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Abstract

A Wireless Sensor Networks (WSNs), which are two or three dimensional sys-
tems, usually consist of a large number of small sensors equipped with some
processing circuit, and a wireless transceiver. The sensors have small size, low
battery capacity, non-renewable power supply, small processing power, limited
buffer capacity and low-power radio. They may measure distance, direction,
speed, humidity, wind speed, soil makeup, temperature, chemicals, light, and
various other parameters. The sensors are autonomous devices with integrated
sensing, processing, and communication capabilities.

In this thesis, we consider ‘coverage problem’ and ‘detection problem’ in
Wireless Sensor Networks (WSNs) in grid as well as in continuous domain.
Sensor networks aim at monitoring their surroundings for event detection and
object tracking. But, due to death of a sensor or due to obstructive, false
detection may occur. Also false signal can be transmitted due to noise or
faulty sensors. For detection of an event or events in a region, called Region
Of Interest (ROI), coverage is essential in WSNs, i.e., every point of ROI should
be in the sensing disc of at least one sensor. In case of grid, each vertex and
in case of continuous ROI all the points of the ROI should be covered by at
least one sensor. When sensors are deployed from air on some previously fixed
points (vertices) in the Region of Interest (ROI), they may not fall on the
target vertices. So, some part of the ROI may be uncovered by the sensors.
In this thesis, we discuss optimal placement of sensors and coverage criteria
in R2 and R3 and for cylindrical grid. We use graph theory and geometry to
solve the problems.

iii



Optimal placement of sensors may not be possible due to random deploy-
ment. So there may be uncovered area in ROI. We also consider the problem,
how one reduce the uncovered area in random deployment scenario. To re-
duce the uncovered area, extra sensors are usually deployed on some randomly
chosen vertices. We develop a new strategy for deployment of extra sensors.
Uncovered area i.e., sensing holes can also be repaired using actuators. We
develop three strategies for actuator to minimize the travel of the actuator.

Sensor could fail at runtime for various reasons such as power depletion,
hardware defects etc. These sensors are known as faulty sensors. We consider
the problem of distributed fault detection in wireless sensor network (WSN).
In particular, we consider how to take decision regarding fault detection in a
noisy environment as a result of false detection or false response of event by
some sensors, where the sensors are placed at the center of regular hexagons
or square and an event (or events) can occur at any number of hexagons. We
propose fault detection schemes that explicitly introduce the error probabilities
into the optimal event detection process. We introduce two types of detection
probabilities, one for the center node, where the event occurs and the other
one for the adjacent nodes. We also introduce probability for correct response
and wrong response. We develop two schemes under the model selection and
multiple model selection procedure and discuss two interesting special situa-
tions. We consider two different scenario: (i) at most one event can occur and
(ii) any number of events can occur. We use classical Neyman Pearson hypoth-
esis approach, decision theoretic approach, Bayesian approach, near optimal
method and a new method to find solution of detection problem.
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Chapter 1
Introduction

In this chapter, we describe sensor, wireless sensor network, actuator and their
applications. We describe the deployment of sensors in a region of interest,
relocation of sensors, the operation of wireless sensor network and different
modes of wireless sensor network. We also describe the motivational problems
which was standing open in literature. Finally we present our contribution in
this thesis and the thesis plan.

1.1 Wireless Sensor Network and it’s applica-
tions

Traditional sensor networks use wired communication, whereas wireless sen-
sor networks (WSNs) provide radically new communication and networking
paradigms, and myriad new applications. A WSN usually consists of a large
number of small sensors equipped with some processing circuit, and a wireless
transceiver. The sensors have small size, low battery capacity, non-renewable
power supply, small processing power, limited buffer capacity and low-power
radio. They may measure distance, direction, speed, humidity, wind speed,
soil makeup, temperature, chemicals, light, and various other parameters. The
sensors, also known as nodes, are autonomous devices with integrated sensing,
processing, and communication capabilities. There are two types of WSN; one
contains one or more actuators (i.e., robots), another does not. A wireless
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Chapter 1: Introduction

sensor network with actuator(s) is known as wireless sensor-actuator network
(WSAN). The objective of a WSN or WSAN is to detect event(s) within some
pre-fixed region, known as the Region of Interest or ROI, which may be two
or three dimensional. An actuator moves in the ROI, where the sensors are
placed or have to be placed. Actuators can move with sensors in hand and can
take sensors from ROI or place sensors at a point of ROI [77]. The ROI may
be a grid or a connected region.

Sensors or nodes in a sensor network are densely deployed from air at ran-
dom or placed by actuators using some specific strategy, either very close to
or inside the ROI. Once the sensors are deployed, they are expected to self-
configure into an operational wireless network, and must work unattended.
Since the energy budget of individual sensors is limited, to ensure the longevity
of the network, the transmission range needs to be restricted and the redundant
sensors should be put in to sleep mode. Since sensors are dropped randomly
some portion of the ROI may not be covered by any sensor. On the other
hand, some sensors could be marked redundant in terms of local sensing cov-
erage and these sensors are called passive sensors. Passive sensors could either
be deployed on purpose or determined by some area coverage protocol [30].
Sensors may be placed deterministically; even then due to dead sensors some
portion of the ROI may be uncovered. Dead sensors can neither detect an
event nor send any information.

A sensor could fail at runtime for various reasons such as power depletion,
hardware defects etc. These sensors are known as faulty sensors. There are
several reasons for a sensor to be faulty. A faulty sensor may send wrong
information. Sharma et al. [86] characterized the different types of fault and
fault detection methods. They characterized four different detection methods
for detecting faults: (i) rule based methods, (ii) estimation methods, (iii) time
series analysis based methods and (iv) learning based methods. Ni et al. [78]
categorized the three types of fault models, although there exist other models.

Recent advances in wireless communications and electronics have enabled
the development of low-cost, low power, and multi-functional wireless sensor
nodes which consist of sensing, data processing and communication compo-
nents. One of the unique features of a WSN is random deployment in inacces-
sible environments and cooperative effort that offers unprecedented opportu-
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nities for a broad spectrum of civilian and military applications, for example
industrial automation, environment and habitat monitoring, eco-physiology,
condition-based equipment maintenance, disaster management, emergency re-
sponse, military surveillance, national security, and emergency health care
[1, 3, 82]. Sensor Networks are also useful in detecting topological events such
as forest fires [25].

Current research and implementation efforts are mostly oriented toward
static sensors and a single static sink that collects information from sensors. A
static sensor cannot move without external help whereas a mobile sensor can
relocate in the ROI. The sink may be the actuator or may be a base station.
If the sink is the base station then the information sent to the base station
directly from a sensor (known as single hop) or via other sensors (known as
multiple hop). Health care is an example of single-hop network. In a multi-
hop scenario, reports from individual sensors are sent to other sensors, where
they can be combined with other sensor reading or simply retransmitted to
the other sensors until reports are sent to a sink node, which is capable of
communicating with the base station. Base stations are usually static, it may
be a computer or may be a police station [62].

Sensor networks are used to determine event regions and boundaries in the
environment with a distinguishable characteristic [12,45,79]. The basic idea of
distributed detection is to have each independent sensor make a local decision
(typically, a binary one, i.e., whether or not an event has occurred), and then
combine these decisions at a fusion sensor (a sensor which collects the local
information and takes the decision) to generate a global decision or send the
information to the base station. Two sensors can communicate to each other
either directly or via other sensors. If each sensor can communicate to all
other sensors in the WSN then the WSN is called fully connected. A sensor
can send information to a base station via other sensors. Optimal distributed
design to make a decision has been sought under both the Bayesian and the
Neyman-Pearson performance criteria [93,94].

Energy saving of a WSN is also very important. To save energy in a three
dimensional ROI, deployments of sensors using a lattice pattern is considered
in [1]. Almost all the works show their efficiency in terms of energy, either the
consumption battery power of sensors or the length traveled by the actuator(s).



Chapter 1: Introduction

1.2 Coverage, Deployment and Operation of
WSN and WSAN

Figure 1.1: Covering of a rectangular ROI without sensing hole

Sensor networks aim at monitoring their surroundings for event detection
[3,66]. Because of this surveillance goal, coverage is the functional basis of any
sensor network. In order to fulfill its designated surveillance tasks, a sensor
network must cover the Region of Interest (ROI) without leaving any internal
sensing hole [4, 5, 19, 27] (see Figure 1.1). Internal sensing hole is a part of
the ROI which is not covered by any sensor node for detection of events. The
sensors can detect an event inside a surrounding disc (called sensing disc) of
some radius (called sensing radius) and centered at that sensor. Sensors are
so small we can think of a sensor geometrically as a point. A point will not
be covered by a set of sensors if the point does not belong to any one of the
sensing discs of the sensors. The aim of the well known coverage problem is to
place sensors on the ROI in such a way that they cover the ROI with minimum
number of sensors. If we place the sensor in a deterministic way then it is just
a geometrical problem. There are other types of coverage problem. One of
them is to cover maximum area of the ROI with a fixed number of sensors.
This problem is not exactly the same as the above problem. Coverage of a
WSN will be easy if we placed the sensors deterministically.
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However, it cannot be expected that sensors are placed in a desired way at
initiation as they are often randomly dropped. Sensors are densely deployed
in the ROI, in general, which is a bounded subset of R2. Even after the
ROI is fully covered by the sensors, wrong information can be sent by some
faulty sensors or sensors may fail to detect the event. Moreover a non-faulty
sensor can send wrong information due to noise or obstructions. In a WSAN,
sensors can be placed by robot which is also known as actuator. If sensors are
mobile, they can place themselves without any external help. But as physical
movement consumes a large amount of energy for the sensor nodes, a movement
assisted sensor placement scheme is preferred [7, 24,48,49,61].

So far, a number of movement-assisted sensor placement algorithms have
been proposed. An exclusive survey on these topics is presented by Li et al. [57].
Analysis also been carried out for maximum distance covered and expected dis-
tance covered by the actuator(s) or by the mobile sensors to achieve the full
coverage [44]. There is an extensive literature on sensor positioning and repo-
sitioning. Younis and Akkaya [97] provide a survey of models, requirements
and strategies that affect sensor deployment.

There is another type of coverage problem, called k-coverage. If every
point of the ROI is covered by not less than k sensors then the ROI is called k-
covered [99]. Sensors may detect the direction of other sensors and the desired
event(s). Network consisting of these type of sensors are known as direction
sensor networks. One can suitably activate some passive sensors and deactivate
the active sensors such a way that the life time of the network is maximized [55].
There are several papers which consider only the coverage problem of sensor
networks. Tseng and Huang [39] formulate the problem as a decision problem,
whose goal is to determine whether every point in the service area of the sensor
network is covered by at least k sensors, where k is a predefined value.

Several works have sought to find an efficient algorithm for placing discs
to cover a specific convex region in R2, like squares and equilateral triangles.
When the set is a convex and bounded set the problem is referred to as a
covering problem in the literature. Several variations can be found in [20, 35].
Silva et al. present homological criteria for covering in two dimensional space
[87].

In a dense network, a target is covered by more than one sensor. The
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grade of this depends on the sensing range and density of the network. It is
also possible that one sensor covers more than one target. The goal is to keep
active only the sensors necessary to cover an area. Taking it a step further,
we could schedule sets of sensors, all covering the same area, to be active in
turns, saving energy while keeping coverage of the area. To do so one needs
to partition the set of all sensors into mutually exclusive subsets, known as
covers. The first step is to identify the parts of the area covered by different
sensor nodes. A field is a set of points which are required to cover. Two points
belong to the same field if and only if they are covered by the same set of
sensors. The area is modeled as a collection of fields defined above. A field
has the property that any point inside the field is covered by the same set of
sensors. Seetharaman and Minai [85] gave an algorithm which computes the
disjoint covers successively, selecting sensors that cover the critical element
(field covered by a minimal number of sensors), giving priority to sensors that,
cover a high number of uncovered fields.

Coverage of the ROI is an important goal. Moreover the ROI is fully
covered or not, detection of event(s) is also an important objective of a WSN
or a WSAN. We summarize different aspects of WSNs or WSANs as follows:

A) Detection of events may be classified according to time and space in two
main aspects:

1. Spatial Distribution (Localized/Distributed):

The events of interest may be spatially localized. Wildlife tracking, ve-
hicle tracking, perimeter breaches and forest fires are considered as such.
They are usually detected by a small number of sensors [8] within whose
sensing range the events are taking place. The only concern is to locate
the current position of the target and plot the movement path. The
information received by the sensors is spatially correlated.

2. Temporal Distribution (Discrete/Continuous):

Measuring temperature is a procedure that can be scheduled at regu-
lar intervals during a day. On the other hand, monitoring industrial
machinery or seismic data requires active sensing at all times [85].

B) Sensing Models may be classified according to space in two main aspects:
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1. Boolean or 0/1 Model:

We may use a circle as an abstraction of the sensors. The sensor’s location
is the center of the circle and the area of the circle is its sensing disc. The
sensor provides full coverage within its sensing disc and none outside it,
i.e., a sensor can detect an event if and only if the event occurs in the
sensing disc. There is no concept of sensing intensity or ability.

2. Continuous Model:

Taking in consideration that sensing ability diminishes as distance in-
creases and that sensing devices have different hardware features, a more
realistic way is to express sensing intensity S(s, p) at any point p in the
field by a sensor s at a distance d(s, p) from the sensor s is the following:
S(s, p) = l

(d(s,p))k , where l and k are hardware dependent parameters [67].

C) Node Deployment Strategies may also be classified by two main aspects:

1. Deterministic / Manual Placement:

We deploy sensors over a field uniformly, according to a predefined shape.
An example of a uniform deterministic coverage is a grid based sensor
deployment where sensors are located on the intersection points of a grid
(known as vertices). This requires manual placement, which is realistic
for small number of nodes, and in an accessible environment. This place-
ment ensures complete coverage of the field with the minimum number
of sensors. The number of sensors needed to cover an area A is given by
n = 2A√

(27)r2
Where r is the sensing radius, n is the required number of

sensors, and A is the area covered [96].

2. Stochastic Placement:

In hostile or inhospitable environments, it is a necessity to deploy sensors
from a plane, in order to gather data of interest. In this case, sensors are
deployed randomly, and since they are of low cost, we deploy redundant
sensors to increase connectivity, coverage and to prolong network lifetime.

D) There are two types of coverage protocols:
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1. Area Coverage:

Given a region and given a set of sensors one has fixed a schedule to
activate sensors that guarantees that at any time, all points of the target
region are covered by active sensors, maximizing the network lifetime.

2. Point Coverage:

Given a set S of N sensors, and a set T of M targets, one has fixed a
schedule to activate sensors that guarantees that at any time, all targets
can be covered by active sensors, maximizing the network lifetime. The
maximum disjoint set covers and the maximum lifetime are two different
problems. Li and Yin proposes an algorithm that finds the schedule that
produces the maximum lifetime, instead of trying to find the maximum
number of mutually exclusive sets.

E) Mobility of sensors: Sensors can be classified according to the mobility
in two different categories:

1. Static Sensors:

A static sensor cannot move without external help. Usually actuators
relocate static sensors to the desired place.

2. Mobile Sensors:

Mobile sensors can move within the ROI without any external force or
without any actuator. The potential field technique is one of the com-
mon methods to guide the movement of the sensors. Potential field tech-
nique [38,42] is used for robotic applications such as local navigation and
obstacle avoidance. Mobile sensors and objects in the environment exert
virtual repulsive force. The vector of that force is calculated and given
as direction to the sensor’s mobility system. In this way sensors seem
to push away one another and are pushed by obstacles of the environ-
ment. The sensors will keep moving till the static equilibrium state is
reached. This approach does not require models of the environment or
communication between sensors.
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1.3 Motivation

There are two important problems sensor networks: the coverage problem and
the detection problem. Both areas have been the subject of research but several
important problems remain open. We discuss some of them in this thesis.

Coverage Problem

The coverage problem can be considered in two different scenarios:

1. The ROI is a set of discrete points or a grid, which may be a cylindrical
grid or a rectangular grid with a square as an unit, in this case we have
to cover all the vertices of the grid and an event can occur only at finitely
many points.

2. The ROI is a bounded continuous region, in which case we have to cover
all the points of the ROI and an event can occur at uncountably many
points.

There are two different ways of placement of the sensors:

1. Deterministic placement, in which case ROI will be fully covered with
a sufficient number of sensors. If we place the sensor in a deterministic
way then the coverage problem is just a geometrical problem in case of
continuous region and a graph theoretical problem in case of a grid.

2. Random deployment from air, in which case some points of the ROI may
remain uncovered even if we use a large number of sensors.

So in case of random deployment, when the ROI is not covered by a set
of sensors, the actuators are used to cover the ROI. If full coverage is not
possible, then the actuators are used to minimize the uncovered area. In
WSANs, sensors can be placed or relocated by mobile actuator(s). If sensors
are mobile, they can place themselves without any external help. But as
physical movement consumes a large amount of energy for the sensor nodes,
a movement assisted sensor placement scheme is preferred [24,61]. Uncovered
area in the ROI can be covered by activating the passive sensors, when required.
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Coverage is the main goal for a WSN, but due to shortage of sensors,
random deployment of sensors and dead sensors, we cannot avoid uncovered
regions in the ROI. Moreover, an actuator may not be available where needed,
or the ROI may be such that we cannot use actuators. In that case we should
calculate the uncovered area. To the best of our knowledge there is no work
on estimating the uncovered area in the random deployment scenario. Our
target is to calculate and develop strategies to reduce the uncovered area of
ROI. There are several methods to cover the ROI or minimize uncovered area.
There are several works on the problem: “Is the ROI fully covered?”. Further,
if the ROI is not covered by the sensors then there are several methods to
cover the ROI using actuators or by using mobile sensors, or by activating
some passive sensors. But no work has been done on the following problem:

“How does the uncovered area change with the number of sensors, or how
does the uncovered area depend on the strategy of deployment of the sensors
when the sensors are deployed on the ROI in a random manner?”

Even if the number of sensors is enough to cover the ROI in a deterministic
manner, there will be some uncovered area if the sensors are deployed randomly.
We cannot be sure about the full coverage of the ROI even if we deploy extra
sensors, unless we use relocation of the sensors either by mobile sensors or by
actuators. If we consider everything static then our target will be to reduce
the uncovered area. It is enough to cover each point of ROI by exactly one
sensor. If some portion of the ROI is covered by more than one sensor, then
we have in some sense ‘wastage’ of sensors. Since the sensing area of a sensor
is a circular disc we cannot avoid the wastage, but our target will be reducing
the wastage. One idea is to deploy the sensors at pre-determined points such
that if they are actually placed on those points, then the wastage is minimum,
i.e., the coverage is maximum.

To the best of our knowledge, there is no work on the coverage problem
in the random deployment situation with different distributions and different
strategies for deployment of the sensors. One variation of the coverage problem
available in literature is the case when the centers of the congruent discs are
fixed and the objective is to cover a given set of points with the minimum
number of discs. Stochastic formulations of this problem can be found in [6,92].
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There is a related problem, known as the sphere packing problem. This
problem asks: “what fraction of Rn can be covered by congruent balls that
do not intersect except along their boundaries”. In the two dimensional case,
the sphere packing problem is known as the circle packing problem. The circle
packing problem is to arrange maximum number circles (of equal or varying
radii) on a given region such that no overlapping occurs [16]. We use the idea
of the sphere packing problem to find an answer to the coverage problem. We
use exactly the same patterns for sphere packing in our covering in two and
three dimensional space.

Note that we can classify the coverage problem in twelve different cate-
gories, see Table 1.1. There is no work on cylindrical grids. Also there is no
work on continuous domain, when extra sensors are used without anyactuator.

Table 1.1: Classification of the Coverage Problem and Previous Works

Mode of deployment Characterization of the ROI
Rectangle/Hexagonal grid Cylindrical grid Continuous Domain

Deterministic [10,22,23,26] Open [6, 20,35,86]
Random deployment
using actuator(s)

[1, 28,57,69,98] Open [18,28,50,57,98]

Random deployment
using extra sensors

[44] Open Open

Random deployment
with extra sensors
and actuator

[24,44,55,57] Open [7, 24,48,49,57,61]

Detection Problem

Another fundamental challenge in wireless sensor networks is to detect an
event. But the detection is disturbed by the noise and the reliability of sensor
nodes. A sensor may fail to detect the event due to natural obstruction. After
detecting the event, a sensor can send false message to the base station due to
some technical reasons. The sensors are usually low-end inexpensive devices
and sometimes exhibit unreliable behavior.

In a large ROI, if events occur at some point of the region then a partic-
ular sensor may not determine exactly where the event has happened. Fusion
sensors are used in this case. But there are cases where a fusion sensor cannot
make a decision or there is no fusion sensor. Consider, for example, a network
of sensors that are capable of sensing mines or bombs. We assume that either
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no mines (or bombs) are placed or very few mines (or bombs) are placed on
a particular area of the ROI. In this case an important query could be; “have
bombs been placed”. In that situation, there is no fusion sensor. All sensors
have to communicate with the base station, and the base station will take the
decision about the query.

In almost all previous work, authors assume that an event occurs over a
region and there are fusion sensors that collect the information locally and take
a decision. Since they do not introduce the concept of a base station there is no
concept of response probability (the probability of correct response of a sensor).
Also they assume that informations are spatially correlated. But there is no
work in literature when the informations are not spatially correlated.

Most authors introduce only one type of detection probability and simulate
the different error probabilities for some specific values of parameters. But
there are no works on exact calculation of error probabilities. Also there are
no works when there is only one event or few events in the ROI. In almost
all previous work, authors assume that the grid is a square grid. But the
hexagonal grid is better in the sense that less number of sensors is required to
cover the entire ROI [96]. The number of sensors needed to cover an area for
the hexagonal grid is given by Williams [96]. In this thesis, we calculate error
probabilities. We deal with square as well as hexagonal grids.

1.4 Our Contribution and Thesis Plan

In this thesis we contribute on two different aspects of WSNs: the coverage
problem and the detection problem. This thesis is based on six papers [70–74,
76]. Chapter 1 contains the introduction. In Chapter 2 we provide a detailed
literature survey that is pertinent for the work presented in Chapters 3 to 8.
Concluding remarks and some open problems are given in Chapter 9. Chapters
3 to 5 deal with the coverage problem and chapters 6 to 8 deal with detection
problem.
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Coverage Problem

Based on the work of [76], in Chapter 3 we try to solve the coverage problem
considering the ROI as a continuous region. After partitioning the ROI in
several hexagons with sides equal to the sensing radius, sensors are dropped
from the air stochastically at the center of all hexagons. But sensors may be
placed at any point of the ROI due to stochastic deployment. We assume that
the distance of this point to the target center is a random variable, which we
will call the called sensor displacement.

We consider the probability distribution of sensor displacement as uniform
as well as a more natural normal distribution. We calculate and simulate the
proportion of uncovered area for both the distributions and for two different
approaches.

If we drop one extra sensor at some randomly chosen centers then the
proportion of the uncovered area will be reduced. If we drop some more discs
(sensors) at some randomly chosen centers then the proportion of the uncovered
area will reduce. Instead of placing these extra discs at randomly chosen
squares or hexagons, if we reduce the distance between two neighboring target
centers (i.e., reduce size of the regular hexagons keeping the sensing radius
fixed) and place exactly one disc at each center, then also the uncovered area
will reduce. That is, we use the extra discs in two different ways. In this thesis
we compare these two ideas in terms of uncovered area. Two basic differences
between these strategies are:

1. In the first strategy we drop one sensor on some hexagon (randomly
chosen) and two sensors on the rest but in the second strategy we drop
exactly one sensor on the center of each regular hexagon.

2. The length of the side of the regular hexagons is less in the second strat-
egy than that in the first.

But in both strategies, we use the same number of discs to cover the same ROI
and the sensing radius is same for both.

In WSNs we consider a bounded convex subsets of R2. More generally, we
can consider any bounded subset of Rn. In this thesis, we consider n = 1, 2, 3,
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with extra emphasis on R2. We study the placement of a minimal number of
discs to cover R2 under some constraints, and develop some theoretical results
on the coverage problem in R2. We find the minimum number of sensors needed
to cover an area and the points where they have to placed. Note that a sensing
disc is a closed disc in R2 and closed ball in R3, with center as the point where
a sensor is placed. We also consider more general coverage problem:

“How can one place n dimensional balls of radius r to cover the n dimen-
sional space Rn, or a bounded subset of Rn such that the portion of the volume
which is common in every pair of balls is minimum?”

In case of a bounded subset of Rn, the problem is same as that of finding
the minimum number of sensors to cover the bounded set. One may call the
intersection of two balls as wastage. So our problem is to find the deployment
of the sensors with minimum wastage, where the wastage is the portion of
total volume which is common between pairs of balls. We mainly consider the
case when n = 1, 2, 3, and we give a partial answer to this problem. We show
hexagonal deployment is close to optimal for a bounded convex subset of R2,
with ‘some’ restrictions.

After random deployment of sensors, actuators relocate the sensors. So far
several randomized algorithms are used for relocation. But no deterministic
algorithm is used. Also there is no previous works for rectangular grid struc-
ture of ROI. Based on the work of [74], in Chapter 4 we provide an optimal
placement of sensors in a rectangular grid ROI partitioned into several squares
such that the ROI will be fully covered by these sensors. In general, a sensor
is placed at the center of a square, known as center node. This sensor can de-
tect events at the center node along with the four centers of the four adjacent
squares which have a common edge with the center square. These four centers
are known as distance-one nodes. The sensor placed at the center node can-
not detect events placed at the center of the other squares, e.g., distance-two
node, which has a common vertex but no common edge with center square.
Our objective is to place the minimum number of sensors at the center of some
selected squares in such a way that, they can detect the events at the center
of all the squares. Then the minimum number of sensors required is same as
the domination number of the corresponding rectangular grid and a minimum
dominating set will suggest which squares we have to choose. In this chapter,
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we deal with the domination number of some special types of graphs, known
as cylindrical grid graphs. We found the domination numbers as well as a
minimum dominating sets of the some graphs.

In Chapter 5 we provide algorithms for actuator based on the work of
[71]. In this chapter we consider the coverage problem in wireless sensors and
actuator networks composed of static sensors dropped stochastically in a region
of interest (ROI), which is a rectangular grid. An event can occur at any vertex
of the grid and sensors can be placed at any vertex. Sensors are dropped at the
vertices of the grid from the air. A sensor may placed at center of the target
vertex or at one of neighboring four vertices due to stochastic deployment of
sensors. An actuator can take, carry and place the sensors according to some
pre-assigned algorithm. We want the ROI to be free of sensing holes. So the
actuator will go to the grid and rearrange some of the sensors in such a way
that at least one sensor is placed at each node. In this chapter we develop
three deterministic algorithms for actuators and compare these algorithms in
context with some pre-assigned parameters. We consider only one actuator
and this actuator can carry only one sensor with it when it travels from one
node to another.

Table 1.2: Classification of the Coverage Problem and Our Contribution

Mode of deployment Characterization of the ROI
Rectangle/Hexagonal grid Cylindrical grid Continuous Domain

Deterministic Chapter 4 Chapter 3
Random deployment
using actuator(s)

Still open

Random deployment
using extra sensors

Chapter 5 Still open Chapter 3

Random deployment
with extra sensors
and actuator

Chapter 5 Still open

Our contribution (chapters 3 to 5) to the coverage problem is summarized
in the Table 1.2. Our contribution in this field is very useful in the sense that
there is no work on cylindrical grid like ROI or on reducing the uncovered
area of ROI. We deal with the coverage problem for cylindrical grids using
graph theory and for continuous regions using geometry, which is unique in
the literature.
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Detection Problem

In this thesis we introduce two detection probabilities, one for the center node
and the other for the adjacent nodes. Even if the center node fails to detect the
event, the adjacent nodes may detect the event, and vice versa. We consider
these probabilities and show that, in various situations, the adjacent nodes play
a key role in detecting the event. We calculate the exact error probabilities
and the exact tests. It is hard to calculate the exact probabilities and the exact
test for the general case when events occur in more than one cell.

In this thesis, we consider both square and hexagonal grids in separate
sections. We assume that the ROI is partitioned into a suitable number of
identical squares of side 2a (i.e., we consider ROI as a rectangular grid with
square cells). We also consider a regular hexagonal grid with regular hexagonal
cells. We assume that sensors have already been placed at the center of the
squares (or hexagons). In this thesis, we are interested to detecting an event
in the ROI. We assume the ROI to be partitioned into suitable number of
congruent regular hexagonal or square cells. This physical structure of ROI is
not a requirement for the theoretical analysis, we can do similar analysis with
other structures as well. Suppose that sensors are placed a priori at the center
(known as a node) of every hexagon of the grid. We assume that sensors are
connected to their adjacent sensor nodes in the sense that a hexagon will be
strongly covered by its center node and weakly covered by the adjacent nodes.
If an event occurs in the hexagon where a particular sensor lies, then that
particular sensor can detect the event with a greater probability. Whereas, if
event occurs in any adjacent hexagon, then the particular sensor can detect the
event with a lesser probability. Hence, only one node (center node of the event
hexagon) can detect the event hexagon with greater probability and adjacent
nodes (six for interior nodes and less for boundary nodes) can detect the event
hexagon with lesser probability. In the case of a square cell we assume there are
one more detection probability, which is less than the other two. We assume
that no other sensor can detect the event hexagon.

In our theoretical analysis, the sensor fault probabilities are introduced into
the optimal event detection process. We applied model selection approach,
multiple model selection approach and Bayesian model averaging methods [36,
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65] to find a solution to the problem. We develop the schemes using the
model selection technique. We calculate different error probabilities and find
some theoretical results. We propose fault detection schemes that take into
account error probabilities in the optimal event detection process. We develop
the schemes under the consideration of classical hypothesis testing and the
Bayes test. We calculate different error probabilities and find some theoretical
results involving different parameters such as probability of false alarm of a
sensor, probability of event detection by a sensor, prior probability of occurring
a event, etc. Finally, we calculate different error probabilities, Bayes test
and Neyman-Pearson Most Powerful (MP) test for some specific values of the
parameters and analyze the results.

The detection probabilities of a sensor and the probability of sending infor-
mation correctly by a sensor cannot be estimated from the real life situation,
but we can estimate them experimentally beforehand. The prior probability
of the event cannot be estimated. In various situations, it may be known, in
which case we apply Bayes test; otherwise, we use Neyman-Pearson MP test.

We propose a rule for the base station to take a decision compiling the
information coming from the all sensors and find the optimal solutions. We
consider two types of error: (1) type I error when an event occurs but the
sensors report normal (which is the more serious error) and (2) type II error
when the ROI is normal but sensors report an event. We observed that type I
and type II errors decrease when detection probabilities increase. If detection
probabilities are low then type I error is close to 1. If probability of occurrence
of the event is high but detection probabilities are small then type I and type II
errors are high, which means sensors are not useful. So, when the probability
of occurrence of the event is high, we have to use sensors with high detection
probability (i.e., sensors with much better quality). We calculate the MP test
and the Bayes test for some specific values of the parameters. We observed
that for small values of detection probability and large value of loss, the Bayes
test is not applicable. When loss is large, we cannot use sensors with small
detection probabilities to decide about the event square using Bayes’ test. We
also observed that when the size of the test is small we cannot use sensors with
small detection probabilities for MP test; we have to use good sensors (sensor
with high detection probability) for MP test in this case. For details of loss,
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MP test and Bayes test, see [68].

Chapter 6 is based on the work of [72] on the event detection problem
when a sensor can be faulty or a detection can be wrong due to noise. In our
theoretical analysis, we propose fault detection schemes that take into account
error probabilities in the optimal event detection process. We assume the ROI
is partitioned into disjoint squares (or hexagons) and only one event can occur
at a specific cell. We develop the schemes under the consideration of classical
hypothesis testing and Bayes test. We calculate different error probabilities,
Bayes test and Neyman-Pearson Most Powerful(MP) test for some specific
values of the parameters, and analyze the calculation results.

Chapter 7 is based on the work of [73] on the event detection problem when
the RIO is considered as a hexagonal grid and sensors are placed at the center
of the hexagons. There is at most one event but it may occur at any hexagon.
We assume two detection probabilities, one for the center node and other for
the adjacent nodes, and they are the same for all sensors. Even if the center
node may fail to detect the event, the adjacent nodes may detect the event,
and vice versa. We show that, in various situations, the adjacent nodes play a
key role in detecting the event. We apply a model selection approach, multiple
model selection approach and Bayesian model averaging methods to find a
solution to the problem. We calculate error probabilities and find theoretical
results.

Chapter 8 is based on the work of [70] on the event detection problem in
most general case. In this chapter, we consider how to take decisions regarding
fault detection in a noisy environment, created as a result of false detection
or false reporting of an event by some sensors, where the sensors are placed
at the center of regular hexagons and events can occur at any number of
hexagons. We introduce two types of detection probabilities, one for the center
node, where the event occurs and the other one for the adjacent nodes. We
develop a scheme under the multiple model selection procedure and discuss
two examples. We use a near optimal model selection technique to detect the
events. We also introduce a new approach to detect events. We introduce the
concept of false response of sensors, i.e., when they send message to the base
station, we assume that wrong information can be sent. Our contribution gives
a new approach to event detection in the case of a WSN.
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Previous Work

There are several works on the coverage and detection problems of WSNs. We
briefly summarize some of them which are very much related to our work. We
consider the works from 2000 to 2014 only. We also briefly summarize some
related areas of our research.

2.1 Coverage Problem

One of the major challenges in devising such networks lies in the constrained
energy and computational resources available to sensor nodes. These con-
straints must be taken into account at all levels of the system hierarchy. The
deployment of sensor nodes is the first step in establishing a sensor network.
Since sensor networks contain a large number of sensor nodes, the nodes must
be deployed in clusters, where the location of each particular node cannot be
fully guaranteed a priori. Therefore, the number of nodes that must be de-
ployed in order to completely cover the whole monitored area is often higher
than if a deterministic procedure were used. In 2001, Slijepcevic and Potkon-
jak [90] introduced an algorithm that selects mutually exclusive sets of sensor
nodes, where the union of these sets completely cover the monitored area. The
intervals of activity are the same for all sets, and only one of the sets is active
at any time. They achieve a significant energy savings while fully preserving
coverage.

19
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In 2002, Akyildiz et. al. [3] described the concept of sensor networks which
has been made viable by the convergence of micro-electro-mechanical systems
technology, wireless communications and digital electronics. First, the sensing
tasks and the potential sensor networks applications are explored, and a review
of factors influencing the design of sensor networks is provided. Then, the
communication architecture for sensor networks is outlined, and the algorithms
and protocols developed for each layer in the literature are explored.

In 2003, C. F. Huang Y. C. Tseng [40] formulated the coverage problem
as a decision problem, whose goal is to determine whether every point in the
service area of the sensor network is covered by at least k sensors, where k is a
predefined value. The sensing ranges of sensors can be unit disks or non-unit
disks. They presented polynomial time algorithms, in terms of the number of
sensors, that can be easily translated to distributed protocols. The result is
a generalization of some earlier results where only k = 1 is assumed. Appli-
cations of the result include: (i) positioning applications, (ii) situations which
require stronger environmental monitoring capability, and (iii) scenarios which
impose more stringent fault-tolerant capabilities. Results include determining
insufficiently covered areas in a sensor network, enhancing the fault-tolerant
capability in hostile regions, and conserving energies of redundant sensors in
a randomly deployed network. Their solutions can be easily translated to
distributed protocols to solve the coverage problem.

One variation of the coverage problem available in literature is the case
when centers of the congruent discs are fixed and the objective is to cover a
given set of points with the minimum number of discs. A stochastic formulation
of this problem is considered here known as the continuum percolation model.
In this model each point of a two-dimensional Poisson point process is the
center of a disc of given (or random) radius r. In 2003, Booth et. al. [6]
considered the generalization in which a deterministic algorithm (given the
points of the point process) places the discs on the plane, in such a way that
each disc covers at least one point of the point process and that each point
is covered by at least one disc. This gives a model for WSNs, which was the
original motivation to study this class of problems.

In 2004, Z. Zhou et. al. [100] showed, in a randomly deployed sensor net-
works, how one approach to keep only a small subset of sensors active at any
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instant to conserve energy. They considered the problem of selecting a mini-
mum size connected K-cover, which is defined as a set of sensors M such that
each point in the sensor network is covered by at least K different sensors in
M , and the communication graph induced by M is connected. For the above
optimization problem, they design a centralized approximation algorithm that
delivers a near-optimal (within a factor of O(logn)) solution, and presented a
distributed version of the algorithm. They also presented a communication-
efficient localized distributed algorithm which is empirically perform well.

In 2006, Mousavi et. al. [69] presented a distributed one step deploy-
ment (OSD) algorithm. This algorithm partitions the ROI evenly into two-
dimensional square grids, and instructs sensors to occupy all the grid points.
The intuition is that if each grid point is occupied by a sensor, then the ROI
is fully covered, and the sensors form a connected network. They proposed
two methods for the self-deployment of mobile sensors. The first one is a ran-
domized solution that provides both simplicity and applicability to different
environments. It improves both speed and energy conservation of the deploy-
ment process. The other method is suggested for environments where sensors
form a connected graph. They gained improvements over previous works.

In 2005-2007, Silva et. al. [87–89] considered the coverage problems in
sensor networks with minimal sensing capabilities. The methods, they intro-
duced, came from persistent homology theory. They assumed the sensors are
coordinate free, no localization or orientation capabilities and randomness are
there. They demonstrated the robustness of the tools by adapting them to a
variety of setting, including static planar coverage, 3-d barrier coverage, and
time dependent sweeping coverage. They demonstrated that a stationary col-
lection of sensor nodes with no localization can verify coverage in a bounded
domain of unknown topological type. They gave results on hole repair, error
tolerance, optimal coverage and variable radii. They also considered coverage
problems in robot sensor networks with minimal sensing capabilities. In par-
ticular, they demonstrated that a blind swarm of robots with no localization
and only a weak form of distance estimation can rigorously determine coverage
in a bounded planar domain of unknown size.

In 2007, Zahar et. al. [22] showed the following theorem:

Theorem 2.1. Let γ(G) denote the domination number of a graph G and
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Cn2G denote the cartesian product of the cycle of length n ≥ 3 and G then
γ(Cn2G) = γ(Cn)γ(G) implies n ≡ 1(mod 3).

In addition they characterize graphs that satisfy the equality when n = 4
and provide infinite classes of such graphs for general n ≡ 1(mod 3).

In 2009, Filippou et. al. [27] measured the ability of the network to inter-
act with observed phenomena taking place in the ROI. In addition, coverage
is associated with connectivity and energy consumption, both of which are im-
portant aspects of the design process of a WSN. The results aim at offering a
critical overview and presentation of the problem as well as the main strategies
developed so far. They classified the environment, coverage protocols, sensors’
mobility and placements technique etc. They gave an overview of different
scenarios of wireless sensor networks.

The target coverage problem in wireless sensor networks is concerned with
maximizing the lifetime of the network while continuously monitoring a set
of targets. In 2009, Chaudhary and Pujari [9] studied the target Q-coverage
problem. The objective is to maximize sensor network lifetime satisfying Q-
coverage requirement. They problem is shown to be NP-complete and there is
no known practical algorithm. They proposed a heuristic algorithm to generate
Q-covers by prioritizing sensors in terms of the residual battery life and the
algorithm assigns a small constant of lifetime to Q-covers so generated. In this
process, it allows the sensors to participate in many Q-covers. They observed
that the smaller the constant, the closer is the solution to the optimal solution.
Through experiments on randomly generated problem instances, they showed
that the proposed algorithm yields near-optimal solution.

In 2010, Greg Fletcher et. al. [29] presented randomized algorithms for more
than one robot for coverage repair in WSN. They gave two algorithms among
these: one for grid based ROIs, and another consider continuous regions. Using
these algorithms, mobile robots move within the network to collect redundant
sensors and deliver them to reported sensing holes. They simulate the length
of the path traveled by the robots for deferent values of parameter like, number
of sensors, number of robots etc.

In 2011, Dharma P. Agrawal [2] summarized many underlying design issues
of WSNs, starting from the coverage and the connectivity. As batteries provide



23 2.1 Coverage Problem

energy to sensor nodes, effective ways of power conservation are considered.
Advantages of placing sensors in a regular pattern have also been discussed
and various trade offs for many possible ways of secured communication in a
WSN are summarized. Challenges in deploying WSN for monitoring emissions
are briefly covered. Finally, the use of sensors is illustrated in automatically
generating music based on a dancer’s movements.

Maximizing network lifetime is an important objective for the target-
coverage problem. With practical manufacture and cost reduction, directional
sensors have been widely used in wireless sensor networks to save energy. In
2012, Li et. al. [56] addressed the target Q-coverage (TQC) problem to pro-
long the network lifetime with bounded service delay constraint in directional
sensor networks. They proposed a protocol to find a collection of coverage sets
that satisfy the coverage quality requirement and the bounded service delay
constraint, where the target in each coverage set may not be served continu-
ously but can be served with tolerant service delay. By steering some sensors’
directional antennas, the protocol could deal with the changes of network topol-
ogy or monitoring tasks. Simulation results show that the performance of the
protocol is close to the upper bound of the optimal solution.

In 2013, Li et. al. [50] described carrier-based sensor relocation by robots
to repair sensing holes. They considered grid structure of the ROI and used a
virtual force algorithm. Analyses are done for maximum distance covered and
expected distance covered by the robot(s) or by the mobile sensors to achieve
the full coverage. They considered the problem of repairing sensing holes,
while the redundant sensors exist in other areas in the network. Robots move
within the network to discover sensing holes. They find redundant sensors
by local communication, and transfer the discovered redundant sensors to the
encountered sensing hole positions. The authors proposed four algorithms: in
one the them robot moves randomly, in another robot movement is restricted
to a virtual grid, and the other two are variants of the second.

In 2013, Kranakis et. al. [44] obtained expected sum and maximum dis-
placement for sensors thrown at random in a unit square. They produced a
tight bound for the expected maximum displacement, and they proved that:

Theorem 2.2. The expected sum is less than a constant multiple of
√
ln(n),

where n is the number of sensors.
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The authors investigated the related problem of the expected total and
maximum displacement for perimeter coverage (whereby only the perimeter
of the region need be covered) of a unit square. They also presented range
trade-offs for area coverage.

2.2 Detection Problem

In 2004, Krishnamachari and Iyengar [45] proposed a distributed solution for
the canonical task in WSN, i.e., the binary detection of interesting environ-
mental events. They explicitly take into account the possibility of sensor mea-
surement faults and develop a distributed Bayesian algorithm for detecting and
correcting such faults. They presented two Bayesian algorithms: the random-
ized decision scheme and the threshold decision scheme, and derive analytical
expressions for their performance. Analysis shows that the threshold decision
scheme has better performance in terms of minimization of errors. The theo-
retical and simulation results show that 85-95 percent of faults can be corrected
using this algorithm, when 10 percent of the nodes are faulty.

In 2006, Lou et. al. [63] considered two important problems for distributed
fault detection in WSN: 1) how to address both the noise-related measure-
ment error and sensor fault simultaneously in fault detection, and 2) how to
choose a proper neighborhood size n for a sensor node in fault correction such
that the energy could be conserved. They proposed a fault detection scheme
that explicitly introduces the sensor fault probability into the optimal event
detection process. They showed that the optimal detection error decreases
exponentially with the increase of the neighborhood size. Experiments with
both Bayesian and Neyman-Pearson approaches in simulated sensor networks
demonstrate that the proposed algorithm is able to achieve better detection
and better balance between detection accuracy and energy usage. Their work
shows it possible to perform energy-efficient fault-tolerant detection in a WSN.

In 2006, Chen et. al. [11] proposed and evaluated a localized fault detection
algorithm to identify the faulty sensors in a WSN where each sensor identifies
its own status to be either good or faulty and the claim is then supported or
disputed by its neighbors. The proposed algorithm is analyzed using a proba-
bilistic approach. The goal is to locate the faulty sensors in the wireless sensor
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networks. they proposed and evaluate a localized fault detection algorithm to
identify the faulty sensors. The implementation complexity of the algorithm is
low and the probability of correct diagnosis is very high even in the existence
of large fault sets. Simulation results show the algorithm can clearly identify
the faulty sensors with high accuracy.

In 2009, Ni et. al. [78] presented a detailed study of the sensor faults that
occur in deployed sensor networks. They presented a systematic approach to
model these faults. They categorized the three types of fault models. (1)
CONSTANT fault: The sensor reports a constant value which is either very
high or very low compared to the normal sensor reading and uncorrelated to
the underlying physical phenomena for a large number of successive samples.
(2) SHORT fault: A sharp change in the measured value between two succes-
sive samples, i.e., it effects a single sample at a time. (3) NOISE fault: The
variance of the sensor reading increases, i.e., it effect a number of successive
samples. They used data collected from scientific deployments to develop a
set of commonly used features useful in detecting and diagnosing sensor faults.
They used this feature set to systematically define commonly observed faults.
They provide examples of each of these faults from sensor data collected at
recent deployments. There are other fault models also.

In 2010, Sharma et. al. [86] characterized the different type of fault and
fault detection methods. They classified the faults as Short, Noise and Con-
stant. While it is not always possible to ascertain the root cause for sensor
faults, several system (hardware and software) faults have been known to re-
sults in sensor faults. The typical hardware faults that have been observed
to cause sensor faults are: damaged sensors, short-circuited connections, low
battery and calibration errors. They proposed different algorithm for fault de-
tection considering different types of fault. Some of the methods are statistical,
like, using histograms, etc. Both works can only detect the faulty sensors, but
not the event. The networks must exclude the faulty sensors to ensure the net-
work quality of service. To identify the faulty sensor is an existing challenge.
They used real world datasets to answer the following question: how often are
the sensor data fault types observed in real deployment? They used rule-based
methods, estimation methods, learning-based methods and time series analysis
based methods.
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In 2011, Yun et. al. [98] considered the problem of identifying battlefield
events using sensors deployed in the area. The goal is to alert centralized
headquarters about the occurrence of significant events so that it can respond
appropriately to the events. They proposed a mechanism using which the sen-
sors can exchange information using signatures of events instead of data to save
on transmission costs. Further, they proposed an algorithm that dynamically
generates phases of information exchange based on the cost and selectivity of
each filter. They presented simulation results that compare the proposed al-
gorithm to other alternatives. Their results show that the algorithm detects
events while minimizing the transmission and processing costs at sensors.

In 2011, Farah et. al. [25] used homology to detect and differentiate be-
tween incremental insertion events of interest. Particular homology tools are
translated to a distributed environment for 2-dimensional WSN deployments.
The result is a distributed algorithm that can compute an incremental insertion
event associated with a region comprising n nodes in O(n) time, using O(n)
storage, and O(n) data passed via messages. A small-scale, laboratory testbed
is developed to evaluate the algorithm. Deployment results indicate that only
nodes in physical proximity to an event are tasked, thereby conserving network
resources and allowing multiple disparate events to be simultaneously moni-
tored. Further, transmission cost is showed to vary linearly with the size of
the evolving region, confirming one component of the formal analysis.

2.3 Related Areas

In data aggregation, sensor measurements from the whole sensory field or a
sub-field are collected as a single report at an actor by using aggregate functions
such as sum, average, maximum, minimum, count, deviation, and so on. In
2011, Li et. al. [60] proposed a localized delay-bounded and energy-efficient
data aggregation (DEDA) protocol for request-driven wireless sensor networks
with carrier sense multiple access with collision avoidance run at the media
access control layer. This protocol uses a novel two-stage delay model, which
measures end-to-end delay by using either hop count or degree sum along a
routing path depending on traffic intensity. It models the network as a unit disk
graph (UDG) and constructs a localized minimal spanning tree (LMST) sub-
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graph. Using only edges from LMST, it builds a shortest-path (thus energy-
efficient) tree rooted at the actor for data aggregation. The tree is used without
modification if it generates acceptable delay, compared with a given delay
bound, otherwise, it is adjusted by replacing LMST sub-paths with UDG edges.

In a broadcasting task, the source node wants to send the same message to
all the other nodes in the network. Existing solutions address specific mobility
scenarios, e.g. connected dominating set (CDS) based for static networks,
blind flooding for moderate mobility, and hyper flooding for highly mobile
and frequently partitioned networks. In 2012, Stojmenovic [91] designed a
protocol that will seamlessly (without using any parameter) adjust itself to any
mobility scenario, and with capability to address various model assumptions
and optimality criteria.

WSNs are also used in neural networks. In 2013, Li et. al. [58,59] found a
feasible solution to a class of nonlinear inequalities defined on a graph proposing
a recurrent neural network. The convergence of the neural network and the
solution feasibility to the defined problem are both theoretically proven. They
proposed neural network features as a parallel computing mechanism and a
distributed topology isomorphic to the corresponding graph which is suitable
for distributed real-time computation. The proposed neural network is applied
to range-free localization of WSNs. They showed that feasible solution set to
the same problem is often infinity and Laplacian eigenmap is used as heuristic
information to gain better performance in the solution. A continuous-time
projected neural network, and the corresponding discrete-time projected neural
network are both given to tackle this problem iteratively. The effectiveness of
the proposed neural networks are compared with others via its applications in
the range free localization of WSNs.

In 2013, Li et. al. [46, 52] formulated the sensor network problem as an
optimization problem defined on the Blue-tooth network. The solution to
this optimization problem is not unique. Heuristic information is employed to
improve the performance of the result in the feasible set. They used recurrent
neural networks to solve the problem in real time. The convergence of the
neural network and the solution feasibility to the defined problem are both
theoretically proven. The hardware implementation of the proposed neural
network is also explored. Distributed algorithms are also used for a network



Chapter 2: Previous Work

dynamic system. Li et. al. studied the decentralized control and kinematic
control of multiple redundant manipulators for the cooperative task execution
problem. The problem is formulated as a constrained quadratic programming
problem and then a recurrent neural network with independent modules is
proposed to solve the problem in a distributed manner. They proposed a
strategy to solve the problem even though there exists some manipulators
unable to access the command signal directly.

Another application of WSN is the winner-take-all (WTA) competition.
This is widely observed in both biological media and society. Many mathe-
matical models are proposed to describe the phenomena discovered in different
fields. These models are capable of demonstrating the WTA competition. In
2013, Li et. al. [53, 54] make steps in that direction and presented a simple
model, which produces the WTA competition by taking advantage of selec-
tive positive-negative feedback through the interaction of neurons via p-norm.
They also presented a class of recurrent neural networks to solve quadratic pro-
gramming problems. Different from most existing recurrent neural networks
for solving quadratic programming problems, the proposed neural network
model converges in finite time and the activation function is not required to be
a hard-limiting function for finite convergence time. The stability, finite-time
convergence property and the optimality of the proposed neural network for
solving the original quadratic programming problem are proven in theory.

In a mobile Unattended Wireless Sensor Network (UWSN), a trusted sink
visits each sensor node periodically to collect data. Data has to be secured until
the next visit of the sink. Securing the data from an adversary in UWSN with
mobile nodes is a challenging task. In 2012, Reddy et. al. [83] presented two
non-cryptographic algorithms to ensure data survivability in mobile UWSN.
These algorithms protect against a proactive adversary which compromises
nodes before identifying its target and makes the network secure against the
reactive adversary which compromises nodes after identifying the target. They
analyzed memory overheads and communication costs both mathematically
and using simulations. In existing schemes, sensors remain static between visits
from the sink, whereas in our scheme sensors can move between successive visits
from the sink. They showed that their approaches perform better than known
schemes in terms of communication overheads.
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Coverage in Continuous Domain

3.1 Introduction

Coverage is the main goal for a WSN but due to shortage of sensors or random
deployment of sensors we cannot guarantee full coverage. Moreover, actuators
may not be available or the ROI may prevent the use of actuators. To the best
of our knowledge there is no work on uncovered area in random deployment
scenario. In this chapter our target is to calculate and reduce the uncovered
area of ROI using extra sensors. Here we consider two problems:

1. Deterministic deployment of static sensors without any actuator:

How can one place n dimensional balls of radius r to cover n dimensional
Rn space or a bounded subset of Rn such that the portion of the volume
which is common in every pair of balls is minimum. In the case of
a bounded subset of Rn the problem is same as finding the minimum
number of sensors to cover the bounded set. One may call the portion of
total volume which is common to two balls as wastage. So our problem
is to find the deployment of the sensors with minimum wastage. In two
and one dimensions we identify volume with area and length respectively.
We mainly consider the case when n = 1, 2, 3. We give a partial answer
to this problem. We show hexagonal deployment is close to optimal for
a bounded convex subset of R2 with ‘some’ restrictions.

2. Random deployment of sensors and use of extra sensors:

29
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Usually the sensors are deployed from the air, so a sensor may not fall
onto the right point. Suppose P is the point where the sensor was in-
tended to drop and P ′ is the point where it is actually placed. Then the
distance between P and P ′, called sensor displacement, follows some
probability distribution depending on the mechanism of deployment.
Note that a sensing disc is a closed disc in R2 and closed ball in R3

with center as the point where a sensor placed.

More formally, we can formulate the problem as follows: for an index set I,
consider a set of closed unit balls (or equivalently, of radius r) {Bi ⊆ Rn : i ∈
I}, which cover Rn or a bounded convex subset of Rn, considered as the ROI.
Consider a set of n-dimensional random vectors {Xi : i ∈ I}. Assume that
Di, the distance between Xi and the center of Bi, for i ∈ I are i.i.d. with the
density f(·). Then some portion of the Rn may be uncovered by the set of balls
with centers Xi, i ∈ I. What portion of Rn will be uncovered? How we can
reduce this uncovered portion using some extra random vectors (or equivalently
balls)? For n = 1 the coverage problem with minimum wastage is trivial.
We mainly discuss the case when n = 2, 3 with special emphasis on n = 2.
We consider two type of distributions, uniform and normal, for the distances
Di, and two different strategies for deployment of extra sensors to reduce the
uncovered volume of a bounded convex subset of Rn. We consider hexagonal
deployment of sensors since it is near optimal for the coverage problem with
minimum wastage as well as optimal for the sphere packing problem. One
can also think of other types of deployment. If we cover the ROI by circular
discs such that the intersection of three or more discs is a point or empty then
the ROI is covered by identical disjoint regular hexagons, each of which is
inscribed in a disc. Since the deployment is random there will be uncovered
area or region after deployment. One can think of several strategies to reduce
the uncovered area. In this chapter we consider two different strategies:

St. 1 : strategy for deployment of extra sensors is as follows: deploy one sen-
sor at each center of the regular hexagons, then choose some centers
(according to how many extra sensors we have) and deploy one more
sensor there.

St. 2 : strategy for deployment of extra sensors is as follows: reduce the length
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of the side of the regular hexagon (according to how many extra sensors
we have) and deploy exactly one sensor at each center, i.e., we reduce
the distance among two sensors.

In both strategies, we use the same number of sensors and the same sensing
radius. The two basic differences between these two strategies are:

1. in the first strategy we drop one sensor onto some hexagons and two
sensors onto the rest (randomly chosen) but in the second strategy we
drop exactly one sensor onto the center of regular hexagons; and

2. the length of the side of regular hexagons is less in the second strategy
than in the first.

We also discuss some coverage criteria and simulate the uncovered volume
in different situations. We observed from simulation results that, the first
strategy is better when the variance of the distribution of Di is large for both
normal and uniform distributions and for both R2 and R3. We prove that the
hexagonal placement of sensors is near optimal if there is no randomness in
deployment. We also calculate theoretically the uncovered area in the uniform
situation when there are no extra sensors.

If we consider a convex subset of R2, then the problem is reduced to the
coverage problem in the field of sensor networks. Usually the ROI is a bounded
convex subset of R2. More generally we can consider the ROI as a union of
several bounded convex subsets of R2. Note that placing a sensor in the ROI
is equivalent to placing a disc in some convex bounded set in R2.

In this chapter, we write the phrase ‘disc placed at a center of a square or
hexagon (or a point)’ instead of writing ‘disc is placed so that the center of
the discs placed at a center of a square or hexagon (or a point)’. Note that the
placing of a sensor is same as the placing of a disc in R2, or a sphere in R3.

In WSNs we consider bounded convex subsets of R2. More generally, we
can consider any bounded subset of Rn. We consider n = 1, 2, 3, with extra
emphasis on R2. We study the placement of the minimal number of discs to
cover R2 under some constraints, stated later, and develop some theoretical
results on the coverage problem in R2. The distance between the point where
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a disc is targeted to drop and the point where it actually placed is a random
variable. We consider the situations when the probability distribution of this
random variable is uniform or normal with different parameters. We calculate
and simulate the proportion of uncovered area for both the distribution. We
introduced two different strategies and compare them in terms of uncovered
area.

We prove later, that if we partition R2 in regular hexagons of side r (the
radius of discs i.e., sensing radius of sensors) and place one disc at each of
the center of these regular hexagons, the placement is optimal in some sense
stated latter. One may partition the ROI into identical squares or any other
convenient identical smaller areas, such that only one disc is needed to cover
each smaller area. In the coverage problem only these two type of partitions
are used. It can be proved that partitioning the ROI into squares and placing
one disc at each center is not an optimal strategy (to minimize the number of
sensors); hexagonal partitioning is better one. But after stochastic deployment
of the same number of discs, partitioning the ROI into regular hexagons may or
may not be better than the strategy of partitioning the ROI into squares with
respect to the covered area. We consider only the regular hexagonal partition.

We also find theoretically the expected proportion of area covered in the
ROI when the Di’s are independently, identically and uniformly distributed.
We also simulate the proportion of covered volume for both uniform and normal
distributions with the two strategies for deployment of extra discs.

There is a related problem known as the sphere packing problem (see Figure
3.1). This problem asks, what fraction of Rn can be covered by congruent balls
that do not intersect except along their boundaries. Analysis of this problem
is a very interesting area of research [14, 15]. Linear programming bounds
are the most powerful known techniques to produce upper bounds in such
problems [21]. The sphere packing problem in Rn is trivial for n = 1. For
n = 2, the standard hexagonal packing is optimal. For n = 3, Hales has
proved that the face-centered cube packing is optimal [32] (see Figure 3.9).
Some basic background on the sphere packing problem may be found in [17].
In the two dimensional cases, a sphere packing algorithm is presented in [16].
We use exactly the same patterns of placing circles or spheres to cover two and
three dimensional space as in the sphere packing problem.
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Figure 3.1: Sphere packing of a rectangular ROI

3.2 Assumptions and Definitions

Consider the coverage problem in WSNs which are composed of static sen-
sors (equivalently, sensing discs) dropped stochastically in a region of interest
(ROI). The ROI is partitioned into several identical regular hexagons of side
a. Although the topology of the ROI may prevent partitioning into hexagons.
If we consider the ROI to be the whole of R2, we do not have such a problem.
To cover each hexagon by one sensor one should take a ≤ r, where r is the
sensing radius. If r = a each regular hexagon is covered by the sensor (also
known as node) at its center if the sensor is placed exactly at the center of
that hexagon. We assume that the ROI is R2 or a convex and bounded subset
of R2. As the sensors are so small we can think of a sensor as a point.

Now we define some useful terms. Node is the point where a sensor or the
center of a disc is placed after deployment. In this chapter we use the term
node to mean the point as well as the corresponding sensor. A Vertex is the
point where the center of a disc is targeted to be placed. N(V ) is the node
corresponding to the vertex V , i.e., the center of a disc is placed at N(V ) when
the target was to drop at V . Similarly V (N) is the corresponding vertex of a
node N . The Sensing Disc SN of a node N is a closed disc of radius r and
center N , which is covered by the disc or sensor placed at that node. The
radius r is known as the Sensing Radius, which is assumed to be same for all
discs. More generally one can consider discs with different radius. Throughout
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Figure 3.2: Nodes placed in ROI, which partitioned into regular hexagons

the chapter, the word ‘disc’ will refer closed discs only. In higher dimensions
we call this the Sensing Ball.

The Adjacent vertex of a particular vertex means the vertex which is at
distance not more than 2r from that particular vertex. Therefore the sensing
disc of a vertex has nonempty intersection with the sensing disc of its adjacent
vertex and empty intersection with the sensing disc of a non adjacent vertex
(which is not an adjacent vertex).

V is the set of all vertices and AdjV is the set of all the adjacent vertices of
a vertex V (see Figure 3.2). Similar definitions and notations apply for nodes
also, and the respective notations are N and AdjN for N ∈ N . Denote the
distance between two points A and B in Rn as d(A,B). A point P ∈ Rn is said
to be covered by a node N if d(P,N) ≤ r and the point P is said to be covered
by a set of nodes N if P is covered by at least one node in N . A point P ∈ Rn

is said to be uncovered by a node N if it not covered by N and the point P
is said to be uncovered by N if P is uncovered by all the nodes in N . Note
that when there is no randomness, then the vertex and the corresponding node
are the same, i.e., N(V ) = V and V (N) = N . The Sensing hole in Rn (resp.
ROI) is a connected subset of Rn (resp. ROI) whose elements are uncovered
by N . An Adjacent sensing hole of a particular node means the sensing hole
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whose boundary intersects with the boundary of the sensor disc of that node.
Rn (resp. ROI) will be called covered by a set of nodes of sensing radius r if
every point of Rn (resp. ROI) is covered by at least one node. The volume of
a set B will be denoted as Vol(B).

Let S be a bounded subset of Rn, which is covered by a set of finite nodes
N . Define the wastage in S for N as

WN (S) =

∑
N∈N

Vol(S ∩ SN)− Vol(S)∑
N∈N

Vol(S ∩ SN)
.

If N be such that |SN1 ∩SN2 ∩SN3 | ≤ 1 for distinct N1, N2, N3 ∈ N (see figure
3.3a), then

WN (S) =

∑
N1 6=N2∈N

Vol(S ∩ SN1 ∩ SN2)∑
N∈N

Vol(S ∩ SN)
.

Intuitively, the denominator represents the sum of the volume (common
with S) of all spheres. The numerator denotes the difference between the
previous volume and the volume that we cover by these spheres, i.e., the volume
of the sets whose points are covered by exactly two sensors, which can be
thought as the wastage (in a layman sense) of volume. Hence the wastages
represents the proportion of wastage to the total volume.

Let N be a set of nodes which cover Rn such that N ∩ S is finite for any
bounded subset S of Rn. Then wastage in Rn for N is defined by

WN (Rn) = lim
x→∞

WN∩Bx(Bx),

where Bx is the ball in Rn of radius x and centered at the origin (equivalently,
at any point). Intuitively, wastage in Rn is the proportion of wastage volume
in Rn. Note that we can take any increasing sequence of sets whose union is
Rn other than Bx, e.g., for n = 2 partitioned R2 into hexagons or octagons and
then take an increasing sequence of union of finitely many such polygons with
the property that limit of this sequence is R2. In that case we can similarly
define wastage. It can be proved that these two definitions are equivalent.
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Figure 3.3: Sensing discs in different situations

3.3 A Result on Coverage Problem

Theorem 3.1. Let ROI be a bounded and convex subset of Rn and let the
number of nodes in ROI be finite. Then the ROI is covered by the set of nodes
N if and only if any interior point of the ROI which also belongs to boundary
(i.e., circumference) of a sensing ball belongs to another sensing ball.

Moreover, if ROI ⊂ R2 then ROI is covered by a set of nodes if and only
if the set of interior points of ROI on the boundary of a sensing ball of a node
and which does not belong to the interior of any other sensing ball, is finite.

Proof. Let the ROI be covered by a set of nodes N . Suppose there is point A
which belongs to the intersection of the boundary of sensing ball SN of node N
(denoted as Bd(SN)) and the interior of the ROI, but does not belong to the
any other sensing ball (see Figure 3.3b). Then d(A,N) = r and d(A,N ′) > r

for all N ′ ∈ N \ {N}. Let d = min{d(A,N ′) : N ′ ∈ N \ {N}}. Therefore,
d > r as N is finite. Hence the ball B(d−r)/2(A) with center A and radius
(d−r)/2 has no intersection with the sensing ball of any node except one node
N . Since A ∈ Bd(SN), B(d−r)/2(A) 6⊂ SN , hence ROI cannot be covered by N .
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Moreover, if ROI ⊂ R2, the set of interior points of ROI that are on the
boundary of the sensing disc of a node and do not belong to the interior of any
other sensing disc is finite because there are finitely many points which belong
to the intersection of boundaries of more than one sensing discs.

Conversely, let ROI be not covered by a set of nodes N . Then there is a
point A such that d(A,N) > r for all N ∈ N . Let, d = min{d(A,N ′) : N ′ ∈
N}, then the boundary of the ball Bd−r(A) intersects at most one point with
boundary of each sensing ball and there is a sensing ball whose boundary, say
Bd, such that Bd ∩ Bd−r(A) is a singleton set, say, {B}. Then B is a point
which belongs to the intersection of the boundary of sensing ball of a node and
the interior of the ROI but neither belongs to the interior nor on the boundary
of any other sensing ball.

Moreover, if ROI ⊂ R2, in that case, the set of interior points of ROI which
is on the circumference of sensing disc of a node and does not belong to the
interior of any other sensing disc is infinite (an suitable arc containing B).

Remark 3.2. It seems that when Rn is covered by a set of nodes with minimum
wastage then the intersection of interior of three balls centered at three distinct
nodes is empty. In this chapter we consider only the situations like Figure 3.3a
and 3.3d but not like Figure 3.3c.

Before going to R2 and R3, we state few results on R1. If N = V = 2rZ =
{2rn : n ∈ Z}, wastage will be 0. Let d(V,N(V )) follows i.i.d. with distribution
F (·) for V ∈ V . Consider a point x ∈ R. Now the probability of covering x
by node whose corresponding vertex 2nr is F (x+ r − 2rn)− F (x− r − 2rn).
Hence x is uncovered with probability

∞∏
n=−∞

(1− F (x+ r − 2rn) + F (x− r − 2rn)) .

The intervals [n − r, n + r] are symmetric with respect to V for all
n ∈ Z. Wastage is same in all intervals [n − r, n + r] which is W =
1
2r
∫ r
−r
∏∞
n=−∞ (1− F (x+ r − 2rn) + F (x− r − 2rn)) dx and hence wastage in

R is W .
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a r
φ

O d
θ

Figure 3.4: Intersection of two discs of different radii, θ = cos−1(a2+d2−r2

2ad ),
φ = cos−1( r2+d2−a2

2rd )

3.4 Coverage Problem in R2

Theorem 3.3. Let r be the sensing radius of the sensors. If a sensor in R2

can detect the distance and the position (w.r.t. some coordinate system) of
adjacent sensors, which are placed at distance d (0 < d < 2r), then sensors
can detect the adjacent sensing holes.

Proof. If two nodes are at distance d (< 2r), then the length of the arc which is
common to the boundaries of the sensing discs of both the nodes is 2r cos−1( d2r )
(see Figure 3.4 with a = r). Since the sensor can detect the position of a sensor
which is at distance less than 2r, it can detect which part of the circumference
of its sensing disc intersects with an adjacent sensing disc. Therefore, it can
detect whether any part of the boundary of its sensing disc exists that has no
intersection with any other sensing disc or every point of the boundary interest
with another sensing disc. Then the proof follows from Theorem 3.1.

Lemma 3.4. Let boundaries of three circles C1, C2 and C3 with centers A,B
and C respectively, have exactly one common point O as shown in Figure 3.5.
Let P,Q and R be the common points, other than O, of boundaries of C1, C2;

C2, C3 and C3, C1 respectively. Then
_

POQ +
_

QOR +
_

ROP = 2πr.

Proof. Let ∠OAP = 2α, ∠OBQ = 2β and ∠OCR = 2γ. Then ∠AOB = π −
2α, ∠BOC = π−2β and ∠COA = π−2γ. Since ∠AOB+∠BOC+∠COA =
2π, we have α + β + γ = π

2 .
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Now
_

POQ = 2r(α + β),
_

QOR = 2r(β + γ) and
_

ROP = 2r(γ + α).
Hence, the result.

Theorem 3.5. Consider that R2 is covered by a set of nodes such that inter-
section of interior of any three sensing discs centered at three distinct nodes is
empty. Then the placement of nodes to cover R2 (under the above restriction)
with minimum wastage is as follows: partition R2 into equilateral triangles
having sides

√
3r and take nodes to be the vertices of those equilateral triangles

(see figure 3.2). Note that the distance between centers of two adjacent regular
hexagons of side r is

√
3r.

Proof. Note that by Theorem 3.1 covering Rn is equivalent to covering every
point on the boundary of each disc by another disc. Since the set of nodes is
such, that intersection of interior of any three sensing discs centered at three
distinct nodes is empty, the total arc length of the boundary of a disc covered
by other discs is exactly 2πr.

Consider the situation when three nodes are placed at A,B and C as de-
scribed in Lemma 3.1, then they cover overall 2πr arc length of three discs.
Now the area of (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C3 ∩ C1) is

∑
θ∈{α,β,γ}

4
(1

2r
2θ − 1

2(r sin θ)(r cos θ)
)

=
∑

r2(2θ − sin 2θ)

= πr2 − r2(sin 2α + sin 2β + sin 2γ).

Consider a triplet of discs (C1, C2, C3) such that C1, C2, C3 intersect exactly
at one point O. Let H is the set of interior points and boundary points of the
hexagon APBQCR, see Figure 3.5. Now

WN∩H(H) =

∑
i=1,2,3

Area(H ∩ Ci)− Area(H)∑
i=1,2,3

Area(H ∩ Ci)
=
πr2 −

∑
θ∈{α,β,γ}

r2 sin 2θ

πr2

= 1− 1
π

(sin 2α + sin 2β + sin 2γ),

Note that the denominator is same for all hexagons of the above type (one of
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Figure 3.5: Hexagonal tiling of ROI

them is APBQCR), which is a partition of R2. Hence the wastage in R2 is the
limit (as x→∞) of the average of wastages in all such hexagons corresponds to
triplet of discs which intersect exactly at one point P ∈ Bx, where Bx is the ball
in R2 of radius x and centered at origin. So if we minimize the wastage in the
corresponding hexagon (one of them is APBQCR) for each triplet of discs (one
of them is (C1, C2, C3)) with the above property, we get the optimal placement
of nodes. So we need to maximize sin 2α+sin 2β+sin 2γ subject to α+β+γ =
π
2 . Using Jensen’s inequality one can determine that the wastage in H is
minimum when α = β = γ. If we take any other placement then the wastage
in the corresponding hexagon is greater than 1− 1

π
(sin 2α + sin 2β + sin 2γ).

Now consider the situation when four discs meet at a point. Consider the
octagon joining the centers and the point of intersections of pair of circles,
see Figure 3.3d. In this case also the wastage in that octagon is greater than
1 − 1

π
(sin 2α + sin 2β + sin 2γ). Note that considering all triplet (C1, C2, C3)

we consider each hexagon and octagon exactly twice. Hence the wastage does
not change as it is a proportion. Also note that there are no other situations
other than hexagon and octagon. Hence the result.

Hexagonal placement of nodes: Define the placement (as in Theorem 3.5
with α = β = γ) of nodes in R2 as Hexagonal placement.

In this case the wastage is 1− 3
√

3
2π , which is approximately 0.16. Now since

the area of a regular hexagon with side r is 3
√

3
2 r2, the number of sensors needed

to cover an area A which can be partitioned into identical regular hexagons of
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side r is n = 2A
3
√

3r2 , where r is the sensing radius.

In practical situations ROI is finite. Suppose we have N discs each of
radius r. We want to cover ROI as much as possible with these discs. Let the
coordinate of the center of the first disc be (0,0). In Algorithm 1, we present
our placement of the centers of the discs formally.

Input: Total number of discs is N with radius r.
Input: Maximum number R of discs can be placed in a row.
Output: Coordinate of center of discs.
S = 2R− 1;1
X[N ], Y [N ], i = 0, a = 0;2
while i < N do3

if i mod S = 0 and i > 0 then4
a = a−

√
3r;5

end
if i mod S < R then6

X[i] = (i mod S)3r;7
Y [i] = a;8

end
else9

X[i] =
(

(i+R− 1) mod S
)

3r + 3r
2 ;10

Y [i] = a−
√

3r
2 ;11

end
i = i+ 1;12

end
Report x coordinates X[N ] and y coordinates Y [N ] of discs;13

Algorithm 1: Hexagonal placement of discs.

Remark 3.6. If A is any subset of R2 and A is covered by a set of nodes such
that the intersection of interiors of any three sensing discs centered at three
distinct nodes is empty, then the hexagonal placement of nodes may not be
the optimal one. But if A is convex and large in both length and width with
respect to r (i.e. number of boundary nodes are considerably less than total
number of nodes) then this placement may be optimal or very close to optimal
in the sense that the wastage is close to minimum. The wastage is greater
than the minimum value due to the nodes placed at the boundary of A. So in
WSNs we can use the hexagonal placement of nodes with special care at the
boundary of ROI when ROI is convex and large.

Theorem 3.7. Let a node be targeted to be placed at a point A, but it is placed
at point C on the plane i.e., C = N(A). Let the distribution of the distance
between A and C have the density f(·). Let B be a point at a distance d from
the point A. Then the probability PA(B) that the point B is in the sensing disc
of the node C is
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PA(B) =



∫ r−d
0 f(x)dx+ 1

π

∫ r+d
r−d cos−1(d2+x2−r2

2xd )f(x)dx, if 0 ≤ d ≤ r,

1
π

∫ d+r
d−r cos−1(d2+x2−r2

2xd )f(x)dx, if d > r.

Proof. Note that, the point B is in the sensing disc of the node C if and only if
C belongs to the disc of radius r and center B. Call this disc D. For 0 ≤ d < r

the intersection of D and the boundary of the disc of radius x and center A is
an arc of length 2x cos−1(d2+x2−r2

2xd ) if r−d < x < r+d. Hence, the conditional
probability that C falls in D given that C is at a distance x from A is

2x cos−1
(
d2+x2−r2

2xd

)
2πx = 1

π
cos−1

(
d2 + x2 − r2

2xd

)
if r − d < x < r + d.

Now the conditional probability that C falls in D given that C is at a distance
x from A is 1 if 0 ≤ x ≤ r− d and 0 if x > r+ d. Hence the theorem for d < r

(see Figure 3.6a). The proof is similar for r ≤ d (see Figure 3.6b).

A B
r-d

(a) r ≥ d > 0

A B
d-r

(b) r < d < 2r

Figure 3.6: Intersection of two discs of radius r in two different cases

Corollary 3.8. Let a node, targeted to be placed at a point A, be placed at a
randomly chosen point, C in the disc of radius a and center A. Let B be a
point at a distance d from the point A. Then the probability that the point B
is in the sensing disc of the node C is I

πa2 , where I is the intersecting area of
the two discs of radii a and r whose centers are at a distance d.

Moreover, if a = r then the above probability is 2
π

cos−1( d2r )−
d

2πr2

√
4r2 − d2

if d ≤ 2r, and 0 otherwise.
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Proof. Applying the Theorem 3.7 and using integration by parts one can obtain
the required probability is I

πa2 , where I is as as follows: when a > r,

I =


0, for d ≥ a+ r,

πr2, for d ≤ a− r,
a2

2 (2θ − sin(2θ)) + r2

2 (2φ− sin(2φ)) otherwise,

where cos θ = a2+d2−r2

2ad and cosφ = r2+d2−a2

2rd , and when a < r, one can
calculate the required probability just interchanging a and r, as the expression
for I is a symmetric function of a and r.

Note that, I is same as the intersecting area of the two discs of radii a and
r whose centers are at a distance d.

If a = r then cos θ = cosφ = d/2r, hence the result. We can prove this
independently as follows, since the point C is chosen randomly in the disc of
radius r and center A, f(x) ∝ (2πx)I(0,r), as the length of the circumference of
a circle of radius x is 2πx, where I(0,r) is the indicator function of the interval
(0, r). As f(·) is density function we have f(x) = 2x

r2 I(0,r). Applying the
Theorem 3.7 and using integration by parts one can obtain the result.

Theorem 3.9. Let n nodes be targeted to be placed at centers Ai for i =
1, 2, . . . , n of n regular hexagons in ROI such that the ith node is targeted to be
placed at point Ai, but it is placed at a randomly chosen point Ci on the plane.
Let PAi(B) denote the probability that the point B is in the sensing disc of Ci.
Suppose Di = d(Ai, Ci) be i.i.d. with density function f(·). Let B be a point
at a distance di from the point Ai. Define A = {Ai : i = 1, . . . , n}. Then the
probability that the point B is in the sensing disc of at least one of the n nodes
Ci for i = 1, 2, . . . , n is PA(B) = 1 −∏n

i=1(1 − PAi(B)). The expected area of
the region whose points are in the sensing disc of at least one node is

Area(ROI)−
∫
B∈ROI

n∏
i=1

(1− PAi(B)),

where Area(ROI) denotes the total area of ROI.
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Proof. It is clear from the Theorem 3.7 that the probability of the point B not
being in the sensing disc of the node Ci is 1− PAi(B). Since the distributions
of the distances between Ai and Ci are identical, the probability that the
point B is not in the sensing disc of all the n nodes Ci for i = 1, 2, . . . , n is∏n
i=1(1− PAi(B)), Hence the first part of the lemma.

For B ∈ ROI, let XB be the random variable which takes the value 1 if
B is in the sensing disc of at least one of the n nodes Ci for i = 1, 2, . . . , n
and 0 otherwise. Now P (XB = 1) = 1 − ∏n

i=1(1 − PAi(B)), hence E(XB) =
1−∏n

i=1(1− PAi(B)), where E(·) denotes the expectation. Now the expected
area of the region whose points are in the sensing disc of at least one node is

∫
B∈ROI

E(XB) =∫
B∈ROI

(1−
n∏
i=1

(1− PAi(B))) = Area(ROI)−
∫
B∈ROI

n∏
i=1

(1− PAi(B)).

Hence the result.

Remark 3.10. If Ci are distributed independently and uniformly in the disc
of radius r and center Ai and B is a point in a regular hexagon centered
at the point A1 then PA(B) = 1 − ∏7

i=1(1 − PAi(B)), where the points Ai
for i = 2, 3, . . . , 7 are the centers of the six regular hexagons adjacent to the
hexagon centered at A1, because the vertices other than Ai for i = 1, 2, . . . , 7
are at a distance greater than 2r from any point inside the regular hexagon
centered at A1.

Theorem 3.11. Let n nodes be targeted for placement at centers Ai for i =
1, 2, . . . , n of the n regular hexagons which partitions ROI such that ith node is
targeted to place at point Ai, but is placed at a randomly chosen point Ci on
the plane. Let Ci’s be distributed independently and uniformly in the disc of
radius r and center Ai. Then the proportion of the expected area of ROI which
is covered by at least one of the nodes is close to

1− 8√
3

∫ 1
2

x=0

∫ √3( 1
2−x)

y=0

7∏
i=1

(
1− 2

π

(
cos−1 (di)− di

√
1− d2

i

)
I(0,1)(di)

)
dydx,

where 2di is the distance between the point B and Pi and the coordinates of B
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P (0,
√

3r
2 )

R Q T ( 3r
2 ,0)

y

x

Figure 3.7: One of the 12 triangles which partitioned a regular Hexagon

and Pi’s are (x, y), (0,
√

3/2), (0,−
√

3/2), (0, 3
√

3/2), (3/2, 0), (3/2,
√

3),
(−3/2, 0), (−3/2,

√
3) respectively for i = 1, 2, . . . , 7.

Proof. Note that a point is not covered by Ci with probability 1 if and only
if the point is at a distance more than 2r from the point Ai. Since the disc
of radius 2r and center at a vertex V intersects only with the seven hexagons
corresponding to V and its six adjacent vertices, the points inside a hexagon
can be covered by the node corresponding to the adjacent 6 vertices and that
node corresponds to that hexagon only. Now by symmetry, the proportion of
the area of a hexagon which is covered by at least one node is the same for
all the interior hexagons and for the boundary hexagon it is less than that of
an interior hexagon. So if n is large the required area is almost the same as
(slightly less than and if we are able to partition the ROI into regular hexagons
then equal to) the proportion of the expected area of an interior hexagon which
is covered by at least one of the six nodes corresponding to the six adjacent
vertices and the node corresponds to that particular interior hexagon.

An interior regular hexagon can be partitioned into 12 congruent triangles.
One of them say, PQR, where P is the center of the above hexagon, Q is a
vertex of the above hexagon and R is the midpoint of a side whose one vertex
is Q (see Figure 3.7). Note that these 12 triangles are symmetric in the context
of covering. Hence, the required proportion of expected area is same as the
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proportion of the expected area of the triangle PQR which is covered by at
least one of the seven nodes corresponding to the six adjacent vertices and the
center of the above hexagon.

Now by the Theorem 3.9 and Corollary 3.8 the proportion of the expected
area of the triangle PQR which is uncovered by the seven aforesaid nodes is

8√
3r2×

∫ r
2

x=0

∫ √3( r2−x)

y=0

7∏
i=1

(
1−

(
2
π

cos−1
(
di
2r

)
− di

2πr2

√
4r2 − d2

i

)
I(0,2r)(di)

)
dydx

where di is the distance between the point B and Ai and the coordinates of
B and Ai’s are (x, y), (0,

√
3r/2), (0,−

√
3r/2), (0, 3

√
3r/2), (3r/2, 0),

(3r/2,
√

3r), (−3r/2, 0), (−3r/2,
√

3r) respectively for i = 1, 2, . . . , 7.

On changing the variables x to rx and y to ry and di to rdi we see that
the above expression is same as

8√
3

∫ 1
2

x=0

∫ √3( 1
2−x)

y=0

7∏
i=1

(
1−

(
2
π

cos−1
(
di
2

)
− di

2π

√
4− d2

i

)
I(0,2)(di)

)
dydx,

where di is the distance between the point B and Pi and the coordinates of B
and Pi’s are (x, y), (0,

√
3/2), (0,−

√
3/2), (0, 3

√
3/2), (3/2, 0), (3/2,

√
3),

(−3/2, 0), (−3/2,
√

3) respectively for i = 1, 2, . . . , 7 .

Now on changing di to 2di we get the results.

3.5 Simulation Results

Since the sensing radius r has no effect on the simulation results we consider
10000 discs with sensing disc of radius 1 and 10000 vertices. We consider
ROI as a regular hexagonal grid and target to drop a node on the center of
each unit regular hexagon of the grid. Note that area of ROI is 10000 × 3

√
3

2

unit. The distance between two adjacent vertices is
√

3 unit. 100 nodes are
arranged in rows. Now due to stochastic deployment, a node may not fall on
the corresponding vertex but on a neighboring point (node). Let the distance
between the vertices and corresponding nodes are i.i.d. uniform or normal.
Let p% more nodes be used, i.e., total number of nodes is 10000(1+ p

100) where
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p ∈ [0, 100]. We simulate the uncovered area using two different strategies.

The first strategy (Strategy 1 or St. 1) is as follows: choose 100p vertices
randomly from 10000 vertices and generate 2 nodes corresponding to each of
these vertices and 1 node for each of the other 100(100 − p) vertices. Then
simulate the uncovered area of ROI by choosing 100000 points from ROI and
counting the number of points which are covered by at least one of these
10000(1 + p

100) nodes and then divide that number by 100000. We repeat this
whole procedure 1000 times and find the average of the ratio.

The second strategy (Strategy 2 or St. 2) is as follows: consider ROI as
a hexagonal grid of 10000(1 + p

100) regular hexagon of side
√

100
100+p . Consider

10000(1 + p
100) centers of these hexagons as vertices and generate 1 node for

each vertex. Note that the area of ROI is 10000(1 + p
100) × 3

√
3

2

(√
100

100+p

)2
,

which is same as the previous one. Then we simulate the uncovered area of
ROI as before.

Table 3.1: Simulation results for the proportion of area covered for two strate-
gies (St. 1 and St. 2).

U(0.5) U(1) N(0, 0.10) N(0, 0.25) N(0, 0.50)

p St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2
0.00 0.9061 0.9092 0.8167 0.8145 0.9863 0.9867 0.9280 0.9260 0.8532 0.8505
0.05 0.9148 0.9131 0.8270 0.8238 0.9878 0.9901 0.9320 0.9372 0.8619 0.8577
0.10 0.9198 0.9188 0.8384 0.8283 0.9884 0.9931 0.9372 0.9454 0.8660 0.8638
0.15 0.9221 0.9230 0.8489 0.8423 0.9903 0.9941 0.9416 0.9490 0.8768 0.8773
0.20 0.9299 0.9282 0.8566 0.8516 0.9897 0.9960 0.9454 0.9535 0.8851 0.8881
0.25 0.9359 0.9351 0.8652 0.8552 0.9903 0.9963 0.9490 0.9586 0.8950 0.8912
0.50 0.9550 0.9546 0.9068 0.8904 0.9937 0.9981 0.9656 0.9764 0.9261 0.9201
0.75 0.9716 0.9737 0.9387 0.9135 0.9956 0.9988 0.9805 0.9861 0.9539 0.9411
1.00 0.9866 0.9856 0.9653 0.9319 0.9974 0.9985 0.9912 0.9915 0.9756 0.9553

Let Di be the distances between vertices and the corresponding node. In
simulations we consider five different distributions forDi’s. For both strategies,
we consider that the distances between vertex and its corresponding nodes, fol-
low five different distributions U(0.5), U(1), N(0, 0.10), N(0, 0.25), N(0, 0.50)
and they are independent. Here U(t) denotes the distribution whose density
function is f(x) = 2x

t2
I(0,t) and N(0, t2) be the normal distribution with mean

0 and s.d. t. We simulate the uncovered area separately for these 5 different
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distributions and compare them with respect to different values of p. We also
simulate and draw ‘proportion of covered area δ’ vs. ‘p’ graphs for 5 different
distributions (see Figure 3.8a to Figure 3.8e).

From the experimental results (see Figure 3.8a-3.8e and Table 3.1) it is
noted that Strategy 1 is better in the case of U(1) and N(0, 0.5) but Strategy
2 is better for the other three distributions. So we can conclude that Strategy
1 is better when s.d. of the distributions is high and Strategy 2 is better when
s.d. of the distributions is low. We also numerically calculate the coverage area
in case of U(1) when p = 0 using numerical integration method (see Theorem
3.11). We see that this value is close enough to the simulated value.
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Figure 3.8: Proportion Coverage area in R2 for different distribution.
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3.6 Coverage Problem in R3 and Simulation
Results

The hexagonal placement is optimal for the sphere packing problem in R2.
We discuss the hexagonal placement of nodes for the coverage problem in R2

in previous two sections. It is well known that face-centered cube packing is
optimal for the sphere packing problem in R3 and for n > 3 optimal placement
is not known [32]. In various situations WSNs may be three dimensional.
In this section we discuss a similar type of placement of nodes (similar to
face-centered cube packing) to cover R3. Consider the set N = {(2k, 2l, 2m) :
k, l,m ∈ Z}∪{(2k+1, 2l+1, 2m) : k, l,m ∈ Z}∪{(2k+1, 2l, 2m+1) : k, l,m ∈
Z} ∪ {(2k, 2l + 1, 2m + 1) : k, l,m ∈ Z}. We partition R3 as a cube grid and
take the nodes at the 8 corners and the center of the 6 faces of all the cubes.
If r be the sensing radius then we consider set of nodes {rN : N ∈ N}. The
placement of nodes in our case is similar to the choice of center of spheres in
face centered cube packing, the only difference being that the distance between
the two nodes is less in our case which confirms the covering.

Theorem 3.12. Consider a partition of a cube C of side 2nr unit into n3

many cubes of side 2r unit each. Let the nodes be placed as discussed above.
Then the number of nodes required to cover the cube C is 4n3 + 6n2 + 3n + 1
and the proportion of wastage volume for sufficiently large n is approximately
1− 3

2π .

Proof. Clearly there are (n+1)3 corner nodes and n2(n+1) nodes at the center
of faces parallel to one of the three coordinate planes. Hence the number of
nodes is (n+ 1)3 + 3n2(n+ 1) = 4n3 + 6n2 + 3n+ 1.

We need 4n3 + 6n2 + 3n + 1 spheres of radius r to cover the cube of
side 2nr. The total volume of the spheres is (4n3 + 6n2 + 3n + 1)4

3πr
3

and they cover volume of 8n3r3 units. Hence the proportion of wastage vol-
ume is (4n3+6n2+3n+1)× 4

3πr
3−8n3r3

(4n3+6n2+3n+1)× 4
3πr

3 = 1 − 8n3

(4n3+6n2+3n+1)× 4
3π
. For large n, 1 −

8n3

(4n3+6n2+3n+1)× 4
3π

= 1− 8n3

n3× 4
3π
. Hence the result.
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Figure 3.9: Face-Centered Cube (dots are center of spheres)

3.6.1 Simulation Results

We consider n = 13 and r = 1. So, we have 9842 many nodes. Hence the
volume of ROI is 133 × 23 unit. We simulate the proportion for the covered
volume using two strategies, Strategy 1 (St. 1) and Strategy 2 (St. 2), which
are exactly same as in case of R2. If we use p% extra nodes then for Strategy
2, we have to partition ROI of volume 133×23 unit into m3 many cubes where
4m3 +6m2 +3m+1 = 9842×(1+ p

100). We simulate the proportion of coverage
for two different strategies and for five different distributions as described in
previous the section (in case of R2). The uniform distribution with parameter t
has the density function f(x) = 3x2

t3
I(0,t). It is noted from the simulation results

that, St. 1 is better than St. 2 in the higher variance cases. For lower variance
cases St. 2 is better for most values of p. This observation is almost same
as in the two dimensional case. So we can conclude that Strategy 1 is better
for distributions with higher variance and Strategy 2 is better for distributions
with lower variance.

Table 3.2: Simulation for proportion of coverage area for two strategies in R3

U(0.5) U(1) N(0, 0.10) N(0, 0.25) N(0, 0.50)

p St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2
0.00 0.9709 0.9709 0.9235 0.9233 0.9658 0.9642 0.9385 0.9347 0.9348 0.9330
0.05 0.9690 0.9710 0.9290 0.9292 0.9685 0.9688 0.9440 0.9455 0.9408 0.9327
0.10 0.9759 0.9737 0.9338 0.9335 0.9695 0.9708 0.9470 0.9475 0.9438 0.9456
0.15 0.9775 0.9781 0.9423 0.9368 0.9723 0.9779 0.9540 0.9505 0.9528 0.9458
0.20 0.9811 0.9825 0.9460 0.9450 0.9797 0.9765 0.9618 0.9550 0.9530 0.9518
0.25 0.9853 0.9850 0.9568 0.9439 0.9823 0.9787 0.9645 0.9577 0.9620 0.9600
0.50 0.9918 0.9915 0.9730 0.9625 0.9913 0.9859 0.9787 0.9705 0.9803 0.9669
0.75 0.9955 0.9945 0.9903 0.9707 0.9958 0.9936 0.9930 0.9817 0.9870 0.9785
1.00 0.9985 0.9975 0.9945 0.9795 0.9980 0.9952 0.9953 0.9865 0.9943 0.9827



Chapter 4
Deterministic Covering of Cylindrical
Grid

4.1 Introduction

In this chapter we consider ROI as a cylindrical grid. We assume that an event
can occur at any vertices of the grid and sensors can be placed only at vertices.
Sensor at any vertex v can detect an event occurred at vertex v and four (or
three, in case of boundary) adjacent vertices of v. Finding a set of sensors
which cover all vertices of a cylindrical grid is similar to finding a dominating
set of that cylindrical grid graph. Several works have been done on domination
number of rectangular graph but no theoretical results are there for cylindrical
graphs. We find theoretical results in some special cases. This is the area of
Graph theory. The graphs, considered here, are finite, nonempty, connected,
undirected, without loops and without multiple edges. Besides these, any
undefined terms in this chapter may be found in Harary [33].

4.1.1 Definitions

Let G be a simple graph whose vertex set and edge set are V (G) and E(G),
respectively. A set D ⊆ V (G) of a simple graph G is called a dominating set if
every vertex v ∈ V (G) \D is adjacent to some vertex u ∈ D. The domination
number of G is the cardinality of a smallest dominating set of the graph G and
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it is usually denoted by γ(G). In addition, a smallest such dominating set is
called a minimum dominating set of G.

For any two graphsG andH, the Cartesian productG2H is the graph with
vertex set V (G)× V (H) and edge set E(G×H) such that (u1, v1)(u2, v2) ∈
E(G×H), when v1 = v2 and u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H) [43].

Throughout the chapter, the following notation and terminology are used.
The numbers 0, 1, 2, . . . , n − 1 always denote the vertices of the path Pn or
the cycle Cn. Also, let γ(Pm 2 Pn) and γ(Pm 2 Cn) denote the domination
numbers of Cartesian product graphs Pm 2 Pn and Pm 2 Cn, respectively. The
graph Pm 2 Cn can be termed as cylindrical grid graph as shown in Figure 4.1
in two different looks.

Figure 4.1: Two different looks of the cylindrical grid graph P5 2 C5.

Let (G)v = G×{v} where v ∈ V (H) and (H)u = {u}×H where u ∈ V (G).
(G)v and (H)u are called the layers of G and H, respectively. Moreover, the
layer of a dominating set means D ∩ (Pm)i for i ∈ V (Cn). Throughout the
chapter, the leftmost column in all figures denotes the layer (Pm)0. Now, we
define the term modified concatenation, of two dominating sets of Pm 2 Cn1

and Pm 2 Cn2 . If D1 and D2 are two dominating sets of Pm 2 Cn1 and
Pm 2 Cn2 , respectively then the modified concatenation of D1 and D2, denoted
by D1||D2, is a subset D of Pm 2 Cn1+n2 such that D ∩ (Pm)i = D1 ∩ (Pm)i,
i = 0, 1, · · · , n1−1 and D∩ (Pm)n1+i = D2∩ (Pm)i, i = 0, 1, · · · , n2−1, i.e.,
the ith (Pm)-layer ofD is coming from the ith (Pm)-layer ofD1 if 0 ≤ i ≤ n1−1
and from the i−n1th (Pm)-layer of D2 if n1 ≤ i ≤ n1 +n2−1. The illustration
is shown in the Figure 4.2.

One of the most challenging problems concerning the domination numbers
of Cartesian products of graphs is the proof of the Vizing Conjecture, namely
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Figure 4.2: Modified concatenation of the dominating sets of P5 2 C6 and
P5 2 C3 to get the dominating set for P5 2 C9.

γ(G 2 H) ≥ γ(G).γ(H) [95]. Despite numerous results showing its validity
in some special cases, the conjecture remains an open problem. Partial works
have been made towards finding the domination numbers of some particular
Cartesian product of graphs. This problem also seems to be a difficult one and
the authors of [13] proved that even for subgraphs of Pm 2 Pn, this problem
is NP-complete. In [41], Jacobson and Kinch established the following results
: For all n ≥ 1,

1. γ(P2 2 Pn) = bn+2
2 c.

2. γ(P3 2 Pn) = b3n+4
4 c.

3. γ(P4 2 Pn) =


n+ 1, for n = 1, 2, 3, 5, 6, 9,

n, otherwise.

In [10], Chang and Clark established the following results :

γ(P5 2 Pn) =


b6n+6

5 c, for n = 2, 3, 7,

b6n+8
5 c, otherwise.

In [43], the authors established the following results regarding the Cartesian
product of two cycles:

1. For n ≥ 4, γ(C3 2 Cn) = n− bn4 c.

2. For n ≥ 4, γ(C4 2 Cn) = n.

3. For n ≥ 5, γ(C5 2 Cn) =


n, n = 5k, k ≥ 1,

n+ 2 n = 5k + 3, k ≥ 1,

n+ 1, otherwise.
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More works may be found in [23], [22], [26] and [34].

In this chapter, the topic of interest is to find the domination numbers of
cylindrical grid graphs Pm 2 Cn, m ≥ 2, n ≥ 3.

Towards finding the answer, some partial results in this direction are ob-
tained. The domination numbers as well as minimum dominating sets of the
graphs Pm 2 Cn, form = 2, 3, 4 and n ≥ 3 are found. Bounds on γ(Pm 2 Cn)
for m = 5 and n ≥ 3 are also proposed. As a brief summary, results that are
proved in the subsequent sections are stated as follows.

For all n ≥ 3,

1. γ(P2 2 Cn) =


⌈
n+1

2

⌉
, when n is not a multiple of 4,

n
2 , when n is a multiple of 4.

2. γ(P3 2 Cn) =
⌈

3n
4

⌉
.

3. γ(P4 2 Cn) =


n+ 1, for n = 3, 5, 9,

n, otherwise.

4. γ(P5 2 C3) = 4, γ(P5 2 C4) = 5 and γ(P5 2 C5) = 7.
Moreover, for n ≥ 6, n+ dn5 e ≤ γ(P5 2 Cn) ≤ n+ dn4 e.

Throughout the chapter, we use the arithmetic operations of the indices over
modulo n.

4.2 Finding the domination numbers of some
cylindrical grid graphs

In this section, the domination numbers as well as minimum dominating sets
of particular cylindrical grid graphs of the form Pm 2 Cn, for all n ≥ 3 and for
m = 2, 3 and 4 are found. To prove the result we need the following Lemmas.

Lemma 4.1. Let m ≥ 2. Then, there exists a minimum dominating set D of
Pm 2 Cn such that for every i ∈ V (Cn), |(Pm)i ∩D| ≤ m− 1.
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Proof. Let D′ be one of the minimum dominating sets of Pm 2 Cn. Suppose
further that, |(Pm)i∩D′| = m holds for k Pm-layers (Pm)i, i.e., for k-many i’s
in {0, 1, . . . , n− 1}, 0 ≤ k ≤ n− 1.

Let us assume that |(Pm)i ∩ D′| = m for some i ∈ {0, 1, 2, . . . , n − 1}. In
addition, if (Pm)i−1 ∩ D′ = (Pm)i+1 ∩ D′ = φ, then we consider D = (D′ ∪
{(0, i− 1), (1, i+ 1)}) \ {(0, i), (1, i)}.

Next, we assume that the layer (Pm)i+1 has nonempty intersection with
D′ and let (j, i + 1) ∈ (Pm)i+1 ∩ D′. Then, it is clear that (j, i − 1) and
at least one of (j + 1, i − 1) and (j − 1, i − 1) /∈ (Pm)i−1 ∩ D′, otherwise,
D′\{(j, i)} would be a dominating set, contradicting the minimality of D′ and
hence |(Pm)i−1∩D′| < m−1. Then, we considerD = (D′∪{(j, i−1)})\{(j, i)}.
Now, D is a minimum dominating set with k − 1 many Pm-layers having m
vertices in common with D. Repeating this construction we get the result.

Lemma 4.2. Let n ≥ 3. Then, there exists a minimum dominating set D of
Pm 2 Cn such that for every i ∈ V (Pm), |D ∩ (Cn)i| ≤ n− 1.

Proof. Just interchanging the roles of Pm and Cn in the proof of Lemma 4.1,
we have similar proof of this lemma.

Lemma 4.3. There cannot be two consecutive Pm-layers having empty inter-
section with a minimum dominating set of Pm 2 Cn, for m ≥ 3 and n ≥ 4.

Proof. If possible, let there be a minimum dominating set D having
empty intersection with two consecutive layers (Pm)i and (Pm)i+1 for some
i ∈ {0, 1, 2, . . . , n − 1}. Define (Pm)−1 = (Pm)n−1, (Pm)−2 = (Pm)n−2 and
(Pm)n = (Pm)0, (Pm)n+1 = (Pm)1. Thus, |(Pm)i ∩ D| = |(Pm)i+1 ∩ D| = 0
gives |(Pm)i−1 ∩D| = |(Pm)i+2 ∩D| = m.
Now, consider the following cases:
Case 1. For n = 4, 5, we set D′ = D ∪ {(0, i)} \ {(0, i− 1), (1, i− 1)}.
Case 2. For n ≥ 6, we set D′ = (D ∪ {(0, i), (1, i− 2), (1, i+ 3), (2, i)}) \
{(0, i− 1), (0, i+ 2), (1, i− 1), (2, i− 1), (2, i+ 2)}.
In each case we find that D′ is a dominating set and |D′| < |D|, which is a con-
tradiction. Therefore, there cannot have two consecutive layers (Pm)i, (Pm)i+1

having empty intersection with a minimum dominating set.
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Lemma 4.4. For every dominating set D of Pm 2Cn,

xi−1 + 3xi + xi+1 ≥ n, ∀ i = 0, . . . ,m− 1,

where xi = |(Cn)i ∩D| for i = 0, 1, . . . ,m− 1 and x−1 = xm = 0.

Moreover, if xi−1 + 3xi + xi+1 = n, then there does not exist any pair of
vertices from ((Cn)i−1∪(Cn)i∪(Cn)i+1)∩D such that they dominate a common
vertex of (Cn)i. Finally,

m−1∑
i=0

xi = |D| ≥ γ(Pm 2Cn).

Proof. The result follows from the fact that any vertex of D from (Cn)i
dominates three vertices of (Cn)i including itself and any vertex of D from
(Cn)i−1 or (Cn)i+1 dominates one vertex of (Cn)i.

Remark 4.5. The similar result of Lemma 4.4 holds for yi = |(Pm)i∩D|, where
i ∈ {0, 1, ..., n− 1}.

Using the above Lemmas we now prove the following theorems.

Theorem 4.6. For n ≥ 3, γ(P2 2 Cn) =


⌈
n+1

2

⌉
, when 4 6 |n

n
2 , when 4|n.

Proof. We consider a set D with

D =


D1, if n ≡ 2 (mod 4)

D2, otherwise.

Where, D1 = {(0, i) : i ≡ 2 (mod 4)} ∪ {(1, i) : i ≡ 0 (mod 4)} ∪ {(0, n− 1)}
and D2 = {(0, i) : i ≡ 2 (mod 4)} ∪ {(1, i) : i ≡ 0 (mod 4)}. Then, D is a
dominating set of P2 2 Cn and that |D| =

⌈
n+1

2

⌉
, whenever n is not a multiple

of 4 and |D| = n
2 , whenever n is a multiple of 4. Hence, γ(P2 2 Cn) ≤

⌈
n+1

2

⌉
,

or γ(P2 2 Cn) ≤ n/2 for different values of n.

To show that γ(P2 2 Cn) ≥
⌈
n
2

⌉
, let D′ be a minimum dominating set. Let

|(Cn)i ∩D′| = xi, for i = 0, 1, i.e., xi is the number of vertices of D′ from the
layer (Cn)i. Then, using Lemma 4.4 we have

3x0 + x1 ≥ n (i)
x0 + 3x1 ≥ n (ii)
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x0 + x1 = γ(P2 2 Cn) (iii)

Therefore, 4(x0 + x1) ≥ 2n which gives x0 + x1 ≥ n
2 .

Consequently, γ(P2 2 Cn) ≥


n+1

2 , if n is odd,
n
2 , if n is even.

Now, let n = 4k + 2, k ≥ 1. We will show that γ(P2 2 Cn) ≥ n
2 + 1,

i.e., γ(P2 2 Cn) ≥ 2k + 2. If possible, let γ(P2 2 Cn) ≤ n
2 = 2k + 1. Then,

x0 + x1 ≤ 2k + 1. Therefore, one of x0 or x1 must be less than or equals k.
Without loss of generality, let x0 ≤ k. Then, 3x0 + x1 ≤ 3x0 + (2k+ 1− x0) =
2x0+2k+1 ≤ 4k+1 < n, which contradicts (i). Hence, γ(P2 2 Cn) ≥ n

2 +1.

Remark 4.7. For n ≥ 3, γ(P2 2 Cn) ≥ γ(P2) · γ(Cn) = 1 · dn3 e, the equality
holds only when n = 4.

Figure 4.3: Vertices with bold circle form a minimum dominating set for
P3 2 C3 and P3 2 C4.

Theorem 4.8. For n ≥ 3, γ(P3 2 Cn) =
⌈

3n
4

⌉
.

Proof. Consider a set D with

D =


D1, if n ≡ 2(mod 4)

D2, otherwise.

Where, D1 = {(0, i), (2, i) : i ≡ 2(mod 4)} ∪ {(1, i) : i ≡ 0(mod 4)} ∪
{(1, n − 1)} and D2 = {(0, i), (2, i) : i ≡ 2(mod 4)} ∪ {(1, i) : i ≡ 0(mod 4)}.
Then, D is a dominating set of P3 2 Cn and that |D| =

⌈
3n
4

⌉
. For n = 3 and

n = 4, it is illustrated in Figure 4.3. Therefore, γ(P3 2 Cn) ≤
⌈

3n
4

⌉
.

Next, we show that γ(P3 2 Cn) ≥
⌈

3n
4

⌉
. Let n = 4k + t, where k ≥

0, 3 ≥ t ≥ 0 and let D be one of the minimum dominating sets satisfying
the property as stated in Lemma 4.1. Let s be the number of P3-layers which
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have empty intersection with D. Then, by Lemma 4.3, since no two empty
layers are adjacent, we have s ≤

⌊
n
2

⌋
= 2k +

⌊
t
2

⌋
. Now, as every empty

P3-layer is dominated by exactly two other P3-layers, there are at least
⌈
s
2

⌉
P3-

layers with precisely two vertices from D. Hence, |D| ≥ 2
⌈
s
2

⌉
+ (n−

⌈
s
2

⌉
− s)

= n − (s −
⌈
s
2

⌉
). Also, (s −

⌈
s
2

⌉
) is maximum when s = 2k +

⌊
t
2

⌋
. So, |D| ≥

n−(2k+
⌊
t
2

⌋
−
⌈

2k+b t2c
2

⌉
) = (4k+t)−(2k+

⌊
t
2

⌋
−
⌈

2k+b t2c
2

⌉
) = 3k+t−

⌊
t
2

⌋
+
⌈b t2c

2

⌉
= 3k + t (since 0 ≤ t ≤ 3) =

⌈
3n
4

⌉
.

Remark 4.9. For n ≥ 3, γ(P3 2 Cn) > γ(P3) · γ(Cn) = 1 · dn3 e.

Theorem 4.10. γ(P4 2 Cn) = n+ 1, for n = 3, 5, 9.

Proof. The proof of the theorem for three values of n are given successively.

n=3. Consider the set D1 = {(0, 2), (1, 0), (2, 2), (3, 1)}. Then, D1

is a dominating set for P4 2 C3 as shown in Figure 4.4. Since |D1| = 4,
γ(P4 2 C3) ≤ 4. Now, if possible, let there exist a dominating set D′1 such
that |D′1| ≤ 3. Let |(C3)i ∩D′1| = xi, where xi is the number of vertices of D′1
from the layer (C3)i, for i = 0, 1, 2, 3. Therefore,

3∑
i=0

xi ≤ 3 (i)
3x0 + x1 ≥ 3 (ii)
x0 + 3x1 + x2 ≥ 3 (iii)
x1 + 3x2 + x3 ≥ 3 (iv)
x2 + 3x3 ≥ 3 (v)

Now, adding (ii) and (v) and subtracting (i) we get

x0 + x3 ≥ 2 (vi)

which gives

x1 + x2 ≤ 1 (vii)

Therefore, at least one of x1 and x2 must be zero. Without loss of generality,
let x1 = 0. Then, from (iii) we have

x0 + x2 ≥ 3 (viii)
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and hence from (i) x3 = 0. Therefore, from (v) we get x2 = 3 and from
(i) x0 = 0 which contradicts (ii). So, we have |D′| ≥ 4 and therefore
γ(P4 2 C3) = 4.

Figure 4.4: Vertices with bold circles form a minimum dominating set for
P4 2 C3, P4 2 C5 and P4 2 C9.

n=5. Consider the set D2 = {(0, 2), (0, 4), (1, 0), (2, 3), (3, 1), (3, 4)}.
Then, D2 is a dominating set of P4 2 C5 with |D2| = 6 as shown in Figure 4.4.
Therefore, γ(P4 2 C5) ≤ 6. We now show that, γ(P4 2 C5) ≥ 6. If possible,
let there exist a dominating set D′2 such that |D′2| ≤ 5. Let |(C5)i ∩D′2| = xi,
where xi is the number of vertices of D′2 from the layer (C5)i for i = 0, 1, 2, 3.
Therefore,

5∑
i=0

xi ≤ 5 (i)

Also, from Lemma 4.4 we have

3x0 + x1 ≥ 5 (ii)
x0 + 3x1 + x2 ≥ 5 (iii)
x1 + 3x2 + x3 ≥ 5 (iv)
x2 + 3x3 ≥ 5 (v)

Now, adding (ii) and (v) and subtracting (i) we get

x0 + x3 ≥ 3 (vi)

which implies

x1 + x2 ≤ 2 (vii)
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Now, we claim that x1 6= 0. Otherwise, if x1 = 0, then from (iii) we get
x0 + x2 ≥ 5. Therefore, x0 + x2 = 5 and from (i) we have x3 = 0. Therefore,
from (v) we get x2 ≥ 5, i.e., x2 = 5. This gives x0 = 0, which contradicts
(ii). Therefore, we have x1 6= 0. Similarly, x2 6= 0. So, we have from (vii),
x1 = x2 = 1. For these values of x1 and x2 we get from (v), x3 ≥ 2 and
from (ii), x0 ≥ 2, contradicting (i). Therefore, we cannot have |D′2| ≤ 5. So,
|D′2| ≥ 6 and hence γ(P4 2 C5) = 6.

n=9. Consider the set D3 = {(0, 2), (0, 4), (0, 8), (1, 0), (1, 6), (2, 3), (2, 8),
(3, 1), (3, 5), (3, 7)}. Then D3 is a dominating set of P4 2 C9 with |D3| = 10 as
shown in Figure 4.4. Therefore, γ(P4 2 C9) ≤ 10. Now, if possible, let there
exists a dominating set D′3 such that |D′3| ≤ 9 and let |(C9)i ∩D′3| = xi, where
xi is the number of vertices of D′3 from the layer (C9)i for i = 0, 1, 2, 3.
Therefore,

9∑
i=0

xi ≤ 9 (i)

Also, from Lemma 4.4 we have

3x0 + x1 ≥ 9 (ii)
x0 + 3x1 + x2 ≥ 9 (iii)
x1 + 3x2 + x3 ≥ 9 (iv)
x2 + 3x3 ≥ 9 (v)

Now, adding (ii) and (v) and subtracting (i) we get

x0 + x3 ≥ 5 (vi)

which gives

x1 + x2 ≤ 4 (vii)

Now, we claim that x1 6= 0. If x1 = 0 then from (iii) we have x0 +x2 ≥ 9 and
hence from (i), x3 = 0. Therefore, from (v), x2 = 9 and from (i), x0 = 0 which
contradicts (ii). Therefore, x1 6= 0. Similarly, we can show that x2 6= 0. Again,
we claim that, either x1 6= 2 or x2 6= 2. If possible, let x1 = x2 = 2. Then,
from (ii) and (v), we get x0 ≥ 3 and x3 ≥ 3, contradicting (i). Therefore,
either x1 6= 2 or x2 6= 2.
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Now, from (vii), we get one of x1 or x2 must be 1. Without loss of generality,
let x1 = 1. Therefore, from (iii) we get x0 + x2 ≥ 6 and from (i) we get
x1 + x3 ≤ 3. This gives x3 ≤ 2. We now claim that x3 6= 0. If possible, let
x3 = 0, then from (v) we get x2 ≥ 9 which contradicts (i). So, x3 6= 0. Next,
we show that x3 6= 1. If possible, let x3 = 1. Then, from (v) we get x2 ≥ 6.
Therefore, from (i), x0 ≤ 1 which contradicts (ii). Consequently, x3 6= 1 and
hence x3 = 2. This implies x0 + x2 = 6. Now, from (v), x2 ≥ 3 and from (ii),
x0 ≥ 3. Therefore, x0 = 3, x1 = 1, x2 = 3, and x3 = 2.

Lastly, we show that x0 = 3, x1 = 1, x2 = 3, and x3 = 2 cannot give a
dominating set D′3 with |D′3| = 9. Without loss of generality, let us assume
(1, 0) ∈ D′3.

Figure 4.5: Figure showing non admissibility of γ(P4 2 C9) = 9.

Then, (1, i) /∈ D′3 for all i = 1, 2, . . . , 8. Again, (0, 1) /∈ D′3 because if
(0, 1) ∈ D′3 then (1, 1) is dominated by (0, 1) and (1, 0) which will be a
contradiction by the Lemma 4.4. Similarly, (0, 0), (0, 8) /∈ D′3. Therefore, to
dominate (0, 1) and (0, 8) we must take (0, 2), (0, 7) ∈ D′3. Till now, the
vertices (0, 4) and (0, 5) in the layer (C9)0 are not dominated by any vertices
of D′3. Therefore, either (0, 4) ∈ D′3 or (0, 5) ∈ D′3. Without loss of generality,
let (0, 4) ∈ D′3. Again, the vertices (1, 3), (1, 5), (1, 6) in the layer (C9)1

are not dominated by any vertices of D′3. To dominate these vertices we must
take the vertices (2, 3), (2, 5), (2, 6) in D′3. In a similar way, to dominate the
vertices (2, 1), (2, 8) of the layer (C9)2 we must take the vertices (3, 1), (3, 8)
in D′3. Still (3, 4) is not dominated by any vertex of D′3 as shown in Figure
4.5. Hence, D′3 can not be a dominating set. This contradiction shows that
γ(P4 2 C9) ≥ 10.

Theorem 4.11. For n ≥ 3, γ(P4 2 Cn) = n, for n 6= 3, 5, 9.

Proof. The three diagrams (i), (ii) and (iii) shown in Figure 4.6 give
dominating sets for P4 2 C4, P4 2 C6 and P4 2 C7, respectively. Note that,
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(ii) (iii)(i)

Figure 4.6: Vertices with bold circle form a minimum dominating set for
P4 2 C4, P4 2 C6 and P4 2 C7.

a dominating set for P4 2 C8 can be obtained by the modified concatenation
of the two copies of the diagram (i). A dominating set for P4 2 C10 can
be constructed by the modified concatenation of the diagrams (i) and (ii), a
dominating set for P4 2 C11 can be constructed by the modified concatenation
of the diagrams (i) and (iii), a dominating set for P4 2 C12 can be constructed
by the modified concatenation of the two copies of the diagram (ii) and a
dominating set for P4 2 C13 can be constructed by modified concatenation
of the diagrams (ii) and (iii). Finally, the dominating set for n ≥ 14 can
be constructed by modified concatenation of the diagram for n = 4 with the
diagrams for n = 10, 11, 12, 13. Hence, we have γ(P4 2 Cn) ≤ n.

It now remains to show that γ(P4 2 Cn) ≥ n. To prove this, consider a
minimum dominating set D which has no empty (P4)i layer. Then, |D| ≥ n

and hence the theorem follows. Now, consider a minimum dominating set D′

with s empty (P4)i layers. Further, let there be t nonempty (P4)i layers each
adjacent to exactly one empty (P4)i layer. Then, there are k = 2s−t

2 nonempty
(P4)i layers each adjacent to two empty layers. Since there do not exist two
consecutive empty (P4)i layers, the number of nonempty (P4)i layers which
have no adjacent empty layer is p = n− t− (2s−t

2 )− s = n− 2s− t
2 .

Now, let x′1, x′2, . . . , x′t be the numbers of elements of D′ which are con-
tained in t nonempty (P4)i layers, respectively such that each of these (P4)i
layers is adjacent with exactly one empty (P4)i layer. Further, we define
x′′1, x

′′
2, . . . , x

′′
k and x0

1, x
0
2, . . . , x

0
p in an analogous way. Now, by Remark

4.5, 2(x′′1 + x′′2 + . . .+ x′′k) + x′1 + x′2 + . . .+ x′t ≥ 4s.
Therefore, 2(x′′1 + x′′2 + . . .+ x′′k + x′1 + x′2 + . . .+ x′t) ≥ 4s+ t.
This implies 2(x0

1 + x0
2 + . . . + x0

p + x′′1 + x′′2 + . . . + x′′k + x′1 + x′2 + ... + x′t) ≥
4s+ t+ 2p = 4s+ t+ 2n− 4s− t = 2n. Consequently, x1 +x2 + ...+xn ≥ n
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where xi = |(P4)i ∩D′|.

Remark 4.12. For n ≥ 3, γ(P4 2 Cn) > γ(P4) · γ(Cn) = 2 · dn3 e.

4.3 Bounds on the domination numbers of
P5 2 Cn, n ≥ 3

In this section, the exact domination numbers are given for P5 2 C3, P5 2 C4

and P5 2 C5. Furthermore, bounds on the domination numbers are also pro-
posed for P5 2 Cn, n ≥ 6. The following Lemmas are essential for proving the
subsequent theorems.

Lemma 4.13. For n ≥ 3, there exists a minimum dominating set D of
P5 2 Cn such that for every i ∈ V (Cn), |(P5)i ∩D| ≤ 3.

Proof. Let D be a minimum dominating set of P5 2 Cn such that for every
i ∈ V (Cn), |(P5)i ∩D| ≤ 4. Such a D exists by Lemma 4.1. Suppose further
that |(P5)i∩D| = 4 holds for k many P5-layers. We now construct a dominating
set D′ with |D′| = |D| such that only k − 1 many P5-layers have 4 vertices in
common with D.

Assume that |(P5)i ∩D| = 4 for some i ∈ V (Cn). We claim that |(P5)i−1 ∩
D| ≤ 2, and |(P5)i+1 ∩D| ≤ 2. If possible, let |(P5)i+1 ∩D| ≥ 3. Then, D′′ =
(D\((P5)i∪(P5)i+1))∪{(2, i−1), (0, i), (4, i), (1, i+1), (0, i+2), (3, i+2)}
is a dominating set with |D′′| < |D| which contradicts the minimality of D.
Therefore, |(P5)i+1 ∩ D| ≤ 2. Similarly, |(P5)i−1 ∩ D| ≤ 2. Now, we set
D′ = (D \ (P5)i) ∪ {(2, i − 1), (0, i), (4, i), (2, i + 1)}. Then, D′ is a
dominating set with |D′| ≤ |D| but since D is a minimum dominating set
we have |D′| = |D|. Also, |(P5)j ∩ D′| < 4 for j = i − 1, i, i + 1 and
|(P5)j ∩D′| = |(P5)j ∩D| for other values of j. Repeating this process we get
the desired minimum dominating set.

Lemma 4.14. For n ≥ 5, there exists a minimum dominating set D of
P5 2 Cn such that for every i ∈ V (Cn) either (a) |(P5)i ∩ D| ≤ 2 or (b)
|(P5)i ∩ D| = 3 with (P5)i−1 ∩ D = φ and (P5)i+1 ∩ D = φ for i ∈ V ′ and
|(P5)i ∩D| ≤ 2 for all i /∈ V ′, for some V ′ ⊆ V (Cn).
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Proof. Lemma 4.13 shows there exists a minimum dominating set D such
that |(P5)i ∩D| ≤ 3 for all i ∈ V (Cn).
Now, let |(P5)i∩D| = 3 hold for k many P5-layers and among these k many P5-
layers there exist k′ many P5-layers with the property that both the adjacent
P5-layers of such a layer have empty intersection with D.

Now, if k′ = k then D has the desired property. When k′ < k we construct
a dominating set D′ with the property that D′ has k−1 or less P5-layers having
3 vertices in common with D and |D′| = |D|. Let |(P5)i ∩ D| = 3 for some
i ∈ V (Cn). We claim that, both of |(P5)i−1 ∩D| and |(P5)i+1 ∩D| cannot be
simultaneously equal to 2.
On contrary, if possible, let |(P5)i−1∩D| = |(P5)i+1∩D| = 2. Now, we consider
the following sets

A1 = {(1, i− 2), (3, i− 1), (4, i− 1), (0, i), (2, i+ 1), (4, i+ 2)},
A2 = {(3, i− 2), (0, i− 1), (1, i− 1), (4, i), (2, i+ 1), (0, i+ 2)},
A3 = {(2, i− 2), (4, i− 2), (0, i− 1), (3, i), (1, i+ 1), (4, i+ 2)},
A4 = {(2, i− 2), (0, i− 2), (4, i− 1), (1, i), (3, i+ 1), (0, i+ 2)}

and A5 = {(2, i− 2), (0, i− 1), (4, i− 1), (2, i), (0, i+ 1), (4, i+ 1)}.

Let Bkl = {(k, i+ 1), (l, i+ 1)}, where k, l = 0, 1, 2, 3, 4.
Now, if (P5)i+1 ∩D = B01 or B02 or B12 then let D′ = (D \ {(P5)i−1 ∪ (P5)i ∪
(P5)i+1}) ∪ A2,
if (P5)i+1∩D = B03 or B13 then let D′ = (D \{(P5)i−1∪ (P5)i∪ (P5)i+1})∪A4,
if (P5)i+1 ∩D = B04 then let D′ = (D \ {(P5)i−1 ∪ (P5)i ∪ (P5)i+1}) ∪ A5,
if (P5)i+1 ∩D = B14 then let D′ = (D \ {(P5)i−1 ∪ (P5)i ∪ (P5)i+1}) ∪ A3,
and if (P5)i+1 ∩D = B23 or B24 or B34 then let D′ = (D \ {(P5)i−1 ∪ (P5)i ∪
(P5)i+1}) ∪ A1.
Then, in every case D′ will be a dominating set with |D′| < |D|, which is a
contradiction. Hence, the claim follows.
Now, we consider the all other possible cases:
Case 1. Let |(P5)i+1 ∩ D| = 3. Then, we claim that |(P5)i+2 ∩ D| < 2.
To show this if possible, let |((P5)i ∪ (P5)i+1 ∪ (P5)i+2) ∩ D| ≥ 8. Then,
D′′ = (D \ {(P5)i ∪ (P5)i+1 ∪ (P5)i+2)} ∪ {(0, i− 1), (4, i− 1), (2, i), (0, i+
1), (3, i + 2), (4, i + 2), (1, i + 3)} is a dominating set with |D′′| < |D|,
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contradicting the minimality of D. Therefore, |(P5)i+2 ∩ D| < 2. Similarly,
|(P5)i−1 ∩D| < 2.

Now, we construct D′ = (D \ {(P5)i ∪ (P5)i+1}) ∪ {(2, i− 1), (0, i), (4, i),
(0, i + 1), (4, i + 1), (2, i + 2)}. Then |D′| ≤ |D| and D′ is a dominating set.
Hence, D′ is a minimum dominating set having (k − 2) many P5-layers, each
of which has three vertices in common with D.
Similar argument for |(P5)i−1 ∩D| = 3.
Case 2. Let |(P5)i−1∩D| = 2 and |(P5)i+1∩D| ≤ 1. Then, we can constructD′

such that |(P5)i−1∩D′| = 2, |(P5)i∩D′| = 2 and |(P5)i+1∩D′| = |(P5)i+1∩D|+1.
Similarly, we can construct D′ for |(P5)i−1 ∩D| ≤ 1 and |(P5)i+1 ∩D| = 2.
Case 3. Let |(P5)i−1 ∩D| = 1 and |(P5)i+1 ∩D| ≤ 1.
subcase 3.1. When |(P5)i ∩ D| = {(0, i), (1, i), (2, i)} or {(2, i), (3, i), (4, i)},
then construct D′ = (D \ {(0, i), (1, i)})∪{(0, i− 1), (1, i+ 1)} for the first
one. Similarly, we can construct D′ for the other one.
subcase 3.2. Other than the above case we can construct D′ such that
|(P5)i−1 ∩D′| = 1, |(P5)i ∩D′| = 2, |(P5)i+1 ∩D′| = |(P5)i+1 ∩D|+ 1.
Similar construction will be made when |(P5)i+1∩D| = 1 and |(P5)i−1∩D| ≤ 1.
Then, D′ is a minimum dominating set having k − 1 many or less P5-layers
each of which has three vertices in common with D.
Repeating this replacement, we will get the minimum dominating set with the
desired property as stated in this Lemma.

Lemma 4.15. For n ≥ 5, there cannot be a dominating set D with five con-
secutive P5-layers having exactly one vertex in common with D.

Proof. On contrary, let there exist a dominating set D and there exists
i ∈ V (Cn) such that |(P5)j ∩D| = 1 for all j = i, i + 1, i + 2, i + 3, i + 4.
Note that, (0, j) /∈ D and (4, j) /∈ D for all j = i+ 1, i+ 2, i+ 3. Therefore,
(1, i+ 2) ∈ D and (3, i+ 2) ∈ D, a contradiction.

Lemma 4.16. Let D be one of the minimum dominating sets with the prop-
erty as stated in Lemma 4.14. Again, let (P5)i and (P5)j be two layers hav-
ing two vertices in common with D and |(P5)i+1 ∩ D| 6= 2, |(P5)i+2 ∩ D| 6=
2, . . . , |(P5)j−1∩D| 6= 2. Then either (a) |(P5)i+1∩D| = 0, |(P5)i+2∩D| = 3,
|(P5)i+3 ∩D| = 0, |(P5)i+4 ∩D| = 3, . . . , |(P5)j−1 ∩D| = 0, or (b) j − i ≤ 5
and |(P5)l ∩D| = 1 for all l = (i+ 1), (i+ 2), . . . , (j − 1).
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Proof. If |(P5)l∩D| = 0, then |(P5)l−1∩D| > 1. Otherwise, |(P5)l+1∩D| ≥ 4.
Hence, |(P5)l−1 ∩ D| = 2 or 3. Similarly, |(P5)l+1 ∩ D| = 2 or 3. Therefore,
using Lemma 4.14 and Lemma 4.15 we get the desired result.

Theorem 4.17. For n ≥ 6, γ(P5 2 Cn) ≥ n+ dn5 e.

Proof. Let D be one of the minimum dominating sets with the property as
stated in Lemma 4.14. Let us call the collection of P5-layers {(P5)k : k = i+
1, i + 2, . . . , j − 1} as a block where i and j as in the above Lemma 4.16.
Let x0, x1, x3 be the number of P5-layers having 0, 1, 3 vertices, respectively
in common with D. Let x′2 be the number of blocks in which every P5-layer
has exactly one vertex in common with D and x′′2 be the number of blocks
in which every P5-layer has either 0 or 3 vertices in common with D and
x0

2 be the number of blocks where j = i + 1, i.e., when the block contains
no P5-layer. Then, clearly, x2 = x0

2 + x′2 + x′′2 be the number of P5-layers
having 2 vertices in common with D and we have therefore x3 ≥ x′′2, x0 =
x′′2 + x3, x1 ≤ 4x′2 and x0 + x1 + x0

2 + x′2 + x′′2 + x3 = n. Now, |D| − 6n
5

= 3x3 + 2x2 + x1 − 6n
5 = 3x3 + 2x0

2 + 2x′2 + 2x′′2 + x1 − 6(x0+x1+x0
2+x′2+x′′2 +x3)
5

= 1
5(9x3 +4x0

2 +4x′2 +4x′′2−x1−6x0) =1
5(9x3 +4x0

2 +4x′2 +4x′′2−x1−6x′′2−6x3)
= 1

5(3x3 − 2x′′2 + 4x0
2 + 4x′2 − x1) = 1

5{x3 + 2(x3 − x′′2) + (4x′2 − x1) + 4x0
2} ≥ 0.

Therefore, we have |D| ≥ 6n
5 . Thus, γ(P5 2 Cn) ≥ n+ dn5 e.

Remark 4.18. |D| = 6n
5 + x3+2(x3−x′′2 )+(4x′2−x1)+4x0

2
5 .

Theorem 4.19. (a) γ(P5 2 C3) = 4, (b) γ(P5 2 C4) = 5, and (c)
γ(P5 2 C5) = 7.

Proof. (a) Let D be a minimum dominating set of P5 2 C3. Further, let
|(Cn)i ∩D| = xi, for i = 0, 1, 2, 3, 4. Then, by Lemma 4.4 we have

3x0 + x1 ≥ 3 (i)
x0 + 3x1 + x2 ≥ 3 (ii)
x1 + 3x2 + x3 ≥ 3 (iii)
x2 + 3x3 + x4 ≥ 3 (iv)
x3 + 3x4 ≥ 3 (v)

If possible, let
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|D| = x0 + x1 + x2 + x3 + x4 ≤ 3 (vi)

Now, x0 6= 0. Otherwise, x1 = 3 would imply x2 = x3 = x4 = 0, contradicting
(iv). Similarly, x4 6= 0. Next, if possible, let x0 = 2 and x4 = 1. Then, we
have x1 = x2 = x3 = 0, contradicting (ii). Again, taking x0 = 1 and x4 = 2
we arrived at the same contradiction. Now, if possible, let x0 = x4 = 1.
Adding (ii), (iii) and (iv) we get x0 + 4x1 + 5x2 + 4x3 + x4 ≥ 9. Therefore,
4x1+5x2+4x3 ≥ 7. This implies 5x1+5x2+5x3 ≥ 7 and hence x1+x2+x3 ≥ 2,
contradicting (vi). Consequently, |D| ≥ 4 and therefore γ(P5 2 C3) ≥ 4. Now,
D = {(0, 1), (2, 0), (2, 2), (4, 1)} is a dominating set of P5 2 C3 as shown
in Figure 4.7. Therefore, γ(P5 2 C3) ≤ 4 and hence γ(P5 2 C3) = 4. This
completes the proof of (a).

Figure 4.7: Vertices with bold circle form a minimum dominating set for
P5 2 C3.

(b) Let D be a minimum dominating set of γ(P5 2 C4). Further, let |(Cn)i ∩
D| = xi for i = 0, 1, 2, 3, 4. Then, by Lemma 4.4,

3x0 + x1 ≥ 4 (i)
x0 + 3x1 + x2 ≥ 4 (ii)
x1 + 3x2 + x3 ≥ 4 (iii)
x2 + 3x3 + x4 ≥ 4 (iv)
x3 + 3x4 ≥ 4 (v)

If possible, let

|D| = x0 + x1 + x2 + x3 + x4 ≤ 4 (vi)

Then, as in the proof of (a) we have x0 6= 0 and x4 6= 0. From (i) and (v)
we get 3x0 + x1 + x3 + 3x4 ≥ 8. Therefore, 2x0 + 2x4 ≥ 4 + x2. Now, if
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x2 6= 0 then x0 + x4 ≥ 3. Hence, x1 + x2 + x3 ≤ 1 which implies x2 = 1 and
x1 = x3 = 0. Therefore, from (ii) and (iv) x0 + x2 ≥ 4 and x2 + x4 ≥ 4.
Hence, x0 ≥ 3 and x4 ≥ 3, contradicting (vi). If x2 = 0 then from (iii),
x1 + x3 ≥ 4. Now, from (vi) we have x0 = x4 = 0. From (i) we have x1 ≥ 4
and hence x3 = 0, contradicting (iv). Therefore, we have γ(P5 2 C4) ≥ 5. Now,
D = {(0, 2), (1, 0), (2, 3), (3, 1), (4, 3)} is a dominating set of P5 2 C4 as
shown in Figure 4.8. Therefore, γ(P5 2 C4) ≤ 5 and hence γ(P5 2 C4) = 5.

Figure 4.8: Vertices with bold circle form a minimum dominating set for
P5 2 C4.

(c) Let D be a minimum dominating set of γ(P5 2 C5). Further, let
|(Cn)i ∩D| = xi where i = 0, 1, 2, 3, 4. Then, from Lemma 4.4 we have

3x0 + x1 ≥ 5 (i)
x0 + 3x1 + x2 ≥ 5 (ii)
x1 + 3x2 + x3 ≥ 5 (iii)
x2 + 3x3 + x4 ≥ 5 (iv)
x3 + 3x4 ≥ 5 (v)

If possible, let

|D| = x0 + x1 + x2 + x3 + x4 ≤ 6 (vi)

From (i) and (v) we get 3x0+x1+x3+3x4 ≥ 10. Therefore, 2(x0+x4) ≥ 4+x2.
Now, if possible, let x2 = 0. Then, x0 + x4 ≥ 2 and x1 + x3 ≥ 5 (by (iii)),
contradicting (vi). Therefore, x2 ≥ 1 and hence x0 + x4 ≥ 3.
Again, x0 6= 0 and x4 6= 0 as in (a). If possible, let x0 + x4 ≥ 4. Then,
x1 + x3 ≤ 1 implies either x1 = 0 or x3 = 0. But this is a contradiction (since
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x1 = 0 implies x0 + x2 ≥ 5 implies x0 = 4 implies x2 = 1 implies x3 ≥ 2,
contradicting (vi). Similar contradiction for x3 = 0). Therefore, x0 + x4 = 3,
x2 ≥ 1 and x1 + x3 ≤ 2. Again, if x1 = x3 = 0 then the only possibility is
x0 = 1, x1 = 0, x2 = 4, x3 = 0 and x4 = 1 which contradicts x0 + x4 = 3. If
x1 = 1, x2 = 1, x3 = 1 and x0 +x4 = 3 then it will contradict either (i) or (v).
Finally, if x1 = 1, x3 = 0 then x2 = 2 and x0 +x4 = 3, contradicting (i) or (v).
Similar contradiction for x1 = 0, x3 = 1. Hence, we have γ(P5 2 C5) ≥ 7. Now,
D = {(0, 0), (0, 4), (1, 2), (2, 0), (3, 3), (3, 4), (4, 1)} is a dominating
set of P5 2 C5 as shown in Figure 4.9. Therefore, γ(P5 2 C5) ≤ 7 and hence
γ(P5 2 C5) = 7.

Figure 4.9: Vertices with bold circle form a minimum dominating set for
P5 2 C5.

Lemma 4.20. 9 + d9
5e ≤ γ(P5 2 C9) ≤ 9 + d9

4e.

Proof. The result follows from the Theorem 4.17 and the Figure 4.10.

Figure 4.10: Vertices with bold circle form a dominating set for P5 2 C9.

Theorem 4.21. For n ≥ 6, n+ dn5 e ≤ γ(P5 2 Cn) ≤ n+ dn4 e.

Proof. For n = 9, the result follows from Lemma 4.20. For n ≥ 6, the inequal-
ity in the left side is already being proved in Theorem 4.17. For the other part
of the inequality, let us consider the minimum dominating sets for P4 2 C6 and
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P4 2 C7 as shown in Figure 4.6. Now adding the vertices {(4, 3), (4, 5)} and
{(4, 3), (4, 6)} to the dominating sets of P4 2 C6 and P4 2 C7, respectively,
the dominating sets for P5 2 C6 and P5 2 C7 are obtained (see Figure 4.11).

(i) (ii)

Figure 4.11: Vertices with bold circle form a dominating set for P5 2 C6 and
P5 2 C7.

Finally, using the modified concatenation suitably as in the case of P4 2 Cn,
n ≥ 3, n 6= 3, 5, 9, (Theorem 4.11), among these two dominating sets and the
minimum dominating set of P5 2 C4, as shown in Figure 4.8, we get the
dominating sets for P5 2 Cn, n ≥ 6, n 6= 9, with required cardinality.



Chapter 5
Sensor Placement

5.1 Introduction

In this chapter we consider the coverage problem in WSANs composed of static
sensors, deployed stochastically in a rectangular grid which defines the ROI. We
are interested in placing sensors at the vertices of a rectangular grid. Sensors
are dropped at the vertices of the grid from air. However the ROI may not
be fully covered as the sensors may not be placed at the target vertices. An
uncovered vertex is called sensing hole. An actuator is assigned to carry and
place the misplaced sensors according to some pre-assigned algorithm so as to
fill in the sensing holes. The actuator rearranges some of the sensors in such
a way that at least one sensor should be placed at each node. In this chapter,
we consider that there is only one actuator and it can carry only one sensor
when it travels from one vertex to another. We develop three algorithms for
the actuator and compare these algorithms in context with some pre-assigned
parameters.

5.2 Preliminary Assumptions

Consider a (m+ 2)× (n+ 2) rectangular grid whose nodes are labeled as (i, j),
with i = 0, 1, . . . ,m+ 1 and j = 0, 1, . . . , n+ 1, where m,n are two parameters
of our problem. Suppose that the sensors have the communication radius rc,
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and the sensing radius rs, where rc ≥
√

2rs. Then, the distance between two
adjacent nodes is

√
2rs. At least one sensor has to be placed at each (i, j)

nodes for i = 1, 2, . . . ,m; and j = 1, 2, . . . , n. Sensors are deployed from air
by helicopter. But sensors may not be placed in the proper node for various
reasons. It may be placed in one of the four adjacent nodes. Each sensor has
an ID number.

Helicopter will deploy one sensor with probability (1 − µ) or two sensors
with probability µ at each node (i, j) for i = 1, 2, . . . ,m, and j = 1, 2, . . . , n,
where µ is a parameter of our problem. Let the ID number(s) of the sensor(s)
which is(are) supposed to be deployed on the grid (i, j) be ID(i, j). We assume
that the sensor(s) with ID number ID(i, j) will be placed at correct node i.e.
at node (i, j) with probability p or any one of the adjacent nodes i.e., node
(i− 1, j) or (i+ 1, j) or (i, j − 1) or (i, j + 1) with probability q each. Where
q = 1−p

4 is also a parameter.

After deployment of sensors, the actuator will go to the node (1, 1) and start
its tour according to some pre-assigned algorithms which we have developed
in this section. An actuator is a robot which can travel, carry sensors, identify
the ID numbers of sensors and count the number of sensors at a node. We
assume that there is only one actuator. We also assume that an actuator can
carry at most one sensor with itself when it travels from one node to another
node. The actuator can travel along the path (horizontal or vertical) of the
grid. If the actuator is standing at node (i, j) then it can recognize the total
number of sensors and their ID numbers which are placed at the node (i, j)
and also at the adjacent four nodes.

5.2.1 Some Parameters

The traversed length L of the actuator is the most important parameter of
our problem. It is the length traveled by the actuator starting from the node
(1, 1) to the node (m,n) or (m, 1) according as m is odd or even. The distance
traveled by the actuator in going from one node to its adjacent node is taken
as the unit of traversed length. The parameters of our problem are as follows.

We assume m and n are large such that the product of m and n is closed
10000, or more; and 4q ≤ 0.5, i.e., p ≥ 0.5. Given m,n and q one can find the



73 5.2 Preliminary Assumptions

Grid size m× n
Error probability q

Repetition probability µ

Traversed length L

Traversed length with sensor in hand LS

Number of empty nodes after deployment N

relationship between µ and L and can minimize µ for fixed L.

Here we have developed three different algorithms for the actuator. We
compare L and LS obtained from three different algorithms for several different
values of parameters q and µ by simulation. We find the expected value of L
in terms of other parameters for the first algorithm. We also find the expected
value, an approximate distribution and some theoretical results for N .

5.2.2 Some Definitions and Notation

The actuator will start from node (1, 1) and terminate at (m,n) or (m, 1)
according as n is odd or even. Define, (i, j) as the next node of (i, j), where

(i, j) =


(i, j + 1) if i is odd and j ≤ (n− 1)

(i, j − 1) if i is even and j ≥ 2

(i+ 1, j) otherwise

The actuator will move from a node (i, j) toward the next node (i, j), as defined
above. If (i, j) is the next node of (i′, j′), then we call (i′, j′) the previous node
of (i, j). Let us define the following in a similar direction.

(i′, j′) previous node of (i, j)
(i′′, j′′) previous node of (i′, j′)
(i− 1, j) the north node of (i, j)

We can similarly define east, west and south nodes. Let us denote (i−2, j),
(i, j − 2), (i, j + 2), (i − 1, j − 1), (i − 1, j + 1) as the two distance nodes of
(i, j). Also define (i, j) as a external node if i = 0 or i = m + 1 or j = 0 or
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j = n+ 1.

Let X(i, j) denote the number of sensor(s) with ID number (i, j) which
are correctly placed at the node (i, j). We define X(i, j) ↑ to be the number
of sensor(s) with ID number (i, j) which are placed at the node (i − 1, j).
Similarly, we define X(i, j)→ , X(i, j) ↓, X(i, j)←. Again, we define

X(i, j) =


X(i, j)→ if (i, j) = (i, j + 1)

X(i, j) ↓ if (i, j) = (i+ 1, j)

X(i, j)← if (i, j) = (i, j − 1).

That is, X(i, j) is the number of sensor(s) with ID number (i, j) which are
placed at the next node (i, j). Similarly, we define

X ′(i, j) =


X(i, j)← if (i′, j′) = (i, j − 1)

X(i, j) ↑ if (i′, j′) = (i− 1, j)

X(i, j)→ if (i′, j′) = (i, j + 1).

That is, X ′(i, j) is the number of sensor(s) with ID number (i, j) which are
placed at the previous node (i′, j′). Let us also define T (i, j) as the number of
sensor(s) (of any ID number) which are placed at the node (i, j), and H(i, j)
as the number of sensor(s) with the actuator when it stands at the node (i, j).
As we have presented the notation we need for our work, we can now move on
to the technical details of the proposed algorithms.

5.3 Three Algorithms

We state here three algorithms. One is based on the ID numbers of the sensors
and other two do not. For the first one we further assume that the sensor
with ID number ID(i, j) should be placed by the actuator either at the node
(i, j) or one of the four adjacent nodes. For the second and third algorithms
we assume that sensors have no ID number. The third algorithm is a slight
modification of the second one. In the second algorithm, the actuator looks
only at the one distance neighbors, while in the third algorithm, the actuator
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looks at the two distance neighbors, thus resulting in an improvement.

5.3.1 First Algorithm

We assume here that each sensor has an ID number.

For i = 1 to m and j = 1 to n,
when the actuator is standing on the node (i, j), do the following:

• If (H(i, j) = 1)
place sensor there and continue to case (H(i, j) = 0)

• If (H(i, j) = 0) the actuator will do the following:

1. If (X(i, j) = 2, X(i, j) = 0) move to (i, j) with one sensor
2. If (X(i, j) = 2, X(i, j) ≥ 1) move to (i, j) with no sensor
3. If (X(i, j) = 1, X(i, j) ≥ 1) move to (i, j) with no sensor
4. If (X(i, j) = 1, X(i, j) = 0, X ′(i, j) > 0)

move to (i, j) with one sensor whose ID number is ID(i, j)
5. If (X(i, j) = 1, X(i, j) = 0, X ′(i, j) = 0)

move to (i, j) with no sensor
6. If ( X(i, j) = 0 and [X(i′, j′) ≥ 1 or X(i − 1, j) ↓> 0 or

(X(i, j) > 0 and X ′(i, j) > 0)])
move to (i, j) with no sensor

7. Else the actuator will go to the node where the sensor with ID
number ID (i,j) is placed, take the sensor, come back to (i, j),
place the sensor there and continue to case X(i, j)=1.

5.3.2 Second Algorithm

In this case, we assume that all the sensors are identical, and possess no ID.

For i = 1 to m and j = 1 to n
when the actuator is standing on the node (i, j), do the following:
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• If (T (i, j) ≥ 2 and H(i, j) = 1)
the actuator will move the next node (i, j) with the sensor in hand.

• If (T (i, j) ≥ 2 and H(i, j) = 0 and T (i, j) ≤ 1)
the actuator will take one sensor and move to the next node.

• If (T (i, j) ≥ 2 and H(i, j) = 0 and T (i, j) ≥ 2)
the actuator will move to the next node with no sensor.

• If (T (i, j) = 1 and H(i, j) = 1)
the actuator will move to the next node (i, j) with the sensor in
hand.

• If (T (i, j) = 1 and H(i, j) = 0 and T (i, j) = 0)
the actuator will check the other three adjacent nodes whether the
numbers of sensors placed there is greater than 1(or 0 for external
nodes) if the actuator finds such a node (or nodes) it will go to that
node (or one of the nodes), take one sensor and back to the node
(i,j) and then move to the next node with that sensor.

• If (T (i, j) = 1 and H(i, j) = 0 and T (i, j) ≥ 1)
the actuator will move to the next node with no sensor.

• If (T (i, j) = 0 and H(i, j) = 1)
the actuator will place the sensor on the node (i, j) and do the same
job as in case of T (i, j) = 1 and H(i, j)=0

• If (T (i, j) = 0 and H(i, j) = 0)
the actuator will check the adjacent four nodes (order of checking is
north-east-west-south node of the node (i, j) whether the numbers
of sensors placed there is greater than 1(or 0 for external nodes).
If so it will go there and take one sensor, place that sensor on the
present node (i, j) and do the same job as in case of T (i, j)=1 and
H(i, j)=0

• Else go to the next node with no sensor.

5.3.3 Third Algorithm

This algorithm is nearly same as the second one except the following cases.



77 5.3 Three Algorithms

Case 1: T (i, j) = H(i, j) = 0
At first the actuator will do the same job as in the second algorithm but
if the actuator cannot find such nodes then before going to the next node
it will check the same condition and do the same job for all two distance
node of the node (i, j) through which it has already traveled.

Case 2: T (i, j) + H(i, j) > 1
At first the actuator will do the same job as in the case of the second
algorithm but before going to the next node the actuator again check
whether T (i, j) + H(i, j) > 1. If T (i, j) + H(i, j) > 1, the actuator
checks whether T (i′′, j′′) ≥ 1 for all the two distance nodes (through
which it already traveled) of the node (i′′, j′′). If T (i′′, j′′) = 0 for one
of the two distance nodes the actuator shifts one sensor from the node
(i, j) to (i′′, j′′) and continues this process until one of the two conditions
is false.

5.3.4 Simulation Result

For m = 100, n = 100, we simulate the different parameters of the problem.
We also calculate the expected value of N and L1 from the theoretical results.
There will be no empty nodes after placement sensors using the first algorithm.

Simulation results for p = 0.5

µ N E(N) E(L1) L1 L2 L3 N2 N3 LS1 LS2 LS3
0.2 2373 2387 15284 14949 11437 11955 113 2 3584 7170 7240
0.3 2171 2138 14688 14083 11187 11425 52 0 3280 7376 7376
0.4 1996 1909 14122 13731 10945 11001 15 1 3051 7543 7511
0.5 1708 1698 13588 12843 10603 10635 8 0 2700 7708 7639
0.6 1528 1501 13084 12447 10449 10465 4 0 2454 7798 7741

Simulation results for p = 0.6

0.2 2148 2130 14206 14057 11257 11633 81 2 2993 7270 7273
0.3 1969 1905 13660 13355 11071 11163 37 2 2713 7549 7514
0.4 1679 1694 13150 12813 10647 10713 17 0 2426 7854 7808
0.5 1471 1496 12676 12173 10443 10509 4 0 2176 7922 7865
0.6 1308 1311 12236 11755 10363 10375 3 0 1938 8077 8017

Table 5.1: Simulation Results

The simulation is performed using a C-program, and required random num-
bers are generated using the standard C-library. In Table 5.1, Li denotes the
value of L for the i-th algorithm, where i = 1, 2, 3, N is the number of



Chapter 5: Sensor Placement

empty nodes after deployment of the sensors by helicopter, and E(L1) is the
approximate expected value of traversed length of the actuator using the first
algorithm (calculated in the next section). E(N) is the expected number of
empty nodes after deployment of sensors by the helicopter (calculated in the
next section), Ni is the number of empty nodes after placement of sensors by
the actuator using the i-th algorithm (i = 2, 3), and LSi is the traversed length
with sensor in hand of the actuator using the i-th algorithm (i = 1,2,3).

5.3.5 Observations

A few immediate observations from Table 5.1 are as follows.

1. The number of empty nodes after placement of sensors by the actuator
using the third algorithm is almost zero. This is because in the third
algorithm, the actuator considers two distant nodes. If the two distant
nodes are empty or if they have more than one sensor, then the actuator
tries to equalize the number of sensors as much as possible. For much
larger values of n and m, the number of empty nodes may be high. Then
we can use an improved algorithm in the actuator will consider three or
more distant nodes.

2. Simulated values of L1 are always less than E(L1) in each cases, because
we have slightly modified the algorithm (to get more efficiency) when we
write the C code for simulation. Difference between these two values is
less than 5%.

3. Difference between the simulated values of N and the expected values of
N is less than 3%. It means that the simulation is good enough, and we
can use the expected value in practical situations.

4. Simulated values of N,Li, Ni decrease as the values of p or µ increase.
This is because an increment of p means that the error probability is
lower, an increment of µ means that the repetition probability is higher.
In both the cases number of empty nodes after deployment is reduced,
and hence, traversed length of the actuator (L) and the number of empty
nodes at the end of the tour of the actuator will be less.
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5. Simulated values of LS1 decrease as the values of p or µ increase, whereas
the simulated values of LS2 , LS3 decrease as the values of p or µ increase.
The reason is same as in the previous observation.

6. For fixed p and µ, values of L1 are larger than those of L2, L3, and values
of L3 are slightly higher than those of L2. The reason is same as in
observation 4.

7. For fixed p and µ, values of LS1 are very low compared to L2, L3, and
values of L3 are more or less equal to that of L2.

5.4 Theoretical Results

5.4.1 Results on L1

Result 5.1. The expectation of L1 is

(mn− 1) + 2(t1 + 3t2 + 2(m+ n− 4)t3 + (m− 2)(n− 2)t4)

where
t1 = d− 2ab+ cb2

t2 = d− a− ab− de+ cb+ ae+ abe− cbe
t3 = d− a− 2ab− de+ 2cb+ ae+ cb2 + 2ab2e− 2cbe− cb2e2

t4 = d− a− 3ab− de+ 2cb+ 3ab+ ae+ 3cb2 − 3abe− 3cbe− 3cb2e

with a = 7µq2+(1−µ)q, b = µ(2−q)q+(1−µ)q, c = 2µq2, d = 4q(1−µ(1−4q)),
and e = µ(1− 4q)2.

Proof. Following the notational convention of this section, we have
P (X(i, j) = 0) = µ(4q)2 + (1− µ)(4q) = (1− p)(1− µp) = d

P (X(i, j) = 1) = 2µ(1− 4q)(4q) + (1− µ)(1− 4q) = (1− 4q)(1 + 8µq − µ)
P (X(i, j) = 2) = µp2 = e

P (X(i, j) ↑= 0) = µ(1− q)2 + (1− µ)(1− q) = (1− q)(1− µq)
P (X(i, j) ↑= 1) = 2µ(1− q)q + (1− µ)q
P (X(i, j) ↑= 2) = µq2

P (X(i, j) = 0, X(i, j) ↑≥ 1) = 7µq2 + (1− µ)q = a
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P (X(i, j) ↑≥ 1) = µ(2− q)q + (1− µ)q = b

P (X(i, j) ↑= 1, X(i, j) ↓= 1) = 2µq2 = c.

Note that, X(i, j), X(i, j) ↑, X(i, j) →, X(i, j) ↓ and X(i, j) ← are iden-
tically distributed for all i, j. Also, X(i, j), X(i, j) ↑, X(i, j) →, X(i, j) ↓
and X(i, j) ← are independent to X(k, l), X(k, l) ↑, X(k, l) →, X(k, l) ↓ and
X(k, l)← for (i, j) 6= (k, l).

Let, L1(i, j) is the excess length travel by the actuator at the node(i, j) to
place sensor at the node (i, j). Therefore, L1 = (mn− 1) +∑

L(i, j).

P (L1(1, 1) = 2) = P (X(1, 1) = 0)− P [(X(1, 1) = 0)

and ((X(1, 1)→≥ 1, X(1, 2)←≥ 1)

or (X(1, 1) ↓≥ 1, X(2, 1) ↑≥ 1))]

The right hand side, following a detailed calculation, gives

P (X(1, 1) = 0)− P [(X(1, 1) = 0, X(1, 1)→≥ 1, X(1, 2)←≥ 1)

or (X(1, 1) = 0, X(1, 1) ↓≥ 1, X(2, 1) ↑≥ 1)]

= P (X(1, 1) = 0)

−P (X(1, 1) = 0, X(1, 1)→≥ 1, X(1, 2)←≥ 1)

−P (X(1, 1) = 0, X(1, 1) ↓≥ 1, X(2, 1) ↑≥ 1)

+P [X(1, 1)→≥ 1, X(1, 2)←≥ 1, X(1, 1) ↓≥ 1, X(2, 1) ↑≥ 1]

= P (X(1, 1) = 0)

−P (X(1, 1) = 0, X(1, 1)→≥ 1)P (X(1, 2)←≥ 1)

−P (X(1, 1) = 0, X(1, 1) ↓≥ 1)P (X(2, 1) ↑≥ 1)

+P (X(1, 1)→≥ 1, X(1, 1) ↓≥ 1)P (X(1, 2)←≥ 1)

P ((X(2, 1) ↑≥ 1)

= d− ab− ab+ cb2 = d− 2ab+ cb2 = t1
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Again, we have

P (L1(1, n) = 2) = P (X(1, n) = 0)

−P [(X(1, n) = 0, X(1, n)←≥ 1)

or (X(1, n) = 0, X(1, 1) ↓≥ 1, X(2, 1) ↑≥ 1)

or (X(1, n) = 0, X(1, n− 1) = 2]

= d− a− ab− de+ cb+ ae+ abe− cbe = t2

Similarly, P (L1(m, 1) = 2) = P (L1(m,n) = 2) = t2.

P (L1(1, 2) = 2)

= P (X(1, 2) = 0)− P [(X(1, 2) = 0) and ((X(1, 2)←≥ 1)

or (X(1, 2) ↓≥ 1, X(2, 2) ↑≥ 1)

or (X(1, 2)→≥ 1, X(1, 3)←≥ 1) or (X(1, 1) = 2))]

= d− a− 2ab− de+ 2cb+ ae+ cb2 + 2ab2e− 2cbe− cb2e2 = t3

Similarly, P (L1(1, j) = 2) = P (L1(m, j) = 2) = t3 for j = 2, 3, . . . , n − 1 and
P (L1(i, 1) = 2) = P (L1(i, n) = 2) = t3 for i = 2, 3, . . . ,m− 1.

P (L1(2, 2) = 2) = P (X(2, 2) = 0)

−P [(X(2, 2) = 0) and ((X(2, 2)→≥ 1)

or (X(2, 2)←≥ 1, X(2, 1)→≥ 1)

or (X(2, 2) ↑≥ 1, X(1, 2) ↓≥ 1)

or (X(2, 2) ↓≥ 1, X(3, 2) ↑≥ 1)

or (X(2, 3) = 2))]

= d− a− 3ab− de+ 2cb+ 3ab+ ae+ 3cb2

−3abe− 3cbe− 3cb2e = t4

Similarly, P (L1(i, j) = 2) = t4 for i = 2, 3, . . . ,m − 1 and j = 2, 3, . . . , n − 1.
Hence the Expectation of L1 is

(mn− 1) + 2
∑

P (L1(i, j) = 2)

= (mn− 1) + 2(t1 + 3t2 + 2(m+ n− 4)t3 + (m− 2)(n− 2)t4).
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Hence the result.

5.4.2 Results on T (i, j)

Result 5.2. Probability that the node (i, j) is empty (P (T (i, j) = 0)) is:

P (X(i, j) = 0)P (X(i, j) ↑= 0)2 for i = 1,m and j = 1, n

P (X(i, j) = 0)P (X(i, j) ↑= 0)3 for i = 1,m and j = 2, 3, . . . , n− 1

P (X(i, j) = 0)P (X(i, j) ↑= 0)3 for i = 2, 3, . . .m− 1 and j = 1, n

P (X(i, j) = 0)P (X(i, j) ↑= 0)4 otherwise

where P (X(i, j) = 0) = µ(4q)2 + (1− µ)(4q) = (1 − p)(1 − µp), and
P (X(i, j) ↑= 0) = µ(1− q)2 + (1− µ)(1− q) = (1− q)(1− µq).

Proof. Follows from the first algorithm.

5.4.3 Results on N

Result 5.3. Let N(i, j) be defined as

N(i, j) =


1 if T (i, j) = 0

0 otherwise

Then, N(i, j)’s are Bernoulli random variables with parameter P (T (i, j) = 0)
and they are dependent. For all values of i 6= 1,m and j 6= 1, n, P (T (i, j) = 0)’s
are equal. Again, P (T (i, j) = 0)’s are equal for (i, j) = (1, 1), (1, n), (m, 1) and
(m,n). Further P (T (i, j) = 0)’s are equal for all the other boundary nodes,
and N = ∑

N(i, j).

Proof. Clearly, for all i, j, N(i, j)’s are Bernoulli random variables with pa-
rameter P (T (i, j) = 0). Since T (i, j)’s are dependent N(i, j)’s are also depen-
dent. The four corner nodes (1, 1), (1, n), (m, 1) and (m,n) are similar in terms
of the different probabilities when sensors are deployed from the air. Hence
P (T (i, j) = 0)’s are equal. Similar arguments hold for other two cases also.
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Now N(i, j) = 1 means (i, j)-th node is empty hence ∑N(i, j) is the total
number of empty nodes.

Result 5.4. The expectation of N is approximately equal to 4mnpq(1 − µ +
4µ2pq) which is less than or equal to mn(1−µ+µ2/4)

4 .

Proof. The expectation of N is

E(N) = E(
∑

N(i, j)) =
∑

P (T (i, j) = 0)

= 4(P (X(i, j) = 0)P (X(i, j) ↑= 0)2)

+2(m+ n− 4)(P (X(i, j) = 0)P (X(i, j) ↑= 0)3)

+(m− 2)(n− 2)(P (X(i, j) = 0)P (X(i, j) = 0)4)

using result 3.4.3.

Approximate value of E(N) for large m,n is

mn(P (X(i, j) = 0)P (X(i, j) ↑= 0)4

= mn(1− p)(1− µp)(1− q)4(1− µq)4

≈ mn(1− p)(1− µp)(1− 4q)(1− 4µq)

= mn(1− p)p(1− µp− 4µq + 4µ2pq)

= 4mnpq(1− µ+ 4µ2pq) ≤ mn(1− µ+ µ2/4)
4 ,

since 4pq ≤ (p+4q
2 )2 = 1/4. Hence the result.

Result 5.5. For i 6= 1,m and j 6= 1, n− 1, n, we have

P (T (i, j) = 0, T (i, j + 1) = 0) ≤ P (T (i, j) = 0)2

Proof. We have P (T (i, j) = 0) = P (X(i, j) = 0)P (X(i, j) ↑= 0)4 = 4q(1 −
µ+ 4qµ)(1− q)4(1− µq)4, and P (T (i, j) = 0, T (i, j + 1) = 0) = (3q)2(1− µ+
3qµ)2(1− q)6(1− µq)6. Now,

(3q)(1− µ+ 3qµ) ≤ (4q)(1− µ+ 4qµ)(7/8)2

≤ (4q)(1− µ+ 4qµ)(1− q)2 (since, q ≤ 1/8)

≤ (4q)(1− µ+ 4qµ)(1− q)(1− µq)
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Therefore, (3q)2(1−µ+3qµ)2(1−q)6(1−µq)6 ≤ (4q)2(1−µ+4qµ)2(1−q)8(1−
µq)8, and hence the result.

Result 5.6. For i 6= 1,m and j 6= 1, n− 1, n, we have

P (T (i, j) = 0)3 ≤ P (T (i, j) = 0, T (i, j + 1) = 0)

Proof. Following the regular notation of this chapter, we have

(p2 + q2 + 5pq) ≤ p+ q

⇒ (p2 + q2 + 5pq)µ ≤ p+ q

⇒ 3µpq ≤ (p+ q)− µ(p+ q)2

⇒ µ2pq ≤ (µ(p+ q)/3)(1− µ(p+ q))

⇒ 1− µ(p+ q) + µ2pq ≤ (1 + µ(p+ q)/3)(1− µ(p+ q))

⇒ (1− µp)(1− µq) ≤ 1− µ(p+ q)−1/3(1− µ(p+ q))

⇒ (1− µp)3(1− µq)3 ≤ (1− µ(p+ q))2

⇒ (1− µp)3(1− µq)6 ≤ (1− µ+ 3qµ)2

Also, (4q)3 ≤ (3q)2. Therefore, (4q)3(1− q)6 ≤ (3q)2, and hence,

(4q)3(1− µp)3(1− q)6(1− µq)6 ≤ (3q)2(1− µ+ 3qµ)2

This gives us (4q)3(1−µp)3(1−q)12(1−µq)12 ≤ (3q)2(1−µ+3qµ)2(1−q)6(1−
µq)6, and hence the result.

Result 5.7. Using the usual notation, we have

−0.23 ≤ Cor(N(i, j), N(i, j + 1)) = Cor(N(i, j), N(i+ 1, j)) ≤ 0

for i 6= 1,m − 1,m and j 6= 1, n − 1, n, and Cor(N(i, j), N(i, j + 3)) =
Cor(N(i, j), N(i+ 3, j)) = 0 for i 6= m− 2,m− 1,m and j 6= n− 2, n− 1, n.

Proof. We have, for i 6= 1,m− 1,m and j 6= 1, n− 1, n,

Cor(N(i, j), N(i, j + 1)) = Cor(N(i, j), N(i+ 1, j))

= Cov(N(i, j), N(i+ 1, j))
V ar(N(i, j))
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since Var(N(i, j))= Var(N(i+ 1, j). Now,

Cov(N(i, j), N(i+ 1, j))

=P (N(i, j) = 1, N(i+ 1, j) = 1)− P (N(i, j) = 1)P (N(i+ 1, j) = 1)

=P (T (i, j) = 0, T (i+ 1, j) = 0)− P (T (i, j) = 0)P (T (i+ 1, j) = 0)

=P (T (i, j) = 0, T (i+ 1, j) = 0)− P (T (i, j) = 0)2

Hence, by the Results 3.4.11 and 3.4.13 we have,

−P (T (i, j) = 0)2[1− P (T (i, j) = 0)] ≤ Cov(N(i, j), N(i, j + 1)) ≤ 0

Since Var(N(i, j)) = P (N(i, j) = 1) − P (N(i, j) = 1)2. We get, for i 6=
1,m− 1,m and j 6= 1, n− 1, n,

−P (T (i, j) = 0) ≤ Cor(N(i, j), N(i, j + 1))

= Cor(N(i, j), N(i+ 1, j)) ≤ 0

Also, P (T (i, j) = 0) = (1−p)(1−µp)(1−q)4(1−µq)4 for i 6= 1,m and j 6= 1, n.

Now, (1− p)(1− q)4 and (1− µp)(1− µq)4 are increasing functions of q on
[0, 1/5]. Hence, for q ≤ 1/8, we have

(1− p)(1− q)4 ≤ 2401/8192

and for µ > 0.2, we have

(1− µp)(1− µq)4 ≤ (1− µ/2)(1− µ/8)4 ≤ 0.81.

Therefore, P (T (i, j) = 0) ≤ 0.23, and hence the result.

Result 5.8. N approximately follows normal distribution, for large m,n and
for p ≥ 1/2 and µ ≥ 0.2.

Proof. N = ∑
N(i, j) and N(i, j)′s are Bernoulli random variables with pa-

rameter P (T (i, j) = 0) ≤ 0.23 for i 6= 1,m and j 6= 1, n ; and for other values
of i and j, N(i, j)′s are Bernoulli random variables.

Note that, for large m,n number of N(i, j) for i 6= 1,m and j 6= 1, n is
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much larger than number of other N(i, j) and correlations are small hence by
CLT, N is approximately Normally distributed with approximate expectation
mnp(1 − p)(1 − µ + 4µ2pq) and approximate variance mnp(1 − p)(1 − µ +
4µ2pq)[1− p(1− p)(1− µ+ 4µ2pq)].



Chapter 6
Single Event Detection in a Faulty
WSN

6.1 Introduction

One fundamental challenge in the event detection problem for a sensor network
is the detection accuracy which is limited by the amount of noise associated
with the measurement and the reliability of sensor nodes. The sensors are
usually low-end inexpensive devices and sometimes exhibit unreliable behavior.
For example, a faulty sensor node may issue an alarm even though it has not
received any signal for an event. On the other hand, it may fail to detect an
actual event. Moreover, a sensor may be dead in which case it cannot send
any alarm.

The event region may be large, and if an event occurs at a particular point
of the region then the sensor may not determine exactly where the event has
happened. There are cases where a fusion sensor cannot make a decision.
Consider, for example, a network of sensors that are capable of sensing mines
or bombs. We assume that either no mines (or bombs) are placed or very few
mines (or bombs) are placed on a particular area of the ROI. In this case an
important query could be; “are bombs present or not”. In that situation all
sensors have to communicate with the base station, and base station will take
the decision about the query.

87
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In this chapter, we are interested in determining the occurrence of an event,
when the position where the event may have occurred is already known. We
assume that the ROI is partitioned into suitable number of identical squares
of side 2a. We consider ROI as a rectangular grid with square cells. We also
consider a regular hexagonal grid with regular hexagonal cells in a separate
section. We also assume that sensors have already been placed at the centers
(call them nodes) of the squares (or hexagons).

In this chapter, we propose a rule for the base station to take a decision
compiling the information coming from the all sensors and find the optimal
solutions. We consider two types of error: 1) type I error when an event
occurs but the sensors report normal (which is the more serious error) and
2) type II error when the ROI is normal but sensors report an event. We
observed that type I and type II errors decrease when detection probabilities
increase. If detection probabilities are low then type I error is close to 1. If
probability of occurrence of the event is high but detection probabilities are
small then type I and type II errors are high, which means there is no utility
of sensors. So, when the probability of occurrence of the event is high, we have
to use sensors with high detection probability (i.e., sensors with much better
quality). We calculate the MP test and the Bayes test for some specific values
of the parameters. We observed that for small values of detection probability
and large value of loss, the Bayes test is not applicable. When loss is large, we
cannot use sensors with small detection probabilities to determine the event’s
originating square (here after called the event square) using Bayes’ test. We
also observed that when the size of the test is small we cannot use sensors
with small detection probabilities for the MP test; we have to use good sensors
(sensors with high detection probability) for the MP test in this case. For
details of loss, MP test and Bayes test, see [68].

6.2 Assumptions

In this section, we describe the assumptions we make; some are new and some
are identical to the ones made by other researchers. The new assumptions lead
to a new type of problem statement and a new approach to solve the problem.



89 6.2 Assumptions

1. We assume that (i) if the event occurs then it occurs at only one partic-
ular square of the grid which will be known as event square; (ii) there is
no fusion sensor to take the decision locally; (iii) all sensors communi-
cate with the base station, which takes the decision and (iv) the sensors
have same sensing radius. If an event does not occur we say the ROI is
normal. Sensors are deployed or manually placed over the ROI in such a
way that they cover the entire ROI. We assume that sensors are placed
a priori, at the center (which are known as nodes) of every square cell.
We also consider a regular hexagonal grid with regular hexagonal cells in
a separate section. Each sensor node can determine its location through
a beacon-assisted positioning mechanism [7].

N N

N

2,1

Distance−one Node

Center Node

N N

N N N

Distance−one Node Distance−one Node

Distance−one Node

3,2
N

3,1

Distance−two NodeDistance−two Node

Distance−two Node Distance−two Node

2,2 1,1 2,3

3,3 2,4 3,4

Figure 6.1: Nodes placed in cells of the ROI

2. We assume that there are only 9 sensors which can detect the event, see
figure 6.1. These are (i) one sensor placed at the center of the event
square (call it the center node), (ii) four sensors placed at the centers
of adjacent squares with a common side (call them distance-one nodes)
and (iii) four sensors placed at the centers of adjacent squares with a
common vertex (call them distance-two nodes). Consider a 3× 3 square
grid. If an event occurs, it occurs at the center square only. Our problem
is to find whether the center square is actually an event square.

3. We assume that if an event occurs in the event square then the sensor,
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lying in the event square, can detect the event with probability p1. The
distance-one nodes can detect the event with a lesser probability p2 and
the distance-two nodes can detect the event with the lowest probability
p3 due to different noise, distance and obstruction characteristic, etc. We
assume that no other sensor can detect the event.

4. We also assume that there is prior probability of a particular square
being the event square. Even if an event is detected by a sensor, it
may not respond or send the information to the base station due to some
technical fault (we call that sensor a faulty sensor) with some probability.
Conversely, if the event was not detected or if there is no occurrence of the
event (i.e., the normal situation), then a faulty sensor can falsely respond
or send the wrong information to the base station with some probability.
A sensor is called a dead sensor if the sensor does not work (detect) at
all. A dead sensor sends no response in either case. If a sensor is dead
or the ROI is normal then the sensors send no information. We also
assume that the sensors work independently, i.e., detection and response
of different sensors are independent.

6.3 Problem Statement and Notations

Our problem is to find various error probabilities, e.g., probability of false re-
sponse when the ROI is normal or probability of no response when a particular
square is the event square, etc. We want to develop schemes for the base sta-
tion to take the decision and find the error probabilities of two different wrong
situations: 1) the base station decides that the ROI is normal whereas the
event has occurred and 2) the base station decides that the ROI is not normal,
i.e., the event has occurred, but there is actually no event. We want to develop
the schemes and find the error probabilities under two different considerations:
a) classical hypothesis testing and b) a decision theoretic approach (i.e., Bayes
test). In the consideration of decision theoretic approach, we introduce risk
factor for two different wrong situations. We also calculate error probabilities
for some values of different parameters like the probability of a false alarm of a
sensor, probability of event detection by a sensor, prior probability of existence
of the event etc. Our problem is to give an optimal test for the base station.



91 6.3 Problem Statement and Notations

The node which is placed at the center square is the nearest node and
hence can detect the event square with highest probability. We denote this
node as N1,1. The 4 nodes, whose distances are 2a from the previous node, are
the second nearest nodes and hence can detect the event square with second
highest probability. We denote these nodes as N2,j; j = 1, 2, 3, 4.

The 4 nodes, whose distances are 2
√

2a from the center node, are the
farthest nodes which can detect the event square and hence can detect the event
square with lowest probability. We denote these nodes as N3,j; j = 1, 2, 3, 4,
see Figure 6.1.

For (i, j) ∈ {(1, 1)} ∪ ({2, 3} × {1, 2, 3, 4}), let yij = 1 if the node Ni,j

detects the center square as the event square, yij = 0 if the node Ni,j detects
the center square as normal, xij = 1 if the node Ni,j responds, i.e., the node
informs the base station that the center square is the event square, and xij = 0
if the node Ni,j does not respond, i.e., the node informs the base station that
the center square is normal.

Here we make one natural assumption, for k, l = 0, 1,Pr(xij = k | yij =
l,Normal) = Pr(xij = k | yij = l) and Pr(xij = k | yij = l,Event) = Pr(xij =
k | yij = l), i.e., the response of a sensor is independent of the event occurrence.

Note that, detection of event by a sensor does not mean that the sensor
informs the base station that the center square is the event square; if the sensor
is faulty, it can send a normal report. Similar thing can happen if sensor does
not detect the event square. Also note that, yij’s are not independent, but
yij’s are independent when it is given that the event occurs or not.

Let, for all possible values of i and j, pi = Pr(yij = 1 | Event);
pe = Pr(Event) = Pr(event occurs); pn = Pr(Normal) = Pr(ROI is normal);
pc = Pr(xij = 1 | yij = 1) and pw = Pr(xij = 1 | yij = 0).

These are important parameters of the problem. Clearly, Pr(yij =
1 | Normal) = 0 for all possible values of i and j.

List of Notations

Ni,j is the (i, j)-th node.

rc = communication radius of the sensors.
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Normal
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Figure 6.2: Detection and response probabilities when ROI is normal

rs = sensing radius of the sensors.

2a = distance between two nodes= length of a square of the grid.

p1 = probability of detection of the event by the node at event square.

p2 = probability of detection of the event by distance-one nodes.

p3 = probability of detection of the event by distance-two nodes.

pc = probability of correct response.

pw = probability of wrong response.

d = pc − pw.

pe = probability of the event occurs in ROI.

pn = probability of ROI is normal.

le is the loss when event occurs but base station takes decision as normal.

ln = is the loss when ROI is normal but base station takes decision as event.

l = le/ln = ratio of the losses.

6.4 Theoretical Analysis of Fault Detection

In this section, we derive various error probabilities for all nodes and then
propose a rule for the base station to take a decision compiling the information
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Figure 6.3: Detection and response probabilities when event occurs

coming from all the 9 nodes and to find the optimal solution. Finally, we
calculate the error probabilities and the tests for the base station.

Let us consider the testing problem H0: Event vs. H1: Normal. There are
two types of error: type I error when event occurs but sensor reports normal
and type II error when ROI is normal but sensor reports Event. We consider
‘Event’ as null hypothesis because type I error should be the more serious error
than type II error. If we reject the null hypothesis when it is true, i.e., if Event
occurs but base station decides Normal, then that will be the more serious
error than the other one.

Throughout the section, we consider i = 1, j = 1 and j = 1, 2, 3, 4 when
i = 2, 3. There are eight possible scenarios for a particular node Ni,j, see Figure
6.2 and 6.3 (the numbers which are above the line segments are corresponding
probabilities ).

1. Normal, yij = 0, xij = 0 (sensor correctly detects a normal reading and
sends the correct message to the base station),

2. Normal, yij = 0, xij = 1 (sensor correctly detects a normal reading but
sends the wrong message to the base station due to fault),

3. Normal, yij = 1, xij = 0 (sensor wrongly detects a normal reading as
event but sends the normal message to the base station due to fault),

4. Normal, yij = 1, xij = 1 (sensor wrongly detects a normal reading as
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event but sends the correct message to the base station),

5. Event, yij = 0, xij = 0 (sensor wrongly detects an event reading and
sends the wrong message i.e. normal message to the base station),

6. Event, yij = 0, xij = 1 (sensor wrongly detects an event reading but
sends the correct message to the base station),

7. Event, yij = 1, xij = 0 (sensor correctly detects an event reading but
sends the wrong message to the base station due to fault), and

8. Event, yij = 1, xij = 1 (sensor correctly detects an event reading and
sends the correct message to the base station).

6.4.1 Error Probabilities for Nodes

Let, PN = Pr(xij = 0 | Normal) = Pr(xij = 0 | yij = 0,Normal)×

Pr(yij = 0 | Normal) + Pr(xij = 0 | yij = 1,Normal) Pr(yij = 1 | Normal)

= Pr(xij = 0 | yij = 0) Pr(yij = 0 | Normal)

+ Pr(xij = 0 | yij = 1) Pr(yij = 1 | Normal) = 1− pw,

and, PE,i = Pr(xij = 1 | Event) = Pr(xij = 1 | yij = 0,Event)×

Pr(yij = 0 | Event) + Pr(xij = 1 | yij = 1,Event) Pr(yij = 1 | Event)

= Pr(xij = 1 | yij = 0) Pr(yij = 0 | Event) + Pr(xij = 1 | yij = 1)×

Pr(yij = 1 | Event) = pw(1− pi) + pcpi = pw + pi(pc − pw).

Hence the probability of type I error for the node Ni,j is QE,i = Pr(xij =
0 | Event) = 1− Pr(xij = 1 | Event) = (1− pw)− pi(pc − pw) and probability
of type II error for the node Ni,j is Pr(xij = 1 | Normal) = 1− PN = pw.

Now other types of errors may be as follows:

P1,i = Pr(Event | xij = 0) = peQE,i

pnPN + peQE,i

and P2,i = Pr(Normal | xij = 1) = pnpw
pnpw + pePE,i

.
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6.4.2 Error Probabilities and Test for Base Station

Now, let us consider the detection problem for the base station. After the ob-
servations about xij’s are made, at the base station they are combined to make
a final decision regarding the hypotheses (H0: Event vs H1: Normal). When
H0 is true, xij follows Ber(PE,i), and when H1 is true xij follows Ber(pw), where
Ber(pw) be the Bernoulli distribution with parameter pw. Let the probability
mass function of xij when Hk is true be Pr(xij | Hk) for k = 0, 1. We make
one more natural assumption pc > pw, which is equivalent to say PE,i > pw for
all i. This is needed for a result in the next section.

The Neyman-Pearson Approach

In many practical situations, the prior probabilities may be unknown in which
case the decision theoretic approach is not appropriate. So, we employ the
Neyman-Pearson criterion. In that case, the most powerful (MP) test of size
α is to

reject H0when Π Pr(xij | H1) > λ′′Π Pr(xij | H0)

and reject H0, with probability k, when equality holds in place of greater than,
where λ′′ and k can be found from the size α of the test.

Since, whenH0 is true xij follows Ber(PE,i) and, whenH1 is true, xij follows
Ber(pw), we can simplify the MP test as to

reject H0 when pΣxij
w (1− pw)Σ(1−xij) >

λ′′P x11
E,1 (1− PE,1)(1−x11)P

Σx2j
E,2 (1− PE,2)Σ(1−x2j)P

Σx3j
E,3 (1− PE,3)Σ(1−x3j),

and reject H0 with probability k when equality holds in place of greater than,

i.e., reject H0 when 1
λ′′

>

(
PE,1
pw

)x11 (1− PE,1
1− pw

)(1−x11)

×

(
PE,2
pw

)Σx2j (1− PE,2
1− pw

)(4−Σx2j) (PE,3
pw

)Σx3j (1− PE,3
1− pw

)(4−Σx3j)

and reject H0 with probability k when equality holds in place of greater than.
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Hence, reject H0 when

x11ln

(
PE,1
pw

)
+ (1− x11)ln

(
1− PE,1
1− pw

)
+ Σx2jln

(
PE,2
QN

)
+

(4− Σx2j)ln
(

1− PE,2
1− pw

)
+ Σx3jln

(
PE,3
pw

)
+ (4− Σx3j)ln

(
1− PE,3
1− pw

)
< λ′

and reject H0 with probability k when equality holds in place of less than.

i.e., reject H0 when

x11ln

(
PE,1(1− pw)
(1− PE,1)pw

)
+ Σx2jln

(
PE,2(1− pw)
(1− PE,2)pw

)
+ Σx3jln

(
PE,3(1− pw)
(1− PE,3)pw

)
< λ

and reject H0 with probability k when equality holds in place of less than.

Hence, we get the MP test as to reject H0 when

Σxijln
(
PE,i(1− pw)
(1− PE,i)pw

)
< λ · · · (R)

and reject H0 with probability k when equality holds in place of less than,
where, λ and k can be found from the relation Pr(H0 reject | H0 true) = α,

i.e.,
Pr(Σxijln(di) < λ) + k Pr(Σxijln(di) = λ) = α,

where, di = PE,i(1−pw)
(1−PE,i)pw and xij follows Ber(PE,i).

Since we assume PE,i > pw, ln
(
PE,i(1−pw)
(1−PE,i)pw

)
> 0 for all i.

Based on the given error bound α and sensor fault probabilities, the base
station will take the decision given by the rule (R).

Decision Theoretic Approach

A test Tg of H0 : θ = θ0 vs H1 : θ = θ1 is defined to be a Bayes test with
respect to the prior distribution Pr(H1) = g if and only if

(1− g)RTg(θ0) + gRTg(θ1) ≤ (1− g)RT (θ0) + gRT (θ1)
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for any other test T , where RT (θ) is the risk function of the test T . The Bayes
test is the test which seeks a critical region that minimizes the overall risk. If
loss function is not available then we can assume the losses are 0 or 1. It can
be proved that the Bayes test is to Reject H0 when

L0

L1
<

gl(d0; θ1)
(1− g)l(d1; θ0) ,

where L0 and L1 are the likelihoods for θ = θ0 and θ = θ1, respectively; l(d0; θ1)
is the loss when null hypothesis is accepted but it is false, and l(d1; θ0) is the
loss when null hypothesis is rejected but it is true [68].

Let the losses be as follows: le when an event occurs but base station
takes decision as normal, ln when the ROI is normal but base station takes
decision as event, and loss is 0 when the base station takes the correct decision.
Hence, under the Bayesian setup, i.e., when the prior distribution (pn, pe) are
available, the Bayes test with respect to the prior distribution Pr(H0) = pe

and Pr(H1) = pn can be derived as follows:

Reject H0 when pΣxij
w (1− pw)Σ(1−xij) >

pele
pnln

P
x1j
E,1(1− PE,1)(1−x1j)P

Σx2j
E,2 (1− PE,2)Σ(1−x2j)P

Σx3j
E,3 (1− PE,3)Σ(1−x3j),

i.e., Reject H0 when Σxijln
(
PE,i(1−pw)
(1−PE,i)pw

)
<

ln

(
pnln
pele

)
+ ln

(
1− pw

1− PE,1

)
+ 4ln

(
1− pw

1− PE,2

)
+ 4ln

(
1− pw

1− PE,3

)

6.4.3 Boundary Case

In the above discussion, we assume that the center square is an interior one.
If we consider the boundary squares, then the expression for the error proba-
bilities for each sensor changed and consequently the expression for the error
probabilities for the base station are also changed. In that case, if we consider
the corner squares then j takes value 1 for i = 1, 3 and j takes values 1, 2 for
i = 2, and if we consider the boundary square other than a corner one then j
takes value 1 for i = 1; j takes values 1, 2, 3 for i = 2, and j takes values 1, 2
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for i = 3. The theoretical analysis is similar as in the case of interior squares.

6.4.4 When more sensors can detect the Event Square

We may consider the situation when sensing radius has larger value, and then
more sensors can detect the event square but with different probabilities. In
this case, we classify all the nodes as follows: two sensors belong to the same
class if they have the same distance from the event square and hence have
the same detection probability to detect the event. Let sensors in the i-th
class detect the event square with probability pi, i = 1, 2, 3, .... Then, the
expressions of the error probabilities for the sensors and the test (MP and
Bayes) are similar to the ones previously discussed, but now the summation
in the left side of the expression of the test is changed; instead of three, there
will be more terms.

6.5 Calculations and Observations

We have the independent set of parameters of the problem as follows:

pe, pi, pc, pw for all possible values of i and j,

l = ratio of losses = le/ln and size of the test = α.

The type I error for Ni,j is (1− pw)− pi(pc − pw) and the type II error for
Ni,j is pw for all possible values of i and j.

Let d = pc − pw > 0. Other types of errors for Ni,j’s are

P1,i = pe(1− pw − pid)
1− pw − pepid

and P2,i = (1− pe)pw
pw + pepid

for all possible values of i and j.

Let, ti = ln
(
PE,i(1−pw)
(1−PE,i)pw

)
and k =

(
1−pe
lpe

)
.

Therefore, ti = ln

(
(pw + pid)(1− pw)
pw(1− pw − pid)

)
= ln

(
1 + pid

pw(1− pw − pid)

)
.



99 6.5 Calculations and Observations

Let, t = ln

(
pnln
pele

)
+ ln

(
1− pw

1− PE,1

)
+ 4ln

(
1− pw

1− PE,2

)
+ 4ln

(
1− pw

1− PE,3

)

= ln(k) + ln

(
1− pw

1− pw − p1d

)
+ 4ln

(
1− pw

1− pw − p2d

)
+ 4ln

(
1− pw

1− pw − p3d

)

= ln

k (1 + p1d

1− pw − p1d

)(
1 + p2d

1− pw − p2d

)4 (
1 + p3d

1− pw − p3d

)4
 ,

6.5.1 Calculation of errors for each sensor and Obser-
vations

In this subsection, we calculate different error probabilities for the sensors, for
some specific values of parameters. We choose two set of values of p1, p2, p3, pw

and pc, one is for a good reliable network and other is for a less reliable network.
We choose five different values of pe. These values are chosen just to give
an idea of the errors and the tests. One can easily calculate different error
probabilities for any other values of the parameters.

Observations: A few immediate observations from the theoretical results
(which can be verified from Table 6.1) are as follows:

1. P1,i decreases when pi and pc increase and independent of pj when i 6= j.

2. P1,i increases when pe and pw increase.

3. P2,i decreases when pi, pe and pc increase and independent of pj when
i 6= j.

4. P2,i increases when pw increases.

5. If detection probability pi is low then type I error is close to 1. In that
case, the network is not reliable.

6. If pe is high but pi is small then other types of errors are high; that
means, there is no use of sensors. So when pe is high, we have to use
sensors with high detection probability (i.e. better quality sensors).
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Table 6.1: Calculation of errors for some values of the parameters

Calculation of type I error

p1 p2 p3 pc pw QE,1 QE,2 QE,3

0.9 0.5 0.3 0.9 0.1 0.1800 0.5000 0.6600
0.7 0.3 0.1 0.8 0.2 0.3800 0.6200 0.7400

When p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe P1,1 P1,2 P1,3 P2,1 P2,2 P2,3

0.1 0.0217 0.0581 0.0753 0.5233 0.6429 0.7258
0.2 0.0476 0.1220 0.1550 0.3279 0.4444 0.5405
0.3 0.0789 0.1923 0.2391 0.2215 0.3182 0.4070
0.4 0.1176 0.2702 0.3284 0.1546 0.2308 0.3061
0.5 0.1667 0.3571 0.4231 0.1087 0.1667 0.2273

When p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 0.0501 0.0793 0.0932 0.7438 0.8257 0.8738
0.2 0.1061 0.1623 0.1878 0.5634 0.6780 0.7547
0.3 0.1691 0.2493 0.2839 0.4294 0.5511 0.6422
0.4 0.2405 0.3407 0.3814 0.3261 0.4412 0.5357
0.5 0.3220 0.4366 0.4805 0.2439 0.3448 0.4348

7. When pe and pw are small then

P1,i = pe(1− pw − pid)
1− pw − pepid

= pe

(
1− pid

1− pw

)(
1− pepid

1− pw

)−1

≈ pe

(
1− pid

1− pw

)(
1 + pepid

1− pw

)
≈ pe

(
1− pid

1− pw
+ pepid

1− pw

)
.

6.5.2 Calculation for Bayes Test and Observations

Let, x1 = x11 and xi = xi1 + xi2 + xi3 + xi4 for i = 2, 3.

The Bayes test is to reject H0 when

λ1x1 + λ2x2 + λ3x3 < 1,

where, λi = ti/t with

ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2, 3.
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and t =

ln

k (1 + p1d

1− pw − p1d

)(
1 + p2d

1− pw − p2d

)4 (
1 + p3d

1− pw − p3d

)4
 ,

where k =
(

1−pe
lpe

)
.

Note that we always accept H0 if t ≤ 0

As ln

(
1 + pid

1− pw − pid

)
> 0, for all i,

t is negative if ln
(

lpe
1−pe

)
>

ln

(
1 + p1d

1− pw − p1d

)
+ 4ln

(
1 + p2d

1− pw − p2d

)
+ 4ln

(
1 + p3d

1− pw − p3d

)
,

i.e., if l >

(
1− pe
pe

)(
1 + p1d

1− pw − p1d

)(
1 + p2d

1− pw − p2d

)4 (
1 + p3d

1− pw − p3d

)4

.

In this case, the Bayes test is not applicable, i.e., if l (ratio of the losses) is
large then we have to use good quality sensors, i.e., sensor with high detection
probabilities such that p1d

1−pw−p1d
is so large that l <

(
1− pe
pe

)(
1 + p1d

1− pw − p1d

)(
1 + p2d

1− pw − p2d

)4 (
1 + p3d

1− pw − p3d

)4

.

Observations: A few immediate observations from the theoretical results
(which can be verified from Table 6.2) are as follows:

1. λi’s are the weights of xi’s in the Bayes test which means that the value
of λi tell us how much weight the base station has to give to xi while
taking the decision about the event square, e.g., consider the Bayes test
for p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9, pe = 0.1 and l = 5,

3.714x1 + 2.197x2 + 1.534x3 ≤ 5.789,

Here, λ1 : λ2 : λ3 ≈ 5 : 3 : 2 means 3 distance-two sensors is equivalent
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Table 6.2: Calculation of Bayes test for some values of the parameters

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe l t Bayes test
0.1 5 5.789 3.714x1 + 2.197x2 + 1.534x3 ≤ 5.789
0.3 5 4.439 3.714x1 + 2.197x2 + 1.534x3 ≤ 4.439
0.5 5 3.592 3.714x1 + 2.197x2 + 1.534x3 ≤ 3.592
0.1 20 4.403 3.714x1 + 2.197x2 + 1.534x3 ≤ 4.403
0.3 20 3.053 3.714x1 + 2.197x2 + 1.534x3 ≤ 3.053
0.5 20 2.205 3.714x1 + 2.197x2 + 1.534x3 ≤ 2.205

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 5 2.664 1.876x1 + 0.897x2 + 0.340x3 ≤ 2.664
0.3 5 1.314 1.876x1 + 0.897x2 + 0.340x3 ≤ 1.314
0.5 5 0.466 1.876x1 + 0.897x2 + 0.340x3 ≤ 0.466
0.1 20 1.277 1.876x1 + 0.897x2 + 0.340x3 ≤ 1.277
0.3 20 -0.073 1.876x1 + 0.897x2 + 0.340x3 ≤ −0.073
0.5 20 -0.920 1.876x1 + 0.897x2 + 0.340x3 ≤ −0.920

to 2 distance-one sensors in the context of detecting an event and so on.

2. Let λi/λk= ti/tk be the ratio of the weights which tells us how many Nk,j

nodes are equivalent to one Ni,j in the context of detecting an event.

3. t increases when pi and pc increase.

4. t decreases when pw, l and pe increase.

5. For p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8, l = 20 and
pe = 0.3 (resp. 0.5), the Bayes test is (Table 6.2) to reject H0 when
1.876x1 + 0.897x2 + 0.340x3 ≤ −0.0734 (resp. 1.876x1 + 0.897x2 +
0.340x3 ≤ −0.920), i.e., we accept H0 for all values of xi’s. So in this
situation the Bayes test is not applicable. This indicates that for small
values of pi’s and large values of l the Bayes test is not applicable. When l
is large we have to use sensors with high detection probabilities to decide
about the event square using Bayes test.
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6.5.3 Calculation for MP Test and Observations

The most powerful (MP) test of size α is to reject H0 when

t1x1 + t2x2 + t3x3 < λ

and reject H0 with probability k, when equality holds in place of less than,

where, ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2, 3.

λ and k can be found from the relation

Pr(t1x1 + t2x2 + t3x3 < λ) + k Pr(t1x1 + t2x2 + t3x3 = λ) = α.

Note that, x1 follows Ber(pw + p1d) and xi follows Bin(4, pw + pid) for i = 2, 3,
where Bin(n, p) is the Binomial distribution with parameters n and p. Also
xi’s are independent when it is known that H0 is true.

To simplify calculations, we take the approximate values of t1 : t2 : t3
and pw + pid. For p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9, we take
t1 : t2 : t3 ≈ 5 : 3 : 2 and pw+p1d ≈ 0.8, pw+p2d ≈ 0.5 and pw+p3d ≈ 0.35. And
for p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8, we take t1 : t2 : t3 ≈ 10 : 5 : 2
and pw + p1d ≈ 0.6, pw + p2d ≈ 0.4 and pw + p3d ≈ 0.25.

To calculate λ and k, we first set λ = 0 and calculate the probability of
t1x1 + t2x2 + t3x3 < λ,

if the probability is less than α, we increase the value of λ by 1 and do the
same as above. If, for λ = λ′ the probability is less than α, and for λ > λ′

the probability is greater than α, we take that λ′ as the value of λ, and then,
calculate

k = α− Pr(X < λ′)
Pr(X ≤ λ′)− Pr(X < λ′) ,

where, X = t1x1 + t2x2 + t3x3.

Observations: A few immediate observations from the theoretical results
(which can be verified from Table 6.3) are as follows:
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Table 6.3: Calculation of MP test for some choice of the parameters

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

α λ k MP test
0.900 8 0.04 5x1 + 3x2 + 2x3 ≤ 8
0.950 6 0.15 5x1 + 3x2 + 2x3 ≤ 6
0.975 5 0.19 5x1 + 3x2 + 2x3 ≤ 5
0.990 3 0.33 5x1 + 3x2 + 2x3 ≤ 3

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

α λ k MP test
0.900 7 0.24 10x1 + 5x2 + 2x3 ≤ 7
0.950 5 0.02 10x1 + 5x2 + 2x3 ≤ 5
0.975 2 0.39 10x1 + 5x2 + 2x3 ≤ 2
0.990 0 0.61 10x1 + 5x2 + 2x3 ≤ 0

1. ti’s are the weights of the xi’s in the MP test

5x1 + 3x2 + 2x3 ≤ 8, here λ1 : λ2 : λ3 ≈ 5 : 3 : 2,

roughly means 3 distance-two sensors is equivalent to 2 distance-one sen-
sors in the context of detecting event and so on.

2. ti is independent of pe and l.

3. ti increases when pi and pc increase.

4. ti decreases when pw increases.

5. As ti increases, critical region (set of all the values of xi’s for which we
reject the null hypothesis) is going to be smaller.

6. Let λi/λk= ti/tk be the ratio of the weights which tells us how many Nkj

node are equivalent to one Nij in the context of detecting an event.

7. For p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8 and α = 0.990 the
MP test is reject H0 when 10x1 + 5x2 + 2x3 ≤ 0, i.e., we accept H0 in
almost all cases. So in this situation, the MP test is not applicable. This
indicates that for small values of pi’s and large values of α, the MP test
is not applicable. When α is large we cannot use sensors with small pi
values for the MP test. Hence, when the size of the MP test is small we
have to use better sensors for MP test.
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6.6 Simulation Results

Table 6.4: Simulated and theoretical values of errors

Simulation of type I error

QE,1 qE,1 QE,2 qE,2 QE,3 qE,3

0.1800 0.1791 0.5000 0.4964 0.6600 0.6574
0.3800 0.3823 0.6200 0.6173 0.7400 0.7398

Simulation of other type of error

P1,1 p1,1 P1,2 p1,2 P1,3 p1,3

0.0217 0.0214 0.0581 0.0570 0.0753 0.0738
0.0476 0.0469 0.1219 0.1203 0.1549 0.1546
0.0789 0.0789 0.1923 0.1918 0.2391 0.2387
0.1176 0.1176 0.2703 0.2690 0.3283 0.3275
0.1667 0.1677 0.3571 0.3546 0.4231 0.4235
0.0501 0.0514 0.0793 0.0808 0.0932 0.0964
0.1061 0.1039 0.1623 0.1585 0.1878 0.1833
0.1691 0.1677 0.2493 0.2499 0.2839 0.2831
0.2405 0.2402 0.3407 0.3366 0.3814 0.3782
0.3220 0.3234 0.4366 0.4380 0.4805 0.4813

Simulation of another type of error

P2,1 p2,1 P2,2 p2,2 P2,3 p2,3

0.5233 0.5262 0.6429 0.6433 0.7286 0.7258
0.3279 0.3298 0.4444 0.4492 0.5405 0.5337
0.2215 0.2195 0.3182 0.3200 0.4070 0.4083
0.1546 0.1561 0.2308 0.2370 0.3061 0.3080
0.1087 0.1106 0.1667 0.1684 0.2273 0.2225
0.7438 0.7399 0.8257 0.8196 0.8738 0.8739
0.5634 0.5566 0.6780 0.6731 0.7547 0.7512
0.4294 0.4299 0.5512 0.5550 0.6422 0.6393
0.3261 0.3230 0.4412 0.4382 0.5357 0.5349
0.2439 0.2490 0.3448 0.3420 0.4348 0.4385

For m = 200, n = 250, we simulate the different probabilities and the tests
of the problem. We also simulate the number of times the Bayes test and
the MP test give the correct decision. The simulation is performed using a
C-program with required random numbers generated using the standard C-
library.

In the following table, qE,i denotes the corresponding simulated values of
QE,i and pk,i denotes the corresponding simulated values of Pk,i where k = 1, 2
and i = 1, 2, 3.

Observations: A few immediate observations from the theoretical results
(which can also be seen in Table 6.4 and Table 6.5) are as follows:
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1. The simulated and theoretical values of the different errors are close
enough; they differ by at most 2%. The simulated and theoretical values
of type I error of the MP test are differ by at most 0.3%.

2. The powers of the Bayes and MP test are very close for the same type I
error, e.g., for p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9 type I error
for the MP test and the Bayes test are 0.9014 and 0.9016, respectively,
and the corresponding type II errors are 0.9437 and 0.9436. This indi-
cates that both test are good and equally powerful. In case of the MP
test, the type I error (i.e., 1−α) has to be chosen before the test, but in
case of Bayes test if the ratio of the losses is known then type I error is
automatically fixed and the overall loss is minimized.

Table 6.5: Simulation of proportion of correct detections by Bayes and MP
tests

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe l 1− type I error (simulated) Power (simulated)
0.1 5 0.9016 0.9436
0.3 5 0.9417 0.9131
0.5 5 0.9819 0.7554
0.1 20 0.9465 0.9090
0.3 20 0.9866 0.7358
0.5 20 0.9931 0.7291

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 5 0.5927 0.8537
0.3 5 0.8520 0.5963
0.5 5 0.9610 0.2682
0.1 20 0.8367 0.6001
0.3 20 1.0000 0.0
0.5 20 1.0000 0.0

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

MP test α 1− type I error (simulated) Power (simulated)
0.900 0.9014 0.9437
0.950 0.9500 0.8814
0.975 0.9767 0.7897
0.990 0.9906 0.6231

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.900 0.8875 0.4985
0.950 0.9458 0.3296
0.975 0.9735 0.1856
0.990 0.9891 0.0882
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6.7 Some Special Cases

With fewer sensors, e.g., only center node or when sensors always send the
message correctly with probability 1, we can simplify the error probabilities
and the tests. In this subsections we discuss some special cases of that nature.

6.7.1 When sensors always send the message correctly

We have, pw = 0 and pc = 1. Hence, d = 1 since d = pc − pw.

The type I and type II errors for Nij are 1− pi and 0, respectively, and

P1,i = pe(1− pi)
1− pepi

≈ pe(1− pi)(1 + pepi) ≈ pe(1− pi),

for small pe and P2,i = 0 for all possible values of i, j. If

(
pn
pel

)(
1

1− p1

)(
1

1− p2

)4 ( 1
1− p3

)4

> 1,

then the Bayes test is to reject H0 only when x1 = x2 = x3 = 0. Otherwise,
the Bayes test is to accept H0 for all values of x1, x2, x3. Therefore, if

l >
pn
pe

(1− p1)−1(1− p2)−4(1− p3)−4,

the Bayes test is to reject H0 when x1 = x2 = x3 = 0 Otherwise, the Bayes
test is to accept H0 for all values of x1, x2, x3. If (1−p1)(1−p2)4(1−p3)4 ≤ α,

then the MP test of size α is to reject H0 when x1 = x2 = x3 = 0. Otherwise,
the MP test of size α is to accept H0 for all values of x1, x2, x3.

6.7.2 When the sensors can detect the event square
without any error

We have the detection probability is 1, i.e., pi = 1 for i = 1, 2, 3. Then the
type I and type II error for Ni,j are 1− pc and pw, respectively.

P1,i = pe(1− pw − d)
1− pw − ped

and P2,i = (1− pe)pw
pw + ped
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for all possible values of i and j.

The Bayes test is to reject H0 when

x1 + x2 + x3 <
ln
(

1−pe
lpe

)
+ 9ln

(
1 + d

1−pc

)
ln
(
1 + d

pw(1−pc)

) .

The MP test of size α is to reject H0 when x1 + x2 + x3 < λ and reject H0

with probability k, when x1 + x2 + x3 = λ.

λ and k can be found from the relation Pr(x1 + x2 + x3 < λ) + k Pr(x1 +
x2 + x3 = λ) = α, where x1 + x2 + x3 follows Bin(9, pc).

6.7.3 When one center and four distance-one sensors
can detect the event square, i.e., p3 = 0

If sensors have less sensing power (i.e., small sensing radius), then small num-
bers of sensors can detect the event square. Assume that only center and
four adjacent sensors can detect the event square. Then, we consider only five
squares: one center square and four one-distanced adjacent squares.

The Bayes test is to reject H0 when λ1x1 + λ2x2 < 1, where, for i = 1, 2,

λi =
ln
(
1 + pid

pw(1−pw−pid)

)
ln(1−pe

lpe
) + ln

(
1 + p1d

1−pw−p1d

)
+ 4ln

(
1 + p2d

1−pw−p2d

) .
The MP test of size α is to reject H0 when t1x1 + t2x2 < λ

and reject H0 with probability k, when t1x1 + t2x2 = λ,

where, ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2.

λ and k can be find from the relation

Pr(t1x1 + t2x2 < λ) + k Pr(t1x1 + t2x2 = λ) = α,

where x1 follows Ber(pw + p1d), x2 follows Bin(4, pw + p2d) and they are
independent when H0 is true.



109 6.8 When sensors are placed at the centers of regular hexagons

6.8 When sensors are placed at the centers of
regular hexagons

In this section, we assume the ROI is partitioned into congruent regular
hexagons (which are known as cells) with side a, i.e., we can think ROI as
a hexagonal grid with regular hexagonal cells. We consider that sensors are
placed at the center of each cell of the hexagonal grid. We assume that the
sensor network covers the entire ROI. Instead of three detection probabilities
(as in the case of square grid), we assume there are two detection probabilities
p1, p2, where p1 > p2. Note that there are six adjacent nodes of a particular
node, see Fig. 3.2. Hexagonal grid is better in the sense that less number of
sensors is required to cover the entire ROI, but square grid is mostly used in
literature.

We define Ni,j, xij, yij, xi, pe, pn, pc, pw, ti, l as in the case of square grid.
Hypotheses are also same as in the case of square grid. The Bayes test is to
reject H0 when

λ1x1 + λ2x2 < 1,where, λi =
ln
(
1 + pid

pw(1−pw−pid)

)
ln(c) , for i = 1, 2;

with c =
(

1− pe
lpe

)(
1 + p1d

1− pw − p1d

)(
1 + p2d

1− pw − p2d

)6

.

The MP test of size α is to reject H0 when t1x1 + t2x2 < λ and reject H0

with probability k, when t1x1 + t2x2 = λ,

where, ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2.

λ and k can be found from the relation

Pr(t1x1 + t2x2 < λ) + k Pr(t1x1 + t2x2 = λ) = α,

x1 follows Ber (pw + p1d), x2 follows Bin (6, pw + p2d) and x1 and x2 are
independent under H0.
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We find the Bayes test is to reject H0 when

t1x1 + t2x2 + t3x3 < t,

where, ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2, 3;

t = ln

(
1− pe
lpe

)
+ ln

(
1 + p1d

1− pw − p1d

)
+

4ln
(

1 + p2d

1− pw − p2d

)
+ 4ln

(
1 + p3d

1− pw − p3d

)

and λi = ti/t.

We observed t increases when pi and pc increase. t decreases when pw, l
and pe increase. For small values of pi’s and large values l the Bayes test is
not applicable. When l is large we cannot use sensors with small pi values.

The most powerful (MP) test of size α is reject H0 when

t1x1 + t2x2 + t3x3 < λ

and reject H0 with probability k, when

t1x1 + t2x2 + t3x3 = λ,

where, ti = ln

(
1 + pid

pw(1− pw − pid)

)
, i = 1, 2, 3.

λ and k can be find from the relation Pr(X < λ) + k Pr(X = λ) = α,

where, X = t1x1 + t2x2 + t3x3 and x1 follows Ber(pw + p1d), and xi follows
Bin(4, pw + pid) for i = 2, 3.
Also xi’s are independent when it is known that event occurs or not, i.e., H0

is true or not.

We observe ti independent of pe and l. ti increase when pi and pc increase.
ti decrease when pw increase. When ti increase critical region (set of all the
values of xi’s for which we reject the null hypothesis) decrease. For small
values of pi’s and large values α the MP test is not suitable. When α is large
we cannot use sensors with small pi values.



Chapter 7
Detection of event in faulty network
system

7.1 Introduction

In this chapter, we are interested in one particular query: determining event in
the environment (i.e., ROI) with a distinguishable characteristic. We assume
the ROI to be partitioned into suitable number of congruent regular hexago-
nal cells (i.e., we can think ROI as a regular hexagonal grid). This physical
structure of ROI is not a requirement for the theoretical analysis, we can do
similar analysis with other structures also. Suppose that sensors are placed
a priori at the center (which are known as nodes) of every hexagon of the
grid. We assume that the sensors are connected to its adjacent sensor nodes
in the sense that a hexagon will be strongly covered by its center node and
weakly covered by the adjacent nodes. If event occurs in the hexagon where a
particular sensor lies, then that particular sensor can detect the event with a
greater probability whereas, if event occurs in any adjacent hexagon, then the
particular sensor can detect the event with a lesser probability. Hence, only
one node (center node of the event hexagon) can detect the event hexagon with
greater probability, say p1, and adjacent nodes (six for interior nodes and less
for boundary nodes) can detect the event hexagon with lesser probability, say
p2, with p1 > p2. We assume that no other sensor can detect the event hexagon.
We also assume that if the event occurs then it occurs at only one hexagon of
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the grid which will be known as event hexagon and there is no fusion sensor.
All sensors can communicate with the base station and the base station takes
the decision about the query. In previous chapter we assume only one event
can occur at a particular hexagon (event hexagon) and all other hexagons are
normal, in this chapter we assume at most one event but this may be occurs
at any hexagon, not merely at a particular hexagon.

One fundamental challenge in the event detection problem for a sensor
network is the detection accuracy which is disturbed by the noise associated
with the detection and the reliability of sensor nodes. A sensor may fail to
detect the event due to natural obstruction or any other causes. After detecting
the event, a sensor can send false message to the base station due to some
technical reasons.

7.2 Statement of the Problem and Assump-
tions

In this section, we describe the problem in more specific terms and state the
assumptions that we make.

Sensors are deployed, or manually placed, over the ROI to perform event
detection (i.e., to detect whether an event of interest has happened or not) in
the ROI. If sensors are deployed from air then, using actuator-assisted sensor
placement or by movement-assisted sensor placement, sensors are so placed
that sensor network covers the entire ROI. This ROI is partitioned into suit-
able number of regular hexagons (i.e., we can think of the ROI as a regular
hexagonal grid), as shown in Figure 3.2. Sensors are placed, a priori, at every
center (which are known as nodes) of the regular hexagons. Sensors have two
detection probabilities. The sensor network covers the entire ROI and there is
only one event hexagon, as discussed before.

Each sensor node determines its location through beacon positioning mech-
anisms [7] or by exploiting the Global Positioning System (GPS). Through a
broadcast or acknowledge protocol, each sensor node is also able to locate the
neighbors within its communication radius. Sensors are also able to communi-
cate with the base station. The base station takes the decision by combining
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the information received from all the sensors.

There are two phases in the whole process. The first one is detection phase,
when the sensor at the center of a regular hexagon tries to detect the event.
The sensor at the center of the event hexagon can detect the event hexagon
with greater probability p1 and the sensors at the adjacent nodes (see Figure
3.2) can detect the event hexagon with lesser probability p2. We also assume
that there is a prior probability that a particular hexagon is an event hexagon.
The next phase is response phase, in which sensors send message to the base
station. Even if the event hexagon is detected by a faulty sensor, it may not
respond with some positive probability. Conversely, if an event hexagon is not
detected, or there is no event hexagon at all (i.e., ROI is normal), then also
a faulty sensor can send the wrong information to the base station with some
probability.

Each sensor sends information to the base station. As the sensors may send
wrong information, the base station takes the important role in identifying the
event hexagon. The base station will collect all the information and take a
decision about the event hexagon according to a rule which we have to find
out. Our job is to find a rule for the base station such that base station works
most efficiently.

7.2.1 Notations and Assumption

Our problem is to develop a strategy for the base station to take decision about
the event hexagon (i.e., which hexagon of the ROI is the event hexagon, if at
all). Let R be the set of all nodes and R′ be the set of all interior nodes (a
node which has six adjacent nodes). For N ∈ R, define B(N), as the set of
adjacent node(s) of N and let k(N) be the number of adjacent node(s) of N .
Hence, 0 ≤ k(N) ≤ 6. Call a node N interior if k(N) = 6. Let SN be the
sensor that is placed at the node N and HN be the hexagon where the node
N is placed (i.e., N is the center of HN). For N ∈ R, let XN denote the true
status of the node N . That is, XN = 1 if event occurs at HN , and 0 otherwise.
Also define YN = 0 if SN detects no event, and 1 if SN detects the event in
HN or HN ′ , for N ′ ∈ B(N). Finally define ZN = 0 if SN does not respond,
i.e., the sensor informs the base station that event does not occur at HN or
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HN ′ for N ′ ∈ B(N), and ZN = 1 if SN responds, i.e., the sensor SN informs
the base station that the event has occurred in HN or HN ′ , for N ′ ∈ B(N).

Now we make one natural assumption that, once the detection phase is
completed, the response of a sensor depends only on what it detects but not
on whether the event has actually occurred or not, i.e., P (ZN = k|YN , XN) =
P (ZN = k|YN), for k = 0, 1. We also assume that the sensors work indepen-
dently and identically.

Since we assume that there is at most one event hexagon, ∑N∈RXN = 1
or 0.
The possible true scenarios are, therefore, represented by the following |R|+ 1
different models:

M0 : (XN = 0 for all N ∈ R),

and, for each N ∈ R,

MN : (XN = 1 and XN ′ = 0 for all N ′ ∈ R \N).

Let Pr(M0) = P (ROI is normal) = pnorm

and, for all N ∈ R, Pr(MN) = Pr(event occurs at the hexagon HN) = pN .

In particular, we may assume pN ’s to be same for all N . We denote any prob-
ability under the modelM0 as PM0(·) and under the modelMN as PMN

(·).

We also make the followings assumptions:

1. For all N ∈ R, PM0(YN = 1) = 0 and PMN
(YN = 1) = p1.

2. For all N ′ ∈ B(N), PMN
(YN ′ = 1) = p2, and

for all N ′ ∈ R \ [B(N) ∪ {N}], PMN
(YN ′ = 1) = 0.

3. For all N ∈ R,P (ZN = 1|YN = 1) = pc and P (ZN = 1|YN = 0) = pw.

4. ZN and YN ′ are independent for N 6= N ′.

5. The responses from different nodes are independent under a particular
model, i.e., ZN ’s are independent underMN ′ for a fixed N ′ ∈ R.
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7.3 Theoretical Analysis of Fault Detection

In this section we discuss some theoretical results. In real situations, |R|
may be very large. Given the network of the sensor nodes and some prior
knowledge about the nature of event, one may have fairly good idea about the
set of feasible regions for the event. Formally, instead of all possible models,
one may be able to restrict to a set containing all the feasible models. For
example, if the event is known to take place in a particular region, we can
restrict our models accordingly.

7.3.1 Model Selection Approach

For all N ∈ R,PM0(ZN = 1)

= PM0(ZN = 1|YN = 0)PM0(YN = 0) + PM0(ZN = 1|YN = 1)PM0(YN = 1)

= P (ZN = 1|YN = 0)PM0(YN = 0) + P (ZN = 1|YN = 1)PM0(YN = 1) = pw.

Hence, under the model M0, ZN follows Ber(pw), for all N ∈ R, and the
likelihood of the data {ZN = zN , for all N ∈ R }, under the modelM0, is

L0 = PM0(ZN = zN , for all N ∈ R)

=
∏
N∈R

pzNw (1− pw)(1−zN ) = (pw)
∑

N∈R zN × (1− pw)
∑

N∈R (1−zN ).

So lnL0 = ΣN∈R zN ln pw + ΣN∈R (1− zN) ln(1− pw).

For any N ∈ R,we have PMN
(ZN = 1)

= PMN
(ZN = 1|YN = 0)PMN

(YN = 0)

+PMN
(ZN = 1|YN = 1)PMN

(YN = 1)

= P (ZN = 1|YN = 0)PMN
(YN = 0) + P (ZN = 1|YN = 1)PMN

(YN = 1)

= pw(1− p1) + pcp1 = p1(pc − pw) + pw = P1, say.

Hence, for all N ∈ R, underMN , ZN follows Ber(P1). Similarly, for all N ′ ∈
B(N), underMN , ZN ′ follows Ber(P2), where P2 = p2(pc−pw)+pw and, under
MN , ZN ′ follows Ber(pw) for allN ′ ∈ R\[B(N)∪{N}]. Note that P1 > P2 since
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p1 > p2. Hence the likelihood for the modelMN , given ZN ′ = zN ′ , N
′ ∈ R, is

LN = PMN
(ZN ′ = zN ′ , for all N ′ ∈ R)

= P zN
1 (1− P1)(1−zN )ΠN ′∈B(N)P

zN′
2 (1− P2)(1−zN′ )

×ΠN ′∈R\[B(N)∪{N}] p
zN′
w (1− pw)(1−zN′ )

= P zN
1 (1− P1)(1−zN )P

ΣN′∈B(N)zN′
2 (1− P2)ΣN′∈B(N)(1−zN′ )

×pΣN′∈R\[B(N)∪{N}]zN′
w (1− pw)ΣN′∈R\[B(N)∪{N}](1−zN′ ).

Let TN =
∑

N ′∈B(N)
ZN ′ , so that

∑
N ′∈B(N)

(1− ZN ′) = k(N)− TN

with the corresponding observed values denoted by

tN =
∑

N ′∈B(N)
zN ′ and

∑
N ′∈B(N)

(1− zN ′) = k(N)− tN .

Therefore, lnLN =

zN lnP1 + (1− zN) ln(1− P1) + tN lnP2 + (k(N)− tN) ln(1− P2)

+
∑

N ′∈R\[B(N)∪{N}]
zN ln pw +

∑
N ′∈R\[B(N)∪{N}]

(1− zN) ln(pw(1− pw))

= lnL0 + zN ln P1

pw
+ (1− zN) ln 1− P1

1− pw
+ tN ln P2

pw
+ (k(N)− tN) ln 1− P2

1− pw

= lnL0 + zN ln P1(1− pw)
pw(1− P1) + tN ln P2(1− pw)

pw(1− P2) + ln 1− P1

1− pw
+ k(N) ln 1− P2

1− pw
= a+ b(czN + tN − dk(N)), say,

where, a = lnL0 + ln 1− P1

1− pw
, b = ln P2(1− pw)

pw(1− P2) > 0,

c =
ln P1(1−pw)

pw(1−P1)

ln P2(1−pw)
pw(1−P2)

and d =
ln 1−pw

1−P2

ln P2(1−pw)
pw(1−P2)

are independent of N.

In the model selection approach, the model resulting in the maximum value
of the likelihood is selected. Note that, since there is no parameter being
estimated, this is equivalent to the well-known Akaike Information Crite-
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rion(AIC) [31]. Therefore, the base station will accept the modelM0 if

= ln 1− P1

1− pw
+ b(czN + tN − dk(N)) < 0, for all N ∈ R.

Otherwise, as b is positive, accept the modelMN for which (czN +tN−dk(N))
is maximum among all N ∈ R. If values of (czN + tN − dk(N)) are equal for
more than one N , then we can select one of the corresponding models with
equal probability. If we want to maximize the likelihood for the modelsMN

corresponding to the interior nodes only, so that k(N) is fixed, then we need
to maximize (czN + tN) among all N ∈ R.

7.3.2 Multiple Model Selection

Instead of selecting one particular model, one may want to select more than
one model with approximately similar log likelihood values to the maximum
one. We can consider the set of models

{MK : LK
maxN∈RLN

> C},

where 0 < C < 1 is a suitable constant close to 1. This C is usually chosen
according to the resource available. This is similar to the idea of Occam’s
window [64] in the context of Bayesian model selection [36]. This may be
interpreted as the interval estimation for the true model.

Note that LN is an increasing function of czN + tN−dk(N), as b is positive.
We consider only the following set of models

{MK : QK > C∗ ·maxN∈R QN},

where QN = czN + tN − dk(N), for all N ∈ R, with 0 < C∗ < 1. In particular,
if we consider the interior nodes only, then we consider the set of models given
by

{MK : czK + tK > C∗ ·maxN∈R{czN + tN}}.

We can select multiple models using some other criteria. One such may be
to select all the models (one or more) for which the maximum value of the
likelihood is attained. Let Nmax be the set of nodes corresponding to all these
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models, including ‘N = 0’ corresponding toM0 if it has the maximum value
of the likelihood. Then this method select all the models MN with N ∈
Nmax. By another criterion, one may select the modelsMN ′ , for N ′ ∈ Nmax ∪
[∪N∈NmaxB(N)]; that is, N ′ be a node in Nmax or any of the neighboring nodes
of a node in Nmax. Note that B(N) for N = 0 is the empty set. One can
combine these two types of criteria and come up with many others.

7.3.3 Bayesian Model Averaging

Bayesian model averaging is an effective method to solve a decision problem
when there are many alternative hypotheses or models, which are complicated
[36]. SupposeM1,M2, . . . ,Mk are the models considered and D denotes the
given data. The posterior probability for modelMk is given by

Pr(Mk|D) = Pr(D|Mk) Pr(Mk)∑Pr(D|Ml) Pr(Ml)
,

where Pr(D|Mk) denotes the probability of observing data D under the model
Mk (which is essentially the likelihood Lk underMk) and Pr(Mk) is the prior
probability thatMk is the true model (assuming one of the models is true).

In this work, the data D is {ZN = zN : N ∈ R} and the models are
M0,MN , N ∈ R as defined in Section 3.2. Hence, The posterior probability
for modelMN is

Pr(MN |ZN = zN , N ∈ R) = pNLN∑
l∈R plLl + pnormL0

,

and that for M0 is pnormL0∑
l∈R plLl + pnormL0

.

We select the model M0 if pnormL0 is greater than pNLN , for all N ∈ R;
otherwise, selectMN for which pNLN is maximum among all N ∈ R. Hence, if
pN ’s are all equal, then Bayesian approach is same as the likelihood approach.
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7.4 Some Important Considerations and Error
Probabilities

In this section, we consider some important issues related to the problem of
fault detection and the proposed methodology including calculation of errors
(e.g., false detection, etc.) and detection probabilities.

The following probabilities give some idea about the role of neighboring
nodes, along with the center node, in detection, or false detection, of an event.
For example, PM0(TN = 0, ZN = 1) gives the probability of a false detection by
the N th node, and not by the neighboring nodes, while PMN

(TN = 6, ZN = 0)
gives the probability of a false negative by the N th node, with all the neigh-
boring nodes detecting the event. Since, given a particular model, TN and
ZN are independent, calculation of such probabilities is simple as given in the
following. For any N ∈ R and i = 0, 1, . . . , k(N),

1. PM0(TN = i, ZN = 0) =
(
k(N)
i

)
piw(1− pw)k(N)−i+1

2. PM0(TN = i, ZN = 1) =
(
k(N)
i

)
pi+1
w (1− pw)k(N)−i

3. PMN
(TN = i, ZN = 0) =

(
k(N)
i

)
P i

2(1− P2)k(N)−i(1− P1)

4. PMN
(TN = i, ZN = 1) =

(
k(N)
i

)
P i

2(1− P2)k(N)−iP1.

Note that, for N ∈ R,PM0(LN > L0) = PM0(lnLN > lnL0) =

PM0

(
ZN ln P1(1− pw)

pw(1− P1) + TN ln P2(1− pw)
pw(1− P2) + ln 1− P1

1− pw
+ k ln 1− P2

1− pw
> 0

)

= PM0

(
ZN ln P1(1− pw)

pw(1− P1) + TN ln P2(1− pw)
pw(1− P2) > k ln 1− pw

1− P2
+ ln 1− pw

1− P1

)
,

where, k = K(N).

which can be numerically obtained using the joint distribution of TN and
ZN under the modelM0. The maximum of these probabilities over all N gives
a lower bound for the probability that a node is considered to be an event
node when the ROI is normal. On the other hand, the sum over all N gives
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an upper bound for the same. Similarly, for N ∈ R, PMN
(LN < L0) =

PMN

(
ZN ln P1(1− pw)

pw(1− P1) + TN ln P2(1− pw)
pw(1− P2) < k(N) ln 1− pw

1− P2
+ ln 1− pw

1− P1

)
,

which can be again numerically obtained using the joint distribution of TN and
ZN under the model MN . This probability gives some idea about the error
that, when N th node is the event node and it is not detected.

For N,N ′ ∈ R, N 6= N ′, PMN
(LN ′ > LN)

= PMN

(
(ZN ′ − ZN)lnP1(1− pw)

pw(1− P1) + (TN ′ − TN)lnP2(1− pw)
pw(1− P2) >

(k(N ′)− k(N))ln1− pw
1− P2

)
.

As noted in Section 7.3.1, we select the modelMN for which QN is the maxi-
mum, for N ∈ R. The random variable QN is, therefore, of some interest, the
distribution of which under different models is useful in calculating many error
probabilities. We first find the distribution of QN under the modelMN . Note
that QN takes values ci + j − dk(N), corresponding to ZN = i and TN = j,
for i = 0, 1, and j = 0, 1, 2, . . . , k(N). Assume that, for convenience, the val-
ues of QN for different i and j are all distinct. Therefore, for i = 0, 1 and
j = 0, 1, . . . , k(N),

PMN
(QN = ci+ j − dk(N)) =(

k(N)
j

)
(P1)i(1− P1)(1−i)(P2)j(1− P2)(k(N)−j)

and, PM0 (QN = ci+ j − dk(N)) =
(
k(N)
j

)
(pw)i+j(1− pw)(1−i+k(N)−j).

For N ′ ∈ B(N), or N ′ ∈ R \ [B(N) ∪ {N}], one can find PMN′
(QN = ci +

j−dk(N)) in similar manner, although the calculation is very tedious as there
are many sub-cases. Ideally, one is interested in probability of errors occurring
at the level of base station. For example, the two important errors are: (1)
not selectingM0 whenM0 is true (false positive), and (2) selectingM0 when
MN is true for some N ∈ R (false negative). Theoretical calculation of these
error probabilities is complicated. We, therefore, use simulation to estimate
these and similar error probabilities.
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7.5 Simulation Study

We consider a 32 × 32 hexagonal grid and we run the programme 10000 times.
The simulation is performed using the C-code, and required random numbers
are generated using the standard C-library.

In our simulation study, we consider different criteria, as discussed in Sec-
tions 7.3.1 and 7.3.2, for estimating the error probabilities, or equivalently, the
success rate. First consider the probability of selecting M0, when it is true.
Let S1 denote the proportion of correct detection of the normal situation, when
modelM0 is true, using the model selection method. That is, S1 gives an esti-
mate of PM0(0 ∈ Nmax and 0 is selected by randomization). Then 1−S1 gives
an estimate of the false positive rate.

WhenMN is true for some N ∈ R, let S2 denote the proportion of correct
decision for the event node using the model selection method of Section 7.3.1,
so that it estimates PMN

(N ∈ Nmax and is selected by randomization). Note
that, for each simulation run, the event hexagon is chosen randomly so that
S2 gives an average value over all N . In this context, this probability is same
for all the interior nodes. Then, 1− S2 gives an estimate of the corresponding
error probability of not selectingMN , when it is true.

Note that, in this problem of fault detection with a single event node, the
likelihood value, for a given observed data configuration, may be equal for more
than one model. Therefore, quite often, the maximum value of the likelihood
may be attained by more than one model. The model selection method of
Section 7.3.1, which selects one of these models randomly in such cases, may
often not select the correct model. Therefore, the method of Section 7.3.2,
which selects more than one model having similar likelihood value, may be
preferred and will have a better chance of selecting the correct model. We now
consider some of those methods in the following.

Let us first consider the method in which all the models corresponding to
the maximum value of the likelihood are selected. Let S3 denote the proportion
of correct selection of the modelMN , when it is true, by this method. Then
S3 estimates the probability PMN

(N ∈ Nmax), which is always more than or
equal to the quantity estimated by S2, as remarked before. We also consider the
method in which all the models having maximum likelihood along with their
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Table 7.1: Values of P1, P2, c and d for pc = 0.9

parameters pw = 0.1 pw = 0.2

p1 p2 P1 P2 c d P1 P2 c d

0.3 0.66 0.34 1.865 0.202 0.69 0.41 2.139 0.298
0.7 0.4 0.66 0.42 1.526 0.234 0.69 0.48 1.674 0.330

0.5 0.66 0.50 1.302 0.268 0.69 0.55 1.378 0.363
0.6 0.66 0.58 1.135 0.302 0.69 0.62 1.166 0.397
0.3 0.74 0.34 2.114 0.202 0.76 0.41 2.484 0.298

0.8 0.4 0.74 0.42 1.730 0.234 0.76 0.48 1.944 0.330
0.5 0.74 0.50 1.476 0.268 0.76 0.55 1.600 0.363
0.6 0.74 0.58 1.287 0.302 0.76 0.62 1.354 0.397
0.3 0.82 0.34 0.241 0.202 0.83 0.41 2.907 0.298

0.9 0.4 0.82 0.42 1.981 0.234 0.83 0.48 2.275 0.330
0.5 0.82 0.50 1.690 0.268 0.83 0.55 1.873 0.363
0.6 0.82 0.58 1.474 0.302 0.83 0.62 1.584 0.397

neighborhood models are selected. A modelMN ′ is a neighborhood model of
the modelMN if N ′ is a neighboring node of N . If S4 denotes the proportion
of correct selection of the model MN , when it is true, by this method, then
S4 estimates PMN

(N ∈ Nmax ∪ {∪N ′∈NmaxB(N ′)}). Clearly, S4 ≥ S3 ≥ S2.
Similarly, if S5 denotes the proportion of correct selection of the modelMN ,
when it is true, by selecting all those models with likelihood value being more
than 90% of the maximum likelihood (that is, the method of Section 7.3.2 with
C = 0.9) then S5 estimates the probability PMN

(LN > 0.9Lmax) with Lmax

denoting the maximum value of the likelihood.

Suppose Ni denotes the average number of selected nodes to be searched
corresponding to Si, i = 1, 2, . . . , 5. Clearly, N1 = 1− S1 because we need no
search whenM0 is selected. When an event occurs and we consider only one
N from Nmax, we need at most one search (since no search is needed ifM0 is
selected) and we have N2 ≤ 1. In our simulation, we find N2 = 1 in all the
cases; that means, in simulation, M0 has not been selected when the event
occurred. Note that N3 ≥ 1 since we consider all N ’s in Nmax for searching.
Again, as before, N4 > N3 ≥ 1 ≥ N2. Also, by definition, N5 ≥ 1. Table 7.3
presents the different Si’s and Ni’s based on simulation for different values of
p1, p2, pc and pw with p1 and pc taking values 0.9 and 0.99, pw taking values 0.01
and 0.001 and p2 taking values 0.0, 0.3, 0.4, 0.5 and 0.6. The choice of p1 and
pc reflects the corresponding high probability, whereas that of pw reflects small
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Table 7.2: Simulation of estimated success probabilities and number of searches
for different threshold values (C) and some values of the parameters with
pc = p1 = 0.9

other parameters C = 0.6 C = 0.7 C = 0.8 C = 0.9

p2 pw success search success search success search success search
0.0 0.01 0.81 18.21 0.81 18.25 0.81 18.21 0.81 18.17
0.3 0.01 0.87 13.72 0.78 9.13 0.75 6.64 0.73 5.70
0.4 0.01 0.89 8.86 0.85 6.47 0.82 5.46 0.80 5.12
0.5 0.01 0.93 6.88 0.90 5.69 0.89 5.05 0.86 4.88
0.6 0.01 0.97 5.27 0.96 4.91 0.93 4.04 0.92 3.90
0.0 0.001 0.80 3.27 0.80 3.21 0.80 3.17 0.80 3.18
0.3 0.001 0.91 4.15 0.91 3.65 0.87 3.31 0.86 3.06
0.4 0.001 0.94 4.25 0.94 3.69 0.93 3.31 0.89 3.03
0.5 0.001 0.97 4.24 0.97 3.64 0.96 3.26 0.93 2.96
0.6 0.001 0.99 3.96 0.98 3.18 0.98 3.04 0.96 2.79

probability, which is desirable in a good sensor. Since the primary interest
is to study the effect of detection by neighboring nodes, we consider p2 as 0
(which means there is no effect of neighboring nodes) and some positive values
less than p1.

Note that the probability of correct detection underM0 depends only on
pw. This is also evident in Table 7.3. Intuitively, if pw is high then the pro-
portion S1 of correct detection in normal situation is low. In Table 7.3, we see
that S1 is 0 for pw = 0.01, varies from 0.35 to 0.37 for pw = 0.001 and varies
from 0.90 to 0.91 for pw = 0.0001 (not shown in Table 7.3). If we consider
smaller values of pw then the success probability S1 will be higher. Hence pw
must be low as the number of hexagons is high to get better results in the
normal situation.

We see that the estimated false negative rate, that is an estimate of
PMN

(M0 is selected), is often 0 in our simulation (not shown in Table 7.3).
This is because, if the event occurs at N , then detection of the event by at least
one of the nodes belonging to {N} ∪ B(N) is highly probable. Furthermore,
since the grid size is large, one of the nodes belonging to R\({N}∪B(N)) may
respond wrongly, though it cannot detect the event. So, underMN , there is a
small probability to select the ROI as normal. If we take pw and the detection
probabilities p1 and p2 to be very small, then we may get some positive false
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negative rate but this is not a desired condition for a good sensor.

From simulation, we see that, as p2 increases (for positive p2), Si values
increase whereas Ni decrease. As p2 increases, it helps to differentiate between
the likelihood values resulting in lower cardinality of the setNmax and lower val-
ues of Ni’s. However, since the neighboring nodes help to detect the event, the
success probability increases. From simulation, we find that, as p1 increases,
success probabilities also increase, but the effect of p2 is more prominent than
that of p1. On the other hand, success probabilities also change with pw and
pc. Since p2 = 0 means P2 = pw, so there is little variability in the likelihood
values leading to larger size of Nmax. To increase the success probability we
consider a threshold value C where 0 < C < 1. If Lmax be the maximum like-
lihood among all the likelihoods, consider the set of nodes having likelihood
greater than C.Lmax and we search whether the event node belongs to this set
or not.

When pw = 0.01, the effect of p2 on S3, S4, S5 and N3, N4, N5 seems to be
significant, whereas the same cannot be said for pw = 0.001. There is sudden
change in Si’s and Ni’s, when we shift from p2 = 0 to p2 = 0.3, for pw = 0.01,
but not pw = 0.001. So, when pw is small, the effect of the neighborhood seems
to be less.

When pw = 0.01 Ni’s values are quite high and Si’s are more for p2 = 0
than that of p2 = 0.3. But When pw = 0.001 Ni’s values are more and Si’s are
less for p2 = 0 than that of p2 = 0.3.

The values of S3 and S4 are very similar for different values of the parame-
ters; but large increment in N4 than N3 suggests that the idea of neighboring
search is not effective. But S3 is much higher than S2; so the method of search-
ing all the nodes in Nmax is a better idea than that of searching a random node
from Nmax.

We estimate the success probability PMN (LN > C.Lmax) by simulation for
different values of the threshold C ranging from 0.5 to 0.9 (see Table 7.2).
Note that S5 corresponds to the threshold value C = 0.9. We consider p1 =
0.99, pw = 0.001, pc = 0.9 and four values of p2 = 0.3, 0.4, 0.5, 0.6. From Table
7.2, we see that the success probability increases as the threshold value C
decreases and p2 increases. The number of search decreases with C and p2.
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7.6 Discussion

One prime object is to show the effect of the neighboring nodes in detection of
an event. In this section, we discuss the role of the neighboring nodes, some
other related issues and make remarks.

7.6.1 Role of the neighboring nodes

Since lnLN = a + b(czN + tN − dk(N)), where a, b, c and d are as defined
in Section 7.3.1, c denotes the weight of the central node compared to the
neighboring nodes in the corresponding likelihood. Note that, since P1 > P2,
we have c > 1 and, if c is close to 1, then the six neighboring nodes are as
important as the event node. So, as the value of c increases, the importance
of the neighboring nodes decreases. Also, d gives some idea about the role
of the number of adjacent nodes, i.e., k(N). Recall that P1 and P2 are the
probabilities of responding (i.e., reporting the node N as the event hexagon)
by the sensors SN and SN ′ , respectively, when N is the event hexagon and
N ′ is a neighboring node of N . So, we numerically calculate the quantities
P1, P2, c and d for some values of the parameters (see Table 7.1).

From the theoretical results in Section 7.3.1 we see that, P1 and c increase
as p1 increases, while P2 and d do not depend on p1. On the other hand, P2

increases and c, d decreases with p2. Also P1 is independent of p2. Therefore,
the importance of the neighboring nodes decreases with p1 and increases with
p2 (see Table 7.1), as expected.

7.6.2 Estimation of the parameters

In practice, the parameters p1, p2, pw and pc may be unknown. We can, however
estimate the parameters by some experimentation.

Note that, underM0, ZN follows Ber(pw) for all N ∈ R. Hence, pw is the
expected value of ZN givenM0. So we perform the experiment by keeping the
ROI normal. The proportion of ZN ’s having value 1 gives an estimate of pw.
Repeat this experiment several times so that the average of the proportions
over the repeated experiments can be taken as an estimate of pw.
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Note that, p1 is the expected value of YN underMN . So, we perform the
experiment by causing an event in some node N of the ROI. The proportion
of YN ’s having value 1 gives an estimate of p1. Repeat this experiment several
times so that the average of the proportions over the repeated experiments can
be taken as an estimate of p1. Similar experiments will give estimates of p2

and pc as well.

7.6.3 Incorporation of heterogeneity and uncertainty in
parameters

Let θ = (p1, p2, pc, pw) denote the set of parameters, which has been assumed
to be the same for all the nodes. While, in practice there is no reason why the
parameters should be same for all the nodes, it is also not clear how these would
be different across N . This unexplained heterogeneity can be incorporated
by assuming the θ’s, for different N , to be independent realizations from a
common distribution.

Let θN = (p1N , p2N , pcN , pwN) denote the set of parameters for node N .
We assume that θN , N ∈ R, are i.i.d. from some distribution, say, g(θ).
Also assume that, given θN , N ∈ R, ZN ’s are independent. Note that
g(θ) denotes the joint distribution of the four parameters. For simplicity,
we may assume them to be independent so that g(θ) can be written as
g(θ) = g1(p1)g2(p2)gc(pc)gw(pw). In this situation, the likelihood for the model
M0 is

ΠN∈R

∫
pzNwN(1− pwN)(1−zN )gw(pwN)dpwN ,

where the integration is over the range of pwN . Similarly, the likelihood for the
modelMN can be written as

ΠN ′∈R

∫
L

(N ′)
N (θN)g(θN)dθN ,

where the integral is over the four-dimensional space given by the range of θN ,
and L(N ′)

N (θN) is the contribution of the N ′th node to the likelihood LN , given
the value θN , as described in Section 7.3.1.

Similar technique can also be used to incorporate parameter uncertainty.
Even though the parameters can be assumed to be same for all the nodes, there
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may be reasonable uncertainty about the constancy of the parameter values.
As in the Bayesian paradigm, the set of parameters may be assumed to be a
realization from a distribution, say, g(θ). Then, the likelihoods for the model
M0 andMN are
∫

ΠN∈R p
zN
w (1− pw)(1−zN )gθ(pw)dpw and

∫
ΠN ′∈RL

(N ′)
N (θ)g(θ)dθ respectively.

The choice of g(θ) may be a difficult one. However, sometimes there may
be specific information available regarding the distribution of θ, which can be
incorporated in the model.

7.6.4 When more sensors can detect the event square

We may consider the situation when sensing radii are larger and more sensors
can detect the event hexagon but with different probabilities. With respect to
a particular node, classify the remaining nodes with respect to the probability
of detecting the event at that node, which may as well depend on the distance
from the particular node. Suppose that the sensors in the i-th class detect the
event hexagon with probability pi, i = 1, 2, 3, . . .. The theoretical analysis is
similar, but having more probability terms.
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Table 7.3: Simulation of estimated probabilities for some values of parameters

other parameters Simulation of different probabilities with pc = 0.9

p1 p2 pw S1 S2 S3 N3 S4 N4 S5 N5

0.9 0.0 0.01 0.00 0.08 0.81 18.16 0.81 59.85 0.82 18.17
0.9 0.3 0.01 0.00 0.47 0.69 5.44 0.70 14.81 0.73 5.70
0.9 0.4 0.01 0.00 0.60 0.79 5.11 0.78 13.51 0.80 5.12
0.9 0.5 0.01 0.00 0.70 0.85 4.64 0.85 11.50 0.86 4.88
0.9 0.6 0.01 0.00 0.79 0.90 3.82 0.91 08.18 0.92 3.90
0.9 0.0 0.001 0.35 0.50 0.81 3.17 0.81 7.17 0.81 3.18
0.9 0.3 0.001 0.36 0.59 0.82 3.03 0.83 6.34 0.86 3.06
0.9 0.4 0.001 0.35 0.67 0.87 2.89 0.87 6.18 0.89 3.03
0.9 0.5 0.001 0.36 0.75 0.90 2.89 0.89 5.85 0.93 2.96
0.9 0.6 0.001 0.36 0.83 0.94 2.74 0.93 5.33 0.96 2.79
0.99 0.0 0.01 0.00 0.08 0.89 17.43 0.90 56.20 0.89 17.70
0.99 0.3 0.01 0.00 0.51 0.73 5.18 0.73 12.98 0.79 5.77
0.99 0.4 0.01 0.00 0.62 0.81 5.09 0.82 13.01 0.84 5.21
0.99 0.5 0.01 0.00 0.73 0.88 4.97 0.88 12.69 0.89 5.04
0.99 0.6 0.01 0.00 0.81 0.92 3.66 0.92 7.35 0.93 3.57
0.99 0.0 0.001 0.35 0.57 0.89 3.19 0.89 6.69 0.89 3.20
0.99 0.3 0.001 0.35 0.62 0.88 2.99 0.87 6.00 0.90 3.02
0.99 0.4 0.001 0.36 0.70 0.90 2.91 0.91 5.83 0.93 2.97
0.99 0.5 0.001 0.36 0.79 0.93 2.82 0.94 5.67 0.95 2.83
0.99 0.6 0.001 0.36 0.84 0.95 2.75 0.95 5.31 0.97 2.68

other parameters Simulation of different probabilities with pc = 0.99

p1 p2 pw S1 S2 S3 N3 S4 N4 S5 N5

0.9 0.0 0.01 0.00 0.08 0.90 18.2 0.89 55.62 0.90 17.58
0.9 0.3 0.01 0.00 0.54 0.76 5.14 0.76 13.08 0.79 5.64
0.9 0.4 0.01 0.00 0.67 0.85 5.05 0.85 12.92 0.87 5.12
0.9 0.5 0.01 0.00 0.77 0.91 4.86 0.90 12.10 0.91 5.02
0.9 0.6 0.01 0.00 0.86 0.94 3.57 0.93 7.24 0.95 3.57
0.9 0.0 0.001 0.36 0.57 0.90 3.18 0.89 6.61 0.89 3.19
0.9 0.3 0.001 0.36 0.65 0.88 2.98 0.89 6.34 0.92 3.02
0.9 0.4 0.001 0.36 0.73 0.92 2.87 0.92 5.91 0.94 2.91
0.9 0.5 0.001 0.35 0.81 0.94 2.81 0.94 5.51 0.96 2.82
0.9 0.6 0.001 0.37 0.88 0.96 2.72 0.96 5.24 0.97 2.90
0.99 0.0 0.01 0.00 0.09 0.98 16.9 0.98 51.40 0.98 17.6
0.99 0.3 0.01 0.00 0.58 0.83 5.66 0.83 14.73 0.87 5.69
0.99 0.4 0.01 0.00 0.69 0.90 5.43 0.91 14.38 0.92 5.69
0.99 0.5 0.01 0.00 0.80 0.94 4.61 0.94 11.19 0.95 4.73
0.99 0.6 0.01 0.00 0.87 0.96 3.26 0.97 6.26 0.96 3.35
0.99 0.0 0.001 0.35 0.62 0.98 3.20 0.98 6.32 0.98 3.28
0.99 0.3 0.001 0.36 0.69 0.94 2.90 0.94 5.88 0.97 3.00
0.99 0.4 0.001 0.36 0.76 0.95 2.89 0.96 5.59 0.98 2.85
0.99 0.5 0.001 0.36 0.83 0.97 2.70 0.97 5.48 0.98 2.80
0.99 0.6 0.001 0.36 0.89 0.98 2.68 0.98 5.19 0.99 2.69



Chapter 8
Detection of Events in General
Situation

8.1 Introduction

In this chapter, we are interested in one particular query: determining an
event in the environment (i.e., ROI) with a distinguishable characteristic. We
assume the ROI is to be partitioned into suitable number of congruent regular
hexagonal cells (i.e., we can consider ROI as a regular hexagonal grid). This
physical structure of ROI is not a requirement for the theoretical analysis,
we can also do the similar analysis with other structures like a square grid.
We choose a hexagonal grid since it is an optimal placement of sensors in
some sense [76]. Suppose that sensors are placed a priori at the center (which
are known as nodes) of every hexagon of the grid. We assume that if an
event occurs in the hexagon (call it the event hexagon) where a particular
sensor lies, then that particular sensor can detect that event with a greater
probability; whereas, if an event occurs in any adjacent hexagon, then the
particular sensor can detect that event with a lesser probability (due to greater
distance). Hence, only one node (center node of the event hexagon) can detect
an event hexagon (where an event occurs) with greater probability, say p1, and
adjacent nodes (six for interior nodes and less for boundary nodes) can detect
the event hexagon with lesser probability, say p2, with p1 > p2, see Figure 3.2.
We assume that no other sensor can detect an event hexagon. We also assume
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that there are one or more event hexagons in ROI (all the hexagons may be
event hexagons). We also assume there is no fusion sensor and all the sensors
can communicate with the base station and the base station takes the decision
about the query. As an example, consider a network of devices that are capable
of sensing mines or bombs, if we assume that mines or bombs are placed over
a region (ROI). Information from these devices can be sent to a nearby police
station, or a central facility (the base station). Then, an important query in
this situation could be whether a particular hexagon is an event hexagon or
not (i.e., whether mines or bombs are placed there or not).

If at most n events occur in the ROI then there will be 1+|R|+
(
R
2

)
+· · ·+

(
R
n

)
models, where |R| is the number of hexagons in ROI. If number of models is
not so large then we can apply model selection or multiple model selection
techniques using likelihood, also Bayesian model averaging method can be
used as in the case of n = 1 (see Chapter 7). But if n is large then the number
of models is also very large; and hence calculation of all the likelihood values
is infeasible; in that can these techniques can not be applied.

In our theoretical analysis, the sensor fault probabilities are introduced into
the optimal event detection process. We apply near-optimal model selection
approach and a new method to find a solution of the problem. We also dis-
cuss two interesting situations. We simulate different situations with different
parameters.

We introduce two detection probabilities, p1 and p2, one for the center node
and other for the adjacent nodes. Even if the center node fails to detect the
event, the adjacent nodes may detect an event, and vice versa. We consider
these probabilities and show that, in various situations, the adjacent nodes play
a key role to detect the event. One can introduce more detection probabilities
and analyze the situation in similar manner. We introduce the probability
model in two different stages; firstly, when a sensor detects the event and,
secondly, when a sensor sends the message to the base station. We assume the
ROI is an hexagonal grid since it is optimal in some sense (see Chapter 3). We
consider the most general situation of fault detection problem.
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N0

N1

N4

N2

N3

N6

N5

Figure 8.1: ROI partitioned into regular hexagons and Nodes placed in centers
(Ni, i = 1, 2, . . . , 6 are the adjacent nodes of N0)

8.2 Statement of the Problem and Assump-
tions

In this section, we describe the problem in more specific terms and state the
assumptions that we make.

Sensors are deployed, or manually placed, over the ROI to perform event
detection (i.e., to detect whether an event of interest has happened or not)
in the ROI. If sensors are deployed from air then sensors are so placed (using
actuator-assisted sensor placement or by movement-assisted sensor placement)
that the sensor network covers the entire ROI. The ROI is partitioned into a
suitable number of regular hexagons (i.e., we can think of the ROI as a regular
hexagonal grid), as shown in Figure 8.1. Sensors are placed a priori at every
center (which are known as nodes) of the regular hexagons. Sensors have two
detection probabilities. There may be any number of event hexagons and we
assume that there is a prior probability that a particular hexagon is an event
hexagon.

Through a broadcast or acknowledge protocol, each sensor node is also
able to locate the neighbors within its communication radius. All sensors can
communicate with the base station and the base station takes the decision by
combining the information received from all the sensors.

There are two phases in the whole process. The first one is the detection
phase, when the sensor at the center of a regular hexagon tries to detect an
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event. The next phase is response phase, in which sensors send messages to
the base station. Even if the event hexagon is detected by a sensor, it may
not respond due to some technical fault, with some positive probability. On
the other hand, if event hexagon is not detected, or there is no event in the
detection range, then also a faulty sensor can send the wrong information to
the base station with positive probability.

As the sensors may send wrong information to the base station, the base
station takes an important role in identifying the event hexagon. The base
station will collect all the information and take a decision about event hexagons
according to some rule which we are going to discuss. Our objective is to find
a rule for the base station such that the base station works most efficiently.

8.2.1 Notations and Assumptions

Our problem is to develop a strategy for the base station to take decision about
event hexagons (i.e., which hexagon of the ROI is the event hexagon, if at all).
Let R be the set of all nodes and R′ be the set of all interior nodes (the nodes
which have six adjacent nodes). For N ∈ R, define B(N), as the set of adjacent
node(s) of N and k(N) = |B(N)|, be the number of adjacent node(s) of N .
Hence, 0 ≤ k(N) ≤ 6. Let SN be the sensor which is placed at the node N and
HN be the hexagon where the node N is placed (i.e., N is the center of HN).
For N ∈ R, let XN denote the true status of the node N . That is, XN = 1
if event occurs at HN , and 0 otherwise. Also define YN = 0 if SN detects no
event, and 1 if SN detects at least one event in HN or HN ′ , for N ′ ∈ B(N).
Finally define ZN = 0 if SN does not respond, i.e., the sensor informs the base
station that event does not occur at HN or HN ′ for N ′ ∈ B(N), and ZN = 1
if SN responds, i.e., the sensor SN informs the base station that at least one
event has occurred in HN or HN ′ , for N ′ ∈ B(N).

Now we make a natural assumption that, once the detection phase is com-
pleted, the response of a sensor depends only on what it detects but not on
whether the event has actually occurred or not, i.e., P (ZN = k|YN , XN) =
P (ZN = k|YN), for k = 0, 1. We also assume that the sensors work indepen-
dently and hence the XN ’s are independent.

Since we assume that there are arbitrarily number of event hexagons, the
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possible true scenarios are, therefore, represented by the following 2|R| different
models: for S ⊂ R,

MS : (XN = 1 for all N ∈ S and XN = 0 for all N ∈ R \ S).

Let P(Mφ) = P (ROI is normal) = pnorm and
for all N ∈ R, P(an event occurs at the hexagon HN) = pN . In particular, we
may assume pN ’s to be same for all N . We denote any probability under the
modelMS as PS(·). We also make the followings assumptions:

1. For all N ∈ R, Pφ(YN = 1) = 0 and P{N}(YN = 1) = p1.

2. For all N ′ ∈ B(N), P{N}(YN ′ = 1) = p2, and
for all N ′ ∈ R \ [B(N) ∪ {N}], P{N}(YN ′ = 1) = 0.

3. For all N ∈ R,P (ZN = 1|YN = 1) = pc and P (ZN = 1|YN = 0) = pw.

4. ZN and YN ′ are independent for N 6= N ′.

5. The responses from different nodes are independent under a particular
model, i.e., ZN ’s are independent underM{N ′} for a fixed N ′ ∈ R.

8.3 Theoretical Analysis of fault Detection

In this section we discuss some theoretical results. For any two subsets S1 and
S2 of R we define distance between the two modelsMS1 andMS2 as |S1∆S2|.
Note that this distance is a metric on the set of all models. For a modelMS

we define the neighborhood models of that model as set of all modelsMS′ for
which distance betweenMS andMS′ is 1.
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8.3.1 Model Selection Approach

For all S ⊂ R, define PN |S = PS(ZN = 1).

Hence, PN |S = PS(ZN = 1)

= PS(ZN = 1|YN = 0)PS(YN = 0) + PS(ZN = 1|YN = 1)PS(YN = 1)

= P (ZN = 1|YN = 0)PS(YN = 0) + P (ZN = 1|YN = 1)PS(YN = 1)

= pw(1− p1)|S∩{N}|(1− p2)|S∩B(N)|

+pc
(
1− (1− p1)|S∩{N}|(1− p2)|S∩B(N)|

)
= pc − (pc − pw)(1− p1)|S∩{N}|(1− p2)|S∩B(N)|.

Note that, PN |φ = pw, PN |{N} = p1(pc−pw)+pw, PN |{N ′} = p2(pc−pw)+pw
for N ′ ∈ B(N)
PN |{N ′} = pw for N ′ 6∈ B(N)∪{N},PN |S = pc−(pc−pw)(1−p1)(1−p2)|S∩B(N)|

for N ∈ S and
PN |S = pc − (pc − pw)(1− p2)|S∩B(N)| for N 6∈ S .

Also note that, if S1 ⊂ S2 then PN |S1 < PN |S2 .

Now, under the modelMS, ZN follows Ber(PN |S), for all N ∈ R, and the
likelihood of the data {ZN = zN , for all N ∈ R }, under the model MS, is
LS = PS(ZN = zN , for all N ∈ R) = ΠN∈RPzNN |S(1− PN |S)(1−zN ).

Therefore, lnLS = ∑
N∈R

(
zN lnPN |S + (1− zN) ln(1− PN |S)

)
=∑

N∈S lnPN |S +∑
N 6∈S ln(1− PN |S).

Now, one can select the model for which LS is maximum. If S1 ⊂ S2 and
LS1 ≥ LS2 then obviously MS1 is a better choice than MS2 . Note that this
ordering forms an partial order on the set of all models.

8.3.2 Algorithm to find Near-Optimal Model

The model selection approach of the previous subsection to obtain an optimal
model is reasonable and numerically manageable as long as |R| is small. But if
|R| is large, then the number of possible models is 2|R| which may be very large
and it is hard to calculate all the likelihoods. In that case we can use different
algorithms to find a near optimal model, i.e., a model whose corresponding
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likelihood is ‘very close’ to the maximum one. One such algorithm can be
found in [32]. We can use the same algorithm to find a near-optimal model.

To construct an optimal model with maximum likelihood or a near-optimal
model with near-maximum likelihood, an initial model is needed. We can
select that model as MI with I = {N ∈ R : zN = 1}, where the data
set {ZN = zN , for all N ∈ R} is received by the base station. Define the
model MI to be the initial model. Initial model is that model where we
consider that hexagons to be event hexagons for which corresponding nodes
respond to occurrences of an event. After selecting the initial model, a variable
neighborhood (VNS) search algorithm is proposed to arrive at the optimal
model or near-optimal model.

Let us denote the neighborhood of MS by N(MS) = {MS′ : |S∆S ′| =
1}. Note that MS′ ∈ MN(S) then MS ∈ MN(S′). Now all the models are
connected through this neighborhood concept in the sense that any model
can be connected to another model through successive neighborhoods. The
proposed algorithm is as follows:

Step 1. Start with the initial modelMI and corresponding likelihood LI .

Step 2. ConsiderMS′ ∈MN(I) and compute the corresponding likelihood
LS′ .

Step 3. If max{LS′ , |S ′∆S| = 1} > LI , choose the next improved model
to be MS1 , where S1 = arg(max{LS′ , |S ′∆S| = 1}). Otherwise, choose S1

randomly from among the models given by {I} ∪ N(I) with corresponding
probabilities given by

p0 = LI
LI +∑

S′∈N(I) LS′
, pS′ = LS′

LI +∑
S′∈N(I) LS′

, for |S ′∆S| = 1.

Step 4. Stop if there is insignificant improvement, which may be character-
ized by insignificant change over a certain number of iterations, return to the
same model. Otherwise, go back to Step 2 with S1 replacing I.

Note that, because of the connectedness property the algorithm has the
potential to cover all the 2|R| models. However, the algorithm may get stuck
at a local maximum. For this, we may restart the algorithm with an initial
modelMS2 , whose distance is 2 from the current optimal model. One can think
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of some other concept of neighborhood and carry out the same algorithm.

We simulate the above algorithm for different values of parameters starting
from the initial model. We also consider two more models, initial neighbor-
hood model and near optimal neighborhood model. The first model contains all
hexagons from the initial model along with their adjacent hexagons and the
second model contains all hexagons from the near optimal model along with
their adjacent hexagons. Note that the initial neighborhood model is not same
as a neighborhood model of the initial model, same argument for near optimal
neighborhood model also. Here we consider all over four models. The initial
model is the model which takes no time to compute for any ROI. Since this
model may not capture all the event hexagons of the true model, we consider
the initial neighborhood model, which may contain more event hexagons than
initial model. We also consider near optimal neighborhood model for the same
reason. Define the number of searches by a model MS as the number of el-
ements in S, so that this many searches may be required for monitoring to
detect event hexagons.

We consider a 16 × 16 hexagonal grid and pN = 0.025. Hence on an
average there are 6.4 event hexagons. We run the program for 16 different
choices of parameters and and collect data after running our algorithm 100
times for each choice separately. We simulate a number of event hexagons
(say, n), number of event hexagons detected by initial model (say, nI), number
of searches by initial model (say, nIS), number of event hexagons detected by
near optimal model (say, nO), number of searches by near optimal model (say,
nOS), number of event hexagons detected by initial neighborhood model (say,
nN), number of searches by initial neighborhood model (say, nNS), number of
event hexagons detected by near optimal neighborhood model (say, nON) and
number of searches by near optimal neighborhood model (say, nONS). The
simulation is performed using Python-code. Results obtained from simulation
are summarized in Table 8.1. The entries of the Table 8.1 are the average
values of corresponding quantities over 100 simulations. For example, in the
4th row of the first sub-table, with p1 = 0.9, p2 = 0.8, pc = 0.9, pw = 0.1, we
find the followings:

1. Average number of event hexagons is 6.00.
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Table 8.1: Performance of our algorithms under several models

pc = 0.9, pw = 0.1

p1 p2 n nI nIS nO nOS nN nNS nON nONS

0.9 0.5 6.92 6.08 30.40 4.12 11.04 6.87 91.80 4.91 43.45
0.9 0.6 6.25 5.31 33.23 3.87 10.55 6.25 97.77 3.93 39.70
0.9 0.7 6.10 4.79 32.63 3.72 8.43 6.05 91.56 3.82 39.38
0.9 0.8 6.00 5.32 36.32 4.51 9.67 6.00 94.98 4.51 40.64
0.8 0.5 5.76 4.33 26.50 3.16 10.75 5.50 84.66 4.38 38.28
0.8 0.6 6.33 4.92 31.00 4.17 9.08 6.30 91.58 5.06 40.48
0.8 0.7 6.42 4.50 35.25 3.58 10.50 6.41 93.41 4.17 38.91
0.8 0.8 5.92 4.61 34.57 3.92 8.90 5.92 92.48 3.67 35.93

pc = 0.8, pw = 0.2

p1 p2 n nI nIS nO nOS nN nNS nON nONS

0.9 0.5 6.96 5.21 41.25 2.87 14.76 6.96 111.41 5.29 57.50
0.9 0.6 5.83 4.50 38.00 2.58 11.25 5.83 109.34 4.19 44.71
0.9 0.7 5.60 4.59 39.42 2.43 11.70 5.60 110.07 4.03 43.00
0.9 0.8 6.42 5.08 43.17 3.56 12.21 6.42 110.50 4.11 44.02
0.8 0.5 6.93 5.15 38.05 3.19 13.47 6.78 103.80 5.68 52.65
0.8 0.6 6.99 5.26 40.75 3.19 13.37 6.75 108.72 4.90 51.45
0.8 0.7 6.76 4.78 43.23 3.65 13.53 6.75 110.91 5.07 52.32
0.8 0.8 5.82 4.80 42.01 3.34 11.89 5.82 108.75 3.78 38.48

2. On average, number of searches (i.e., the size) of the initial model is 36.32
and detects 5.32 many event hexagons.

3. On average, our proposed near optimal model detects 4.51 of the event
hexagons and it searches 9.67 hexagons.

4. On average, the initial neighborhood model, out of 94.98 searches, it
detects 6.00 hexagons (that means, all the event hexagons).

Observations

1. The near optimal model detects fewer number of events hexagons than
the initial model but number of searches is less for the near optimal
model.

2. For a better network (higher value of pc and lesser value of pw) the number
of events hexagons detected using the near optimal model is larger and
the number of searches is fewer.



Chapter 8: Detection of Events in General Situation

3. The initial neighborhood model finds (almost) all event hexagons, but it
requires an excessive number of searches.

8.4 A New Approach To Find Event Hexagons

In this section we discuss a different approach which is not based on likelihoods.
In previous chapter we show that if there are only one event hexagon, selection
of the event hexagon is just based on the quantities QN = czN+tN−dk(N), for
all nodes N , where zN = 1 if the node N responses positively and zN = 0 oth-
erwise; tN be the number of neighboring nodes of N which respond positively;
k(N) be the number of neighboring nodes of N and

c =
ln P1(1−pw)

pw(1−P1)

ln P2(1−pw)
pw(1−P2)

and d =
ln 1−pw

1−P2

ln P2(1−pw)
pw(1−P2)

are independent of N.

Note that the quantity c can be interpreted as weight of a node N with
respect to its neighboring node in order to suggest HN as the event hexagon.
For example, if c = 3 then zN = 1, tN = 0 and zN = 0, tN = 3 gives same
QN , i.e., positive responses of N is equivalent to positive response by 3 of its
neighboring nodes to suggestHN as the event hexagon. In the previous chapter
we show that, the base station selects the node N for which QN is maximum
or the base station selects multiple nodes for which Q-values are greater than
a fixed threshold value. We will use similar idea in this section, when there
may be more than one event hexagon, the base station selects those hexagons
as event hexagons, for which corresponding Q values are higher than that of
those hexagons not selected by the base station as event hexagons. We have
simulated Q-values for all the nodes (for different choices of parameters). We
consider a 32 × 32 hexagonal grid and perform the simulation 10000 times
using Python-code.

Note that, for a fixed choice of the parameters, c, d are fixed. Our guess is
that, if QN > QN ′ then chance of HN to be an event hexagon is greater than
that of HN ′ . Now we sort all nodes with respect to decreasing order of Q values
of corresponding nodes. If Q values are equal for more than one node then we
order them arbitrarily. After sorting we rename all the nodes as (N1, N2, . . .),
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i.e., QNi ≥ QNj if and only if i ≥ j.

Now if the base station selects a model MSy , where Sy is defined as
{N1, N2, . . . , Ny} and y will be determined by the resource of the base sta-
tion then the base station will search y many hexagons and find |Sy ∩S| many
event hexagons, where MS is the true model. We define y as the number of
searches and |Sy ∩ S| as the number of successes. Next for k ∈ N we take
the smallest natural number y for which XN1 + XN2 + · · · + XNy = k. So the
base station needs y searches to detect k event hexagons. So there are two
approaches:

1. Fix k then find y, i.e., the base station first fix how many event hexagons
are to be detected (say, k many) and then search the hexagons correspond
to the nodes {N1, N2, . . . , Nk}. If the base station finds k many event
hexagons, i.e., if XN1 +XN2 + · · ·+XNk = k, then stop the search, and
select the model MSk with Sk being {N1, N2, . . . , Nk}. Now, if XN1 +
XN2 + · · · + XNk < k then search one more hexagon HNk+1 and check
whether XN1 +XN2 + · · ·+XNk+1 = k or not. If equal, stop and select the
model MSk+1 and if not carry out further searches until k many event
hexagons are detected.

2. Fixed y, i.e., number of searches depending on resource, and then find
the number of events that we are detected.

We simulate number of searches (y) for different values of success (k). Re-
sults obtained from simulation are summarized in Figure 8.2. We draw three
graphs for three different sets of parameters with k on the horizontal axis and
average values (from 10000 simulations) of y on vertical axis. We call the y
vs. k curves as Q curves. By setting pN = 0.05, we collect data after a run of
10000 simulations for each of the following combinations:
In the left graph, p1 = pc = 0.99, pw = 0.01 and p2 = 0.6, 0.72, 0.84; in the
middle graph, p1 = pc = 0.99, p2 = 0.65 and pw = 0.01, 0.05, 0.15; in right
graph, p2 = 0.65, pw = 0.01 and three different combinations of p1 and pc:
(p1, pc) = (0.99, 0.99), (0.8, 0.99), (0.99, 0.8).

Again for initial model I, the base station has nI successes at the cost of
nIS searches. We put the point (nI , nIS), one for each of the combinations of
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Figure 8.2: Average search vs. Success and C.v. of search vs. Success graph
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the parameters (which is obtained from the average of 10000 runs) in the three
‘average search (y) vs. success (k) graphs’ (in Figure 8.2). Since the position
of (nI , nIS)) are above the y vs. k curves, our new approach seems to be better
than the initial model because it needs fewer searches to find the same number
of event hexagons. We also draw the coefficient of variations of searches vs.
successes graph.

Observations

1. From Table 8.1, we note that (average) cardinality of the initial model is
generally less than the number of event hexagons. Thus, to find all (or,
even any number of event hexagons greater than the cardinality of the
initial model) occurrences of events, one needs an exhaustive search on
512 grids (if he has only the initial model at disposal) and in this case
a model based on Q values is surely better than the initial model (as it
gives all event hexagons in fewer searches).

2. Note that the Q curves are convex upward. That means, it most often lies
under the line segment joining the origin and the corresponding (nI , nIS)
point. Now, if someone needs to find, say, only 20 event hexagons (let
us pretend that it is less than the cardinality of the initial model) then
the model based on Q values is better (as, in the initial model one will
choose one point on the line segment with abscissa 20; which lies above
that point on Q curve having the same abscissa).

3. If the point (nI , nIS) lies anywhere on the left side of the Q curves, then
Q model is better than the initial model because on equal number of
searches it gives more successes.

4. It is evident from Figure 8.2 (first graph) that there is a trend. For larger
p2 larger search in either model is required. But, it is also evident that
these two models perform almost same for p2 = 0.72. Q model performs
better for p2 > 0.72. We check (not shown here) for several other values
for p2 and find similar results.

5. We also note from Figure 8.2 (second graph) that, an increase in pw

increases the average search in both models and that both perform almost
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Figure 8.3: Nodes placed at the center regular hexagons

same for pw = 0.05, and the Q model is better for larger pw. This result
is also supported by some other choices of pw.

6. If we increase at least one of p1 and pc, we note (third graph) that number
of searches decreases for a success and the cardinality of the initial model
will also be low. Impact of p1 and pc are not similar; in both models pc
has more effects than p1.

7. We observe that c.v. decreases till near 16 and after that it has a rise in
all cases. Also c.v. is low in the range of 10 to 25 success and high for
other values of success. That means that the average number of searches
is more stable when the number of successes lies between 10 and 25.

8.5 Two Special Cases

In this section we consider two special cases and in each case there are only
two possible models. So this is the case of hypothesis testing. Consider Figure
8.1, where events occur at N4 and N5 but the base station decides that event
occurs at N0 or vice-versa. Another example is events occur at N1 and N4 but
the base station decides that N0 and N3 or vice-versa.
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8.5.1 Model {N4, N5} vs Model {N0}

Consider the first example, where we assume there are only two models, either
events occur at N4 and N5 or at N0. Now

P{N4,N5}(ZN0 = 1) = pw(1− p2)2 + pc
(
1− (1− p2)2

)
= P0 (say),

for i = 4, 5;P{N4,N5}(ZNi = 1) = pw(1− p1) + pcp1 = P1 (say),

for N which belongs to exactly one of B(N4) and B(N5), N 6= N4 and N 6= N5;

P{N4,N5}(ZN = 1) = pw(1− p2) + pcp2 = P2 (say)

and for N which does not belong to {N4, N5}∪B(N4)∪B(N5);P{N4,N5}(ZN =
1) = pw. Again under model N0,

P{N0}(ZN0 = 1) = pw(1− p1) + pcp1 = P1,

for i = 1, 2, 3, 4, 5, 6;P{N0}(ZNi = 1) = pw(1− p2) + pcp2 = P2

and for other N ;P{N0}(ZN = 1) = pw.

Hence, if the base station receives data {ZN = zN , for all N ∈ R} then
the likelihood of the data under the model {N4, N5} is

L{N4,N5} = P z0
0 (1− P0)1−z0P

(z4+z5)
1 (1− P1)2−(z4+z5)P

(z1+z2+z3+z6+···+z12)
2 ×

(1− P2)10−(z1+z2+z3+z6+···+z12)p(z13+···+zn−1)
w (1− pw)(n−13)−(z13+···+zn−1)

and the likelihood under the model {N0} is

L{N0} = P z0
1 (1− P1)1−z0P

(z1+···+z6)
2 (1− P2)6−(z1+···+z6)p(z7+···+zn−1)

w ×

(1− pw)(n−7)−(z7+···+zn−1),

where n in the total number of nodes.

Therefore, L{N4,N5} < L{N0} is equivalent to

P z0
0 (1− P0)1−z0P

(z4+z5)
1 (1− P1)2−(z4+z5)P

(z7+···+z12)
2 (1− P2)6−(z7+···+z12) <
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P z0
1 (1− P1)1−z0P

(z4+z5)
2 (1− P2)2−(z4+z5)p(z7+···+z12)

w (1− pw)6−(z7+···+z12).

which is equivalent to

P z0
0 (1− P0)1−z0P

(z4+z5−z0)
1 (1− P1)1−(z4+z5−z0)P

(z7+···+z12)−(z4+z5)
2 ×

(1− P2)4−(z7+···+z12)−(z4+z5) < p(z7+···+z12)
w (1− pw)6−(z7+···+z12).

Note that the above inequality does not depend on the zN for N 6∈ {Ni : i =
0, 1, · · · , 12} hence we can consider only these 13 nodes. Now for all possible
213 choices of zN we can calculate the above inequality and check whether that
is true or not. We calculate the probability of all possible choices of zN and
then probability of selecting the model {N4, N5} when the model {N4, N5} is
true. We also do the similar calculation when the model {N0} is true (see
Table 8.2).

8.5.2 Model {N1, N4} vs Model {N0, N3}

In the second example, we consider that there are only two models, either
events occur at N1 and N4 or at N0 and N3. Now similar to the above situation
one can see that when dataset is {ZN = zN , for all N ∈ R} then the likelihood
of the data under the model {N1, N4} is

L{N1,N4} = P z0+z3
0 (1− P0)2−(z0+z3)P

(z1+z4)
1 (1− P1)2−(z1+z4)×

pz6+z11+z12+z13+z16+···+zn−1
w (1− pw)(n−12)−(z6+z11+z12+z13+z16+···+zn−1)×

P
(z2+z5+z7+z8+z9+z10+z14+z15)
2 (1− P2)8−(z2+z5+z7+z8+z9+z10+z14+z15)

and the likelihood of the data under the model {N0, N3} is

L{N0,N3} = P z0+z3
1 (1− P1)2−(z0+z3)P

(z1+z4)
0 (1− P0)2−(z1+z4)×

P
(z2+z5+z7+z6+z13+z14)
2 (1− P2)6−(z2+z5+z7+z6+z13+z14)×

p(z8+···+z12+z15+z16+···+zn−1)
w (1− pw)(n−10)−(z8+···+z12+z15+z16+···+zn−1).
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Now L{N1,N4} < L{N0,N3} is equivalent to

P z0+z3
0 (1− P0)2−(z0+z3)P

(z1+z4)
1 (1− P1)2−(z1+z4)pz6+z13

w (1− pw)2−(z6+z13)×

P
(z8+z9+z10+z15)
2 (1− P2)4−(z8+z9+z10+z15) <

P z0+z3
1 (1− P1)2−(z0+z3)P

(z1+z4)
0 (1− P0)2−(z1+z4)P

(z6+z13)
2 (1− P2)2−(z6+z13)×

p(z8+z9+z10+z15)
w (1− pw)4−(z8+z9+z10+z15).

Which is equivalent to

(
P0

1− P0

)(z0+z3−z1−z4) ( P1

1− P1

)(z1+z4−z0−z3)
×

P
(z8+z9+z10+z15−z6−z13)
2 (1− P2)2−(z8+z9+z10+z15−z6−z13) <

p(z8+z9+z10+z15)−z6−z13
w (1− pw)2−(z8+z9+z10+z15−z6−z13).

Note that as in the above situation, here we have to consider {Ni : i =
0, 1, · · · , 15} \ {N11, N12} nodes only. Now for all possible 214 choice of zN
we calculate both sides of the above inequality and check whether that is true
or not. Under model {N1, N4} we calculate the probability of all possible zN
and then probability of selecting the model {N1, N4} when the model {N1, N4}
is true. We also do the similar calculation when the model {N0, N3} is true.
We put them in the Table 8.2.

We also simulate these probabilities for two different situations for different
choice of parameters. We consider a 32 × 32 hexagonal grid and run the
simulation 10000 times. Both the simulations and exact probability findings
are done using Python-code. Results obtained from simulation are summarized
in Table 8.2. The columns entitled ‘Simulated’ show the ratio of number of
successes to 10000 and the columns entitled ‘Exact’ show the corresponding
calculated probabilities.

Observations

1. We observe that for the above choices of parameters the success proba-
bilities are good enough and simulated success ratio and exact calculated
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Table 8.2: Simulated and exact probabilities of selecting a model when the
corresponding model is true

Probabilities of selecting models {N0} and {N4, N5} when the corresponding model is true

p1 p2 pc pw {N0}(Simulated) {N0}(Exact) {N4, N5}(Simulated) {N4, N5}(Exact)
0.95 0.70 0.99 0.2 0.9506 0.9514 0.9262 0.9264
0.95 0.70 0.90 0.1 0.9401 0.9392 0.9668 0.9657
0.95 0.65 0.99 0.1 0.9385 0.9404 0.9772 0.9779
0.95 0.65 0.90 0.1 0.9481 0.9463 0.9462 0.9362
0.95 0.65 0.90 0.1 0.9460 0.9463 0.9201 0.9204
0.95 0.65 0.85 0.1 0.9424 0.9416 0.9142 0.9146
0.80 0.70 0.90 0.1 0.9327 0.9524 0.9295 0.9327
0.80 0.70 0.85 0.1 0.9100 0.9134 0.9495 0.9484
0.80 0.65 0.99 0.2 0.9555 0.9527 0.9260 0.9263
0.80 0.65 0.99 0.1 0.9448 0.9477 0.9552 0.9531
0.80 0.65 0.90 0.1 0.9150 0.9120 0.9506 0.9502
0.80 0.65 0.85 0.1 0.9024 0.9025 0.9405 0.9395

Probabilities of selecting models {N0, N3} and {N1, N4} when the corresponding model is true

p1 p2 pc pw {N0, N3}(Sim) {N0, N3}(Exact) {N1, N4} (Sim) {N1, N4} (Exact)
0.99 0.70 0.95 0.2 0.8899 0.8914 0.9539 0.9559
0.99 0.70 0.95 0.1 0.9542 0.9554 0.9662 0.9671
0.95 0.75 0.95 0.1 0.9536 0.9523 0.9847 0.9814
0.95 0.65 0.85 0.1 0.9107 0.9129 0.9321 0.9331
0.95 0.65 0.95 0.1 0.9345 0.9327 0.9595 0.9583
0.95 0.75 0.95 0.2 0.8982 0.8978 0.9765 0.9739
0.88 0.70 0.95 0.1 0.9480 0.9474 0.9738 0.9744
0.88 0.65 0.95 0.1 0.9328 0.9349 0.9663 0.9636
0.88 0.65 0.85 0.2 0.8636 0.8629 0.8793 0.8811
0.88 0.65 0.85 0.1 0.9153 0.9180 0.9342 0.9333
0.88 0.70 0.85 0.1 0.9219 0.9520 0.9497 0.9519
0.88 0.65 0.85 0.1 0.9164 0.9149 0.9358 0.9362

success probabilities are very close for all the chosen values of parameter.

2. Success probability decreases when pw increases and success probability
increases when any one of pc, p1, p2 increases, as desired.

3. Probabilities of selection of the model {N1, N4} when the model {N1, N4}
is true are larger than that of the model {N0, N3} when the model
{N0, N3} is true for all the choices of parameters that we have made
here.
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Conclusion and Future Work

This thesis dealt with two important aspects of WSNs: the coverage problem
and the detection problem. We discussed three types of coverage problem:

1. Coverage on a continuous domain in a random deployment scenario,

2. Coverage using sensor relocation by an actuator,

3. Deterministic placement of sensors in a cylindrical grid.

We also discussed three different scenarios for the detection problem:

1. At most one event can occur at a specific point in ROI,

2. At most one event can occur but it may occur at any point in the ROI,

3. More than one event can occur at any points of the ROI.

Coverage Problem

Random deployment problem

Considering the region of interest (ROI) as a continuous bounded set and
sensor can detect an event in a disc centered at that sensor, we found that
hexagonal placement of sensors is the optimal one. We also considered that
sensors are deployed at random from air, so they may not be placed at the

147
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target points. Hence some portion of the ROI may not be covered by any
sensor. We used extra sensors to minimize the uncovered area. We developed
two different strategies to reduce the uncovered area. The distance between
the target point and the point where the corresponding sensor has been placed
is a random variable. We considered those random variables to follow a i.i.d.
uniform or normal distribution. For uniform we calculated the uncovered area
of ROI. For both the distributions and strategies we simulated uncovered area
computationally. We considered the region of interest as a three dimensional
bounded region and developed two strategies to reduce the uncovered volume.
We noticed that there are three different aspects of the minimal wastage prob-
lem:

1. One has to fix a partition and choose some vertices where the sensors
will be targeted to deploy. Popular methods are square and hexagonal
placement for two dimensions and we use face centered cube placement
for three dimensions. Hexagonal placement is in some sense optimal
when there are no extra sensors and no randomness in deployment.

2. The placement of sensors is random in many situations, one may model
or fit a distribution from experimental data.

3. When there are extra sensors we developed two strategies of deployment
for these extra sensors, but there may be many others. Search for an
optimal one depending on different distributions and different methods
for placement of sensors.

In future, one may try to find theoretical results for normal distribution
and will consider the minimal wastage problem for higher dimensions to find
optimal placement of sensors. We will consider ROI as a square grid in two
dimensions and with other interesting distributions. Here we consider only
two strategies but there may be other strategies which may be better for some
specific distributions. One may try to classify them with respect to uncovered
volume for different distributions and different type of partitions. One may
develop algorithms for actuator(s), using extra sensors with different strategies.
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Deterministic placement of sensors in a cylindrical grid

We considered the region of interest as a cylindrical grid. Events can occur
at a vertex. A sensor may be placed at a vertex and can detect an event
at adjacent vertices. We solved the coverage problem in the cylindrical grid
using graph theory. We found γ(Pm 2 Cn), for m = 2, 3 and 4, n ≥ 3.
Minimum dominating sets corresponding to the above mentioned graphs are
also constructed. Finally, we give bounds on γ(P5 2 Cn), n ≥ 3.

In [75], Nandi et. al. found the exact values of γ(P5 2 Cn), n ≥ 3 as well
as minimum dominating sets for P5 2 Cn, n ≥ 3. Moreover, they found the
bounds of γ(Pm 2 Cn), for m ≥ 6 and n ≥ 3. In future one may find the exact
values of γ(Pm 2 Cn), n ≥ 3 as well as minimum dominating sets for Pm 2 Cn,
for m ≥ 6 and n ≥ 3.

There is no work on random deployment as well as the use of an actuator
for the cylindrical grid graph. This area is totally open for research.

Placement problem using actuators

After deployment of sensors, sensors are relocated to cover the ROI. We con-
sider the static sensors only. An actuator will relocate the sensors to cover
the ROI. We developed three algorithms for the actuator in a sensor node
deployment scenario, under two different conditions. We simulated and an-
alyzed the simulation results. We also deduced some theoretical results and
compared with the simulation results. We observed that if an actuator placed
the sensors using the third algorithm, the number of empty nodes after the
placement becomes almost zero. We also observed that number of empty nodes
after deployment is approximately normally distributed for large grids and for
repetition probability greater than 0.2 and error probability less than 0.25.
We observed the traversed length of the actuator and number of empty nodes
decreases as error probability decreases or repetition probability increases.

In future, one may develop other randomized algorithms, and compare
them in a similar way. One may also impose more conditions on the actuator
or can relax some conditions, e.g., one may assume that the actuator may carry
more than one sensor or there is more than one actuator in practice.



Chapter 9: Conclusion and Future Work

Detection problem

At most one event can occur at a specific point in ROI

After covering the ROI, sensors are used to detect one or more events. At
first, we considered the problem of fault detection in WSN when the ROI is
a rectangular grid with square cells. We discussed how to address both noise-
related measurement error and sensor fault simultaneously in fault detection,
where the sensors are placed at the centers of square cells of the ROI and
an event may occur at a specific square of the grid. We also considered the
ROI partitioned into regular hexagonal cells and did the same analysis. We
proposed fault detection schemes that explicitly introduce the error probability
into the optimal event detection process. We developed the schemes under
classical hypothesis testing and a Bayes test. We identified and analyzed all
the situations in which these tests are effective and cases where they are not
applicable.

We observed that type I and type II errors decrease when detection prob-
abilities and probability of sending correct information of occurrence of the
event increase and errors increase when the probability of sending wrong infor-
mation of normal situation increases. When probability of occurrence of the
event increases, type I errors increase but type II errors decrease. If detection
probability is low then type I error is close to probability of occurrence of the
event. If the probability of occurrence of the event is close to 0.5 then type I
error is close to probability of occurrence of the event, which means that there
is no use of sensors; in that case, we have to use sensors with high detection
probability.

In future, one may do the following:

1. Develop schemes to find which particular square is the event square.

2. Develop schemes to find and isolate dead and faulty sensors, i.e., the
sensors which are sending false information to the base station.

3. We may assume that sensors can detect different types of events; thus,
the response of sensors may not be simply binary.

4. We may assume that sensors can measure distance, direction, speed,
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humidity, wind speed, soil makeup, temperature, etc. and send the mea-
surement of continuous type variables.

At most one event can occur but it may occur at any point in ROI

We considered the problem of fault detection in wireless sensor network (WSN),
where the ROI is partitioned into regular hexagons with the event occurring at
only one hexagon but not at a specific hexagon. We proposed fault detection
schemes that explicitly introduce the error probabilities into the optimal event
detection process. We developed the schemes under the consideration of a
model selection technique, multiple model selection technique and Bayesian
model averaging method. The different error probabilities are calculated by
means of simulation. We noticed that the same analysis can be carried out
when ROI is partitioned into squares as well.

In the model selection approach, we select the model with higher likelihood.
In the classical Neyman-Pearson hypothesis test, a model is selected if its
likelihood is greater than some constant times the likelihood of the other.
This constant is fixed before the test depending on the size of the test. In
model selection approach, the constant is 1, leaving no choice for the size of
the test. On the other hand, we cannot apply the classical Neyman-Pearson
test with more than two models to be considered for selection. The principle
of hypothesis testing places a large confidence in the null hypothesis and does
not reject it unless there is strong evidence against it. This safeguard of null
hypothesis cannot be ensured in the model selection approach of detection.
The multiple model selection approach of detection provides some safeguard
in this regard.

In future, the principle of model selection can be extended to the situation
when there are two or more event hexagons and the objective is to detect the
event hexagons. One may also assume that the sensors can detect different
types of events. That is, response of sensors may not be binary; sensors can
measure continuous type variables and report them to the base station. One
needs a different formulation of the problem.



Chapter 9: Conclusion and Future Work

More than one event can occur at any points of ROI

Detection of an event in the ROI in the general case is a challenging problem.
Finding theoretical results in general situation is hard. One has to simulate
different situations or study special situations. We introduced the sensor fault
probabilities into the optimal event detection process. We apply a near-optimal
model selection approach and a new method to find a solution of the problem.
We also discuss two interesting situations. We simulated different situations
with different parameters. One may consider the situation when the sens-
ing radii are larger and more sensors can detect the event hexagon but with
different probabilities. Classify the nodes with respect to the probability of
detecting the event at a node, which may as well depend on the distance from
the particular node. Suppose that the sensors in the i-th class detect the event
hexagon with probability pi, i = 1, 2, 3, . . .. The theoretical analysis is similar
but having more probability terms.

In future, the challenge is to detect events in the general situation more
efficiently. Also we have to develop a strategy for the base station when sensor
can measure one or more continuous variables not merely a binary one.

Coverage and detection are two important area of WSNs but there are
many other aspects of WSNs. One closely related area is data reliability of
Unattended WSNs. While the network is unattended, a mobile adversary can
migrate between compromised set of sensors and inject fraudulent data or erase
data [51,80,81,83,84]. In future one may combine this with fault detection.

In this thesis, we presented our results from the last four years (2010-2014)
on the analysis of coverage and detection problem in WSNs or WSANs. We
identified long-standing open problems as well as contemporary results from
the literature, and provided answers to six research problems. During the
course of this thesis, we also studied several related problems on WSN, and
presented some open problems for future research. We believe that the plethora
of problems arising from the WSN will continue to amaze and motivate the
community for years to come.
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