to be L-isomorphic, denoted by J1
∼=L J2, if there exists a k-isomorphism

J1 → J2, which restricts to an automorphism of the subalgebra L of J1 and J2. By ([38],

Prop. 3.7) we have the following

Theorem 5.3.3 ([38], Prop. 3.7) Let L,K and E be as above. Let (u, µ) ∈ L∗ ×K∗

be an admissible pair. For any w ∈ E, (wuτ(w), µNE/K(w)) ∈ L∗ × K∗ is again an

admissible pair and

J(E, τ, u, µ) ∼=L J(E, τ, wuτ(w), µNE/K(w)),

via (a, b) 7→ (a, bw).

Remark 5.3.4 Note that J(E, τ, 1, 1) has zero divisors. Choose x ∈ E such that τ(x) =

−x. Then (0, x) is a zero divisor in J(E, τ, 1, 1), since it is a norm zero element. More

generally, as an easy consequence of Theorem 5.3.3, one can see that if µ ∈ NE/K(E∗),

then J(E, τ, u, µ) has zero divisors.

Theorem 5.3.5 For any étale Tits construction J(E, τ, u, µ), there exists an L-isomorphic

Tits process J(E, τ, u′, µ′) with NL/k(u
′) = 1 = µ′τ(µ′).

Proof. Take w = µ−1u and apply Theorem 5.3.3. �

In §5.2, 5.3, we described a cubic norm structure on Albert algebras and étale Tits

processes. A Jordan algebra J admits a generic minimal polynomial and generic norm

and trace are defined (see [19], §37).
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Definition 5.3.6 Let J , J ′ be Jordan algebras with identity. Then a bijective linear

map η of J into J ′ is called a norm isometry of J onto J ′ if N ′(η(a)) = N(a) for all

a ∈ J where N and N ′ are the generic norms in J and J ′ respectively.

The next theorem gives a criterion for isomorphism of finite dimensional Jordan algebras.

Theorem 5.3.7 ([17], Chapter. VI, Thm. 7) Let k be a field of characteristic different

from 2 and 3. Let J , J ′ be finite dimensional Jordan algebras over k with identity. If

η is a norm isometry of J onto J ′ preserving identities, then η is an isomorphism of

k-algebras.



Chapter 6

Groups G2 and F4

The aim of this chapter is to describe groups of type G2 and F4 defined over a field k

and some of their k-subgroups. These groups are obtained as automorphism groups of

octonion algebras and Albert algebras respectively. For a detailed exposition we refer

to [53], [54]. We fix a field k of characteristic different from 2 and 3.

In the first section we describe the basic structural properties of these algebras. In the

second section we study structure of certain k-subgroups of the groups of type G2 and

F4. In the last section we study some k-embeddings of k-groups of type A1, A2 and D4

in F4.

6.1 Structural properties

Octonion algebras over a field k describe the k-groups of type G2. We state below two

important theorems in this regard:

Theorem 6.1.1 ([54], §17.4) Let G be a simple group of type G2 over k. Then there

exists an octonion algebra C, unique up to isomorphism, defined over k, such that G is

k-isomorphic to the group Aut(C).

Theorem 6.1.2 ([53], §2.3, Thm. 2.3.5, [54], Prop. 17.4.2, 17.4.5) Let C be an oc-

tonion algebra over a field k and let G = Aut(C) be the associated algebraic group of

automorphisms of C. Then G is a connected simple algebraic group of type G2 defined

over k and G is either k-anisotropic or k-split. Moreover, G is k-split if and only if C

is split, if and only if nC is k-isotropic (i.e. hyperbolic).

61
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Albert algebras over the field k describe the k-groups of type F4.

Theorem 6.1.3 ([54], §17.6) Let G be a simple algebraic group of type F4 over k. Then

there exists an Albert algebra A, unique up to isomorphism, defined over k such that G

is k-isomorphic to the group Aut(A).

Theorem 6.1.4 ( [53], Thm. 7.2.1, [39], Pg. 205) Let A be an Albert algebra over a

field k. Let G = Aut(A) be the associated algebraic group of automorphisms of A. Then

G is a connected simple algebraic group defined over k of type F4.

Remark 6.1.5 Let G be a split simple group of type G2. Then G is simply connected,

adjoint and is isomorphic to Aut(C) where C is a split octonion algebra (see [19],

Theorem 25.14). Since G is simply connected and adjoint, by ([19], Theorem 25.16)

G = Aut(G). Hence by Theorem 4.4.3, H1(k,G) is in bijection with the set of k-

isomorphism classes of ks-forms of G. Since any group of type G2 is split over ks,

H1(k,G) is in bijection with the set of k-isomorphism classes of simple k-groups of type

G2. Also H1(k,G) is in bijection with the set of k-isomorphism classes of ks-forms of

C. Since any octonion algebra is split over ks, H
1(k,G) is also in bijection with the set

of k-isomorphism classes of octonion algebras over k. By a similar argument we can

show that for a simple split group G of type F4, H1(k,G) is in bijection with the set of

k-isomorphism classes of simple k-groups of type F4. Also H1(k,G) is in bijection with

the set of k-isomorphism classes of ks-forms of A, where A is the unique split Albert

algebra such that G = Aut(A). Hence, just as above, H1(k,G), for G the k-split group

of type F4, classifies the k-isomorphism classes of Albert algebras over k.

6.2 Subgroups of G2, F4

We begin with few known results which describe some k-subgroups of groups of type

G2 and F4 defined over k. We recall that the groups of type G2 over a field k are

precisely the groups of automorphisms of octonion algebras defined over k ([54], §17.4).

Similarly groups of type F4 over k occur as groups of automorphisms of Albert algebras

defined over k (see ([54], §17.6). Let A be a finite dimensional k-algebra and S ⊂ A be

a k-subalgebra. Then Aut(A) is an algebraic group defined over k. In the thesis , we

shall denote by Aut(A/S) the (algebraic) k-subgroup of all automorphisms of A fixing

S pointwise and Aut(A,S) will denote the k-subgroup of Aut(A) mapping S to S.
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Proposition 6.2.1 (Jacobson)([19], Remark 39.13) Let A be an Albert algebra defined

over k and let G = Aut(A) denote the algebraic group of type F4 associated with A.

Let L ⊂ A be a cubic étale subalgebra. Then the subgroup Aut(A/L) of G is a simply

connected, simple group of type D4 defined over k.

Proof. To see this we base change to k̄ and apply a theorem of Jacobson ([17], Chap.

IX, Pg. 378, Exercise 2) which asserts that for a reduced Albert algebra A = H3(C,Γ),

the subgroup Aut(A/(k.e1 + k.e2 + k.e3)) is isomorphic to Spin(C, nC) over k, here

ei, 1 ≤ i ≤ 3, are the diagonal (primitive) idempotents of A. The result now follows from

the fact that the diagonal subalgebra ofH3(Ck̄,Γ) is conjugate to Lk̄ by an automorphism

of Ak̄ ([17], Chap. IX, Exercise 3, Pg. 389). �

Proposition 6.2.2 ([57], Thm. 4.2) Let k be a field with char(k) 6= 2, 3 and A an

Albert algebra over k. Suppose φ ∈ Aut(A)(k) is semisimple. Then φ fixes a cubic étale

subalgebra L ⊂ A pointwise.

Lemma 6.2.3 Let C be an octonion algebra over k. Let G = Aut(C) and let φ ∈ G(k).

Then φ fixes a non-zero element of C with trace 0.

Proof. Since φ is an automorphism of C, φ(1) = 1. Therefore φ(C0) = C0, where C0

denotes the subspace of trace zero elements in C. Hence φ ∈ SO(C0, n|C0)(k). Since

(C0, n|C0) is a regular quadratic space of odd dimension, by a classical theorem of Cartan

and Dieudonné, φ fixes a non-zero element of C0 ([16], §6.6, Chap. VI). �

Theorem 6.2.4 ([15], Thm. 9, [19], §39, Chap. IX) Let A be an Albert algebra over

k and let S be a 9-dimensional cubic separable Jordan subalgebra of A. The subgroup

Aut(A/S) (resp. Aut(A,S)) is a simply connected, simple algebraic group of type A2

(resp. A2 ×A2) defined over k.

Theorem 6.2.5 ([12], Thm. 3, Thm. 4, Thm. 5) Let C be an octonion algebra over

k and let K be a quadratic étale (resp. quaternion) subalgebra of C. Then the subgroup

Aut(C/K) is a simply connected, simple group of type A2 (resp. A1) defined over k.
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6.3 Embeddings in F4

In this section we describe some k-embeddings of k-groups of type A1, A2 and D4 in F4.

(1) k-Embeddings of A2 and G2:

Let B be a degree 3 central simple algebra over a quadratic étale extension K of k

with an involution σ of the second kind. Let A = J(B, σ, u, µ) be a second Tits con-

struction Albert algebra. Let G = Aut(A). Then G is a group of type F4 over k.

Let σu = Int(u) ◦ σ. We have the following k-embedding of the special unitary groups

SU(B, σ),SU(B, σu) in G,

SU(B, σ) ↪→ G via p 7→ φp, where φp : (x, y) 7→ (pxσ(p), py), for all (x, y) ∈ A.

SU(B, σu) ↪→ G via q 7→ ψq, where ψq : (x, y) 7→ (x, yq−1), for all (x, y) ∈ A.

Let A = H3(C,Γ) be a reduced Albert algebra over k. Let G = Aut(A). Note that

H = Aut(C) ↪→ G (via φ 7→ φ̃, where φ̃(X) = (φ(xij)), X = (xij) ∈ A). Fix K ⊆ C,

a quadratic étale algebra. Then K⊥ ⊆ C has a K-hermitian form h defined on it (see

Proposition 1.3.4) and

Aut(C/K) ⊆ Aut(C) ↪→ Aut(A),

over k. Note that Aut(C/K) ∼= SU(K⊥, h) ∼= SU(M3(K), ∗h) ([52], Proposition 3.1) is

a k-group of type A2. Let D be a central simple algebra over k. Let A = J(D,µ) be a

first Tits construction Albert algebra and G = Aut(A). The k-group SL1(D) has type

A2 and we have the following k-embedding of SL1(D) in G,

SL1(D) ↪→ G via p 7→ φp, where φp : (x, y, z) 7→ (x, yp, p−1z), for all (x, y, z) ∈ A.

(2) k-Embeddings of A1

Let A = H3(C,Γ). Fix a quaternion subalgebra Q ⊆ C. Then

Aut(C/Q) ↪→ Aut(C) ↪→ Aut(A),

over k. Note that Aut(C/Q) ∼= SL(1, Q) is a group of type A1.

(3) k-Embedding of D4:
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Let A = H3(C,Γ) be a reduced Albert algebra over k. Let H ⊆ Aut(A) be the algebraic

subgroup of Aut(A) consisting of all automorphisms of A which fix the three diagonal

idempotents in A. Then H is a k-subgroup of type D4 and H ∼= Spin(nC) ([19], Remark

39.13). As a consequence of this, we have:

Let A be an Albert algebra over k and G = Aut(A). Let L ⊂ A be a cubic étale

subalgebra. Let

GL := {φ ∈ G| φ(l) = l for all l ∈ L}.

Then GL is a k-subgroup of type D4.

Remark 6.3.1 Note that the k-embeddings described in (1), (2) of groups of type A1

and A2, in groups of type F4 arising from reduced Albert algebras, factor through the

subgroup Aut(C) of type G2.





Chapter 7

Mod-2 invariants of groups

This chapter is a basic yet most essential part of the thesis. Here we describe the mod-2

Galois cohomological invariants for simple, simply connected groups of type A1, A2, G2

and F4. The exposition in this chapter is mostly based on [54], [46], [61]. We fix a field

k of characteristic different from 2 and 3.

In the first section we describe the mod-2 invariants for simple, simply connected k-

groups of type A1 and A2. In the second section we describe the mod-2 invariants for

the k-groups of type G2 and F4 as well as octonion algebras for simple, simply connected

k-groups of type A2, G2 and F4.

7.1 Mod-2 invariants of A1 and A2

Let G be a simple, simply connected k-group of type A1, then there is a quaternion al-

gebra Q over k, unique up to isomorphism, such that G ∼= SL(1, Q) over k. One knows

that quaternion algebras are determined by their norm forms and hence by the corre-

sponding Arason invariants. Therefore we get an invariant for G = SL(1, Q), namely

f2(G) := e2(nQ) ∈ H2(k,Z/2Z). Let G be a simple, simply connected k-group of type

A2, then there is a central simple algebra B of degree 3 over a quadratic étale extension

K of k with an involution σ of the second kind such that G ∼= SU(B, σ) over k.

We now prove a lemma which helps us to define an invariant for a simple simply con-

nected k-group of type A2.

Lemma 7.1.1 ([10], Lemma 2.1) Let Bi, i = 1, 2, be central simple algebras of de-

gree 3, with unitary involutions σi, i = 1, 2, such that SU(B1, σ1) ∼= SU(B2, σ2) as

67
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algebraic groups. Then (B1, σ1) ∼= (B2, σ2) as algebras with involutions. In particular,

f3(B1, σ1) = f3(B2, σ2).

Since SU(B1, σ1) ∼= SU(B1, σ2), we have

Lie(SU(B1, σ1)) ∼= Lie(SU(B2, σ2)).

By ([19], Pg. 346) we have

Lie(SU(Bi, σi)) = Skew(Bi, σi)
◦ := {x ∈ Bi|σi(x) = −x, TBi(x) = 0}, i = 1, 2.

Now applying ([14], Chap. X, Thm. 11), we get (B1, σ1) ∼= (B2, σ2) (see also [19], Prop.

2.25, Pg. 29). �

Hence the Arason invariant f3(B, σ) ∈ H3(k,Z/2Z) of the norm of the octonion algebra

of (B, σ)+ is an invariant of G as well. We summarize this in the remark below,

Remark 7.1.2 When G is simple simply connected k-group of type A1, there is a

quaternion algebra Q over k, unique up to isomorphism, such that G ∼= SL1(Q) over

k ([46], Chap. II, Prop. 2.17). Hence we get an invariant for G = SL1(Q), namely

f2(G) := e2(nQ) ∈ H2(k,Z/2Z). If G is simple simply connected k-group of type A2,

then there is a central simple algebra B of degree 3 over a quadratic étale extension K of

k with an involution σ of the second kind such that G ∼= SU(B, σ) over k ([46], Chap.

II, Prop. 2.18). By Lemma 7.1.1, the Arason invariant f3(B, σ) ∈ H3(k,Z/2Z) of the

norm of the octonion algebra of (B, σ)+ is an invariant of G as well. For a connected

reductive group G of type A2 defined over k, we define f3(G) to be the invariant thus

obtained for the simply connected cover of [G,G].

7.2 Octonion algebras of A2, G2 and F4

In this section we describe the mod-2 invariants for the groups of type G2 and F4 and

octonion algebras of the groups of type A2, G2 and F4.

Let G be a simple, simply connected k-group of type A2 and G ∼= SU(B, σ) over k(see

Remark 7.1.2). As in Remark 7.1.2, the Arason invariant f3(B, σ) of the norm of the

octonion algebra of (B, σ)+ is an invariant of G. Define Oct(G) := C, where C is
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the octonion algebra determined by the 3-fold Pfister form f3(B, σ). Note that σ is

distinguished if and only f3(B, σ) = 0 if and only if Oct(G) splits.

Let G be a group of type G2 defined over k. Then G ∼= Aut(C) for a unique octonion

algebra C over k ([54], §17.4). Recall that C is determined by its norm form nC , which

is a 3-fold Pfister form over k. Hence the groups G over k of type G2 are classified by the

Arason invariant f3(G) := e3(nC) ∈ H3(k,Z/2Z), where G ∼= Aut(C) as above. Define

Oct(G) := C. Observe that f3(G) = 0 if and only if G splits, if and only if Oct(G) splits.

Let G be a group of type F4 defined over k. Then there exists an Albert algebra

A over k such that G ∼= Aut(A), the full group of automorphisms of A ([54], §17.6).

Let A be an Albert algebra over k and let Ared = H3(C,Γ) be the reduced model for

A, where C is an octonion algebra over k (see §5.2) and Γ = diag(γ1, γ2, γ3) ∈ GL3(k).

This defines two mod-2 invariants for G = Aut(A):

f3(G) = f3(A) := e3(nC) ∈ H3(k,Z/2Z),

f5(G) = f5(A) = e5(nC ⊗ 〈1, γ−1
1 γ2〉 ⊗ 〈1, γ−1

2 γ3〉) ∈ H5(k,Z/2Z).

Define Oct(G) := Oct(A) = C. Observe that f3(A) = 0 if and only if Oct(G) splits if

and only if A ia a first Tits construction.

Proposition 7.2.1 ([39], Pg. 205) Let G be a connected, simple algebraic group of type

F4 defined over k. Then G is k-isotropic if and only if A is reduced and f5(A) = 0.

Remark on notation : In the thesis we need to deal with both invariants f3 and f5

of Albert algebras and the f3-invariant of degree 3 central simple algebras with unitary

involutions and the corresponding Pfister forms simultaneously. To avoid an unpleasant

surplus of notation, we shall use the same notation for both Pfister quadratic form in

question as well as its mod-2 invariant as defined above, whenever no confusion is likely

to arise. In the thesis, unadorned tensor products will be understood to be over base

fields.





Chapter 8

Maximal Tori

The main aim of this chapter is to study the structure of maximal tori in groups of type

G2 and simple, simply connected groups of type A2. We refer to the maximal tori in

simple, simply connected groups of type An or G2 as unitary tori. In this chapter we

define the terminology of a unitary and distinguished torus which we use extensively in

the thesis.

Fix a field k of characteristic different from 2, 3.

8.1 Maximal tori of special unitary groups

Let K a quadratic field extension of k with the non-trivial k-automorphism ¯. Let V

be a K-vector space of dimension n. Let h be a non-degenerate hermitian form on V .

By ([52], Theorem 5.1 and Corollary 5.2), we have the following well known explicit

description of maximal tori in a special unitary group of a non-degenerate hermitian

space,

Theorem 8.1.1 (a) Let k be a field and K a quadratic field extension of k. Let V be a

K-vector space of dimension n with a non-degenerate hermitian form h. Let T ⊆ U(V, h)

be a maximal k-torus. Then there exists an étale algebra ET of dimension n over K,

with an involution σh restricting to the non-trivial k-automorphism of K, such that

T = U(ET , σh).

(b) Let T ⊂ SU(V, h) be a maximal k-torus. Then there exists an étale algebra ET over

K of dimension n, such that T = SU(ET , σh).
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Note that in Theorem 8.1.1, ET = ZEndK(V )(T ), the centralizer algebra of T in EndK(V ),

and σh is the involution on EndK(V ) adjoint to h, where T is a maximal torus in U(V, h)

or SU(V, h).

Remark 8.1.2 Let (B, σ) be a central simple algebra of degree n over K, with σ an

involution of the second kind. Let SU(B, σ) be the associated algebraic group. Let

T ⊂ SU(B, σ) be a maximal k-torus. By the above it follows that there is an étale

K-subalgebra ET ⊂ B, of dimension n over K (the centralizer of T in B), stable under

the involution σ, such that T ∼= SU(ET , σ) over k.

By ([52], Remark after Lemma 5.1) we have,

Lemma 8.1.3 Let K be a quadratic étale extension of k. Let E be an étale algebra

of dimension 2n over k containing K, equipped with an involution σ, restricting to the

non-trivial k-automorphism of K. Let L = Eσ = {x ∈ E|σ(x) = x}. Then E = L⊗kK

and (E, σ) = (L⊗kK, 1⊗ ¯), where x 7→ x is the non-trivial k-automorphism of K.

In view of the above lemma, dim(Eσ) = n over k. Let k be a field and L,K be étale

k-algebras of k-dimension n, 2 resp. and E = L ⊗ K. Then E is an étale algebra of

dimension 2n over k. Let ¯ denote the non-trivial k-automorphism of K and τ the

involution 1⊗¯on E. We will refer to (E, τ) as the K-unitary algebra associated with

the ordered pair (L,K).

Lemma 8.1.4 Let L,K be étale algebras of k-dimensions n, 2 resp. Let (E, τ) be the

K-unitary algebra associated with (L,K). Then Eτ = {x ∈ E |τ(x) = x} = L.

Proof. Let K be a quadratic field extension. By Lemma 8.1.3, dim(Eτ ) = n = dim(L).

Since L ⊆ Eτ , and the dimensions are equal, we have L = Eτ . Let K = k × k. Then

(E, τ) = (L× L, ε), where ε is the switch involution on L× L. Clearly Eτ = L. �

8.2 Unitary and Distinguished tori

Let L,K be étale algebras of k-dimensions n, 2 resp. and (E, τ) be the K-unitary algebra

associated with the pair (L,K). We call the torus SU(E, τ) as the K-unitary torus

associated to the ordered pair (L,K). With such a K-unitary torus T , we associate
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the quadratic form qT :=< 1,−αδ >, where Disc(L) = k(
√
δ) and K = k(

√
α). Such

tori are important as they occur as maximal tori in simple, simply connected groups of

type An and G2. In the thesis, we will call a k-torus T as a distinguished torus if

there exists étale k-algebras L,K of k-dimensions 3, 2 resp. such that disc(L) = K and

T = SU(E, τ) ∼= SU(L⊗K, 1⊗¯), where (E, τ) ∼= (L⊗K, 1⊗¯) is the K-unitary algebra

associated to the pair (L,K). Also observe that when T is a distinguished k-torus, the

associated quadratic form qT splits over k. Note also that T has rank-2.

We record below an evident, yet useful result:

Lemma 8.2.1 Let K be a quadratic étale algebra over k and B be a degree 3 central

simple algebra over K with an involution σ of the second kind. Let L ⊆ (B, σ)+ be a

cubic étale subalgebra. Let T be the K-unitary torus associated with the pair (L,K).

Then there exists a k-embedding T ↪→ SU(B, σ).

8.3 Maximal tori in G2

In this section we describe the structure of maximal tori in groups of type G2. The

structure of such tori is well studied (cf. for example, [51]), we supply a proof for

convenience of the reader.

Proposition 8.3.1 ([9], Prop. 2.11 ) Let G be a group of type G2 over k and T be a

maximal k-torus of G. Then there exists étale algebras L,K of k-dimensions 3, 2 resp.

such that T is isomorphic to the K-unitary torus associated to the pair (L,K).

Proof. Let G be as in the hypothesis. Then there exists an octonion algebra C over k

such that G = Aut(C). Let T ⊂ G be a maximal k-torus in G.

Claim: There exists a quadratic étale subalgebra K of C such that K = CT , the fixed

points of the octonion algebra C under the action of T .

To see this, we may assume that the dimension [Ct : k] = 4 for all t ∈ T (k) (Note that

since t is semisimple Ct is a composition subalgebra of C ([65])). If not, then there

exists t ∈ T (k) such that Ct = K is a quadratic étale subalgebra of C ([65], cf. also [21],

paragraph before Theorem 4 and [32]). Now T stabilizes, and hence, by a connectedness

argument, fixes K pointwise. Hence K ⊆ CT ⊆ Ct = K. Let t ∈ T (k) be such that

Ct = Q for some quaternion subalgebra Q of C. Since T centralizes t, we see that

T ⊆ Aut(C,Q). We write, by doubling process, C = Q ⊕ Qb for some b ∈ Q⊥. Let



74 Chapter 8. Maximal Tori

c ∈ Q∗, p ∈ SL1(Q), define φc,p : C → C as φc,p(x+ yb) = cxc−1 + (pcyc−1)b,∀x, y ∈ Q.

Then by ([53], §2.1),

Aut(C,Q) = {φc,p|c ∈ Q∗, p ∈ SL1(Q)}.

By an easy computation it follows that for c, c′ ∈ Q∗, p, p′ ∈ SL1(Q) if φc,pφc′,p′ =

φc′,p′φc,p, then there exists a ∈ k∗ such that cc′ = ac′c.

Claim: There exists φc,p ∈ T (k) such that c /∈ k∗.

If not, then for all φc,p ∈ T (k) we have c ∈ k∗. Let x ∈ Q be arbitary and y = 0.

Then, for any φc,p ∈ T , φc,p(x) = x. Thus Q ⊆ CT and hence T ⊆ Aut(C/Q), where

Aut(C/Q) denotes subgroup of Aut(C) consisting of automorphisms of C which fix Q

pointwise. This is a contradiction, since T is a rank-2 torus and Aut(C/Q) is a simple

group of type A1 (see Theorem 6.2.5).

Thus there exists φc,p ∈ T (k) such that c /∈ k∗. Since φc,p ∈ T is semisimple and c /∈ k∗,

c generates a quadratic étale subalgebra, K := k(c) of Q. Let φc′,p′ ∈ T . Since φc′,p′

commutes with φc,p, we have cc′ = ac′c for some a ∈ k∗. Any element γ ∈ K is a

polynomial expression in c with coefficients from k, say,

γ = a0 + a1c+ ...+ amc
m for ai ∈ k, m ∈ N.

Now φc′,p′(γ) = c′γc′−1= a0 + aa1c + · · · + aamamc
m ∈ K. Hence φc′,p′(γ) ∈ K for all

γ ∈ K. Since φc′,p′ was chosen arbitrarily in T , we see that T stabilizes, and hence,

fixes K pointwise. Hence K ⊆ CT . Therefore T ⊆ SU(K⊥, h), where h is the non-

degenerate hermitian form on K⊥ ⊆ C over K, induced by the norm bilinear form nC

(see [12], §5, cf. Prop. 1.3.4). Note that SU(K⊥, h) = SU(M3(K), ∗h), where ∗h is

the involution on M3(K) given by ∗h(X) = h−1X
t
h ([52], Proposition 3.1). By Theo-

rem 8.1.1, any maximal torus of SU(M3(K), ∗h) is of the form SU(E, ∗h) for some six

dimensional K-unitary algebra E over k. Hence T = SU(E, ∗h) for some E as above. �



Chapter 9

Factorization results

This chapter reports the work done in [10]. We fix a field k of characteristic different

form 2, 3. In this chapter, we shall discuss k-embeddings of k-groups of type A1 and A2

in algebraic groups of type F4 and G2 defined over k and derive a factorization of the

mod-2 invariant of the groups of type F4 and G2 in terms of the mod-2 invariant of the

embedded groups of type A1 and A2.

9.1 Embedding of A1, A2 in F4

We begin with a factorization result for the mod-2 invariant f5(G) associated to a k-

group G of type F4, given a k-embedding of a k-group of type A2 in G.

Theorem 9.1.1 Let K be a quadratic étale k-algebra and B be a degree 3 central simple

algebra over K with an involution σ of the second kind. Let A be an Albert algebra over

k. Let Aut(A) be the algebraic group of type F4 associated to A. Suppose SU(B, σ) ↪→

Aut(A) over k. Then f5(A) = f3(B, σ)⊗ τ for some two fold Pfister form τ over k.

We will first prove a special case of this theorem. This is a group theoretic charac-

terization of Albert algebras with zero f5 invariant. It follows from Remark 5.2.1 that

Albert algebras with f5 6= 0 are pure second Tits constructions. Hence this gives ex-

amples of pure second construction Albert algebras. We note that the result below also

gives an alternative proof of the fact that a second Tits construction Albert algebra

A = J(B, σ, u, µ), with σ distinguished, satisfies f5(A) = 0 ([19], Chap. IX, Prop. 40.7).
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Theorem 9.1.2 Let A be an Albert algebra over k and G = Aut(A). Then f5(A) = 0

if and only if there exists a k-embedding SU(B, σ) ↪→ G for some degree 3 central simple

algebra B with center a quadratic étale k-algebra K and with a distinguished involution

σ.

Proof. Suppose there exists a k-embedding SU(B, σ) ↪→ G for some degree 3 central

simple algebra B with center a quadratic étale k-algebra K and with a distinguished

involution σ. We divide the proof in two cases.

Case (i) K = k × k.

In this case (B, σ) ∼= (D ×Dop, ε) for some central simple k-algebra D, where ε denotes

the switch involution (x, y) 7→ (y, x) and Dop is the opposite algebra of D. Now, SU(D×

Dop, ε) ∼= SL(1, D) over k. Hence, SU(B, σ) ∼= SL(1, D) ↪→ G. If D is a division algebra,

choose a cubic separable extension L over k, L ⊆ D. Now,

D ⊗k L ∼= M3(L) and SL(1, D ⊗k L) ∼= SL3 ↪→ GL.

Hence GL has L-rank = 2. We conclude that G splits over L ([61], Pg. 60). Hence

A and thereby Oct(A) splits over L ([54], Chap. 17, §17.6.4, [8], Pg. 164). Since

[L : K] = 3, by Springer’s theorem Oct(A) must split over k. In the case when D is

split, SL(1, D) ∼= SL3 ↪→ G over k. Hence G is split over k. In both of the above cases

f3(G) = 0, hence, f5(G) = f5(A) = 0.

Case (ii) K is a field.

If B is a division algebra, choose a cubic separable field extension L over k such that

L ⊂ (B, σ)+. In fact any a ∈ (B, σ)+ \ k generates a cubic separable subfield L =

k(a) ⊆ (B, σ)+ (To see this, observe that B is a degree 3 division algebra over K and a

is symmetric. Hence a satisfies an irreducible cubic polynomial over k, this polynomial

is separable as char(k) 6= 3). Notice that [K : k] = 2 and [L : k] = 3, so L ∩ K = k.

Hence, L⊗K ∼= LK. Since B ⊗k L is split over LK, we have the embedding

SU(B ⊗k L, σ ⊗k 1) ∼= SU(M3(LK), σh) ↪→ GL,

where σh is the involution onM3(LK) given byX 7→ hX̄th−1, for some h = diag(h1, h2, h3) ∈

GL3(k). We may assume that det(h) = 1 (modulo squares). We note that σh, being iso-

morphic to σ⊗1, is distinguished. Therefore we have< h1, h2, h3 >LK∼=< 1,−1,−1 >LK
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as hermitian forms (see discussion after Prop. 2.3.3). Note that,

SU(M3(LK), σh) = SU((LK)3, h) and SO(L3, h) ⊆ SU((LK)3, h).

Since < h1, h2, h3 >LK∼=< 1,−1,−1 >LK as hermitian forms, we have,

SU((LK)3, h) ∼= SU((LK)3, < 1,−1,−1 >LK).

Now SO(L3, < 1,−1,−1 >L) is L-isotropic (since, for a non-degenerate form Q, SO(Q)

is L-isotropic iff Q has a L-zero). Hence SU((LK)3, h) is L-isotropic. Therefore, L-rank

of GL = 1. Hence GL is L-isotropic. Thus f5(GL) = 0 ([39], Pg. 205). By Springer’s

theorem, f5(G) = 0 = f5(A). When B = M3(K), the proof follows along same lines

without base changing.

We give another proof of the above theorem when K is a field:

Suppose there exists an embedding SU(B, σ) ↪→ G, with σ distinguished and K a field

extension. Recall that a simple, simply connected k-group H = SU(B, σ), where B is a

degree 3 central simple algebra with center a quadratic étale k-algebra K and with an

involution σ of the second kind, is quasi-split over k if and only if B = M3(K) and H is

distinguished (see Theorem 3.6.3).

Coming back to the proof of Theorem 9.1.2, if B = M3(K), then H = SU(B, σ) is

quasi-split. Hence k-rank of H is atleast 1 and therefore H is isotropic over k. Thus G

is isotropic over k and f5(G) = 0. Now suppose B is a division algebra. Choose a cubic

separable field extension L over k such that L ⊂ (B, σ)+. Since B⊗kL is split over LK,

we have the embedding

SU(B ⊗k L, σ ⊗k 1) ∼= SU(M3(LK), σh) ↪→ G⊗ L,

where σh is the involution on M3(LK) given by X 7→ hX̄th−1, for some

h = diag(h1, h2, h3) ∈ GL3(k). We note that σh, being isomorphic to σ ⊗ 1, is dis-

tinguished. Hence by the previous case, f5(G ⊗ L) = 0. By Springer’s theorem,

f5(G) = 0 = f5(A).

Conversely, if f5(A) = 0 then A ∼= J(B, σ, u, µ) for a central simple algebra B over a

quadratic étale extension K of k, with a distinguished involution σ ([19], Prop.40.7).

Then by §6.3, SU(B, σ) ↪→ G. �
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We now prove Theorem 9.1.1. Proof. Let SU(B, σ) ↪→ Aut(A) be as in the hypothe-

sis. We first need to settle the following

Claim: DL(f3(B, σ)⊗ L) ⊆ DL(f5(A)⊗ L) for all field extensions L of k.

Recall that for a quadratic form q over L, DL(q) denotes the set of non-zero values of q

in L. Let C ′ be the unique octonion algebra over k such that nC′ = f3(B, σ) (Cayley-

Dickson doubling, [53], §1.5).

Note that,

nC′ ⊗ L = nC′⊗L and f5(A)⊗ L = f5(A⊗ L).

Let α ∈ DL(nC′⊗L). We may assume that both nC′⊗L and f5(A ⊗ L) are anisotropic

(otherwise nC′⊗L is hyperbolic over L and by the above theorem f5(A ⊗ L) = 0) . We

therefore assume that C ′ ⊗ L is a division algebra.

Let x ∈ C ′ ⊗ L be such that nC′⊗L(x) = α. We may assume that K ′ := L(x) ⊆ C ′ ⊗ L

is a quadratic field extension of L (otherwise x ∈ L and α is a square in L, which is

represented by f5(A⊗L)). Base changing to L we have, SU(B⊗kL, σ) ↪→ Aut(A⊗kL).

Further base changing to K ′ we get,

SU(B⊗kL⊗LK ′, σ) ↪→ Aut((A⊗kL)⊗LK ′). (∗)

Since K ′ ⊆ C ′ ⊗ L is a quadratic subfield, nC′ ⊗k L ⊗L K ′ is split ([53], Thm. 1.8.1).

Taking L⊗LK ′ (∼= K ′) as the base field and K⊗kL⊗LK ′ as the quadratic étale algebra

over the base field and applying Theorem 9.1.2 to the embedding (*), we get f5((A ⊗k
L)⊗LK ′) = 0. Now, since K ′ over L is a finite field extension and f5(A⊗k L)⊗LK ′ is

split, we have by Theorem 1.1.12,

α ∈ NK′/L(K ′
∗
) ⊆ DL(f5(A⊗k L)).

Hence DL(f3(B, σ)⊗ L) ⊆ DL(f5(A)⊗ L) for all extensions L of k. Hence by Theorem

1.1.9, nC′ is isometric to a subform of f5(A) and we have, f5(A) = nC′ ⊗ τ , for some

2-fold Pfister form τ over k. �

Remark 9.1.3 The converse of the above theorem fails to hold. For example, let A be

an Albert division algebra. Now, SU(M3(K), ∗γ) does not embed in Aut(A) for any
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central simple algebra (M3(K), ∗γ), where K is a quadratic field extension of k. To see

this we observe that A continues to be a division algebra over K (Proposition 5.2.4),

and over K,

SU(M3(K), ∗γ) ∼= SL3 ↪→ Aut(A⊗K).

Therefore K-rank of Aut(A ⊗K) is at least 2, hence A ⊗K is split ([61], Pg. 60), a

contradiction. In particular, if f5(A) = 0, then we have,

f5(A) = 0 = f3(M3(K), ∗γ)⊗ < 1,−1, 1,−1 > .

Corollary 9.1.4 Let A be an Albert algebra over k, G = Aut(A) be the associated

algebraic group of type F4. Let H be a connected reductive group of type A2 defined over

k. Suppose there is a k-embedding H ↪→ G. Then f5(A) = f3(H) ⊗ τ for some 2-fold

Pfister form τ over k.

Proof. Let [̃H,H] be the simply connected cover of [H,H] and ψ : [̃H,H]→ H be the

covering map. Let φ : [̃H,H]→ G be the composite [̃H,H]
ψ→ [H,H] ↪→ H ↪→ G. Then

ker(φ)◦ = 1, owing to the simplicity of [̃H,H]. Hence, over an extension L of k, φ maps

any non-trivial torus in [̃H,H]L to a non-trivial torus in G⊗L. Now, [̃H,H] is a simply

connected simple k-group of type A2. Hence, by Remark 7.1.2, there exists a central

simple algebra B of degree 3 over a quadratic étale extension K of k, with an involution

σ of the second kind, such that [̃H,H] ∼= SU(B, σ). Also, by definition (Remark 7.1.2)

f3(H) = f3([̃H,H]). The result now follows along exactly same lines as in the proofs of

Theorem 9.1.2 and Theorem 9.1.1. �

We give few examples to illustrate the above theorems:

Examples: Let A = J(D, τ, u, µ) be a second Tits construction Albert algebra. Let the

center of D be K and let < α1, α2, α3 > denote the hermitian form corresponding to

K⊥ in C = Oct(A) with respect to the norm form of C ([12], §5) and H3(C,Γ) be the

reduced model for A, Γ = diag(γ1, γ2, γ3). Let τu = Int(u) ◦ τ . As seen in §6.3, we have

the k-embeddings of SU(D, τ) and SU(D, τu) in Aut(A),

(a) Under the k-embedding SU(D, τ) ↪→ Aut(A) we have,

f5(A) = f3(D, τ)⊗ < 1, α1, α2, α3 > .
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(b) Under the k-embedding SU(D, τu) ↪→ Aut(A) we have,

f5(A) = f3(D, τu)⊗ < 1, γ1, γ2, γ3 > .

Lemma 9.1.5 Let A be an Albert algebra of the form J(D, τ, 1, µ). Then

f5(A) = nC ⊕ nC ⊕ nC ⊕ nC = nC⊗ << −1,−1 >>,

where nC denotes the norm form of the octonion algebra C of A.

Proof. By base changing to a suitable cubic extension, we may assume that

A = J(M3(K), ∗Γ, 1, µ), Γ = diag(γ1, γ2, γ3) with γ1γ2γ3 = 1,

and K is a quadratic étale extension of k. Then A ∼= H3(C,Γ) and nC = nK⊗ <

1, γ1, γ2, γ3 >, where Γ = Diag(γ1, γ2, γ3) (Theorem 5.2.3). Now, f5(A) = nC⊗ <

1, γ1, γ2, γ3 > (see §7.2). In this special case, nC represents γi, 1 ≤ i ≤ 3 (since nK

represents 1). Therefore we get

f5(A) = nC ⊕ γ1nC ⊕ γ2nC ⊕ γ3nC = nC ⊕ nC ⊕ nC ⊕ nC .

�

Lemma 9.1.6 Let K be a quadratic étale k-algebra and B be a degree 3 central simple

algebra over K with an involution σ of the second kind. Let A be an Albert algebra over

k and G = Aut(A). Suppose SU(B, σ) ↪→ G over k. Then K ⊆ Oct(A).

Proof. Base changing to K we get, SU(B ⊗k K,σ ⊗k 1) ↪→ G ⊗ K. Also (B ⊗k
K,σ⊗k 1) ∼= (D×Dop, ε), where D is a degree 3 central simple K-algebra and ε denotes

the switch involution (x, y) 7→ (y, x) and Dop is the opposite algebra of D. Hence,

SU(B⊗kK,σ⊗k 1) ∼= SL1(D) ↪→ G⊗K. As in the first case of Theorem 9.1.2 we have

f3(G⊗K) = 0. Therefore Oct(A)⊗K is split and hence K ⊂ Oct(A) ( follows from [5],

Lemma 5). �
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Remark 9.1.7 Let K be a quadratic étale k-algebra and B be a degree 3 central simple

algebra over K with a distinguished involution σ. Let A be an Albert algebra over k.

It is possible to have SU(B, σ) ↪→ Aut(A) over k, yet f3(A) 6= 0. Let C denote the

octonion division algebra represented by the 3-fold (anisotropic) Pfister form < 1,−x >

⊗ < 1,−y > ⊗ < 1,−z > over k = C(x, y, z). Let K ⊂ C be a quadratic subfield

and let h = diag(h1, h2, h3) denote the hermitian form on K⊥ ⊂ C (see [12], §5). Let

A = J(M3(K), ∗h, 1, µ) where ∗h(X) = h−1X
t
h and µ ∈ K satisfies µµ = 1. Then

C = Oct(A) and f5(A) = nC⊗ << −1,−1 >> by Lemma 9.1.5. Since −1 is a square

in k, f5(A) = 0. So by ([19], Prop. 40.7), we can write A ∼= J(B, σ, u′, µ′) where σ

is distinguished. Hence, SU(B, σ) ↪→ Aut(A) (see §6.3). Moreover f3(B, σ) = 0 and

f3(A) 6= 0.

Proposition 9.1.8 Let A be an Albert division algebra and G = Aut(A). Then there

exists a bijection between the set of k-conjugacy classes of subgroups Aut(A/D) in G, D

a 9-dimensional subalgebra, and the set of isomorphism classes of 9-dimensional subalge-

bras of A. The map [D] 7→ f3(D), from the set of isomorphism classes of 9-dimensional

subalgebras of A to the set of isometry classes of 3-fold Pfister divisors of f5(A), is in-

jective, when restricted to the subset {(B, σ)+| σ a unitary

involution on B} for a fixed B.

Proof. Let Si, i = 1, 2, be 9-dimensional subalgebras of A such that Aut(A/Si),

i = 1, 2, are k-conjugate in Aut(A). Then there exists φ ∈ Aut(A)(k) such that

φAut(A/S1)φ−1 = Aut(A/φ(S1)) = Aut(A/S2).

Now, by taking fixed points of these subgroups in A, we get φ(S1) = S2. Hence S1 is

isomorphic to S2. Thus we have a map [Aut(A/D)] 7→ [D] from the set of k-conjugacy

classes of subgroups Aut(A/D) in G to the set of isomorphism classes of 9-dimensional

subalgebras D of A. Let now Si, i = 1, 2 be 9-dimensional subalgebras such that

φ : S1 → S2 is an isomorphism. By the Skolem-Noether theorem for Albert algebras

([34], Theorem 3.1, see also [41], §5), φ extends to an automorphism φ̃ of A. It fol-

lows that φ̃Aut(A/S1)φ̃−1 = Aut(A/S2). Hence we have a map [D] 7→ [Aut(A/D)],

which is the required inverse of the above map. By Theorem 9.1.1 we have the map

[D] 7→ f3(D). That this map is injective on the set {(B, σ)+ ⊂ A} for a fixed B, follows

from Proposition 2.3.3. �
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Embeddings of A1 in F4:

Let G be a group of type F2 defined over k. Along similar lines of Theorem 9.1.1, we

now derive a factorization result for the mod-2 invariant f5(G) of G in terms of the

mod-2 invariant of the embedded k-group of type A1.

Theorem 9.1.9 Let Q be a quaternion algebra over k and A be an Albert algebra over k.

Let G = Aut(A) be the algebraic group of type F4 associated to A. Suppose SL(1, Q) ↪→

G over k. Then f5(A) = f2(nQ)⊗ τ for some three fold Pfister form τ over k.

Remark 9.1.10 We note that the converse of the above theorem does not hold. For

example, if A is an Albert division algebra over k, then for no quaternion algebra Q,

SL(1, Q) can embed in G = Aut(A), since for any quadratic subfield K ⊂ Q, the K-rank

of G⊗K is positive. Hence A⊗K must be reduced (Prop. 7.2.1), whereas A continues

to be a division algebra over K (Proposition 5.2.4), a contradiction. In particular if

f5(A) = 0, then for any quaternion algebra Q, f5(A) = 0 = f2(nQ) ⊗ τ , where τ is an

8-dimensional hyperbolic form.

9.2 Embeddings of A1, A2 in G2

Let G be a group of type G2 defined over k. In this section we derive factorization of the

mod-2 invariant f3(G) of G in terms of the mod-2 invariant of the embedded k-groups

of type A1 and A2.

Theorem 9.2.1 Let C be an octonion algebra over k and Q be a quaternion algebra

over k. Then the following are equivalent.

(a) Q embeds in C as a subalgebra.

(b) nC = nQ ⊗ τ , where τ is a 1- fold Pfister form over k.

(c) SL1(Q) ↪→ Aut(C) over k.

Proof. (1) (a) =⇒ (c) : Since Q embeds in C as a subalgebra, we can write C, up to an

isomorphism, as C = Q⊕Q (by Cayley-Dickson doubling). Consider the automorphism

of C given by
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φp : (x, y) 7→ (x, py), ∀ x, y ∈ Q, p ∈ SL1(Q).

Then, SL1(Q) ↪→ Aut(Q) via p→ φp is a k-embedding.

(2) (c) =⇒ (b) : We can assume that nQ and nC are anisotropic. Let X be the conic

attached to Q. Then Q (hence SL1(Q)) splits over the function field k(X). Therefore,

base changing to k(X) we get,

SL1(Q⊗k k(X)) ↪→ Aut(C ⊗k k(X)).

Hence k(X) splits the Pfister form nC . Therefore by Theorem 1.1.10, taking a, b = 1,

nQ is isometric to a subform of nC and hence is a factor of nC .

(3) (b) =⇒ (a) : Let τ =< 1,−α >, for some α ∈ k. Let C
′

= Q ⊕ Q be the α-

double of Q. Now, nC′ = nQ⊗ < 1,−α >= nC . Since octonion algebras with isometric

norms are isomorphic ([19], Thm. 33.19), we have C
′ ∼= C over k. Hence, Q embeds in

C. �

Lemma 9.2.2 Let C be an octonion algebra over k. Let G ∼= Aut(C). Let K be a

quadratic étale k-algebra and B be a degree 3 central simple algebra over K with an

distinguished involution σ of the second kind. If there exists a k-embedding SU(B, σ) ↪→

G then G splits.

Proof. By Theorem 10.1.1, H becomes isotropic over an odd degree extension of k,

hence G becomes isotropic over an odd degree extension and splits over it. By Springer’s

theorem, G splits over k. �

Theorem 9.2.3 Let C be an octonion algebra over k. Let K be a quadratic étale k-

algebra and B be a degree 3 central simple algebra over K with an involution σ of

the second kind. Then there exists a k-embedding SU(B, σ) ↪→ Aut(C) if and only

f3(B, σ) = nC and B ∼= M3(K).
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Proof. Suppose there exists a k-embedding SU(B, σ) ↪→ Aut(C). Assume that B

is a division algebra. Then SL1(B) ↪→ Aut(C ⊗k K) over K. Note that Co := {x ∈

C|Tr(x) = 0} is a 7-dimensional faithful representation of Aut(C) defined over k. Hence

SL1(B) has a 7-dimensional faithful representation defined over K. This is a contradic-

tion, since the only irreducible non-trivial representation of SL1(B) of dimension ≤ 8,

for B a division algebra, is the 8-dimensional adjoint representation. Hence B ∼= M3(K).

Claim: f3(B, σ) = nC .

We can assume that both nC and f3(M3(K), σ) are irreducible anisotropic forms. Let

Z be the quadric attached to the Pfister form f3(M3(K), σ). Base Changing to k(Z) ,

SU(M3(K)⊗ k(Z), σ ⊗ 1) ↪→ G⊗ k(Z).

Now f3(M3(K), σ) splits over k(Z). Hence, by the Lemma 9.2.2, k(Z) splits G and hence

nC is split by k(Z) and by the Subform theorem (Theorem 1.1.10), f3(B, σ) = nC . �

We have the following result linking rank-1 k-tori in a k-group G of type G2 and 1-fold

Pfister divisors of f3(G),

Theorem 9.2.4 Let C be an octonion division algebra over k and G = Aut(C) be the

corresponding k-group of type G2. Then the following sets are in natural bijection with

each other

(i) Isomorphism classes of quadratic étale subalgebras K of C.

(ii) k-Conjugacy classes of subgroups Aut(C/K) in G, for quadratic étale subalgebras

K of C.

(iii) Isometry classes of 1-fold Pfister divisors of nC , the norm form of C.

(iv) k-isomorphism classes of rank-1 k-tori in G.

Proof. The map (i)→ (ii) is given by [K] 7→ [Aut(C/K)] and is well defined. The map

[Aut(C/K)] 7→ [K] is a well defined inverse of this map. To see this, let Ki, i = 1, 2, be

quadratic étale subalgebras of C and φAut(C/K1)φ−1 = Aut(C/φ(K1)) = Aut(C/K2)

for some φ ∈ Aut(C)(k). We show φ(K1) = K2. If not, consider the subalgebra Q gen-

erated by φ(K1) and K2. Then Q is a quaternion subalgebra. Let x 6= 0 ∈ K2 be

arbitrary and consider Int(x) : Q → Q. By the Skolem-Noether theorem for composi-

tion algebras ([53], Cor. 1.7.3) Int(x) extends to an automorphism ψ of C. Observe
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that Int(x), hence ψ, fixes K2 pointwise. Hence ψ fixes φ(K1) pointwise. Therefore x

centralizes φ(K1) in Q and hence x ∈ φ(K1) since φ(K1) is maximal commutative in Q.

This is a contradiction. Therefore we have a bijection (i)↔ (ii). The map (ii) 7→ (i) is

given by [H = Aut(C/K)] 7→ [CH ]. Note that CH = K. For the bijection (i)↔ (iii),

the construction is as in the case(2) of the proof of Theorem 9.2.1. The map (i)→ (iv)

is given by [K] 7→ [K(1)] where K(1) is the norm torus of K. Let Si, i = 1, 2, be rank-1

k-isomorphic tori in G. By ([64], Example 6, Pg. 57 ) there exists quadratic étale ex-

tensions Ki, i = 1, 2, of k such that Si ∼= K
(1)
i , i = 1, 2. Observe that Si, i = 1, 2, split

over Ki. Hence G, therefore C, splits over Ki, i = 1, 2. By ([5], Lemma 5) Ki, i = 1, 2,

embeds in C. Since S1 and S2 are k-isomorphic, it follows that K1 and K2 are isomor-

phic. Therefore we have a bijection (i)↔ (iv). �

Proposition 9.2.5 The following sets are in natural bijection with each other

(1) k-Conjugacy classes of involutions in Aut(C)(k).

(2) Isomorphism classes of quaternion subalgebras D of C.

(3) k-Conjugacy classes of subgroups Aut(C/D) ⊆ Aut(C).

(4) Isometry classes of 2-fold Pfister divisors of nC .

Proof. The existence of bijection (1)↔ (2) follows from ([52], Prop. 4.1).

The existence of bijection (2)↔ (3) follows along similar lines as in the proof of bijection

(i)↔ (ii) of Theorem 9.2.4. The existence of bijection (2)↔ (4) follows from Theorem

9.2.1. �





Chapter 10

Embeddings of rank-2 tori

This chapter reports the work done in [9]. In chapter 9, we studied k-embeddings of

connected, simple algebraic groups of type A1 and A2 in simple groups of type G2 and

F4, defined over k, in terms of their respective mod-2 Galois cohomological invariants.

Fix a field k of characteristic different from 2 and 3. In this chapter we investigate

k-embeddings of certain rank-2 k-tori in k-groups of type G2, F4 and A2 and study the

mod-2 invariants of these groups via these embeddings.

In §8.2 we described the notion of a distinguished torus. In the first section of this chapter

we study k-embeddings of distinguished k-tori in simply connected, simple algebraic

groups of type A2, G2 and F4, defined over a field k, in terms of the mod-2 Galois

cohomological invariants attached with these groups. In the second section we list some

results on groups of type A2, G2 and F4 which arise from division algebras, which will

be useful in the thesis. In the third section we study k-embeddings of unitary k-tori in

simply connected, simple k-groups of type A2, G2 and F4 in terms of mod-2 invariants

of these groups.

10.1 Embeddings of Distinguished tori

Let G of a k-group of type F4. We show that G contains a distinguished k-torus if and

only if f5(G) = 0. A stronger version of this result holds for groups of type G2 and A2.

Let G be a simple, simply connected k-group of type G2 or A2 defined over k. We prove

that Oct(G) splits over k if and only if G contains a distinguished (maximal) k-torus.

87
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We begin with a group theoretic characterization of distinguished involutions on degree

3 central simple algebras:

Theorem 10.1.1 Let F be a quadratic étale k-algebra and B be a degree 3 central simple

algebra over F with an involution σ of the second kind. Then σ is distinguished over k

if and only if SU(B, σ) becomes isotropic over an odd degree extension.

Proof. Assume that SU(B, σ) becomes isotropic over an odd degree extension L of k.

Claim: The degree 3 L-Jordan algebra (B, σ)+ ⊗ L ∼= (B ⊗ L, σ ⊗ 1)+ contains a

non-zero nilpotent.

Let V = (B, σ)+. Note that SU(B, σ) acts via automorphisms on V by the map

φ : SU(B, σ)→ Aut(V ) of algebraic groups given by

x 7→ φ(x)(p) = pxσ(p) = pxp−1, x ∈ V, p ∈ SU(B, σ).

Since SU(B, σ) becomes isotropic over L, we have an embedding Gm ↪→ SU(B⊗L, σ⊗1)

over L. We now decompose V ⊗ L under the action of Gm as

V ⊗ L =
⊕

λ∈χ(Gm)

Vλ, where Vλ := {w ∈ V ⊗ L : t(w) = λ(t)w ∀ t ∈ Gm}.

Note that ker(φL)◦ = {1}, owing to the simplicity of SU(B, σ), where φL is the base

change of φ to L. Hence the above embedded Gm does not act trivially on V ⊗L. Thus

there exists λ ∈ χ(Gm), λ 6= 1 such that Vλ 6= 0. Now choose t ∈ Gm such that λ(t) 6= 1,

λ(t2) 6= 1, λ(t3) 6= 1 and 0 6= w ∈ Vλ. Let Q(X) = 1
2TB(X2) and N be the reduced

norm on B. Since t acts via automorphisms on (B, σ)+, it follows, by considering the

equations,

TB(t(w)) = TB(w) = λ(t)TB(w), Q(t(w)) = Q(w) = λ(t)2Q(w),

N(t(w)) = N(w) = λ(t)3N(w)

that TB(w) = Q(w) = N(w) = 0. Hence w is nilpotent. Therefore, V ⊗ L contains a

non-zero nilpotent element. Hence the claim.

By ([37], Thm. 2.11., Pg. 376), Oct(B, σ)+ ⊗ L splits. Hence σ is distinguished over L

([7], Thm. 16). By Springer’s theorem, it follows that σ is distinguished over k. The

converse follows by an argument as in the case(ii) of the proof of Theorem 9.1.2. �
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We now prove a lemma which will be used extensively in the thesis.

Lemma 10.1.2 (a) Let G be a group of type F4 defined over k. If G has k-rank = 1,

then f5(G) = 0. Moreover, if G has k-rank = 2, then G splits over k and f3(G) = 0 =

f5(G).

(b) Let G be a simple, simply connected group of type G2 or A2 defined over k. If k-rank

of G ≥ 1, then Oct(G) splits.

Proof. (a) Let G be a group of type F4 defined over k. If G has k-rank = 1 then G

is k-isotropic and by ([39], Pg. 205), f5(G) = 0. If G has k-rank = 2 then by ([61], Pg.

60), G splits over k. Hence A and thereby Oct(A) splits over k ([54], Chap. 17, §17.6.4,

[8], Pg. 164).

(b) Let G be a group of type G2 defined over k. If k-rank of G ≥ 1, then by ([54],

Chap. 17, §17.4.2), G is k-split. Hence Oct(G) is split ([54], Chap. 17, §17.4.5, [61], Pg.

60). Let G be a simple, simply connected group of type A2 defined over k. If k-rank of

G ≥ 1 then G is k-isotropic and by Theorem 10.1.1 above, Oct(G) splits. �

Theorem 10.1.3 Let T be a distinguished torus defined over k. Then T is isotropic

over an odd degree extension of k.

Proof. Let T be a distinguished torus over k. Then, by definition, there exists étale

k-algebras L,K of k-dimensions 3, 2 resp. such that disc(L) = K and T = SU(E, τ),

where (E, τ) is the K-unitary algebra associated to (L,K). By Lemma 8.1.4, L = Eτ =

{x ∈ E |τ(x) = x}. We divide the proof into three cases.

Case (i) L = k × k × k.

Since T is distinguished, we have disc(L) = K = k×k. Hence (E, τ) ∼= (L×L, ε), where

ε : L× L→ L× L is given by ε(x, y) = (y, x), the switch involution on L× L. Now

SU(E, τ) ∼= {(x, y) ∈ L× L|(x, y)ε(x, y) = 1, (NL/k(x), NL/k(y)) = (1, 1)} ∼= L(1) ∼= k∗ × k∗,

where L(1) denotes the group of norm 1 elements of L. It follows that SU(E, τ) ∼=

Gm ×Gm over k, and hence T = SU(E, τ) splits over k in this case.

Case (ii) L = k ×K, K is a field.
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Let ε : K×K → K×K be given by ε(x, y) = (y, x). Then (E, τ) = ((k×K)⊗K, 1⊗̄ ) ∼=

(K × (K ×K), ( ,̄ ε )). We have therefore,

SU(E, τ) ∼= {(x, y, z) ∈ K ×K ×K|(x, y, z)(x, z, y) = (1, 1, 1), xyz = 1}.

∼= {(zz−1, z−1, z)| z ∈ K∗} = {(z−2N(z), zN(z−1), z)| z ∈ K∗}.

∼= K∗.

Hence T = SU(E, τ) ∼= RK/k(Gm) is isotropic over k.

Case (iii) L is a field.

Base changing to L we get, L ⊗ L ∼= L × K0 as L-algebras, where K0 = L ⊗ ∆, and

∆ = Disc(L) (see Prop. 2.4.2). By case (i) and (ii), it follows that SU(E, τ) ⊗ L is

isotropic. Hence T = SU(E, τ) is isotropic over L. �

Note that this property characterizes distinguished tori among unitary ones. We now

study the presence of distinguished k-tori in groups of type A2, G2 and F4 defined over

k. We see that existence of such tori has a direct relation with the mod-2 invariants

attached to these groups. We obtain as an immediate consequence of the above theorem

the following,

Theorem 10.1.4 Let G be a group of type G2 over k. Then G splits over k (equiva-

lently, Oct(G) splits over k) if and only if there exists a maximal k-torus in G which is

distinguished.

Proof. Let T ⊆ G be a distinguished maximal k-torus. By Theorem 10.1.3, T becomes

isotropic over an odd degree extension, say M , of k. Hence M -rank of G ≥ 1. Thus

Oct(G)⊗M is split (Lemma 10.1.2). By Springer’s theorem, Oct(G) splits over k itself

and consequently G is k-split. Conversely, suppose G splits over k. Let L = k × k × k

and K = k × k and T = SU(L⊗K, 1⊗¯). By case (i) of the proof of Theorem 10.1.3,

T ∼= Gm × Gm and Gm × Gm ↪→ G over k as G is k-split. Hence T is the required

distinguished k-torus. �

A similar result holds for groups of type A2.

Theorem 10.1.5 Let G be a simple, simply connected group of type A2 over k. Then

Oct(G) splits over k if and only if there exists a maximal k-torus in G which is distin-

guished.
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Proof. Let G be as in the hypothesis. Then G ∼= SU(B, σ) for some degree 3 central

simple algebra B over a quadratic étale extension F of k with an involution σ of the

second kind. Let T ↪→ G be a maximal k-torus which is distinguished. Then, by

Theorem 10.1.3, T is isotropic over an odd degree extension M of k. Thus G is isotropic

over M . Hence by Theorem 10.1.1, σ is distinguished over k. Hence, f3(B, σ) = 0

and Oct(G) is split over k. Conversely, if Oct(G) is split over k, then f3(B, σ) = 0

and hence σ is distinguished over k. By ([7], Theorem 16, pg. 317), (B, σ)+ contains

a cubic étale k- algebra L with F as its discriminant algebra. Let E = L ⊗ F . Then

E ↪→ B and σ restricted to E equals τ := 1 ⊗ ¯ , where ¯ denotes the non-trivial

k-automorphism of F . Hence SU(E, σ) is a distinguished k-torus and, by Lemma 8.2.1,

SU(E, τ) ↪→ G ∼= SU(B, σ) over k. �

For groups of type F4 we have the following,

Theorem 10.1.6 Let A be an Albert algebra over k and G = Aut(A). Then f5(A) = 0

if and only if G contains a distinguished k-torus.

Proof. Assume that G contains a distinguished k-torus T . Then by Theorem 10.1.3,

T is isotropic over an odd degree extension M of k, hence G becomes isotropic over M .

Therefore M -rank of G ⊗M ≥ 1 and f5(A ⊗M) = f5(A) ⊗M = 0 (Lemma 10.1.2).

By Springer’s theorem f5(A) = 0. Conversely, if f5(A) = 0, by ([19], Prop. 40.7),

A ∼= J(B, σ, u, µ) for a central simple algebra B over a quadratic étale extension F of

k, with a distinguished involution σ. Since σ is distinguished, by Theorem 10.1.5 there

exists a k-embedding of a distinguished k-torus T in SU(B, σ). Now SU(B, σ) ↪→ G

over k (see §6.3). Hence T ↪→ G over k and T is distinguished. �

As a consequence of the above theorem, we have an alternative proof of (Theorem 9.1.2,

§9.1).

Corollary 10.1.7 Let A be an Albert algebra over k and G = Aut(A). Then f5(A) = 0

if and only if there exists a k-embedding SU(B, σ) ↪→ G for some degree 3 central simple

algebra B with center a quadratic étale k-algebra F and with a distinguished involution

σ.

Proof. Suppose SU(B, σ) ↪→ G over k for (B, σ) as in the hypothesis. Since σ is

distinguished, by Theorem 10.1.5, there exists a k-embedding T ↪→ SU(B, σ) for a dis-

tinguished k-torus T . Hence T ↪→ SU(B, σ) ↪→ G over k. Therefore, by Theorem 10.1.6,
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f5(A) = 0. The proof of the converse follows exactly along the same lines as in the proof

of Theorem 10.1.6. �

10.2 Groups arising from division algebras

Let G be a simple, simply connected k-group of type A2. We will refer to G as arising

from a division algebra if either G ∼= SU(D,σ) for some degree 3 central division algebra

D over a quadratic field extension F of k, with an involution σ of the second kind or

G ∼= SL1(D) for some degree 3 central division algebra D over k. Let G be a k-group

of type F4. We will refer to G as arising from a division algebra if G ∼= Aut(A), where

A is an Albert division algebra over k. Let G be a k-group of type G2. We will refer

to G as arising from a division algebra if G ∼= Aut(C), where C is an octonion division

algebra over k.

Theorem 10.2.1 Let G be a simple, simply connected group of type A2 or F4 defined

over k, arising from a division algebra over k. Then,

(1) G(k) contains no non-trivial involution over k.

(2) There does not exists any rank-1 torus T over k such that T ↪→ G over k.

(3) G is k-anisotropic.

These conditions hold over any field extension of k of degree coprime to 3.

Proof. First we prove (1). Recall that an involution in a group is an element of

order atmost 2. Let G be a simple, simply connected group of type A2, arising from

a division algebra D over k. Let Z(D) denote the center of D. Then [D : Z(D)] = 9.

Let θ ∈ G(k) ⊆ D∗ be an involution. Then θ2 = 1 and ND(θ) = 1. Since θ2 = 1, θ

generates the field extension k(θ) of k of degree ≤ 2 over Z(D). Since the dimension

[D : Z(D)] = 9, it follows that θ ∈ Z(D). Since θ2 = 1 and θ ∈ Z(D), θ = 1 or −1

(Z(D) is a field). Since ND(θ) = 1 we have θ = 1. Hence G(k) does not contain any

non-trivial involutions. When G is a group of type F4, the result follows from a theorem

of Jacobson ( [17], Chap. IX, Theorem 9). Moreover, let M be any field extension of k

of degree coprime to 3. As seen above, if G(M) contains a non-trivial involution, then

G⊗M cannot arise from a division algebra. By Proposition 5.2.4, G cannot arise from

a division algebra.
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We now prove (2). Suppose there exists a rank-1 torus T over k such that T ↪→ G over k.

Necessarily, T = K(1), the norm torus of a quadratic étale extension K/k ([64], Chap.II,

§IV, Example 6). But then T splits over K, which in turn implies that G becomes

isotropic over K. Suppose G is a group of type F4 over k. Then G = Aut(A) for some

Albert algebra A over k. Since G becomes isotropic over K, A ⊗ K is reduced (see

Prop. 7.2.1). Hence G does not arise from a division algebra over k, since no extension

of degree coprime to 3 can reduce a Albert division algebra (Proposition 5.2.4). This

is a contradiction. Now suppose G is a group of type A2 over k. Since G becomes

isotropic over K, by ([61],Table of Tits indices), G ⊗K does not arise from a division

algebra over K. By Proposition 5.2.4, G does not arise from a division algebra over k,

a contradiction. Moreover, let M be any field extension of k of degree coprime to 3.

Suppose there exists a rank-1 torus T over M such that T ↪→ G over M. Then, as seen

above, G does not arise from a division algebra over M . Hence by Proposition 5.2.4, G

does not arise from a division algebra over k. This is a contradiction. The proof of (3)

follows from ([61], Remark on Page 61, Table of Tits indices). �

Remark 10.2.2 (1) Let G be a simple, simply connected k-group of type A2 arising

from a division algebra. Let H be a simple, simple connected k-group of type A1. Then

H does not embed in G over k. By ([46], Chap. II, Prop. 2.17) there is a quaternion

algebra Q over k, unique up to isomorphism, such that H ∼= SL1(Q) over k. Suppose

H embeds in G over k. If Q is split, then H ∼= SL2 and k-rank of G ≥ 1. Hence G is

k-isotropic and by Theorem 10.2.1, G cannot arise from a division algebra. If Q is a

quaternion division algebra, we choose a quadratic subfield K ⊆ Q. Then Q splits over

K and the K-rank of H is one. Hence K-rank of G ≥ 1 and G is isotropic over K. By

Theorem 10.2.1, G cannot arise from a division algebra.

(2) For a simple group G of type A2, conditions (1), (2), (3) of Theorem 10.2.1 are

all equivalent to the condition that G arises from a division algebra.

Theorem 10.2.3 Let A be an Albert algebra over k and G = Aut(A). Then the fol-

lowing are equivalent.

(a) f3(A) = 0 (i.e, Oct(G) is split).

(b) There exists a cubic étale k-algebra L of trivial discriminant such that L(1) ↪→ G

over k.
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(c) There exists a k-embedding SL1(D) ↪→ G over k, for a degree 3 central simple algebra

D over k.

(d) A is a first Tits construction Albert algebra.

Proof. Let f3(A) = 0. Then, by ([19], Prop. 40.5), A is a first Tits construction and

A ∼= J(D,µ), where D is a degree 3 central simple algebra over k. If D is split, let

L = k×k×k and if D is a division algebra, let L a cubic cyclic extension of k such that

L ⊆ D+ (This is possible by Weddernburn’s Theorem [19], Pg. 303, 19.2). In either

case, since SL1(D) ↪→ G (see §6.3), L(1) ↪→ G over k. Hence (a) ⇒ (b) and (a) ⇒ (c)

follows.

For the proof of (b) ⇒ (a), let L(1) ↪→ G over k, where L is a cubic étale k-algebra of

trivial discriminant. Clearly L ∼= k × k × k or L is a cubic cyclic field extension of k. If

L ∼= k× k× k then L(1) ∼= Gm×Gm. Hence the k-rank of G ≥ 2 and, by Lemma 10.1.2,

f3(A) = 0. Let L be a cubic cyclic field extension of k. Observe that L(1) ⊗ L ∼= E(1),

where E = L ⊗ L. By Proposition 2.4.2, L ⊗ L ∼= L × L × L and hence E(1) is an

L-split torus of rank-2, embedding in G⊗ L. Hence the L-rank of G⊗ L ≥ 2 and thus,

by Lemma 10.1.2, f3(A ⊗ L) = 0. By Springer’s theorem, f3(A) = 0. We now prove

(c) ⇒ (a). Let SL1(D) ↪→ G over k, where D is a degree 3 central simple algebra over

k. If D is a division algebra, choose a cubic separable extension L over k, L ⊆ D. Now,

D ⊗k L ∼= M3(L) and SL1(D⊗k L) ∼= SL3 ↪→ G⊗ L.

Hence G⊗L has L-rank = 2. By Lemma 10.1.2, Oct(A) splits over L. Since [L : K] = 3,

by Springer’s theorem, Oct(A) must split over k and f3(A) = 0. In the case when D

is split, SL1(D) ∼= SL3 ↪→ G over k. Hence G is split over k and f3(A) = 0. The

implication (a)⇔ (d) holds by ([19], Proposition 40.5). �

10.3 Embeddings of Unitary tori

It turns out that embeddings of unitary tori in groups of type A2, G2 and F4 are

intricately linked to the mod-2 invariants of these groups. We discuss this below.
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Lemma 10.3.1 Let L = k×K0 be a cubic étale algebra over k, where K0 is a quadratic

étale extension of k. Let K = k × k and T be the K-unitary torus associated with the

pair (L,K). Then T ∼= RK0/k(Gm).

Proof. By definition, T = SU(E, τ), where (E, τ) = (L⊗K, 1⊗ ¯). Note that

(L⊗K, 1⊗ ¯) ∼= (L× L, ε) ∼= ((k ×K0)× (k ×K0), ε),

where ε : L× L 7→ L× L is the switch involution. Hence

SU(E, τ) ∼= SU((k ×K0)× (k ×K0), ε).

For ((a, x), (b, y)) ∈ (k ×K0)× (k ×K0) we have,

((a, x), (b, y))ε((a, x), (b, y)) = (((a, x), (b, y))((b, y), (a, x)) = ((ab, xy), (ba, yx)), and

NE/K((a, x), (b, y)) = N(k×K0)×(k×K0)/(k×k) = (a.NK0/k(x), b.NK0/k(y)).

Hence,

SU(E, τ) ∼= {((a, x), (a−1, x−1)) ∈ (k ×K0)× (k ×K0) |a.NK0/k(x) = 1} ∼= K∗0 .

From this it follows that SU(E, τ) ∼= RK0/k(Gm). �

Lemma 10.3.2 Let L = k× k× k and K be a quadratic étale extension of k. Let T be

the K-unitary torus associated with the pair (L,K). Then T ∼= K(1) ×K(1).

Proof. By definition, T = SU(E, τ), where (E, τ) = (L ⊗K, 1 ⊗ ¯). It is immediate

that (E, τ) ∼= (K ×K ×K, ( ,̄ ,̄ ¯)). Hence,

SU(E, τ) ∼= {(x, y, z) ∈ K ×K ×K|xx = yy = zz = 1, xyz = 1} ∼= K(1) ×K(1).

It follows that SU(E, τ) ∼= K(1) ×K(1). �

Theorem 10.3.3 (a) Let G be a k-group of type G2 or a simply connected, simple group

of type A2. Let L,K be étale algebras of dimension 3, 2 resp. and T be the K-unitary
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torus associated with the pair (L,K). Suppose there exists a k-embedding T ↪→ G. Then

K ⊆ Oct(G).

(b) If G is a k-group of type F4 or a simply connected, simple group of type A2 arising

from a division algebra and T ↪→ G over k, then L must be a field extension.

Proof. Let (E, τ) and T be the K-unitary algebra and torus resp. associated with the

pair (L,K). By definition T = SU(E, τ). For the assertion (a), we divide the proof into

two cases.

Case 1: L = k ×K0 for some quadratic étale extension K0 of k.

Let K = k × k. By Lemma 10.3.1, T ∼= RK0/k(Gm) ↪→ G. Therefore, the k-rank of

G ≥ 1. Thus by Lemma 10.1.2, Oct(G) is split. When K is a field extension, base

changing to K and applying the same argument, it follows that Oct(G) ⊗ K is split.

Hence K ⊆ Oct(G) ([5], Lemma 5).

Case 2: L is a field extension.

Base changing to L, by Proposition 2.4.2, we have, L ⊗ L ∼= L ×K0 for K0 = L ⊗ ∆,

where ∆ is the discriminant algebra of L over k. By case 1, K ⊗ L ⊆ Oct(G) ⊗ L.

Therefore if K = k × k, Oct(G) ⊗ L is split and by Springer’s theorem, Oct(G) splits

and K ⊆ Oct(G). Hence we may assume that K is a field. Then K ⊗ L is a cubic field

extension of K and

(Oct(G)⊗ L)⊗L (L⊗K) ∼= Oct(G)⊗ L⊗K ∼= (Oct(G)⊗K)⊗K (K ⊗ L)

is split, since K⊗L ⊆ Oct(G)⊗L. Hence (Oct(G)⊗K) is split over the cubic extension

(K⊗L) of K. Therefore by Springer’s theorem, Oct(G)⊗K is split. Hence K ⊆ Oct(G)

([5], Lemma 5).

Now we prove (b). Let G be a k-group of type F4 or A2 as in the hypothesis and

let T ↪→ G over k, where T is the K-unitary torus associated to the pair (L,K) as

in the hypothesis. Assume that L is not a field. Let L = k × K0 for some quadratic

field extension K0 of k. If K = k × k then, as in the proof of case 1, G is k-isotropic.

Therefore, by Theorem 10.2.1, G cannot arise from a division algebra. Let K be a field

extension. By an easy calculation we see that T ⊗K0 = SU(E ⊗K0, τ) ∼= M(1)×M(1),

where M = (K ⊗K0). Note that M (1) ×M (1) contains the involution (−1, 1) defined

over K0. Hence G(K0) contains a non-trivial involution. Therefore, by Theorem 10.2.1,
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G cannot arise from a division algebra. In the case when L = k × k × k, by Lemma

10.3.2, T ∼= K(1) × K(1). Again K(1) × K(1) contains the involution (−1, 1) defined

over k. Hence G(k) contains a non-trivial involution. Therefore, by Theorem 10.2.1, G

cannot arise from a division algebra. Hence (b) follows. �

Remark 10.3.4 (1) For k-groups of type G2, (b) fails to hold. To see this, let L =

k × k × k and K be a quadratic field extension of k. Let T be the K-unitary torus

associated with the pair (L,K). By Lemma 10.3.2, T ∼= K(1) × K(1). Such a torus

embeds in a k-group of type G2 arising from a division algebra (see [53], §2.1).

(2) For k-groups of type F4, (a) fails to hold. Let C be an octonion division algebra

over k. Let Γ = diag(1,−1,−1) ∈ GL3(k). Consider the reduced Albert algebra A :=

H3(C,Γ). Let G = Aut(A). Then C = Oct(G) (see §5.2). Let F ⊆ C be a quadratic

subfield. By ([34], §1, Thm. 1.1), there exists an isomorphism of Jordan algebras

H3(C,Γ) ∼= J(M3(F ), ∗Γ, V, µ), where ∗Γ(X) = Γ−1X
t
Γ, V ∈ GL3(F ) with ∗Γ(V ) = V

and detV = µµ for some µ ∈ F ∗. Let L = k × F . Note that L ⊆ M3(F ) as a k-

subalgebra (via the embedding (γ, x) → diag(γ, x, x), γ ∈ k, x ∈ F ). Since ∗Γ is a

distinguished involution on M3(F ) ([7], Theorem 16), by ([7], Cor. 18), it follows that

L ↪→ (M3(F ), ∗Γ)+ over k. Let T be the F -unitary torus associated with the pair (L,F ).

Then T ↪→ SU(M3(F ), ∗Γ) ↪→ G over k (see §6.3). By case (ii) of Theorem 10.1.3,

T ∼= RF/k(Gm). Hence RF/k(Gm) ↪→ G over k. Now consider K = k × k. By Lemma

10.3.1, SU(L ⊗K, τ) ∼= RF/k(Gm). Hence SU(L ⊗K, τ) ↪→ G over k but K does not

embed in C = Oct(G), since C is a division algebra.

However we have the following,

Theorem 10.3.5 Let G be a group of type F4 defined over k. Let K be a quadratic

étale k-algebra and L be a cubic étale k-algebra with trivial discriminant. Let T be

the K-unitary torus associated with the pair (L,K). Suppose T ↪→ G over k. Then

K ⊆ Oct(G).

Proof. Let L be as in the hypothesis. When K = k×k, we have (L⊗K, τ) ∼= (L×L, ε),

where ε(x, y) = (y, x) for all (x, y) ∈ L×L. Hence T ∼= L(1). By Theorem 10.2.3, Oct(G)

splits and hence K ⊆ Oct(G). When K is a field extension, base changing to K we see

that Oct(G)⊗K splits. Hence K ⊆ Oct(G) ([5], Lemma 5). �



98 Chapter 10. Embeddings of rank-2 tori

We now prove a factorization result for the mod-2 invariant f5(G) associated to an

algebraic group G of type F4 defined over k, given an embedding of a rank-2 K-unitary

torus in G. Let L,K be étale algebras of dimension 3, 2 resp. and let T be the K-unitary

torus associated with the pair (L,K). Recall that with T , we associate the quadratic

form qT :=< 1,−αδ >, where Disc(L) = k(
√
δ) and K = k(

√
α).

Theorem 10.3.6 Let A be an Albert algebra over k and G = Aut(A). Let K = k(
√
α)

be a quadratic étale k-algebra and L be a cubic étale k-algebra with discriminant δ. Let

T be the K-unitary torus associated with the pair (L,K). Suppose T ↪→ G over k. Then

f5(A) = qT ⊗ γ for some 4-fold Pfister form γ over k.

Proof. Let G = Aut(A) be as in the hypothesis and let T ↪→ G over k.

Claim: DM (qT ⊗M) ⊆ DM (f5(A)⊗M) for all field extensions M of k.

Let F = k(
√
αδ). Then NF/k = qT . Note that, NF/k ⊗M = NF⊗M/M and f5(A)⊗M =

f5(A ⊗M). If NF⊗M/M is hyperbolic over M , then α = δ M∗
2

and hence T ⊗M is a

distinguished torus. Therefore, by Theorem 10.1.6, f5(A⊗M) = 0 and the claim follows

trivially. We may therefore assume both NF⊗M/M and f5(A⊗M) are anisotropic. Hence

K ′ := F ⊗M is a field extension of M . Now further base changing to K ′ ∼= M⊗MK ′

we get,

(T⊗M)⊗MK ′ ∼= T⊗MK ′ ↪→ Aut((A⊗kM)⊗MK ′). (∗)

Since α = δ K ′∗
2
, T ⊗M K ′ is a distinguished torus. Taking K ′ as the base field

and applying Theorem 10.1.6 to the embedding (∗) we get, f5((A ⊗k M) ⊗M K ′) = 0.

Now, since K ′ over M is a finite field extension and f5(A ⊗k M) ⊗M K ′ is split, we

have, by Theorem ([20], Chap. VII, Cor. 4.4), NK′/M (K ′∗) ⊆ DM (f5(A ⊗k M)). Since

NK′/M (K ′∗) = DM (qT ⊗M), we have DM (qT ⊗M) ⊆ DM (f5(A)⊗M) for all extensions

M of k. Hence by Theorem 1.1.9, NF/k is isometric to a subform of f5(A) and we have,

f5(A) = qT ⊗ γ, for some 4-fold Pfister form γ over k. �

Remark 10.3.7 1) Note that the converse of the above theorem fails to hold.

Let C denote the octonion division algebra represented by the 3-fold (anisotropic) Pfister

form < 1,−x > ⊗ < 1,−y > ⊗ < 1,−z > over k = C(x, y, z, w). Let F ⊂ C be a
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quadratic subfield and let h = diag(h1, h2, h3) denote the hermitian form on F⊥ ⊂ C

induced by the norm bilinear from (see [12], §5, cf. Prop. 1.3.4). Consider the Albert

algebra A := J(M3(F ), ∗h, 1, µ) where ∗h(X) = h−1X
t
h and µ ∈ F satisfies µµ = 1.

Let G = Aut(A). Then Oct(G) = C ([34], §1, Theorem 1.1). By Lemma 9.1.5,

f5(A) = nC⊗ << −1,−1 >> . Since −1 is a square in k, we have f5(A) = 0. Let

K = k(
√
w) and let L be any cubic cyclic field extension of k. Let T be the K-unitary

torus associated with the pair (L,K). Since −w is not represented by nC , K 6⊂ C.

Hence, by Theorem 10.3.5, T cannot embed in G over k, however qT divides f5(A).

2) Let qT be as in the hypothesis of Theorem 10.3.6. Note that qT does not divide f3(G)

in general. We use the construction as in the case (2) of Remark 10.3.4. Let C be

an octonion division algebra. Let Γ = diag(1,−1,−1) ∈ GL3(k). Consider the reduced

Albert algebra A := H3(C,Γ). Let G = Aut(A). Note that Oct(G) = C. Let F ⊆ C be a

quadratic subfield and L = k×F . Let T be the F -unitary algebra associated with the pair

(L,F ). Then, as in the case (2) of Remark 10.3.4, T ↪→ G over k. Since Disc(L) = F ,

we have α = δ mod k∗2. Hence the Pfister form qT =< 1,−αδ >∼=< 1,−1 > and qT

does not divide f3(G), since C is a division algebra.

On exactly similar lines we can derive a necessary condition for a rank-2 unitary torus

to embed in a connected simple algebraic group of type A2 or G2:

Theorem 10.3.8 Let G be a simple, simply connected k-group of type A2 or G2. Let

C := Oct(G) and nC denote the norm form of C. Let K = k(
√
α) be a quadratic étale

k-algebra and L be a cubic étale k-algebra with discriminant δ. Let T be the K-unitary

torus associated with the pair (L,K). Suppose there exists a k-embedding T ↪→ G. Then

nC = qT ⊗ γ for some two fold Pfister form γ over k.

Proof. Recall that qT =< 1,−αδ >. By Theorems 10.1.4, 10.1.5, one sees that if T

is distinguished then C splits. Now using same arguments as in the proof of Theorem

10.3.6, we get the desired result. �

Remark 10.3.9 Note that the converse of the above theorem fails to hold.

1) Let ∗ denote the unitary involution ∗(X) = X
t

on M3(C) and let G = SU(M3(C), ∗).

Let C = Oct(G). Then nC =< 1, 1 > ⊗ < 1, 1 > ⊗ < 1, 1 > ( see §2.3). Hence C is

the unique octonion an division algebra over R. Take K = R × R and L = R × C. Let
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T be the K-unitary torus associated with the pair (L,K). Since C is a division algebra,

K = R × R 6⊂ C. Hence, by Theorem 10.3.3, T does not embed in G over R but the

quadratic form qT =< 1, 1 > associated with T , is a factor of nC .

2) Let G be a group of group of type G2 over k arising from an octonion division algebra

C. Let K0 = k(
√
δ) ⊂ C be a fixed quadratic subfield. Note that < 1,−δ > is a factor of

nC . Take K = k× k and L = k×K0. Let T be the K-unitary torus associated with the

pair (L,K). Since C is a division algebra, we have K 6⊂ C. Hence, by Theorem 10.3.3,

T does not embed in G over k, but the quadratic form qT =< 1,−δ > associated with T ,

is a factor of nC

Let A be an Albert algebra over k and G = Aut(A). Let L,K be étale algebras of

dimension 3, 2 resp. and T be the K-unitary torus associated with the pair (L,K). By

case (2) of Remark 10.3.4, if there is a k-embedding T ↪→ G, then K need not embed in

Oct(G), i.e. if K = k(
√
α) then < 1,−α > is not a factor of f3(G) in general. However,

Theorem 10.3.10 Let A be an Albert algebra over k and G = Aut(A). Let K = k(
√
α)

be a quadratic étale k-algebra and L be a cubic étale k-algebra. Let T be the K-unitary

torus associated with the pair (L,K). Suppose there exists a k-embedding T ↪→ G. Then

f5(A) =< 1,−α > ⊗γ for some 4-fold Pfister form γ over k.

Proof. We first assume that K ∼= k × k. If L is not a field, then L = k ×K0, where

K0 is a quadratic étale k-algebra. By Lemma 10.3.1, T ∼= RK0/k(Gm) ↪→ G. Therefore

T is k-isotropic and k-rank of G ≥ 1. Hence by Lemma 10.1.2, f5(A) = 0. Let L be

a field extension. Base changing to L we have, L ⊗ L ∼= L × K0, where K0 = L ⊗ ∆

and ∆ is the discriminant algebra of L over k. Hence by the above argument, T ⊗ L is

L-isotropic and f5(A⊗ L) = 0. By Springer’s theorem f5(A) = 0. Therefore, if α ∈ k∗2

(i.e, K = k × k) and T ↪→ G over k, then f5(A) = 0. Using the same arguments as in

Theorem 10.3.6, with Pfister form < 1,−α > instead of qT , we get the desired result.

�

Theorem 10.3.11 Let G be a simple, simply connected algebraic group defined over

k. Let L be a cubic étale k-algebra with discriminant K0. Suppose there exists an

k-embedding L(1) ↪→ G. We then have:
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(a) if G is of type G2 or A2 then Oct(G) splits.

(b) if G is of type F4 then f5(G) = 0 and K0 ⊂ Oct(G).

Proof. Let L be as in the hypothesis and K = k×k. Let (E, τ) and T be the K-unitary

algebra and torus resp. associated with the pair (L,K). We have (E, τ) ∼= (L × L, ε),

where ε(x, y) = (y, x) for all (x, y) ∈ L× L. Hence T ∼= L(1). Therefore T ↪→ G over k.

(a) Let G be a simply connected, simple group of type G2 or A2. Then, by Theorem

10.3.3, K ⊆ Oct(G). Since K is split, Oct(G) splits.

(b) Let G be a k-group of type F4. Then by Theorem 10.3.10, f5(A) =< 1,−α > ⊗γ for

some 4-fold Pfister form γ over k where K = k(
√
α). Since K = k× k, we have α ∈ k∗2

and hence f5(A) = 0. If K0 is split then L has trivial discriminant. Hence, by Theorem

10.2.3, f3(G) = 0 and Oct(G) splits. Therefore K0 ⊂ Oct(G). If K0 is a field extension,

base changing to K0 we see that L ⊗ K0 is a cubic étale algebra over K0 of trivial

discriminant. Applying Theorem 10.2.3 to the K0-embedding L(1) ⊗K0 ↪→ G⊗K0, we

get f3(G⊗K0) = f3(G)⊗K0 = 0. Hence Oct(G) splits over K0 and thus K0 ⊆ Oct(G).

�

Remark 10.3.12 Let G be a group of type F4 over k. Let L be a cubic étale k-algebra.

Suppose there exists an k-embedding L(1) ↪→ G. Then f3(G) may not be zero. We use the

construction as in the case (2) of Remark 10.3.4. Let C be an octonion division algebra.

Let Γ = diag(1,−1,−1) ∈ GL3(k). Consider the reduced Albert algebra A := H3(C,Γ).

Let G = Aut(A). Note that Oct(G) = C. Let F ⊆ C be a quadratic subfield and

L = k×F . Let T be the F -unitary torus associated with the pair (L,F ). As in the case

(2) of Remark 10.3.4, T ↪→ G. Note that T ∼= SU((k×F )⊗F, 1⊗¯) ∼= RF/k(Gm) ∼= L(1)

(Theorem 10.1.3, case (ii)). Hence L(1) ↪→ G but f3(G) 6= 0.





Chapter 11

Generation results

This chapter reports the work done in [10], [9] on generation of k-groups of type F4 by

k-subgroups of type A2 and D4 and k-groups of type G2 by k-subgroups of type A1 and

A2. In chapter 9 we studied the factorization of the mod-2 invariants of the groups of

type F4 and G2 in terms of the mod-2 invariants of the embedded group of type A1 and

A2. Let G be an simple group of type F4 (resp. G2) defined over a prefect (infinite)

field k. We prove, as an easy consequence of simplicity of G that it is generated by

all k-subgroups of type A2 and similarly A1. In this chapter we answer the following

question: What is the number of k-subgroups of type A2 and similarly A1 required to

generate G? We prove that if k is a perfect (infinite) field and G is an algebraic group

of type F4 defined over k, arising from an Albert division algebra, then G is generated

by two k-subgroups of type D4 and three k-subgroups of type A2. Similarly, if G is an

algebraic group of type G2 defined over k, arising from an octonion division algebra,

then G is generated by two k-subgroups of type A2 and three k-subgroups of type A1.

In chapter 10 we discussed conditions necessary for a rank-2 unitary k-torus to embed

in simple groups of type A2, G2 and F4 in terms of the mod-2 Galois cohomological

invariants attached with these groups. One knows that any algebraic group G of the

above types is generated by its maximal tori (hence by its rank-2 k-tori). In this section

we calculate the number of rank-2 k-tori required (in fact exhibit such tori explicitly)

for the generation of groups of type A2, G2 and F4 arising from division algebras and

subgroups of type D4 of Aut(A) for A an Albert division algebra over perfect fields.

By < H1, H2 > we will denote the algebraic subgroup of G generated by Hi, i = 1, 2.

We will often use the Borel-De Siebenthal algorithm (see §3.5). Let X and Y be types

103



104 Chapter 11. Generation results

of root systems. If X is a subsystem of Y , we write X ⊆ Y . We fix a perfect field k

of characteristic different from 2 and 3. We first record a lemma which will be used

through the section.

Lemma 11.0.1 Let G be a k-anisotropic, connected, reductive algebraic group over a

perfect (infinite) field k. Let H be a connected subgroup of G. Then H is a reductive,

k-anisotropic subgroup.

Proof. Since G is a k-anisotropic, by Prop. 3.2.2, G(k) has no non-trivial unipotents.

Hence H(k) has no non-trivial unipotents and Ru(H)(k) = {1}. Since k is perfect, by

density of k-points it follows that, Ru(H) = {1}. �

11.1 Generation of A2 by rank-2 tori

Let G be a simple, simply connected group of type A2 over k. We show that the minimum

number of maximal k-tori required to generate G is 2.

Theorem 11.1.1 Let k be a perfect infinite field and F be a quadratic étale k-algebra.

Let (B, σ) be a degree 3 central division algebra over F with an involution σ of the second

kind. Let G = SU(B, σ). Let E1, E2 ⊂ B be F -unitary subalgebras of B such that σ

restricts to E1 and E2. Let σi = σ|Ei. Assume that SU(E1, σ1) 6= SU(E2, σ2). Then

G =< SU(E1, σ1),SU(E2, σ2) > .

Proof. Let H =< SU(E1, σ1),SU(E2, σ2) >. Then H is a connected k-subgroup of

G. Since B is a division algebra, G is a k-anisotropic group (see Theorem 10.2.1). No-

tice that since SU(Ei, σi), i = 1, 2 are maximal tori of G, H is a non-toral subgroup.

By Lemma 11.0.1, H is a connected, reductive, k-anisotropic, non-toral subgroup of G.

Since G has absolute rank-2, [H,H] is a semisimple group of absolute rank 1 or 2. Hence

[H,H] must be of type A2, A1, A1 × A1, G2 or B2 = C2. By the Borel-De Siebenthal

algorithm, A1 × A1, B2 * A2 (see Example 3.5.7). Notice that G2 * A2 (since Lie

algebra of G2 has dimension 14 whereas the dimension of Lie algebra of A2 is 8). If

[H,H] is of type A1, then G has a k-torus S of absolute rank 1, S ⊆ [H,H]. Necessarily,

S = M(1), the norm torus of a quadratic extension M/k ([64], Chap.II, §IV, Example
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6). But then, S splits over M and hence G becomes isotropic over M . By Prop. 5.2.4,

B remains a division algebra over M . Hence by Theorem 10.2.1, G remains anisotropic

over M , a contradiction. Therefore [H,H] cannot have type A1. Hence [H,H] must be

of type A2. Now H ⊆ G = [G,G] = [H,H] ⊆ H. Therefore H = G. �

11.2 Generation of F4 by A1, A2

Let G be a group of type F4 defined over k. We now discuss the question of generation

of G by k-subgroups of type A2 (resp. A1). Theorem 11.2.1 below was communicated

to us by Maneesh Thakur; Theorem 11.2.3 is a refinement of ([35], Prop. 6.1).

Theorem 11.2.1 Let A be an Albert division algebra over a perfect (infinite) field k.

Let L ⊆ A be a cubic subfield. Let G = Aut(A) and H = Aut(A/L). Then there exist

9-dimensional subalgebras S1 and S2 of A such that S1∩S2 = L and H = H1.H2 · · · .Hr

as varieties over k, where Hi = Aut(A/S1) or Hi = Aut(A/S2), 1 ≤ i ≤ r, for some

r. Note that the Hi’s here are of type A2.

Proof. Let 0 6= x1 ∈ L⊥ and S1 be the subalgebra generated by L and x1. Let

0 6= x2 ∈ S⊥1 and S2 be the subalgebra generated by L and x2. Then S1 ∩ S2 = L

and Dim(Si) = 9, since the subalgebras of an Albert division algebra can only have

dimension 1, 3, 9, 27 and any two elements generate a subalgebra of dimension at most

9 ([40], §2.10, Pg. 9). Moreover, since S1 6= S2, the subalgebra generated by S1 and S2

equals A, since this subalgebra has dimension at least 10. Let Gi = Aut(A/Si), i = 1, 2.

Then G1 ∩G2 = 1, since any element in the intersection must restrict to identity on S1

as well as on S2 and therefore must be identity on A. Let H be as in the hypothesis.

Now L ⊂ Si, hence Gi ⊂ H, i = 1, 2 and the subgroup H ′ of H generated by G1

and G2 is a closed connected subgroup defined over k. Hence by Lemma 11.0.1, H ′

is a connected reductive, k-anisotropic, non-toral subgroup and contains Gi, i = 1, 2,

properly. If H ′ is of type A2, consider [G1, G1] ⊆ [H ′, H ′]. Both these groups are

connected simple of type A2. Since G1 is connected simple of type A2 (see Thm. 6.2.4),

we get G1 = [G1, G1] = [H ′, H ′]. Arguing symmetrically we get, G2 = [H ′, H ′]. Hence

G1 = G2. But G1 ∩G2 = 1 doesn’t allow this possibility. Therefore, by Theorem 11.2.3

stated below, H ′ must be of type A2 × A2 or D4. One sees that A2 × A2 * D4 by
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applying the Borel-De Siebenthal algorithm ( [2]) (see Example 3.5.9). Hence H ′ must

be of type D4 and therefore H ′ = H. That H = H1 · · ·Hr with Hi = Aut(A/S1) or

Aut(A/S2), follows from a standard theorem in algebraic group theory ([11], Chap. II,

Prop. 7.5). �

From the proof of Theorem 11.2.1, one easily sees the following:

Theorem 11.2.2 Let A be an Albert division algebra over a perfect (infinite) field k

and G = Aut(A). Let L ⊆ A be a cubic subfield and H = Aut(A/L). Then H is

generated by two k-subgroups of type A2.

Theorem 11.2.3 Let A be an Albert division algebra over a field k. Let H ⊂ G =

Aut(A) be a proper connected reductive non-toral subgroup defined over k. Then [H,H]

is of type A2, A2 ×A2 or D4.

Proof. Let H be as in the hypothesis. In ([35], Prop. 6.1), it was shown that [H,H]

is of type A1, A2 × A2 or D4. We will rule out type A1. If [H,H] is of type A1, then

G has a k-torus S of absolute rank 1, S ⊆ [H,H]. Necessarily, S = K(1), the norm

torus of a quadratic extension K/k ([64], Chap.II, §IV, Example 6). But then S splits

over K, which in turn implies that G becomes isotropic over K. In particular, A⊗K is

reduced (see Prop. 7.2.1). Since A is an Albert division algebra,by (Proposition 5.2.4)

no extension of degree 2l can reduce it. Therefore [H,H] cannot have type A1. �

Lemma 11.2.4 Let A be an Albert division algebra over a field k. Let Let H be a

subgroup of G of type D4 and H0 ⊆ H be a non-toral reductive k-subgroup. Then

[H0, H0] is of type A2 or D4.

Proof. By Theorem 11.2.3, [H0, H0] is of type A2, A2 × A2 or D4. By the Borel-De

Siebenthal algorithm, A2×A2 * D4 (see Example 3.5.9) and hence [H0, H0] must be of

type A2 or D4. �

Lemma 11.2.5 Let G be a simple algebraic group over a perfect (infinte) field k and

X be a fixed Cartan-Killing type. Suppose G contains a k-subgroup of type-X. Then

G is generated by all k-subgroups of type-X. Moreover if G(k) is simple then G(k) is

generated by the groups of k-points of type-X subgroups.
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Proof. Let H ′ be the algebraic subgroup of G generated by the k-subgroups of type-

X. Then H ′ is a non-trivial closed connected subgroup defined over k. Also note that

gH ′g−1 = H ′ for all g ∈ G(k). Hence G(k) ⊆ NG(H ′) where NG(H ′) denotes the

normalizer of H ′ in G. Therefore by density of k points, G = NG(H ′). Hence H ′ is a

normal closed connected subgroup of G. Since G is simple, G = H ′. Now suppose that

G(k) is simple. Let H ′′ be the subgroup of G(k), generated by the groups of k-points of

type-X k-subgroups. Then H ′′ is non-trivial closed connected normal in G(k). Hence

H ′′ = G(k). �

As a immediate consequence of Lemma 11.2.5, we have the following:

Theorem 11.2.6 Let A be an Albert algebra over a perfect (infinte) field k. Then

G = Aut(A) is generated by subgroups of type A2, defined over k. Similarly, G is

generated by subgroups of type A1, defined over k.

Let A be an Albert algebra over k and G = Aut(A). In view of Theorem 11.2.6, it is of

interest to find the number subgroups of type A2, defined over k needed to generate G.

We discuss this below:

Theorem 11.2.7 Let A be an Albert division algebra over a perfect (infinite) field k and

G = Aut(A). Let Hi := Aut(A/Li) ⊆ G, i = 1, 2, where L1 6= L2 are cubic subfields of

A. Then G is generated by Hi, i = 1, 2.

Proof. Let H =< H1, H2 >. By Lemma 11.0.1, H is a connected, reductive, k-

anisotropic, non-toral subgroup of G. By Theorem 11.2.3, [H,H] is of type A2, A2×A2,

D4 or F4. Since D4 * A2, A2 × A2, [H,H] is of type D4 or F4. If [H,H] is of type D4,

then Hi = [Hi, Hi] ⊆ [H,H], i = 1, 2 and Hi, i = 1, 2, is of type D4, hence Hi = [H,H],

i = 1, 2, a contradiction since H1 6= H2 . Therefore [H,H] is of type F4. Hence H = G.

�

From Theorem 11.2.7 and Theorem 11.2.1, we can immediately deduce that when A is

an Albert division algebra over a perfect (infinite) field k, then G = Aut(A) is generated

by four k-subgroups of type A2. However, we can do better:

Theorem 11.2.8 Let A be an Albert division algebra over k and G = Aut(A). Then

G is generated by three k-subgroups of type A2.

Proof. By Theorem 11.2.7, there exists 3-dimensional subalgebras L1, L2 of A such that

G is generated by Hi, i = 1, 2 where Hi := Aut(A/Li). Choose a k-subgroup S ⊆ H2 of



108 Chapter 11. Generation results

type A2 such that S * H1. Such a choice is possible since by Theorem 11.2.2 Hi, i = 1, 2

are generated by k-subgroups of type A2. Let H ′ :=< H1, S >. By Lemma 11.0.1, H ′

is a connected, reductive, k-anisotropic, non-toral subgroup of G. By Theorem 11.2.3,

the possible types of [H ′, H ′] are A2, A2×A2, D4 or F4. Now H1 = [H1, H1] ⊆ [H ′, H ′].

Note that H ′ contains H1 properly. Since D4 * A2 and D4 * A2×A2 (since Lie algebra

of D4 has dimension 28 whereas the dimension of Lie algebra of A2×A2 is 16), [H ′, H ′]

cannot be of type A2 or A2 × A2. Suppose [H ′, H ′] is of type D4. Then H1 = [H ′, H ′].

Now H ′ = [H ′, H ′].Z(H ′)o = H1.Z(H ′)o. Since the rank of maximal tori of H ′ and H1

is four we have, Z(H ′)o = {1}. Hence H ′ = H1, a contradiction. Therefore [H ′, H ′] is of

type F4 and H ′ = G. By Theorem 11.2.2, H1 is generated by two k-subgroups of type

A2. Hence G is generated by three k-subgroups of type A2. �

11.3 Generation of F4 by rank-2 tori

Let G be a group of type F4 defined over k. We now calculate the number of rank-2

k-tori required to generate G. In Theorem 11.2.6 we proved that a group of type F4 is

generated by its k-subgroups of type A2. The results below are continuation of that.

We first prove that a group of type F4 is also generated by two k-subgroups of type D4.

Using this we deduce that a group of type F4 is generated by four rank-2 k-tori.

Theorem 11.3.1 Let A be an Albert division algebra over a perfect (infinite) field k

and G = Aut(A). Let H = Aut(A/L) where L is a 3-dimensional subalgebra of A.

Then H is generated by three rank-2 tori over k.

Proof. By Theorem 11.2.1, H =< H1, H2 >, where Hi = Aut(A/Si) where Si are 9-

dimensional subalgebras of A with S1 ∩S2 = L. Note that H1 ∩H2 = {1}. By Theorem

6.2.4, Hi, i = 1, 2, is simple, simply connected subgroup of type A2. Also Hi, i = 1, 2,

arise from division algebras.

Claim: We can choose a maximal torus S ⊆ H1 such that S * Aut(A,S2).

If not, then H1 ⊆ Aut(A,S2) (since H1 is generated by its maximal k-tori). Note

that H2 = Aut(A/S2) ⊆ Aut(A,S2). Hence H ⊆ Aut(A,S2), a contradiction, since

D4 * A2×A2. Thus we can choose a maximal k-torus S ⊆ H1 such that S * Aut(A,S2).

Let H0 :=< S,H2 >⊆ H. Then, by Theorem 11.1.1, H0 is generated by three rank 2
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k-tori. We will prove that H0 = H. By Lemma 11.0.1, H0 is a connected reductive,

k-anisotropic, non-toral subgroup of G containing S and H2 properly. By Lemma 11.2.4,

[H0, H0] is of type A2 or D4. If [H0, H0] is of type A2, then H2 = [H2, H2] = [H0, H0]

(since H2 is of type A2). This shows that H2 is a normal subgroup of H0. Also S∩H2 =

{1}, hence H0 =< S,H2 >= S.H2. Now

H0 = [H0, H0].Z(H0)o = H2.Z(H0)o.

Consider the projection maps τ and τ ′ given by,

Z(H0)o ⊆ H0 = S.H2
τ−→ S,H0 = S.H2

τ ′−→ H2.

Since H0 6= H2, we have Z(H0)o 6= {1}. Since A is a division algebra, Aut(A) does not

have rank-1 k-tori (Theorem 10.2.1). Hence Z(H0)o is a rank-2 k-torus. Since τ(Z(H0)o)

is connected, τ(Z(H0)o) = S or {1}. If τ(Z(H0)o) = {1}, then Z(H0)o ⊆ H2, hence

H0 = H2, a contradiction, since S ∩H2 = {1}. Therefore τ(Z(H0)o) = S.

Let H ′ = τ ′(Z(H0)o). Note that 1 ∈ H ′. If H ′ = {1} then Z(H0)o = S. Since

Z(H0)o centralizes H2, we see that Z(H0)o stabilizes AH2 . Therefore S ⊆ Aut(A,S2),

a contradiction. Hence H ′ 6= {1}.

Claim: H ′ is a rank-2 k-torus of H2.

We have, for sihi ∈ Z(H0)o, (s1h1)(s2h2) = s2(s1h1)h2 = (s1s2)(h1h2). Hence τ ′ is a

homomorphism. It follows that H ′ = τ ′(Z(H0)o) is a k-torus. Now since H2 does not

have any rank-1 k-tori (Theorem 10.2.1) and H ′ 6= {1}, H ′ is a rank-2 k-torus of H2.

Claim: S centralizes H ′.

Let s ∈ S and h ∈ H ′. Since h ∈ H ′, there exists s0 ∈ S such that s0h ∈ Z(H0)o. Since

s0h ∈ Z(H0)o, we have,

shs−1 = ss−1
0 s0hs

−1 = s0hss
−1
0 s−1 = s0hs

−1
0 = h.

Hence S centralizes H ′ and therefore S stabilizes AH
′
. Since AH

′
= S2, we have S ⊆

Aut(A,S2), a contradiction. Hence [H0, H0] cannot be of type A2. Therefore [H0, H0]

is of type D4. Now H0 ⊆ H = [H,H] = [H0, H0] ⊆ H0. Therefore H = H0 and H is

generated by three rank-2 tori over k. �
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Theorem 11.3.2 Let A be an Albert division algebra over a perfect (infinite) field k.

Then G = Aut(A) is generated by four rank-2 tori over k.

Proof. By Theorem 11.2.7, G =< H1, H2 >, Hi = Aut(A/Li) where Li, i = 1, 2, are

three dimensional subalgebras. Choose a rank-2 k-torus T ⊆ H1 such that T * H2 (oth-

erwise H1 = H2 since Hi’s are generated by their rank-2 k-tori). Let H =< T,H2 >.

By Lemma 11.0.1, H is a connected, reductive, k-anisotropic, non-toral subgroup of

G. By Theorem 11.2.3, the possible types of [H,H] are A2, A2 × A2, D4 or F4. Now

H2 = [H2, H2] ⊆ [H,H]. Since H contains H2 properly, [H,H] cannot be of type A2 or

A2 × A2. Suppose [H,H] is of type D4. Then H2 = [H,H]. Now H = [H,H].Z(H)o =

H2.Z(H)o. Since the rank of maximal tori of H and H2 is four we have, Z(H)o = {1}.

Hence H = H2, a contradiction. Therefore [H,H] is of type F4 and H = G. �

11.4 Generation of G2 by A1, A2

Let G be a group of type G2 defined over k. We now discuss the question of generation

of G by k-subgroups of type A1 and A2 analogous to those in section 11.2. Be begin

with,

Proposition 11.4.1 Let C be an octonion division algebra over k. Let G = Aut(C).

Let H be a proper connected reductive non-toral subgroup of G defined over k. Then

[H,H] is of type A1, A1 ×A1 or A2.

Proof. The algebraic group G = Aut(C) is a connected simple algebraic group of type

G2, in particular, G has absolute rank 2. Let H ⊆ G be as in the hypothesis. Then,

since H is not a torus, [H,H] is a semisimple subgroup having absolute rank 1 or 2.

Therefore the possible types for [H,H] are A1, A1 × A1 = D2, B2 = C2 or A2. We

therefore have to rule out B2 = C2. This follows from an application of the Borel-De

Siebenthal algorithm ([2]), which shows that B2 * G2 (see Example 3.5.8). �

Theorem 11.4.2 Let k be a perfect (infinite) field. Let G = Aut(C), C an octonion

division algebra over k. Let K ⊆ C be a quadratic subfield. Then there exists quaternion
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subalgebras Q1 and Q2 of C, Q1 ∩ Q2 = K and Aut(C/K) = H1H2...Hr as varieties

over k, where Hi = Aut(C/Q1) or Aut(C/Q2) for i = 1, 2. Note that the Hi’s here are

of type A1.

Proof. Since C is a division algebra, its norm form is k-anisotropic. Choose a non-zero

element x1 ∈ K⊥ and let Q1 be the subalgebra of C generated by K and x1. Then Q1

is a quaternion subalgebra. Again choose a non-zero element x2 ∈ Q⊥1 and let Q2 be the

subalgebra generated by K and x2. Then Q2 is a quaternion subalgebra and Q1 ∩Q2 =

K. Moreover, since Q1 6= Q2, the subalgebra generated by Q1 and Q2 equals C. Let

Gi = Aut(C/Qi), i = 1, 2. Then G1∩G2 = 1, since any element in the intersection must

restrict to identity on Q1 as well as on Q2 and therefore must be identity on C. Now

K ⊂ Qi, i = 1, 2, hence Gi ⊂ Aut(C/K), i = 1, 2 and the subgroup H of Aut(C/K)

generated by G1 and G2 is a closed connected subgroup defined over k. Since Aut(C/K)

is anisotropic, by Lemma 11.0.1 H itself is a k-anisotropic, reductive, non-toral subgroup.

Hence H is connected, reductive, non-toral and contains Gi properly. By Proposition

11.4.1, [H,H] must be of type A1, A1×A1 or A2. If [H,H] is of type A1, then consider

[G1, G1] ⊂ [H,H]. Both these groups are connected simple of type A1. Since G1 is

connected simple of type A1 (see Thm. 6.2.5) , we get G1 = [G1, G1] = [H,H]. Arguing

symmetrically we get, G2 = [H,H]. Hence G1 = G2. But G1 ∩ G2 = 1 doesn’t allow

this possibility. Hence [H,H] must be of type A1 ×A1 or A2. But [H,H] ⊂ Aut(C/K)

and Aut(C/K) is semisimple of type A2. By an application of the Borel-De Siebenthal

algorithm ([2]), we see that A1 × A1 * A2 (see Example 3.5.7). Hence [H,H] must be

of type A2. Now

H ⊆ Aut(C/K) = [Aut(C/K),Aut(C/K)] = [H,H] ⊆ H.

Hence H = Aut(C/K). The last assertion is a standard result in algebraic groups. �

From the proof of Theorem 11.4.2, one easily sees the following:

Theorem 11.4.3 Let C be an octonion division algebra over a perfect (infinite) field

k and G = Aut(C). Let K ⊆ C be a quadratic subfield and H = Aut(C/K) be a

k-subgroup of type A2. Then H is generated by two k-subgroups of type A1.

As an immediate consequence of Lemma 11.2.5 we have the following,
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Theorem 11.4.4 Let C be an octonion algebra over k, where k is a perfect (infinite)

field. Then G = Aut(C) is generated by k-subgroups of type A1. Similarly G is also

generated by k-subgroups of type A2.

In view of Theorem 11.4.4 it is of interest to find the number of k-subgroups of type A1

(or A2) required to generate G. We first prove that a group of type G2 is generated by

two k-subgroups of type A2.

Theorem 11.4.5 Let C be an octonion division algebra over k, where k is a perfect

(infinite) field. Then G = Aut(C) is generated by two k-subgroups of type A2.

Proof. Choose quadratic subfields K1,K2 ⊂ C such that K1 ∩ K2 = k. Let Hi =

Aut(C/Ki), i = 1, 2. By Theorem 6.2.5, Hi, i = 1, 2, are simple, simply connected

subgroups of type A2. Let H denote the closed subgroup of G generated by Hi, i = 1, 2.

By Lemma 11.0.1, H is a connected, reductive, k-anisotropic, non-toral subgroup of G

containing Hi, i = 1, 2 properly. By Prop. 11.4.1, [H,H] is of type A1, A1 × A1, A2 or

G2. Now H1 = [H1, H1] ⊆ [H,H]. Since H1 is of type A2, by the Borel-De Siebenthal

algorithm, [H,H] cannot be of type A1 or A1×A1 (see Example 3.5.7). Therefore [H,H]

must be of type A2 or G2. If [H,H] is of type A2 then [H,H] = Hi, i = 1, 2. Hence

Aut(C/K1) = Aut(C/K2) and hence Aut(C/K1) = Aut(C/Q) where Q denotes the

quaternion subalgebra of C generated by K1 and K2. This is a contradiction since

Aut(C/Q) is of type A1 (Theorem 6.2.5) while Aut(C/K1) is of type A2. Hence [H,H]

is of type G2. Now H ⊆ G = [G,G] = [H,H] ⊆ H. Therefore H = G. �

From Theorem 11.4.3 and Theorem 11.4.5, we can immediately deduce that when C

is an octonion division algebra over a perfect (infinite) field k, then G = Aut(C) is

generated by four k-subgroups of type A1. However, we can do better:

Theorem 11.4.6 Let C be an octonion division algebra over k, where k is a perfect

(infinite) field. Then G = Aut(C) is generated by three k-subgroups of type A1.

Proof. By Theorem 11.4.2, there exists quadratic subfields K1,K2 of C such that

K1 ∩ K2 = k and G is generated by Hi, i = 1, 2 where Hi := Aut(C/Ki). Choose a

k-subgroup S ⊆ H2 of type A1 such that S * H1. Such a choice is possible since by The-

orem 11.4.3 Hi, i = 1, 2 are generated by k-subgroups of type A1. Let H :=< H1, S >.

By Lemma 11.0.1, H is a connected, reductive, k-anisotropic, non-toral subgroup of G.

By Prop. 11.4.1, [H,H] is of type A1, A1×A1, A2 or G2. Now H1 = [H1, H1] ⊆ [H,H].
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Since H1 is of type A2, by the Borel-De Siebenthal algorithm, [H,H] cannot be of type

A1 or A1×A1 (see Example 3.5.7). Therefore [H,H] must be of type A2 or G2. Suppose

[H,H] is of type A2. Then H1 = [H,H]. Now H = [H,H].Z(H)◦ = H1.Z(H)◦. Since

the rank of maximal tori of H and H1 is two we have, Z(H)◦ = {1}. Hence H = H1

a contradiction. Hence [H,H] is of type G2. Now H ⊆ G = [G,G] = [H,H] ⊆ H.

Therefore H = G. Since by Theorem 11.4.3, H1 is generated by two k-subgroups of type

A1, G is generated by three k-subgroups of type A1. �

11.5 Generation of G2 by rank-2 tori

Let G be a group of type G2 defined over k. We now calculate the number of rank-

2 k-tori required to generate G. From Theorems 11.1.1, 11.4.5, we can immediately

deduce that when C is an octonion division algebra over a perfect (infinite) field k, then

G = Aut(C) is generated by four k-tori of rank-2. However, we can do better:

Theorem 11.5.1 Let C be an octonion division algebra over k, where k is a perfect

(infinite) field. Then G = Aut(C) is generated by three k-tori of rank-2.

Proof. The algebraic group G = Aut(C) is a connected, simple algebraic group of type

G2, in particular, G has absolute rank-2. By Theorem 11.4.5, G is generated by two

subgroups Hi, i = 1, 2, of type A2 with H1 6= H2. Choose a maximal k-torus T ⊆ H1

such that T * H2. Let H =< T,H2 > be the (closed) subgroup generated by T and H2.

Since C is a division algebra, G is k-anisotropic (Prop. 6.1.2). By Lemma 11.0.1, H

is a connected reductive k-anisotropic non-toral subgroup of G containing H2 properly.

Using same arguments as in Theorem 11.4.5, it follows that [H,H] must be of type A2

or G2. If [H,H] is of type A2, then [H,H] = H2 (since H2 = [H2, H2] ⊆ [H,H] and

both are of type A2). Now H = [H,H].Z(H)o = H2.Z(H)o and Z(H) = ∩Ti, Ti’s are

maximal tori of H ([3], §13.17, Cor. 2). Since any maximal torus in H2 is maximal in

H we have, Z(H) ⊂ H2. Hence H = H2 and T ⊆ H2, contradicting the choice of T .

Therefore [H,H] is of type G2. Now H ⊆ G = [G,G] = [H,H] ⊆ H. Hence H = G.

The result now follows since H2 is itself generated by two rank-2 k-tori. �

We summarize these results in the tables below,
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Table 11.1: Number of k-subgroups required for generation of groups

Type of group Type of k-subgroup Number of k-subgroups required for generation

F4 A2 3
F4 D4 2
D4 A2 2
G2 A1 3
G2 A2 2
A2 A1 2

Table 11.2: Number of k-tori required for generation of groups

Type of group Number of rank-2 k-tori required for generation

A2 2
G2 3
D4 3
F4 4



Chapter 12

Cohomology of unitary tori and

applications

In chapter 8, §8.2 we defined a unitary k-torus. The aim of this chapter is to study the

first cohomology of such tori and discuss some applications to algebraic groups and étale

Tits processes.

Let L,K be étale k-algebras of dimension n, 2 resp. and let T be the K-unitary torus

associated with the pair (L,K). The first section of the chapter calculates H1(k, T ). In

the second section we study some applications of the cohomology compuation to étale

Tits processes. We establish a relation between H1(k, T ) and the set of L-isomorphism

classes of étale Tits process algebras arising from (L,K). In the final section we see

some applications to algebaric groups. We study the effect of the presence of a unitary

k-torus T as above in groups of type A2, G2 and F4 when H1(k, T ) = 0. Fix a field k of

characteristic different from 2 and 3.

12.1 Cohomology of unitary k-tori

In this section we will use some definitions and results from Chapter 4. We will special-

ize and adapt some of the computations done in ([19], §29.17), to the case of unitary

algebras. Let k be a field and K be a quadratic étale k- algebra. Let ¯ denote the

non-trivial k-automorphism of K. Let L be an étale algebra of dimension n over k and

E = L⊗K be the associated K-unitary algebra with the involution τ = 1⊗ .̄

We first calculate H1(k,SU(E, τ)). Let W = E ⊕ K. Define a representation ρ :

115
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GL1(E) −→ GL(W ) by ρ(b)(x, y) = (bxτ(b), NE⊗ks/K⊗ks(b)y) for all b ∈ GL1(E),

x ∈ E, y ∈ K.

Let w0 = (1, 1) ∈W . Note that GL1(E)(ks) = (E ⊗ ks)∗.

Claim: AutGL1(E)(w0) = SU(E, τ).

We have,

AutGL1(E)(w0) = {g ∈ (E ⊗ ks)∗| ρsep(g)(1, 1) = (1, 1)}

= {g ∈ (E ⊗ ks)∗| gτ(g) = 1, NE⊗ks/K⊗ks(g) = 1}

= SU(E, τ).

Hence, in view of Proposition 4.4.1, we have a bijection

η : Isom(A(ρ, w0))↔ H1(k,SU(E, τ)).

We define a product on Isom(A(ρ, w0)) as follows:

ρsep(g)(w0)ρsep(g
′)(w0) := ρsep(gg

′)(w0) for all g, g′ ∈ (E ⊗ ksep)∗.

A routine calculation shows that this product is well defined. Since SU(E, τ) is a torus,

H1(k,SU(E, τ)) is an abelian group. It is immediate that η is a homomorphism of

groups. Define

V := {(s, z) ∈ L∗ ×K∗| NL/k(s) = zz}.

Given a twisted ρ-form w′ of w0 which lies in W , there exists b ∈ (E ⊗ ksep)∗ such that

w′ = ρsep(b)(w0). Now ρsep(b)(w0) = ρsep(b)(1, 1) = (bτ(b), NE⊗ksep/(K⊗ksep)(b)). Along

similar lines as in ([19], §29.17), we can show that ρsep(b)(w0) ∈ V and V is precisely the

set of twisted ρ-forms of w0 which lie in W . Define an equivalence ∼ on V as follows:

(s, z) ∼ (s′, z′) if and only if s′ = bsτ(b) and z′ = NE/K(b)z for some b ∈ E∗.

We will denote equivalence class of (s, z) ∈ V by [(s, z)]. Note that V is a subgroup of

L∗×K∗. It is easy to see that the product on V induces a well defined product on V/ ∼

as follows:

[(s, z)][(s′, z′)] = [(ss′, zz′)] for all (s, z), (s′, z′) ∈ V.
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Define ξ : Isom(A(ρ, w0)) → V/ ∼ by ξ([w′]) = [(bτ(b), NE⊗ksep/(K⊗ksep)(b))], where

w′ = ρsep(b)(w0), for some b ∈ (E ⊗ ksep)∗. It follows that ξ is a homomorphism of

groups.

We have proved the following,

Theorem 12.1.1 Let L,K be étale k-algebras of dimension n, 2 resp. and T be the K-

unitary torus associated with the pair (L,K). Then there exists a natural isomorphism:

H1(k, T ) 7→ V/ ∼ of groups.

Henceforth we will identity H1(k, T ) with V/ ∼ and write elements in H1(k, T ) as

equivalence classes [(s, z)] ∈ V/ ∼.

Theorem 12.1.2 Let L,K be étale k-algebras of dimension n, 2 resp. Let E be the

K-unitary algebra and T be the K-unitary torus associated with the pair (L,K). Then,

H1(k, T )

K
(1)
0

∼=
S

NE/L(E∗)
,

where

S := {u ∈ L∗| NL/k(u) ∈ NK/k(K
∗)} and K

(1)
0 := {[(1, µ)] ∈ H1(k, T)| µµ = 1}.

Proof. By definition, T = SU(E, τ), where (E, τ) = (L ⊗K, 1 ⊗ ¯) is the K-unitary

algebra associated with the pair (L,K). Define φ : H1(k,SU(E, τ)) −→ S
NE/L(E∗) by

φ([(s, z)]) = sNE/L(E∗). If (s, z) ∼ (s′, z′) then s = s′bτ(b) for some b ∈ E. Hence

s = s′NE/L(E∗) and φ is well defined. We now check that φ is surjective. Let s ∈

S. By definition, there exists z ∈ K∗ such that NL/k(s) = zz, for some z ∈ K.

Hence φ([(s, z)]) = s, showing that φ is onto. Clearly φ is a homomorphism. Now,

Ker φ = {[(s, z)]| s ∈ NE/L(E∗)}. Clearly, K
(1)
0 ⊆ Ker φ. Let [(s, z)] ∈ Ker φ. Then

s ∈ NE/L(E∗) = eτ(e) for some e ∈ E. Let µ = zNE/K(e−1). Then

NL/k(s) = zz = NE/K(s) = NE/K(eτ(e)) = NE/K(e)NE/K(e).

Hence zz = NE/K(e)NE/K(e). Therefore µµ = 1. It follows that (s, z) = (eτ(e), z) ∼

(1, µ). Hence, Kerφ = K
(1)
0 . �

We obtain below an explicit expression for H1(k,SU(E, τ)). Consider the the exact
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sequence,

1 −→ K
(1)
0

q−→ H1(k,SU(E, τ))
φ−→ S

NE/L(E∗)
−→ 1,

where q denotes the inclusion map and φ is as above. We provide a splitting of this

sequence when dimension of L is odd. We will from here on assume that the k-dimension

n of L is odd. Let n = 2r + 1.

Define t : H1(k,SU(E, τ)) −→ K
(1)
0 by,

t([(u, µ)]) = [(1, µ−rµr)].

We first check that this map is well defined. Let w ∈ E∗.

Then (u, µ) ∼ (wuτ(w), NE/K(w)µ). Now w−rτ(w)r ∈ U(E, τ). Hence

(1, µ−rµr) ∼ (1, NE/K(w−rτ(w)r)µ−rµr) = (1, (NE/K(w)µ)−r(NE/K(w)µ)r).

Therefore, t is well defined. It is immediate that t is a homomorphism. We have

t ◦ q[(1, µ)] = [(1, µ−rµr)] = [(1, µ)]

(Since µ2r+1 = NE/K(µ) and µµ = 1). Hence, t ◦ q = Id
K

(1)
0

. Therefore there exists a

homomorphism ψ : S
NE/L(E∗) −→ H1(k,SU(E, τ)) such that φ ◦ ψ = Id. In fact ψ is

given by,

ψ([u]) := [(u, µ)]q(t([(u, µ)])−1) = [(u, µr+1µ−r)],

where NL/k(u) = µµ, µ ∈ K. We now make some observations based on the above exact

sequence. We have,

Ker t = {[(u, µ)]| (1, µ−rµr) ∼ (1, 1)} = {[(u, µ)]| µ−rµr ∈ NE/K(U(E, τ))}.

= Image ψ = {[(u, µr+1µ−r)]| NL/k(u) = µµ}.

Since ψ is an injective homomorphism, we have Image ψ ∼= S
NE/L(E∗) . Hence

S

NE/L(E∗)
∼= {[(u, µ)]| µ−rµr ∈ NE/K(U(E, τ))} ∼= {[(u, µr+1µ−r)]| NL/k(u) = µµ}.

Owing to the splitting of the exact sequence above we have, H1(k,SU(E, τ)) = Image q×

Ker t. We have already seen that Ker t ∼= S
NE/L(E∗) . Now, Image q = K

(1)
0 . Let K(1)
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denote the norm 1 elements of K. Define a map

χ : K(1) −→ K
(1)
0

by χ(µ) := [(1, µ)] for all µ ∈ K(1). This map is clearly a surjective homomorphism.

Now,

Ker χ = {µ ∈ K(1)| [(1, µ)] = [(1, 1)]}.

= {µ ∈ K(1)| µ = NE/K(w), wτ(w) = 1, w ∈ E}.

= NE/K(U(E, τ)).

Hence, K(1)

NE/K(U(E,τ))
∼= K

(1)
0 . We summarize this as:

Theorem 12.1.3 Let K be a quadratic étale k-algebra and L be an étale k-algebra of

dimension n = 2r + 1. Let E be the K-unitary algebra and T the K-unitary torus

associated with the pair (L,K). Then,

H1(k, T ) ∼=
K(1)

NE/K(U(E, τ))
× S

NE/L(E∗)
.

In fact, an explicit isomorphism is as follows:

φ : H1(k, T ) −→ K
(1)
0 × S

NE/L(E∗)

φ([(u, µ)]) = ([(1, µ−rµr)], [u]).

We now prove a somewhat analogous result to Theorem 12.1.2, for the cohomology of a

unitary torus.

Theorem 12.1.4 Let L,K be étale k-algebras of dimension n, 2 resp. Let E be the

associated K-unitary algebra and T the K-unitary torus associated with the pair (L,K).

Then,
H1(k, T )

L
(1)
0

∼=
M

NE/K(E∗)
,

where

M = {µ ∈ K∗| µµ ∈ NL/k(L
∗)} and L(1)

0 = {[(u, 1)]| NL/k(u) = 1}.
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Proof. By definition, T = SU(E, τ), where (E, τ) = (L ⊗K, 1 ⊗ ¯) is the K-unitary

algebra associated with the pair (L,K). We define a map

φ : H1(k,SU(E, τ)) −→ M

NE/K(E∗)

by [(s, z)] 7→ zNE/K(E∗). It is easy to see that φ is a well defined surjective ho-

momorphism and Ker φ = {[(s, z)]| z ∈ NE/K(E∗)}. Clearly, L
(1)
0 ⊆ Ker φ. Let

[(s, z)] ∈ Ker φ. Then z = NE/K(w), for some w ∈ E∗. Let u = w−1sτ(w−1). Now,

NE/K(u) = NE/K(w−1τ(w−1)s) and

NE/K(s) = NL/k(s) = zz = NE/K(wτ(w)).

Hence NE/K(u) = 1. Also (u, 1) = (w−1sτ(w−1), 1) ∼ (s, z). Therefore we have

Ker φ = L
(1)
0 �

We now provide a decomposition of H1(k,SU(E, τ)) analogous to that in Theorem

12.1.3. Consider the exact sequence,

1 −→ L
(1)
0

q−→ H1(k,SU(E, τ))
φ−→ M

NE/K(E∗)
−→ 1,

where the maps q and φ are as above. We provide a splitting of this sequence when

dimension of L is odd. We will from here on assume that the k-dimension n of L is odd.

Let n = 2r + 1.

We define a map

t : H1(k,SU(E, τ)) −→ L
(1)
0

by t([(u, µ)]) := [(unNL/k(u
−1), 1)]. We first check that this map is well defined. Let

w ∈ E∗. Then (u, µ) ∼ (wuτ(w), NE/K(w)µ). Since NE/K(wnNE/K(w−1)) = 1 and

NE/K(w−1τ(w−1)) = NL/k(w
−1τ(w−1)) we have,

(unNL/k(u
−1), 1) ∼ (wnNE/K(w−1)unNL/k(u

−1)τ(wn)NE/K(τ(w−1)), 1)

= ((wuτ(w))nNL/k((wuτ(w))−1), 1)).
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Therefore, t is well defined. It is easily checked that t is a homomorphism. Since u ∈ L

and NE/K(u) = NL/k(u) = uτ(u) = 1, we have,

t ◦ q[(u, 1)] = [(u2r+1, 1)] = [(u2r−1(uτ(u)), 1)] = [(u2r−1, 1)].

By a similar calculation, [(u2r−1, 1)] = [(u2r−3, 1)] = ... = [(u, 1)]. Hence [(un, 1)] =

[(u, 1)] and therefore t ◦ q = Id
L
(1)
0

.

Hence there exists a homomorphism ψ : M
NE/K(E∗) −→ H1(k,SU(E, τ)) such that φ◦ψ =

Id. Explicitly, this map is given by

ψ([µ]) := [(u, µ)]q(t([(u−1, µ−1)])) = [(u−n+1NL/k(u), µ)]

where NL/k(u) = µµ, µ ∈ K∗. We now make some observations based on this exact

sequence. We have,

Ker t = {[(u, µ)]| [(unNL/k(u
−1), 1)] ∼ (1, 1)}

= Image ψ

= {[(u−n+1NL/k(u), µ)]| NL/k(u) = µµ}.

Since ψ is an injective group homomorphism, Image ψ ∼= M
NE/K(E∗) . Hence

M

NE/K(E∗)
∼= {[(u, µ)]| [(unNL/k(u−1), 1)] ∼ (1, 1)} ∼= {[(u−n+1NL/k(u), µ)]| NL/k(u) = µµ}.

Since the above sequence is split exact, we have H1(k,SU(E, τ)) = Image q ×Ker t.

We have already seen that Ker t ∼= M
NE/K(E∗) and Image q = L

(1)
0 . Let L(1) denote

norm 1 elements of L and E(1) = {x ∈ E| NE/K(x) = 1}. Now define φ : L(1) −→ L
(1)
0

by u 7→ [(u, 1)]. It is easily checked that Ker φ = NE/L(E(1)). Hence L(1)

NE/L(E(1))
∼= L

(1)
0 .

We summarize this as,

Theorem 12.1.5 Let K be a quadratic étale k-algebra and L be an étale k-algebra of

dimension n = 2r + 1. Let E be the K-unitary algebra and T the K-unitary torus

associated to the pair (L,K). Then,

H1(k, T ) ∼=
L(1)

NE/L(E(1))
× M

NE/K(E∗)
.
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We now discuss the special case, when L = k × K0, where K0 is a quadratic étale

extension of k.

Theorem 12.1.6 Let K and K0 be a quadratic étale extensions of k. Let L = k ×

K0 and T be the K- unitary torus associated with the pair (L,K). Then H1(k, T ) =

K∗0/NK⊗K0/K0
(K∗0 ).

Proof. By definition, T = SU(E, τ), where (E, τ) = (L ⊗K, 1 ⊗ ¯) is the K-unitary

algebra associated with the pair (L,K). LetM := K⊗K0. Then L⊗K ∼= K×(K⊗K0) =

K ×M . Now,

SU(E, τ) ∼= {(a, x) ∈ K ×M | aa = 1, xτ(x) = 1, aNM/K(x) = 1}

= {(NM/K(x−1), x)| xτ(x) = 1, x ∈M∗}.

It follows that SU(E, τ) ∼= R
(1)
K0/k

(M). By Shapiro’s Lemma ([19], Lemma 29.6),

H1(k,R
(1)
K0/k

(M)) = H1(K0,M
(1)). Hence, H1(k, T ) = K∗0/NK⊗K0/K0

(K∗0 ). �

Corollary 12.1.7 Let K = k(
√
α) and K0 be quadratic field extensions of k. Let L =

k×K0 and T be the K- unitary torus associated with the pair (L,K). Then H1(k, T ) = 0

if and only if the quadratic form < 1,−α > becomes universal over K0.

Corollary 12.1.8 Let K be a quadratic étale extension of k and L = k × K0, where

K0 is a quadratic étale extension of k. Let T be the K-unitary torus associated with the

pair (L,K). Let H1(k, T ) = 0. Then any composition algebra of dimension ≥ 4 which

contains K contains K0.

Proof. By Theorem 12.1.6, H1(k, T ) = 0 if and only if NK⊗K0/K0
(K ⊗ K0)∗ = K∗0 .

Let C be a composition algebra properly containing K. Then K ⊗K0 ⊆ C ⊗K0. By

doubling, C ⊗K0 = (K ⊗K0)⊕ (K ⊗K0).x, for some x ∈ (K ⊗K0)⊥, NC⊗K0(x) 6= 0.

But since K∗0 = NK⊗K0/K0
(K⊗K0)∗, we have NC⊗K0(x) ∈ NK⊗K0/K0

(K⊗K0)∗. Hence

C ⊗K0 is split and K0 ⊆ C ([5], Lemma 5). �

One may be tempted to believe that for a distinguished K-unitary torus T , H1(k, T ) = 0.

We give below an example to show that this is false. We also produce an example of a

non-distinguished (k-anisotropic) torus T such that H1(k, T ) = 0.
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Example 12.1.9 Let k = R(x) and δ = −1. Choose α ∈ k∗ such that α /∈ k∗2 and

α 6= δ mod k∗2. Let K = k(
√
α) and K0 = k(

√
δ). Then K0 and K are fields. Also note

that K0 = C(x) is a C1 field. Let L = k ×K0, and T be the K-unitary torus associated

with the pair (L,K). Then, as in the proof of Theorem 12.1.6, T ∼= R
(1)
K0/k

(K ⊗ K0).

Also by Theorem 12.1.6, H1(k, T ) = K0
∗/NK⊗K0/K0

(K ⊗K0). Since α 6= δ mod k∗2, T

is not distinguished. By Corollary 12.1.7, H1(k, T ) = 0 if and only if the binary form

< 1,−α > becomes universal over K0. Since K0 is a C1 field, all binary forms over K0

are universal, in particular < 1,−α > becomes universal over K0. Hence H1(k, T ) = 0.

Note that since α 6= δ mod k∗2, K ⊗ K0 is a field. Hence by ([46], Example on Pg.

54), T is k-anisotropic. This also gives an example of a k-anisotropic K-unitary torus

T such that H1(k, T ) = 0.

Example 12.1.10 Let K = k × k and L be a cyclic cubic field extension of k. Let T

be the K-unitary torus associated with the pair (L,K). By definition, T = SU(E, τ),

where (E, τ) = (L⊗K, 1⊗ ¯). Note that (E, τ) = (L× L, ε). Hence T ∼= L(1). Now

H1(k, T ) ∼= H1(k,L(1)) ∼=
k∗

NL/k(L∗)
.

Let p(X) = X3 − 3X − 1 ∈ Q[X], then p(X) is irreducible over Q. Let L′ := Q[X]/ <

p(X) >. Then L′ is a cyclic cubic extension of Q such that NL′/Q(L′∗) 6= Q∗ ([52],

Pg. 186). Let T be the K-unitary torus associated with the pair (L′,K). Then T is a

distinguished torus such that H1(Q, T ) 6= 0.

Example 12.1.11 Let T be a distinguished k-torus arising from a pair (L,K) where

L is a cubic étale k-algebra which is not a field extension and K is a quadratic étale

k-algebra. By Theorem 10.1.3, T is either Gm × Gm or RK/k(Gm). In either case, by

Hilbert theorem 90 and Shapiro’s Lemma ([19], Lemma 29.6), H1(k, T ) = 0.

Example 12.1.12 Let L = k × k × k and K be a quadratic étale extension of k. Then

SU(E, τ) = {(x, y, z) ∈ K ×K ×K|xx = yy = zz = 1, xyz = 1} ∼= K(1) ×K(1).

Thus SU(E, τ) ∼= K(1) × K(1) and H1(k,SU(E, τ)) = k∗/NK/k(K
∗) × k∗/NK/k(K

∗).

Hence H1(k,SU(E, τ)) = 0 if and only if k∗ = NK/k(K
∗). Let A be an Albert algebra.

Let T be the K-unitary torus associated with the pair (L,K) such that H1(k, T ) = 0.
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Let T ↪→ Aut(A) over k. Since L has trivial discriminant over k, by Theorem 10.3.5,

K ⊂ Oct(A). Since H1(k, T ) = 0, k∗ = NK/k(K
∗). Hence f3(A) = 0.

Theorem 12.1.13 Let K be a quadratic étale extension of k and L = k × K0, where

K0 is a quadratic étale algebra over k. Let T be the K-unitary torus associated with the

pair (L,K) with H1(k, T ) = 0. Let A be an Albert algebra over k. If there exists an

k-embedding T ↪→ Aut(A), then K0 ⊂ Oct(A).

Proof. If K0 = k × k, then by Example 12.1.12, Oct(A) splits. Hence K0 ⊂ Oct(A).

Let K0 be a field extension. Base changing to K0 we have,

T ⊗K0 = SU((L⊗K0)⊗K0 (K0 ⊗K), τ ⊗ 1) ↪→ Aut(A)⊗K0.

Since L⊗K0 has trivial discriminant over K0, by Theorem 10.3.5, K0⊗K ⊂ Oct(A)⊗K0.

By doubling, Oct(A) ⊗ K0 = (K ⊗ K0) ⊕ (K ⊗ K0).x, for some x ∈ (K ⊗ K0)⊥,

NOct(A)⊗K0
(x) 6= 0. But since H1(k, T ) = 0, by Theorem 12.1.6 we have, K∗0 =

NK⊗K0/K0
(K⊗K0)∗. Hence NOct(A)⊗K0

(x) ∈ NK⊗K0/K0
(K⊗K0)∗. Therefore Oct(A)⊗

K0 is split and by ([5], Lemma 5), K0 ⊆ Oct(A). �

12.2 Application to Tits processes

In this section, we develop some results on étale Tits processes, in the context of unitary

tori. For the results on étale Tits processes used in this section, we refer to §5.3. Recall

that two étale Tits processes J1 and J2 arising from étale algebras L and K of dimensions

3, 2 resp., are defined to be L-isomorphic, denoted by J1
∼=L J2, if there exists a k-

isomorphism J1 → J2, which restricts to an automorhism of the subalgebra L of J1 and

J2.

Lemma 12.2.1 Let L,K be étale k-algebras of dimension 3, 2 resp. Let (E, τ) be the K-

unitary algebra associated with the pair (L,K). Suppose φ : J(E, τ, u, µ)→ J(E, τ, v, ν)

is an L-isomorphism. Then there exists w ∈ E such that u = φ−1(v)wτ(w) and µ =

NE/K(w)ν or µ = NE/K(w)ν.

Proof. By definition, (E, τ) = (L ⊗ K, 1 ⊗ ¯ ). By Theorem 5.3.5, we may assume

NL/k(v) = νν = 1. Let φ : J(E, τ, u, µ) → J(E, τ, v, ν) be an L-isomorphism. Define
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h : L⊕ E → L and g : L⊕ E → E by

φ(a, b) = (h(a, b), g(a, b)),

for a ∈ L, b ∈ E. Since φ is an isomorphism, one can easily check that g and h are k-

linear maps. Since φ is an isomorphism of Jordan algebras, it preserves the trace forms

on both the algebras. Note that L⊥ in J(E, τ, u, µ) with respect to the trace form, is

the k-subspace {(0, e)| e ∈ E}, and similarly for J(E, τ, v, ν). Since φ restricts to L, φ

maps L⊥ in J(E, τ, u, µ) to L⊥ in J(E, τ, v, ν). Hence for b ∈ E, φ(0, b) = (0, b′) for

some b′ ∈ E. It follows that h(0, b) = 0 for all b ∈ E. Therefore h(a, b) = h(a, 0) for all

a ∈ L, b ∈ E. We will now on write simply h(a) for h(a, b). Since φ is an isomorphism

of Jordan algebras, it is easy to check that h : L → L is an automorphism. Since φ

restricts to L, φ(a, 0) = (h(a), 0) for all a ∈ L. Hence g(a, 0) = 0 for all a ∈ L. It follows

that g(a, b) = g(0, b) for all a ∈ L, b ∈ E. We will now on write simply g(b) for g(0, b).

Again since φ is an isomorphism of Jordan algebras, it is easy to check that g : E → E

is a bijection. Since φ preserves norms, N(a, b) = N(h(a), g(b)). Expanding norms we

get,

NL/k(a) + µNE/k(b) + µNE/k(b)− tL/k(abuτ(b))

= NL/k(h(a)) + νNE/k(g(b)) + νNE/k(g(b))− tL/k(h(a)g(b)vτ(g(b))).

Putting a = 0, we get

µNE/k(b) + µNE/k(b) = νNE/k(g(b)) + νNE/k(g(b)), b ∈ E.

Since h is an automorphism of L, we have NL/k(a) = NL/k(h(a)), a ∈ L. Hence we get,

tL/k(abuτ(b)) = tL/k(h(a)g(b)vτ(g(b))), a ∈ L, b ∈ E.

Putting b = 1, we get,

tL/k(au) = tL/k(h(a)g(1)vτ(g(1))), a ∈ L.
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Since g(1)vτ(g(1)) ∈ L, there exist b ∈ L such that h(b) = g(1)vτ(g(1)). Hence

tL/k(au) = tL/k(h(a)h(b)) = tL/k(h(ab)) = tL/k(ab)

for all a ∈ L. Since the trace bilinear form T (a, b) := TL/k(ab) on L/k is non-degenerate,

we have u = b. Let ĥ : E → E be defined by ĥ = h⊗ 1. Then ĥ is the extension of h to

a K-automorphism of E. In particular, ĥ commutes with τ . We have,

u = ĥ−1(g(1))ĥ−1(v)ĥ−1τ(g(1)) = ĥ−1(g(1))h−1(v)τ(ĥ−1(g(1))).

Hence u = wh−1(v)τ(w) = φ−1(v)wτ(w), where w = ĥ−1(g(1)) ∈ E. This proves the

first assertion in the Lemma.

Now we prove the assertion on µ. Let h−1(v) = v0 ∈ L. Then NL/k(v0) = NL/k(v) =

1. Let u1, u2 ∈ E. Define,

< u1 >∼=< u2 > over E if and only if u1 = wu2τ(w), for some w ∈ E.

Hence , < u >∼=< v0 > over E.

We now introduce an equivalence on the set of admissible pairs in L∗ ×K∗ as follows:

(u1, µ1) ∼ (u2, µ2) if and only if there exists w ∈ E such that u2 = wu1τ(w) and

µ2 = NE/K(w)µ1 or µ2 = NE/K(w)µ1.

Claim (u, µ) ∼ (v0, ν).

Since J(E, τ, u, µ) ∼= J(E, τ, v, ν), we have J(E,µ) ∼= J(E, ν) over K and by ([36], Prop.

4.3), µ ∈ νNE/K(E∗) or µ ∈ νNE/K(E∗). Let µ = νNE/K(w) or µ = νNE/K(w) as is the

case accordingly, for some w ∈ E. Let v′ = w−1uτ(w−1). Then NL/k(v
′) = νν = 1 and

(v′, ν) ∼ (u, µ). Now < u >∼=< v′ > and < u >∼=< v0 > over E. Hence < v′ >∼=< v0 >

over E.

Therefore, there exists w′′ ∈ E such that v0 = w′′v′τ(w′′). Let λ = NE/K(w′′). Since

NL/k(v0) = NL/k(v
′) = 1, we have λλ = 1. Hence by ([36], Lemma 4.5), there exists

w1 ∈ E such that λ = NE/K(w1) and w1τ(w1) = 1.

Therefore,

(v′, ν) ∼ (v0, λν) ∼ (v0, ν).

Thus (u, µ) ∼ (v0, ν) = (u, µ) ∼ (h−1(v), ν) = (φ−1(v), ν). Hence, by the definition of
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the equivalence, µ = NE/K(w)ν or µ = NE/K(w)ν. This completes the proof. �

Remark 12.2.2 As a converse to the above lemma, if there exists w ∈ E∗ such that

u = φ−1(v)wτ(w) and µ = NE/K(w)ν (or µ = NE/K(w)ν), where φ ∈ Gal(L/k), then

J(E, τ, u, µ) is L-isomorphic to J(E, τ, v, ν) (resp. J(E, τ, v, ν)). To see this, suppose

µ = NE/K(w)ν. By Theorem 5.3.3,

J(E, τ, u, µ) = J(E, τ, φ−1(v)wτ(w), NE/K(w)ν) ∼=L J(E, τ, φ−1(v), ν).

Extend φ to an automorphism φ̂ of E, defined as φ̂ = φ⊗1. Note that φ̂ commutes with τ .

Consider the map ψ : J(E, τ, φ−1(v), ν) −→ J(E, τ, v, ν) given by (a, x) 7→ (φ(a), φ̂(x))

for a ∈ L, x ∈ E. Clearly ψ((1, 0)) = (1, 0). We have,

N(φ(a), φ̂(x)) = NL/k(φ(a)) + µNE/k(φ̂(x)) + µNE/k(φ̂(x))− tL/k(φ(a)vφ̂(x)τ(φ̂(x)))

= NL/k(a) + µNE/k(x) + µNE/k(x)− tL/k(φ̂(aφ−1(v)xτ(x)))

= NL/k(a) + µNE/k(x) + µNE/k(x)− tL/k(aφ−1(v)xτ(x)) = N(a, x).

Hence ψ is a k-linear bijection preserving norms and identities. Therefore, by Theroem

5.3.7, ψ is an isomorphism of Jordan algebras. Also ψ restricts to L. Hence ψ is an

L-isomorphism. When µ = NE/K(w)ν, a similar argument completes the proof.

Corollary 12.2.3 Let L,K be étale k-algebras of dimension 3, 2 resp. Let (E, τ) be

the K-unitary torus associated with the pair (L,K). There exists an L-isomorphism

J(E, τ, u, µ) ∼= J(E, τ, 1, 1) if and only if there exists w ∈ E such that u = wτ(w) and

µ = NE/K(w).

Theorem 12.2.4 There exists a surjective map from H1(k,SU(E, τ)) to the set of L-

isomorphism classes of étale Tits process algebras arising from (L,K).

Proof. Let X denote the set of L-isomorphism classes of étale Tits process algebras

arising from (L,K). Given an étale Tits process J , let [J ] denote the L-isomorphism

class of J . Let φ : H1(k,SU(E, τ))→ X be defined by φ([(u, µ)]) := [J(E, τ, u, µ)]. Let

[(u, µ)] ∈ H1(k,SU(E, τ)) and [(u, µ)] = [(v, ν)]. Then u = vwτ(w) and µ = NE/K(w)ν

for some w ∈ E. Hence by Theorem 5.3.3, J(E, τ, u, µ) is L-isomorphic to J(E, τ, v, ν).

Therefore φ is well defined. Clearly φ is onto. �
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As an easy consequence of the above theorem, we note that if H1(k,SU(E, τ)) = 0,

then all étale Tits process algebras arising from (L,K) are isomorphic. More precisely,

we have,

Theorem 12.2.5 Let L,K be a étale k-algebras of dimension 3, 2 resp. and (E, τ)

be the K-unitary algebra and T the K-unitary torus associated with the pair (L,K).

Then H1(k, T ) = 0 if and only J(E, τ, u, µ) ∼=L J(E, τ, 1, 1), for all admissible pairs

(u, µ) ∈ L∗ ×K∗.

Proof. Suppose J(E, τ, u, µ) ∼=L J(E, τ, 1, 1) for all admissible pairs (u, µ) ∈ L∗ ×K∗.

Let S be as in Theorems 12.1.2.

Claim: S = NE/L(E∗) and K(1) = NE/K(U(E, τ)).

Let u ∈ S. Since J(E, τ, u, µ) ∼=L J(E, τ, 1, 1), by Corollary 12.2.3, u = NE/L(w) =

wτ(w) and µ = NE/K(w) for some w ∈ E. Hence S = NE/L(E∗). Let µ0 ∈ K(1). Since

J(E, τ, 1, µ0) ∼=L J(E, τ, 1, 1), by Corollary 12.2.3, µ0 = NE/K(w) where wτ(w) = 1.

Hence K(1) = NE/K(U(E, τ)), and by Theorem 12.1.3, H1(k, T ) = 0. The converse

follows immediately from Theorem 12.2.4. �

Corollary 12.2.6 Let L be a cubic étale k-algebra with discriminant δ and K = k(
√
α)

be a quadratic étale k-algebra. Let T be the K-unitary torus associated with the pair

(L,K) and H1(k, T ) = 0. Let B be any degree 3 central simple algebra over k(
√
αδ)

with an involution σ of the second kind such that L ⊆ (B, σ)+. Then B ∼= M3(k(
√
αδ))

and σ is distinguished.

Proof. By Theorem 5.3.2, there exists an admissible pair (u, µ) ∈ L∗ ×K∗ such that

φ : (B, σ)+
∼= J(E, τ, u, µ), where the isomorphism φ restricts to the identity of L.

Since H1(k, T ) = 0, by Theorem 12.2.5, (B, σ)+
∼= J(E, τ, u, µ) ∼=L J(E, τ, 1, 1). Since

J(E, τ, 1, 1) is reduced (see Remark 5.3.4), by Theorem 5.3.1, B ∼= M3(k(
√
αδ)). By

Lemma 12.3.1, there exists v ∈ L such that Int(v) ◦ σ is distinguished. Since φ restricts

to the identity of L, taking isotopes with respect to v on both sides, we have (B, Int(v)◦

σ)+
∼= J(E, τ, u, µ)(v) (see [38], Prop. 3.9). By ([38], Prop. 3.9) J(E, τ, u, µ)(v) ∼=

J(E, τ, uv#, N(v)µ) ∼= J(E, τ, 1, 1). Hence (B, σ)+
∼= (B, Int(v) ◦ σ)+. By ([19], Prop.

37.6), we have f3((B, σ)) = f3((B, Int(v) ◦ σ)) = 0 and σ is distinguished. �
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Corollary 12.2.7 Let the hypothesis be as in Corollary 12.2.6. Let B be any degree

3 central simple algebra over k(
√
αδ) with an involution of the second kind such that

L ⊆ B. Then

B ∼= M3(k(
√
αδ).

Proof. By ([7], Prop.17, cf. [19], Cor. 19.30), there exists an involution σ on B such

that L ⊆ (B, σ)+. Hence by the above corollary B splits. �

In view of Corollary 12.2.7, when L is a cubic étale algebra over k with trivial discrimi-

nant, we have the following

Corollary 12.2.8 Let L be a cubic étale algebra over k with trivial discriminant and

K be a quadratic étale k-algebra. Let T be the K-unitary torus associated with the pair

(L,K) and H1(k, T ) = 0. Let B be any degree 3 central simple algebra over K with an

involution σ of the second kind such that L ⊆ B. Then B ∼= M3(K).

Proof. Let L be as in the hypothesis. When L = k × k × k, it is immediate that

B ∼= M3(K). When L is a cubic cyclic field extension of k, by Corollary 12.2.7, we get

the desired result. �

12.3 Application to algebraic groups

In this section we deduce that a group of typeG2 splits if and only if it contains a maximal

torus whose first cohomology vanishes. A weaker result holds for groups of type A2. We

prove these results via explicit computations of cohomology done in section §12.1. We

shall consider cohomology of maximal tori in groups of type A2 and G2. These tori

arise from six dimensional unitary algebras, hence we can compute their cohomology

using Theorems 12.1.5, 12.1.3 with n = 3. We need a variant of ([7], Prop. 17) for our

purpose.

Lemma 12.3.1 Let F = k(
√
α) be a quadratic étale k-algebra and B be a degree 3

central simple algebra over F with an involution σ of the second kind. Let L be a cubic

étale algebra such that L ⊆ (B, σ)+. Then there exists l ∈ L with NL/k(l) ∈ k∗2 such

that Int(l) ◦ σ is distinguished.
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Proof. Since L ⊆ (B, σ)+, by ([7], Proposition 11), there exists µ ∈ L∗ with NL/k(µ) ∈

k∗2 such that

Qσ =< 1, 2, 2δ >⊥< 2 > . << αδ >> . tL/k(< µ >).

Let λ0 ∈ L∗ be such that tL/k(λ0) = 0 and let λ := λ0
NL/k(λ0) . Then λ ∈ L∗ and

NL/k(λ) ∈ k∗2. Hence there exists ξ ∈ k∗ such that NL/k(λµ
−1) = ξ2. Consider

ψ := Int(ξλ−1µ) ◦ σ = Int(λ−1µ) ◦ σ.

Claim: ψ is a distinguished involution.

We will use the proofs of ([7] Prop. 17, Corollary 14). Since λ−1µ ∈ L, we have

L ⊆ (B,ψ)+. Let q : L→ L be defined by, lq(l) = nL/k(l). By ([7], Proposition 13), we

have

Qψ =< 1, 2, 2δ >⊥< 2 > . << αδ >> . tL/k(< q(ξλ−1µ)µ >).

It is easy to check that q(ξλ−1µ) = λµ−1. Hence

Qψ = < 1, 2, 2δ >⊥< 2 > . << αδ >> . tL/k(< λ >)

= < 1, 1, 1 >⊥< 2δ > . << α >> . tL/k(< λ >).

Let (B, σ)◦+ = {x ∈ (B, σ)+| TB(x) = 0} andQψ
◦ denote the restriction ofQψ to (B, σ)◦+.

Then Qψ
◦ =< 2 > .(< 1, 3 >⊥< δ > . << α >> . tL/k(< λ >). Since tL/k(λ) = 0, the

form tL/k(< λ >) is isotropicover k and the Witt index of << α >> . tL/k(< λ >) is at

least two. Hence by ([19], Theorem 16 (c)), ψ is distinguished. �

Theorem 12.3.2 Let F = k(
√
α) be a quadratic étale k-algebra and B be a degree

3 central simple algebra over F with an involution σ of the second kind. Let T be a

maximal torus of SU(B, σ). If H1(k, T ) = 0 then σ is distinguished.

Proof. Let T be a maximal torus of SU(B, σ). By Theorem 8.1.1, T ∼= SU(E, σ),

where (E, σ) ⊆ (B, σ) is an F -unitary algebra. Let L = Eσ and Disc(L) = δ. By

Lemma 8.1.3, E = L⊗F . By Lemma 12.3.1, there exists l ∈ L, NL/k(l) ∈ k∗2 such that

Int(l) ◦ σ is distinguished. Let ψ := Int(l) ◦ σ and S = {u ∈ L∗| NL/k(u) ∈ NF/k(F
∗)}.

Since H1(k, T ) = 0, by Theorem 12.1.3 S
NE/L(E∗) = {1}. Let u ∈ S. Then u = wσ(w)

for some w ∈ E and NL/k(u) = γγ for some γ ∈ F . Consider the Albert algebra
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A := J(B, σ, u, γ). By ([19] Lemma 39.2), J(B, σ, u, γ) ∼= J(B, σ,w′uσ(w′), NB(w′)γ)

for all w′ ∈ B∗. Hence for w′ = w−1, we have A = J(B, σ, u, γ) ∼= J(B, σ,wσ(w), γ) ∼=

J(B, σ, 1, ρ), where ρ = NB(w)−1γ. Therefore, f3(A) = f3(B, Int(u) ◦ σ) = f3(B, σ) for

all u ∈ S. Taking u = l ∈ S, we get f3(A) = f3(B, σ) = 0. Hence σ is distinguished.

Therefore G is distinguished. �

Remark 12.3.3 A converse of the above theorem holds when B is split. Let F = k(
√
α)

be a quadratic étale k-algebra and σ be a distinguished involution on M3(F ). Let L =

k×F . Note that L ↪→M3(F ) as a k-subalgebra (via the embedding (γ, x)→ diag(γ, x, x),

γ ∈ k, x ∈ F ). Since σ is distinguished, by ([7], Cor 18), there exists a k-embedding

L ↪→ (M3(F ), σ)+. Let T be the F -unitary torus associated with the pair (L,F ). By

Lemma 8.2.1, T ↪→ G over k. Then by case (ii) of the proof of Theorem 10.1.3, T ∼=

RF/k(Gm). Hence T ↪→ SU(B, σ) is a maximal k-torus with H1(k, T ) = 0.

Theorem 12.3.4 Let G be a group of type G2 over k. Then G splits over k if and only

if there exist a maximal k-torus T ⊂ G such that H1(k, T ) = 0.

Proof. Let T ⊂ G be a maximal k-torus such that H1(k, T ) = 0. As in §2.8, there

exists a quadratic étale k-algebra K and h ∈ GL3(k) such that T ⊆ SU(M3(K), ∗h) ⊆ G,

where ∗h denotes the involution on M3(K) given by ∗h(X) = h−1X
t
h. Since H1(k, T ) =

0, ∗h is a distinguished involution (see Theorem 12.3.2). Hence by Theorem 9.2.3, G

splits over k. For the converse, we choose T to be a split maximal k-torus in G, then

H1(k, T ) = 0. �

Remark 12.3.5 Let T = SU(E, τ) be a k-maximal torus in a simple, simply connected

group G of type A2 or G2. Recall that H1(k, T ) ∼= K(1)

NE/K(U(E,τ))×
S

NE/L(E∗) (see Theorem

12.1.3). In the proofs of Theorem 12.3.2 and Theorem 12.3.4, we do not require the

hypothesis H1(k, T ) = 0 in its full force. The proofs use only the vanishing of the factor

S
NE/L(E∗) of H1(k, T ).

The Real Case

Let G be a group of type F4 over R. Let L,K be étale algebras over R of dimension 3, 2

resp. and T be the K-unitary torus associated with the pair (L,K). Suppose T ↪→ G
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over R. If H1(R, T ) = 0 then f5(G) = 0. Note that K = R × R or C. If K = R × R,

then by Theorem 10.3.10, f5(A) = 0. Suppose K = C. Note that L = R × R × R or

L = R×C. If L = R×R×R, then by case (i) of proof of Theorem 10.1.3, T ∼= Gm×Gm

over R. Hence R-rank of G ≥ 2 and by Lemma 10.1.2, f3(G) = f5(G) = 0. Suppose

L = R×C. Then by case (ii) of proof of Theorem 10.1.3, T ∼= RC/R(Gm) over R. Hence

R-rank of G ≥ 1 and by Lemma 10.1.2, f5(G) = 0.

Remark 12.3.6 The real case along with Example 12.1.12, leads us to raise the follow-

ing question: Let L,K be étale algebras of dimension 3, 2 resp. and T be the K-unitary

torus associated to the pair (L,K). Let G be a group of type F4 defined over k and

T ↪→ G over k, then does H1(k, T ) = 0 imply f5(G) = 0? Though we have not been able

to settle this over an arbitrary field, we can prove a weaker result.

Theorem 12.3.7 Let L,K be étale algebras over k of dimension 3, 2 resp. and E be

the K-unitary algebra and T the K-unitary torus associated with the pair (L,K). Let G

be a group of type F4 (resp. G2 or a simple simply connected group of type A2). Assume

there is a k-embedding T ↪→ G. If H1(U(E, τ)) = 0 then f5(A) = 0 (resp. Oct(G)

splits).

Proof. Consider the exact sequence

1 −→ U(E, τ) −→ E∗
NE/L−−−→ L∗ −→ 1.

The long exact cohomology sequence yields the exact sequence,

U(E, τ) −→ E∗
NE/L−−−→ L∗ −→ H1(U(E, τ)) −→ 1.

Hence

H1(U(E, τ)) = L∗/NE/L(E∗).

Since H1(U(E, τ)) = 0, L∗ = NE/L(E∗). Let K = k(
√
α) and q =< 1,−α >. If

K = k × k then by Theorem 10.3.10, f5(G) = 0. Hence we may assume that K

is a field extension. If L = k × K0, for some quadratic étale algebra K0 over k,

then H1(U(E, τ)) = k∗/NK/k(K
∗)×K∗0/NK0⊗K/K0

(K0 ⊗K)∗. Since H1(U(E, τ)) = 0,

k∗ = NK/k(K
∗). Hence q is universal over k. By Theorem 10.3.10, q divides f5(G) and is

a subform of f5(G) (see Theorem 1.1.9). Hence we have f5(G) = 0. Suppose L is a field
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extension. Now qL = NE/L(E∗). Since qL splits over E, by Knebusch norm principal

(see Theorem 1.1.8), NE/L(E∗) = L∗ ⊆ DL(qL). Hence q is universal over an odd degree

extension L of k. By Springer’s theorem, q is universal over k. Let G be a group of type

F4. By Theorem 10.3.10, q divides f5(G), hence f5(G) = 0. Let G be a group of type

G2 or A2. By Theorem 10.3.3, q divides f3(G), hence f3(G) = 0. Thus Oct(G) splits. �
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