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Abstract

The supervised and unsupervised methodologies of text mining using the plain text

data of English language have been discussed. Some new supervised and unsuper-

vised methodologies have been developed for effective mining of the text data after

successfully overcoming some limitations of the existing techniques.

The problems of unsupervised techniques of text mining, i.e., document clus-

tering methods are addressed. A new similarity measure between documents has

been designed to improve the accuracy of measuring the content similarity between

documents. Further, a hierarchical document clustering technique is designed using

this similarity measure. The main significance of the clustering algorithm is that the

number of clusters can be automatically determined by varying a similarity threshold

of the proposed similarity measure. The algorithm experimentally outperforms sev-

eral other document clustering techniques, but it suffers from computational cost.

Therefore another hybrid document clustering technique has been designed using

the same similarity measure to overcome the computational burden of the proposed

hierarchical algorithm, which performs better than the hierarchical one for most of

the corpora.

The limitations of nearest neighbor decision rule for text categorization are dis-

cussed. An efficient nearest neighbor decision rule is designed for qualitative im-

provement of text categorization. The significance of the proposed decision rule

is that it does not categorize a document when a decision in not so certain. The

method is showing better results than several other classifiers for text categoriza-

tion. The decision rule is also implemented using the proposed similarity measure

instead of traditional similarity measure, which performs better than the same using

traditional similarity measure.

The importance of dimensionality reduction for text categorization is also dis-

cussed. A supervised term selection technique has been presented to boost the per-

formance of text categorization by removing redundant and unimportant terms. The

empirical studies have shown that the proposed method has improved the quality of

text categorization.
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Chapter 1

Introduction

The conventional form of storing data is text. From the ancient time we commu-

nicate and share our views and expressions through letters, articles, books, leaflets,

newspapers etc., which are nothing but a collection of texts. In those days it was

very difficult to preserve the collection of information for future reference. With the

progress of science and technology it has become easy to store a huge amount of

information in concise form for ever. But the size of text is growing exponentially

after the invention of internet. Now a days most of the information are available on

the web, e.g., newspapers, books, articles, etc. People are sharing (or interacting)

their views and voices in different blogs and social network sites. In the present days

the communication has become very easy by the SMSes and Emails. Technically

all of these examples are nothing but a collection of texts. Hence it has become

imperative to effectively handle the huge collection of text data in efficient manner.

Text mining refers to a system that identifies useful knowledge from a huge

amount of natural language text. The task is challenging as most of the text data

sets are unstructured. The enormous amount of information stored in unstructured

texts cannot simply be used for further processing by computers, which typically

handle text as simple sequences of character strings [62]. Hence it is very difficult to

retrieve useful information from a new text data set. Specific pre-processing methods

and algorithms are required in order to extract useful patterns. Text mining is an

interdisciplinary field that uses the techniques of information retrieval [89], natural

language processing [30, 110] and especially data mining [127].

Information retrieval is the activity of obtaining a specific information from a

collection of information resources. Suppose there is a collection documents and
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a person wants to find a particular information which is available in some of the

documents. Information retrieval techniques handle these issues to satisfy the needs

of the users efficiently.

The task of natural language processing (nlp) is to understand the significance

of a text. The techniques under use are machine learning, statistics and linguistics.

The techniques available use either the computational approach or the semantic

relationship approach between text segments with the help of a set of grammars and

dictionaries (depending on the language) for identifying the actual information. It

has a variety of application areas e.g., opinion mining [101], named entity recognition

[93], word sense disambiguation [99] etc.

Data mining refers to the task of finding useful patterns from any form of data,

whereas text data mining refers to the task of refining the unstructured text to a

standard form and then finding useful patterns from that text data.

The two similar emerging fields of text data mining are web data mining and so-

cial network mining. The text data in the web is partially structured by the markups

and hyperlinks. Several well known script languages for the markups are available

e.g., HTML, XML, which follow certain rules to maintain a webpage. The hyper-

links of a webpage provides the relation of the page to another web page, the same

is not available in plain text data. The social network data are far more structured

than the web data. It is a collection of social web sites connected in a network.

In this data each node (a social web page) is mapped to every other node through

several inward and outward edges. The idea of network theory can be easily applied

to these data sets to retrieve useful information. It may be noted that it is very

difficult to simply apply the data mining techniques to the plain unstructured text

data. Initially some refinement techniques are required to appropriately represent

the texts such that the data mining techniques can be effectively applied on those

data.

Text data mining for the plain text data of English language only is discussed in

this thesis. Text data mining is referred as text mining throughout the thesis. The

main tasks of text mining are;

1) Refinement of text by stopword removal and stemming,

2) Representation of refined plain text, and

3) Extracting useful information from the plain text by applying supervised or

2



unsupervised methodologies.

1.1 Text Refinement

In order to obtain all terms that are used in a given text, a tokenization process

is required, i.e. a text document is split into a stream of terms by removing all

punctuation marks and by replacing tabs and other non-text characters by single

white spaces. This tokenized representation is then used for further processing. The

set of different terms obtained by merging all text documents of a collection is called

the vocabulary of a document collection [62].

1.1.1 Stopword Removal

A standard filtering method for English text data is stopword removal. The idea of

stopword removal is to remove terms that bear little or no content information, like

articles, conjunctions, prepositions, etc. Furthermore, terms that occur extremely of-

ten can be said to be of little information content to distinguish between documents,

and also terms that occur very seldom are likely to be of no particular statistical

relevance and can be removed from the vocabulary [50]. In order to further reduce

the number of terms from the vocabulary, term selection methods can be used [62].

1.1.2 Stemming

In a language like English, a typical term contains a stem which refers to some

central idea or meaning. Generally certain prefixes or suffixes are added to modify

the meaning to fit the term for its syntactic role [100]. The purpose of stemming

is to relate the morphological variants of a term, e.g., statistic, statistics and sta-

tistical will be mapped to the stem statis. A stem is the portion of a term that

is left after removing its prefixes or suffixes. Consider a query containing the term

statistics, which may be relevant to the document consisting of the term statistic or

statistical. It would not make the query and the documents relevant to each other

by simple matching (i.e., without stemming). Thus stemming has become famous

in information retrieval literature [88]. Several stemming algorithm have been pro-

posed over the years, but most popular and robust stemmer for English text is the

Martin Porter’s stemming algorithm [70, 85]. The algorithm follows a set of rules

3



for stemming which can be found in the article by Ali et al. [3, 104]. The method

has five steps, and within each step, rules are applied until one of them passes the

conditions to a different step [70]. The suffix is removed accordingly, if a rule is

accepted and the next step is performed. The resultant stem at the end of the fifth

step is returned. The detailed description of the porter stemmer algorithm can be

viewed from appendix A.

1.2 Representation of Text Data

The length of different documents in a corpus are different. Note that here length

means the number of terms in a document. It is very difficult to find the similarity

between two document vectors of different dimensions (length). Therefore it is nec-

essary to maintain the uniform length of all the documents in the corpus. Several

models have been introduced in the information retrieval literature to represent the

document data sets in the same frame. Probabilistic model, language model and

vector space model are three well known techniques among several other techniques

for text representation [89].

The vector space model enables very efficient analysis of huge document col-

lections in spite of its simple data structure without using any explicit semantic

information [62]. It was originally introduced for indexing and information retrieval,

but is now used in several text mining approaches as well as in most of the currently

available document retrieval systems [111]. The vector space model is used in the

entire thesis to represent a document vector.

The vector space model represents documents as vectors in n-dimensional space.

Note that the number of documents in the corpus throughout this thesis is denoted

by N . The number of terms in a corpus is denoted by n. The ith term is represented

by ti. Number of times the term ti occurs in the jth document is denoted by tfij , i =

1, 2, ..., n; j = 1, 2, ..., N . Document frequency dfi is the number of documents

in which ti occurs. Inverse document frequency idfi = log( N
dfi

), determines how

frequently a term occurs in the document collection. The weight of ti in the jth

document, denoted by wij, is determined by combining the term frequency with the

inverse document frequency [111] as follows:

wij = tfij × idfi = tfij × log(
N

dfi
), ∀ i = 1, 2, ..., n and ∀ j = 1, 2, ..., N

4



The documents can be efficiently represented using the vector space model in most of

the text mining algorithms [62]. In this model each document dj is considered to be

a vector ~dj, where the ith component of the vector is wij, i.e., ~dj = (w1j , w2j, ..., wnj).

The similarity between two documents is achieved through some distance func-

tion. Given two document vectors ~di and ~dj, it is required to find the degree of

similarity (or dissimilarity) between them. Various similarity measures are available

in the literature but the commonly used measure is cosine similarity between two

document vectors [112], which is given by

cos(~di, ~dj) =
~di. ~dj

|~di| |~dj|
=

n∑
k=1

(wik × wjk)

√
n∑

k=1

w2
ik ×

n∑
k=1

w2
jk

, ∀i, j (1.1)

The weight of each term in a document is non negative. As a result the cosine

similarity is non negative and bounded between 0 and 1, both inclusive. cos(~di, ~dj) =

1 means the documents are exactly similar and the similarity decreases as the value

decreases to 0. An important property of the cosine similarity is its independence of

document length. Thus cosine similarity has become popular as a similarity measure

in the vector space model [64].

1.3 Supervised and Unsupervised Methodologies

for Text Data

The task of the supervised or the unsupervised learning methodologies is to group

the given objects into some particular categories by applying prior knowledge or by

finding the relationships between the objects. The process in supervised or unsuper-

vised methodologies for mining plain text consists of the following stages: a) feature

selection and b) development of supervised or unsupervised learning methodologies.

All these stages are very much application specific. Note that the main contributions

of the thesis are the development of new supervised and unsupervised techniques to

find useful patterns from the plain text data.

5



1.3.1 Feature Selection Methods

The task of feature subset selection is to select a number of important features from

the set of all features without sacrificing the quality of the learning process [67].

Consider F as the given set of features and the task is to select γ number of features

from F . Let the criterion function for feature selection be Cr(F ). Let us assume that

a higher value of Cr indicates a better feature subset. The task is to find an optimum

subset f for which Cr(f) is maximum among all subsets of cardinality γ. Different

methods are available for feature subset selection in statistics, machine learning and

pattern recognition using several search strategies and evaluation functions. Mainly

there are two types of search strategies - optimal search and sub optimal search, for

feature subset selection [39].

Any optimal subset search approach initially examines all

(
|F |

γ

)
subsets of size

γ, and then selects the subset with the largest value of Cr. In this search strategy

the number of possible subsets grows combinatorially, which makes the exhaustive

search impractical for even moderate values of |F | and γ [67].

1.3.1.1 Suboptimal Search

In practical scenario the optimal search for feature subset selection is not feasible

due to computational cost, though the optimal search techniques can guarantee an

optimal solution. The sub optimal feature subset selection techniques are used to

manage the burden of computational cost and so these techniques are useful for the

data sets with large number of features. Note that the sub optimal search techniques

never guarantee an optimal solution [39]. Some sub optimal search techniques are

discussed below.

• Feature Ranking: The simple and most effective sub optimal technique is

feature ranking [39]. The method is extremely dependent on the criterion

function and so it does not always possess a realistic solution. The method

ranks each feature ti, i = 1, ..., |F | according to their Cr(ti) values and selects

the top γ number of features from F .

• Sequential Forward Selection: The method is a bottom up search proce-

dure and it selects the best single feature and adds it to the already selected

feature subset [67]. The main drawback of this method is that once a feature

is added to the feature subset, it is never removed in a later stage [39].
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• Sequential Backward Selection: This technique is a top down search tech-

nique. It starts with a feature set containing all features and greedily removes

one feature at a time until |F | − γ features have been deleted [39].

• Generalized Sequential Forward Selection: This technique is a forward

selection technique. Instead of adding one feature at a time, l best features are

added at each stage of the algorithm. The value of l is to be chosen in such a

way that ultimately γ features are obtained.

• Generalized Sequential Backward Selection: The method is a backward

selection technique. Instead of discarding one feature at a time, this method

removes r worst features at each stage. The value of r is to be chosen in such

a way that ultimately γ features are obtained.

• Plus l take away r Selection: This is a split and merge feature selection

technique, and this is better known as (l, r) algorithm. If the method starts

with empty set of features, then in each iteration, l best features are added,

and r worst features are removed. That is, l > r. On the other hand, if the

method starts with the complete set of features F , then, in each iteration, r

worst features are removed and l best features are added. That is, r > l [39].

l and r are to be chosen appropriately so that the required number of features

γ can be obtained.

In the text data each unique term of the vocabulary is considered to be a feature

of that data set. The number of features (or terms) of a text data set may be a

large number (of the order of several thousands) and the number of features may

exceed the number of documents of the corpus by more than an order of magnitude in

general [49]. The techniques available in machine learning for feature subset selection

are generally not designed for the data sets with large number of features [92]. Hence

the term selection methods for text data are very simple compared to the methods

available in the literature of machine learning [92]. A number of research works have

been done on term selection for text data [77]. There are two types of term selection

techniques for text data - supervised and unsupervised. Some well known supervised

and unsupervised term selection methods for dimensionality reduction of the text

data will be discussed now. It may be noted that the task of stopword removal can

be thought of as a feature removal task.
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1.3.1.2 Supervised Term Selection Methods

Supervised methods for text data mining assume that the number of categories

present in the data set is known. Generally, prior knowledge is available about every

category present in the data set. Usually, the knowledge available is in the form of a

few documents belonging to each category. The problem to be tackled is to classify

an unknown document to one of the existing categories in the data set.

It may be noted that, usually, the experimenter has the knowledge of all the

categories existing in the data set, but there are some cases where an experimenter

does not possess the knowledge of all the existing categories [84]. In such a case,

the formulation of the problem, as well as the analysis is different from the usual

methodologies. Here, in this thesis, it is assumed that the experimenter has the

knowledge of all the existing categories in the data set. For each existing category,

the number of documents belonging to that category is known.

Each document contains some terms and the category of the document is known

for the task of text categorization. Thus the category of each term is known for

the supervised term subset selection methods for text categorization. Note that

text categorization groups the documents into some predefined categories. The

supervised term selection methods rank the terms based on a criterion function

and then use the best subset of terms for text categorization. These methods use an

evaluation function that is applied to every term, and all the terms are independently

evaluated. Subsequently, a score is assigned to each of the terms [92]. The terms are

then sorted according to those scores and a predefined number of best terms form

the resultant subset of terms. Various techniques for ranking the terms for text

categorization are available in the literature. Some well known criterion functions

for term ranking in text categorization are discussed here. Several notations which

have been used throughout the thesis are given below initially before the definitions

of the criterion functions.

Let us assume that t is a term, C = {c1, c2, ..., cm} is the set of m categories,

(m > 1) and N is the number of documents in the training set. Let us consider

the following functions for a term t and a category ci, i = 1, 2, ..., m to describe

some criterion functions to rank the terms for text categorization. Note that the

conventions log(0) = −∞ and 0 log(0) = 0 are assumed throughout the thesis. It is

also assumed that |ci| > 0, ∀i.

u(t, ci): number of documents containing term t and belonging to ci.
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v(t, ci): number of documents containing the term t but not belonging to ci.

w(t, ci): number of documents not containing the term t, but belonging to ci i.e,

w(t, ci) = |ci| − u(t, ci).

x(t, ci): number of documents that neither contain the term t nor belong to ci, i.e.,

x(t, ci) = N − |ci| − v(t, ci).

P (t): Probability of a document that contains term t. It is assumed that the term

t occurs in at least one document, i.e., u(t, ci) + v(t, ci) > 0.

P (t) =
u(t, ci) + v(t, ci)

N

P (t̄): Probability of a document that does not contain term t.

P (t̄) = 1− P (t) =
w(t, ci) + x(t, ci)

N

P (ci): Probability of a document that belongs to ci.

P (ci) =
u(t, ci) + w(t, ci)

N

P (c̄i): Probability of a document that does not belong to ci.

P (c̄i) = 1− P (ci) =
v(t, ci) + x(t, ci)

N

P (t, ci): Joint probability that a document contains term t and also belongs to ci.

P (t, ci) =
u(t, ci)

N

P (t̄, ci): Joint probability that a document does not contain term t but belongs to

ci.

P (t̄, ci) =
w(t, ci)

N

P (t, c̄i): Joint probability that a document contains term t but does not belong to
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ci.

P (t, c̄i) =
v(t, ci)

N

P (t̄, c̄i): Joint probability that a document neither contains term t nor belongs to

ci.

P (t̄, c̄i) =
x(t, ci)

N

P (t|ci): Conditional probability of a document that contains term t given that it

belongs to ci.

P (t|ci) =
u(t, ci)

u(t, ci) + w(t, ci)

P (t|c̄i): Conditional probability of a document that contains term t given that it

does not belong to ci.

P (t|c̄i) =
v(t, ci)

v(t, ci) + x(t, ci)

P (ci|t): Conditional probability of a document that belongs to ci given that it

contains the term t.

P (ci|t) =
u(t, ci)

u(t, ci) + v(t, ci)

P (ci|t̄): Conditional probability of a document that belongs to ci given that it does

not contain term t.

P (ci|t̄) =
w(t, ci)

w(t, ci) + x(t, ci)

The Mutual Information (MI) [92] between the term t and category ci is defined

(under the assumption that P (t) > 0) as

MI(t, ci) = log
P (t|ci)

P (t)

This method assumes that the term with higher category ratio is more effective for

categorization. On the other hand the method is biased towards low frequency terms
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as can be seen from the following form.

MI(t, ci) = logP (t|ci)− logP (t)

Rare terms will have a higher score than common terms for those terms with equal

conditional probability P (t|ci). Hence MI might perform badly when a classifier gives

stress on common terms. The MI of a term over all categories may be computed in

the following way:

MImax(t) = max{MI(t, ci) : i = 1, 2, ..., m}

For a training corpus those terms whose MI score is less than a predefined threshold

are removed from the vocabulary.

Information Gain (IG) measures the number of bits of information obtained for

category prediction by knowing the presence or absence of a term in a document

[131]. It is defined as

IG(t) = P (t)

m∑

i=1

P (ci|t) log
P (ci|t)
P (ci)

+ P (t̄)

m∑

i=1

P (ci|t̄) log
P (ci|t̄)
P (ci)

This measure gives more weights to common terms rather than the rare terms.

Hence IG might perform badly when there is scarcity of common terms between the

documents of the training corpus.

The Cross Entropy (CE) of a term t over all categories is defined as follows:

CE(t) = P (t)

m∑

i=1

P (ci|t) log
P (ci|t)
P (ci)

The cross entropy used in term selection [74] is designed similar to information gain.

The difference between IG and CE is that CE does not consider the non occurrence

of the terms like IG. The CE values of all the terms are sorted in decreasing order

and the best subset of terms is selected.

Gain Ratio (GR) is defined as the ratio between the information gain of a term
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t and the entropy of the system of categories, i.e.,

GR(t, ci) =

∑

c∈{ci,c̄i}
P (t)P (c|t) log

P (c|t)
P (c)

+
∑

c∈{ci,c̄i}
P (t̄)P (c|t̄) log

P (c|t̄)
P (c)

−
∑

c∈{ci,c̄i}

P (c) log P (c)

The value of GR of a term t and category ci lies between 0 and 1. The larger

the value of GR, the more important the term is for category prediction [38]. The

maximum GR value among all the categories is selected as the gain ratio for a term

t. The GR values of all terms are sorted in decreasing order and the best subset of

terms is selected accordingly.

The χ2 statistic (CHI) measures the association between a term t and a category

ci [55]. CHI score is defined as

χ2(t, ci) =
N ×

[
P (t, ci)P (t̄, c̄i)− P (t, c̄i)P (t̄, ci)

]2

P (t)× P (t̄)× P (ci)× P (c̄i)

The χ2 statistic of a term over all categories can be defined in the following two

ways:

χ2
avg(t) =

m∑

i=1

P (ci)χ
2(t, ci)

χ2
max(t) = max{χ2(t, ci) : i = 1, 2, ..., m}

Bi-Normal Separation (BNS) is proposed by Forman [49] as

BNS(t, ci) =
∣∣∣F−1


P (t, ci)

P (ci)


− F−1


P (t, c̄i)

P (c̄i)



∣∣∣

where F is the distribution function for standard normal distribution and F−1 is

the inverse of F . For F−1(0), 0 is substituted by 0.0005 to avoid the undefined value

F−1(0). The larger the value of BNS, the larger the difference between the prevalence

of term t in category ci and 1− P (ci). The author [49] made a comparative study

of twelve term selection methods on 229 text categorization problem instances and

the experiments showed that BNS can perform very well in the evaluation metrics

of recall rate and F-measure. But for precision, its performance was often not good

as IG.
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Odds Ratio (OR) measures the odds of term t occurring in category ci, i =

1, 2, ..., m, divided by the odds of the term t not occurring in category ci [92]. It is

defined as follows:

OR(t, ci) =
P (t|ci)×

(
1− P (t|c̄i)

)

P (t|c̄i)×
(
1− P (t|ci)

)

OR(t, ci) > 1, when the odds of term t occurring in documents of ci is greater than

the odds of term t not occurring in documents of ci. OR(t, ci) = 1, when the odds of

term t occurring in documents of ci is the same as the odds of term t not occurring

in documents of ci. OR(t, c) < 1, when the odds of term t occurring in documents

of ci is smaller than the odds of term t not occurring in documents in category ci.

The odds ratio is estimated as

OR(t, ci) =

(
u(t, ci) + 0.5

)
×
(
x(t, ci) + 0.5

)
(
w(t, ci) + 0.5

)
×
(
v(t, ci) + 0.5

)

Here 0.5 is added to each observed frequency to avoid the extreme cases of a few

or all the frequencies becoming zero [81]. The maximum odds ratio among all the

categories is selected as the odds ratio value for a term.

A Gini Index (GI) based term selection method for text categorization was intro-

duced by Shang. et al. [114]. The original form of the gini index algorithm was used

to measure the impurity of terms towards categorization. The aim is to minimize

the impurity to obtain the best subset of terms. The gini index of a term t over all

categories is defined as

GI(t) =
m∑

i=1

P (t|ci)
2P (ci|t)2

In this formula, if t appears in every document of a particular category ci and

it does not occur in any other category, then the maximum value, GI(t) = 1, is

obtained [114].

Several other investigations on term selection techniques for text categorization

have been done such as Yang et al. [131] investigated five term selection methods

and reported that good term selection methods improve the categorization accu-

racy with an aggressive term removal using DF, IG and CHI methods. Shoushan

et al. [83] developed a new term selection method - weighted frequency and odds
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for text categorization. Mladenic et al. [92] introduced some new term scoring mea-

sures based on odds ratio for large text data sets and web documents. Jana et

al. [95] presented sequential forward selection methods based on an improved mu-

tual information measure for text categorization. Basu et al. proposed an evaluation

function term relevance for term selection in text categorization [10]. The function is

designed heuristically, but has shown good performance on several well known text

corpora. They have designed another evaluation function, term significance for term

selection, which favors the common terms to construct the best subset of terms [9].

Zheng et al. [136] investigated a combination of term selection algorithms for text

categorization on imbalanced data sets. The data set where the training samples are

unevenly distributed among different categories is known as imbalanced data. Chen

et. al [27] have developed two term evaluation metrics: Multi-class Odds Ratio and

Class Discriminating Measure for the naive bayes classifier applied on multi-class

text data sets. Uysal et al. proposed a novel filter based probabilistic term selection

method, namely distinguishing feature selector for text classification [122]. A new

term selection algorithm have been presented by Yang et al. [129], which comprehen-

sively measures the significance of a term both in inter-category and intra-category.

Feng et al. have designed a generative probabilistic model, describing categories by

distributions and handling the term selection problem by introducing a binary ex-

clusion or inclusion latent vector, which is updated via an efficient stochastic search

search [46].

1.3.1.3 Unsupervised Term Selection Methods

The task of an unsupervised term selection method is to select important terms for

the underlying clusters without using any prior knowledge of the data.

Document Frequency (DF) thresholding is the simplest technique for vocabulary

reduction in text categorization [131]. Document frequency denotes the number

of documents in which a term occurs. The document frequency of each term in

the training corpus is computed and the terms with a document frequency less

than a predefined threshold are discarded from the vocabulary. The DF thresh-

olding method assumes that the terms with higher document frequency are more

informative for categorization. But this assumption may sometimes lead to a poor

categorization accuracy if a term occurs in most of the documents in each category

(e.g., stopwords). The computational complexity of this method is approximately
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linear to the number of documents in the training set. Hence it is scalable to any

large corpus and usually considered as an ad hoc approach for term selection.

Entropy based ranking is proposed by Dash et al. [37]. In this method, a term

is measured by the entropy reduction when it is removed. The entropy of a term is

defined as follows:

E(t) =
N∑

i=1

N∑

j=1

(
Simdi,dj

× log Simdi,dj
+ (1− Simdi,dj

)× log(1− Simdi,dj
)
)

where Simdi,dj
is the similarity between documents di and dj . Sim is defined as

below.

Simdi,dj
= eα×ρ(di,dj), α = − ln(0.5/ρ), where ρ(di, dj) is the distance between di

and dj after removing the term t. ρ is the average distance among the documents

after removing t. The computational complexity of this method is O(nN2) for n

number of terms, which is a serious problem of this method [86].

Liu et al. [86] developed two new unsupervised term selection methods. First

one is term contribution, which ranks a term by its overall contribution to the docu-

ment similarity in a data set. Another is iterative feature selection, which utilizes a

successful term selection criterion function, such as IG or CHI, to iteratively select

terms and perform document clustering at the same time. Dasgupta et al. [35] pre-

sented an unsupervised term selection algorithm and applied it to the regularized

least square classification technique. The algorithm assigns a univariate score to

every term and then randomly samples a small number of terms (independent of

the total number of terms, but dependent on the number of documents and an error

parameter), and solves the regularized least square classification problem induced

on those terms. In addition the authors [35] have given a theoretical justification

which provides worst case guarantees on the generalization power of the resultant

classification function using the sample subset of terms with respect to that of the

original classification function by using all the features. In a study by Tsivtsivadze

et al., they have described the main ideas behind kernels for text analysis in par-

ticular, as well as provided an example of designing feature space for parse ranking

problem with different kernel functions [121]. Pahikkala et al. have designed a

framework that allows systematic incorporation of word positions and facilitates the

efficient use of similarity information of words and their positions in the natural

language text [98]. The framework is suitable for disambiguation tasks of natural
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language texts, where the aim is to select a particular property of a word from a set

of candidates based on the context of the word.

1.3.2 Clustering of Text Data

The task of clustering is to segregate data into groups of similar objects [17]. In-

tuitively, patterns within a valid cluster are more similar to each other than the

patterns belonging to two different clusters [67]. It is also known as the unsuper-

vised classification of data as the method of clustering need not require any prior

knowledge about the nature of the data. Thus it has become useful for grouping the

data objects when no information is available about the characteristics of the data.

Hence clustering is a widely used technique in various pattern recognition problems

e.g., document retrieval, image segmentation, clustering of text data, social network

analysis etc. In this thesis the methods of clustering are discussed in the perspective

of text data only, which is better known as document clustering.

Document clustering methods partition a set of documents into different clus-

ters such that the documents in the same cluster are more similar to each other

than documents in different clusters according to some similarity or dissimilarity

measure. A pairwise document similarity measure plays the most significant role in

any document clustering technique. Any document clustering algorithm first finds

the document similarity and then groups similar documents into a cluster. There

are two basic types of document clustering techniques available in the literature -

hierarchical and partitional clustering techniques [73].

1.3.2.1 Hierarchical Clustering

Hierarchical clustering produces a hierarchical tree of clusters where each individual

level can be viewed as a combination of clusters in the next lower level. This hierar-

chical structure of clusters is also known as dendrogram. The hierarchical clustering

techniques can be divided into two parts - agglomerative and divisive. In an agglom-

erative hierarchical clustering (AHC) method [116], starting with each document as

individual cluster, at each step, the most similar clusters are merged until a given

termination condition is satisfied. In a divisive method, starting with the whole set

of documents as a single cluster, the method splits a cluster into smaller clusters

at each step until a given termination condition is satisfied. Several terminating

16



criteria for AHC algorithms have been proposed, but no universally acceptable ter-

minating criterion is available for these algorithms. As a result some good clusters

may be merged which will be eventually meaningless to the user. There are mainly

three variations of AHC techniques - single-link, complete-link and group-average

hierarchical method for document clustering [32].

Let ρ(a, b) denote similarity between the two documents a, b. Let A = {d11, d12,

..., d1x} and B = {d21, d22, ..., d2y} denote two clusters of documents. Then, for

single-link method the similarity between A and B is calculated as

max{ρ(d1i, d2j) : i = 1, ..., x, j = 1, ..., y}

The complete-link method measures the similarity between A and B as

min{ρ(d1i, d2j) : i = 1, ..., x, j = 1, ..., y}

The group average method merges two clusters if they have the larger average sim-

ilarity than any other pair of clusters and average similarity between A and B is

calculated as

1

xy

x∑

i=1

y∑

j=1

ρ(d1i, d2j)

In a divisive hierarchical clustering technique, initially, the method assumes the

whole data set as a single cluster. Then at each step, the method chooses one of

the existing clusters and splits it into two. The process continues till only singleton

clusters remain or it reaches a given halting criterion. Generally the cluster with the

least overall similarity is chosen for splitting [116].

1.3.2.2 Partitional Clustering

In contrast to hierarchical clustering techniques, partitional clustering techniques

allocate data into a previously known fixed number of clusters. The commonly

used partitional clustering technique is k-means [61] method where k is the desired

number of clusters. Here initially k documents are chosen randomly from the data

set, and they are called seed points. Each document is assigned to its nearest seed

point, thereby creating k clusters. Then the centroids of the clusters are computed,

and each document is assigned to its nearest centroid. The same process continues
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until the clustering does not change, i.e., the centroids in two consecutive iterations

remain the same. Generally, the number of iterations is fixed by the user. The

procedure stops if it converges to a solution, i.e., the centroids are the same for two

consecutive iterations, or the process terminates after a fixed number of iterations.

The k-means algorithm has, generally, low computational complexity. In general it

takes linear time (linear to the size of the corpus) to build the clusters. In some

cases it suffers from high computational cost when the user does not fix the number

of iterations (number of iterations can become really large) and the data set size is

large or the dimensionality of the data set is very high [6]. The main disadvantage

of this method is that the number of clusters is fixed and it is very difficult to select

a valid k for an unknown text data set. Also there is no proper way of choosing

the initial seed points. The method is sensitive to the initial seed points and may

get stuck in the local optima [61]. An improper choice of seed points may lead to

clusters of poor quality.

Bisecting k-means method [116] is a variation of basic k-means algorithm. This

algorithm tries to improve the quality of clusters in comparison to the clusters pro-

duced by k-means algorithm. In each iteration, it selects the largest existing cluster

(the whole data set in the first iteration) and divides it into two subsets using k-

means (k=2) algorithm. This process is continued till k clusters are formed. It

produces clusters of almost uniform size. Thus bisecting k-means algorithm can

perform better than k-means algorithm when the actual groups of a data set are

almost of similar size, i.e., the number of documents in the categories of a corpus

are close to each other. On the contrary, the method produces poor clusters for

the corpora, where the number of documents in the categories differ very much.

This method also faces difficulties like k-means clustering technique, in choosing the

initial centroids and a proper value of the parameter k.

Buckshot algorithm [32] is a combination of basic k-means and hierarchical clus-

tering methods. It tries to improve the performance of k-means algorithm by choos-

ing better initial seed points. Initially it randomly selects
√

kN documents (N is

the number of documents in the corpus) from the data set as sample documents

and performs AHC on these sample documents. The centroids of the k clusters on

the sample documents are the initial seeds for the whole collection. The basic k-

means algorithm with these seed points is applied to partition the whole document

set [1]. Repeated calls to this algorithm may produce different partitions. The main

disadvantage of buckshot is the random selection of initial
√

kN documents for hi-
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erarchical clustering in the first stage, where N is the number of documents and k

is the number of clusters [102]. The resulting clusters will be of poor quality, if the

initial random sampling does not represent the whole data set properly. Note that

appropriate value of k is necessary for this method too.

The k-Nearest Neighbor (kNN) technique is mostly known to be used for classi-

fication [33], it has also been used for clustering [24,60]. It utilizes the property of k

nearest neighbors, i.e., a document should be put in the same cluster to which most

of its k nearest neighbors belong. Merge the documents d1 and d2 to form a cluster,

if d1 and d2 share at least k nearest neighbors and d1, d2 are k-nearest neighbors of

each other. The performance of the algorithm is highly dependent on the parameter

k and choosing a proper value of the k is difficult for text data sets.

1.3.2.3 Spectral Clustering

Spectral clustering technique is a very popular method which works on the similarity

matrix rather than the original data matrix using the idea of graph cut. It uses the

top eigenvectors of the similarity matrix derived from the similarity between docu-

ments [94]. The basic idea is to construct a weighted graph from the initial data set

where each node represents a pattern and each weighted edge represents the similar-

ity between two patterns. In this methodology the clustering problem is formulated

as a graph cut problem, which can be tackled by means of the spectral graph theory.

The core of this theory is the eigenvalue decomposition of the Laplacian matrix of

the weighted graph obtained from data [47]. Let X = {x1, x2, ..., xN} be the set of

N documents to cluster. Let S be the N ×N similarity matrix where Sij represents

the similarity between the documents xi and xj and Sii = 0. Define D to be the di-

agonal matrix where Dii =
N∑

j=1

Sij. Then construct the Laplacian matrix L = D−S

and compute the eigenvectors of L. The corpus is partitioned using D−1/2e2 where

e2 is the eigenvector corresponding to the second largest eigenvalue of L. The same

process is continued until k partitions are obtained. But experimentally it has been

observed that using more eigenvectors and directly computing a k way partition-

ing is better than recursively partitioning the corpus into two subsets [4]. Another

problem is to find a proper stopping criterion for a large and sparse text data set.

Ng. et al. [94] proposed a spectral clustering algorithm which simultaneously

partitions the Laplacian matrix into k subsets using the k largest eigenvectors and

they have used a Gaussian kernel on the similarity matrix. The steps of the algorithm
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are described below.

i) Form the similarity matrix S ∈ RN×N by using a Gaussian kernel, defined by

Sij = exp(−ρ(xi,xj)

2σ2 ), where ρ(xi, xj) denotes the similarity between xi and xj

and σ is the scaling parameter. Note that Sii = 0.

ii) Compute the diagonal matrix D as described above.

iii) Construct the Laplacian matrix L = D−1/2SD−1/2.

iv) Find the k largest eigenvectors of L, say z1, z2, ..., zk and construct the matrix

Z = [z1, z2, ..., zk] ∈ RN×k with the eigenvectors as its column.

v) Form the matrix Y by re-normalizing the rows of Z to have unit length, i.e.,

Yij =
Zij√∑
j

Z2
ij

vi) Partition Y into k clusters by treating each row of Y as a point in Rk using

k-means algorithm.

vii) Assign xi, i = 1, 2, ..., N to cluster j, if and only if, the ith row of Y is assigned

to j.

The Gaussian kernel is used here to get rid of the curse of dimensionality. The

main difficulty of using a Gaussian kernel is that, it is very sensitive to the parameter

σ [87]. A wrong value of σ may highly degrade the quality of the clusters. It is

extremely difficult to select a proper value of σ for a document collection, since the

text data sets are generally sparse with high dimensionality. In the experiments

the value of σ is set by search over values from 10 to 20 percent of the total range

of the similarity values and the one that gives the tightest clusters is picked, as

suggested by Ng. et al. [94]. It should be noted that the method also suffers from

the disadvantages of the k-means method, discussed above.

1.3.2.4 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) has previously been shown to be a useful

decomposition for multivariate data. It finds the positive factorization of a given

positive matrix [79]. Xu et al. have demonstrated that NMF performs very well
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for text clustering in compare to the other similar methods like singular value de-

composition and latent sematic indexing [128]. The technique factorize the original

term-document matrix D approximately as

D ≈ UV T

where U is a non-negative matrix of size n ×m, and V is an m × N non-negative

matrix. The base vectors in U can be interpreted as a set of terms in the vocabulary

of the corpus, while V describes the contribution of the documents to these terms.

The matrices U and V are randomly initialized, and their contents iteratively es-

timated [5]. The non-negative matrix factorization method attempts to determine

the U and V , which minimize the following objective function

J =
1

2

wwwD − UV T
www (1.2)

where ‖.‖ denotes the squared sum of all the elements in the matrix. This is an

optimization problem with respect to the matrices U = [uik], V = [vjk], ∀i =

1, 2, ..., n, ∀j = 1, 2, ..., N and k = 1, 2, ..., m and as the matrices U and V are

non-negative, we have uik ≥ 0, vjk ≥ 0. This is a typical constrained non-linear

optimization problem and can be solved using the Lagrange method [1]. The objec-

tive function continuously improves under the following update rules, and ultimately

converges to an optimal solution.

uik ← uik
(DV )ik

(UV T V )ik
, vjk ← vjk

(DTU)jk

(V UT U)jk

It has been shown in the article by Xu et al. [128] that U and V can be normalized

in the following way:

vjk ← vjk

√√√√
n∑

i=1

uik, uik ←
uik√
n∑

i=1

uik

The cluster label of each document can be obtained from the matrix V . Precisely,

examine each row j of matrix V and assign document dj to cluster cl, if cl =

arg max
k

vjk

The interesting property of NMF technique is that it can also be used to find the
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word-clusters instead of document clusters. As the columns of V provide a basis,

which are used to determine document clusters, the columns of U can be used to

discover a basis, which correspond to word clusters. The NMF has its disadvantages

too. The optimization problem of equation 1.2 is convex in either U or V , but not

in both U and V , which means that the algorithm can guarantee convergence to a

local minimum only. In practice, NMF users often compare the local minima from

several different starting points, using the results of the best local minimum found.

On large sized problems this may be problematic [78]. Another problem with NMF

is that it relies on random initialization and as a result, the same data might produce

different results across runs [5].

1.3.2.5 Related Works

Document clustering has been traditionally investigated as a means of improving

the performance of search engines by pre-clustering the entire corpus [108]. But it

can also be seen as a post retrieval document browsing technique [32]. Several well

known document clustering algorithms have been discussed. There are some more

document clustering algorithms like the one proposed by Hammouda et al. [60].

They used a graph structure and a document index graph to represent documents

and also proposed an incremental clustering algorithm by representing each cluster

with a similarity histogram. Density based algorithm is a very famous algorithm

for large scale spatial data sets [44]. DBSCAN is a famous and widely used den-

sity based clustering technique. The basic idea of DBSCAN is that it apply a local

cluster criterion. Clusters are regarded as regions in data space in which the objects

are dense and which are separated by regions of low object density [75]. The same

can be applied for text data, but it may be difficult to find a local cluster criterion

for a sparse and high dimensional text data. Suffix Tree Clustering algorithm were

developed by Zamir et al. [133] and used in their meta-search engine. The algorithm

is based on identifying phrases that are common to the groups of documents and it

is a linear time clustering algorithm (linear to the size of the set of documents) [29].

Note that a phrase is an ordered sequence of one or more terms. Huang et. al pre-

sented a clustering method with active learning using Wikipedia [65]. They utilized

Wikipedia to create a concept based representation of a text document with each

concept associated to a Wikipedia article rather than terms. Banerjee et. all [7]

investigated a method of improving the accuracy of clustering short texts by en-
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riching their representation with additional features from Wikipedia. Cao et al. [23]

proposed an extended vector space model with multiple vectors defined over spaces

of entity names, types, name-type pairs, identifiers, and keywords for text search-

ing and clustering. Oikonomakou et al. [96] have shown a comparative study of

various document clustering approaches with their merits and demerits. Wang et

al. [125] proposed a new method for improving text clustering accuracy based on

enriching short text representation with keyword expansion. Jing et al. developed

a new knowledge-based vector space model (VSM) for text clustering. In the new

model, semantic relationships between terms (e.g., words or concepts) are included

in representing text documents as a set of vectors [69]. Millar et al. have developed

a document clustering and visualization method based on latent dirichlet allocation

and self-organizing maps [91]. The method transforms the word histogram rep-

resentations of documents into topic distributions, reducing dimensionality in the

process. Dasgupta et al. [36] developed a simple active clustering algorithm which

is capable of producing multiple clustering of the same data according to user in-

terest. Carpineto et al. have done a very good survey on search results clustering.

They have elaborately explained and discussed various issues related to web cluster-

ing engines [25]. Wang et al. [124] described an efficient soft-constraint algorithm

by obtaining a satisfactory clustering result so that the constraints are respected

as much as possible. Zhu et al. [137] presented a semi-supervised nonnegative ma-

trix factorization based on the pairwise constraints - must-link and cannot-link. In

this method must-link constraints are used to control the distance of the data in

the compressed form, and cannot-link constraints are used to control the encoding

factor to obtain a very good performance. Pahikkala et al. [97] proposed a novel

unsupervised multiclass regularized least squares classification technique. The re-

sulting kernel-based framework efficiently combines steepest descent strategies with

powerful meta-heuristics for avoiding local minima.

1.3.3 Text Categorization Methods

Text categorization is the problem of assigning predefined categories to the new text

documents by using the information from the existing documents in those predefined

categories [130]. The method is also known as text classification or document classi-

fication. A growing number of statistical learning methods have been applied to this

problem in recent years. Some useful text categorization techniques are discussed
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here.

1.3.3.1 Naive Bayes Decision Rule

The naive bayes decision rule is a widely used simple probabilistic learning method

for text categorization [89]. Let T = {t1, t2, ..., tn}, be the set of n terms of the

vocabulary and C = {c1, c2, ..., cm} be m pre-defined categories of the set of training

documents. The objective is to find the best category of a new test document d0.

The multinomial naive bayes decision rule finds the best category of d0 as the most

likely or maximum a posteriori category C0 as follows [89]:

C0 = arg max
cj∈C

P (cj|d) = arg max
cj∈C

P (cj)

n∏

i=1

P (ti|cj) (1.3)

where P (cj) is the prior probability of category cj and P (ti|cj) is the conditional

probability of a term ti belongs to category cj. The prior probability P (cj) can be

estimated as the simple relative frequency of category cj from the training data, i.e.,

P (cj) = Nj/N, ∀cj ∈ C, where Nj is the number of documents in cj and N is the

number of documents in the training set. The conditional probability P (ti|cj) can

be estimated as

P (ti|cj) =
fij

n∑
p=1

fpj

where fij is the number of occurrences of term ti in category cj for every i and j.

The product of equation 1.3 for a particular category becomes zero if a term does not

occur in that category. It is a serious problem as the term-document matrices are

generally sparse. Hence, the integer 1 is added to both numerator and denominator

of the conditional probability P (ti|cj) to eliminate zeros [89] as stated below.

P (ti|cj) =
fij + 1

n∑
p=1

(fpj + 1)
=

fij + 1
n∑

p=1

fpj + n

Here n is the number of terms in the vocabulary.
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1.3.3.2 k-Nearest Neighbor Decision Rule

k-Nearest Neighbour (kNN) decision rule is one of the most fundamental, simple

and effective method for classification in the areas of pattern recognition, machine

learning, data mining and information retrieval [53]. In 1951, Fix and Hodges [48]

introduced the nearest neighbor decision rule and in 1967, Cover and Hart [31] found

out the classification error for k = 1. It was shown that for k = 1 and N → ∞
the classification error is bounded by twice the Bayes error rate, where N is the size

of the training set. Several research works on kNN may be found in the book by

B. V. Dasarathy [33, 34]. Fukunaga et al. proposed a refinement on kNN rule with

respect to Bayes error rate [54]. A study by Yang [130] shows that kNN rule is very

useful for text categorization and it has comparable performance to various other

classification methods.

Given a new test document d0 and a set of training documents, the task of kNN

rule is to assign d0 to a particular category. It first finds the k nearest neighbors of d0

from the training set by a distance function and assigns d0 to a particular category,

say C0, if the majority of the documents among the k nearest neighbors belong to C0.

k is termed as neighborhood parameter. The cross validation technique is generally

used to estimate the value of k [109,117], but effectively choosing an optimal k is still

a difficult job. A discussion on the bias and the variance of the posterior probability

estimates for different k values is available in the book of Duda and Hart [42] and

an article of Friedman [52]. The majority voting of kNN groups d0 to a category

which has maximum representatives among the k nearest neighbors. It may be the

case that a new test document is put into a category which has a win by one vote

to the next competing category. Sometimes a test document is arbitrarily assigned

to a category, if there is a tie between two competing categories. This assignment

may not be intuitively satisfying if the test document belongs to the intersection

region between categories, where one may not always necessarily be interested to

categorize every such document. In practical cases, we may have a mixture of two

or more data sets. In such cases the traditional voting process may not work. This

issue is elaborately discussed in the next section and chapter 4.

1.3.3.3 Adaptive k-Nearest Neighbor Technique

In the adaptive nearest neighbor decision rule, the number of nearest neighbors (k)

selected for different categories are adaptive to their sample size in the training
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set. Baoli et al. [8] proposed an adaptive kNN rule for text categorization, which

is adaptive to the sample size of different categories. The method uses different k

values for different categories, rather than a fixed k value for each category. The

value of k for each category ci, i = 1, 2, ..., m is determined as

adk(ci) =

{
top hi nearest neighbors in traditional kNN rule:

hi = min

(
α +

⌈
k × |ci|

m
max
i=1
|ci|

⌉
, k, |ci|

)}

Here α is a non-negative integer. It is used to maintain a reasonable minimum value

of hi, i = 1, 2, ..., m. Without α, hi may be too small or even equal to 1 for some

smaller categories for a training set with a skewed category distribution. Basically to

avoid unstable outcomes, a lower bound for hi is set by selecting a reasonable integer

α. When α = 0 and the distribution of the categories in a training set is absolutely

even, adaptive kNN rule behaves like the traditional kNN rule. The adaptive kNN

decision rule determines the category of a new test document d0 as follows:

Cat(d0) = arg
m

max
i=1

∑

j∈adk(ci)

sim(d0, dj)× y(ci, dj)

∑

j∈adk(ci)

sim(d0, dj)

where sim(d0, dj) is the similarity between the test document d0 and training doc-

ument dj, j = 1, 2, ..., N and y(ci, dj) ∈ {0, 1} indicates whether dj belongs to the

category ci.

1.3.3.4 Distance Weighted k-Nearest Neighbor Technique

The distance weighted kNN decision rule gives different weights to different k nearest

neighbors based on their distances with the test document d0, where the closer

neighbors get higher weights [43]. Let d1, d2, ..., dk be the k nearest neighbors of

d0 arranged in increasing order of ρ(dj , d0), ∀j = 1, 2, ...k, where ρ is the distance

function. Here d1, dk are respectively the first and the kth nearest neighbor of d0.
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The weight of the jth nearest neighbor is defined as

Wj =





ρ(dk, d0)− ρ(dj , d0)

ρ(dk, d0)− ρ(d1, d0)
, if ρ(dk, d0) 6= ρ(d1, d0)

1, if ρ(dk, d0) = ρ(d1, d0)

The test document d0 is assigned to a particular category for which the weights of

the representatives of that category among k nearest neighbors sum to the greatest

value.

1.3.3.5 k-Nearest Neighbor Model

The kNN model is another variant of kNN rule, proposed by Guo et. al [59]. The

method constructs a model from the training documents rather than using the entire

training documents, and categorizes new documents using the model. The model

is a set of representatives of the training document set, and it is constructed by

pruning some documents from the training set [58]. In model construction process,

each document has its largest local neighborhood which covers the maximal number

of documents of the same category. Based on these local neighborhoods, the largest

local neighborhood (called largest global neighborhood) can be obtained in each

cycle. This largest global neighborhood is used as a representative to represent all

the documents covered by it. For documents not covered by any representative, the

above operation is repeated until all the documents have been covered by a chosen

representative. The number of documents covered by a representative is the optimal

value of k for categorization in the next phase. This k is different for different rep-

resentatives. Thus k is generated automatically in the model construction process.

The new test document, say d0, is then categorized using the kNN model as follows.

i) Calculate the similarity of d0 to all representatives in the model M .

ii) If d0 is covered only by one representative < Cat(dj), Sim(dj), Num(dj),

Rep(dj) >, say, and the distance of d0 to dj is smaller than Sim(dj) then d0 is

categorized to the category of dj. The distance of d0 to the nearest boundary

point of a representative dj is equal to the difference of the distance of d0 to

dj minus Sim(dj).

iii) If d0 is covered by at least two representatives of different category, assign d0

to the category of that representative with the largest Num(dj).
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iv) If no representative in the model M covers d0, assign d0 as the category of that

representative whose boundary points are closest to d0.

In order to improve the accuracy of kNN model for text categorization, step 3 is mod-

ified in the model construction algorithm to allow each local neighborhood to cover

r instances with different categories to the majority category in this neighborhood.

1.3.3.6 Support Vector Machines

Support Vector Machines (SVMs) were introduced to solve linearly separable binary

classification problems using the Structural Risk Minimization principle [21]. In its

simplest form, SVM is a hyperplane that separates a set of positive examples from

a set of negative examples with maximum margin. Given a set of training doc-

uments in a vector space, SVM finds the best decision hyperplane that separates

two categories. The quality of a decision hyperplane is determined by the distance

(referred as margin) between two hyperplanes that are parallel to the decision hy-

perplane and touch the closest documents of each category. Therefore best decision

hyperplane is the one with the maximum margin, and is used to categorize the new

test documents. The best decision hyperplane is obtained by solving the following

optimization problem:

minimize
1

2
‖~w2‖ subject to

yi(~w · ~di − b) ≥ 1, ∀i

where ~w is the normal vector to the hyperplane, ~di, i = 1, 2, ..., N is the ith document

of the training set, yi is the actual category of di and b is a constant. Once the weights

are learned, the test documents are categorized by computing

sgn( ~w′ · ~d0 + b′),

where ~w′ is the vector of learned weights and b′ is the constant of the optimal solution.

Here ~d0 is the vector representing the test document and sgn is the sign function.

The SVM problem can be solved using quadratic programming. SVM extends its

applicability on the linearly non-separable data sets either by using soft margin

hyperplanes, or by mapping the original data vectors into a higher dimensional

space in which the documents are linearly separable. SVMs use kernels which non
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linearly map into a higher dimensional feature space so that a separating hyperplane

can be found [119]. An efficient implementation of SVM and its application in text

categorization of Reuters-21578 corpus is reported in the study by T. Joachims [71].

The linear kernel is recommended for text categorization because the linear kernel

performs nicely when there is a lot of features. The reason is that mapping the data

to a higher dimensional space using a non linear kernel does not really improve the

performance [63]. Note that the text data sets generally contain large number of

documents and the data sets are high dimensional. Hence linear kernel is useful than

the non linear kernels for text categorization [71].

1.3.3.7 Related Works

The Generalized Instance Set (GIS) Algorithm [76] is a text categorization algorithm

that combines the advantages of kNN rule and linear classifiers. Linear classifiers [82]

are a family of text categorization learning algorithms that learn a feature weight

vector for every category. The weight learning techniques (such as Rocchio’s method

and Widrow-Hoff algorithm) are used to learn the feature weight vector from the

training samples. Given a category, the vectors of documents belonging to this cat-

egory are given a positive weight, and the vectors of remaining documents are given

a negative weight. By summing up these positively and negatively weighted vectors,

the prototype vector of this category is obtained [130]. A Bayesian citation kNN

rule with distance weighting for multi-instance learning is developed by Jiang et

al. [68] and it is applied to drug discovery data. In the multi-instance learning the

training samples are represented by a bag of instances instead of a single instance

and the task is to predict the class label of a new bag of instances rather than a

single instance. Decision tree is a well known machine learning approach for auto-

matic induction of classification trees based on training documents [106]. Decision

tree algorithms are used to select informative terms based on an information gain

criterion, and predict categories of each document according to the occurrence of

term combination in the document [130]. Mubaid et al. [2] have designed a new

text categorization method that combines the distributional clustering of words to

generate an efficient representation of documents and applied a learning logic tech-

nique, called lsquare [45] for text categorization. Lsquare is a two class classification

technique that is based on learning logic. It views the training data as logic formu-

las and the resulting classifiers are logic formulas as well. The method performed
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better than SVM on Reuter-21578 data set. Dhillon et al. [40] have presented an

information theoretic approach to word clustering for text classification. First, they

derived a global objective function to capture the decrease in mutual information

due to clustering and then presented a divisive algorithm that directly minimizes

this objective function, converging to a local minimum. Huang et al. [66] have pro-

posed a classification algorithm based on local cluster centers for data sets with a

few labeled training data. The method can reduce the interference of labeled data

whose labels are missing, including those provided by both domain experts and co-

training paradigm algorithms. Chen et al. [28] have developed a simple but effective

classifier for text categorization by using class dependent projection based method.

Dhurandhar et al. [41] have designed a probabilistic characterization for the mo-

ments of generalization error of the kNN rule applied to categorical data. They

have provided a principled way of studying the non-asymptotic behavior of kNN

rule and in particular, they have derived the exact closed form expressions for the

moments of the generalization error for kNN rule assuming that all the attributes

present are categorical in nature. In a very recent study, Zhang et al. have presented

a novel projected prototype based classifier for text categorization, in which a docu-

ment category is represented by a set of prototypes, each assembling a representative

for the documents in a subclass and its corresponding term subspace [134]. Blei et

al. proposed a generative probabilistic model, Latent Dirichlet Allocation (LDA),

for collections of large discrete data such as text corpora [18]. It is a three level

hierarchical bayesian model, where each document of a text collection is modeled as

a finite mixture over an underlying set of topics. Each topic is modeled as an infinite

mixture over an underlying set of topic probabilities and the topic probabilities pro-

vide an explicit representation of a document [18]. Qiu et al. have developed a fast

cluster computing framework, SPARK, for large scale data processing, using parallel

collapsed Gibbs sampling method on LDA model [105]. Yu et al. have identified the

unique challenges for product search on e-commerce sites (e.g., eBay) and proposed

a LDA based diversified retrieval approach to address these challenges [132]. They

have also proposed a Bernoulli LDA model, which is suitable for modeling short

item titles without duplicated terms in the e-commerce data.
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1.4 Evaluation Criteria

1.4.1 Criteria for Clustering

If the documents within a cluster are similar to each other and dissimilar to the

documents in the other clusters then the clustering algorithm is considered to be

performing well. The data sets under consideration have labeled documents. Hence

quality measures based on labeled data are used here for comparison. These mea-

sures are f-measure and normalized mutual information.

F-measure and normalized mutual information are very popular and are used

by a number of researchers [116, 123] to measure the quality of a cluster using the

information of the actual categories of the corpus. Let us assume that R is the set of

categories and S is the set of clusters. Consider there are I number of categories in

R and J number of clusters in S. A total of N number of documents are there in the

corpus, i.e., both R and S individually contains N documents. Let ri is the number

of documents belonging to category i, sj is the number of documents belonging to

cluster j and sij is the number of documents belonging to both category i and cluster

j, for all i = 1, 2, ..., I and j = 1, 2, ..., J .

• F-measure determines the recall and precision value of each cluster with a

particular category [116]. Let, for a query the set of relevant documents be

from category i and the set of retrieved documents be from cluster j. Then

recall, precision and f-measure are given as :

recallij =
sij

ri

, ∀ i, j and precisionij =
sij

sj

, ∀ i, j

Fij =
2× recallij × precisionij

recallij + precisionij

, ∀ i, j

If there is no common instance between a category and a cluster (i.e., sij = 0)

then Fij = 0. The value of Fij is maximum when precisionij = recallij and sij 6=
0 for a category i and cluster j. Thus the value of Fij lies between 0 and 1.

The best f-measure among all the clusters is selected as the f-measure for the

query of a particular category is Fi = max
j∈[0,J ]

Fij , ∀i. The f-measure of all the

clusters is weighted average of the sum of the f-measures of each category,

F =
I∑

i=1

ri

N
Fi. We would like to maximize f-measure to achieve good quality

clusters.
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• Normalized Mutual Information (NMI) is the combination of mutual in-

formation and entropies of R and S. It was described by Strehl et al. [118].

Mutual information is a symmetric measure to quantify the statistical infor-

mation shared between two distributions which provides a sound indication of

the shared information between a set of categories and a set of clusters. Let

MI(R, S) denotes the mutual information between R and S and E(R) and

E(S) be the entropy of R and S respectively. MI(R, S) and E(R) can be

defined as

MI(R, S) =
I∑

i=1

J∑

j=1

sij

N
log
(Nsij

risj

)

E(R) = −
I∑

i=1

ri

N
log
( ri

N

)

There is no upper bound for MI(R, S), so for easier interpretation and compar-

isons a normalized mutual information that ranges from 0 to 1 is desirable [118].

NMI is defined as follows:

NMI(R, S) =
MI(R, S)√
E(R)E(S)

Note that at least one document must be there in each category and in each

cluster, i.e., ri > 0 ∀, i ∈ I and sj > 0 ∀, j ∈ J . If there is no common docu-

ments between a category i and a cluster j (i.e., sij = 0) then the convention

0 log(0) = 0 is used. Note that NMI(S, S) = 1, and thus normalized mutual

information ranges from 0 to 1. It is desirable to maximize the NMI value.

1.4.2 Criteria for Categorization

• Accuracy of text categorization can be defined as the number of samples

correctly chosen by the classifier from the test set divided by the number of

total samples in the test set. The accuracy can be given in the following way.

accuracy =
number of correctly chosen documents

total number of documents

• Precision, recall and f-measure determines the effectiveness of a classifier

in category assignment, aggregated over all categories or over all the docu-
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ments. The precision and recall for a set of m categories can be computed as

follow :

precision =
1

m

m∑

i=1

TPi

TPi + FPi

recall =
1

m

m∑

i=1

TPi

TPi + FNi

Here TPi counts the number of documents correctly assigned to the ith cat-

egory, FPi counts the number of documents incorrectly rejected from the ith

category, FNi counts the number of documents incorrectly assigned to the ith

category, TNi counts the number of documents correctly rejected from the ith

category.

The f-measure combines recall and precision with an equal weight in the fol-

lowing form:

f-measure =
2× recall× precision

recall + precision

The closer the values of precision and recall, the higher is the f-measure. F-

measure becomes 1 when the values of precision and recall are 1 and it becomes

0 when precision is 0, or recall is 0, or both are 0. Thus f-measure lies between

0 and 1. A high f-measure value is desirable for good categorization.

1.5 Description of Text Data Sets

A number of text data sets are used in various experiments in the chapters of the

thesis. A brief description of each of the data sets used is given below.

• 20-newsgroups data1 is a collection of news articles collected from 20 different

sources. Each news source constitutes a different category. In this data set,

articles with multiple topics are cross posted to multiple newsgroups i.e., there

are overlaps between several categories. There are about 18,000 documents in

the corpus. The data set is named as 20ns in the thesis.

1http://www.cs.cmu.edu/∼TextLearning/datasets.html

33



Table 1.1: Overview of Text Data Sets
Data Set No. of Documents No. of Terms No. of Categories

20ns 18000 35218 20
fbis 2463 2000 17
la1 3204 31472 6
la2 3075 31472 6

oh10 1050 3238 10
oh15 913 3100 10
rcv1 2017 12906 30
rcv2 2017 12912 30
rcv3 2017 12820 30
rcv4 2016 13181 30
tr31 927 10128 7
tr41 878 7454 10
tr45 690 8261 10
wap 1560 8460 20

• The data set fbis is developed2 and used in the article by Karypis et al. [72].

The data set was originally collected from the Foreign Broadcast Information

Service data of TREC-5 [120].

• la1 and la2 were created from the Los Angeles Times data of TREC-5 [120].

The categories of la1 and la2 were generated according to the name of the

newspaper sections where these articles appeared, such as Entertainment, Fi-

nancial, Foreign, Metro, National, and Sports. The documents that have single

label were selected for these data sets, i.e., there are no overlaps between the

documents of different categories. The data sets are developed in the Karypis

lab3 [72].

• oh10 and oh15 are the versions of Ohsumed data set. Ohsumed test collection4

is a set of 348,566 references from MEDLINE, the on-line medical information

database, consisting of titles and/or abstracts from 270 medical journals over

a five-year period (1987-1991). The available fields are title, abstract, MeSH

indexing terms, author, source, and publication type. Different subsets of the

original categories of Ohsumed have been taken to construct oh10 and oh15.

2http://www-users.cs.umn.edu/∼han/data/tmdata.tar.gz
3http://glaros.dtc.umn.edu/gkhome/index.php
4http://disi.unitn.it/moschitti/corpora.htm
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The information on these data sets are available in the article by Karypis et

al. [72].

• Reuters-21578 is a collection of documents that appeared on Reuters newswire

in 1987. The documents were originally assembled and indexed with categories

by Carnegie Group Inc., and Reuters, Ltd. The corpus contains 21578 docu-

ments in 135 categories [130]. The ModApte version used in [22] are considered

here, in which there are 30 categories and 8067 documents. Basu et al. [11]

have divided this corpus into four groups and with the name as rcv1, rcv2, rcv3

and rcv4, which have shown very good performance on document clustering.

The detailed description of the four subsets of the Reuters data are given in

Table 1.1.

• tr31, tr41 and tr45 are derived from TREC-5, TREC-6, and TREC-7 data

collections [120]. The categories of the tr31, tr41 and tr45 data sets were

generated from the relevance judgment provided in these collections. The

data sets are used in the articles by Karypis et. al [116].

• Data set wap is originated from the WebACE project [19]. These data sets

are created in the karypis lab5 and first used in the article by Han. et al. [72].

An overview of these data sets is given in Table 1.1. All the data sets are used

here by removing stopwords using a standard English stopword list6 and the terms

are stemmed using Porter’s suffix-stripping algorithm [104].

1.6 Thesis Contributions

The thesis aims to introduce new supervised and unsupervised methodologies for

effective mining of text data. The three main contributions of the thesis are

a) A new similarity measure and a new hierarchical document clustering tech-

nique using this similarity measure.

b) A new nearest neighbor classification technique for text categorization.

c) A new term selection scheme for dimensionality reduction of text data.

5http://glaros.dtc.umn.edu/gkhome/index.php
6http://www.textfixer.com/resources/common-english-words.txt

35



Some extensions of these three works are presented in the other chapters. A brief

description of these works is given below.

1.6.1 A Hierarchical Document Clustering Technique

One of the main challenges of any document clustering algorithm is the selection of a

good similarity measure. In this work a new similarity measure between documents

has been introduced to improve the accuracy of measuring the similarity between

documents and the similarity measure is named as extensive similarity. A new hier-

archical document clustering technique is designed by using the proposed extensive

similarity. Intuitively, extensive similarity determines the similarity between two

documents by finding their content similarity as well as their distances with every

other document in the corpus. The significant characteristic of extensive similarity

is that it can identify two dissimilar documents by using a similarity threshold.

The new clustering method is named as Clustering Using Extensive Similarity

(CUES). CUES need not require the number of clusters prior to implementation, like

the other document clustering algorithms. The number of clusters is automatically

determined by CUES from the data. It is hierarchical in nature, but no stopping

criteria is needed to terminate the algorithm. The algorithm could be stopped by

varying the similarity threshold of extensive similarity. A data independent his-

togram thresholding based method is proposed for selecting the value of the simi-

larity threshold. The experimental results show that CUES performs significantly

better than several other document clustering techniques using the threshold values

selected by the proposed histogram thresholding based technique. The material of

this work can be found in article [11].

1.6.2 Document Clustering by A Hierarchical Approach to

k-means Clustering

Another document clustering technique is introduced in this work, which is a com-

bination of a hierarchical and k-means clustering technique. The hierarchical part

creates some clusters by the extensive similarity between documents and by giving a

bound on the distance between clusters. This bound is determined by a predefined

threshold. A technique is provided to determine the threshold. The hierarchical

clusters are named as baseline clusters. Rest of the documents which remain as sin-
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gleton clusters are grouped to anyone of the existing clusters by k-means clustering

technique. The centroids of the baseline clusters are used as the initial seeds for the

k-means clustering technique. Thus the proposed method reduces the error due to

random seed selection. On the other hand it is not as computationally expensive

as the other hierarchical clustering algorithms like CUES or single-link clustering

techniques. It will be observed from the experiments, later in chapter 3 that the

proposed technique takes less time than several partitional clustering algorithms

(e.g., buckshot, k-means). The contents of this work are taken from article [14].

1.6.3 Tweak on k-Nearest Neighbor Decision Rule for Text

Categorization

A Tweak on the kNN decision rule (TkNN) is presented in this chapter, which

restricts the majority voting of kNN decision rule by a predefined positive integer

threshold to assign a document to a predefined category. In kNN decision rule,

a new test document is put in a particular category that has maximum number

of representatives among the k nearest neighbors. There are no particular bounds

on the discrimination criterion of majority voting. Sometimes, a test document is

assigned to an arbitrarily chosen competing category when a tie occurs between

the competing categories. The decision about the category label of a document by

kNN rule may not be accurate if the difference between the number of members

(among the neighbors) of the competing categories is one or they have same number

of members. Intuitively, if the difference between the number of members of the

competing categories is more than one then it may enhance the confidence of the

majority voting. Practically it is true for any majority voting process that the more

the margin of win is, the more the confidence on the choice of decision.

The proposed decision rule does not categorize a document when a decision in

not so certain. Thus the main objective of TkNN is to enhance the certainty of

the decision. The experimental analysis shows that TkNN decision rule outperforms

kNN and several other classifiers. The experiments also show that the processing

time of the proposed method is less than the processing time of kNN decision rule

and the other methods. The discussions on the proposed decision rule can be found

in articles [16] and [15].
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1.6.4 An Extensive Similarity based Supervised Decision

Rule for Text Categorization

In this chapter, another decision rule for text categorization is proposed by combining

the idea of TkNN and the extensive similarity between the test document and the

training documents [11]. The extensive similarity measure is used in this chapter

after a simple modification to use it for text categorization. The experimental results

show that the extensive similarity has boost the performance of TkNN decision rule.

The material of this study can be found in article [12].

1.6.5 A Supervised Term Selection Technique for Text Cat-

egorization

Text categorization is a challenging task due to the high dimensionality of the fea-

ture space and the sparsity of data. Each term in the vocabulary of a corpus is

considered as a feature and thus the feature space becomes large. An effective term

selection method is needed to improve the quality of text categorization by remov-

ing the redundant and unimportant terms. A supervised term selection technique

is developed in this chapter which gives high priority to the terms that occur highly

in each category irrespective of their occurrence in the entire corpus. The proposed

evaluation function, Term ReLatedness (TRL) derives a similarity score between a

term and a category and then finds the overall score among all the categories. All

the terms are then ranked according to these scores and a selected number of top

terms forms the ultimate feature subset for text categorization. It has been de-

scribed that TRL may easily be applied to any high dimensional real life data sets

as its computational complexity is reasonable. The description of this work can be

found in article [13].

1.7 Organization

The rest of the thesis is organized in the following way.

• Chapter 2 describes the proposed extensive similarity measure and its var-

ious properties. The proposed document clustering technique CUES is also

described in this chapter. An experimental analysis is provided where CUES

is compared with various other clustering algorithms on some well known text
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data sets. The computational times of CUES and other algorithms are also

reported.

• Chapter 3 presents another document clustering technique, which is a com-

bination of hierarchical and k-means clustering technique. The extensive sim-

ilarity is used to design the hierarchical part. A discussion is provided on the

impact of extensive similarity on the proposed document clustering technique.

The document clustering technique is compared with CUES and various other

clustering algorithms. A discussion is provided about the computational time

of the proposed algorithm and the other methods.

• In chapter 4, a tweak on kNN decision rule for text categorization is described.

An experimental evaluation is provided where the proposed decision rule for

text categorization is compared with several other text classifiers using a set of

text data sets discussed in section 1.1. A discussion has been provided about

the processing time of the proposed decision rule and other methods.

• Chapter 5 describes an extensive similarity based decision rule. The empirical

study shows the performance of the proposed technique and other classifiers

for text categorization. An analysis on the computational time of the proposed

decision rule vis-a-vis other methods is also discussed.

• Chapter 6 presents a novel evaluation function for term selection in text

categorization. The properties of the proposed function are discussed. An

analysis is given on the space and time complexity of the proposed scheme.

The experimental evaluation shows the comparison of the performances of the

proposed scheme and several other feature selection techniques. The exact

processing times of the proposed technique and the other methods are given

on various text data sets.

• Chapter 7 consists of conclusions, discussion and scope for further work.
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Chapter 2

CUES: A New Hierarchical

Approach for Document

Clustering

2.1 Introduction

In this chapter the problem of document clustering is addressed. A new similarity

measure between documents is introduced and a new hierarchical document clus-

tering technique is proposed here. It has been discussed in section 1.3.2 that the

document clustering algorithms aim to reduce the within cluster distances such that

they put the similar documents in the same group and segregate the dissimilar doc-

uments. Thus the performance of a clustering algorithm is mainly dependent on the

similarity measure. Several similarity measures have been used to perform document

clustering [64]. The document clustering algorithms determine the content similarity

of a pair of documents for putting them into the same cluster. The standard way

of finding the content similarity between two documents is to compute the cosine

similarity between the document vectors [89]. An important property of cosine sim-

ilarity is its independence of document length and so that it has become popular

in finding similarity between documents [64]. Cosine similarity actually checks the

number of common terms present in the documents. If two documents contain many

common terms then the documents are very likely to be similar. The difficulty is

that there is no clear explanation on how many common terms can identify two

documents as similar. The text data sets are high dimensional data set and most
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of the terms do not occur in each document, i.e., the term-document matrices are

generally sparse. In this situation two documents with very low similarity value

may be grouped in the same cluster. Consider a, b, c be the three centroids of three

individual clusters and the task is to find the proper group of a document z. Assume

that k-means clustering algorithm is performed and z has low content similarity with

each of a, b, and c. In principle z is to be assigned to one of a, b, c with which it

has least dissimilarity, but in practice z should not be assigned to a cluster based

on these low similarity values. The same scenario may be observed in all the other

clustering techniques, i.e., two documents having very low content similarity may be

grouped in the same cluster. Hence the issue is to find the content similarity in such

a way so that it can restrict the low similarity values. The actual content similarity

between two documents may not be found properly by checking the individual terms

of the documents. Intuitively, if two documents are content-wise similar then they

should have similar type of relations with most of the other documents, i.e., if two

documents x and y have similar content and if x is similar to any other document z

then y must be similar or somehow related to z. This important characteristic is not

observed in cosine similarity measure. A similarity measure is proposed maintaining

this property.

The proposed similarity measure is named as extensive similarity and the aim

in this regard is to reduce the constraints of the cosine similarity for improving

the performance of clustering. Extensive similarity initially restricts the low simi-

larity values of the cosine similarity by a predefined threshold and then finds the

similarity between documents by extensively checking all the documents in the cor-

pus. The other significant property of extensive similarity is that it can identify

two dissimilar documents by the threshold. Intuitively two documents with high

extensive similarity between them should be in the same cluster. A new distance

function is introduced to find the distance between two clusters by this property

of extensive similarity. The distance between two clusters becomes negative if the

extensive similarity between every two documents (taking one from each cluster) is

negative. A hierarchical document clustering technique is proposed in this chapter

utilizing the proposed cluster distance measure. The new document clustering tech-

nique is named as Clustering Using Extensive Similarity (CUES). CUES initially

treats every document as a single cluster. The algorithm then merges two clusters

which have minimum cluster distance among all the clusters and again finds two

minimum distant clusters and merges them and so on. CUES terminates when the
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distance between every two clusters is negative. It may be noted that two clusters

with negative cluster distance is never merged by CUES. Thus CUES determines

the number of clusters automatically, which is the most significant characteristic of

the proposed technique. The performance of CUES is compared with several par-

titional and hierarchical clustering algorithms and two types of spectral clustering

methods using various well known text data sets in the experimental evaluation.

The experimental analysis shows that CUES performs significantly better than the

other methods. The main material in this chapter is taken from the article [11].

The chapter is organized as follows - section 2.2 explains the proposed extensive

similarity measure. The proposed document clustering technique is presented in

section 2.3. Section 2.4 describes the experimental results on several text data sets.

The conclusions of the proposed work are presented in chapter 2.5.

2.2 Extensive Similarity

A similarity measure is introduced to find the similarity between two documents,

which is named as extensive similarity. The similarity measure extensively checks

all the documents in the corpus to determine the similarity. The extensive similarity

between two documents is determined depending on their distances with every other

document in the corpus. Intuitively, two documents are exactly similar, if they have

sufficient content similarity and they have almost same distances with every other

document in the corpus (i.e., either both are similar or both are dissimilar to all

the other documents). The content similarity is defined as a binary valued distance

function. If two documents have sufficient terms in common then the content simi-

larity is 0, i.e., the distance is minimum, otherwise the distance is 1, i.e., they have

no content similarity. The content similarity between twodocuments di and dj, ∀i, j
are determined by putting a threshold θ ∈ (0, 1) on their cosine similarity as follows:

dis(di, dj) =

{
1 if cos(~di, ~dj) ≤ θ

0 otherwise
(2.1)

where ~di and ~dj are the corresponding vectors of documents di and dj respectively.

Here θ is a threshold value on the cosine similarity and it is used to restrict the

low similarity values. A data dependent method for estimating the value of θ is

discussed later. If the cosine similarity between two documents is 1 then it can be
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strictly said that the documents are dissimilar. On the other hand, if the distance

is 0, then they have sufficient content similarity and the documents are somehow

related to each other. Let us assume that di and dj have cosine similarity 0.52 and

dj and d0 (another document) have cosine similarity 0.44 and θ = 0.1. Hence both

dis(di, dj) = 0 and dis(dj, d0) = 0 and the task is to distinguish these two distances of

same value. The extensive similarity is thus designed to find the grade of similarity

of the pair of documents which are similar content-wise. If dis(di, dj) = 0 then

extensive similarity finds the individual content similarities of di and dj with every

other document, and assigns a score (lij) to denote the extensive similarity between

the documents as below.

lij =

N∑

k=1

|dis(di, dk)− dis(dj, dk)| (2.2)

Thus the extensive similarity (ES) between documents di and dj, ∀i, j is defined

as

ES(di, dj) =

{
N − lij if dis(di, dj) = 0

−1 otherwise
(2.3)

Two documents di, dj have maximum extensive similarity N , if the distance

between them is zero, and distance between di and dk is same as the distance between

dj and dk for every k. In general, if the above said distances differ for lij times then

the extensive similarity is N − lij . Unlike other similarity measures, ES takes into

account the distances of the said two documents di, dj with respect to all the other

documents in the corpus when measuring the distance between them. lij indicates

the number of documents with which the similarity of di is not the same as the

similarity of dj. As the lij value increases, the similarity between the documents di

and dj decreases. If lij = 0 then di and dj are exactly similar. Actually lij denotes

a grade of dissimilarity and it indicates that di and dj have different distances with

lij number of documents. The extensive similarity is used to define the distance

between two clusters in the first stage of the proposed document clustering method.

2.2.1 Properties of Extensive Similarity

Extensive similarity has some interesting properties which are stated below.
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• ES is symmetric. For every pair of documents di and dj , we have ES(di, dj) =

ES(dj, di).

• If di = dj then ES(di, dj) = 0. However ES(di, dj) = 0 ⇒ dis(di, dj) = 0 and
N∑

k=1

|dis(di, dk) − dis(dj, dk)| = 0, but dis(di, dj) = 0 ; di = dj. Hence ES is

not a metric.

• Let di, dj, d0 be any three documents and ES(di, dj) ≥ 0, ∀ i, j. Then from

equation 2.3 we have

ES(di, dj) + ES(dj, d0)− ES(di, d0) =
N∑

k=1

(
|dis(di, dk)− dis(dj, dk)|+

|dis(dj, dk)− dis(d0, dk)|−
|dis(di, dk)− dis(d0, dk)|

)

≥ 0

since the operator modulus is a metric. Thus ES satisfies the triangular in-

equality, i.e.,

ES(di, dj) + ES(dj, d0) ≥ ES(di, d0), if ES(di, dj) ≥ 0, ∀ i, j

Therefore the triangular inequality holds good for non negative ES values.

• Note that ES(di, dj) � 0 for any two documents di and dj. However the only

negative value of ES is -1 and it has been used as a symbol to denote the

complete dissimilarity between two documents.

2.2.2 Remarks

Some typical cases regarding the definition of the function dis (equation 2.1) are

discussed below.

• If the cosine value between two documents is less than θ then it can be strictly

said that the documents are dissimilar as they are not sharing a minimum

number of common terms.

• If the cosine value between two documents di and dj is very high (e.g., 0.85),

then they share sufficiently many common terms and hence the documents are

45



very similar, and di, dj are likely to have similar distances with most of the

other documents in the corpus. As a result, the value of ES becomes very

high, which indicates that di and dj are similar.

• Now consider the situation where dis(di, dj) = 0, but the number of common

terms between di and dj is neither very high nor very low, i.e., θ ≤ cos(di, dj) ≤
θ′, where θ′ is another threshold on cosine similarity. ES is very useful in this

particular situation which occurs frequently. It checks the distances of di and

dj with the other documents in the data set and assigns a grade (lij) to the

similarity between the documents. The l values of all pair of documents are

used to group documents into clusters, which is introduced in the proposed

document clustering algorithm.

2.3 Proposed Document Clustering Technique

All the document clustering algorithms discussed in section 1.3.2 are mainly based

on similarity between two documents. Two documents belong to the same cluster, if

they are dissimilar to the documents in other clusters and similar to the documents

in that cluster. The distance between two documents is dependent on the number

of common terms present in the documents. But there are no crisp bounds on the

content similarity. Most of the traditional clustering methods identify two docu-

ments as similar if their similarity is more than the similarity of other pairs. This

may lead, sometimes, to a case where the similarity between two documents is a low

value (i.e., the content similarity is very low), but they are considered as similar to

be grouped in the same cluster. In extensive similarity, the distance between two

documents is determined after extensively checking their distances with every other

document in the corpus.

2.3.1 Cluster Distance

A distance function has been introduced by using extensive similarity to find the

distance between two clusters say, Cx and Cy. The cluster distance between two

clusters Cx and Cy is the maximum of the set of non negative ES values between a

pair of documents, one of which is from Cx and the other is from Cy. The cluster

distance is -1, if there are no two documents which have non negative ES value, i.e.,
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no similar documents are present in Cx and Cy. Let us assume,

SES(Cx, Cy) = {ES(di, dj) : ES(di, dj) ≥ 0, ∀di ∈ Cx and ∀dj ∈ Cy}

be the Set of Extensive Similarities(SES) between the documents of Cx and Cy.

SES becomes null, if there exists two elements in SES, one from Cx, and the other

from Cy such that their ES value is -1. Now the distance between Cx and Cy is

defined as

cluster dis(Cx, Cy) =





−1 if SES(Cx, Cy) = ∅

N −max(SES(Cx, Cy)) otherwise

(2.4)

Let us consider an example of two clusters Cx and Cy, where Cx contains four

documents and Cy contains three documents . Thus totally 12 ES values are there

between Cx and Cy. The cluster distance between Cx and Cy is -1, if at least one

of these 12 values is negative. The intuition behind negative cluster distance is that

the documents of Cx and Cy either share a very few number of terms, or no term

is common between them, i.e., they have a very low content similarity. The essence

of cluster distance lies in the fact that it would never merge two sets of dissimilar

documents to the same cluster. This phenomenon of cluster distance makes the

clustering task easier by segregating the dissimilar documents. It may be observed

from the experiments in next section that some clusters remain singleton clusters

when CUES terminates. Basically these singleton clusters (rather documents) have

negative cluster distance with all other clusters.

2.3.2 Clustering Procedure

The algorithm initially assumes each document as a single cluster. A similarity

matrix is created whose ijth entry is the ES(di, dj) value where di and dj are ith and

jth documents respectively. It is a square matrix and has N rows and N columns

for N number of clusters. Each row or column represents a cluster. Initially each

document is taken as a cluster. CUES starts with N individual clusters. Note that at

the end of the algorithm, the number of clusters remaining is not necessarily 1, since

some clusters may not be merged with any other clusters. Sometimes, some of the

singleton clusters may remain singleton clusters when the algorithm is terminated.
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Algorithm 1 Clustering using Extensive Similarity (CUES)

Input: a) A set of N clusters, C = {C1, C2, ..., CN} and noc = |C|, number
of clusters.

b) Ci = {di}, ∀i ∈ N , where di is the ith document of the data set.
c) A similarity matrix Sim[i][j] = cluster dis(Ci, Cj), ∀i, j ∈ [1, N ].

Steps of the Algorithm:

1: X ← 0, Y ← 0
2: while noc > 1 and X ≥ 0 and Y ≥ 0 do
3: min dist← N
4: X ← −1, Y ← −1
5: for i = 1 to noc− 1 do
6: for j = i + 1 to noc do
7: if min dist ≥ cluster dis(Ci, Cj) and cluster dis(Ci, Cj) ≥ 0 then
8: min dist← cluster dis(Ci, Cj)
9: X ← i, Y ← j

10: end if
11: end for
12: end for
13: if X ≥ 0 and Y ≥ 0 then
14: CX ← CX ∪ CY

15: Sim ← merge(Sim, X, Y )
16: noc← noc− 1
17: end if
18: end while
19: return C

At the first step CUES merges those two clusters whose cluster distance is min-

imum and the similarity matrix is updated accordingly. Then, again those two

clusters whose cluster distance is minimum are merged, and so on. This process is

continued till no more merges take place, i.e., till there exist no two clusters with non

negative cluster distance. In other terms, the algorithm is terminated when negative

cluster distance is observed between every pair of clusters. Algorithm 1 describes the

steps of the proposed document clustering method in detail. The merging procedure

stated in step 15 of Algorithm 1 merges two rows say i and j and the corresponding

columns of the similarity matrix by following a convention regarding numbering. It

merges two rows into one, the resultant row is numbered as minimum of i, j, and the

other row is removed. Similar numbering follows for columns too. Then the index

structure of similarity matrix is updated accordingly.
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It is to be noted that the algorithm never merges two clusters if the distance

between them is -1. They remains separate till the end of the algorithm. All tradi-

tional document clustering algorithms except graph clustering algorithms [113] can

not identify two dissimilar clusters. They always generate a grade of similarity be-

tween the clusters and eventually merge those clusters. But the proposed cluster

distance can identify two dissimilar clusters and never merge them. By this prop-

erty, CUES can automatically identify the natural clusters in the data set and does

not require a prior information of number of clusters for implementation.

In the section on experimental results, it will be observed that CUES produces

some singleton clusters. These singleton clusters have negative cluster distance with

the other clusters and so that they remain single and could be treated as outliers

of the data set. If the θ value is very high then the documents within a particular

cluster must have high extensive similarity, on the other hand it may produce huge

number of singleton clusters. In such cases the quality of the clusters including

these singleton clusters would need to be evaluated. Consequently, the value of θ

can be decreased to reduce the total number of singleton clusters. Cluster distance is

inherited from extensive similarity between documents. The extensive similarity not

only determines the similarity between documents but also describes the underlying

structure of the corpus. Ideally within a cluster the ES values between each pair of

documents are close to each other and the extensive similarity between every pair of

clusters is high at the end of the clustering. Algorithm 1 normally continues if there

remain some clusters with a non-negative cluster distance, otherwise it stops there.

Note that no stopping criterion is needed for CUES. The flowchart of the proposed

clustering technique is shown in figure 2.1.

2.3.3 Discussion

The structure of the proposed document clustering algorithm is quite similar to

single-link hierarchical clustering (SLHC) technique. The main difference between

SLHC and CUES is the negative cluster distance between two clusters. Two clusters

with insignificantly low similarity may be merged at any hierarchy of SLHC, but

CUES never merge them if they have negative cluster distance. Secondly, the SLHC

technique needs to know the stopping criterion externally, but CUES is automatically

stopped if there are no two clusters with non negative cluster distance.

The single-link algorithm, by contrast, suffers from chaining effect [115]. It has
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a tendency to produce clusters that are straggly or elongated. The clusters that

are separated by a bridge (thin line) of noisy patterns may be merged by single-link

clustering. CUES is designed like single-link algorithm, but it never suffers from

chaining effect. In Single-link algorithm, the similarity between two clusters is taken

as the similarity between two most similar documents of the two clusters. This

sometimes gives raise to merger of two clusters where two documents in two clusters

possess very small similarity values. CUES merges two clusters where the similarities

with respect to all the documents are taken into consideration, and consequently,

the low similarities are also considered. This results in merging of two clusters when

every similarity value exceeds a threshold. Thus, chaining effect is not present in

the resultant clusters since similarities between every pair of documents are taken

into consideration for calculating the cluster distance.

It may be observed that whenever two clusters are merged, the similarity between

any two documents in the merged cluster will at least be equal to θ. This interesting

property of CUES can be observed from the following theorem.

Theorem 1. Let Cx and Cy be two resulting clusters of the proposed scheme then

a) Cx ∩ Cy = ∅, i.e., if di ∈ Cx then di /∈ Cy

b) di, dj ∈ Cx ⇒ dis(di, dj) = 0

c) ∃ di ∈ Cx and dj ∈ Cy such that dis(di, dj) = 1

Proof. 1.a) It is proved by the method of contradiction. Let us consider that Cx ∩
Cy 6= ∅, i.e., ∃ di such that di ∈ Cx and di ∈ Cy. Note that dis(di, di) = 0 and

ES(di, di) = N , N is the total number of documents. As a result, after some

iterations Cx, Cy would be merged, which is contradicting the assumption. Hence

Cx ∩ Cy = ∅.

1.b) Let us assume that di, dj ∈ Cx and dis(di, dj) = 1. Initially we have two

singleton clusters {di} and {dj}. After some iterations we would have clusters C11

and C12 in such a way that

i) di ∈ C11 and di /∈ C12, ii) dj ∈ C12 and dj /∈ C11 and iii) C11, C12 ⊆ Cx

As a result C11, C12 are merged according to the proposed criterion. Now dis(di, dj) =

1 ⇒ ES(di, dj) = −1 and so that cluster dis(C11, C12) = −1. Therefore C11 and

C12 can not be merged, which is a contradiction and thus dis(di, dj) 6= 1. Hence

dis(di, dj) = 0.

1.c) This is also proved here by the method of contradiction. Let us assume that
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the statement 1.c) is not true. That means there exists no di ∈ Cx and no dj ∈ Cy

such that dis(di, dj) = 1, i.e., ∀ di ∈ Cx and ∀ dj ∈ Cy, dis(di, dj) = 0. Therefore

ES(di, dj) ≥ 0, ∀ di ∈ Cx and ∀ dj ∈ Cy. As a result cluster dis(di, dj) ≥ 0,

and Cx, Cy are merged, contradicting the assumption. Hence ∃ di ∈ Cx and dj ∈
Cy such that dis(di, dj) = 1.

The quality of the resultant clusters produced by CUES may be observed from

the above theorem.

2.3.4 A Method for Estimation of θ

There are several types of document collections available in real life. The similarities

or dissimilarities between documents present in one data set may not be same as the

similarities or dissimilarities of the other data sets, since the characteristics of the

data sets are different. Additionally, one may view the clusters present in a data set

(or in different data sets) under different scales, and different scales produce different

partitions. Similarities corresponding to one scale in one data set may not be same

as the similarities corresponding to the same scale in a different data set. This has

been the reason to make the threshold on similarities data dependent. In fact, we

feel that a fixed threshold on similarities can not give satisfactory results on several

data sets.

There are several methods available in literature for finding a threshold for a two-

class (one class corresponds to similar points, and the other corresponds to dissimilar

points) classification problem. A popular method for such classification is histogram

thresholding [57].

Let, for a given data set, the number of distinct similarity values be p, and let

the similarity values be s0, s1, ..., sp−1. Without loss of generality, let us assume that

(a) si < sj, if i < j and (b) (si+1 − si) = (s1 − s0), ∀i = 1, 2, ..., (p− 2). Let g(si)

denote the number of occurrences of si, ∀i = 0, 1, ..., (p − 1). Our aim is to find

a threshold θ on the similarity values so that a similarity value s < θ implies the

corresponding documents are practically dissimilar, otherwise they are similar. The

aim is to make the choice of threshold to be data dependent. The basic steps of the

histogram thresholding technique are as follow:

• Obtain the histogram corresponding to the given problem.
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• Reduce the ambiguity in histogram. Usually this step is carried out using a

window. One of the earliest such techniques is the moving average technique

in time series analysis [20], which is used to reduce the local variations in a

histogram. It is convolved with the histogram resulting in a less ambiguous

histogram. The weighted moving averages have been used using window length

5 of the g(si) values as,

f(si) =
g(si)

p−1∑
j=0

g(sj)

× g(si−2) + g(si−1) + g(si) + g(si+1) + g(si+2)

5
,

∀i = 2, 3, ..., p− 3

• Find the valley points in the modified histogram. A point si corresponding to

the weight function f(si) is said to be a valley point if f(si−1) > f(si) and

f(si) < f(si+1).

• The first valley point of the modified histogram is taken as the required thresh-

old on the similarity values.

In the modified histogram corresponding to g, there can be three possibilities re-

garding the valley points, which are stated below.

i) There are no valley points in the histogram. If there is no valley point in the

histogram then either it is a constant function, or it is an increasing or de-

creasing function of similarity values. These three types of histograms impose

strong conditions on the similarity values which are unnatural for a document

collection. Another possible histogram where there is no valley point is a uni-

modal histogram. There is a single mode in the histogram, and the number of

occurrences of a similarity value increases as the similarity values increase to

the mode, and decreases as the similarity values move away from mode. This

is an unnatural setup since, there is no reason of having such a strong property

to be satisfied by a histogram of similarity values.

ii) Another option is that there exists exactly one valley point in the histogram.

The number of occurrences of the valley point is smaller than the number of

occurrences of the other similarity values in a neighborhood of valley point. In

practice this type of example is also rare.
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iii) The third and most usual possibility is that the number of valley points is more

than one, i.e., there exists several variations in the number of occurrences of

similarity values. Here the task is to find a threshold from a particular valley.

In the proposed technique the threshold is selected from the first valley point.

The threshold may be selected from the second or third or a higher valley.

But in this case some really similar documents may be treated as dissimilar,

which lie in between the first valley point and the higher one. Practically the

text data sets are sparse with a high dimensionality. Hence high similarities

between documents are observed in very few cases. It is true that, for a high

θ value the extensive similarity between every two documents in a cluster will

be high, but the number of documents in each cluster will be too few due to

the sparsity of the data. Hence θ is selected from the first valley point as the

similarity values in the other valleys are higher than the similarity values in

the first valley point.

Generally similarity values do not satisfy the property that (si+1 − si) = (s1 −
s0), ∀i = 1, 2, ..., (p − 2). In reality there are (p + 1) distinct class intervals of

similarity values, where the ith class interval is [χi−1, χi), a semi-closed interval,

for i = 1, 2, ..., p. The (p + 1)th class interval corresponds to the set where each

similarity value is greater than or equal to χp. g(si) corresponds to the number

of similarity values falling in the ith class interval. The χ′
is are taken in such a

way that (χi−1 − χi) = (χ1 − χ0), ∀i = 2, 3, ..., p. Note that χ0 = 0 and the

value of χp is decided on the basis of the observations. The last interval, i.e., the

(p + 1)th interval is not considered for the valley point selection, since we assume

that if any similarity value is greater than or equal to χp then the correspond-

ing documents are actually similar. Under this setup, the value of si is taken as

si =
χi + χi+1

2
, ∀i = 0, 1, ..., (p−1). Note that the defined si’s satisfy the properties

a) si < sj, if i < j and (b) (si+1−si) = (s1−s0), ∀i = 1, 2, ..., (p−2). The proposed

method finds the valley point, and its corresponding class interval. The minimum

value of that particular class interval is taken as the threshold.

Example: Let us consider an example of histogram thresholding for the selection

of theta for a data set. The similarity values, the values of g and f are shown in

Table 2.1. Initially the similarity values have been divided into a few class intervals

of length 0.001. Let us assume that there are 80 such intervals of equal length

and si represents the middle point of the ith class interval for i = 0, 1, ..., 79. The
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Table 2.1: An Example of θ Estimation by Histogram Thresholding Technique
Class Intervals (χ′

is) s′is No. of Elements Moving Averages
of the Intervals

[0.000− 0.001) 0.0005 g(s0) –
[0.001− 0.002) 0.0015 g(s1) –
[0.002− 0.003) 0.0025 g(s2) f(s2)

. . . .

. . . .

. . . .
[0.040− 0.041) 0.0405 g(s40) f(s40)

. . . .

. . . .

. . . .
[0.077− 0.078) 0.0775 g(s77) f(s77)
[0.078− 0.079) 0.0785 g(s78) –
[0.079− 0.080) 0.0795 g(s79) –
≥ 0.080 – g(s80) –

values of g(si)’s and the corresponding f(si)’s are then found. Note that the moving

averages have been used to remove the ambiguities in the g(si) values. Valleys in

the similarity values corresponding to 76 f(si)’s are then found. Let s40, which is

equal to 0.0405, be the first valley point, i.e., f(s39) > f(s40) and f(s40) < f(s41).

The minimum similarity value of the class interval [0.040 − 0.041) is taken as the

threshold θ.

2.3.5 Time and Space Complexity

The time and space complexity of the proposed clustering algorithm for N input

documents is discussed here. In the initialization phase of Algorithm 1, a similarity

matrix has been built up which takes O(N3) time in worst case. The merging

procedure takes O(N) time to merge two clusters and rest of the steps take O(1)

time to execute. The algorithm finds two clusters with minimum cluster distance in

step 7 in at most N×(N−1)
2

iterations and the merging procedure of step 15 takes at

most (N − 1) iterations. Rest of the steps take O(1) time to execute. Therefore to

find two minimum distant clusters and then merge them to build a single cluster,

it takes a total of at most
(N×(N−1)

2
+ (N − 1)

)
, i.e., O(N2) time. Let there are

m merges between two clusters, i.e., there are m iterations of the loop of step 2.
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Thus the time complexity of CUES is O(mN2). In worst case there may be (N − 1)

merges and thus the worst case time complexity of CUES is O(N3). Generally the

text data sets are huge in size and the number of clusters are too less compared to

the number of documents. Hence it is very unlikely in practical scenario for CUES

to have the time complexity O(N3).

The similarity matrix requires N×N memory locations, and to store N clusters,

initially, N memory locations are needed. Thus the space complexity of CUES is

O(N2).

2.4 Experimental Evaluation

2.4.1 Experimental Setup

In order to evaluate the performance of CUES, eight basic clustering algorithms -

bisecting k-means (BKM) [116], k-means (KM) [61], buckshot (BS) [32], single-link

hierarchical clustering (SLHC) [126], average-link hierarchical clustering (ALHC)

[116], k-nearest neighbor (kNN) [24] clustering and two types of spectral clustering

methods (simple spectral clustering (SC) [47] and spectral clustering using a kernel

(SCK) [94], as discussed in Chapter 1) are selected for comparison. k-means and

bisecting k-means are executed 10 times to reduce the effect of random initialization

of seed points and for each execution they have been iterated 100 times to reach a

solution (if they are not converged automatically). Buckshot has also been executed

10 times to reduce the effect of random initialization of initial
√

kN documents.

The number of clusters of the other methods are same as the number of clusters

produced by CUES. Note that the proposed method finds the total number of clusters

automatically from the corpus. The neighborhood size of kNN clustering is chosen

as k = 10 [60]. F-measure [116] and Normalized Mutual Information (NMI) [123]

are used for evaluating each clustering technique. The f-measure and NMI values

shown here for k-means and bisecting k-means are the average of 10 different results.

A discussion is given on appendix B regarding the implementation of the competing

algorithms used in this chapter.

The proposed histogram thresholding based technique for estimating a value of

θ has been followed in the experiments. The class intervals of length 0.005 have

been considered for the similarity values. It has been assumed that similarity (co-

sine similarity) value greater than 0.5 means that the corresponding documents are
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similar. Thus, the issue here is to find a θ, 0 < θ < 0.5 such that a similarity value

grater than θ denotes that the corresponding documents are similar. In the exper-

iments the method of moving averages has been used with the window length of

5 for convolution. The text data sets are generally sparse and the number of high

similarity values is practically very low and there are fluctuations in the heights of

the histogram for two successive similarity values. Hence it is not desirable to take

the window length of 3 as the method considers the heights of just the previous and

the next value for calculating f(si)’s. The window length of 7 or 9 has been tried

for experiment on some of the corpora, but the values of θ remain more or less same

as they are selected by considering window length of 5. On the other hand window

length of 7 or 9 need more calculations than window length of 5. These are the

reasons for the choice of window of length 5. It has been found that several local

peaks and local valleys are removed by this method. The number of valley regions

after smoothing the histogram by the method of moving averages is always found to

be greater than three.

Table 2.2 and Table 2.3 show the f-measure and NMI values respectively of all the

data sets. Number of clusters (NC), number of singleton clusters (NSC) developed

by CUES are also shown. Here number of clusters includes the singleton clusters

also, i.e., the NSC values are included in the NC values. The f-measure and NMI

are calculated using these NC values. All the data sets of Table 1.1 have been

considered for experimentation in this chapter. Each document is represented by

using the principles of vector space model [111], as described in section 1.2.

2.4.2 Analysis of Results

Each of the tables 2.2 and 2.3 has the results on 14 data sets and 8 methods (ex-

cluding the proposed one). Thus, from each table we have 112 comparisons with the

results of the CUES. Out of the total of 224 comparisons, CUES performed better

than the other methods in 206 cases, and the other methods performed better in the

rest 18 cases. Few exceptions where the other methods have an edge over CUES in

both of the tables are as follow: i) buckshot, k-means and spectral clustering (SCK)

for 20ns (0.435, 0.447 and 0.428 respectively for buckshot, k-means and SCK and

the value of CUES is 0.394) when f-measure is used for performance evaluation, and

ii) buckshot, k-means and SCK for 20ns (0.437, 0.428 and 0.451 for buckshot, k-

means and SCK and the value of CUES is 0.233) when NMI is used for performance
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Table 2.2: Performance of Different Document Clustering Techniques on Various
Text Data Sets using F-measure

Data F-measure
Sets θ NC1 NSC2 BKM3 KM BS SLHC ALHC kNN SC SCK CUES

(Proposed)
20ns 0.031 23 3 0.356 0.447 0.435 0.367 0.384 0.341 0.378 0.428 0.394
fbis 0.080 18 0 0.426 0.537 0.519 0.193 0.195 0.191 0.452 0.538 0.545

la1 0.005 8 2 0.503 0.528 0.504 0.327 0.321 0.326 0.448 0.537 0.558

la2 0.005 6 3 0.486 0.545 0.553 0.330 0.319 0.330 0.481 0.540 0.553

oh10 0.027 12 1 0.308 0.468 0.461 0.205 0.204 0.205 0.477 0.527 0.485
oh15 0.020 10 2 0.363 0.482 0.482 0.206 0.202 0.205 0.476 0.516 0.498
rcv1 0.077 34 3 0.188 0.212 0.307 0.408 0.362 0.418 0.301 0.318 0.522

rcv2 0.075 33 3 0.165 0.202 0.286 0.407 0.350 0.417 0.419 0.439 0.551

rcv3 0.085 32 2 0.218 0.239 0.355 0.409 0.372 0.413 0.211 0.331 0.578

rcv4 0.087 34 5 0.222 0.286 0.287 0.409 0.379 0.414 0.229 0.297 0.590

tr31 0.020 7 1 0.554 0.652 0.648 0.388 0.373 0.385 0.567 0.589 0.646
tr41 0.036 11 1 0.560 0.605 0.593 0.286 0.281 0.289 0.505 0.557 0.617

tr45 0.043 12 2 0.552 0.675 0.681 0.243 0.248 0.240 0.587 0.605 0.695

wap 0.037 20 0 0.283 0.412 0.417 0.177 0.180 0.178 0.174 0.381 0.427

1 NC stands for number of clusters. 2 NSC stands for number of singleton clusters. 3 BKM,
KM, BS, SLHC, ALHC, kNN, SC and SCK are - bisecting k-means, k-means, buckshot, single-
link agglomerative hierarchical clustering, average-link hierarchical clustering, k nearest neighbor
clustering , spectral clustering, and spectral clustering using kernel respectively and CUES is the
proposed method.

evaluation.

A generalized version of paired t-test is suitable for testing the equality of means

when the variances are unknown. This problem is the classical Behrens-Fisher prob-

lem in hypothesis testing and a suitable test statistic4 is described and tabled in [80]

and [107], respectively. It has been found that out of those 206 cases where CUES

performed better than the other methods, the differences are found to statistically

significant in 187 cases for the level of significance 0.05. On the other hand, 2 out of

18 cases the difference is found to be statistically significant when the other meth-

ods performed better for the same level of significance. Thus the performance of the

proposed method is found to be significantly better than the other methods in 92.11

% cases.

It is to be noted that the results of t-test are significant in 20ns data for all

the clustering algorithms and buckshot, k-means and SCK performed better than

4The test statistic is of the form t = x̄1−x̄2√
s2

1
/n1+s2

2
/n2

, where x̄1, x̄2 are the means, s1, s2 are the

standard deviations and n1, n2 are the number of observations
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Table 2.3: Performance of Different Document Clustering Techniques on Various
Text Data Sets using Normalized Mutual Information

Data Normalized Mutual Information
Sets θ NC4 NSC BKM KM BS SLHC ALHC kNN SC SCK CUES

(Proposed)
20ns 0.031 23 3 0.417 0.428 0.437 0.270 0.286 0.273 0.324 0.451 0.288
fbis 0.080 18 0 0.444 0.521 0.523 0.361 0.348 0.330 0.477 0.520 0.515
la1 0.005 8 2 0.269 0.293 0.295 0.221 0.216 0.216 0.240 0.285 0.298

la2 0.005 6 3 0.252 0.317 0.323 0.223 0.218 0.214 0.262 0.335 0.366

oh10 0.027 12 1 0.226 0.355 0.333 0.150 0.154 0.146 0.344 0.417 0.373
oh15 0.020 10 2 0.217 0.354 0.357 0.167 0.155 0.160 0.330 0.358 0.370

rcv1 0.077 34 3 0.300 0.434 0.444 0.083 0.108 0.160 0.190 0.381 0.476

rcv2 0.075 33 3 0.301 0.412 0.401 0.079 0.147 0.148 0.242 0.374 0.466

rcv3 0.085 32 2 0.312 0.394 0.401 0.078 0.162 0.133 0.194 0.390 0.415

rcv4 0.087 34 5 0.331 0.403 0.391 0.073 0.175 0.134 0.206 0.378 0.416

tr31 0.020 7 1 0.478 0.462 0.471 0.265 0.242 0.238 0.414 0.436 0.468
tr41 0.036 11 1 0.470 0.551 0.553 0.254 0.240 0.250 0.433 0.479 0.577

tr45 0.043 12 2 0.490 0.600 0.591 0.384 0.354 0.367 0.481 0.503 0.609

wap 0.037 20 0 0.268 0.412 0.423 0.075 0.041 0.072 0.126 0.426 0.456

5 All the symbols in this Table are the same symbols used in Table 2.2.

CUES. In 20ns data set there are overlaps between several categories. In general the

centroid based algorithms, like k-means, buckshot have been found to produce better

results than the hierarchical algorithms when there are overlaps between clusters

[67]. Thus buckshot, k-means and SCK have produced better clusters in 20ns data

sets. Otherwise, the overall experimental evaluation shows the effectiveness of the

extensive similarity based document clustering approach. The extensive similarity

based method groups two documents not only based on their mutual similarity but

also on their similarity with the other documents in the document collection. This

fact is observed in the experimental results.

Table 2.4 shows the performance of the proposed clustering algorithm on different

θ values, say θ = 0.1, 0.2, 0.4. Since the sizes of the data sets are very large and

average number of terms per document is very low compared to the number of terms

of the vocabulary, the average similarity between the documents is very low. As a

result total number of singleton clusters will be more on high values of θ, which is

not desirable in practice. It can be seen from Table 2.4 that for θ = 0.1, 0.2 and 0.4,

the NC and NSC values are very high. Therefore θ = 0.1, 0.2 and 0.4 can not be

used for comparison with the other methods. In this situation, low values of θ have

to be taken for experiment. The values of θ chosen for experiments are close to 0 in

most of the data sets due to the sparsity of the data. Even then CUES outperforms
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Table 2.4: Performance of CUES on Different Values of θ
Data θ = 0.1 θ = 0.2 θ = 0.4
Set NC NSC FM6 NMI7 NC8 NSC FM NMI NC NSC FM NMI
20ns 374 143 0.361 0.274 812 489 0.254 0.307 1427 1020 0.176 0.341
fbis 23 0 0.520 0.499 101 16 0.442 0.500 697 389 0.264 0.554
la1 223 31 0.271 0.324 1016 489 0.126 0.422 2261 1771 0.036 0.460
la2 227 29 0.256 0.357 962 462 0.124 0.430 2131 1665 0.048 0.462

oh10 81 6 0.365 0.412 331 113 0.166 0.489 852 725 0.075 0.557
oh15 86 7 0.440 0.457 320 130 0.188 0.527 732 615 0.084 0.565
rcv1 63 4 0.532 0.464 387 159 0.461 0.540 1139 890 0.214 0.536
rcv2 68 10 0.549 0.499 382 150 0.473 0.549 1170 953 0.281 0.542
rcv3 47 5 0.518 0.437 431 192 0.469 0.554 1187 956 0.164 0.536
rcv4 47 8 0.598 0.464 386 159 0.413 0.532 1200 989 0.197 0.535
tr31 50 9 0.435 0.509 161 58 0.324 0.508 453 288 0.164 0.489
tr41 63 13 0.577 0.646 176 69 0.424 0.609 483 334 0.204 0.568
tr45 54 20 0.635 0.608 172 85 0.431 0.617 413 310 0.242 0.593
wap 157 20 0.358 0.515 532 225 0.231 0.574 1044 766 0.149 0.599

6 FM stands for f-measure. 7 NMI stands for Non Negative Matrix Factorization. 8 All the other
symbols in this Table are the same symbols used in Table 2.2.

the other methods. Thus the proposed histogram thresholding approach has been

found to yield a good estimate of θ.

2.4.3 Processing Time

The processing time of each method has been measured on a quad core Linux work-

station. The times (in seconds) taken by different clustering methods to cluster

different corpora are reported in Table 2.5. The time shown here for CUES is the

sum of the times taken to estimate the value of θ, to build the similarity matrix,

and to perform clustering. The times shown for bisecting k-means, buckshot and

k-means are the average of the processing times for 10 repeated executions. The

time for pre-processing of each data set, i.e., to build the tf-idf matrix from the raw

text data, is not included in the execution time of each method. The time shown in

Table 2.5 for a particular method is the execution time of that method on the tf-idf

data matrix of a data set. It is to be mentioned that the codes for all the algorithms

are written in C++ and the data structures for all the algorithms are developed by

the authors. Hence the processing time can be reduced by incorporating some more

efficient data structures for the proposed algorithm as well as the other methods.

It may be observed from Table 2.5 that the time taken by CUES is less than the

time taken by ALHC for each data set. The processing time of kNN is less than
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Table 2.5: Processing Time (in seconds) of Different Document Clustering Methods
Data BKM KM BS SLHC ALHC kNN SC SCK CUES
20ns 1582.25 1594.54 1578.12 1618.50 1664.31 1626.38 1577.31 1583.62 1670.21
fbis 94.28 91.33 91.96 112.15 129.65 95.44 92.75 100.90 99.36
la1 159.37 154.02 142.24 160.12 179.67 131.32 144.48 146.68 152.21
la2 149.15 144.66 139.47 163.47 182.47 133.28 143.70 142.33 151.55

oh10 18.37 18.87 17.26 26.31 33.49 21.54 19.69 24.82 25.31
oh15 18.12 20.02 18.26 24.15 31.48 20.14 19.58 20.94 24.72
rcv1 92.11 91.46 88.37 87.47 103.33 77.58 80.35 99.62 92.54
rcv2 104.23 114.88 112.10 104.17 120.41 100.23 111.17 115.21 109.39
rcv3 97.12 106.20 98.31 98.47 124.74 92.25 105.36 112.24 103.37
rcv4 100.12 95.54 96.45 109.32 126.24 95.31 108.38 120.87 115.28
tr31 29.41 30.57 30.43 33.15 40.11 28.38 34.68 37.98 38.68
tr41 27.29 28.31 27.49 33.96 39.58 27.17 25.64 26.85 33.77
tr45 25.45 25.08 26.11 31.17 38.24 25.54 25.23 26.12 32.15
wap 26.27 33.56 25.46 35.27 43.39 29.34 30.41 42.35 36.30

the time taken by CUES for each data set. The processing times of CUES are less

than BKM, KM, BS, SLHC, SC and SCK for some of the data sets and for the

other data sets the times taken to create the clusters by BKM, KM, BS, SLHC, SC

and SCK are less than CUES. Hence one can not make a general comment that the

computational times of CUES are better or worse than the other methods. It is true

that the processing times of some of the methods e.g., BKM, BS and SC are better

than CUES for most of the data sets, but CUES outperforms all the other methods

in terms of cluster quality. Hence one can allow this much extra cost of expenditure

of CUES due to time to get such a good performance for clustering of documents.

The data sets used in the experiments have several dimensions starting from 2000

(fbis) to 35218 (20ns), and CUES is found to perform well in the presence of high

dimensional data.

2.5 Conclusions and Discussion

A system has been developed, which composed of extensive similarity between docu-

ments to improve the accuracy of measuring the similarity between documents. The

similarity measure has been used to perform document clustering. Intuitively, the

similarity between two documents can not be obtained totally from their content,

but from their inherent extensive similarity in a corpus. The extensive similarity

has been introduced on the basis of similarity between two documents and their dis-
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tances with every other document in the corpus. ES has been defined using cosine

similarity, since it can find similarity between two documents of different lengths.

ES can be defined using any other similarity or dissimilarity measure. Additionally,

ES can be used not only for clustering but also for other tasks such as classifica-

tion. It may be noted here that in Chapter 5 an algorithm for text categorization is

proposed using ES.

CUES has been developed using ES. The documents with high ES values could

be grouped in the same cluster. The salient features of CUES are given here. The

algorithm can identify two dissimilar clusters and never merges them. The algorithm

can be stopped if the distance between two clusters becomes very high, since at each

step CUES checks the cluster distance to merge two clusters. There is no need to

input the desired number of clusters prior to implement the algorithm. The range

of similarity values between every two documents in a cluster is known to us and it

is between θ and 1. The total number of clusters is determined automatically by the

proposed method, but on requirement the total number of clusters can be bounded

by varying the value of θ.

The performance of CUES is mainly dependent on θ, and the selection of θ is

dependent upon two factors - nature of the data sets and the choice of the user.

A histogram thresholding based method has been explained for selecting a value of

θ from the actual similarity matrix of a data set. The results reveal the fact that

using those θ values the proposed approach performs significantly better than other

traditional approaches. The method presented here is aimed at document clustering,

but it can be easily generalized to any data set as well.
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Chapter 3

A Hierarchical Approach to

k-Means Clustering for Effective

Grouping of Documents

3.1 Introduction

In this chapter, another new document clustering algorithm is proposed. The doc-

ument clustering technique CUES, proposed in the previous chapter is purely hier-

archical in nature. It has been shown that CUES outperforms the other clustering

techniques to cluster several document corpus, but it suffers from computational

cost in some of the data sets of large size or dimensionality. The proposed one in

this chapter is designed in such a way that it reduces the computational cost due to

hierarchical design of CUES, but it maintains the quality of the clusters obtained by

CUES. The proposed document clustering method is a combination of hierarchical

clustering and k-means clustering techniques. It has been designed using extensive

similarity between documents. A new distance function is defined here to find the

distance between two hierarchical clusters by using extensive similarity. The algo-

rithm is a two stage process and in the first stage, a few well segregated non singleton

clusters are created. These non singleton clusters are named as baseline clusters. In

the second stage, k-means algorithm is performed to cluster the rest of the docu-

ments, which are not grouped in the baseline clusters by using the centroids of the

baseline clusters as the initial seeds.

The proposed clustering technique need not require the knowledge of desired
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number of clusters, like CUES. It is automatically determined by varying the simi-

larity threshold of the extensive similarity. The same histogram thresholding based

technique proposed in the previous chapter is used here to estimate the value of the

content similarity threshold of extensive similarity. The proposed method is com-

pared with CUES and several other clustering techniques. The computational time

of the proposed technique is reported and discussed. The material in this chapter is

taken from the article [14].

The chapter is organized as follows - section 3.2 describes the proposed document

clustering technique. Section 3.3 presents the experimental evaluation on a number

of well known text data sets. The conclusions about the proposed work are presented

in chapter 3.4.

3.2 Proposed Hierarchical Approach to k-Means

Method for Effective Grouping of Documents

A combination of hierarchical clustering and k-means clustering methods is intro-

duced to enhance the effectiveness of document clustering. The proposed method

is a two stage process. In the first stage a hierarchical clustering algorithm is per-

formed using extensive similarity between documents with the help of a new distance

function between clusters, thereby, generating some non singleton clusters. Each of

these non singleton clusters is named as baseline cluster. In the second stage k-means

clustering algorithm is performed using the centroids of these baseline clusters as

initial seed points. The entire method is described in detail in Algorithm 2.

3.2.1 Baseline Cluster

A distance function is proposed to create the baseline clusters. It finds the distance

between two clusters say, Cx and Cy. Let Txy be a multi set consisting of the extensive

similarities between each pair of documents, one from Cx and the other from Cy and

it is defined as,

Txy = {ES(di, dj) : ES(di, dj) ≥ 0, ∀ di ∈ Cx and dj ∈ Cy}

Note that Txy consisting of all the occurrences of the same extensive similarity values

(if any) for different pairs of documents. The proposed distance between two clusters
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Cx and Cy can be defined as

dist cluster(Cx, Cy) =

{
∞ if Txy = ∅
N − avg(Txy) otherwise

(3.1)

The function dist cluster finds the distance between two clusters Cx and Cy as the

average of the multi set of non-negative ES values. The distance between Cx and Cy

is infinite, if there are no two documents that have a non-negative ES value i.e., no

similar documents are present in Cx and Cy. Intuitively, infinite distance between

clusters denotes that every pair of documents, one from Cx and the other from Cy

either share a very few number of terms, or no term is common between them i.e.,

they have a very low content similarity. Later we shall observe that any two clusters

with infinite distance between them remain segregated from each other. Thus, a

significant characteristic of the function dist cluster is that it would never merge

two clusters with infinite distance between them.

The proposed document clustering algorithm initially assumes each document as

a singleton cluster. Then it merges those clusters with minimum distance, and the

distance is within a previously fixed limit α. The merging process continues until

the distance between every two clusters is greater than α. The clusters which are

not singletons are named as Baseline Clusters (BC). The selection of the value of α

is discussed in section 3.3 of this chapter.

3.2.2 Properties of dist cluster

The important properties of the function dist cluster are described below.

• The minimum distance between any two clusters Cx and Cy is 0, when avg(Txy) =

N , i.e., the extensive similarity value between every pair of documents, one

from Cx and the other from Cy is N . Although in practice this minimum

value can be rarely observed between two different document clusters. The

maximum value of dist cluster is infinite.

• If Cx = Cy then dist cluster(Cx, Cy) = N − avg(Txx) = 0

• On the other hand, let dist cluster(Cx, Cy) = 0

⇒ avg(Txy) = N

⇒ ES(di, dj) = N, ∀ di ∈ Cx and dj ∈ Cy
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Now ES(di, dj) = N implies that two documents di and dj are exactly similar.

Note that ES(di, dj) = N ⇒ dis(di, dj) = 0 and lij = 0. Here dis(di, dj) =

0 implies that di and dj are similar in terms of content, but they are not

necessarily same, i.e., we can not say di = dj, if dis(di, dj) = 0.

Thus dist cluster(Cx, Cy) = 0 ; Cx = Cy and hence dist cluster is not a

metric.

• It is symmetric. For every pair of clusters Cx and Cy, we have

dist cluster(Cx, Cy) = dist cluster(Cy, Cx).

• dist cluster(Cx, Cy) ≥ 0 for any pair of clusters Cx and Cy.

• For any three clusters Cx, Cy and C0, we may have

dist cluster(Cx, Cy) + dist cluster(Cy, C0)− dist cluster(Cx, C0) < 0

when 0 ≤ dist cluster(Cx, Cy) < N, 0 ≤ dist cluster(Cy, C0) < N and

dist cluster(Cx, C0) =∞. Thus it does not satisfy the triangular inequality.

3.2.3 Procedure of the Proposed Document Clustering Tech-

nique

The proposed document clustering technique is described in Algorithm 2. Initially

each document is taken as a cluster. Therefore Algorithm 2 starts with N individual

clusters. In the first stage of Algorithm 2, a distance matrix is developed whose

ijth entry is the dist cluster(Ci, Cj) value where Ci and Cj are ith and jth cluster

respectively. It is a square matrix and has N rows and N columns for N number of

documents in the corpus. Each row or column of the distance matrix is treated as

a cluster. Then the Baseline Clusters (BC) are generated by merging the clusters

whose distance is less than a fixed threshold α. The value of α is constant throughout

Algorithm 2. The process of merging stated in step 3 of Algorithm 2 merges two

rows say i and j and the corresponding columns of the distance matrix by following

a convention regarding numbering. It merges two rows into one, the resultant row

is numbered as minimum of i, j, and the other row is removed. Similar numbering

follows for columns too. Then the index structure of the distance matrix is updated

accordingly.
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Algorithm 2 Iterative Document Clustering by Baseline Clusters
Input: a) A set of clusters C = {C1, C2, ..., CN}, where N is the number of documents.
Ci = {di}, i = 1, 2, ..., N , where di is the ith document of the corpus.
b) A distance matrix DM [i][j] = dist cluster(Ci, Cj), ∀i, j ∈ N .
c) α be the desired threshold on dist cluster and iter be the number of iteration.

Steps of the Algorithm:

1: for each clusters Ci, Cj ∈ C where Ci 6= Cj and N > 1 do

2: if dist cluster(Ci, Cj) ≤ α then

3: DM ← merge(DM, i, j)
4: Ci ← Ci ∪ Cj

5: N ← N − 1
6: end if

7: end for

8: nbc← 0, BC ← ∅ //Baseline clusters are initialized to empty set
9: nsc← 0, SC ← ∅ //Singleton clusters are initialized to empty set

10: for i = 1 to N do

11: if |Ci| > 1 then

12: nbc← nbc + 1 // No. of baseline clusters
13: BCnbc ← Ci // Baseline clusters
14: else

15: nsc← nsc + 1 // No. of singleton clusters
16: SCnsc ← Ci // Singleton clusters
17: end if

18: end for

19: if nsc = 0 || nbc = 0 then

20: return BC // If no singleton cluster at all exists or no baseline cluster is generated
21: else

22: EBCk ← BCk, ∀ k = 1, 2, ..., nbc // Initialization of extended baseline clusters
23: ebctk ← centroid of BCk, ∀ k = 1, 2, ..., nbc // Extended base centroids
24: nctk ← (0), ∀ k = 1, 2, ..., nbc, it← 0
25: while ebctk 6= nctk, ∀ k = 1, 2, ..., nbc and it ≤ iter do

26: ebctk ← centroid of EBCk, ∀ k = 1, 2, ..., nbc

27: NCLk ← BCk, ∀ k = 1, 2, ..., nbc // New set of clusters at each iteration
28: for j = 1 to nsc do

29: if ebctk is the nearest centroid of SCj , ∀k = 1, 2, ..., nbc then

30: NCLk ← NCLk ∪ SCj // Merger of singleton clusters to baseline clusters
31: end if

32: end for

33: nctk ← centroid of NCLk, ∀k = 1, 2, ..., nbc

34: EBCk ← NCLk, ∀k = 1, 2, ..., nbc

35: it = it + 1
36: end while

37: return EBC

38: end if

Output: A set of extended baseline clusters EBC = {EBC1, EBC2, ..., EBCnbc}
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After constructing the baseline clusters some clusters may remain as singleton

clusters. Every such singleton cluster (i.e., a single document) is merged with one

of the baseline clusters using k-means algorithm in the second stage. In the second

stage the centroids of the baseline clusters (i.e., non singleton clusters) are calculated

and they are named as base centroids. The value of k for k-means algorithm is taken

as the number of baseline clusters. The rest of the documents which are not included

in the baseline clusters are clustered by the iterative steps of the k-means algorithm

using these base centroids as the initial seed points. Note that, those documents,

which are not included in the baseline clusters, are only considered for clustering

in this stage. But, for the calculation of a cluster centroid, every document in the

cluster, including the documents in the baseline clusters, are considered. A document

is put into that cluster for which the content similarity between the document and

the base centroid is maximum. The newly formed clusters are named as Extended

Baseline Clusters (EBC).

It may be noted that the processing in the second stage is not needed if no

singleton cluster is produced in the first stage. We believe that such a possibility is

remote in real life and none of our experiments yielded such an outcome. However,

such a clustering is desirable as it produces compact clusters.

3.2.4 Impact of Extensive Similarity on the Document Clus-

tering Technique

The extensive similarity plays significant role in constructing the baseline clusters.

The documents in the baseline clusters are very similar to each other as their exten-

sive similarity is very high (above a threshold θ). It may be observed that whenever

two baseline clusters are merged in the first stage, the similarity between any two

documents in the baseline clusters are at least be equal to θ. Note that the distance

between two different baseline clusters is greater than or equal to α and the distance

between a baseline cluster and a singleton cluster (or between two singleton clusters)

may be infinite and they would never merge to construct a new baseline cluster. In-

finite distance between two clusters indicates that the extensive similarity between

at least one document of the baseline cluster and the document of the singleton

cluster (or, between the documents of two different singleton clusters) is -1. Thus

the baseline clusters intuitively determine the categories of the document collection

by measuring the extensive similarity between documents.
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Figure 3.1: Document Clustering by the Proposed Baseline Clustering Technique
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3.2.5 Discussion

The proposed clustering method is a combination of baseline clustering and k-means

clustering methods. Initially it creates some baseline clusters. The documents which

do not have much similarity with any one of the baseline clusters would remain as

singleton clusters. Therefore k-means method is implemented to group these docu-

ments to the corresponding baseline clusters. k-means algorithm has been used due

to its low computational complexity. It is also useful as it can be easily implemented.

But the performance of k-means suffers from selection of initial seed points and there

is no method for selecting a valid k. It is very difficult to select a proper k for a

sparse text data set with high dimensionality. In various other clustering techniques,

k-means has been used as an intermediary stage e.g., spectral clustering, buckshot

etc. These algorithms also suffer from the said limitations of k-means method. Note

that the proposed clustering method overcomes these two major limitations of k-

means clustering algorithm and has utilized the effectiveness of k-means method by

introducing the idea of baseline clusters. The effectiveness of the proposed technique

in terms of clustering quality may be observed in the experimental results section

later.

The proposed technique is designed like buckshot clustering algorithm. The main

difference between buckshot and the proposed one lies in designing the hierarchical

clusters in the first stage of both of the methods. Buckshot uses the traditional

single-link clustering technique to develop the hierarchical clusters to create the

initial centroids of the k-mean clustering in the second stage. Thus buckshot may

suffer from the limitations of both single-link clustering technique (e.g., chaining

effect) and k-means clustering technique. In practice the text data sets contain

many categories of uneven sizes. In those data sets initial random selection of
√

kn

may not be proper, i.e, no documents may be selected from an original cluster if its

size is small. Note that no random sampling is required for the proposed clustering

technique. In the proposed one the hierarchical clusters are created using extensive

similarity between documents, and these hierarchical baseline clusters would no more

be used in the second stage. In the second stage, k-means algorithm is performed

only to group those documents that have not been included in the baseline clusters

and the initial centroids are generated from these baseline clusters. In Buckshot

algorithm all the documents are taken into consideration for clustering by k-means

algorithm. It uses the single-link clustering technique only to create the initial seed
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points of the k-means algorithm. Later it can be seen from the experiments that the

proposed one performs significantly better than buckshot clustering technique.

The process of creating baseline clusters in the first stage of the proposed tech-

nique is quite similar to the group-average hierarchical clustering technique [116].

Both the techniques find the average of similarities of the documents of two indi-

vidual clusters for merging them into one. The proposed method finds the distance

between two clusters using extensive similarity, whereas the group-average hierar-

chical clustering technique uses cosine similarity. The group-average hierarchical

clustering technique cannot distinguish two dissimilar clusters explicitly, like the

proposed method. This is the main difference between the two techniques.

3.3 Experimental Evaluation

The experiments have been done on all the data sets explained in Table 1.1. The

number of documents, number of terms and number of categories of these data sets

can be found in Table 1.1.

Single-link hierarchical clustering (SLHC) [116], average-link hierarchical clus-

tering (ALHC) [116], k-means clustering [61], bisecting k-means clustering [116],

buckshot clustering [32], spectral clustering by using kernel function (SCK) [94],

clustering by matrix factorization (NMF) [128] and CUES [11] algorithms are se-

lected for comparison with the proposed clustering technique. k-means and bisecting

k-means are executed 10 times to reduce the effect of random initialization of seed

points and for each execution they have been iterated 100 times to reach a solu-

tion (if they are not converged automatically). Buckshot algorithm has also been

executed 10 times to reduce the effect of random initialization of initial
√

kN docu-

ments. The f-measure and NMI values ofk-means, bisecting k-means and buckshot

clustering techniques shown here are the average of 10 different results. Note that

the proposed algorithm finds the number of clusters automatically from the data

sets. The proposed algorithm has been executed first and then all the other algo-

rithms have been executed to produce the same number of clusters as the proposed

one. The value of θ of CUES is chosen manually here to produce same number of

clusters as the proposed method for each data set. Table 3.1 and Table 3.2 show

the f-measure and NMI values respectively for all the data sets. Number of clusters

(NCL) developed by the proposed method is also shown. The f-measure and NMI

are calculated using these NCL values. The value of α of the proposed technique is
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Table 3.1: Performance of Different Document Clustering Methods on Various Text
Data Sets using F-measure

Data NCT1 NCL2 F-measure
Sets BKM3 KM BS SLHC ALHC SCK NMF CUES Proposed
20ns 20 23 0.358 0.449 0.436 0.367 0.384 0.426 0.445 0.394 0.474

fbis 17 19 0.423 0.534 0.516 0.192 0.192 0.535 0.435 0.542 0.584

la1 6 8 0.506 0.531 0.504 0.327 0.325 0.536 0.544 0.558 0.570

la2 6 6 0.484 0.550 0.553 0.330 0.328 0.541 0.542 0.553 0.563

oh10 10 12 0.304 0.465 0.461 0.205 0.206 0.527 0.481 0.485 0.500
oh15 10 10 0.363 0.485 0.482 0.206 0.202 0.516 0.478 0.498 0.532

rcv1 30 31 0.201 0.229 0.325 0.416 0.371 0.327 0.516 0.528 0.551

rcv2 30 30 0.193 0.217 0.314 0.415 0.360 0.442 0.489 0.555 0.519
rcv3 30 32 0.216 0.241 0.351 0.409 0.373 0.342 0.411 0.578 0.301
rcv4 30 32 0.236 0.308 0.291 0.405 0.381 0.314 0.409 0.593 0.295
tr31 7 7 0.558 0.665 0.646 0.388 0.387 0.589 0.545 0.656 0.678

tr41 10 10 0.564 0.607 0.593 0.286 0.280 0.557 0.537 0.617 0.698

tr45 10 11 0.556 0.673 0.681 0.243 0.248 0.605 0.596 0.695 0.750

wap 20 22 0.279 0.408 0.420 0.175 0.180 0.388 0.442 0.424 0.385

1NCT stands for number of categories. 2NCL stands for number of clusters.
3BKM, KM, BS, SLHC, ALHC, SCK, NMF and CUES stand for bisecting k-means, k-means,

buckshot, single-link hierarchical clustering, average-link hierarchical clustering, spectral clustering,

non-negative matrix factorization respectively and clustering using extensive similarity.

chosen as, α =
√√

N for N number of documents in the corpus. The NMF based

clustering technique has been executed 10 times to reduce the effect of random ini-

tialization and for each time it has been iterated 100 times to reach a solution. The

value of σ of the spectral clustering technique is set by search over values from 10

to 20 percent of the total range of the similarity values and the one that gives the

tightest clusters is picked, as suggested by Ng. et al. [94]. The histogram thresh-

olding based technique stated in chapter 2 has been used in the experiments here

for estimating θ. The technique has been implemented exactly in the same way as

it has been mentioned in chapter 2. A discussion is given on appendix B regarding

the implementation of the competing algorithms used in this chapter.

Table 3.1 and Table 3.2 show the comparison of proposed document clustering

method with the other methods using f-measure and NMI respectively, for all data

sets. There are 112 comparisons for the proposed method using f-measure in Table

3.1. The proposed one performs better than the other methods in 93 cases and for

the rest 19 cases other methods (e.g., buckshot, spectral clustering) have an edge

over the proposed method. Few of the exceptions, where the other methods perform
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Table 3.2: Performance of Different Document Clustering Methods on Various Text
Data Sets using Normalized Mutual Information

Data NCT NCL Normalized Mutual Information
Sets BKM4 KM BS SLHC ALHC SCK NMF CUES Proposed
20ns 20 23 0.417 0.428 0.437 0.270 0.286 0.451 0.432 0.288 0.433
fbis 17 19 0.443 0.525 0.524 0.051 0.362 0.520 0.446 0.515 0.544

la1 6 8 0.266 0.299 0.295 0.021 0.218 0.285 0.296 0.298 0.308

la2 6 6 0.249 0.312 0.323 0.021 0.215 0.335 0.360 0.366 0.386

oh10 10 12 0.226 0.352 0.333 0.050 0.157 0.417 0.410 0.373 0.406
oh15 10 10 0.213 0.352 0.357 0.067 0.155 0.358 0.357 0.370 0.380

rcv1 30 31 0.309 0.429 0.451 0.087 0.108 0.418 0.434 0.476 0.498

rcv2 30 30 0.312 0.421 0.410 0.083 0.150 0.405 0.420 0.468 0.470

rcv3 30 32 0.315 0.411 0.406 0.079 0.166 0.394 0.476 0.415 0.446
rcv4 30 32 0.337 0.414 0.416 0.078 0.165 0.394 0.507 0.418 0.454
tr31 7 7 0.478 0.463 0.471 0.065 0.212 0.436 0.197 0.468 0.509

tr41 10 10 0.470 0.550 0.553 0.054 0.237 0.479 0.506 0.577 0.619

tr45 10 11 0.492 0.599 0.591 0.084 0.354 0.503 0.488 0.609 0.694

wap 20 22 0.271 0.405 0.416 0.075 0.043 0.418 0.507 0.452 0.423

4All the symbols in this Table are the same symbols used in Table 3.1

better than the proposed one are e.g., SCK and CUES for rcv4 (Here the f-measure

of SCK and CUES are respectively 0.314, 0.593 and the f-measure of the proposed

method is 0.295). Similarly, Table 3.2 shows that the proposed method performs

better than the other methods using NMI in 104 out of 112 cases.

Statistical test for judging the significant difference is performed for every com-

parison here. This test has already been described in section 2.4.2. It has been found

that out of the 93 cases where the proposed algorithm performed better than the

other algorithms, in Table 3.1, the differences are statistically significant in 85 cases

for the level of significance 0.05. On the other hand, 2 out of the 19 differences are

significant where the other methods are found to perform better than the proposed

method in Table 3.1, for the same level of significance. Hence the performance of

the proposed method is found to be significantly better than the other methods in

83.65% (87/104) cases using f-measure. Similarly, in Table 3.2 the results are signif-

icant in 90 out of 104 cases when proposed method performed better than the other

methods and the results are significant in 2 out of the other 6 cases when the other

methods performed better than the proposed one. Thus in 95.74% (90/94) cases the

proposed method performs significantly better than the other methods using NMI.

Clearly, these results show the effectiveness of the proposed document clustering

technique.
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3.3.1 Remark:

A point to be mentioned that the number of clusters produced by the proposed

method is close to the number of actual categories of each corpus. It may be observed

from Table 3.1 and Table 3.2 that the number of clusters is equal to the actual

number of categories for la2, oh15, rcv2, tr31 and tr41 corpora. The difference

between the number of clusters and actual number of categories is at most 3 for

rest of the corpora. The proposed method has two parameters, α and θ. Since the

text data sets provided here are very sparse with a high dimensionality, it may be

implied that the choice of α and the method proposed for estimating the value of θ

is able to detect the actual grouping of the corpora.

3.3.2 Choice of α :

The value of α is chosen heuristically, and it is taken as α =
√√

N . The distance

between two different clusters must be greater than α. It is very difficult to fix a lower

bound on the distance between two clusters in practice as the corpora are sparse in

nature and have high dimensionality. It has been observed that, when α >
√√

N ,

say α = N
1

3 or α = N
1

2 then some really different clusters may be merged into one,

which is surely not desirable. On the other hand, if α <
√√

N , say, α = N
1

5 then

many small sized clusters would be created for any corpus of standard size. It has

been observed from the experiments that the number of clusters produced by the

proposed technique is very close to the actual number of categories for each corpus

and the proposed method outperforms the other methods. Hence the selection of

α =
√√

N is appropriate, though it has been selected heuristically.

3.3.3 Time and Space Complexity

The similarity matrix requires N × N memory locations, and to store N clusters,

initially, N memory locations are needed for the proposed method. Thus the space

complexity of the proposed document clustering algorithm is O(N2). O(N3) time is

required to build the extensive similarity matrix and to construct (say) m(<< N)

baseline clusters, the proposed method takes O(mN2) time. In the final stage of the

proposed technique, k-means algorithm takes O((N − a)mt) time to merge (say) a

singleton clusters to the baseline clusters, where t is number of iterations of k-means

algorithm. Thus the time complexity of the proposed algorithm is O(mN2)+O((N−
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Table 3.3: Processing Time (in seconds) of Different Document Clustering Tech-
niques

Methods BKM5 KM BS SLHC ALHC SCK NMF CUES Proposed
20ns 1582.25 1594.54 1578.12 1618.50 1664.31 1583.62 1587.36 1670.21 1595.23
fbis 94.17 91.52 92.46 112.15 129.58 100.90 93.19 99.36 90.05

la1 159.23 153.22 142.36 160.12 179.62 146.68 153.50 152.21 140.31

la2 149.41 144.12 139.34 163.47 182.50 142.33 144.46 151.55 140.29
oh10 18.57 18.32 17.32 26.31 33.51 24.82 22.48 25.31 18.06
oh15 18.12 20.02 18.26 24.15 31.46 20.94 17.61 24.72 16.22

rcv1 91.61 90.28 86.37 87.23 103.22 97.38 87.80 92.26 86.18

rcv2 103.32 112.08 111.31 103.76 120.25 97.81 93.51 109.18 92.53

rcv3 97.11 106.29 98.35 98.47 124.72 108.24 94.96 103.37 93.54

rcv4 99.42 95.08 96.01 109.14 126.05 113.81 98.70 115.04 93.32

tr31 29.41 30.23 30.34 33.15 40.13 37.98 29.33 38.68 29.38
tr41 27.29 28.16 27.46 33.96 39.58 25.85 27.54 33.77 26.49
tr45 25.45 25.01 26.06 31.17 38.23 29.72 26.51 32.15 24.65

wap 27.21 34.13 26.09 36.07 44.12 43.04 40.38 37.11 27.14

5All the symbols in this Table are the same symbols used in Table 3.1

a)mt), where m is a very small number compared to N.

The processing time taken by each algorithm has been measured on a quad core

Linux workstation. The processing times taken by different clustering algorithms

to cluster different data sets are reported in Table 3.3. The time shown here for

the proposed algorithm is the sum of the times taken to estimate the value of θ,

to build the baseline clusters, and to perform the k-means clustering algorithm to

merge the remaining singleton clusters to the baseline clusters. The time shown for

CUES is the sum of the times taken to estimate the value of θ, to build the similarity

matrix, and to perform clustering. The time shown for bisecting k-means, buckshot,

k-means and NMF are the average of the processing times of 10 iterations. It is to

be mentioned that the codes for all the algorithms are written in C++ and the data

structures for all the algorithms are developed by the authors. Hence the processing

time can be reduced by incorporating some more efficient data structures for the

proposed algorithm as well as the other methods. Note that the processing time of

the proposed algorithm is less than KM, SLHC, ALHC and CUES for each data set.

The execution time of BKM is less than the proposed one for 20ns, the execution

time SCK is less than the proposed one for tr41 and the execution time of NMF

is less than the proposed algorithm for tr31. The execution time of the proposed

algorithm is less than BKM, SCK and NMF for each of the other data sets. The
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processing time of the proposed algorithm is comparable with buckshot (though in

most of the data sets the processing time of the proposed algorithm is less than

buckshot). The dimensionality of the data sets (used in the experiments) varies

from 2000 (fbis) to 35218 (20ns). Hence the proposed clustering algorithm may be

useful in terms of processing time for any real life corpus with high dimensionality.

3.4 Conclusions

A hybrid document clustering algorithm, which is a combination of a hierarchical

and k-means clustering technique, is developed in this chapter. It uses the concept

of extensive similarity stated in chapter 2. The baseline clusters produced by the

hierarchical technique are the clusters where the documents possess high similarity

among them. The extensive similarity between documents ensures this quality of the

baseline clusters. It is developed on the basis of similarity between two documents

and their distances with every other documents in the document collection. Thus

the documents with high extensive similarity are grouped in the same cluster. Most

of the singleton clusters are nothing but the documents which have low content sim-

ilarity with every other document. In practice the number of such singleton clusters

is sufficient and can not be ignored as outliers. Therefore k-means algorithm is per-

formed iteratively to assign these singleton clusters to one of the baseline clusters.

Thus the proposed method reduces the error of k-means algorithm due to random

seed selection. Moreover the method is not as expensive as the hierarchical cluster-

ing algorithm which can be observed from Table 3.3. The significant characteristic

of the proposed clustering technique is that the algorithm automatically decides the

number of clusters in the data. The automatic detection of number of clusters for a

sparse and high dimensional text data is very important. The value for α is chosen

heuristically and it is taken as α =
√√

N in the experiments, although it is found to

provide good results. Extensive experimental results demonstrate the effectiveness

of the proposed method.
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Chapter 4

A Tweak on k-Nearest Neighbor

Decision Rule for Text

Categorization

4.1 Introduction

The task of kNN decision rule is to assign a test document x to a particular category

using a training sample set. It first finds the k-nearest neighbors from the training

sample set by a distance function and assigns x to a particular category by taking

a majority vote among the k-nearest neighbors. The performance of the k-nearest

neighbor decision rule depends heavily upon the value of the neighborhood parameter

k. Different values of k can change the result of text categorization and hence choice

of k is crucial for proper categorization. The cross validation technique is generally

used to estimate an optimal value of k [42], but choosing an optimal k which provides

satisfactory results for all test documents is still a difficult job. The cross-validation

method uses the training data to select a single value of k, and then that selected

value is used for categorization of all the test documents.

In kNN decision rule one may put a test document into a category which has a

win by one vote to the next competing category. A document may also be arbitrarily

assigned to a category if there is a tie between two competing categories, i.e., if the

number of members of the competing categories among the nearest neighbors are

equal. Text categorization is a very challenging task due to the large number of terms

present in every document. In text categorization, a test document is assigned to a

77



particular category, if it has some content similarity with some of the documents be-

longing to that category. The content similarity is generally measured by the cosine

similarity using the vector space model [111]. Since each document contains many

non informative features, the measure used for finding content similarity between

two documents may not reflect the actual similarity of the documents. Thus text

categorization using kNN rule may not be accurate when the difference between the

number of members (among the neighbors) of the competing categories is one or

zero. Consider the example of an email data set consisting of two categories, spam

and non spam email. Now the task is to find the category of a new email. Using

kNN rule, if there are same number of members of the two categories among the

nearest neighbors then the new document is assigned either to the spam category or

to the non spam category. It may cause a serious harm if the new email is actually

a spam email and it is assigned to the non spam category. On the other hand, if the

non spam email is categorized to the spam category in this way, then one may loose

some important content (as we generally remove the spam emails). Though this is

an extreme example, but the decision using kNN rule may sometimes degrade the

quality of text categorization. If the difference between the number of members of

the competing categories is considered to be more than one then it may enhance

the confidence of the majority voting by kNN rule. For any pattern classification

problem too, the more the number of points in the majority class, the more the

confidence on the choice of decision.

In this chapter a tweak on the kNN decision rule is introduced for text catego-

rization, which is a two stage process. In the first stage it may reduce the actual

search space of the kNN rule. The neighbors of a test document is ordered in such

a way that they have at least a minimum amount of content similarity with the test

document. The content similarity is determined by a predefined threshold θ. A set

of neighbors is developed by incorporating the documents, whose content similarity

is greater than θ. In the second stage a discrimination criterion on the voting pro-

cess of kNN restricts the majority voting of kNN by a predefined positive integer

threshold, say β, to assign a document to a category. The proposed method need

not require a fixed k prior to categorizing a document. The method starts with an

initial value of k as β. If the difference between the number of members of the best

and the second best competing categories is β, then the document is categorized to

the best competing category. Otherwise the value of the neighborhood parameter k

is increased by one. The process continues till a decision is made or it reaches the
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last document of the set of neighbors. If the test document is not categorized till the

process traverses all the documents of the set of neighbors, then the test document

remains unclassified. Consider again the example of email data set in this context.

If the new email is not able to satisfy the said criterion of the proposed method then

it remains unclassified. From a practical view point, when we are not sure about a

decision, it is better not to take the decision, rather than deciding arbitrarily. The

main objective of the proposed decision rule is to enhance the confidence on the

decision making. The material presented in this chapter is taken from [15,16].

The rest of this chapter is organized as follows, section 4.2 describes the proposed

tweak on kNN decision rule for text categorization. The experimental evaluation on

several text data sets is given in section 4.3. Conclusions and discussion are presented

in section 4.4.

4.2 Proposed Tweak on kNN Decision Rule for

Text Categorization

A Tweak on kNN (TkNN) decision rule has been proposed for text categorization.

The proposed methodology is a two stage process. In the first stage the method

ensures that each neighbor has at least some content similarity with the test doc-

ument, since all the documents in the training sample set may not be required in

determining the category of a particular document. For this purpose, it considers

only those documents whose similarity with the test document is at least equal to

a predefined threshold θ > 0. The obtained set of documents is named as Set of

Neighbors (SN). Note that kNN rule considers all the documents in the training set

as neighbors for a test document. In the proposed method, every document in the

training set is not considered to be a neighbor of the test document. Let d0 be the

test document and D = {d1, d2, ..., dN} be the set of N training documents. Then

SN is developed in the following way.

SN = {d ∈ D : cos(~d0, ~d) > θ} (4.1)

Here ~d0 and ~d are the corresponding vectors of documents d0 and d respectively.

After finding SN , the documents in it are sorted in decreasing order of similarity.

The categorization procedure is stated in the second stage. Algorithm 3 describes
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in detail the proposed TkNN decision rule for categorizing a particular test document

using reduced search space.

In the second stage, the first L documents from SN are considered to obtain the

decision. Let the two categories in which the maximum and the second maximum

number of neighbors among the L documents lie be denoted by (Cx1) and (Cx2). Let

the number of neighbors in these two categories among L documents be denoted by

(Zx1
and Zx2

), where Zx1
≥ Zx2

. Let β be a chosen positive integer. The value of L

ranges from β to |SN |. If Zx1
−Zx2

= β then the test document is labeled with that

particular category Cx1. Otherwise L is increased by one and the same procedure

is continued until it has reached the last document of SN . The algorithm never

categorizes a document to a particular category, if (Zx1
− Zx2

) < β and it reaches

the last document of SN .

Consider the following example for β = 2. Let there be two categories C1 and

C2, and there are 11 documents in SN and the categories of those documents are

ordered as

C1, C2, C1, C2, C2, C1, C1, C2, C1, C2, C1

Initially Zx1
= 1 and Zx2

= 1 and (Zx1
− Zx2

< 2). Therefore L has to be increased

by one to execute the same operation and so on. Thus, at the end Zx1
= 6 and

Zx2
= 5, which concludes that the test document remains unclassified. But using

kNN, for k = 3, the document is categorized to C1, for k = 4 there is a tie and

for k = 5, the document is categorized to C2 and so on. It reveals the fact that

simple majority voting may not be appropriate. Basically, when there is more or

less same representation from the competing categories among the neighbors, we

believe that the test document should not be put into one of those categories. In-

tuitively, the likelihood of correct categorization is more for the proposed scheme

than kNN. If TkNN is able to categorize a document then it has sufficiently many

members among the neighbors in support of the corresponding category, otherwise

the document remains unclassified. The flowchart of the proposed decision rule for

text categorization is given in figure 4.1.

Remarks:

• In the first stage, by reducing the search space, we are interested in ensuring

sufficient content similarity between the test document and its neighbors. On
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Algorithm 3 Tweak on kNN Decision Rule for Text Categorization

Input: a) D = {d1, d2, ..., dN} be the set of N training documents.
b) A set of m predefined categories, C = {C1, C2, ..., Cm}
c) Let d0 is a particular test document, β is the threshold for majority voting and

θ be the document similarity threshold.

Steps of the Algorithm:

1: for j ← 1 to N do
2: dist← cos(~d0, ~dj)
3: if dist > θ then
4: S[j]← dist
5: end if
6: end for
7: L← β
8: SN ← Sort S in decreasing order and arrange D accordingly
9: SN0 ← First L documents from SN

10: for i← 1 to m do
11: Zi ← Number of documents in SN0 ∈ Ci

12: end for
13: Cat(d0)← ∅
14: while L 6= |SN | do
15: Zx ← max(Z1, Z2, ..., Zm)
16: Zy ← max

(
{Z1, Z2, ..., Zm} − {Zx}

)

17: if (Zx − Zy) = β then
18: Cat(d0)← Cx // i.e., d0 is categorized to Cx

19: return Cat(d0)
20: else
21: L← L + 1
22: if SN [L] ∈ Ci, i = 1, 2, ..., m then
23: Zi ← Zi + 1
24: end if
25: end if
26: end while
27: return Cat(d0) // i.e., the method does not categorize d0
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Figure 4.1: A Tweak on k-Nearest Neighbor Decision Rule for Text Categorization

the other hand a significant difference between the number of documents of

majority category and its competing categories is enhancing the confidence on

the decision process.

• It may be noted that the whole procedure has two parameters, namely θ and

β. For high values of θ, SN may become an empty set. Similarly, for high

values of β, many documents may remain unclassified. The parameters need

to be set appropriately.
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4.3 Experimental Evaluation

The experimental results on various text data sets are presented in this section to

compare the performance of the proposed TkNN decision rule with traditional kNN,

three other variants of kNN, naive bayes (NB) and SMV classifiers.

4.3.1 Parameter Settings

The text categorization using kNN [33], weighted kNN [43] and adaptive kNN [8]

desicion rule categorizes a document on the basis of k nearest neighbors. Note that

the value of k can vary from one to the total number of documents in the training set,

but k must be fixed for all test documents. If k is very high then the computational

complexity of these decision rules become high, which is not desirable. Hence k

should not be very high. The proposed decision rule reduces to the one nearest

neighbor (1-NN) method, or simply nearest neighbor decision rule, when β = 1.

Hence in the experimental evaluation 1-NN is not used for comparison. Here 10

fold cross validation is performed on the training set by varying k from 2 to 15.

The k value for which each of kNN, weighted kNN and adaptive kNN decision rule

have best performance among these 14 values is used in the experiments of the test

documents. The value of the parameter α has been taken as α = 5 for the adaptive

kNN technique. In the experiments, the r values of kNN model [59] are varied from

1 to 10 and cosine similarity is used as the similarity measure. The traditional

kNN decision rule is implemented using the default package available in Matlab

for kNN classifier. The codes to implement adaptive kNN, weighted kNN decision

rules and kNN model for text categorization have been developed by the author as

no such codes are available in public domain on any reliable source. The code for

the proposed TkNN decision rule for text categorization has been developed by the

author.

TkNN is dependent on the parameter β. A high β value can produce a large

number of unclassified documents when the size of the training set is not very high.

Hence the values of β have been restricted to 2, 3, 4 for comparison with the other

methods [15]. Here also 10 fold cross validation is performed on the training sets

using β = 2, 3, 4. The β values for which TkNN has best performance are used in

the experiments. The value of θ is taken as 0.05 for all the data sets. The code for

the proposed ESDR has been developed by the author.

83



SVM is performed using the libsvm1 tool developed by C. C. Chang and C. J.

Lin [26]. In the experiments the linear kernel is used [135] and the other parameters

of SVM remain the same as provided by the default option of libsvm tool. Naive

bayes is implemented using the mallet2 tool developed by A. McCallum [90].

For all the methods including naive bayes and support vector machine, 10 fold

cross validation is performed on the entire data set to split the data into training

and test sets. All the decision rules for text categorization are executed for 10 times

to reduce the effect of random selection of the documents by cross validation. The

mean of the accuracies along with their standard deviations and f-measure values

of 10 executions are reported in Table 4.1 and Table 4.2 respectively for each data

set. The characteristics of various document collections used in our experiments are

summarized in Table 1.1.

4.3.2 Analysis of Results

The proposed TkNN algorithm is compared with traditional kNN [33], weighted

kNN [43], adaptive kNN [8], kNN model [58], support vector machine [71] and naive

bayes [89] methods using all the data sets described in section 1.5. Table 4.1 and

Table 4.2 show the performances of these methods using accuracy and f-measure

respectively on all the text corpora. The accuracy (ac) of TkNN is determined

as, ac =
cc

tp− up
, where cc is the number of correctly categorized documents, tp

is the number of documents of the test set, and up is the number of documents

remaining unclassified. The average of L values for all the test documents is shown

in a separate column for each data set. Note that Lavg indicates the Lth member

of SN at which the test document has been assigned to a category by TkNN. The

value of k (neighborhood size), which provides best accuracy among k = 2, ..., 15

for kNN, weighted kNN and adaptive kNN is reported in separate column for each

of these three methods and for each data set. The r values of kNN model are also

reported in a separate column. The text data sets are represented using vector space

model [111].

Table 4.1 shows the categorization accuracies along with standard deviations of

seven methods on fourteen data sets. For each data set TkNN is compared with

five other decision rules. Thus, in total, 84 comparisons are made for TkNN. Out of

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://mallet.cs.umass.edu/
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Table 4.1: Performance of Different Classifiers on Various Text Data Sets using
Accuracy (in %)

Data TkNN kNN Weighted Adaptive kNN Naive SVM
Set (Proposed) kNN kNN Model Bayes

β Lavg AC3 β AC k AC k AC k AC AC AC
20ns 2 3 77.61 2 79.53 14 73.13 4 75.58 7 73.68 78.31 77.86

(0.09) (0.15) (0.01) (0.09) (0.28) (0.13) (0.22)
fbis 3 7 79.19 7 79.08 15 81.38 13 79.06 6 69.56 78.34 77.84

(0.24) (0.20) (0.19) (0.19) (0.27) (0.30) (0.25)
la1 4 24 92.36 15 82.86 15 84.18 15 82.23 9 85.91 88.03 90.84

(0.26) (0.23) (0.24) (0.23) (0.44) (0.17) (0.14)
la2 2 3 82.08 3 81.98 9 83.64 3 80.82 9 81.29 89.14 89.27

(0.10) (0.27) (0.04) (0.29) (0.31) (0.21) (0.23)
oh10 4 6 77.32 11 72.63 15 73.37 15 72.60 6 74.72 76.71 75.43

(0.81) (0.57) (0.43) (0.46) (0.41) (0.32) (0.26)
oh15 4 11 82.12 15 79.81 15 76.48 15 78.97 7 80.65 81.68 81.58

(0.43) (0.48) (0.64) (0.29) (0.32) (0.48) (0.36)
rcv1 4 7 88.90 3 86.84 9 87.18 8 86.58 7 85.31 88.42 87.79

(0.40) (0.31) (0.29) (0.32) (0.47) (0.26) (0.1)
rcv2 3 7 89.15 3 86.96 15 88.59 11 86.80 8 85.59 88.28 88.87

(0.17) (0.19) (0.22) (0.36) (0.16) (0.19) (0.16)
rcv3 3 6 89.12 5 87.10 11 88.50 7 86.32 8 87.12 88.00 88.67

(0.26) (0.19) (0.21) (0.23) (0.47) (0.20) (0.09)
rcv4 4 8 90.11 3 87.28 5 88.76 5 86.82 8 86.82 88.49 89.31

(0.15) (0.18) (0.24) (0.26) (0.28) (0.21) (0.07)
tr31 2 3 92.59 3 93.05 5 94.77 3 92.14 5 91.56 92.56 92.16

(0.31) (0.28) (0.30) (0.30) (0.37) (0.39) (0.36)
tr41 4 5 95.51 5 92.32 8 93.24 5 91.82 3 91.68 93.47 93.85

(0.35) (0.34) (0.24) (0.40) (0.32) (0.23) (0.29)
tr45 2 3 88.79 3 88.98 7 89.46 3 87.71 5 87.56 85.13 88.76

(0.71) (0.32) (0.42) (0.091) (0.40) (0.31) (0.50)
wap 4 5 84.02 14 74.37 15 73.59 15 73.74 9 75.56 79.22 78.30

(0.38) (0.37) (0.52) (0.44) (0.46) (0.29) (0.21)

3AC stands for accuracy. The mean of the accuracy are shown in % for 10 iterations along with
the standard deviation (within ()) for each method.
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Table 4.2: Performance of Different Classifiers on Various Text Data Sets using
F-measure

Data TkNN kNN Weighted Adaptive kNN Naive SVM
Set (Proposed) kNN kNN Model Bayes
Set β Lavg FM4 β FM k FM k FM k FM FM FM
20ns 3 8 0.770 2 0.789 14 0.726 4 0.752 7 0.729 0.778 0.774
fbis 4 6 0.777 3 0.773 15 0.802 12 0.782 6 0.690 0.780 0.776
la1 4 9 0.916 3 0.793 11 0.822 3 0.792 9 0.801 0.886 0.892
la2 3 9 0.818 4 0.814 9 0.834 3 0.801 9 0.806 0.887 0.887

oh10 4 6 0.765 11 0.721 15 0.729 15 0.721 6 0.742 0.760 0.748
oh15 4 6 0.818 14 0.792 15 0.760 15 0.783 6 0.802 0.807 0.807
rcv1 4 6 0.884 3 0.858 9 0.867 8 0.860 7 0.848 0.879 0.872
rcv2 4 8 0.887 3 0.860 14 0.880 11 0.860 8 0.849 0.877 0.884
rcv3 4 7 0.886 6 0.860 11 0.878 7 0.857 6 0.865 0.875 0.881
rcv4 4 7 0.896 3 0.864 5 0.881 6 0.861 8 0.863 0.877 0.886
tr31 4 7 0.920 3 0.925 6 0.942 3 0.917 5 0.908 0.920 0.916
tr41 3 5 0.948 5 0.918 9 0.928 5 0.916 3 0.912 0.930 0.932
tr45 2 4 0.881 3 0.884 7 0.888 3 0.872 5 0.871 0.849 0.882
wap 3 7 0.835 14 0.742 15 0.730 15 0.737 9 0.748 0.789 0.784

4 FM stands for f-measure.

these 84 comparisons, TkNN is found to work better in 73 cases. The other methods

are found to work better in the rest 11 cases only, out of 84. This indicates the value

and validity of TkNN. The methods which perform better than TkNN in some data

sets are e.g., naive bayes for la2 (the accuracy is 82.08% for TkNN and 89.14% for

naive bayes), weighted kNN for tr45 (the accuracy is 88.79% for TkNN and 89.46%

for weighted kNN).

The statistical significance test as described in chapter 2 has been performed

to check whether these differences are significant e.g., whether 89.46 (TkNN) is

significantly different from 88.79 (weighted kNN) for tr45. When TkNN performs

better than the other decision rules, it has been checked whether the differences are

significant. It has been found that the results are significant in 65 out of 73 cases,

where TkNN performs better than the other methods for the level of significance

0.05. The test results are significant in 9 out of 11 cases when other methods have

an edge over TkNN. Thus in 87.83% cases the performance of TkNN is significantly

better than the other methods.

It can be seen from Table 4.2 that the proposed decision rule is compared with

six other classifiers using f-measure for fourteen data sets. A total of 84 comparisons

have been made for TkNN in this table. The f-measure values of TkNN is better
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Figure 4.2: Robustness of Different Decision Rules

than the other methods in 80 out of these 84 comparisons. The other classifiers

are found to work better than TkNN in the rest 14 cases. It has been found using

t-test that the results are significant in 58 out of 70 cases where TkNN performs

better than the other methods for the level of significance 0.05. Out of the rest

14 cases when other methods performed better than TkNN 9 results are found to

be significant for the same level of significance. Thus the performance of TkNN is

significantly better than the other methods in 86.56% cases.

The robustness of different nearest neighbor decision rules on different data sets

can be determined by using the idea of Friedman [51,56]. Robustness of a particular

decision rule in a particular example is defined by the misclassification probability

ratio, mci = aci/ac
0
, where aci is the accuracy of the ith decision rule and ac

0
=

max
i

aci. In any particular example the best decision rule will have mci = 1, while

the other decision rules will have mci ≤ 1. Lower values of mci indicate the lack of

robustness of the ith decision rule. For all the text data sets this ratio is computed

for all the decision rules, and they are graphically shown by boxplots in Figure 4.2.

The figure shows the superiority of TkNN for text categorization.

4.3.3 Time and Space Complexity of TkNN

O(N) memory locations are needed to store N documents of the training set. There-

fore the space complexity of TkNN is O(N). O(N) time is required to find cosine

87



Table 4.3: Processing Time (in seconds) of Different Classifiers
Data TkNN kNN Weighted Adaptive kNN Naive SVM
Sets Proposed) kNN kNN Model Bayes
20ns 58.67 117.02 287.72 124.63 1036.36 94.96 102.35
fbis 5.57 18.52 68.50 15.59 118.12 6.92 7.56
la1 1.89 8.82 9.72 7.14 89.32 4.69 6.24
la2 0.67 1.80 1.95 1.49 76.21 4.05 6.55

oh10 0.84 8.27 12.17 4.01 61.59 2.30 3.12
oh15 0.54 7.09 10.89 3.53 51.66 2.43 2.54
rcv1 1.30 3.25 8.38 3.36 63.21 5.63 6.25
rcv2 1.36 4.36 12.63 5.92 70.56 6.20 7.49
rcv3 1.68 4.28 12.45 5.84 69.25 6.36 7.32
rcv4 1.75 4.45 12.42 5.68 72.75 6.35 7.54
tr31 0.88 3.40 4.13 2.55 131.20 3.35 3.47
tr41 0.63 6.68 10.33 3.26 106.97 3.18 3.55
tr45 0.49 5.37 8.43 2.57 85.55 3.64 4.25
wap 1.18 52.79 158.66 10.65 279.08 5.01 5.53

similarity between the test document and N documents of the training set. Let us

assume y number of documents have been discarded from the training set to de-

velop SN , which takes O(N − y) log((N − y) time. The rest of the steps take at

most O(N − y) time to categorize a test document. Thus the time complexity of

TkNN is O(N) + O(N − y) log((N − y). The worst case time complexity of TkNN

is O(N) log((N) when y is very close to N , that is when the size of SN is close to

N .

Table 4.3 summarizes the time taken by different decision rules to categorize the

text data sets. For the proposed method SN is created in the first stage and then

TkNN rule is performed on the SN in the second stage for each test document. The

time shown in Table 4.3 for each data set is the sum of the times taken by the two

stages of TkNN rule on all the test documents. Similarly for the other methods also

the time shown for each data set is the sum of the processing times of all the test

documents. It can be seen from Table 4.3 that the processing time of the proposed

TkNN rule is the least among all the methods for all the data sets.

4.4 Conclusions and Discussion

The k-nearest neighbor decision rule is a simple and robust decision rule for catego-

rization in statistical pattern recognition and it is widely used for text categorization.
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One major issue with the kNN rule is that the majority voting may not be convinc-

ing, if the margin of vote between two competing categories is very small. The other

limitation is that no good criterion is available to select an optimal value for neigh-

borhood parameter k. These two issues have been addressed here, and an improved

solution has been provided.

The proposed method chooses those documents from the training set that have

high content similarity (greater than a predefined threshold θ) with the test docu-

ment and constructs a Set of Neighbors (SN) with the rest of the documents. The

test document is then assigned to the category whose number of members (among

SN) is greater than a threshold (β) than the next competing category. This condi-

tion is tested until a decision is made or it reaches the last neighbor. Therefore no

prior knowledge about neighborhood parameter k is required for the TkNN rule. A

document is not categorized by TkNN rule, if it fails to fulfill the said criterion after

searching the entire SN and thus enhances the confidence of the majority voting.

TkNN rule has two parameters. The parameter θ builds SN and the parameter β

is used in majority voting. The experimental results suggest that one of the values

2, 3, 4 of β would provide better results for text categorization. θ is dependent

on the nature of the corpus. Practically, the vocabulary size becomes very large in

comparison with the number of training documents, and the data matrix is generally

sparse. Therefore θ should not be very high. Most of the similarity values of all pair

of documents of each corpus used in the experiments lie between 0.05 and 0.1. Hence

θ = 0.05 is selected in the experiments. Note that for large θ the size of SN may

become very small, and this is not desirable to train a classifier. But for a dense

term-document matrix (with a low vocabulary size), where most of the terms in the

vocabulary carry some information for every document, a high value of θ may be

chosen. It has been observed from the experiments that |SN | << N for each corpus.

Note that the value of L is very low (at most one fifth of the size of SN) for every

data set. That is, the number of neighbors traversed by TkNN rule for a decision is

very small compared to the size of SN for each data set. Hence, the computational

time of TkNN decision rule is the least among all the other classifiers.
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Chapter 5

An Extensive Similarity based

Decision Rule for Text

Categorization

5.1 Introduction

In the previous chapter, a tweak on kNN has proposed, and it has been found to

perform well on several data sets. It is stated that kNN or the proposed tweak

on kNN (TkNN) perform text categorization by observing the documents of the

training set which are most similar to it. Similarity measure plays a significant role

in deciding the category of a document for kNN or TkNN. In this chapter a new

similarity based decision rule has been proposed for text categorization by combining

the idea of TkNN [16] decision rule and the extensive similarity measure proposed

in chapter 2.

The text data sets are generally represented by vector space model [89], where

cosine similarity is used to determine the content similarity between the documents.

It may be noted that extensive similarity has been proposed to overcome some

limitations of cosine similarity (section 2.1) for effective clustering of the documents.

The extensive similarity measure is used in this chapter for supervised learning. The

extensive similarity used here for text categorization considers the documents of the

training set alone for computing similarity, whereas the one proposed in chapter

2 considers all the documents of the corpus. The extensive similarity between a

test document and a training document is determined after extensively checking the
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distances of the test document with all the documents of the training set.

The proposed decision rule initially finds the extensive similarity of a test doc-

ument with all the documents of the training set. An ordered set of neighbors is

developed from the training set by including those documents, which have non-

negative extensive similarity with the test document. Thus the proposed method

reduces the search space of majority voting, which is essential for large scale text data

sets. Then all the categories are ordered based on the number of similar documents

with the test document among the set of neighbors. The test document is assigned

to the best one among the competing categories, if the difference of the number of

similar documents between the best category and the second best category is greater

than a predefined positive value. The method terminates when it reaches the last

document of the set of neighbors, or it satisfies the said condition. The proposed

decision rule for text categorization is compared with adaptive kNN, weighted kNN,

naive bayes and support vector machine classifiers using several well known data

sets. It has been observed from the empirical studies that the proposed method

performs significantly better than the other classifiers for text categorization. The

material of this chapter can be found in article [12].

The chapter is organized as follows - section 5.2 describes the proposed exten-

sive similarity measure for text categorization. Section 5.3 presents the proposed

extensive similarity based decision rule for text categorization. The experimental

evaluation on several text data sets is discussed in section 5.4. The conclusions

about the proposed work are presented in chapter 5.5.

5.2 Extensive Similarity for Text Categorization

A new similarity measure, extensive similarity has been proposed in chapter 2 to

find the content similarity between two documents for effective document clustering.

Extensive similarity checks all the documents of the corpus in determining the sim-

ilarity of any two documents. If two documents share a certain number of common

terms and they have almost same distances with every other document in the cor-

pus (i.e., either both are similar or both are dissimilar to all the other documents)

then the documents are said to be exactly similar by the extensive similarity. In

this chapter extensive similarity has been used for text categorization. It checks the

documents of the training set instead of the entire corpus. The content similarity be-

tween a test document d0 and a training document di, ∀i = 1, 2, ..., N is determined
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by a threshold θ ∈ (0, 1) using the following distance function

dis(d0, di) =

{
1 if cos(~d0, ~di) ≤ θ

0 otherwise
(5.1)

Here ~d0 and ~di are the vectors corresponding to the documents d0 and di. Two doc-

uments are dissimilar if distance is 1, i.e., they share few number of common terms.

On the other hand, distance 0 indicates that there exists some content similarity be-

tween documents d0 and di, i.e., they have a minimum number of terms in common.

θ is a fixed threshold on cosine similarity which restricts the low similarity values.

The value of θ is determined by the same histogram thresholding method discussed

in chapter 2.

The extensive similarity between the test document d0 and the training document

di is defined in this chapter based on their distances with every other document in

the training set. Let l0i =
N∑

k=1

|dis(d0, dk) − dis(di, dk)|, where N is the number of

documents in the training set. Here l0i denotes the number of documents among

the documents of the training set, where similarity with d0 is not the same as the

similarity with di. The similarity between the documents d0 and di decreases as

the l0i value increases. The documents are said to be totally similar when l0i = 0.

Basically l0i is a grade of dissimilarity and it indicates that any two documents d0

and di have different distances with l0i number of documents in the training set.

The extensive similarity (ES) between d0 and di is defined as

ES(d0, di) =

{
N − l0i if dis(d0, di) = 0

−1 otherwise
(5.2)

In this extensive similarity, two documents are more similar than any other pair

of documents, if they have a very high ES value than the other pairs. The main

significance of extensive similarity is the negative similarity value. If two documents

have negative extensive similarity then the documents are no more similar. In the

next section we shall observe that this negative similarity value will help to reduce the

number of participation in majority voting to determine the category of a document.

The extensive similarity measure for text categorization is described in Algorithm

4. It explains how the function extensive similarity finds the similarity between a

test document and a set of training documents, where dis trn is the set of distances
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Algorithm 4 extensive similarity(dis trn,dis tst,N)

for j ← 1 to N do
if dis tst[j] = 1 then

ES[d0, dj]← −1
else

l ← 0
for i← 1 to N do

l ← l +
∣∣dis tst[j]− dis trn[i][j]

∣∣
end for
ES[d0, dj]← N − l

end if
end for
return ES

between every pair of documents of the training set following equation 5.1 and dis tst

is the set of distances between the test document and every document of the training

set following the same equation.

5.3 Framework of the Extensive Similarity Based

Decision Rule for Text Categorization

Generally the similarity based classifier e.g., kNN decision rule categorize a docu-

ment to a particular category based on the majority voting among the competing

categories using the nearest neighbors. Basu et al. [16] proposed a tweak on the

kNN classifier which enhances the confidence of decision making. A test data point

has been grouped to a predefined category by TkNN, if the difference between the

number of members of two competing categories is equal to a predefined positive

integer threshold β > 1, otherwise the method continues to check the entire neigh-

borhood until the condition is satisfied. They have shown that for β = 2, 3, 4 the

method has performed well for several benchmark and artificial data sets. The pro-

posed decision rule for text categorization has been developed using the idea of the

discrimination criteria for majority voting of the TkNN decision rule and extensive

similarity between the test document and the training documents. The proposed

decision rule is named as Extensive S imilarity based Decision Rule (ESDR) and the

steps of the method is described in Algorithm 5.

The proposed ESDR for text categorization finds the extensive similarity of a test
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Algorithm 5 Procedure of ESDR to Categorize a Test Document

Input: a) D = {d1, d2, ..., dN} be the set of N training documents.
b) C = {C1, C2, ..., Cm}, set of m predefined categories
c) d0 be the test document, β is a threshold on majority voting and θ is the
document similarity threshold.

Steps of the Algorithm:

1: Sim trn[i][j]← cos(~di, ~dj), ∀ i, j ← 1, ..., N and i 6= j
2: Build dis trn[i][j] from Equation 5.1, ∀ i, j ← 1, ..., N and i 6= j

3: Sim tst[j]← cos(~d0, ~dj), ∀ j ← 1, ..., N
4: Build dis tst[j] from Equation 5.1, ∀ j ← 1, ..., N
5: ES ← extensive similarity(dis trn,dis tst,N) // by using Algorithm 1
6: Cat(d0)← ∅; loc← 0
7: for j ← 1 to N do
8: if ES[d0, dj] ≥ 0 then
9: SN [loc]← ES[d0, dj]

10: ŜN [loc]← j
11: loc← loc + 1
12: end if
13: end for
14: Sort SN in decreasing order maintaining the index (ŜN)
15: L← β
16: SN0 ← First L documents from SN
17: for i← 1 to m do
18: Zi ← Number of documents in SN0 ∈ Ci

19: end for
20: while L 6= |SN | do
21: Z ← {Z1, Z2, ..., Zm} // Z is a multi set that may contain multiple equal value items

22: Zx ← max(Z) ; Zy ← max
(
Z − {Zx}

)

23: if (Zx − Zy) = β then
24: Cat(d0)← Cx // i.e., d0 is categorized to Cx

25: return Cat(d0)
26: else
27: L← L + 1
28: if SN [L] ∈ Ci, i = 1, 2, ..., m then
29: Zi ← Zi + 1
30: end if
31: end if
32: end while
33: return Cat(d0) // i.e., the method does not categorize d0
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Figure 5.1: Text Categorization by Extensive Similarity based Decision Rule

document with all the documents in the training set. Let d0 be the test document

and D = {d1, d2, ..., dN} be the set of N training documents. A Set of Neighbors

(SN) is developed by including the documents, which have non-negative extensive

similarity with the test document as follows.

SN = {d ∈ D : ES(~d0, ~d) ≥ 0} (5.3)

Thus the number of members for majority voting in the next step is reduced

by using the extensive similarity measure. The documents in SN are sorted in

decreasing order of their extensive similarity values. Then first β documents from
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SN are taken to perform majority voting with a criterion that the difference between

the number of documents of the competing two categories (Zx and Zy) is equal to

β. If this condition is satisfied then the document is assigned to the best category

Cx, having maximum number of documents in SN . Otherwise it checks the next

document in SN and performs the same operation. The same procedure is continued

until it has traversed the last document of SN . Algorithm 5 does not categorize a

document, if (Zx − Zy) < β and it reaches the last member of SN . In this case

the proposed decision rule does not arbitrarily categorize this document to any

category. It has become clear from this fact that the proposed decision rule never

takes a decision when the supporting information is not so strong. The flowchart of

the proposed technique is shown in figure 5.1.

5.4 Experimental Evaluation

Text categorization using kNN [33], weighted kNN [43] and adaptive kNN [8] rule

classifies a document on the basis of k nearest neighbors of a test document. The

value of k can vary from one to the number of documents in the training set, but

k must be fixed for all test documents. Here 10 fold cross validation is performed

on the training set by varying k from 2 to 15. The k value which provides best

accuracy and f-measure among these 14 values is used in the experiments of the test

documents for kNN, weighted kNN and adaptive kNN. The value of the parameter

α has been taken as α = 5 for the adaptive kNN technique. The traditional kNN

decision rule is implemented using the default package available in Matlab for kNN

classifier. The codes to implement adaptive kNN, weighted kNN and TkNN decision

rules for text categorization has been developed by the author as no such codes are

publicly on any reliable source. The code for the proposed ESDR has been developed

by the author.

The proposed ESDR is dependent on the β values. The proposed decision rule

will behave like the one nearest neighbor (1-NN) decision rule, or simply nearest

neighbor classifier, when β = 1. Hence in the experimental evaluation 1-NN is not

used for comparison. A high β value can produce a large number of unclassified

documents if the training set size is not very high. Hence the values of β have

been restricted to 2, 3, 4 for comparison with the other methods [15]. Here also 10

fold cross validation is performed on the training sets using β = 2, 3, 4, like TkNN

decision rule. The β value for which the proposed method gives best accuracy is used
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in the experiment for each data set. The TkNN decision rule uses the same procedure

for selecting β in the experiments as stated in section 4.3.1. It may be noted that

cosine similarity is used as the similarity measure for TkNN, kNN, weighted kNN

and adaptive kNN.

SVM is performed using the libsvm1 tool developed by C. C. Chang and C. J.

Lin [26]. In the experiments the linear kernel has been used [135] and the other

parameters of SVM remain the same as provided by the default option of libsvm

tool. Naive bayes is implemented using the mallet toolkit2 [90].

For all the methods including SVM and naive bayes, 10 fold cross validation is

performed on the entire data set to split the data into training and test sets. The

classifiers are executed for 10 times to reduce the effect of random selection of the

documents by cross validation. The mean of the accuracies along with their standard

deviations and f-measure values of 10 executions are reported in Table 5.1 and Table

5.2 respectively for each data set. The histogram thresholding based technique stated

in chapter 2 has been used in the experiments here for estimating the parameter θ

of extensive similarity measure of ESDR. The technique for estimating the value of

θ has been implemented exactly in the same way as it has been mentioned in section

2.3.4.

5.4.1 Analysis of Results

The proposed ESDR for text categorization is compared with traditional kNN [33],

TkNN [16], weighted kNN [43], adaptive kNN [8], SVM [71] and naive bayes [89]

classifiers using all the data sets described in section 1.5. Table 5.1 and Table

5.2 show the performances of these methods using accuracy along with standard

deviations and f-measure respectively on all the text corpora. The accuracy(ac) of

the proposed ESDR is determined as, ac = cc/(ntd−ud), where cc is the number of

correctly classified documents, ntd is the number of documents in the test set, and

ud is the number of documents for which no category is assigned. The accuracy of

TkNN is determined as the same way as described in section 4.3.2 and reported in

Table 5.1. The average of L (L is the Lth member of SN where a decision is made by

ESDR for a test document) for all the test documents is shown in a separate column

for each data set as Lavg in Table 5.1 and Table 5.2. The value of k (neighborhood

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://mallet.cs.umass.edu/
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Table 5.1: Performance of Different Classifiers on Various Text Data Sets using
Accuracy (in %)

Data ESDR TkNN kNN Weighted Adaptive Naive SVM
Set (Proposed) kNN kNN Bayes
Set β Lavg AC3 β AC k AC k AC k AC AC AC
20ns 3 8 77.74 2 77.63 2 79.52 14 73.15 4 75.58 78.30 77.85

(0.12) (0.09) (0.15) (0.03) (0.09) (0.12) (0.22)
fbis 4 6 81.23 7 79.17 3 79.06 15 81.38 13 79.07 78.35 77.84

(0.18) (0.23) (0.20) (0.19) (0.20) (0.30) (0.24)
la1 4 9 93.15 4 92.15 3 79.75 12 82.70 3 79.65 89.09 90.84

(0.19) (0.26) (0.20) (0.17) (0.26) (0.30) (0.14)
la2 3 9 90.90 2 82.18 3 81.95 9 83.76 3 80.75 89.14 89.27

(0.24) (0.10) (0.18) (0.16) (0.21) (0.20) (0.23)
oh10 4 6 76.26 4 77.16 11 72.64 15 73.38 15 72.62 76.70 75.45

(0.21) (0.82) (0.57) (0.43) (0.46) (0.33) (0.26)
oh15 4 6 81.69 4 82.10 15 79.80 15 76.47 15 78.97 81.65 81.64

(0.18) (0.45) (0.48) (0.63) (0.29) (0.48) (0.37)
rcv1 4 6 89.11 4 88.90 3 86.86 9 87.16 8 86.56 88.40 87.77

(0.21) (0.41) (0.32) (0.29) (0.31) (0.25) (0.08)
rcv2 4 8 90.63 3 89.12 3 86.99 15 88.56 11 86.76 88.29 88.87

(0.28) (0.17) (0.19) (0.24) (0.36) (0.19) (0.16)
rcv3 4 7 89.40 3 89.10 5 87.00 11 88.52 7 86.30 88.04 88.70

(0.15) (0.26) (0.19) (0.22) (0.23) (0.20) (0.07)
rcv4 4 7 91.06 4 90.10 3 87.29 5 88.76 5 86.79 88.49 89.34

(0.29) (0.14) (0.19) (0.24) (0.28) (0.21) (0.07)
tr31 4 7 93.48 3 92.59 3 93.09 5 94.75 3 92.17 92.56 92.11

(0.24) (0.30) (0.28) (0.30) (0.30) (0.38) (0.34)
tr41 3 5 93.55 4 95.49 5 92.38 8 93.24 5 92.02 93.66 93.86

(0.30) (0.36) (0.34) (0.24) (0.42) (0.23) (0.27)
tr45 2 4 87.82 2 88.75 3 88.98 7 89.42 3 87.72 85.45 88.71

(0.31) (0.70) (0.32) (0.42) (0.08) (0.30) (0.50)
wap 3 7 84.57 4 84.14 14 74.73 15 73.59 15 74.15 79.56 79.15

(0.31) (0.36) (0.37) (0.51) (0.41) (0.26) (0.23)

3AC stands for accuracy. The mean of the accuracy are shown in % for 10 iterations along with
the standard deviation (within ()) for each method.
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Table 5.2: Performance of Different Classifiers on Various Text Data Sets using
F-measure

Data ESDR TkNN kNN Weighted Adaptive Naive SVM
Set (Proposed) kNN kNN Bayes
Set β Lavg FM4 β FM k FM k FM k FM FM FM
20ns 3 8 0.773 2 0.770 2 0.789 14 0.726 4 0.752 0.778 0.774
fbis 4 6 0.788 7 0.777 3 0.773 15 0.802 12 0.782 0.780 0.776
la1 4 9 0.925 4 0.916 3 0.793 11 0.822 3 0.792 0.886 0.892
la2 3 9 0.897 2 0.818 4 0.814 9 0.834 3 0.801 0.887 0.887

oh10 4 6 0.757 4 0.765 11 0.721 15 0.729 15 0.721 0.760 0.748
oh15 4 6 0.810 4 0.818 14 0.792 15 0.760 15 0.783 0.807 0.807
rcv1 4 6 0.886 3 0.884 3 0.858 9 0.867 8 0.860 0.879 0.872
rcv2 4 8 0.901 3 0.887 3 0.860 14 0.880 11 0.860 0.877 0.884
rcv3 4 7 0.886 3 0.886 6 0.860 11 0.878 7 0.857 0.875 0.881
rcv4 4 7 0.905 4 0.896 3 0.864 5 0.881 6 0.861 0.877 0.886
tr31 4 7 0.927 3 0.920 3 0.925 6 0.942 3 0.917 0.920 0.916
tr41 3 5 0.930 4 0.948 5 0.918 9 0.928 5 0.916 0.930 0.932
tr45 2 4 0.872 2 0.881 3 0.884 7 0.888 3 0.872 0.849 0.882
wap 3 7 0.840 3 0.835 14 0.742 15 0.730 15 0.737 0.789 0.784

4 FM stands for f-measure.

size) among k = 2, ..., 15 of kNN, weighted kNN and adaptive kNN for which the

accuracy and f-measure is best is noted in separate column for each of these three

methods.

The proposed ESDR is compared with six other classifiers for each data set in

Table 5.1. Thus 84 comparisons have been made for ESDR in total. The proposed

one is found to work better in 69 out of these 84 comparisons. The other classifiers

are found to work better than ESDR in the rest 15 cases. These results indicate

the effectiveness of ESDR. It can be observed from Table 5.1 that ESDR performs

better than all other classifiers in most of the cases. There are some cases where

other methods perform better than ESDR e.g., weighted kNN performs better than

ESDR for fbis, and tr45 and SVM performs better than ESDR for 20ns and tr41.

A statistical significance test that has been performed in chapter 2 is used here

to check the significance of the differences of accuracies between ESDR and any

other competing algorithm. It has been found that the results are significant in 60

out of 69 cases where ESDR performs better than the other methods for the level

of significance 0.05. Out of the rest 15 cases when other methods performed better

than ESDR 11 results are found to be significant for the same level of significance.

Thus the performance of ESDR is significantly better than the other methods in

84.50% cases.
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Table 5.2 shows the comparison of the proposed technique with six other classi-

fiers using f-measure for each data set. A total of 84 comparisons have been made

for ESDR in this table. The f-measure values of ESDR is better than the other

methods in 70 out of these 84 comparisons. The other classifiers are found to work

better than ESDR in the rest 14 cases. It has been found using t-test that the

results are significant in 58 out of 70 cases where ESDR performs better than the

other methods for the level of significance 0.05. Out of the rest 14 cases when other

methods performed better than ESDR 11 results have been found as significant for

the same level of significance. Thus the performance of ESDR is significantly better

than the other methods in 84.05% cases. These results show the value and validity

of ESDR.

Note that a few number of test documents (maximum 0.5% of the total doc-

uments in the test set) remain unclassified by ESDR for la1, rcv2, rcv4 and wap.

This phenomenon of ESDR may be allowed to achieve such a good categorization

accuracy that a very small amount of documents (e.g., 3 documents out of 200 for

rcv4) remain unclassified when a decision is not so strong.

5.4.2 Time and Space Complexity of ESDR

The proposed algorithm takes O(N2) time to build Sim trn and then it takes O(N2)

time to create the distance matrix (dis trn) of the set of training documents in

Algorithm 5. Successively O(N) time is required to create Sim tst and then it takes

O(N) time to find the distances (dis tst) of the test document with all the training

documents. Let us assume g number of documents have been discarded from the

training set to develop SN , which takes O(N − g)log((N − g) time. The rest of the

steps, i.e., the categorization using SN can be done in O(N − g) time in worst case.

Thus the time complexity of ESDR is
(
O(N2) + O(N − g) log(N − g) + O(N − g)

)

i.e., O(N2).

The similarity matrix of the set of N training documents (Sim trn) requires

N × N memory locations, and similarity values of the test document with all the

training documents (Sim tst) require N memory locations. Thus, at most N space

is needed to store the set of neighbors (SN) for the test document. Therefore the

space complexity of ESDR is O(N2).

Table 5.3 summarizes the processing time of each method on a quad core Linux

workstation. The proposed one initially develops the extensive similarity matrix by
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Table 5.3: Execution Time (in seconds) of Different Classifiers
Data ESDR TkNN kNN Weighted Adaptive Naive SVM
Sets kNN kNN Bayes
20ns 312.17 58.67 117.02 287.71 124.62 94.96 102.35
fbis 47.16 5.55 18.52 68.50 15.61 6.90 7.58
la1 105.59 1.90 8.81 9.71 7.16 4.67 6.25
la2 107.06 0.70 1.82 1.93 1.49 4.07 6.72

oh10 45.06 0.85 8.27 12.18 4.04 2.30 3.15
oh15 46.70 0.56 7.10 10.90 3.51 2.40 2.87
rcv1 76.21 1.32 3.26 8.38 3.36 5.63 6.26
rcv2 84.28 1.38 4.36 12.62 5.90 6.22 7.76
rcv3 84.06 1.68 4.28 12.45 5.84 6.36 7.72
rcv4 83.58 1.75 4.44 12.42 5.68 6.35 7.53
tr31 56.07 0.89 3.40 4.12 2.55 3.36 3.67
tr41 53.25 0.65 6.68 10.33 3.28 3.18 3.84
tr45 54.46 0.50 5.36 8.42 2.57 3.64 4.25
wap 62.18 1.18 52.77 158.66 10.65 5.04 5.63

the documents of training set, which takes quadratic time in respect to the number

of documents in the training set. Then SN is created and ESDR is performed on

SN to categorize a test document. The execution time of ESDR is the total time

to perform these two stages, i.e., building extensive similarity matrix (including the

time of estimating θ) and performing text categorization using extensive similarity

between documents. The time of ESDR shown in Table 5.3 for each data set is the

sum of the times taken to categorize all the test documents. Similarly for the other

methods also the time shown for each data set is the sum of the processing times to

categorize all the test documents. It can be observed from Table 5.3 that in most of

the cases the computational time of ESDR is more than the other competing meth-

ods, because of the development of extensive similarity matrix before categorization.

The effectiveness of ESDR by extensive similarity has become clear from the exper-

iments. Hence this much computational cost may be allowed to achieve such a good

performance for text categorization. The data sets used in the experiments are of

different sizes with different dimensionalities. Note that the range of dimensionality

of the data sets varies from 2000 (fbis) to 35218 (20ns) and the size of the data sets

ranges between 690 (tr45) to 18000 (20ns). Hence the proposed one can be applied

to any high dimensional real life data set.
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5.5 Conclusions and Discussion

A similarity based decision rule for text categorization is introduced in this chap-

ter. The proposed decision rule finds the category of a new document by applying

a discrimination criterion on majority voting for category selection and extensive

similarity measure is used to order the documents of the training set for majority

voting. The similarity measure finds the similarity between any two documents by

determining their individual distances with every other document in the training

set. ESDR is compared with TkNN, which uses the cosine similarity in finding

the similarity between documents and the same discrimination criterion as used in

ESDR. The experimental results show that the proposed one performs better than

TkNN. Thus it is revealed from the results that extensive similarity measure plays

significant role in the performance of ESDR for text categorization.

Initially ESDR discards those documents which are dissimilar with the test doc-

ument (practically the extensive similarity values are negative for these documents)

and develops an ordered Set of Neighbors (SN) with rest of the documents of the

training set. The method starts with first β number of documents of SN and contin-

ues until a decision is made or it reaches the last member of SN . The test document

is not (arbitrarily) assigned to a category, if the proposed decision rule fails to sat-

isfy the said criterion after checking all the documents of SN . This is the most

significant property of ESDR.

The proposed decision rule has two parameters, the first one is θ for extensive

similarity between documents and the second one is β for majority voting. It has

become clear from the experimental results that one of the values 2, 3, 4 of β provides

better classification results. The experimental results also confirm that the technique

used for estimation of θ is fruitful. Hence this estimation technique may be applied

for any text data set.
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Chapter 6

A Supervised Term Selection

Technique for Text Categorization

6.1 Introduction

Text categorization is the process of automatic grouping of documents which helps

to effectively retrieve documents from large text corpora. The performance text

categorization techniques suffer from high dimensionality and sparsity of the text

data. It is very important to find the discriminating terms for each category and to

reduce the size of vocabulary by removing the irrelevant terms for effective text cat-

egorization. In text data each unique term is considered as a feature. Hence feature

selection may be the solution for dimensionality reduction without compromising

on the quality of text categorization. The feature subset selection methods for text

categorization task use an evaluation function that is applied to a single term [92].

All the terms are independently evaluated and a score is assigned to each of them.

Then the terms are sorted according to those weights and a predefined number of

best terms form the resultant subset of terms. Various such term selection methods

for text categorization are available in the literature.

Document Frequency thresholding (DF), Information Gain (IG), Mutual Infor-

mation (MI), χ2 statistic (CHI), Gain Ratio (GR), Odds Ratio (OR) etc. are com-

monly used term selection techniques in text categorization [38] [92] [131]. The

evaluation functions for term selection of these methods stress on either common

terms (e.g., CHI, GR) or the rare terms (e.g., MI) of the vocabulary. They do not

provide special attention on those terms which occur in high ratio in each category.
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It is observed from the literature survey that the methods which select the rare

terms can not identify the important terms for categorization [92]. Thus the meth-

ods which favor the common terms of the vocabulary have become popular [131],

but these methods also suffer in the presence of uneven sizes of the categories in the

corpus [136]. Consider an example of a term that is occurring highly in a category,

but the size of the category is small in comparison to the other categories of the cor-

pus. Practically the term is a rare term in the global feature space and the method

which gives importance to common terms give low priority to this term. Hence these

terms which uniquely represent a category containing few documents may not be

selected in the resultant subset of terms by the methods which favor common terms.

Thus the performance of the text categorization may be degraded.

A supervised term selection technique is proposed in this article which gives

high priority to the terms which occur highly in each category irrespective of their

occurrence in the entire corpus. A new evaluation function named as, term relat-

edness is proposed which finds similarity between a term and a category and then

every term of the vocabulary is assigned a score depending on its similarity with all

the categories. Subsequently all the terms are ranked according to their individual

score and a predefined number of terms having high rank (low score) are selected

as discriminating terms. The proposed term relatedness assigns low score for high

priority.

The proposed method has been applied on several well corpora. kNN and SVM

classifiers are used to judge the effectiveness of the proposed technique. The exper-

imental results show that the proposed method performs significantly better than

the other term selection techniques for text categorization even after the removal of

90% terms from the vocabulary.

The chapter is organized as follows - section 6.2 explains the proposed term

selection technique. The experimental results on several text data sets are given in

section 6.3. Conclusions about the proposed method is presented in section 6.4.

6.2 Proposed Term Selection Framework

The evaluation functions for term selection that are used frequently (e.g., CHI,

OR IG, MI etc.) would ultimately find either common terms or rare terms [131].

The methods which give importance to rare terms (e.g., MI) may be able to find the

distinct terms of a category (rather document). Note that only those rare terms that
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occur in few documents in a particular category are selected for high dimensional

text data, if the threshold is not selected properly. As a result the documents

belong to the same category may become dissimilar to each other and this may

degrade the performance of the classifier. In practice for high dimensional corpora

the methods like MI (which favor rare terms) can not be taken as a good term

selection technique [131].

On the other hand the methods which give importance to common terms (e.g.,

CHI, OR etc.) have shown good performances in text categorization in some previous

studies [92,131]. Some of the issues regarding the existing methods are stated here.

Let us consider an example where the same term is present in multiple categories,

and its number of occurrences in every such category is not so high. Hence this term

should get less importance than the term which occurs in high ratio (The ratio of the

number of occurrences of the given term in a particular category with the number

of occurrences of the same term in all the categories is said to be the ratio of the

term.) in a particular category. The methods like CHI, and OR do not give special

attention to this phenomenon. Consider another example of a corpus which is not

evenly distributed among different categories i.e., the number of documents in one

category (say C1) is significantly more than the other category (say C2). The terms

which exist only in C2 may not get high score by these evaluation functions which

favor the common terms. Basically the terms of C1 may dominate the terms of C2 in

the best subset of terms in most of the above term selection techniques, which is not

desirable in practice. A supervised term selection method for text categorization

is proposed here by considering the above issues. The aim of the proposed term

selection method is to give importance to the representative terms of each category

(even if the data is unevenly distributed). The proposed framework maintains the

following order of preference for the terms to develop the ultimate subset of terms

for text categorization.

1) The terms occurring in a particular category with high ratio and they do not

exist in the other categories.

2) The terms occurring in multiple categories and they occur with a higher ratio

in a particular category than the other categories.

3) The terms occur in several categories, but they do not occur with as high a

ratio as in case 2 in any particular category.
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4) The terms that occur in a few documents, i.e., the term is a rare term. This

type of term may occur in multiple categories, but they occur in a few docu-

ments of those categories.

An evaluation function is proposed here to maintain this order of preference for

term selection. Let there are m categories in the corpus. The proposed evaluation

function for a term t and a category Ci, i = 1, 2, ..., m is named as Term ReLatedness

(TRL) and it is defined as follows:

TRL(t, Ci) =





1, if P (t, Ci) = 0

0, if P (t, Ci) = P (t) = P (Ci)

1− TCR(t, Ci), if P (t, Ci) = P (t) 6= P (Ci)

1− TRF (t, Ci), if P (t, Ci) = P (Ci) 6= P (t)

1− TF (t, Ci), otherwise

(6.1)

Here P (t) is the probability that a document contains term t and P (Ci) is the

probability that a document belongs to category Ci. P (t, Ci) denotes the probability

that a document belonging to category Ci and containing the term t.

The Term Factor (TF) of term t and category Ci is represented as

TF (t, Ci) =
min(P (t), P (Ci))− P (t, Ci)

max(P (t), P (Ci))− P (t, Ci)
× P (t)− P (t, Ci)

P (t)
× E(Ci)

P (t, Ci) is the probability that a document containing the term t, but does not belong

to category Ci. E(Ci) is the entropy of category Ci and E(Ci) = −P (Ci) log P (Ci).

TF determines the existence of a term among all the categories. TF becomes high

when P (t, Ci) is close to P (t) and P (Ci) and P (t, Ci) is very low, i.e., when a

term occur highly in a category and does not exist (or exists with a low ratio) in

other categories. The estimation of P (t), P (Ci), P (t, Ci) and P (t, Ci) are described

in section 1.3.1.2.

The Term Category Ratio (TCR) of term t and category Ci is represented as

TCR(t, Ci) =
1 + P (t, Ci)

1 + P (Ci)
× E(Ci)

TCR determines how frequently a term occurs in a category, but it does not check

whether the term exists only in that category. TCR becomes high when P (t, Ci) is

close to P (Ci).
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The Term Relative Frequency (TRF) of term t in category Ci is represented as

TRF (t, Ci) =
1 + P (t, Ci)

1 + P (t)
×E(Ci)

TRF determines how frequently a term occurs in a category compared to the other

categories. TRF becomes high when P (t, Ci) is close to P (t). The values of TF,

TCR and TRF belong to (0, 1) whenever they are applied to find TRL between a

term and a category. The objective is to maximize the TCR, TRF and TF scores,

i.e., to minimize TRL.

The TRL values of a term for all the categories are calculated and then the

minimum value is taken as the ultimate TRL value of the term. Thus the over all

TRL score of a term, TRLall(t) can be obtained in the following way.

TRLall(t) = min{TRL(t, Ci) : i = 1, 2, ..., m} (6.2)

Eventually all the terms are ranked in increasing order according to their TRLall(t)

values and a predefined number of top terms are selected for categorization. Algo-

rithm 6 describes the proposed term selection method for text categorization.

6.2.1 Properties of Term Relatedness

• Note that a term t and a category Ci, i = 1, 2, ..., m under consideration should

exist, which necessarily implies that P (t) > 0 and P (Ci) > 0.

• The value of TRL ranges between 0 and 1. The value is 0 when a term occurs

in all the documents of a category and it does not occur in any other category.

The value of TRL is 1 when a term does not occur in any document of that

category.

• TRL(t, Ci) ≥ 0, ∀t and ∀Ci, i = 1, 2, ..., m.

• TRL(t, Ci) = 0 for a term t and a category Ci, i = 1, 2, ..., m, if P (t) =

P (Ci) = P (t, Ci), i.e., t occurs only in Ci and it gets the lowest score among

all the terms.
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Algorithm 6 Term Selection by Term Relatedness

Input: a) D = {d1, d2, ..., dN} be a set of N training documents.
b) A set of m categories, C = {C1, C2, ..., Cm}.
c) T = {t1, t2, ..., tn} is the set of n terms in the vocabulary.
d) γ is the number of terms to be selected.
Output: A reduced set of terms RST .

Steps:

1: for each ti ∈ T do
2: for each Cj ∈ C do
3: Calculate TRL(ti, Cj) following equation 6.1
4: end for
5: Calculate TRLall(ti) by equation 6.2
6: end for
7: ST ← Sort TRLall(ti), ∀ti ∈ T in increasing order
8: RST ← {ST (i) : 1 ≤ i ≤ γ}
9: return RST

6.2.2 Discussion

It is to be noted that a term gets highest preference, when it occurs with high ratio

in one category and it does not occur in the other categories. If a term occurs

with high ratio in most of the categories then the term gets very low preference.

The value of TF is low when both the fractions
min(P (t), P (Ci))− P (t, Ci)

max(P (t), P (Ci))− P (t, Ci)
and

(P (t) − P (t, Ci)/P (t) of TF are low (say 0.2). As a result TRL becomes high.

Thus the proposed method restricts the stopwords by giving low preference to them.

The entropy is used to maintain the homogeneity between categories. Otherwise

the terms of a category with few documents may be suppressed by the terms of a

category with large number of documents. Let us discuss about how the proposed

TRL maintains the order of preference between a term and a category that have

been assumed initially to design it. All possible TRL values between a term and a

category are described in figure 6.1.

Case 1: If P (t, Ci) = P (Ci) = P (t) for any Ci and t then the value of TRL is

0, which is the minimum value of TRL. As TRL values are ranked in increasing

order, so this term gets the highest priority in the ultimate subset of terms. If t

occurs in all the documents of Ci, and it does not occur in any other category, then

P (t, Ci) = P (Ci) = P (t), and hence it gets the highest priority. Although this type
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P(t,c) is not  close to P(c) P(t,c) is close to P(c)

 

P(t)>P(t,c)P(t)=P(t,c)

P(t,c)=P(c) P(t,c)<P(c)

P(t)<P(c)P(t)=P(c)

    Case 1

 P(t) is close
      to P(c) close to P(c)

  P(t) is not  P(t) is close
      to P(c)

  P(t) is not 
close to P(c)

   P(t), P(c) and P(t,c) value of a term t 

  and category c. Assume that P(t,c)>0

Case 2(a) Case 2(b)

P(c)=P(t,c) P(c)>P(t,c)

                 or

    P(t) is close to P(c)     P(t) is not close to P(c) 

P(t)>P(c)

Case 3(b)   Case 3(a)

Case 2(c), if P(t)=P(c)

P(t,c) is not close to P(c) P(t,c) is close to P(c)

    P(t) is close to P(c) 

Case 3(d), if P(t)>>P(c)

 Case 3(e), if P(t)<<P(c)
                 or Case 2(e), if P(c)>P(t)

Case 2(d), if P(t)>P(c)
Case 3(c)

Figure 6.1: All Possible TRL Values of a Term t and a Category c

Rectangular box with rounded corner indicates the final state.
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of terms are very important for a category, this sort of terms hardly occur in a corpus.

The following claim has been made regarding case 1 of TRL. The justification of the

claims is given in appendix C.

Claim 1): The terms of case 1 get highest preference in a particular category.

Case 2: The value of TRL(t, Ci) is close to 0 for any category Ci and term t in the

following situations:

(a) P (Ci) > P (t), P (t) = P (t, Ci) and P (t) is close to P (Ci).

(b) P (t) > P (Ci), P (Ci) = P (t, Ci) and P (t) is close to P (Ci).

(c) P (t) = P (Ci), P (t) 6= P (t, Ci), but P (t) is close to P (t, Ci).

(d) P (t) > P (Ci), P (t) 6= P (t, Ci), and both P (t), P (t, Ci) are close to P (Ci).

(e) P (Ci) > P (t), P (t) 6= P (t, Ci) and both P (t), P (t, Ci) are close to P (Ci).

The terms of all the last five cases generally represent a particular category, since

they exist in most of the documents of that category. Hence these terms are very

important for categorization. The terms of case 2(b) get higher preference than the

terms of case 2(c) and case 2(d) for the same P (t) and P (Ci) values. The terms of

case 2(c) get higher preference than the terms of case 2(d) for the same P (t, Ci) and

P (Ci) values. For the same P (t) and P (t, Ci) values, the terms of cases 2(d) and

2(e), the terms of cases 2(b) and 2(e) get comparable priority depending on their

individual TRL value. All the terms of cases 2(b), 2(c), 2(d) and 2(e) appear after

the terms of case 2(a) for the same P (t) and P (t, Ci) values in the best subset of

terms. The following claims have been made whose justification is given in appendix

C regarding all the sub-cases of case 2.

Claim 2.a): The terms of case 2(a) get higher preference than the terms of case 2(b)

for the same P (Ci) and P (t, Ci) values.

Claim 2.b): For the same P (Ci) and P (t) values the terms of case 2(b) get higher

preference than the terms of case 2(c).

Claim 2.c): For the same P (Ci) and P (t) values the terms of case 2(b) get higher

preference than the terms of case 2(d).
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Claim 2.d): The terms of case 2(a) get higher preference than the terms of case 2(e)

for the same P (Ci) and P (t) values.

Claim 2.e): For the same P (Ci) and P (t, Ci) values the terms of case 2(c) get higher

preference than the terms of case 2(d).

Case 3: The value of TRL(t, Ci) is close to 1 for any category Ci and term t in the

following situations:

(a) P (Ci) >> P (t), i.e., P (t) is not close to P (Ci) and P (t) = P (t, Ci).

(b) P (t) >> P (Ci), i.e., P (t) is not close to P (Ci) and P (Ci) = P (t, Ci) .

(c) P (t) = P (Ci) and P (Ci) >> P (t, Ci).

(d) P (t) >> P (Ci) and P (t) 6= P (t, Ci).

(e) P (Ci) >> P (t) and P (t) 6= P (t, Ci).

The terms of case 3(a) occur poorly in Ci and they do not occur in any other

category, i.e., these terms are rare terms occurring in a corpus. The terms of cases

3(b), 3(c) and 3(d) also occur poorly in Ci, but they may occur highly in any other

category and may be important for that category. Note that the terms belong to all

the sub-cases of case 3 are not so important for Ci. Although the terms of case 3(a)

get higher preference than the terms of other sub-cases of case 3 for the same P (t)

and P (t, Ci) values, since they occur only in Ci. Let us discuss how far the proposed

TRL maintains all the sub-cases of case 3 by the following claims. The justification

of these claims are given in appendix C.

Claim 3.a): The terms of all the sub-cases of case 3 get lower preference than the

terms of all the sub-cases of case 2 in Ci.

Claim 3.b): The terms of case 3(a) get higher preference than the terms of case 3(b)

for the same P (Ci) and P (t, Ci) values.

Claim 3.c): For the same P (Ci) and P (t) values the terms of case 3(b) get higher

preference than the terms of case 3(c).

Claim 3.d): For the same P (Ci) and P (t) values the terms of case 3(b) get higher
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preference than the terms of case 3(d).

Claim 3.e): The terms of case 3(a) get higher preference than the terms of case 3(e)

for the same P (Ci) and P (t) values.

Claim 3.f): For the same P (Ci) and P (t, Ci) values the terms of case 3(c) get higher

preference than the terms of case 3(d).

It is to be noted here that the above cases state the characteristics of TRL that

we want it to possess. It is also to be stated that the characteristics are stated

intuitively, but not mathematically. The meaning of two quantities being close is not

mathematically clear. Proving mathematically the characteristics is an impossible

task since all the properties are not stated mathematically. Additionally, there are

many gray areas in the last few cases (for example, there is no clear distinction

between the statements P (t) >> P (Ci) and P (t) > P (Ci)). The proposed measure

is an attempt to find significant terms of each category of any corpus.

6.3 Experimental Evaluation

This section describes the performance of various term selection techniques in text

categorization using fbis, la1, la2, rcv1, rcv2, rcv3, rcv4, tr41, tr45 and wap data

sets. The overview of the data sets is given in Table 1.5. The effectiveness of

different term selection algorithms is evaluated using the performances of kNN and

SVM classifiers. The kNN classifier is chosen since it showed very good performance

for text categorization in some previous studies by Yang et al. [130,131]. The value

of neighborhood parameter k has been fixed by applying 10-fold cross validation

method on the training set. The range of k has been set from 1 to 15. The best value

among those 15 performances for each data set is reported in Table 6.1 and Table 6.2.

Similarly SVM has been chosen for performance evaluation, since it has been shown

as one of the most powerful learning algorithms for text categorization [71, 103].

The data sets used in the experiments have no separate test and training sets.

Hence 10 fold cross validation is performed on the entire data set. kNN and SVM

have been executed for 10 times to reduce the effect of random selection of the

documents by cross validation. The average results of this 10 executions are reported

in Table 6.1, Table 6.2, Table 6.3, Table 6.3 and Table 6.4. The codes to implement
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BNS, CE, CHI, DF, GI, GR, IG, MI and ODR for term selection have been developed

by the author as no such codes are publicly available on any reliable source. The

codes to implement the proposed TRL to create reduced set of terms has been

developed by the author in Matlab. The kNN classifier is implemented using the

default package available in Matlab and the SVM classifier is implemented using

the libsvm tool [26]. In the experiments the linear kernel has been used [135] and

the other parameters of SVM remain the same as provided by the default option of

libsvm tool.

The proposed term selection technique has been compared with nine other term

selection methods for text categorization namely, BNS [49], CE [92], CHI [55], DF

[131], GI [114], GR [38], IG [131], MI and ODR [92] (all the methods are described

in section 1.3.1.2) using accuracy and f-measure. The maximum score among all

the categories has been selected for performance evaluation for BNS, CE, CHI, GR,

MI and ODR in the experimental analysis. Table 6.1 shows the f-measure values

of kNN and Table 6.3 shows the f-measure values of SVM of all the term selection

methods for text categorization. Similarly Table 6.2 shows the accuracy values of

kNN and Table 6.4 shows the accuracy values of SVM respectively of all the term

selection methods for text categorization. The performances of the kNN and SVM

classifiers on all data sets are reported after removing 50%, 70%, 80%, and 90% least

important terms according to the measure under consideration. The vocabulary size

(VS) in each of these Tables indicates that the experiments are performed when

there are 10%, 20%, 30%, 50% and 100% most important terms in the vocabulary.

The best f-measure and accuracy values among all the term selection techniques are

highlighted for each data set in all these tables of experimental results.

6.3.1 Analysis of Results using kNN classifier

It can be seen from Table 6.1 that the performances of kNN are better on the reduced

set of terms than the complete set of terms for all the data sets (except fbis) using

the proposed term selection framework (even after removal of 90% terms). The

performance of kNN would not be so decent in the rest of the cases of Table 6.1,

if some significant terms are removed from the complete set of terms. Thus it has

become clear from the experiments that the proposed method is able to retrieve

significant information from the data. The performances of kNN classifier on the

reduced set of terms created by BNS, CE, DF, MI, ODR are not better than the
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Table 6.1: Performance of Various Term Selection Methods using F-measure of kNN
Classifier

Data VS F-measure
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (proposed)
10% 0.351 0.352 0.761 0.737 0.759 0.751 0.753 0.415 0.613 0.744
20% 0.430 0.434 0.766 0.754 0.761 0.766 0.766 0.594 0.664 0.763

fbis 30% 0.471 0.469 0.768 0.756 0.770 0.768 0.770 0.745 0.672 0.766
50% 0.552 0.553 0.768 0.759 0.768 0.773 0.772 0.768 0.722 0.770
100% 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773

10% 0.490 0.539 0.818 0.649 0.811 0.812 0.814 0.297 0.659 0.796
20% 0.561 0.625 0.812 0.686 0.819 0.817 0.821 0.582 0.746 0.831

la1 30% 0.587 0.670 0.816 0.740 0.817 0.820 0.822 0.682 0.721 0.834

50% 0.638 0.726 0.821 0.778 0.817 0.821 0.820 0.778 0.632 0.826

100% 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794

10% 0.522 0.537 0.846 0.659 0.834 0.835 0.836 0.487 0.775 0.823
20% 0.591 0.625 0.835 0.713 0.835 0.834 0.836 0.571 0.781 0.854

la2 30% 0.653 0.690 0.830 0.750 0.839 0.837 0.839 0.756 0.758 0.860

50% 0.686 0.735 0.833 0.825 0.831 0.835 0.833 0.810 0.687 0.842

100% 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814

10% 0.500 0.500 0.868 0.841 0.873 0.865 0.866 0.501 0.546 0.858
20% 0.565 0.564 0.869 0.853 0.866 0.870 0.869 0.582 0.622 0.862

rcv1 30% 0.580 0.578 0.873 0.852 0.867 0.871 0.870 0.650 0.658 0.874

50% 0.651 0.653 0.860 0.852 0.870 0.865 0.866 0.695 0.711 0.876

100% 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858

10% 0.488 0.487 0.863 0.846 0.876 0.865 0.867 0.491 0.525 0.856
20% 0.549 0.547 0.868 0.858 0.873 0.866 0.869 0.576 0.580 0.858

rcv2 30% 0.584 0.585 0.871 0.858 0.873 0.869 0.870 0.644 0.650 0.876

50% 0.638 0.637 0.865 0.855 0.870 0.867 0.865 0.728 0.705 0.875

100% 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860

10% 0.490 0.490 0.872 0.836 0.874 0.868 0.866 0.486 0.536 0.862
20% 0.562 0.562 0.874 0.865 0.874 0.867 0.869 0.592 0.615 0.866

rcv3 30% 0.592 0.591 0.869 0.850 0.865 0.866 0.865 0.643 0.659 0.873

50% 0.654 0.656 0.861 0.856 0.866 0.863 0.864 0.713 0.715 0.870

100% 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860

10% 0.467 0.469 0.868 0.854 0.871 0.872 0.873 0.498 0.531 0.865
20% 0.533 0.533 0.871 0.874 0.876 0.880 0.878 0.565 0.575 0.868

rcv4 30% 0.566 0.564 0.869 0.867 0.874 0.872 0.869 0.620 0.634 0.878

50% 0.652 0.650 0.871 0.861 0.874 0.871 0.872 0.694 0.711 0.876

100% 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864

10% 0.672 0.688 0.918 0.827 0.918 0.920 0.921 0.650 0.798 0.925

20% 0.772 0.768 0.925 0.873 0.919 0.921 0.920 0.720 0.811 0.928

tr41 30% 0.844 0.855 0.920 0.922 0.920 0.924 0.920 0.788 0.835 0.930

50% 0.889 0.894 0.921 0.905 0.920 0.924 0.922 0.921 0.875 0.929

100% 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918

cont.
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Data VS F-measure
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (proposed)
10% 0.728 0.740 0.899 0.836 0.897 0.890 0.892 0.705 0.807 0.881
20% 0.768 0.767 0.900 0.856 0.897 0.896 0.898 0.720 0.810 0.884

tr45 30% 0.840 0.841 0.896 0.831 0.890 0.890 0.889 0.823 0.887 0.910

50% 0.895 0.886 0.896 0.850 0.888 0.888 0.885 0.929 0.832 0.918
100% 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884

10% 0.513 0.527 0.764 0.559 0.751 0.776 0.768 0.326 0.428 0.758
20% 0.532 0.608 0.771 0.610 0.759 0.781 0.777 0.452 0.475 0.765

wap 30% 0.592 0.649 0.778 0.642 0.763 0.784 0.781 0.558 0.518 0.770
50% 0.644 0.690 0.783 0.732 0.722 0.781 0.780 0.640 0.587 0.774
100% 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742

case of using complete set of terms in most of the cases of Table 6.1.

The performances of kNN classifier using the reduced sets of terms developed by

CHI, GI, IG and GR are better than the case of using the complete set of terms for

all the data sets except fbis. For fbis CHI, GI, IG and GR have failed to retrieve

significant information. It may be noted that the proposed method performs better

than the other competing methods in most of the cases in Table 6.1.

It can be seen that the proposed method has 360 comparisons with the other

methods in Table 6.1 for 50% to 90% removal of terms from the actual vocabulary.

TRL performed better than the other methods in 285 cases and in the remaining 75

cases other methods (e.g., CHI, GR etc.) beat the proposed method. An example

is noted here where the other methods have an edge over TRL, for the data set

la1, when there are 10% terms in vocabulary. CHI, GI, GR and IG (the f-measure

values are 0.818, 0.811, 0.812 and 0.814 respectively) are seen to be better than TRL

(f-measure is 0.796) in Table 6.1 for kNN classifier.

The same statistical significance test discussed in chapter 2 and used in the other

chapters is performed here to check whether the significance of the differences of two

competing methods, e.g., whether 0.818, 0.811 and 0.814 are significantly different

from 0.810. The t-test has been done for all the comparisons between the proposed

method and other term selection methods in this chapter. It has been found using

t-test that out of the 285 cases where TRL performed better than the other methods

in Table 6.1, the differences are statistically significant in 250 cases for the level of

significance 0.05. Out of the rest 75 cases where other methods have an edge over

TRL, 60 differences are found to be statistically significant for the same level of

significance. Thus in 80.64% cases TRL performs significantly better than the other
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Table 6.2: Performance of Various Term Selection Methods using Accuracy (in %)
of kNN Classifier

Data VS Accuracy
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (Proposed)
10% 39.84 39.41 79.34 76.29 79.41 79.23 79.37 44.74 64.87 77.38
20% 48.02 48.24 80.44 77.58 80.10 80.25 80.36 61.46 68.30 79.53

fbis 30% 51.51 51.55 80.27 78.15 80.33 80.93 80.76 77.50 69.80 79.67
50% 60.30 60.18 80.66 78.63 80.77 81.11 81.09 80.44 75.77 79.61
100% 79.04 79.04 79.04 79.04 79.04 79.04 79.04 79.04 79.04 79.04

10% 50.64 54.98 81.56 66.50 81.16 81.35 81.47 34.23 65.79 80.75
20% 56.13 63.91 81.25 69.49 82.00 82.17 82.33 58.29 74.29 83.43

la1 30% 59.15 68.26 81.64 74.05 81.82 82.21 82.35 68.72 72.35 84.01

50% 63.53 73.90 82.22 79.01 81.76 81.48 81.32 78.06 61.85 82.42

100% 79.75 79.75 79.75 79.75 79.75 79.75 79.75 79.75 79.75 79.75

10% 51.43 55.23 84.73 66.75 83.56 83.68 83.74 52.65 78.44 83.90
20% 57.34 63.16 83.75 73.30 83.52 83.32 83.41 65.27 73.67 85.59

la2 30% 64.72 69.57 83.10 74.05 83.94 84.03 84.15 78.80 76.67 86.17

50% 68.01 74.40 83.57 79.63 83.11 83.44 83.32 82.80 68.82 84.43

100% 81.98 81.98 81.98 81.98 81.98 81.98 81.98 81.98 81.98 81.98

10% 56.21 56.19 87.61 83.29 87.35 87.45 87.49 57.66 60.96 87.26
20% 60.44 60.63 87.96 84.35 87.98 87.88 87.83 63.02 65.69 87.74

rcv1 30% 62.46 62.70 88.09 83.98 88.03 87.94 87.87 67.73 68.55 88.15

50% 69.14 69.39 88.02 84.08 88.13 88.09 88.15 71.47 72.95 88.29

100% 86.84 86.84 86.84 86.84 86.84 86.84 86.84 86.84 86.84 86.84

10% 55.97 56.03 87.58 83.89 88.62 88.01 88.08 55.94 59.16 87.46
20% 59.68 59.76 88.04 84.97 88.24 87.96 88.04 61.42 62.54 87.79

rcv2 30% 63.00 63.16 88.23 84.79 88.15 87.82 87.89 66.97 67.86 88.34

50% 67.80 67.66 88.12 84.49 88.12 87.72 87.64 74.64 72.43 88.22

100% 86.96 86.96 86.96 86.96 86.96 86.96 86.96 86.96 86.96 86.96

10% 55.94 56.00 88.04 82.92 88.09 88.02 87.97 56.38 60.11 87.69
20% 59.93 59.91 88.20 84.19 88.08 88.07 88.12 63.57 65.35 87.81

rcv3 30% 62.85 62.83 87.92 83.86 87.92 87.89 87.85 67.13 67.89 88.18

50% 67.93 67.84 87.63 84.37 87.67 87.36 87.44 73.06 73.52 88.20

100% 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10

10% 53.56 53.73 88.05 84.64 88.41 88.33 88.36 57.01 59.76 87.75
20% 58.31 58.34 88.21 85.40 88.33 88.45 88.40 60.36 62.42 87.91

rcv4 30% 60.89 60.87 87.82 85.78 88.08 88.08 88.01 65.11 66.64 88.16

50% 69.01 69.02 87.76 85.24 87.27 87.86 87.92 71.79 72.85 88.22

100% 87.28 87.28 87.28 87.28 87.28 87.28 87.28 87.28 87.28 87.28

10% 66.59 69.93 92.02 76.46 92.28 92.66 92.74 42.63 68.96 92.83

20% 73.63 77.52 92.78 86.35 92.26 92.63 92.57 66.91 74.66 93.00

tr41 30% 84.92 86.26 92.46 88.05 92.24 92.85 92.74 78.98 83.58 93.46

50% 89.52 90.00 92.08 90.36 92.33 92.65 92.58 92.47 87.20 93.04

100% 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.32

cont.
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Data VS Accuracy
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (Proposed)
10% 72.27 75.47 90.55 83.56 90.13 89.80 89.85 66.91 79.73 89.45
20% 78.76 78.65 90.17 86.24 90.12 90.02 90.12 73.14 81.47 89.86

tr45 30% 85.14 85.20 90.28 83.69 89.60 89.50 89.42 83.26 89.23 91.55

50% 90.10 89.28 91.23 86.07 89.28 89.63 89.50 91.11 83.27 91.88

100% 88.98 88.98 88.98 88.98 88.98 88.98 88.98 88.98 88.98 88.98

10% 49.92 54.44 78.06 57.48 77.01 79.21 79.00 36.98 41.43 77.88
20% 52.52 63.47 78.39 63.05 76.96 79.49 79.37 47.41 48.28 78.19

wap 30% 60.18 67.86 78.71 65.32 76.80 79.23 79.25 56.23 54.26 78.23
50% 65.80 71.28 79.02 72.92 76.33 78.87 78.91 64.67 61.69 78.66
100% 74.37 74.37 74.37 74.37 74.37 74.37 74.37 74.37 74.37 74.37

methods.

The performances of TRL and the other term selection techniques using the

accuracy of kNN classifier will be discussed now. It can be seen from Table 6.2 that

the performances of kNN are better on the reduced set of terms than the complete

set of terms for all the data sets (except fbis) using the proposed term selection

framework TRL (even after removal of 90% terms). Note that for fbis data set the

performance of TRL is degraded only when 90% terms have been removed. The

performances of kNN classifier on the reduced set of terms created by BNS, CE,

DF, MI, ODR are not better than the complete set of terms in most of the cases

of Table 6.2. The performances of kNN classifier using the reduced sets of terms

developed by CHI and GI are better than the complete set of terms for all the data

sets except tr41. For tr41 CHI and GI are failed to retrieve significant information.

The accuracy values of kNN classifier are better on the reduced set of terms produced

by GR and IG than the complete set of terms for all the data sets. It may be noted

that the proposed method performs better than the other competing methods in

most of the cases in Table 6.2.

It can be seen that the proposed method has 360 comparisons with the other

methods in Table 6.2 for 50% to 90% removal of terms from the actual vocabulary.

TRL performed better than the other methods in 286 cases and in the remaining 74

cases other methods (e.g., CHI, GR etc.) beat the proposed method. It has been

found using t-test that out of the 286 cases where TRL performed better than the

other methods in Table 6.2, the differences are statistically significant in 252 cases

for the level of significance 0.05. Out of the rest 74 cases where other methods have

an edge over TRL, 60 differences are found to be statistically significant for the same

119



Table 6.3: Performance of Different Term Selection Techniques using F-measure of
SVM Classifier

Data VS F-measure
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (proposed)
10% 0.388 0.388 0.813 0.778 0.808 0.802 0.804 0.520 0.661 0.798
20% 0.465 0.465 0.814 0.786 0.810 0.810 0.812 0.686 0.719 0.814

fbis 30% 0.523 0.523 0.813 0.785 0.820 0.823 0.821 0.809 0.745 0.815
50% 0.609 0.609 0.827 0.761 0.827 0.828 0.826 0.829 0.800 0.810
100% 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776

10% 0.574 0.577 0.887 0.716 0.885 0.887 0.888 0.686 0.703 0.881
20% 0.63 0.631 0.896 0.785 0.895 0.896 0.897 0.716 0.718 0.899

la1 30% 0.66 0.662 0.899 0.829 0.891 0.894 0.895 0.776 0.706 0.906

50% 0.739 0.74 0.905 0.868 0.905 0.904 0.904 0.802 0.696 0.918

100% 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892

10% 0.622 0.617 0.886 0.710 0.888 0.887 0.889 0.520 0.717 0.882
20% 0.641 0.636 0.890 0.745 0.886 0.890 0.892 0.668 0.745 0.898

la2 30% 0.715 0.713 0.903 0.863 0.899 0.905 0.904 0.781 0.726 0.902
50% 0.762 0.751 0.914 0.889 0.902 0.906 0.904 0.825 0.756 0.908

100% 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887

10% 0.534 0.549 0.891 0.864 0.887 0.892 0.892 0.503 0.556 0.881
20% 0.573 0.581 0.894 0.869 0.893 0.895 0.896 0.628 0.641 0.890

rcv1 30% 0.612 0.614 0.895 0.868 0.892 0.893 0.891 0.666 0.649 0.898

50% 0.639 0.641 0.894 0.874 0.893 0.895 0.893 0.721 0.687 0.901

100% 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872

10% 0.542 0.540 0.891 0.872 0.889 0.888 0.888 0.561 0.593 0.880
20% 0.565 0.563 0.894 0.873 0.891 0.890 0.893 0.628 0.611 0.884

rcv2 30% 0.589 0.584 0.894 0.875 0.891 0.890 0.887 0.661 0.648 0.894

50% 0.640 0.639 0.898 0.878 0.891 0.888 0.886 0.751 0.684 0.895

100% 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884

10% 0.542 0.543 0.883 0.867 0.886 0.882 0.885 0.570 0.602 0.874
20% 0.579 0.579 0.890 0.873 0.891 0.888 0.890 0.631 0.638 0.880

rcv3 30% 0.593 0.592 0.894 0.869 0.890 0.891 0.890 0.647 0.654 0.896

50% 0.651 0.651 0.891 0.870 0.893 0.891 0.887 0.728 0.709 0.898

100% 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.881

10% 0.538 0.538 0.890 0.870 0.891 0.888 0.890 0.572 0.589 0.884
20% 0.565 0.565 0.889 0.871 0.892 0.890 0.891 0.568 0.584 0.887

rcv4 30% 0.577 0.577 0.890 0.873 0.892 0.892 0.892 0.654 0.647 0.900

50% 0.639 0.639 0.891 0.873 0.893 0.894 0.893 0.749 0.682 0.909

100% 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886

10% 0.707 0.718 0.929 0.842 0.898 0.909 0.909 0.758 0.812 0.934

20% 0.770 0.782 0.925 0.876 0.902 0.914 0.912 0.788 0.801 0.939

tr41 30% 0.881 0.869 0.949 0.931 0.950 0.948 0.945 0.819 0.846 0.954

50% 0.924 0.922 0.953 0.928 0.954 0.953 0.951 0.934 0.879 0.960

100% 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932

cont.

120



Data VS F-measure
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (proposed)
10% 0.674 0.674 0.916 0.891 0.910 0.912 0.910 0.765 0.796 0.898
20% 0.771 0.771 0.914 0.898 0.914 0.912 0.911 0.782 0.792 0.902

tr45 30% 0.831 0.831 0.915 0.874 0.915 0.918 0.917 0.875 0.838 0.915
50% 0.901 0.905 0.917 0.893 0.919 0.915 0.915 0.909 0.868 0.920

100% 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882 0.882

10% 0.643 0.597 0.843 0.640 0.842 0.843 0.845 0.408 0.449 0.831
20% 0.735 0.704 0.849 0.735 0.853 0.848 0.850 0.551 0.489 0.839

wap 30% 0.768 0.757 0.854 0.770 0.850 0.851 0.849 0.659 0.538 0.848
50% 0.807 0.799 0.861 0.847 0.853 0.850 0.849 0.730 0.609 0.847
100% 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784

level of significance. Thus in 80.76% cases TRL performs significantly better than

the other methods.

6.3.2 Analysis of Results using SVM classifier

It can be seen from Table 6.3 that the performances of SVM are better on the reduced

set of terms than the original one for all the data sets using the proposed TRL except

for la1, la2, rcv3 and rcv4 data sets when 90% terms have been removed from

the vocabulary. Hence it may be claimed from the experiments that the proposed

method is able to retrieve significant information from the data. The performances

of SVM are not better on the reduced set of terms than the complete set of terms

for BNS, CE, DF, MI, ODR in most of the cases of Table 6.3. SVM shows better

results on the reduced sets of terms produced by CHI, GI, GR and IG than the

complete set of terms for all the data sets except la1, la2 and tr41. It may be noted

that TRL performs better than the other competing methods in most of the cases

in Table 6.3.

It can be seen that TRL has 360 comparisons with the other methods in Table

6.3 for 50% to 90% removal of terms from the actual vocabulary. The performance

of TRL is better than the other methods in 279 cases and in the remaining 81 cases

other methods (e.g., CHI, GR etc.) performed better than TRL. The differences

are statistically significant by t-test in 249 out of 279 cases when TRL performed

better than the other methods for the level of significance 0.05. The differences are

statistically significant in 62 out of 81 cases when other methods performed better

than TRL for the same level of significance. Thus TRL performs significantly better
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Table 6.4: Performance of Different Term Selection Techniques using Accuracy (in
%) of SVM Classifier

Data VS Accuracy
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (Proposed)
10% 41.29 41.29 81.44 77.84 80.79 80.31 80.38 52.90 68.20 79.74
20% 47.25 47.25 81.28 76.58 80.87 81.31 81.36 68.85 73.00 81.48

fbis 30% 52.61 52.61 81.40 76.50 81.97 82.33 82.21 80.99 74.86 81.72
50% 60.82 60.82 82.74 76.14 82.81 82.94 82.78 82.92 80.10 81.48
100% 77.81 77.81 77.81 77.81 77.81 77.81 77.81 77.81 77.81 77.81

10% 55.71 55.93 89.69 72.69 89.48 89.60 89.64 69.69 68.66 89.46
20% 63.82 63.85 90.51 78.46 90.45 90.72 90.79 73.51 73.03 91.85

la1 30% 65.73 65.94 90.79 83.86 90.01 90.58 90.64 78.59 71.41 91.98

50% 73.62 73.68 91.38 87.80 91.48 91.51 91.51 82.18 71.38 92.21

100% 90.84 90.84 90.84 90.84 90.84 90.84 90.84 90.84 90.84 90.84

10% 62.72 62.06 88.93 76.20 88.80 88.77 88.84 54.26 72.13 88.73
20% 64.67 64.18 89.53 79.50 89.87 89.66 89.74 65.81 73.61 90.15

la2 30% 71.97 71.86 90.34 86.25 90.31 90.49 90.36 78.23 72.77 90.20
50% 76.80 75.73 90.43 88.86 90.45 90.55 90.44 82.46 75.45 90.79

100% 89.27 89.27 89.27 89.27 89.27 89.27 89.27 89.27 89.27 89.27

10% 54.88 55.88 89.64 86.43 88.99 89.78 89.83 57.90 61.27 89.40
20% 57.79 58.40 89.78 86.87 89.88 89.91 89.98 63.41 64.89 89.63

rcv1 30% 61.29 61.37 89.88 86.77 89.53 89.73 89.60 67.82 65.98 90.29

50% 64.52 64.70 89.78 87.37 89.83 89.98 89.86 73.37 69.45 90.58

100% 87.79 87.79 87.79 87.79 87.79 87.79 87.79 87.79 87.79 87.79

10% 54.98 54.76 89.70 87.17 89.88 89.70 89.74 57.26 60.33 89.38
20% 57.65 57.43 90.29 87.27 90.33 90.53 90.50 63.26 61.97 90.21

rcv2 30% 59.39 59.39 90.53 87.47 90.43 90.14 90.04 67.57 65.59 91.15

50% 64.45 64.14 90.18 87.76 89.78 89.29 89.17 76.10 70.15 90.70

100% 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87

10% 54.81 54.93 88.69 86.72 88.70 88.62 88.74 57.90 61.32 88.48
20% 58.55 58.55 89.34 87.27 89.34 89.60 89.66 63.95 64.15 89.52

rcv3 30% 60.33 60.33 89.68 86.92 89.43 89.53 89.44 65.98 66.63 90.14

50% 65.80 65.84 89.53 87.02 89.58 89.51 89.38 73.82 71.44 90.62

100% 88.67 88.67 88.67 88.67 88.67 88.67 88.67 88.67 88.67 88.67

10% 54.62 54.62 89.94 87.17 90.17 90.04 90.11 58.03 60.16 89.87
20% 57.12 57.04 90.33 87.86 90.56 90.53 90.59 61.30 62.74 90.24

rcv4 30% 58.58 58.52 90.37 87.91 90.72 90.70 90.66 66.71 65.17 90.95

50% 64.93 64.91 90.55 87.96 90.93 90.94 90.81 75.59 69.09 91.32

100% 89.31 89.31 89.31 89.31 89.31 89.31 89.31 89.31 89.31 89.31

10% 71.51 72.75 93.33 85.30 90.05 91.70 91.73 76.75 82.72 93.97

20% 77.39 78.84 93.02 88.37 91.24 92.34 92.25 78.84 80.42 94.73

tr41 30% 88.61 87.12 95.10 93.73 95.55 95.40 95.29 82.21 84.73 95.78

50% 92.82 92.59 95.44 92.93 95.67 95.52 95.33 93.62 88.04 95.89

100% 93.85 93.85 93.85 93.85 93.85 93.85 93.85 93.85 93.85 93.85

cont.

122



Data VS Accuracy
Set in BNS CE CHI DF GI GR IG MI ODR TRL

(%) (Proposed)
10% 68.11 68.11 92.33 90.04 91.59 91.73 91.68 74.35 80.72 90.44
20% 77.39 77.39 92.06 90.28 92.04 91.59 91.48 78.84 79.42 90.72

tr45 30% 83.76 83.76 92.02 87.97 92.02 92.17 92.10 87.82 84.05 92.02
50% 90.43 90.86 92.17 89.71 92.17 92.02 92.05 91.44 87.39 92.31

100% 88.76 88.76 88.76 88.76 88.76 88.76 88.76 88.76 88.76 88.76

10% 64.80 60.19 84.71 64.35 84.87 84.85 84.93 41.47 45.32 84.21
20% 73.91 70.70 85.12 73.97 85.83 85.63 85.70 55.57 49.48 84.94

wap 30% 77.24 76.15 85.96 77.56 85.76 85.89 85.84 66.15 54.48 85.28
50% 81.08 80.32 86.53 85.32 85.89 85.45 85.38 73.58 61.21 85.32
100% 78.30 78.30 78.30 78.30 78.30 78.30 78.30 78.30 78.30 78.30

than the other methods in 80.06% cases.

The performances of TRL and other term selection techniques, using the accuracy

of SVM classifier will now be discussed. It can be seen from Table 6.4 that the

performances of SVM are better on the reduced set of terms produced by TRL than

the set of all terms for all the data sets except for la1, la2 and rcv3 data sets when

90% terms have been removed. Thus the results show that TRL is able to retrieve

significant information from the data. The performances of SVM are not better on

the reduced set of terms than the original one for BNS, CE, DF, MI, ODR in most

of the cases of Table 6.4. SVM shows better results on the reduced sets of terms

produced by CHI, GI, GR and IG than the complete set of terms for all the data

sets except la1, la2 and tr41. Note that the proposed method performs better than

the other competing methods in most of the cases in Table 6.4.

It can be observed from Table 6.4 that TRL has 360 comparisons with the other

methods for 50% to 90% removal of terms from the actual vocabulary. The perfor-

mance of TRL is better than the other methods in 279 cases and in the remaining

81 cases other methods performed better than TRL. The differences are statistically

significant by t-test in 250 out of 279 cases when TRL performed better than the

other methods for the level of significance 0.05. The differences are statistically

significant in 62 out of 81 cases when other methods performed better than TRL

for the same level of significance. Thus TRL performs significantly better than the

other methods in 80.12% cases.
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Table 6.5: Execution Time (in seconds) of Different Term Selection Techniques
Data BNS CE CHI DF GI GR IG MI ODR TRL
Set (proposed)
fbis 45.58 48.09 50.35 9.42 45.30 52.47 52.26 47.11 45.22 49.44
la1 72.60 74.25 78.35 19.22 72.34 79.54 79.18 73.43 72.52 76.39
la2 72.22 74.34 78.42 19.04 72.14 79.41 79.06 73.27 72.16 76.11
rcv1 46.37 48.51 51.41 10.53 46.08 53.26 53.14 47.18 46.31 52.14
rcv2 46.35 48.50 51.40 10.52 46.08 53.26 53.14 47.18 46.30 52.14
rcv3 46.30 48.47 51.36 10.49 46.03 53.21 53.10 47.14 46.26 52.11
rcv4 46.55 49.10 51.58 11.12 46.26 53.45 53.32 47.36 46.51 52.31
tr41 16.48 15.52 18.55 4.12 16.24 19.58 19.39 17.14 17.02 17.45
tr45 17.15 16.07 19.12 4.33 16.56 20.17 20.01 17.36 17.28 18.12
wap 17.40 16.28 19.33 4.51 17.28 20.46 20.25 17.58 17.49 18.38

6.3.3 Time and Space Complexity of TRL

Algorithm 6 starts with N training documents and each document has n terms.

The P (t) and P (Ci), i = 1, 2, ..., m values in equation 6.1 can be computed in O(N)

time. TRLall(ti) for each ti ∈ T is computed in O(N) time. The for loop of step

1 is executed n times. The sorting of TRLall(ti)’s can be done in O(n log n) time,

in worst case. Thus to compute step 1 to step 8 the algorithm takes (n× O(N)) +

O(n log n) time, i.e., O(nN + n log n) time. Thus the time complexity of Algorithm

6 is O(nN + n log n) in worst case.

The data matrix to store N training documents requires n×N space. Hence the

space complexity of Algorithm 6 is O(nN).

DF thresholding is very popular as its computational complexity is approximately

linear to the number of documents in the training set [131]. The probability compu-

tations in the evaluation function of the other eight methods have a time complexity

of O(nN) and space complexity of O(nN) [131]. Thus to select γ terms from the vo-

cabulary these methods takes O(nN + n log n) time in worst case, like the proposed

method. The space complexity of each of these methods is O(nN), same as TRL.

Hence TRL has a time and space complexity comparable with the other methods,

except DF.

Table 6.5 summarizes the time taken by different term selection algorithms used

in the experiments for all the text data sets. The time shown here for each algorithm

is the time to assign a score to each term as per the rule of the method. The time

to select top γ terms from the entire set of terms and the time to perform text

categorization by using either k-NN classifier or SVM classifier are not reported in
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Table 6.5, as these times are same for all the methods in the present experimental

setup. It can be seen from Table 6.5 that the processing time of TRL is less than

the processing times of CHI, GR, IG. The processing time of DF is least among all

the methods for each data set as it takes linear time to compute the score for each

term. On the other hand the processing times of BNS, CE, GI, MI, ODR are less

than the processing time of TRL for each data set. Note that the performance of

TRL is better than BNS, CE, GI, MI and ODR.

6.4 Conclusions

Text categorization is a challenging task due to the high number of terms and the

sparsity of data. An effective term selection method is thus needed to boost the

performance of text categorization. An evaluation function for term selection in

text categorization has been introduced in this study. The proposed TRL derives a

similarity score between a term and a category and then finds the minimum value

over all the categories. All the terms are ranked according to their scores and the

top few terms are used for text categorization. The objective of TRL is to develop a

subset of terms which consists of only the representative terms of each category. It

therefore gives priority to those terms, which occur highly in a particular category.

The results show that the proposed TRL improves the performance of text cat-

egorization even after removal of 90% unique terms for all the data sets. It can be

seen from the experimental analysis that TRL significantly outperforms the other

methods in most of the cases. In real life, the text corpora are very diverse in na-

ture. Hence it should not be claimed that TRL outperforms any other term selection

approach for any type of corpus in practice. It may be considered as an alternative

approach to the existing methods, as TRL outperforms several existing techniques.

It may be noted from the analysis of processing time that the computational cost of

the proposed TRL is comparable with the other existing term selection techniques,

viz. IG, CHI, GR etc. Hence the proposed TRL may easily be applied to any high

dimensional real life data set.
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Chapter 7

Conclusions and Scope of Further

Research

The conclusions drawn from the respective proposed methodologies and the exper-

imental results have been presented in every chapter. In this chapter we compile

them to provide an overall scenario of the contributions of the thesis.

Text mining refers to a system that identifies useful information from a huge

amount of natural language text. Several specific learning methodologies have been

proposed to extract useful information from the text data. In addition to that var-

ious existing pattern recognition algorithms have been applied on text data mining

for meaningful knowledge discovery. The thesis deals with the supervised and unsu-

pervised methodologies of text mining using the plain text data of English language

only. In this thesis some problems have been pointed out about the existing su-

pervised and unsupervised methodologies applied to or designed for text data only.

Some new supervised and unsupervised methodologies have been proposed for ef-

fective mining of the text data after successfully overcoming those problems. The

proposed techniques performed experimentally better than the existing methods of

text mining on several well known text data sets from different sources e.g., Ruter

newswire, TREC etc. All the methods have been designed for mining text data only,

but those methods have the potential to find effective information from any type of

data. In future the scope of applicability of the proposed methods will be extended

to other fields such as web mining, social network mining etc.
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In chapter 2, a new document similarity measure (named as extensive similarity)

and an agglomerative hierarchical document clustering technique using a new cluster

distance measure have been proposed. The clustering method is named as Cluster-

ing Using Extensive Similarity (CUES). A histogram thresholding based method is

introduced to fix the content similarity threshold. The threshold is used to define

extensive similarity (specifically to restrict the low similarity values). The perfor-

mance of CUES is compared with different partitional and hierarchical clustering

algorithms and two types of spectral clustering methods using various well known

text data sets in the experimental evaluation. The analysis shows that CUES has

performed significantly better than the other methods. Cosine similarity is used in

this chapter to find the content similarity between documents, since it can find the

content similarity (even) between the documents with different lengths (the same

is explained in detail in section 2.1). But one can use any other similarity or dis-

similarity measure in the formula of distance function 2.1 to perform CUES as per

requirement depending on the type of data sets. It may also be noted that document

similarity can be measured by finding semantic relatedness between documents in-

stead of content similarity. In future the performance of CUES will be studied by

using semantic similarity between documents. The incoming and outgoing links play

an important role in finding the similarity between web pages. The merit of exten-

sive similarity can probably be extended to draw a relation between web pages using

their incoming and outgoing links.

It has been observed that CUES has performed very well on several text data

sets, but it may suffer from high computational time for some very large data sets.

In chapter 3, another document clustering algorithm is proposed. The proposed one

has low computational complexity than CUES and the performance of the proposed

method is better than CUES and other existing document clustering techniques. A

new distance function is proposed to find the distance between two clusters using

the extensive similarity measure. The distance function creates the initial baseline

clusters and these clusters determine the layout of the actual grouping of the corpus.

It has been shown in the experiments that the proposed algorithm is able to find the

actual grouping in most of the data sets. The same histogram thresholding based

technique proposed in chapter 2 is used here to estimate the value of the content

similarity threshold of extensive similarity. As the proposed method has outper-

formed the other methods, it may be claimed that the thresholding has been done
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properly. The proposed technique can be used for clustering the data points of any

type of data set.

A tweak on the kNN decision rule for text categorization is proposed in chapter 4.

The proposed method is designed to enhance the certainty of a decision. Whenever

we are taking a decision based on the supporting evidences regarding any matter in

real life, it is necessary to have confidence on the decision, otherwise the decision

may cause serious harm. The proposed method is developed along this general no-

tion. From the empirical studies it has become clear that the proposed method has

performed significantly better than various other classifiers for text categorization.

The proposed algorithm is applied for text categorization, but it can be easily ex-

tended for any type of data sets. Moreover, the intuition can be used in any decision

making system.

In chapter 5 the extensive similarity is used instead of cosine similarity on the

TkNN decision rule for text categorization. The use of extensive similarity enriches

the quality of text categorization and thus the proposed extensive similarity based

decision rule has performed better than TkNN and the other classifiers. This method

once again shows the effectiveness of extensive similarity. It has become clear that

extensive similarity is useful for supervised techniques also. In future the merit of

extensive similarity will be explored in various other supervised methodologies where

similarity or dissimilarity measures play significant role.

In chapter 6, a supervised term selection technique is presented. The aim of

the proposed term selection method is to give stress on the representative terms of

each category (even if the data is unevenly distributed). Therefore the proposed

technique gives high priority to the terms which occur highly in each category irre-

spective of their occurrence in the entire corpus. The intuition behind the proposed

evaluation function is justified in the chapter. The experimental analysis shows that

the method has performed better than several other methods. In future this method

will be applied on all the proposed supervised and and unsupervised methodologies

presented in the previous chapters to enrich their performances by discarding irrel-

evant or redundant terms from the corpus.
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Appendix A

Description of Porter’s Stemming

Method

Remove and recode plurals
Yes

     Remove ’ed’ or ’ing’

Recode ’y’ to ’i’,  if another
       vowel is present

        Index final letter 
                 of stem

       Do endings
match stem ?

No

       Index penultimate
   letter of stem match stem ?

       Do endings Yes Yes
Does stem

<c>vcvc<v>?

satisfy

Remove ending

Remove ending

Output Stem

No

Step 2

Step 3

Step 4

Step 5 Remove final ’e’, only if more than one consonant sequence is present in stem

No

     Start with the actual term

Step 1

No

Does the stem contain

       Index penultimate
   letter of stem

suffix?
contain double
Does the stem Yes

Map to single suffix

No

     ’ed’ or ’ing’ ?

Yes

Figure A.1: Steps of the Porter Stemmer Algorithm
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Appendix B

Discussion on Implementation of

Different Existing Clustering

Techniques

The performance of new clustering algorithms proposed in chapter 2 and chapter 3

are compared with bisecting k-means clustering, k-means clustering, buckshot clus-

tering, k nearest neighbors based clustering, single-link and average link hierarchical

clustering, simple and kernel based spectral clustering and non negative matrix

factorization based clustering techniques using f-measure and normalized mutual in-

formation in each of these chapters. All of these techniques are clearly described

in chapter 1 respectively in section 1.3.2.2, section 1.3.2.1, section 1.3.2.3, section

1.3.2.4 of the previous version of the thesis. The experimental setup is described in

section 2.4.1 of chapter 2 and section 3.3 of chapter 3. It has been clearly described

in these sections how different parameters of each of the competing algorithms are

chosen for fair comparison with the proposed techniques.

The text data sets used in the experiments are nothing but collection of docu-

ments, where each document contains a set of terms. The clustering algorithms can

be performed on these data sets after creating the term-document matrix (i.e., tf-idf

matrix) from the raw text data. The tf-idf matrix of each text data set has been

developed using C++ programming language on a Linux workstation. The codes

for some of the clustering algorithms mentioned above are available on either Mat-
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lab1 or R2 statistical toolbox. As far as the knowledge of the author goes, similar

codes are not available publicly on any reliable source. It may be noted that the

codes available for different clustering algorithms in Matlab or R can only generate

the clusters. No code is available for implementing the cluster validity index (e.g.,

f-measure) in Matlab or R to evaluate the quality of the clusters. Hence, the codes

of every aspect of each method have been written in C++ programming language.

The codes written for different clustering techniques have been executed on some

well known data sets, downloaded from UCI repository3 prior to applying them on

text data sets. The names of the data sets are ecoli, glass, iris, spambase and yeast.

The number of data points and number of classes of these data sets are mentioned

in Table B.1 and Table B.2. The desired number of clusters produced by different

algorithms are given in these tables. The number of clusters are equal to the num-

ber of actual classes of each data set. The codes available in Matlab toolbox for

k-means clustering, single-link and average link hierarchical clustering and kernel

based spectral clustering have also been executed for each data set. The non nega-

tive matrix factorization based clustering technique is executed in R for each data

set. The results are reported using f-measure and Normalized Mutual Information

(NMI) as cluster validity measure respectively in Table B.1 Table B.2. The codes

for implementation of f-measure and NMI have been manually verified on iris data

set.

It can be observed from these tables that the developed code and the code avail-

able in Matlab or R for each algorithm are producing more or less same results for

each data set. The performance of the developed codes and the existing codes are

equal for single link, complete link and spectral clustering algorithms for all the

data sets in Table B.1 and Table B.2. The performance of the developed codes

and the existing codes are close to each other for the other algorithms i.e., k-means

and NMF based clustering techniques in Table B.1 and Table B.2. Sometimes the

performance of the developed codes are slightly better than the existing codes and

for the other cases the existing codes are showing better results than the developed

ones for k-means and NMF based clustering algorithms. The reason is that these

1http://in.mathworks.com/
2http://www.rstudio.com/
3http://archive.ics.uci.edu/ml/
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Table B.1: Performance of Different Clustering Techniques on Various UCI Data
Sets using F-measure

Data F-measure
Sets ND4 NC NCT KM SLHC ALHC SCK NMF

AVC5 MVC6 AVC MVC AVC MVC AVC RVC7 AVC MVC
Ecoli 336 8 8 0.635 0.630 0.405 0.405 0.405 0.405 0.761 0.761 0.520 0.516
Glass 214 7 7 0.525 0.530 0.397 0.397 0.397 0.397 0.547 0.547 0.320 0.318
Iris 150 3 3 0.840 0.846 0.494 0.494 0.494 0.494 0.841 0.841 0.687 0.683

Spam- 4601 2 2 0.625 0.618 0.679 0.679 0.679 0.679 0.585 0.585 0.610 0.619
base
Yeast 1484 10 10 0.208 0.204 0.351 0.351 0.351 0.351 0.294 0.294 0.205 0.198

4 ND stands for Number of Data. NC stands for Number of Classes. NCT stands for Number of

Clusters developed by each algorithm. KM, SLHC, ALHC, SCK, NMF stand for - k-Means cluster-

ing, Single-Link Hierarchical Clustering, Average-Link Hierarchical Clustering, Spectral Clustering

using Kernel and Non-negative Matrix Factorization based clustering techniques respectively. 5

AVC stands for Author Version of Code i.e., the code is implemented by the author 6 MVC stands

for Matlab Version of Code i.e., the code is available in Matlab toolbox 7 RVC stands for R Version

of Code i.e., the code is available in R toolbox

Table B.2: Performance of Different Clustering Techniques on Various UCI Data
Sets using NMI

Data Normalized Mutual Information (NMI)
Sets ND8 NC NCT KM SLHC ALHC SCK NMF

AVC MVC AVC MVC AVC MVC AVC RVC7 AVC MVC
Ecoli 336 8 8 0.588 0.582 0.448 0.448 0.448 0.448 0.695 0.695 0.402 0.399
Glass 214 7 7 0.434 0.438 0.403 0.403 0.403 0.403 0.436 0.436 0.084 0.079
Iris 150 3 3 0.831 0.836 0.315 0.315 0.315 0.315 0.766 0.766 0.530 0.528

Spam- 4601 2 2 0.012 0.008 0.054 0.054 0.054 0.054 0.093 0.093 0.002 0.006
base
Yeast 1484 10 10 0.040 0.035 0.222 0.222 0.222 0.222 0.045 0.045 0.034 0.029

8 All the acronyms are same as mentioned in Table B.1
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algorithms follow some random heuristics at some stage. It may be noted that these

algorithms are executed 10 times to reduce the effect of random initialization of seed

points and for each execution they have been iterated 100 times to reach a solution

(if they have not converged automatically) for both Matlab implementation and the

implementation developed by the author.

Hence it may be implied from the above observations that the codes developed

by the author are producing as optimized results as the existing implementations.

Regarding the other clustering techniques like buckshot, bisecting k-means and kNN

clustering, the codes for their implementation on any reliable source could not be

found.
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Appendix C

Discussion on Term Relatedness

In this section we shall justify the claims that have been made in chapter 6 for all

possible TRL values between a term and a category. Let t1, t2a, t2b, t2c, t2d and t2e

be the terms obtained respectively by case 1, case 2(a), case 2(b), case 2(c), case

2(d) and case 2(e) and all these terms belong to the same category i.e., Ci. Let

t3a, t3b, t3c, t3d and t3e be the terms obtained respectively by case 3(a), case 3(b),

case 3(c), case 3(d) and case 3(e) and all these terms belong to the same Ci.

Claim 1: t1 gets highest preference among all the terms.

Justification: The minimum TRL value of a term t and a category c is 0 and it can

be obtained only when P (t, Ci) = P (t) = P (Ci) and for all the other cases the TRL

values are greater than 0. t1 is such a term where TRL(t1, Ci) = 0. Note that the

minimum TRL value indicates the optimum term. The terms of all the sub-cases

of case 2 and case 3 can be obtained by using either TF or TRF or TCR. It has

been explained in section 6.2 that the values of TF, TRF and TCR lie between (0, 1)

whenever they are applied to find TRL between a term and a category. Thus the

TRL values of all the sub-cases of case 2 and case 3 lie between (0, 1). Hence t1 gets

highest preference among all the terms.

Claim 2(a): t2a gets higher preference than t2b by TRL when P (t2a, Ci) =

P (t2b, Ci).

Justification: As 1 + P (t2b) > 1 + P (Ci) we have

1 + P (t2a, Ci)

1 + P (Ci)
=

1 + P (t2b, Ci)

1 + P (Ci)
>

1 + P (t2b, Ci)

1 + P (t2b)
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∴ TRL(t2a, Ci) = 1− 1 + P (t2a, Ci)

1 + P (Ci)
× E(Ci) < 1− 1 + P (t2b, Ci)

1 + P (t2b)
×E(Ci)

= TRL(t2b, Ci)

Hence the terms of case 2(a) gets higher preference than the terms of case 2(b) for

the same P (Ci) and P (t, Ci) values.

Claim 2(b): If P (t2b) = P (t2c) then t2b gets higher preference than t2c by

TRL.

Justification: It can be seen that P (t2b, Ci) > P (t2c, Ci), since they both exist in

the same category Ci and P (t2b, Ci) = P (Ci) and P (t2c, Ci) < P (Ci).

∴ TRL(t2b, Ci) = 1− 1 + P (t2b, Ci)

1 + P (t2b)
× E(Ci)

< 1− P (t2b, Ci)

P (t2b)
× E(Ci) = 1− P (t2b, Ci)

P (t2c)
× E(Ci)

< 1− P (t2c, Ci)

P (t2c)
× E(Ci)

= 1− P (t2c)− P (t2c, Ci)

P (t2c)
×E(Ci)

= TRL(t2c, Ci)

Hence for the same P (Ci) and P (t) values the terms of case 2(b) get higher prefer-

ence than the terms of case 2(c).

Claim 2(c): If P (t2b) = P (t2d) then t2b gets higher preference than t2d by

TRL.

Justification: It can be seen that P (t2b, Ci) > P (t2d, Ci), since they both exist in

the same category Ci and P (t2b, Ci) = P (Ci) and P (t2d, Ci) < P (Ci).

∴ TRL(t2b, Ci) = 1− 1 + P (t2b, Ci)

1 + P (t2b)
×E(Ci)

< 1− P (t2b, Ci)

P (t2b)
× E(Ci) = 1− P (Ci)

P (t2b)
× E(Ci)

< 1− P (Ci)− P (t2d, Ci)

P (t2d)− P (t2d, Ci)
× E(Ci)
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⇒ TRL(t2b, Ci) < 1− P (Ci)− P (t2d, Ci)

P (t2d)− P (t2d, Ci)
× P (t2d)− P (t2d, Ci)

P (t2d)
× E(Ci)

= TRL(t2d, Ci)

as the multiplication of two fractional values is less than their individual values

(e.g., 0.4× 0.3 = 0.12 is less than both 0.4 and 0.3). Hence for the same P (Ci) and

P (t) values the terms of case 2(b) get higher preference than the terms of case 2(d).

Claim 2(d): t2a gets higher preference than t2e by TRL, if P (t2a) = P (t2e).

Justification: Note that P (t2a) = P (t2a, Ci) and P (t2a, Ci) > P (t2e, Ci) as both of

t2a and t2e belong to Ci.

∴ TRL(t2a, Ci) = 1− 1 + P (t2a, Ci)

1 + P (Ci)
×E(Ci)

< 1− P (t2a, Ci)

P (Ci)
×E(Ci) = 1− P (t2e)

P (Ci)
×E(Ci)

< 1− P (t2e)− P (t2e, Ci)

P (Ci)− P (t2e, Ci)
×E(Ci)

< 1− P (t2e)− P (t2e, Ci)

P (Ci)− P (t2e, Ci)
× P (t2e)− P (t2e, Ci)

P (t2e)
× E(Ci)

= TRL(t2e, Ci)

as the multiplication of two fractional values is less than their individual values.

Thus the terms of case 2(a) get higher preference than the terms of case 2(d) for the

same P (Ci) and P (t, Ci) values.

Claim 2(e): t2c gets higher preference than t2d by TRL when P (t2c, Ci) =

P (t2d, Ci).

Justification: TRL(t2c, Ci) = 1− P (t2c)− P (t2c, Ci)

P (t2c)
×E(Ci)

< 1− P (t2d)− P (t2d, Ci)

P (t2d)
× E(Ci)

[
∵ P (t2c, Ci) = P (t2d, Ci) and P (t2d) > P (t2c)

]
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⇒ TRL(t2c, Ci) < 1− P (Ci)− P (t2e, Ci)

P (t2e)− P (t2e, Ci)
× P (t2d)− P (t2d, Ci)

P (t2d)
×E(Ci)

= TRL(t2d, Ci)

since the multiplication of two fractional values is less than their individual values.

Therefore the terms of case 2(c) get higher preference than the terms of case 2(d)

for the same P (Ci) and P (t, Ci) values.

Claim 3(a): t3a, t3b, t3c, t3d and t3e get lower preference than t2a, t2b, t2c, t2d

and t2e in Ci.

Justification: It has been justified in Claim 2(d) that t2a gets higher preference

than t2e, if P (t2a) = P (t2e). Claim 2(b) states that t2b gets higher preference than

t2c, if P (t2b) = P (t2c). Hence we have to justify the following statements to establish

claim 3(a).

(i) t3a gets lower preference than t2c by TRL.

TRL(t2c, Ci) = 1− P (t2c)− P (t2c, Ci)

P (t2c)
× E(Ci)

TRL(t3a, Ci) = 1− 1 + P (t3a, Ci)

1 + P (Ci)
× E(Ci)

P (Ci) >> P (t3a) and P (t3a) = P (t3a, Ci) then 1 + P (t3a, Ci) << 1 + P (Ci) and
1 + P (t3a, Ci)

1 + P (Ci)
<< 1 i.e., close to 0. As a result TRL(t3a, Ci) is close to 1.

P (t2c, Ci) < P (Ci) = P (t2c) and P (t2c) is close to P (t2c, Ci). Therefore
P (t2c)− P (t2c, Ci)

P (t2c)
is close to 1. Hence TRL(t2c, Ci) < TRL(t3a, Ci) and thus t3a

gets lower preference than t2c by TRL.

(ii) t3a gets lower preference than t2d by TRL.

TRL(t2d, Ci) = 1− P (Ci)− P (t2d, Ci)

P (t2d)− P (t2d, Ci)
× P (t2d)− P (t2d, Ci)

P (t2d)
×E(Ci)
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TRL(t3a, Ci) = 1− 1 + P (t3a, Ci)

1 + P (Ci)
× E(Ci)

It has been shown that TRL(t3a, Ci) is close to 1. P (t2d, Ci) < P (Ci) < P (t2d)

and P (t2d, Ci) and P (t2d) both are close to P (Ci). Thus P (t2d) is close to P (t2d, Ci).

Therefore
P (t2d)− P (t2d, Ci)

P (t2d)
and

P (Ci)− P (t2d, Ci)

P (t2d)− P (t2d, Ci)
both are close to 1 and TRL(t2d, Ci)

becomes close to 0. Hence TRL(t2d, Ci) < TRL(t3a, Ci) and t3a gets lower preference

than t2c.

(iii) t3a gets lower preference than t2e by TRL.

TRL(t2e, Ci) = 1− P (t2e)− P (t2e, Ci)

P (Ci)− P (t2e, Ci)
× P (t2e)− P (t2e, Ci)

P (t2e)
×E(Ci)

TRL(t3a, Ci) = 1− 1 + P (t3a, Ci)

1 + P (Ci)
× E(Ci)

P (t2e, Ci) < P (t2e) < P (Ci) and P (t2e, Ci) and P (t2e) both are close to P (Ci). Thus

P (t2e) is close to P (t2e, Ci). Therefore
P (t2e)− P (t2e, Ci)

P (t2e)
and

P (t2e)− P (t2e, Ci)

P (Ci)− P (t2e, Ci)
both are close to 1 and as a result TRL(t2e, Ci) is close to 0. Note that TRL(t3a, Ci)
is close to 1 and thus TRL(t2e, Ci) < TRL(t3a, Ci)

Claim 3(b): t3a gets higher preference than t3b by TRL when P (t3a, Ci) =

P (t3b, Ci).

Claim 3(c): If P (t3b) = P (t3c) then t3b gets higher preference than t3c by

TRL.

Claim 3(d): If P (t3b) = P (t3d) then t3b gets higher preference than t3d by

TRL.

Claim 3(e): t3a gets higher preference than t3e by TRL, if P (t3a) = P (t3e).

Claim 3(f): t3c gets higher preference than t3d by TRL, if P (t3c, Ci) =

P (t3d, Ci).

Justification: Claim 3(b) can be justified in the same way as claim 2(a) has been

justified. Claim 3(c), claim 3(d), claim 3(e) and claim 3(f) can be justified respec-

tively in the same way as claim 2(b), claim 2(c), claim 2(d) and claim 2(e) have been

justified.
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