
Some Results On Analysis
And Implementation Of HC-128

Stream Cipher

A thesis presented to Indian Statistical Institute
in fulfillment of the thesis requirement for the degree of

Doctor of Philosophy in Computer Science

by

Shashwat Raizada

under the supervision of

Professor Subhamoy Maitra

Applied Statistics Unit
INDIAN STATISTICAL INSTITUTE

Kolkata, West Bengal, India
Submitted: May 2014, Revised: January 2015

Patience in the present,
faith in the future,

and joy in the doing.

(George Perera)

i

ii

Abstract

The HC-128 stream cipher is a successful entrant in the eStream candidate list
(software profile) and is the lighter variant of HC-256 stream cipher. Apart
from the analysis by the designer of the cipher (Hongjun Wu) to conjecture
the security of this cipher, there are only a few other observations on this ci-
pher despite being the focus of researchers during the three phases of eStream
evaluation and later efforts in the community. Till date none of the security
claims in favor of HC-128 by the designer could be broken. One may expect
HC-128 stream cipher to be popular in commercial domain in near future, if
not already so. This thesis presents a rigorous study in different aspects of this
stream cipher covering combinatorial analysis, distinguishers, design modifica-
tion proposal, side channel analysis on this cipher and finally implementation
strategies.

We first show that the knowledge of any one of the two internal state arrays
of HC-128 along with the knowledge of 2048 keystream words is sufficient to
construct the other state array completely in 242 time complexity. This analysis
reveals a structural insight into the cipher’s internal state along with theoret-
ically establishing some novel combinatorial properties of HC-128 keystream
generation algorithm.

Next, using linear approximation of the addition modulo 2n of three n-bit
integers, we identify linear approximations of g1, g2, the feedback functions of
HC-128. Here we show that the process of keystream output generation of HC-
128 can be well approximated by linear functions wherein the “least significant
bit" based distinguisher (presented by the designer of the cipher) of HC-128

iii

can be extended for the other bits of the 32-bit word. Further, using the above
linear approximations of g1, g2, we also present several other distinguishers in
the line of the distinguisher proposed by the designer of the cipher. We also
study how HC-128 keystream words leak secret state information of the cipher
due to the properties of the functions h1, h2 and present improved results.

The third major aspect covered in this thesis is on side channel attacks
against HC series of stream ciphers. We extend the existing HC-128 fault
attack and the HC-256 cache analysis onto the HC-256 and HC-128 ciphers
respectively under similar models. The techniques applied on one variant is
not trivially translatable to the other and the issue was left open until this
work. Here we propose a technique to recover half the state of HC-128 using
cache analysis, which can be cascaded with the differential attack towards a
full state recovery and hence key recovery. In a similar line, we analyze the
state leakage of HC-256 under differential fault attack model to achieve partial
state recovery.

We finally study several implementation issues for HC-128 in a disciplined
manner. HC-128 is primarily designed as a software stream cipher aiming for
sequential execution on general purpose processors and so we first carry out
implementations in this direction on embedded and customizable processors.
Next we consider the ASIC implementation for a co-processor design that will
house such ciphers. Further we explore several parallelization strategies for
faster execution of the cipher. We present a detailed implementation exercise
for the HC-128 stream cipher on special purpose hardware.

In summary, though we could not break any security conjecture made by the
designer for HC-128, our analysis explores different aspects of the cipher from
analysis, design and implementation. Our work has also stimulated further
research on this cipher that is evident from the literature.

iv

Acknowledgments

Praise the bridge that carried you over. – George Coleman

Several people have contributed and helped me in myriad ways because
of which this thesis has become a reality. I would like to thank them all for
their guidance, suggestions and advice throughout the tenure of my Doctoral
studies.

With utmost humility, I submit that this thesis would never see the light of
day without the unstinted support of several individuals. Foremost amongst
them is my supervisor Prof. Subhamoy Maitra. It has been my proud privilege
to have worked with him. Not only did he introduce me to the fascinating
and challenging world of stream ciphers but also taught me the art of doing
fundamental research. A special and warm mention of thanks to Dr. Goutam
Paul who besides being a co-author has been a supportive friend, mentor and
guide. I gratefully acknowledge the help given by Dr. Sourav Sen Gupta in
navigating me through errors and typos across the multiple drafts of my thesis.

The Cryptology Research Group at the Indian Statistical Institute (ISI)
has become the foremost breeding ground for aspiring cryptographers in the
country. I would thank its inspirational leaders Prof. Bimal Roy, Prof. Palash
Sarkar and Prof. Rana Barua, besides Prof. Subhamoy Maitra, for all the
motivation besides incubating a culture academic excellence and synergy in
the group. On a similiar note I wish to thank all the student members of our
cryptology lab for maintaining lively research atmosphere there. I had a great
time working in the lab, and have made very good friends. A special word of

v

thanks to all my faculty and student colleagues in the institute who extended
immense help to me during my stay in Kolkata.

I am indebted to my loving parents and brothers for their unstinted en-
thusiasm and encouragement to take up the doctoral studies. Note of special
thanks to my in-laws, my little son Ishaan and my wife Shweta who have been
a bolster of support. Their continuous perseverance during the long hours of
research has been a source of strength.

vi

Contents

Abstract . iii

Contents . vii

List of Tables . xi

List of Figures . xiii

1 Introduction 1

1.1 Genesis of cryptology . 1

1.2 Modern cryptology . 2

1.2.1 Attributes of cryptography 3

1.2.2 Functional model of a cryptosystem 4

1.3 Categorization of cryptosystems 6

1.3.1 Symmetric Key cryptosystem 6

1.3.2 Public key cryptosystem 8

1.4 Adversary and the attack models 11

1.5 Overview of stream ciphers . 13

1.5.1 Vernam cipher to electro-mechanical rotors 13

1.5.2 Digitization of stream ciphers 15

1.5.3 State-of-the-art in stream ciphers 19

1.6 Stream cipher cryptanalysis . 20

vii

1.6.1 Theoretical attack models 21

1.6.2 Side-channel attacks . 23

1.7 Motivation for the thesis . 25

1.8 Contribution and thesis plan . 26

1.9 Prerequisites for the reader . 27

2 Background 29

2.1 The HC series of Stream Ciphers 29

2.2 Description of HC-128 . 30

2.2.1 Operators and structures 30

2.2.2 Initialization process . 31

2.2.3 Keystream generation 32

2.3 Description of HC-256 . 32

2.4 Chronology of recent works . 34

2.4.1 Theoretical Cryptanalysis 34

2.4.2 Side Channel Cryptanalysis 36

2.4.3 Cipher Implementation and Usage 37

2.5 Publications included in this Thesis 39

I Analysis of HC-128 Stream Cipher 41

3 Internal Structure 43

3.1 Reconstruction of one array from another 44

3.1.1 Notations and problem formulation 45

3.1.2 State reconstruction strategy 45

3.2 Design modifications . 56

3.3 Performance Evaluation . 57

3.4 Conclusion . 58

viii

4 Study of HC-128 Keystream 59

4.1 Introduction . 59

4.2 Linear approximation of the functions g1 and g2 61

4.3 A class of distinguishers by extending the LSB-based distinguisher 65

4.3.1 Brief outline of the LSB distinguisher of HC-128 65

4.3.2 Our extension to other bits 67

4.4 A new distinguisher . 71

4.5 State leakage in keystream . 75

4.6 Conclusion . 78

II Side Channel and Implementation Issues 81

5 Side Channel Attacks and Impact on HC series of Stream Ci-
phers 83

5.1 Motivation . 83

5.1.1 Layout of the chapter . 84

5.2 Cache and fault attack . 85

5.2.1 Cache analysis attack . 85

5.2.2 Fault attack . 86

5.3 Cache analysis of HC-128 . 87

5.3.1 Bits obtainable from cache information 87

5.3.2 Constructing bytes 0 and 2 of each array element 88

5.3.3 Finding the remaining sixteen bits for each element . . . 89

5.4 Fault attack on HC-256 . 89

5.4.1 Faulty Q entering in computation of h1 90

5.4.2 Faulty Q entering in update of P 92

5.4.3 Differentiating the two cases and obtaining
additional elements . 94

ix

5.5 Conclusion . 94

6 HC-128 Implementation in Hardware 97

6.1 Motivation and contributions 97

6.2 HC-128 on general purpose CPU’s 98

6.3 Experiment with embedded & customizable processors 100

6.3.1 Implementation on embedded processors 100

6.3.2 Implementation on customizable processor 100

6.4 Hardware accelerator implementation of HC-128 102

6.4.1 Implementation of Keystream Generation 103

6.5 Parallelization strategies . 104

6.5.1 Parallelizing initialization with keystream generation . . 104

6.5.2 Parallelizing keystream generation 105

6.5.3 Odd-even memory partitioning 108

6.6 Conclusion . 109

7 Conclusion and Future Work 111

7.1 Summary . 111

7.2 Future works and open problems 113

7.3 Final words . 115

Bibliography 117

x

List of Tables

3.1 The evolution of P,Q arrays. 44

3.2 Speed comparisons of our proposals with HC-128 and HC-256. . 58

4.1 Linear Approximaton of Addition for first 8 bits. 61

4.2 Evolution of the Arrays P and Q and Correspondence with the
Keystream Words. 65

5.1 Cache block size vs. number of bits learned. 88

5.2 Number of words with first ten bits leaked vs. number of sub-
sequent updates incorporated. 94

6.1 HC-128 Key and IV initialization on general purpose processors 99

6.2 HC-128 Keystream generation on general purpose processors . . 99

6.3 HC-128 Key and IV initialization on embedded & customizable
embedded processors. 101

6.4 HC-128 keystream generation on embedded & customizable em-
bedded processors. 102

6.5 Performance of hardware accelerator 106

6.6 Pipeline organization with odd-even memory partitioning 108

xi

xii

List of Figures

1.1 Typical model for a Cryptosystem. 4

1.2 Encryption using a Stream Cipher. 14

1.3 LFSR based Filter Generator 17

1.4 LFSR based Combination Generator. 18

1.5 LFSR based Clock-controlled Generators 18

5.1 Number of bytes of P array elements leaked from h1 function . . 92

5.2 Probability of finding the first ten bits of P array elements from
several updates . 93

6.1 Pipeline structure for keystream generation 103

6.2 Pipeline structure for parallel keystream generation 107

xiii

xiv

Chapter 1
Introduction

“The best things are simple, but finding these simple things is not
simple.” – Anonymous

1.1 Genesis of cryptology

The desire to discreetly store and disseminate information is as old as humanity
itself. Besides it has always been the inquisitive human nature to seek access
to knowledge that is not officially available. This was illustrated in the earliest
Biblical story of the Garden of Eden where “the tree of the knowledge of good
and evil” produced the forbidden fruit that Adam and Eve ate in belief of
obtaining the secret knowledge, and were banished forever. The prehistoric
man tried to manage information in the cave paintings that are believed to
bear some code. As the race evolved there were a number of different ways of
discreetly passing on information. These ranged from the coded messages in
drum beats to the uncanny smoke signals visible from a distance.

The study of techniques that enabled keeping sensitive information secret,
evolved with mankind into a full fledged discipline, today known as Cryptogra-
phy. Concurrently, the field pertaining to techniques for testing the vulnerabil-
ities of cryptography, and thereby obtaining sensitive information, evolved into
another discipline known as Cryptanalysis. These two subjects with apparently

1

Chapter 1: Introduction

contradictory aims are jointly referred to as Cryptology. The word ‘Cryptol-
ogy’ is derived by joining two Greek root words ‘kryptós’ (hidden) and ‘logia’
(study). Thus cryptology is the study and practice of hiding information, or
the art and science of information security.

Amongst the earliest cryptographic devices was the Scytale, popular in
the classical Greek civilization (around 400 BC). The device was shaped like a
baton with strips of parchment wound around to perform what we now know as
a transposition cipher. Surprisingly around the same time, the Indian treatise
Kamasutra suggests cryptography as one of the important skills that lovers
should learn to communicate discreetly. The Romans under Julius Caesar
devised the simple alphabetic shift cipher, which has formed the logical basis
for the substitution operation – a feature present in modern day ciphers.

Subsequently, there have been several epochs in cryptography, each with its
own unique underlying technology. These ranged from linguistics to steganog-
raphy, from manual systems to electro-mechanical systems, and pervaded
through the analog era to the modern digital ubiquity.

1.2 Modern cryptology

Contemporary Cryptology can be attributed to be born with the classified work
done by Claude Shannon during the World War II, later (in 1949) published
in the Bell System Technical Journal as “Communication Theory of Secrecy
Systems” [111]. Shannon also co-authored a book with Warren Weaver titled
“Mathematical Theory of Communication” [112] that brought out the work
done during the war. These in addition to other works in information and
communication theory form the initial structure of mathematics based cryptol-
ogy. These gave birth to novel cryptographic devices that ranged from purely
mechanical devices to digital ones. Although these devices were state-of-the-
art, they however suffered certain shortcomings that are inherent in symmetric
cryptosystems. There existed an inescapable requirement of a secure channel
to transfer keys between the sender and receiver. This problem gets com-
pounded when the number of communicating parties increase, and the number
of keys required explode.

3 1.2 Modern cryptology

The next paradigm shift occurred a quarter century later, when Whitfield
Diffie and Martin Hellman in 1976 laid down the functional basis for a novel
cryptosystem in “New Directions in Cryptography” [35]. This introduced a
radically innovative method for handling cryptographic keys. The article also
stimulated the almost immediate design and development of a new class of
enciphering algorithms, known as Asymmetric or Public Key Cryptography.

1.2.1 Attributes of cryptography

Cryptology has become a key enabler for all the processes of modern digi-
tal economy. The requirement of cryptology is turning all-pervasive so as to
cover major aspects of everyday life, including Internet banking, Identification
cards, secure databases, e-mails, social networking, secure telephony, etc. The
attributes that modern-day cryptology aims to enable can be summarized in
the following categories.

Confidentiality. The aim achieved by confidentiality is to ensure secure data
communication over insecure channels, despite the possible presence of
a malicious adversary. This is achieved by sender encrypting the data
which is later decrypted by the recipient.

Authentication. The objective of (entity) authentication is to ensure proper
identification of the communicating party. This feature is required to
ensure that any transaction or communication occurs only between duly
authorized parties.

Data Integrity. The objective of integrity is to make sure that the data has
not been tampered with. This is to verify the consistency of the data
and detect if any illegitimate alterations have been made to the original
communication.

Non-Repudiation. The aim of non-repudiation is primarily necessary from a
legal angle wherein, an action carried out by an entity can be duly and
be verifiably imputed with. In simple words this refers to the undeniable
proof of a specific action taken by an entity, to be presented in the court
of law or to any third-party arbitrator.

Chapter 1: Introduction

Cryptographic primitives can be broadly classified into different types de-
pending on their usage and functions. These are briefly described in the follow-
ing subsections. One can also refer to “The Code Book: The Science of Secrecy
from Ancient Egypt to Quantum Cryptography” by S. Singh [115] and “The
Codebreakers – The Story of Secret Writing” by D. Kahn [57] for an exciting
exposition on the evolution of the subject. For a technical account on modern
day Cryptology, one may refer to “Cryptography – Theory and Practice” by D.
R. Stinson [121] and “Handbook of Applied Cryptography” by A. J. Menezes,
P. C. van Oorschot and S. A. Vanstone [88].

1.2.2 Functional model of a cryptosystem

A functional approach of describing a cryptosystem personifies across three
actors, conventionally named Alice, Bob and Oscar. In this model Alice and
Bob want to securely communicate over an insecure channel to which Oscar
is privy to. Encryption in this case is the enabler that helps Alice and Bob
achieve their aim of converting their meaningful communication into appar-
ently meaningless data while traversing the insecure channel. Oscar aims at
eavesdropping into the channel to de-scramble the data and derive some sensi-
ble information from it, using techniques called cryptanalysis. The deployment
model is described in Figure 1.1.

Encryption

Alice with Key ke

m→ Eke(m) = c

Decryption

Bob with Key kd

c→ Dkd(c) = m

Cryptanalysis

Adversary Oscar

Ciphertext c

Figure 1.1: Typical model for a Cryptosystem.

The following definitions are essential to describe the components:

5 1.2 Modern cryptology

Plaintext. The information that Alice or Bob want to share is called the
plaintext. It can be a natural language, audio, video or a computer file,
and is denoted by m.

Message Space. The set of all possible plaintexts is called message space,
denoted by M . Thus the plaintext message m ∈M .

Ciphertext. The information sent on the insecure channel in a cryptic format,
so that an unauthorized person cannot decipher, is called the ciphertext,
denoted by c.

Ciphertext Space. The set of all possible ciphertexts is called ciphertext space,
denoted by C. Thus the ciphertext c ∈ C.

Key. A sequence of bits of predefined length used to control cryptographic
transformations like encryption and decryption is termed as key. The
key used for encryption is denoted by ke and that for decryption by kd.

Key Space. The finite set of all possible keys (of a predefined length) is called
key space, denoted by K. Thus, kd, ke ∈ K.

Encryption. The transformation of the plaintext to ciphertext is called en-
cryption. Mathematically, E : M × K → C is a function or algorithm
that takes as input a plaintext m ∈M and an encryption key ke ∈ K to
produce a ciphertext c ∈ C.

Decryption. The transformation from the ciphertext to plaintext is called
decryption. Mathematically, D : C ×K →M is a function or algorithm
that takes as input a ciphertext c ∈ C and a decryption key kd ∈ K to
produce a plaintext m ∈M .

Cryptosystem. A cryptosystem (primarily the encryption-decryption model)
as a whole may be defined as the composition of the message space
M , ciphertext space C and the key space K, such that there exist an
encryption algorithm E : M ×K → C as well as a decryption algorithm
D : C × K → M satisfying the condition D(kd, E(ke,m)) = m for
suitable pair of keys ke, kd ∈ K and for all plaintexts m ∈M .

Chapter 1: Introduction

1.3 Categorization of cryptosystems

Cryptosystems are broadly divided as per the generation and usage of keys.
There are two distinct types of cryptosystems:

1. Private key or Symmetric Key System. These systems mandate that, the
key used for encryption is the same as that for decryption.

2. Public Key or Asymmetric Key System. These systems permit that, the
key used for encryption to be different from the key used for decryption.
Furthermore, the encryption key may be publicly known.

1.3.1 Symmetric Key cryptosystem

Cryptosystems have traditionally been designed using the secret key paradigm.
This was because the user set was finite, and the number of shared secret keys
was more or less bounded to a practical limit. The keys that are used for
encryption are same as that required for decryption. In a typical scenario,
sender and receiver require to agree upon a key prior to communication. Thus
an elaborate procedure of setting up a secure channel for distribution of cryp-
tographic keys is required. All encryption and decryption are thereafter done
using the predetermined shared keys. In other words, here we have a single
secret key k = ke = kd, upon whose secrecy lies the strength of the cryptosys-
tem. Hence the name symmetric or secret key cryptography. Symmetric key
systems use two main cryptographic primitives:

Block Cipher. This class of cipher takes in successive chunks of plaintext
in finite size denominations known as blocks. Each block is encrypted
by applying a key dependent transformation on its bits. This transfor-
mation is actually a memory-less (or state-less) permutation, and the
decryption typically consists of applying the reverse of key-dependent
permutation. Two successful templates around which a number of block
cipher designs are modeled are the Substitution-Permutation Network
(SPN) [59] and the Feistel structure [78]. Both these approaches involve
a complicated mixing of message and key bits which are an integral part
of the block ciphers. Modern Block ciphers have a key schedule module

7 1.3 Categorization of cryptosystems

that generates a series of small sub keys from the main keys; thereby pro-
viding resistance against Meet-in-the-Middle attacks. In addition they
have non-linear building blocks that provide resistance to linear and dif-
ferential cryptanalysis. The first global standardization of block cipher
commenced in 1973 and lead to the promulgation of the Data Encryp-
tion Standard (DES), which is believed to be derived from an earlier
IBM cipher Lucifer. This was done at the behest of the Department of
Commerce of United states by the National Institute of Standards and
Technology (formerly National Bureau of Standards). DES was in use for
over two decades, its major weakness being the small key size (56 bits)
that was not sufficient to withstand exhaustive search analysis by mod-
ern processors. This weakness was circumvented by using three instances
of DES concurrently in a product mode, known as the Triple-DES. Later
in 1997, NIST employed a transparent procedure to select a candidate
to replace DES. A three year effort led to the promulgation of a new
standard known as the Advanced Encryption Standard (AES), primarily
based on an improved block cipher called Rijndael [32].

Stream Cipher. A stream cipher generates a pseudo-random stream of bits
(known as keystream) using a chosen key and an initialization vector
of fixed length. The keystream is simply XOR-ed with the plaintext
to encrypt, and is XOR-ed with the ciphertext stream to obtain the
plaintext back. It can generally be modeled as a finite state machine with
internal memory that breaks a plaintext m into successive characters or
bits m1,m2, . . ., and encrypts each mr with a different key segment kr of
the keystream k = k1, k2, We have Ek(m) = Ek1(m1)‖Ek2(m2)‖, . . .
where each encryption is a simple XOR. The decryption function is the
same finite state machine that generates the same keystream from an
input secret key, and extracts the plaintext from the ciphertext. An
overview of stream ciphers is discussed in Section 1.5 of this chapter.

Symmetric Key systems suffer from two major challenges in the context
of key management. First, there needs to be a secure channel provisioned
between the communicating parties for the initial sharing of the secret key,
and second, the system needs to be scalable for multiple users. In a typical

Chapter 1: Introduction

scenario, for n communicating parties, we need to establish
(
n
2

)
or O(n2) keys

across that many secure channels (one for each pair of users).

Key establishment protocols is the study of techniques to address issues of
key distribution and key agreement in symmetric systems [20, 23]. There are
myriad of techniques such as Kerberos, trusted key distribution center, key
pre-distribution etc., but each has its trade-offs regarding practicality, security
and other pertinent parameters.

1.3.2 Public key cryptosystem

Public Key Cryptography was born out of the trials and tribulations of two
researchers Whitfield Diffie and Martin Hellman, articulated in the book
“Crypto: How the Code Rebels Beat the Government – Saving Privacy in the
Digital Age” [75]. It was presented as a concept paper in 1976 [34, 35]. How-
ever, according to documents de-classified in 1997, it was revealed that public
key algorithms were developed as early as 1973 by James H. Ellis, Clifford
Cocks, and Malcolm Williamson under a secret project by UK Government
Communications Headquarters (GCHQ). The paper titled “New Directions in
Cryptography” [35] was truly a game-changer as it bought cryptography from
the elite cartels of political and military organizations to the common masses.

In public key or asymmetric key cryptography, the encryption and the de-
cryption keys are different albeit related by some mathematical relation and
together constitute a key pair. In a typical scenario, the sender has the re-
ceiver’s public key ke and uses an algorithm to encrypt the message in such a
fashion that it can be decrypted using a corresponding private key kd, securely
maintained by the receiver. The part of the key which is used to encrypt is
made publicly available, while the decryption key is kept secret. The security
of the system vests in the computational infeasibility of tracing out the decryp-
tion key with the mere knowledge of encryption key. Public key cryptosystems
employ one way functions with trapdoors, typically based on some well known
computationally hard mathematical problem. An interesting fact in the public
key saga is that the seminal paper [34,35] was presented just as a concept pa-
per with no concrete examples whatsoever. Subsequently proposals emerged,
that would implement concrete public key systems, using hard mathematical

9 1.3 Categorization of cryptosystems

problems. Some of these mathematical problems are listed below.

Knapsack Problem. The knapsack problem, also known as the subset sum
problem, aims at the possibility for a set of n positive integers {ki}
and a positive integer N to be represented as N = ∑n

i=1 ai × ki where
ai ∈ {0, 1}. Popular proposals based on this approach, like Merkle-
Hellman cryptosystem [89], were however found to be weak. A colloquial
account on the cryptanalysis of such systems is given in [75], while the
technical literature for the same is available in [107,108].

Integer Factorization Problem. This problem is based on the hardness of
finding factors for a large number, and has been the core of the first
usable public key cryptosystem RSA [100], developed by Rivest, Shamir
and Adleman in 1977. An alternative approach, known as the Rabin
cryptosystem [98], also uses the integer factorization problem as its base.

Quadratic Residue Problem. This problem is based on the decision presence
of a modular square root for any element x ∈ ZN with the condition
that N is a composite number. If the factors of N are known, then
QRP in ZN is no longer hard. Goldwasser and Micali [42] have proposed
cryptosystems based on the Quadratic Residue Problem.

Discrete Logarithm Problem. This problem is based on a large cyclic group
G = 〈g〉, where the issue is to find the exponent a satisfying y = ga in
G. El Gamal cryptosystem [40] is a public key system based on DLP.

Elliptic Curve DLP. Elliptic Curve Cryptography was proposed indepen-
dently by Koblitz [68] and Miller [90] and is based on DLP in the group of
rational points on the elliptic curves. There is no known sub-exponential
time algorithm to solve ECDLP, making it suitable for cryptographic ap-
plications. In 1989, Neal Koblitz [69] suggested the use of hyper elliptic
curves in cryptography with the advantage of having smaller base field
over the elliptic curves for the same security level. Elliptic curve based
systems have high encryption throughput and are suitable for lightweight
cryptographic hardware.

Shortest Vector Problem and Closest Vector Problem SVP. SVP deals with
the problem of obtaining the shortest non-zero vector in a high dimen-

Chapter 1: Introduction

sional lattice, and the same idea may be generalized to the Closest Vector
Problem. These are hard problems, and a few modern cryptosystems like
NTRU [50], Ajtai-Dwork system [5,6] and [41] are built upon them.

In a public key setting, each communicating entity needs to have a key
pair. Thus, for n communicating parties, we need only n key-pairs, i.e., a pair
for each person. As brought out in [49], the principle goal of public key cryp-
tography is to allow two entities to exchange confidential information, even
if they have never met before. They can communicate only via an insecure
channel, monitored by an adversary. The obvious challenge is to devise the
mechanism of trusting a public key as the one originating from its reported
owner. This authentication of the public keys can be done using undermen-
tioned techniques.

Certifying Agencies. These are trusted agencies running Public Key Infras-
tructure (PKI), who sign the public keys of all users. The signed keys
are known as certificates, and the PKI [2] is a secure system that is used
to manage and control these certificates. In such systems there is an
implicit trust on the Certifying Authority (CA).

Pretty Good Privacy. Designed by Phil Zimmerman, PGP builds a web of
trust involving only the users, based on which one of them may take a
decision on the status of a public key. PGP does away with the require-
ment of having dedicated CAs.

Identity Based Encryption. IBE is a logical expansion of public key crypto-
graphic primitive wherein the public key of a subscriber can be chosen
to be a publicly known (and trusted) value, such as his/her trusted iden-
tity [39,109], like email id, social security number etc.

The drawback of public key cryptosystems is that they are slower in per-
formance, and require more computation power via-a-vis symmetric key cryp-
tosystems. The situation has slightly improved with Elliptical Curve Cryp-
tography which provides good throughput even on resource constrained plat-
forms. These are however, still not comparable with the throughputs achieved
by symmetric key cryptosystems.

11 1.4 Adversary and the attack models

The peril that some of the public key cryptosystems have recently been
exposed to, is from a new computation paradigm called Quantum Compu-
tation [92], initiated by David Deutsch [33]. Hitherto, the classical comput-
ers used bits to represent and store data and employed logic gates emulating
boolean operations for data processing. In the quantum computation model,
the operations would be on quantum bits (qubits) using logic gates based on
the principles of quantum mechanics. The first alarm was raised when Pe-
ter Shor [113, 114] showed that the integer factorization problem and discrete
log problem can be solved in polynomial time complexity employing a quan-
tum variant of the fast Fourier transform. This would have meant the end of
several good public key cryptosystems, but for the fact that quantum com-
puter today, remains to be a hypothetical concept with very small prototypes
in the horizon. While systems based on integer factorization problem and
discrete logarithm problem are susceptible under the quantum computation
model, public key systems like NTRU based on the shortest vector problem
continue to remain hard in the quantum era. This has resulted in birth of
another new field dealing with cryptosystems that would be secure even in the
quantum computer based ecosystem called the Post Quantum Cryptography.
Such systems would be based on cryptographic primitives, such as code-based
or lattice-based cryptography, that cannot be broken by quantum computers.
On the other hand, another field that relies on quantum physics for design of
cryptographic primitives known as Quantum Cryptography [22] has evolved.
A potential application of quantum cryptography is secret key distribution.
Here one may use the Heisenberg’s uncertainty principle to thwart the age-old,
man in the middle attacks, as an eavesdropper cannot tap into a quantum
communication channel even in a promiscuous mode.

1.4 Adversary and the attack models

Generally, there are two modes of attacks, namely passive and active. A passive
attacker merely threatens confidentiality of data by eavesdropping on the com-
munication channel. On the other hand, an active attacker attempts to alter,
add or delete the transmissions on the channel, and threatens data integrity
and authentication in addition to confidentiality.

Chapter 1: Introduction

While studying the security of cryptosystems, it is assumed that the en-
cryption and decryption algorithms are available to the adversary. This is in
consociation with the Kerckhoff’s Principle, which states that the security of
the cipher must vest with the secrecy of the key [61]. This model has been re-
iterated by Shannon who stated that the adversary ‘knows the system’. Based
on this underlying assumption, the security of cryptosystems can be assessed
in the following models, which also parameterize passive attacks.

1. Perfect Secrecy. A cryptosystem is said to be unconditionally or perfectly
or information theoretically secure if it cannot be broken even by an
adversary with infinite computational resources. This definitely is an
ideal security notion for any encryption method.

2. Computational Security. A cryptosystem is said to be computationally
secure if the best known algorithm for breaking it requires at least N
operations, where N is some pre-specified large number.

3. Provable Security. A cryptosystem is said to be provably secure if it is
as difficult to break as solving some well-known and supposedly difficult
problem. Note that a cryptosystem based on a hard problem does not
guarantee security. The worst case complexity for solving the problem
may be exponential, but the average case complexity or the complexity
for some specific instances of the problem may be polynomial.

Apart from the broadly categorized modes mentioned above, there are four
basic models [121] of attacks from the point of view of cryptanalysis. In these
models, it is by default assumed that the details of the encryption and decryp-
tion algorithm are available to the attacker.

1. Known Ciphertext Attack: Here the attacker knows the ciphertext of
several messages encrypted with the same key and/or several keys and
his goal is to recover the plaintext of as many messages as possible, or
even better, deduce the key(s).

2. Known Plaintext Attack: Here the attacker knows the {plaintext,
ciphertext} pairs for several messages, and the goal is to deduce the
key to decrypt further messages, or to decrypt a specific ciphertext not
belonging to the pairs that (s)he already knows.

13 1.5 Overview of stream ciphers

3. Chosen Plaintext Attack: Here the attacker can choose the plaintext that
gets encrypted, thereby potentially garnering more information. This
type of situation is possible, for example, when the attacker has access
to the encryption device for a limited time.

4. Chosen Ciphertext Attack: Here the attacker can choose a series of cipher-
texts. It is assumed that a decryption oracle is available and the attacker
gets the plaintexts corresponding to these ciphertexts. Based on these
information the attacker tries to decrypt ciphertexts not belonging to the
pairs that (s)he already knows, or better, deduce the key.

1.5 Overview of stream ciphers

Symmetric key systems are much faster in operation when compared to the
public key systems and are therefore a preferred choice for applications re-
quiring high encryption throughputs [72]. Within the private key systems,
stream ciphers typically give better throughput and are easier to implement
vis-a-vis block ciphers. The past hundred years has seen stream ciphers evolve
from the early rudimentary implementations like one-time-pads to the present
day sophisticated implementation inside VLSI chips. This metamorphosis has
its shares of ups and downs with the Cryptology community questioning the
ability of stream ciphers to perform in the evolving information technology
landscape.

1.5.1 Vernam cipher to electro-mechanical rotors

In 1917 Gilbert Sandford Vernam conceived of the first stream cipher using
additive poly-alphabetic function and successfully obtained a patent two years
later. Present day stream ciphers are based on this model and are also known
as Vernam cipher. In this model if we consider m1,m2, . . . are message bits,
k1, k2, . . . are keystream bits and c1, c2, . . . are corresponding ciphertext bits,
then for a typical stream cipher, the encryption is performed as cr = mr ⊕ kr
and the decryption is performed as mr = cr⊕kr. Utilizing unique independent
keystream for each message transforms the Vernam cipher into a one-time pad.

Chapter 1: Introduction

Key IV

Key IV Initialization or Setup

Internal State

State Update Function

Keystream Generation Function

XORPlain Text Cipher Text

Figure 1.2: Encryption using a Stream Cipher.

Subsequently Vernam and Joseph Mauborgne, an US Army Signals officer,
came up with a teleprinter that combined characters of the message with a
key on paper tape generated a-priori, to generate the ciphertext. A similar
combination function on the ciphertext with same key would yield the message.
This product can be considered as the first automated implementation of the
one-time pad. Almost three decades later Claude Shannon proved that one-
time pads have perfect secrecy [111], i.e., the ciphertext leaks absolutely no
information about the plaintext.

Ideal one-time pads require an infinite random sequence. Since all finite
state machines generate only finite randomness, a True Random Number Gen-
erator (TRNG) is required for this purpose. The drawback is that the same
random keystream is required at the recipient’s end. This problem is com-
pounded by the fact that a keystream can be used only once. In the early
days this was achieved using manual means where code books consisting of
long random sequences were distributed manually using a courier. The length
of the sequence was based on the anticipated traffic size. Such systems being
manual were extremely slow and depended on the operators skills.

Attempts to automate the procedure resulted in electro-mechanical devices
which dominated the scene for half a century commencing 1920. These ma-
chines had a stack of specialized rotors with calibrated positions corresponding
to the alphabets which were to be entered through a keyboard. These in turn

15 1.5 Overview of stream ciphers

were mechanically coupled to other rotors that performed substitution like
operations based on the design and the key. These machines served as the
workhorse for cryptographic operations for both Allied and Axis forces in the
World War II. Some of the popular machines from that era include the Enigma,
Lorenz SZ 40/42, Siemens and Halske T52 (Geheimfernschreiber) used by the
Germans and Hagelin’s family of machines including the C-36, C-52, CD-57
and M-209 used by Americans. Towards the 1970’s, microprocessor based com-
puting devices gave sufficient computing power for performing cryptanalysis.
The rotor based devices which were constrained by the mechanical movement
and thus could not keep pace to incorporate the complexities required to thwart
brute-force attacks using microprocessors. The alternative here was to migrate
the design onto the microprocessors and thus was born digital cryptography.

1.5.2 Digitization of stream ciphers

In the digital domain implementation, the stream cipher was modeled as a
finite state machine having a finite length key (seed) as the input to generate
an internal state. The finite state machine derives the next keystream bit (or
byte or word) as well as updates the internal state as a function (operation) of
the present internal state. The design had provisions of initializing the finite
state machine. Due to the deterministic nature of a stream cipher the same
key would yield the same keystream which makes a key unsuitable for reuse.
To thwart this drawback an initialization vector is used along with the key.
An initialization vector (IV) is a value, which when changed with each session
of the cipher and combined with the secret key, generates a message (session)
key which is an effective key for the corresponding session of the cipher. Such
a mode of usage is called the nonce and with a distinct IV for each message/
session, the output of the stream cipher becomes unique for each message/
session, even with the same key. The keystream bit sequence generated was
required to meet the requirements of standard statistical randomness tests [13,
67]. Stream ciphers based on the synchronization mode can be subdivided into
one of the following categories.

1. Synchronous stream cipher. In synchronous stream cipher the keystream
is constructed exclusively from the key and initialization vector, indepen-

Chapter 1: Introduction

dent of the plaintext or the ciphertext. There is an inherent requirement
for the same state to be maintained between the sender and receiver, or
else any offset would result in gibberish data.

2. Self synchronous stream cipher. In contrast, self-synchronous cipher
uses a small number of the previous ciphertext elements to generate the
keystream. Thus decryption requires only a finite number of previous ci-
phertexts. In case of loss of synchronization between sender and receiver,
this enables an automatic re-establishment of proper decryption. An ex-
ample of a modern self synchronizing stream cipher is Moustique [31].
These class of stream ciphers are difficult to design. An alternative and
intuitive way of obtaining a self-synchronizing stream cipher is using a
block cipher in Cipher Feedback (CFB) mode.

Stream cipher design can be done in several different methods. The final
design will be largely influenced on the target implementation platform. Since
the implementation could either be directly on the hardware chip or as software
running on a processor, there are two broad flavours of stream cipher design
paradigms. Although there are diverse and highly creative designs available
in literature, one popular example of each design will be described below. A
detailed survey on different types of stream ciphers can be found in [101,103].

Stream ciphers using LFSRs

Linear Feedback Shift Register (LFSR) has been the mainstay for several stream
cipher designs. Easy to implement in hardware, an LFSR is essentially a
register that contains a series of bits as its internal state. There are tap-points
which indicate to specific bits of the register. When the LFSR is clocked the
least significant bit (LSB) is delivered as the output and discarded. All other
bits shift a position towards the LSB leaving the most significant bit (MSB)
vacant. The MSB is replaced with the XORs of values that were contained at
the tap-points prior to clocking. LFSRs have been very popular in hardware
implementations. Some of the popular stream ciphers based on LFSR are
Sober-t-16, Sober-t-32, Snow, A5/1, etc.

The LFSR internal state can be found from l consecutive sequence of bits
if the feedback coefficients are known, and from 2l sequence of bits otherwise.

17 1.5 Overview of stream ciphers

The shortest length LFSR called Linear Complexity required to generate the
sequence is efficiently calculated using Berlekamp-Massey algorithm, and hence
it is essential to mask the linearity of LFSR in stream ciphers. The LFSR based
methods of constructing stream ciphers are enumerated as follows. An in-depth
description of LFSRs has been done in [44].

1. Filter Generators. A filter generator is a combination of different stages
of a single LFSR. The function involved is a non linear function and is
used to compute the values generated in different stages of a single LFSR.
Therefore, the overall complexity depends on the length of the LFSR
and algebraic degree of the function used for computation. In order to
ensure good statistical properties of the keystream used, it is essential
that the filtering function be balanced and the selected LFSR must have
a primitive feedback polynomial. Hence, in case of filter generators, while
the feedback polynomial, filter function and tapping sequence are known,
the unknown factor is the key of the cipher which is the initial state of the
LFSR. In this generator a single LFSR is used, having length N (registers
a1, a2, a3, . . . , aN), along with a filter function f of non linear order m,
where m < N . Given the above inputs, the generated keystream has
usually a very high linear complexity.

Single LFSR of length N

a1 a2 a3 · · · aN

Inputs

Non Linear Function f

Keystream

Figure 1.3: LFSR based Filter Generator

2. Combination Generators. It is a sequential combination of LFSRs whose
output keystream is produced by a non linear boolean function (f) which

Chapter 1: Introduction

is also known as combining function. This function maps the input to
generate the output which is binary variable. In order to create a se-
quence of maximal length, it is necessary that the LFSRs should be care-
fully chosen. Selecting LFSRs whose length are coprime , LFSRs with
feedback polynomials that are primitive with distinct degree are simple
methods for obtaining maximal length sequences. The linear complexity
of the output sequence is obtained from the linear complexities of the in-
dividual output sequences of associated LFSRs and the algebraic normal
form (ANF) of the boolean function used. The function used should also
have a higher order of correlation immunity.

Series of LFSRs

L1

L2

L3

Ln

Inputs to function f

f
Keystream

Figure 1.4: LFSR based Combination Generator.

3. Clock-controlled Generators. These are based on several registers that
together, produce an output sequence. The state of the registers is de-
pendent on some clocking events that could either be an external or an
internal one. The register that manages the clocking control is known as
control register (CR) and the register which yields keystream in accor-
dance with the output of CR is known as Generator Register (GR). In
the non synchronous based Clock controlled generators, the clock of one
register is dependent on the output of its previous register.

Control Register(CR) Clock Generator Register (GR) Keystream

Figure 1.5: LFSR based Clock-controlled Generators

19 1.5 Overview of stream ciphers

Stream ciphers in software

Array based stream ciphers have been popular in the software domain. These
ciphers have an internal state in the form of a large array of pseudo-random
words derived from the key and IV using an initialization process. The output
key-stream is a relatively simple function of the state which updates each time
keystream is generated. The usage of arrays make these designs extremely effi-
cient and fast in software. The popular stream ciphers that use array are RC4,
SEAL, HC-128, HC-256, Py, ISAAC etc. The HC-128 and HC-256 stream
ciphers would be described in detail in Chapter 2.

1.5.3 State-of-the-art in stream ciphers

By the year 2000 stream ciphers had faced over three decades of cryptanal-
ysis, and a number of weaknesses were exposed in well established stream
ciphers. These weaknesses ranged from loopholes in primitives (cryptanaly-
sis) to flaw in the implementation. Notable amongst these were the flaw in
GSM mobile encryption algorithm (A5/1 and A5/2), Bluetooth algorithm E0
and the key and IV usage in Wireless LAN (WEP) implementation of RC4.
A European research initiative called New European Schemes for Signatures,
Integrity and Encryption (NESSIE) was carried out to identify secure crypto-
graphic primitives from 2000 to 2003. Unfortunately, none of the six stream
ciphers submissions to the NESSIE project could make it to the final portfolio.
This prompted Adi Shamir to give a talk titled “Stream Ciphers: Dead or
Alive?” [110] in Asiacrypt 2004.

Due to the pessimistic state of stream ciphers, a 4-year research initia-
tive was launched by the European Network of Excellence for Cryptology
(ECRYPT) within a project called eStream. The goal was to study the state-
of-the-art in stream cipher design, contrary to other competitions that aim to
evolve a standard. Of course the collateral benefit would be the “new stream
ciphers that might become suitable for widespread adoption”. The eStream
competition was carried out in three phases and the designers were given the
flexibility to tweak the ciphers so that a good design does not get discarded
on account of an avoidable flaw. The submissions to eStream were solicited
under either or both of two profiles:

Chapter 1: Introduction

• Profile 1: Stream ciphers for software applications with high throughput
requirements (faster than AES-CTR mode), having key size of 128 bit
and IV of 64 to 128 bit.

• Profile 2: Stream ciphers for hardware applications with restricted re-
sources such as limited storage, gate count, or power consumption (more
compact than AES), having key size of 80 bit and IV of 64 to 128 bit.

There were 34 submissions from across 20 countries. Of these 9 submissions
fell into exclusively software category, 12 fell into hardware category, and 13
qualified for both. LFSR appeared to be a popular primitive with 10 ciphers
using LFSR, 6 NFSR , 3 T-functions and 2 SPN. In phase one, 22 out of
the 34 ciphers were broken. The competition had two more phases and in
2008 eight stream ciphers were selected for the final portfolio of which one
was subsequently broken. The present portfolio consists of HC-128, Rabbit,
Salsa20/12, SOSEMANUK belonging to Profile 1, and Grain v1, MICKEY v2,
Trivium belonging to Profile 2. A comprehensive survey on all of these ciphers
is available in [102].

Another recent initiative is the design of a third set of algorithms for 3GPP
using ZUC algorithm designed by the Data Assurance and Communication
Security Research Center of the Chinese Academy of Sciences (DACAS). Con-
sequent to successful evaluation by the algorithm standardization group ETSI
SAGE, and by other closed teams of eminent experts, the algorithms are open
for public evaluation. One may visit the ZUC forum for more data [1].

1.6 Stream cipher cryptanalysis

Common techniques using which stream ciphers are typically attacked are
described in this section. They range from the traditional attack that aims
to exploit mathematical weaknesses in the design structure to side channel
cryptanalysis that basically targets the implementation. However in real life
cryptanalysis often it is the combination of multiple techniques that need to
be used in a complimentary manner.

21 1.6 Stream cipher cryptanalysis

1.6.1 Theoretical attack models

Exhaustive key search

An exhaustive key search attack aims at trying all possible key combinations
in a trial and error mode. Thus an n bit key would require a search across
all the possible 2n key combinations. This undoubtedly is the most basic at-
tack against any symmetric key cryptosystem and is also known as brute force
attack. For such an attack to succeed there is a requirement of high computa-
tion power and often special purpose machines are used for this purpose. This
attack can be expedited by using techniques that speed-up the brute force
search.

Time Memory Trade-Off (TMTO)

TMTO was originally designed as ‘chosen plaintext attack’ targeting the DES
block cipher. Hellman [47] showed for the first time that by precomputing
some values and storing them in memory one can perform a faster exhaustive
search. This work was refined further by arranging the precomputing in a
format that enabled efficient retrieval. The precomputed values are stored and
used in a manner akin to a dictionary attack. The trade-off here is between the
exhaustive key search that needs nil memory but time complexity of the order
of key-space and the dictionary attack that needs negligible time but memory
complexity of the order of key space. The TMTO technique was found suitable
in other scenarios like ‘known plaintext attack’. Later, TMTO attacks were
shown to be useful for stream ciphers as well in [8, 18,19,52,104].

Weak keys

The key and IV form the seed that goes on to generate the pseudo random
output sequence of a stream cipher also known as the keystream. The no-
tion of ‘weak keys’ implies that the cipher would behave in undesirable ways
wherein inferences pertaining to secret key information can be deduced from
the keystream [66]. A cipher devoid of weak keys is said to have a linear or
flat key space. Historically weak keys were present in almost every rotor based
cipher machines since 1925. There have been some legendary cryptanalytic

Chapter 1: Introduction

exploits of the same. In the present, such a vulnerability may manifest as
related key attacks, key-output correlation attacks, related IV attacks, etc.

Distinguishers

A distinguisher is an algorithm that is able to infer whether the random data
bits (either from the keystream of stream cipher, or from a true random number
generator) given to it, were generated from the stream cipher or from a random
source with a greater probability than the random guess. This is considered
relevant because, the output of stream cipher, is mandated to be indistinguish-
able from a truly random bit-stream. Thus distinguishing attacks, is the study
of keystream for statistical weaknesses and patterns, that could attribute the
keystream to a specific cipher [83]. In simple words it is discovering the fin-
gerprints of a stream cipher in its keystream. Thus a distinguisher aims to
expose within any generic stream cipher design, any structure dependent or
initial state dependent patterns. Distinguishers do not generally result in Key
recovery but could potentially result in correlation attacks. The strength of
the distinguisher is quantified in terms of the keystream sample size required
for analysis.

Algebraic attacks

Algebraic attacks are a type of plaintext attack that were initially proposed
for public key systems [63] but were found to be equally potent in analyzing
practical stream ciphers as well [7, 11, 12, 29, 30, 46]. Algebraic attack being a
known plaintext attack, implies that the adversary has some a-priori knowledge
of some plaintext bits and the associated ciphertext bits. The modus operandi
is extracting the key of the symmetric ciphers by solving a set of polynomial
equations. Thus algebraic attack consists of basically two steps – finding a set
of equations and then solving them to recover the key. It is generalized that
all LFSR related stream ciphers are vulnerable to algebraic attacks provided
that the condition or method sustains. This implies that if it is possible to
deduce an output bit or bits, low degree multivariate equation, then it can also
be used for other states.

23 1.6 Stream cipher cryptanalysis

Correlation attacks

Correlation attacks are plaintext attacks on stream ciphers where the keystream
is produced by the combination of several LFSRs outputs with the help of a
Boolean function (non-linear combiner) [25,43,53,54,77,85,86,95]. Correlation
attack targets ciphers with poor boolean functions. Thus right and intelligent
choice of function used to generate the final keystream is required to prevent
such an attack. Such attacks are prevalent where there is significant corre-
lation among the outputs of the associated LFSRs and the final keystream.
Correlation attacks can be said to be a type of divide and conquer algorithms.

1.6.2 Side-channel attacks

Side-channel cryptanalysis is an alternative paradigm wherein a crypotographic
implementation is attacked on the basis of operating parameters such as power
consumption, electromagnetic radiation, memory read patterns, timing for op-
erations, thermal signatures etc. Although side-channels have recently risen to
prominence in the cryptographic field, its principles exist from time immemo-
rial and have been exploited for centuries. During the 19th Century, there
were issues like cross talk in telephone lines. These issues instead of being
sorted out were rather exploited in First World War for espionage. In 1918, H.
Yardley et al. discovered that electrical devices could cause leakage of crucial
information. Similarly during the Second World War, incidences of tapping
information were prevalent again and for the first time devices began to be
constructed to prevent leakages. Post war, the saga continued and the theatre
of action were signal emanating in and diplomatic embassies. For instance,
Chinese are believed to have relied on acoustic waves to read their enemy’s
intent. Similarly, the Russians are believed to have used microwave signals
in metal bars obscured within statues for signal gathering. Electromagnetic
radations dominated the scene for several decades and a separate discipline
called SIGINT (acronym for SIGnal INTelligence) evolved.

Side-channels today are no longer restricted to electromagnetic radiations
and have extended onto physical features of the micro-electronic devices. In
order to perform a task, the microprocessors consume time and power and
in return radiate electromagnetic radiations, heat and noise. In such cases,

Chapter 1: Introduction

information that appears to be by-products of a computational process, in
reality provide sufficient information for the attackers to detect the type of
operation and exact task being performed on the device. Side-channel attacks
can be classified as invasive or non-invasive based on the method of accessing
the device. In an invasive attack there is a direct access to the device and its
components. Whereas, a non-invasive attack does not include any dismantling
of the device for observations. Side-channel attacks can alternatively be classi-
fied as an active or passive attack. An active attack includes direct induction
of some errors in the computation to observe the functioning of the device,
while a passive attack does not involve any external methods of observing the
functionalities, it silently observes the operations carried out by the device.

Owing to the emerging threats of the side-channel attacks, there have been
focus on design of side-channel leakage tolerant architectures [125]. Similarly
projects like Side Channel Analysis Resistant Design Flow (SCARD) have been
undertaken that study on the improvement of the design flow of the micro-chips
across all levels of implementation [4]. Side-channel attacks that have relevance
to modern ciphers and some of the popular attacks are described below.

Timing attack

In this attack timing variations arising due to various operations being per-
formed by the cipher are observed and exploited. The run time of an operation
such as RSA exponentiation etc, depends on the key used to a large extent.
This can be exploited in timing attacks [70]. There are several other instances
like timing attack on SSH protocol where various keystrokes timing could be
inferred using traffic analysis techniques and in return could locate the pass-
words typed. Typical measures to combat issues of timing attack are Noise
Injection and Branch Equalisation. In noise injection method, noise is intro-
duced before performing any cryptographic operation and then removed later.
In branch equalisation method, the processing is done in such a way that there
exists timing equivalence among the cryptographic operations. These attacks
are relevant to stream ciphers also [74, 130,131].

25 1.7 Motivation for the thesis

Power analysis

This attack relies on the power consumption of the devices during conduct
of any cryptographic operations and can be classified as either Simple Power
Analysis (SPA) or Differential Power Ananlysis (DPA). In SPA the adversary
has precise information of the performance details and then employs statistical
methods. In DPA the adversary exploits the features with no prior knowledge
of the performance details. It just requires correlation of the power consump-
tion along with the secret key to guess a few bits [71]. These attacks have
been mounted on stream ciphers [38,73].

Fault attack

In a fault attack the adversary actively tampers the target device by injecting
spurious data during the operation cycle of a cipher thereby disrupting the
execution. The effects of the injected fault may be monitored and the resulting
variations used to obtain information about the cipher internals [17,21]. Fault
attacks are relevant in case of stream ciphers also [9, 10, 16, 48, 51, 64]. Fault
attacks will be further clarified in Chapter 5 .

Electromagnetic attacks

This attack is based on the analysis of electromagnetic radiations emanating
from the device during certain computational process [3, 99]. Such attacks
are preferred in cases where power analysis attack is not feasible. They are
an effective means to bypass counter-measures built for power analysis attack.
Counter measures against this type of attacks are shielding of the device to
avoid leaking radiations.

1.7 Motivation for the thesis

The core motivation for this thesis was to study the diverse aspects of con-
temporary cryptology. The choice of focusing on HC-128 stream cipher was
inspired by the fact that there were no academic results published for this ci-
pher till 2008, despite the cipher being put up to the community throughout

Chapter 1: Introduction

the eStream competition. This was quite paradoxical considering the fact that
the cipher bears a structural resemblance with the RC4 stream cipher for which
there exists an abundance of academic literature covering almost all aspects
of cryptological significance. Another reason that motivated the study of HC-
128 stream cipher was the fact that its designer Hongjun Wu had published
a number of papers in the cryptanalysis of various stream ciphers [126, 129],
prior making this design. The insight gained by the designer would no doubt
be reflected in his designs making the task of analysis even more challenging.

1.8 Contribution and thesis plan

A comprehensive study into the myriad aspects of contemporary cryptology
should cover the entire spectrum of cryptographic designs, theoretical as well
as experimental cryptanalysis, study of emerging side channel attacks as well
as implementation on state of art hardware. Accordingly the HC-128 stream
cipher has been studied in a disciplined manner. This focus of the thesis
is on the papers [127, 128] and presents a rigorous study of the stream cipher
covering the broad aspects of modern cryptology, namely, the theoretical study
of cryptographic primitives, design modification proposal, experimental and
side channel analysis of this cipher and finally implementation strategies.

In Chapter 2, we give the description of the HC-128 and HC-256 stream
cipher alongwith an overview of all existing works in the analysis and imple-
mentation of this cipher.

In Chapter 3, we first show that the knowledge of any one of the two inter-
nal state arrays of HC-128 along with the knowledge of 2048 keystream words is
sufficient to construct the other state array completely in 242 time complexity.
This analysis reveals a structural insight into the cipher along with theoret-
ically establishing some nice combinatorial properties of HC-128 keystream
generation algorithm. This chapter is based on the conference paper [96].

Next in Chapter 4, using linear approximation of the addition modulo 2n

of three n-bit integers we identify linear approximations of g1, g2, the feed-
back functions of HC-128. Here we show that the process of keystream output
generation of HC-128 can be well approximated by linear functions wherein

27 1.9 Prerequisites for the reader

the ‘least significant bit’ based distinguisher (presented by the designer of
the cipher) of HC-128 [128, Section 4] works can be extended for the com-
plete 32-bit word. Further using the above linear approximations of g1, g2, we
present the first new distinguisher for HC-128 which is slightly weaker than
Wu’s distinguisher. We also study how HC-128 keystream words leak secret
state information of the cipher due to the properties of the functions h1, h2

and present improved results. This chapter is based on the journal paper [81]
and conference paper [80].

In Chapter 5 we study the Side channel attacks HC series of stream cipher.
We extend the established HC-128 fault attack and the HC-256 cache analysis
onto the HC-256 and HC-128 ciphers respectively under similar models. The
techniques applied on one variant is not trivially translatable to the other and
the issue was left open until the current work. Here we propose a technique to
recover half the state of HC-128 using cache analysis, which can be cascaded
with the differential attack towards a full state recovery and hence key recovery.
Similarly, we analyze the state leakage of HC-256 under differential fault attack
model to achieve partial state recovery. This chapter is based on the conference
paper [97].

In Chapter 6, we study the implementation issues for HC-128 in a dis-
ciplined manner. HC-128 is primarily designed as a software stream cipher
aiming for sequential execution on general purpose processors and so we first
carry out implementations on embedded and customizable processors. Next
we consider the ASIC implementation for co-processor design. Further we ex-
plore several parallelization strategies for faster execution of the cipher. This
is the first detailed implementation exercise as implementation of HC-128 on
hardware was never attempted on the eSCARGOT chip. This chapter is based
on the conference paper [26].

1.9 Prerequisites for the reader

The thesis is an effort to convey the features of HC-128 stream cipher in a much
elaborate way compared to the existing literature. Apart from the summary
of the thesis chapters in the aforesaid section, there are certain prerequisites
expected on the part of the reader for easier and clearer understanding. It is

Chapter 1: Introduction

required on the reader’s part to have a sound knowledge of the mathematical
models and field of probability, permutation and combination. Apart from
that, it is imperative that a reader has some basic knowledge of classic and
modern cryptographic structures and terminologies so as to relate them easily
while comprehending the structure of the stream ciphers. Though we have
made every effort to provide the minutest details of certain cryptographic terms
and also the hardware implementation based terms, yet it would be much
easier, quicker and interesting for the reader to understand if (s)he has some
elementary knowledge of embedded systems and VLSI.

Chapter 2
Background

Babbage’s Rule– “No man’s cipher is worth looking at unless the
inventor has himself solved a very difficult cipher.”

– The Codebreakers by Kahn, 2nd ed, pg 765

2.1 The HC series of Stream Ciphers

The HC series consists of two synchronous stream ciphers – HC-256 and HC-
128 – both designed by Hongjun Wu. HC-256 was first presented in FSE
2004 [127] and was subsequently a submission in the eStream initiative to
identify new stream ciphers. HC-256 was successful in the Phase I and entered
Phase II. HC-128 [128], a lighter version of HC-256, was also a submission to
eStream competition, and it made it to the final software portfolio.

In this chapter we first present the description of HC-128 and HC-256
stream ciphers. The eSTREAM [37] Portfolio (revision 1 in September 2008)
contains the stream cipher HC-128 [128] in Profile 1 (SW). Initial analysis of
the cipher was given by the designer with a view to conjecture the security of
this cipher. Subsequent works on the two ciphers have been brought out in the
next section. The chapter concludes with a list of papers published as part of
this thesis.

29

Chapter 2: Background

2.2 Description of HC-128

2.2.1 Operators and structures

We summarize the key points of the structure and the keystream generation
of the cipher below. The following operators are used in HC-128.

+ : addition modulo 232.

� : subtraction modulo 512.

⊕ : bit-wise exclusive OR.

‖ : bit-string concatenation.

� : right shift operator (defined on 32-bit numbers).

� : left shift operator (defined on 32-bit numbers).

≫ : right rotation operator (defined on 32-bit numbers).

≪ : left rotation operator (defined on 32-bit numbers).

HC-128 is a word-oriented stream cipher, with each word of size 32-bits.
Two internal state arrays P and Q are used in HC-128, each with 512 many
32-bit words. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization vec-
tor IV [0, . . . , 3] are used, each entry being a 32-bit word. The following six
functions are used in HC-128.

f1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3)

f2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10)

g1(x, y, z) = ((x≫ 10)⊕ (z≫ 23)) + (y≫ 8)

g2(x, y, z) = ((x≪ 10)⊕ (z≪ 23)) + (y≪ 8)

h1(x) = Q[x(0)] +Q[256 + x(2)]

h2(x) = P [x(0)] + P [256 + x(2)]

where x = x(3)‖x(2)‖x(1)‖x(0) is a 32-bit word, with x(0), x(1), x(2) and x(3) being
the four bytes from right to left.

31 2.2 Description of HC-128

2.2.2 Initialization process

The key and IV setup of HC-128 recursively loads the P and Q array from
expanded key and IV, and runs the cipher for 1024 steps with the outputs used
to replace the table elements. The initialization is as in Algorithm 1.

Data: Key (K) and IV , each of length 4 words (128 bits)
Result: State arrays P and Q, each consisting of 512 words
// Expand the key and IV to 8-words each
for 0 ≤ i ≤ 3 do

K[i+ 4] = K[i] and IV [i+ 4] = IV [i];
end
// Expand key and IV to 1280-word array W

W [i] =

K[i], 0 ≤ i ≤ 7
IV [i− 8], 8 ≤ i ≤ 15
f2(W [i− 2]) +W [i− 7]+

f1(W [i− 15]) +W [i− 16] + i, 16 ≤ i ≤ 1279

// Update tables P and Q using the W array
for 0 ≤ i ≤ 511 do

P [i] = W [i+ 256] and Q[i] = W [i+ 768];
end
// Update the tables for 1024 rounds, without output
for 0 ≤ i ≤ 511 do

P [i] = (P [i] + g1(P [i� 3], P [i� 10], P [i� 511]))⊕ h1(P [i� 12]);
end
for 0 ≤ i ≤ 511 do

Q[i] = (Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511]))⊕ h2(Q[i� 12]);
end

Algorithm 1: Initialization process of HC-128 stream cipher.

In [76], the ability to recover the key given the internal state post initializa-
tion was reported using this algorithm in reverse. Accordingly, a modification
was proposed to interleave the KGS. In our analysis, we found that even the
modified version was vulnerable in returning the key when the algorithm was
used in reverse order.

Chapter 2: Background

2.2.3 Keystream generation

The input to the keystream generation algorithm are the state arrays P and
Q, each consisting of 512 words. Let si denote the keystream word (32 bits)
generated at the i-th step. The keystream of HC-128 is generated using Algo-
rithm 2.

Data: State arrays P and Q, each consisting of 512 words
Result: Keystream si for i = 0, 1, 2, . . .
i = 0;
// Repeat until enough keystream words are generated
while keystream required do

j = i mod 512;
if (i mod 1024) < 512 then

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

end
else

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

end
i = i+ 1;

end

Algorithm 2: Keystream generation algorithm of HC-128.

2.3 Description of HC-256

The operators used in HC-256 are similar to HC-128 as described in Section 2.2
(with the exception of (�) which is subtraction modulo 1024). The difference
lies in the number of bits used and the processing speed. In Pentium M
processor, the speed of HC 256 is 4.4 cycles/byte while that of HC-128 is
3.05 cycles/byte.

Two tables P and Q, each with 1024 many 32-bit elements are used as
internal states of HC-256. A 256 bit key array K[0, . . . , 7] and a 256-bit ini-
tialization vector IV [0, . . . , 7] are used, where each entry of the arrays is a

33 2.3 Description of HC-256

32-bit element. The following six functions are used in HC-256.

f1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3)

f2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10)

g1(x, y) = ((x≫ 10)⊕ (y≫ 23)) +Q[(x⊕ y) mod 1024]

g2(x, y) = ((x≫ 10)⊕ (y≫ 23)) + P [(x⊕ y) mod 1024]

h1(x) = Q[x(0)] +Q[256 + x(1)] +Q[512 + x(2)] +Q[768 + x(3)]

h2(x) = P [x(0)] + P [256 + x(1)] + P [512 + x(2)] + P [768 + x(3)]

where x = x(3)‖x(2)‖x(1)‖x(0) is a 32-bit word, with x(0), x(1), x(2) and x(3) being
the four bytes from right to left.

The key and IV setup of HC-256 proceeds as in Algorithm 3.

Data: Key (K) and IV , each of length 8 words (256 bits)
Result: State arrays P and Q, each consisting of 1024 words
// Expand key and IV to 2560-word array W

W [i] =

K[i], 0 ≤ i ≤ 7
IV [i− 8], 8 ≤ i ≤ 15
f2(W [i− 2]) +W [i− 7]+

f1(W [i− 15]) +W [i− 16] + i, 16 ≤ i ≤ 2559

// Update tables P and Q using the W array
for 0 ≤ i ≤ 1023 do

P [i] = W [i+ 512] and Q[i] = W [i+ 1536];
end
Run keystream generation (Algorithm 4) 4096 steps without output.
Algorithm 3: Initialization process of HC-256 stream cipher.

The input to the keystream generation algorithm are the state arrays P
and Q, each consisting of 1024 words. Let si denote the keystream word (32
bits) generated at the i-th step. The keystream generation of HC-256 is as
shown in Algorithm 4.

The HC-128 and HC-256 stream ciphers are extremely fast on keystream
generation. On the flip side, HC-128 and HC-256 stream ciphers have large

Chapter 2: Background

Data: State arrays P and Q, each consisting of 1024 words
Result: Keystream si for i = 0, 1, 2, . . .
i = 0;
// Repeat until enough keystream words are generated
while keystream required do

j = i mod 1024;
if (i mod 2048) < 1024 then

P [j] = P [j] + P [j � 10] + g1(P [j � 3], P [j � 1023]);
si = h1(P [j � 12])⊕ P [j];

end
else

Q[j] = Q[j] +Q[j � 10] + g2(Q[j � 3], Q[j � 1023]);
si = h2(Q[j � 12])⊕Q[j];

end
i = i+ 1;

end

Algorithm 4: Keystream generation algorithm of HC-256.

arrays and the time for Key and IV setup is large (around 27,300 and 74,000
clock cycles respectively). This makes these ciphers suitable for point to point
link-level encryption that does not require frequent reinitialisation.

2.4 Chronology of recent works

At the time of commencement of work on this thesis in year 2008, there were
no research papers on HC-128 or HC-256, despite the fact that the two ciphers
had been subject to years of study, as part of the eStream project. The details
of research papers that emerged during the course of our research are given in
the subsequent paragraphs.

2.4.1 Theoretical Cryptanalysis

The details of research papers pertaining to theoretical cryptanalysis of HC-128
and HC-256 stream ciphers are as follows.

Dunkelman [36]. The first recorded detail on HC-128 stream cipher was an
observation made in eStream forum by Dunkelman [36], who showed that

35 2.4 Chronology of recent works

the keystream words of HC-128 leak information regarding the internal
state. He observed that Prob(sj ⊕ sj+1 = P [j]⊕P [j + 1]) ≈ 2−16, where
sj, sj+1 are two consecutive keystream output words.

Maitra et al. [80]. This is our work and is the first work on the study of
the keystream of HC-128, published in WCC 09. This used linear ap-
proximation of the addition modulo 2n of three n-bit integers to identify
linear approximations of g1, g2, the feedback functions of HC-128. This,
in turn, shows that the process of keystream output generation of HC-
128 can be well approximated by linear functions. In this direction, the
‘least significant bit’ based distinguisher (presented by the designer along
with the specifications of the cipher) of HC-128 was shown to work for
the complete 32-bit word. Further, in the line of Dunkelman’s observa-
tion above, the leakage pattern of HC-128 secret state information due to
keystream words due to the properties of the functions h1, h2 was studied
and improved results were presented.

Sekar and Preneel [106]. This was the first work on the theoretical crypt-
analysis of HC-256 stream cipher. Here a class of distinguishers on HC-
256, each of which requires testing the validity of about 2276.8 linear
equations involving binary keystream variables, was presented. These
attacks improve the data complexity of the hitherto best-known distin-
guisher (presented by the designer along with the specifications of the
cipher) by a factor of about 12. This improvement is not directly ap-
plicable to HC-128 where the elements of the state array are all rotated
prior to use in state update function.

Liu and Qin [76]. This work showed that the Key and IV of HC-128 and HC-
256 can be recovered from the internal state of the cipher post completion
of the Key and IV initialization. Additionally two modifications have
been to make the initialization non invertible. The first method was to
to interleave the updation of P and Q array terms in the final stages
of the KGS. The other method employed generating additional values
of W array. In our analysis, we found that the first modification was
unsuccessful as it was trivial to obtain the key running the algorithm in
reverse order.

Chapter 2: Background

Paul et al. [96]. This is our work in IWSEC 2011, which presented a half
state exposure of the HC-128 stream cipher wherein knowledge of any
one of the two internal state arrays of HC-128 along with the knowledge
of 2048 keystream words is sufficient to construct the other state array
completely in 242 time complexity. This analysis revealed a structural in-
sight into the cipher and theoretically established certain combinatorial
properties of HC-128 keystream generation algorithm. Additionally mod-
ifications to HC-128 were proposed, that would take care of the aforesaid
issue with little reduction in speed.

Maitra et al. [81]. This is our paper published in Journal of Design, Codes
and Cryptography and is an extended version of [80] and gave a new
albeit weaker distinguisher for HC-128.

Stankovski et al. [120]. This paper published in Journal of Design, Codes
and Cryptography brought out that the keystream requirement of distin-
guisher published in [128] was underestimated by a factor of 28. It accord-
ingly has a keystream requirement of 2160.471 number of 32-bit keystream
blocks. There are two new types of distinguishers presented of which
one is based on counting the number of zeros in created blocks of bits.
This gave a biased distribution that needs 2143.537 such constructed block
samples, corresponding to 2152.537 number of 32-bit keystream blocks.

Stankovski et al. [119]. In this paper rotations and XOR operation used
for mixing operation was studied to obtain theoretical results on related
probability distributions. A distinguisher was presented for a variant of
HC-128 where modular addition is replaced by XOR operation. This
variant had a keystream complexity of 290.9.

2.4.2 Side Channel Cryptanalysis

The details of research papers pertaining to Side Channel cryptanalysis of
HC-128 and HC-256 stream ciphers are as follows:-

Zenner [130]. In SAC-2008, Erik Zenner [130] presented a cache-timing anal-
ysis attack on HC-256 stream cipher. This attack is applicable for imple-
mentations on devices that use cache memory. Here, the measurements

37 2.4 Chronology of recent works

of cache access timings leaks certain bits. The number of bits leaked is
inversely proportional to the size of cache page. Based on certain bits
the remainder were computed using a guess and verify technique. The
attack was able to establish the internal state with 6148 precise cache
timing measurements with the knowledge of 216 plaintext bits and also
lead to key recovery.

Kircanski and Youssef [64]. In Africacrypt 2010, Aleksandar Kircanski
and Amr M. Youssef presented a differential fault attack on HC-128
requiring 7968 faults that recovers the complete internal state of HC-128
by solving a set of 32 systems of linear equations over Z2 in 1024 vari-
ables. The fault model employed here is one in which the attacker will
be able to fault a random word of the inner state without any control of
its exact location or its new faulted value. The attack is based on the
fact that some of the inner state words in HC-128 are utilized several
times without being updated.

Paul and Raizada [97]. This is our work presented in SPACE 2012 that
explored the effect of a side channel technique on a variant of the cipher
algorithm implemented in a similar model. The motivation for such
an investigation is to study the feasibility of using a cipher variant as
a candidate for replacement to a cipher subjected to a successful side
channels attack. The study was centered around the HC series of stream
ciphers, viz., HC-128 and HC-256. The HC-128 fault attack and the HC-
256 cache analysis was extended onto the HC-256 and HC-128 ciphers
respectively under similar models. The techniques applied on one variant
is not trivially translatable to the other. A technique was proposed
to recover half the state of HC-128 using cache analysis, which can be
cascaded with the differential attack towards a full state recovery and
hence key recovery. Similarly, the state leakage of HC-256 was studied
under differential fault attack model to achieve partial state recovery.

2.4.3 Cipher Implementation and Usage

The details of research papers pertaining to implementation and usage of HC-
128 stream ciphers are as follows.

Chapter 2: Background

Meiser et al. [87]. In this paper in SIES 2008 implementation results for per-
formance of stream ciphers Dragon, HC-128, LEX, Salsa20, Salsa20/12,
and SOSEMANUK on small embedded 8-bit resource constrained micro-
controllers was presented.

Kausar and Naureen [60]. The paper deals with the applicability of stream
ciphers in the context of Wireless Sensor Network (WSN) devices that
are resource scarce by benchmarking WSN-specific NesC based imple-
mentations of two stream ciphers namely HC-128 and Rabbit in terms of
efficient energy and memory consumption. The two stream ciphers were
able to cope to the WSN-specific requirements and perform efficiently
under these requirements. This paper concludes that HC-128 software
stream cipher is in the area of sensor networks perform as efficiently as
Rabbit.

Jolfaei et al. [55]. In this paper published in the International Journal of
Electronic Security and Digital Forensics, the performance of HC-128
and HC-256 for image encryption was studied. The two ciphers were
found to be efficient, feasible and trustworthy to be adopted for image
encryption.

Chattopadhyay et al. [26]. This was our work presented in ISCAS 2012,
which studied several implementation issues for HC-128. The cipher
was implemented on embedded and customizable processors, and also
modeled as a dedicated hardware accelerator. Several parallelization
strategies for improving throughput were presented. This novel imple-
mentation strategies marked the fastest HC-128 execution reported till
date.

Khalid et al. [62]. This paper in the ICISC 2012 is the first reported effort of
mapping HC-Series of stream ciphers on GPUs. It presents present var-
ious optimization strategies for HC-128 and HC-256 speedup for CUDA
device architecture. The peak performance achieved with a single data-
stream for HC-128 and HC-256 is 0.95 Gbps and 0.41 Gbps respec-
tively. Similarly for multiple parallel data-stream the implementation
has clocked approximately 31 Gbps for HC-128 and 14 Gbps for HC-256
(with 32768 parallel data-streams).

39 2.5 Publications included in this Thesis

2.5 Publications included in this Thesis

This thesis is built upon one journal paper [81] and four conference papers [26,
80,96,97]. The journal paper [81] is a consolidation and considerable extension
of the conference paper [80]. A detailed list of publications is given below.

• Subhamoy Maitra, Goutam Paul, Shashwat Raizada, Subhabrata Sen,
and Rudradev Sengupta. Some Observations on HC-128. Des. Codes
Cryptography, 59(1-3):231–245, 2011 [81].

• Subhamoy Maitra, Goutam Paul, and Shashwat Raizada. Some Obser-
vations on HC-128. In International Workshop on Coding and Cryptol-
ogy, WCC 2009, Ullensvang, Norway, PreProceedings, pages 527–539,
2009 [80].

• Goutam Paul, Subhamoy Maitra, and Shashwat Raizada. A Theoretical
Analysis of the Structure of HC-128. In Tetsu Iwata and Masakatsu
Nishigaki, editors, IWSEC, volume 7038 of Lecture Notes in Computer
Science, pages 161–177. Springer, 2011 [96].

• Anupam Chattopadhyay, Ayesha Khalid, Subhamoy Maitra, and Shash-
wat Raizada. Designing High-throughput Hardware Accelerator for
Stream cipher HC-128. In ISCAS, pages 1448–1451. IEEE, 2012 [26].

• Goutam Paul and Shashwat Raizada. Impact of Extending side channel
attack on Cipher Variants: A Case Study with the HC Series of Stream
ciphers. In Andrey Bogdanov and Somitra Kumar Sanadhya, editors,
SPACE, volume 7644 of Lecture Notes in Computer Science, pages 32–
44. Springer, 2012 [97].

this page intentionally left blank

Part I

Analysis of HC-128 Stream
Cipher

41

Chapter 3
On the internal structure of HC-128

In this chapter we study certain issues related to the internal structure of HC-
128. We show that the knowledge of any one of the two internal state arrays
of HC-128 along with the knowledge of 2048 keystream words is sufficient to
construct the other state array completely in 242 time complexity. Though
this analysis does not lead to any attack on HC-128, it reveals a structural
insight into the cipher. In the process, we theoretically establish some dis-
cernible combinatorial properties of HC-128 keystream generation algorithm.
We also suggest a modification to HC-128 that prevents the above analysis
with minimal reduction in speed.

As described earlier, there are two internal state arrays of HC-128, P and
Q, each containing 512 words (each word is of 32 bits). The keystream is
generated using two distinct procedures that are alternated in blocks of 512
words. Within a block, one of these arrays gets updated and the keystream
word is produced by XOR-ing the updated entry with the sum of two words
from the other array. The role of the two arrays is reversed after every block of
512 keystream words generation. In this chapter, we show that the knowledge
of one internal state array of HC-128 reveals the other. To be specific, in
Section 3.1, we show that if one knows one of P and Q completely, then one
can reconstruct the complete other array efficiently. This Half-State Exposure
Analysis can serve as a general model of analysis when the state of a stream
cipher consists of two similar structures of the same size.

Without loss of generality, we consider four consecutive blocks B1, B2, B3

43

Chapter 3: Internal Structure

and B4 of keystream generation such that Q is updated with the completion
of blocks B1 and B3 and P is updated with the completion of blocks B2 and
B4. We assume that, the keystream words corresponding to all of these four
blocks are known. Here, the symbols P and Q will denote the arrays after the
completion of block B1 and before the start of block B2. After the completion
of block B2, Q remains unchanged and P is updated to, say, PN . After the
completion of block B3, Q would again be updated to, say, QN .

Block B1: Block B2: Block B3:
P unchanged, P updated to PN , PN unchanged,
Q updated. Q unchanged. Q updated to QN .
(Q denotes the updated array)

Table 3.1: The evolution of P, Q arrays.

Block B4, is not shown in Table 3.1, as it will only be used for verifying
the correctness of our reconstruction.

In Section 3.1.2, we present Algorithm 9 (called ReconstructState), that
takes the 512 words of the array P as inputs and (assuming that the 2048
keystream words corresponding to the four blocks B1, B2, B3 and B4 are
known) produces 512 words of the array QN as output. Since the update
of an array is self dependent, it is inferred that that the complete state gets
exposed from block B3 onwards. The proof of correctness of the algorithm is
established through Lemma 3.3 and Theorems 3.6, 3.7 and 3.8 and the data
and time complexity requirements are analyzed in Theorem 3.9. Further, in
Section 3.2, we propose a modification to the existing HC-128 that escapes
the above analysis. We also argue the motivation of such design and present
performance comparisons with the existing designs of HC-128 and HC-256.

3.1 Reconstruction of one array from another

We introduce a few notations for the ease of analysis. We describe them and
then move on to the actual strategy.

45 3.1 Reconstruction of one array from another

3.1.1 Notations and problem formulation

As discussed earlier, we consider four consecutive blocks B1, B2, B3 and B4. In
B1 and B3, Q is updated. Let Q denote the updated array after the completion
of block B1 and let QN be the new array after Q is updated in block B3. In B1,
P remains unchanged and in B2, it is updated to PN . Let sb,i denote the i-th
keystream word produced in block Bb, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511. The update of
P (or Q) depends only on itself, i.e.,

PN [i] =

P [i] + g1(P [509 + i], P [502 + i], P [i+ 1]), for 0 ≤ i ≤ 2;

P [i] + g1(PN [i− 3], P [502 + i], P [i+ 1]), for 3 ≤ i ≤ 9;

P [i] + g1(PN [i− 3], PN [i− 10], P [i+ 1]), for 10 ≤ i ≤ 510;

P [i] + g1(PN [i− 3], PN [i− 10], PN [i− 511]), for i = 511.
(3.1)

Thus, if one knows the 512 words of P (or Q) corresponding to any one
block, then one can easily derive the complete P (or Q) array with respect to
any subsequent block.

Consider that the keystream words sb,i, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511, are
observable. We formulate a special state reconstruction problem as follows.

Given the partial state information P [0 . . . 511],

reconstruct the complete state (PN [0 . . . 511], QN [0 . . . 511]).

Since the update of each of P and Q depends only on P and Q respec-
tively, once we determine PN and QN , we essentially recover the complete
state information for all subsequent steps.

3.1.2 State reconstruction strategy

Our state reconstruction proceeds in five phases. The First Phase would be
to determine PN from P using Equation (3.1).

Chapter 3: Internal Structure

The keystream generation of block B2 follows the equation

s2,i =

h1(P [500 + i])⊕ PN [i], for 0 ≤ i ≤ 11;

h1(PN [i− 12])⊕ PN [i], for 12 ≤ i ≤ 511.
(3.2)

Since h1(x) = Q[x(0)] +Q[256 + x(2)], we can rewrite Equation (3.2) as

Q[li] +Q[ui] = s2,i ⊕ PN [i] (3.3)

where,

li = (P [500 + i])(0) and ui = 256 + (P [500 + i])(2), 0 ≤ i ≤ 11,

li = (PN [i− 12])(0) and ui = 256 + (PN [i− 12])(2), 12 ≤ i ≤ 511.
(3.4)

Here li, ui and the right hand side s2,i ⊕ PN [i] of System 3.3 of equations
are known for all i = 0, 1, . . . , 511. Thus, there are 512 equations in 512
unknowns. The above Phase is formalized in Algorithm 5, called Phase 1 of
ReconstructState.

Input: P [0 . . . 511].
Output: PN [0 . . . 511], QN [0 . . . 511].
First Phase:
for i← 0 to 511 do

Determine PN [i] using Equation (3.1);1

end
Algorithm 5: Phase 1 of ReconstructState

Applying Gaussian elimination, one would require a complexity of around
5123 = 227. However, according to Lemma 3.1, a unique solution does not
exist for any such system and hence we have to take a different approach to
solve the system. Though the proof of Lemma 3.1 is simple, we include here
for easy reference.

Lemma 3.1. Any system of r + s equations in r + s variables x1, x2, . . . , xr

and y1, y2, . . . , ys, where each equation is of the form xi+yj for some i in [1, r]
and some j in [1, s], does not have a unique solution.

47 3.1 Reconstruction of one array from another

Proof. Let us consider the (r + s) × (r + s) coefficient matrix A of the
system. Let the columns be denoted by C1, . . . , Cr+s, such that the first
r columns C1, . . . , Cr correspond to the variables x1, . . . , xr and the last s
columns Cr+1, . . . , Cr+s correspond to the variables y1, . . . , ys.

Every row of A has the entry 1 in exactly two places and the entry 0
elsewhere. The first 1 in each row appears in one of the columns C1, . . . , Cr

and the second 1 in one of the columns Cr+1, . . . , Cr+s.

After the elementary column transformations C1 ← C1 + . . . + Cr and
Cr+1 ← Cr+1 + . . .+Cr+s, the two columns C1 and Cr+1 has 1’s in all the rows
and hence become identical. This implies that the matrix is not of full rank
and hence unique solution does not exist for the system.

The left hand side of every equation in System 3.3 is of the formQ[li]+Q[ui],
where 0 ≤ li ≤ 255 and 256 ≤ ui ≤ 511. Taking r = s = 256, xi = Q[i − 1],
1 ≤ i ≤ 256 and yj = Q[255 + j], 1 ≤ j ≤ 256, we see that Lemma 3.1 directly
applies to this system, establishing the non-existence of a unique solution.

At this stage, one could remove the redundant rows to find a linear space
which contains the solution. However, it is not clear how many variables need
to be guessed to arrive at the final solution. Below we formulate a graph
theoretic approach to derive the entries of the array Q efficiently, by guessing
the value of only a single variable.

Definition 3.2. System 3.3 of 512 equations can be represented in the
form of a bipartite graph G = (V1, V2, E), where V1 = {0, . . . , 255}, V2 =
{256, . . . , 511} and for li ∈ V1 and ui ∈ V2, ∃ an edge {li, ui} ∈ E if and only
if the sum Q[li] + Q[ui] is known. Thus, |E| = 512 (counting repeated edges,
if any). We call such a graph G with the vertices as the indices of one internal
array of HC-128 the index graph of the state of HC-128.

Lemma 3.3. LetM be the size of the largest connected component of the index
graph G corresponding to block B2. Then M out of the 512 words of the array
Q are determined up to the value of a single 32-bit word.

Proof. Consider any one of the 512 equations of System 3.3. Since the sum
Q[li]+Q[ui] is known, knowledge of one of Q[li], Q[ui] reveals the other. Thus,
if we know one word of Q at any index of a connected component, we can

Chapter 3: Internal Structure

immediately derive the words of Q at all the indices of the same component.
Since this holds for each connected component, we can guess any one 32-bit
word in the largest connected component correctly in 232 attempts and thereby
the result follows.

Since the arrays P,Q and the keystream of HC-128 are assumed to be
random, our index graph G can be considered to be a random bipartite graph.

Theoretical analysis of the size distribution of the connected components
of random finite graphs is a vast area of research in applied probability and
there have been several works [28,45,58,91,105] in this direction under different
graph models. In [105], the model considered is a bipartite graph G(n1, n2, T)
with n1 vertices in the first part, n2 vertices in the second one and the graph is
constructed by T independent trials, each of them consists of drawing an edge
which joins two vertices chosen independently of each other from distinct parts.
This coincides with our index graph model of Definition 3.2 with n1 = |V1|,
n2 = |V2| and T = |E|.

In general, let n1 ≥ n2, α = n2
n1
, β = (1 − α) lnn1, n = n1 + n2. Let

ξn1,n2,T and χn1,n2,T denote the number of isolated vertices and the number
of connected components in G(n1, n2, T) respectively. We have the following
result from [105].

Proposition 3.4. If n → ∞ and (1 + α)T = n lnn + Xn + o(n), where X
is a fixed number, then Prob (χn1,n2,T = ξn1,n2,T + 1) → 1 and for any k =
0, 1, 2, . . . , P rob (ξn1,n2,T = k)− λke−λ

k! → 0, where λ = e−X(1+e−β)
1+α .

In other words, if n is sufficiently large and n1, n2, T are related by
(1 + α)T = n lnn + Xn + o(n), then the graph contains one giant connected
component and isolated vertices whose number follows a Poisson distribution
with the aforesaid parameter λ.

Corollary 3.5. If M is the size of the largest component of the index graph G,
then the mean and standard deviation of M are respectively given by E(M) ≈
442.59 and sd(M) ≈ 8.33.

Proof. For our index graph, n1 = n2 = 256, n = n1 + n2 = 512, T = 512,
α = n2

n1
= 1, β = (1−α) lnn1 = 0. The relation (1 +α)T = n lnn+Xn+ o(n)

49 3.1 Reconstruction of one array from another

is equivalent to (1+α)
n
T = lnn + X + o(n)

n
. As n → ∞, the ratio o(n)

n
→ 0 and

hence X → (1+α)
n
T − lnn. Substituting α = 1, T = 512 and n = 512, we get

X ≈ −4.24.

By Proposition 3.4, the limiting distribution of the random variable ξn1,n2,T

is Poisson with mean (as well as variance) λ = e−X(1+e−β)
1+α ≈ e4.24 ≈ 69.41.

Moreover, in the limit, χn1,n2,T = ξn1,n2,T + 1 and this implies that all the
vertices except the isolated ones would be in a single giant component. Thus,
M = n − ξn1,n2,T and the expectation E(M) = n − E(ξn1,n2,T) = n − λ ≈
512 − 69.41 = 442.59. Again, the variance V ar(M) = V ar(n − ξn1,n2,T) =
V ar(ξn1,n2,T) = λ, giving sd(M) = sd(ξn1,n2,T) =

√
λ ≈ 8.33.

Simulations with 10 million trials, each time with 1024 consecutive words
of keystream generation for the complete arrays P and Q, gives the average
of the number ξn1,n2,T of isolated vertices of the index graph of the state of
HC-128 as 69.02 with a standard deviation of 6.41.

These values closely match with the theoretical estimates of the mean λ ≈
69.41 and standard deviation

√
λ ≈ 8.33 of ξn1,n2,T derived in Corollary 3.5.

Again from Corollary 3.5, theoretical estimates of the mean and standard
deviation of the sizeM of the largest component is 442.59 and 8.33 respectively.
However, from the same simulation described above, the average and standard
deviation of M are found to be 407.91 ≈ 408 and 9.17 respectively.

The theoretical expectation E(M) overestimates the actual average of M
in practice, because the theoretical estimate is asymptotic with n → ∞ and
for our index graph we have n = 512 <∞.

In the limit, each vertex is either an isolated one or part of the single
giant component. In practice, on the other hand, except the isolated vertices
(≈ 69 in number) and the vertices of the giant component (≈ 408 in number),
the remaining few (≈ 512 − 69 − 408 = 35 in number) vertices form some
small components. However, the low (9.17) empirical standard deviation of M
implies that the empirical estimate 408 of E(M) is robust.

We would see later that as a consequence of Theorem 3.7, any M > 200 is
sufficient for our purpose.

If C = {y1, y2, . . . , yM} be the largest component of G, then we can guess

Chapter 3: Internal Structure

the word corresponding to any fixed index, say y1. As explained in the
proof of Lemma 3.3, each guess of Q[y1] uniquely determines the values of
Q[y2], . . . , Q[yM]. According to Corollary 3.5 and the discussion following it,
we can guess around 408 words of Q in this method. This is the Second
Phase of our solution and is formalized in Algorithm 6, called Phase 2 of
ReconstructState.

Second Phase:
Form a bipartite graph G = (V1, V2, E) as follows;1

V1 ← {0, . . . , 255}; V2 ← {256, . . . , 511}; E ← ∅;2

for i← 0 to 511 do3

Determine li and ui using Equation (3.4);4

E ← E ∪ {li, ui};
end
Find all connected components of G;
Let C = {y1, y2, . . . , yM} be the largest component with size M ;5

Guess Q[y1] and thereby determine Q[y2], . . . , Q[yM] from Equation
(3.3); and for each such guess of Q[y1], repeat the Third, Fourth and
Fifth Phases below;

Algorithm 6: Phase 2 of ReconstructState

We use the following result, which we call Propagation Theorem, to deter-
mine the remaining unknown words.

Theorem 3.6 (Propagation Theorem). If Q[y] is known for some y in [0, 499],
thenm = b511−y

12 c more words of Q, namely, Q[y+12], Q[y+24], . . . , Q[y+12m],
can all be determined from Q[y] in a time complexity that is linear in the size
of Q.

Proof. Consider block B1. Following our notation in Section 3.1.1, the equation
for keystream generation is

s1,i = h2(Q[i− 12])⊕Q[i], for 12 ≤ i ≤ 511. Written in a different way, it
becomes

Q[i] = s1,i ⊕
(
P
[
(Q[i− 12])(0)

]
+ P

[
256 + (Q[i− 12])(2)

])
.

Now, setting y = i− 12, we have, for 0 ≤ y ≤ 499,

Q[y + 12] = s1,y+12 ⊕
(
P
(
[Q[y])(0)

]
+ P

[
256 + (Q[y])(2)

])
. (3.5)

51 3.1 Reconstruction of one array from another

Equation (3.5) is a recursive equation, in which all s1 values and the array
P are completely known. Clearly, if we know one Q[y], we know all subsequent
Q[y + 12k], for k = 1, 2, . . ., as long as y + 12k ≤ 511. This means k ≤ 511−y

12 .
The number m of words of Q that can be determined is then the maximum
allowable value of k, i.e., m = b511−y

12 c.

By recursively applying Equation (3.5) to the words of the Q array that
were determined from the maximum size connected component of the index
graph, we derive approximately 104(= 512−408) unknown words in the array.
This is the Third Phase of our solution.

Third Phase:
for j ← 1 to M do1

y ← yj;2

while y ≤ 499 do3

if Q[y + 12] is still unknown then4

Q[y + 12]← s1,y+12 ⊕
(
P
[
(Q[y])(0)

]
+ P

[
256 + (Q[y])(2)

])
;5

end
y ← y + 12;6

end
end

Algorithm 7: Phase 3 of ReconstructState

If we imagine that the words are initially labeled as ‘known’ or ‘unknown’,
then this step can be visualized as propagation of the ‘known’ labels in the
forward direction. Even after this step, some words remain unknown. However,
as Theorem 3.7 would imply, we observe that through this propagation, all the
words Q[500], Q[501], . . . Q[511] become ‘known’ with probability almost one.

Theorem 3.7. After the Third Phase, the expected number of unknown words
amongst Q[500], Q[501], . . ., Q[511] is approximately 8·(1− 43

512)M+4·(1− 42
512)M ,

where M is the size of the largest component of the index graph G.

Proof. After the Second Phase, exactly M words Q[y1], Q[y2], . . . Q[yM] are
known corresponding to the distinct indices y1, y2, . . . , yM in the largest com-
ponent C of size M in G. Since G is a random bipartite graph, each of indices
y1, y2, . . . yM can be considered to be drawn from the set {0, 1, . . . , 511} uni-

Chapter 3: Internal Structure

formly at random (without replacement). We partition this sample space into
12 disjoint residue classes modulo 12, denoted by, [0], [1], . . . , [11].

Then, each of the indices y1, y2, . . . , yM can be considered to be drawn
from the set {[0], [1], . . . , [11]} (this time with replacement; this is a reasonable
approximation because M � 12) with probabilities proportional to the sizes
of the residue classes. Thus, for 1 ≤ j ≤ M , Prob(yj ∈ [r]) = 43

512 if 0 ≤ r ≤ 7
and 42

512 if 8 ≤ r ≤ 11.

Let mr = 1, if none of y1, y2, . . . , yM are from [r]; otherwise, let mr = 0.
Hence, the total number of residue classes from which no index is selected is

Y =
11∑
r=0

mr.

Now, in the Third Phase, we propagate the known labels in the forward
direction using Equation (3.5) (see Theorem 3.6, the Propagation Theorem).
The indices {500, 501, . . . , 511} are to the extreme right end of the array Q and
hence they also form the set of “last" indices where the propagation eventually
stops. Further, each index in the set {500, 501, . . . , 511} belongs to exactly one
of the sets [r]. Hence, the number of unknown words amongst Q[500], Q[501],
. . ., Q[511] is also given by Y .

We have,

E(mr) = Prob(mr = 1) =

(1− 43

512)M for 0 ≤ r ≤ 7;

(1− 42
512)M for 8 ≤ r ≤ 11.

Thus, E(Y) =
11∑
r=0

E(mr) = 8 · (1− 43
512)M + 4 · (1− 42

512)M .

Substituting M by its theoretical mean estimate 443 as well as by its em-
pirical mean estimate 408 yields E(Y) ≈ 0.

In fact, for anyM > 200, the expression (1− 43
512)M +4 ·(1− 42

512)M for E(Y)
becomes vanishingly small. Our experimental data also supports that in every
instance, none of the words Q[500], Q[501], . . . , Q[511] remains unknown.

Note that changing bytes 1 or 3 of Q[y] yields no change in Equation
(3.5). Combining this with the Second Phase, we could form a new set of
equations and attempt to solve them. However, as Theorem 3.7 establishes,

53 3.1 Reconstruction of one array from another

this is not required; propagation of known Q[y] values in steps of 12 covers all
the unknowns.

Next, we use the following result to determine the entire QN array.

Theorem 3.8. Suppose the complete array PN and the 12 words Q[500],
Q[501], . . ., Q[511] from the array Q are known. Then the entire QN array
can be reconstructed in a time complexity linear in the size of Q.

Proof. Following our notation in Section 3.1.1, the equation for the keystream
generation of the first 12 steps of block B3 is s3,i = h2(Q[500 + i]) ⊕ QN [i],
0 ≤ i ≤ 11.

Expanding h2(.), we get, for 0 ≤ i ≤ 11,

QN [i] = s3,i ⊕
(
PN

[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
.

So, we can determine QN [0], QN [1], . . . , QN [11] from Q[500], Q[501], . . . Q[511].

Now, applying Theorem 3.6 on these first 12 words of QN , we can determine
all the words of QN in linear time (in size of Q).

Applying Theorem 3.8 constitute the Fourth Phase of our solution.

Fourth Phase:
for i← 0 to 11 do1

QN [i]← s3,i ⊕
(
PN
[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

]);2

y ← i;4

while y ≤ 499 do5

QN [y+ 12]← s3,y+12⊕
(
PN

[
(QN [y])(0)

]
+ PN

[
256 + (QN [y])(2)

])
;6

y ← y + 12;7

end
end

Algorithm 8: Phase 4 of ReconstructState

After QN is derived, we need to verify its correctness. For this, we update
PN as it would be updated in block B4 and generate 512 keystream words
with this PN and the derived QN . If the generated keystream words entirely
match with the observed keystream words {s4,0, s4,1, . . . , s4,511} of block B4,
then our guess is correct. This verification is the Fifth (and final) Phase of

Chapter 3: Internal Structure

the algorithm. If we find a mismatch, then we repeat the procedure with the
next guess, i.e., with another possible value in [0, 232 − 1] of the word Q[y1].

Once QN is correctly determined, the words of the Q array for all the
succeeding blocks can be deterministically computed from the update rule for
Q.

The above discussion is formalized in Algorithm 9, called ReconstructState.

Theorem 3.9. The data complexity of Algorithm 9 is 216 and its time com-
plexity is 242.

Proof. For the First Phase, we do not need any keystream word. For each of
the Second, Third, Fourth and Fifth Phases, we need a separate block of 512
keystream words. Thus, the required amount of data is 4 · 512 = 211 no. of 32
(= 25)-bit keystream words.

From Step 0 in the First Phase up to Step 4 of the Second Phase, the total
time required is linear in the size of P (or Q), i.e., of complexity 29. Step 4 in
the Second Phase of Algorithm 9 can be performed through depth-first search
which requires O(|V1|+ |V2|+ |E|) time complexity. For |V1| = 256, |V2| = 256
and |E| = 512, the value turns out to be 210. After this, the guess in Step 5 of
Algorithm 9 consumes 232 time and for each such guess, the complete Phases
3, 4 and 5 together take time that is linear in the size of the array Q, i.e., of
complexity 29. Thus, the total time required is 29 + 210 + 232 · 29 < 242.

Note that for System 3.3 of Equations, one must verify the solution by first
generating some keystream words and then matching them with the observed
keystream, as is done in the Fifth Phase of Algorithm 9. During Step 5 in the
Second Phase, one may exploit the cycles of the largest component to verify
correctness of the guess. If the guessed value of a variable in a cycle does not
match with the value of the variable derived when the cycle is closed, we can
discard that guess. However, in the worst case, all the 232 guesses have to
be tried and if there is no conflict in a cycle, the guess has to be verified by
keystream matching. Thus, it is not clear if there is any significant advantage
by detecting and exploiting the cycles and so we have not considered this in
the description of the algorithm.

55 3.1 Reconstruction of one array from another

Input: P [0 . . . 511].
Output: PN [0 . . . 511], QN [0 . . . 511].
First Phase:
for i← 0 to 511 do

Determine PN [i] using Equation (3.1);1

end
Second Phase:
Form a bipartite graph G = (V1, V2, E) as follows;2
V1 ← {0, . . . , 255}; V2 ← {256, . . . , 511}; E ← ∅;3
for i← 0 to 511 do4

Determine li and ui using Equation (3.4);5
E ← E ∪ {li, ui};

end
Find all connected components of G;
Let C = {y1, y2, . . . , yM} be the largest component with size M ;6
Guess Q[y1] and thereby determine Q[y2], . . . , Q[yM] from Equation (3.3);
and for each such guess of Q[y1], repeat the Third, Fourth and Fifth Phases
below;
Third Phase:
for j ← 1 to M do7

y ← yj ;8
while y ≤ 499 do9

if Q[y + 12] is still unknown then10

Q[y + 12]← s1,y+12 ⊕
(
P
[
(Q[y])(0)

]
+ P

[
256 + (Q[y])(2)

])
;11

end
y ← y + 12;12

end
end
Fourth Phase:
for i← 0 to 11 do13

QN [i]← s3,i ⊕
(
PN
[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
;14

y ← i;16
while y ≤ 499 do17

QN [y + 12]← s3,y+12 ⊕
(
PN

[
(QN [y])(0)

]
+ PN

[
256 + (QN [y])(2)

])
;18

y ← y + 12;19

end
end
Fifth Phase:
With the new QN , generate 512 keystream words by updating PN ;20
Verify correctness of the guess in Step 5 by matching these keystream words21
with the observed keystream words of block B4;

Algorithm 9: ReconstructState

Chapter 3: Internal Structure

3.2 Design modifications

We have two design goals. Firstly, to guard against the available analysis
in literature and secondly, to attain the objective at optimal computing or
processing speed. Thus, we attempt to keep the same structure as the original
HC-128 with minimal changes.

Apart from the present work, we are aware of only three other similiar
works on the analysis of HC-128, one by the designer Wu [128], the next as
in [80] and the most recent one from [64]. The first two works exploit the fact
that h1(.) as well as h2(.) make use of only 16 bits from the 32-bit input. Our
current work also uses this fact to form Equation (3.3) that eventually leads
to reconstruction of the state. Thus, all of these results indicate that the form
of h1(.), h2(.) need to be modified so as to incorporate all the 32 bits of their
inputs. In our new versions of these functions (Equation (3.6)), we suggest
XOR-ing the entire input with the existing output (sum of two array entries).
However, certain precautions are needed so that other security threats do not
come into play.

We replace h1 and h2 as follows.

hN1(x) = (Q[x(0)] +Q[256 + x(2)])⊕ x.

hN2(x) = (P [x(0)] + P [256 + x(2)])⊕ x.

 (3.6)

We need to modify the update functions g1 and g2 with the twin motivation
of preserving the internal state as well as making sure that the randomness of
the keystream is ensured. We propose the following.

gN1(x, y, z) =
(
(x≫ 10)⊕ (z≫ 23)

)
+Q[(y � 7) ∧ 1FF].

gN2(x, y, z) =
(
(x≪ 10)⊕ (z≪ 23)

)
+ P [(y � 7) ∧ 1FF].

 (3.7)

We keep f1 and f2 the same as in original HC-128.

We include a randomly chosen word from the Q array in the update of P
array elements and a randomly chosen word from the P array while updating

57 3.3 Performance Evaluation

the Q array elements.

This would ensure that each new block of P (or Q) array is dependent
on the previous block of Q(or P) array. Thus, our analysis of Section 3.1
would not apply and the internal state would be preserved even if half the
internal state elements are known. The fault analysis in [64] explains that the
location of fault is uniquely determined by observing subsequent changes in
the keystream. This occurs because during the update of terms of one array no
term of the other array is used. Further during the update function, the terms
used follow a serial sequence. That is if a fault occurs at Q[f] in the block in
which P is updated, then Q[f] is not referenced until step f − 1 of the next
block (in which Q would be updated). This assumption does not hold for our
design due to the nesting of P and Q in the updates of one another (Equation
(3.7)) and hence our design resists the fault analysis. Lemma 1 and 2 of [64]
do not hold as the fault propagation will not be straight forward.

Likewise, in the equation of the distinguisher proposed by the designer [128,
Section 4], the term P [i�10] will get replaced by some random term of Q array.
With this replacement, it is not obvious how a similar distinguishing attack
can be mounted.

The security of any stream cipher is always a conjecture. We have tried to
circumvent the known issues of HC-128. The way we have modified the design,
it appears that no new security holes are introduced. However, the new design
is open to the community for further analysis.

3.3 Performance Evaluation

We evaluated the performance of our new design using the eSTREAM testing
framework [24]. The C-implementation of the testing framework was installed
in a machine with Intel(R) Pentium(R) D CPU, 2.8 GHz Processor Clock,
2048 KB Cache Size, 1 GB DDR RAM on Ubuntu 7.04 (Linux 2.6.20-17-
generic) OS. A benchmark implementation of HC-128 and HC-256 [127] is
available within the test suite. We implemented our modified version of HC-
128, maintaining the API compliance of the suite. Test vectors were generated
in the NESSIE [93] format. The results presented below correspond to tests

Chapter 3: Internal Structure

with null IV using the gcc-3.4_prescott_O3-ofp compiler.

HC-128 Our Proposal HC-256
Stream Encryption 4.13 4.29 4.88
(cycles/byte)

Table 3.2: Speed comparisons of our proposals with HC-128 and HC-256.

The encryption speed of our proposed design is of the same order as that
of original HC-128. We also observe that the extra array element access in the
new update rules (Equation (3.7)) as compared to the original update rules
does not affect the performance much. HC-128 was designed as a lightweight
version of HC-256. The idea of cross-referencing each other in the update rules
of P and Q has also been used in the design of HC-256 and that is why the half
state exposure does not reveal the full state in case of HC-256. However, our
modification to HC-128 removes the known weaknesses of HC-128 but keeps
the speed faster than HC-256, with only little reduction in speed compared to
HC-128.

3.4 Conclusion

The stream cipher HC-128 uses two internal arrays, each containing 512 32-bit
words. In this chapter, we show that if one knows only one array completely
and has access to 2048 consecutive keystream words then the other array can
be completely reconstructed in 242 time complexity. While this does not affect
the actual security of the cipher, this is an observation related to the the
internal structure. To resist this, we proposed a design modification of HC-
128. We also evaluated the performance of our proposal in the eSTREAM
testing framework and the performance was close to that of original HC-128
and HC-256.

Chapter 4
Study of HC-128 Keystream

“The world is full of obvious things which nobody by any chance
ever observes.” – Arthur Conan Doyle

4.1 Introduction

In this chapter we study HC-128 in detail from cryptanalytic point of view.
First, we use linear approximation of the addition modulo 2n of three n-bit
integers to identify linear approximations of g1, g2, the feedback functions of
HC-128. This, in turn, shows that the process of keystream output generation
of HC-128 can be well approximated by linear functions. In this direction,
we show that the “least significant bit” based distinguisher (presented by the
designer of the cipher) of HC-128 works for the complete 32-bit word. Us-
ing the above linear approximations of g1, g2, we present a new distinguisher
for HC-128 which is slightly weaker than Wu’s distinguisher. Finally, from
Dunkelman’s observation, we also study how HC-128 keystream words leak
secret state information of the cipher due to the properties of the functions
h1, h2 and present improved results.

In this work, we identify a few other issues pertaining to HC-128. Though
our results do not constitute an attack on HC-128, we believe these will aid
further exposure towards analysis of the cipher.

Each keystream word of HC-128 is 32 bit long (the 0th bit is the least

59

Chapter 4: Study of HC-128 Keystream

significant bit and the 31st bit is the most significant bit). In [128], bitwise
XOR of least significant bits of 10 (possibly) different keystream words (rotated
by certain amounts) are considered to propose a distinguisher (that requires
2156 keystream words with a success probability of 0.9722) and it has been
commented: “But due to the effect of the two ‘+’ operations in the feedback
function, the attack exploiting those 31 bits is not as effective as that exploiting
the least significant bit”. In Section 4.2, we discuss the linear approximation
of the feedback functions g1, g2. These results are used in Section 4.3 to char-
acterize the distinguisher for all other bits. In Section 4.3.2, we show that
for each of the bits 2 to 31, one can have distinguishers of almost the same
strength as the distinguisher proposed for the least significant bit in [128]. All
these distinguishers can be taken together to mount a word level distinguisher
for HC-128.

We present a novel distinguisher in Section 4.4. The distinguisher in [128]
uses the update formula for P (or Q) array during the keystream generation.
However, in our analysis, we identify a different relation among the words
of only either P (or only Q) array,(at a single time) that leads to this new
distinguisher. In [128], elements at five distinct indices from two consecutive
blocks of only P (or onlyQ) array have been related to mount the distinguisher.
In our distinguisher, elements at five distinct indices from three consecutive
blocks of either only P (or only Q) array have been related. Though our
distinguisher is marginally weaker than that of [128], ours is the only known
distinguisher other than the one identified by the designer himself [128].

In Section 4.5, we study how the keystream output words leak secret state
information in HC-128. In [36], it has been observed that XOR of two consec-
utive keystream words of 32-bit each is equal to the XOR of two consecutive
words of the secret array with probability ≈ 2−16. We study this analysis in
more detail and infer a lucid association which gives twice the above probabil-
ity.

61 4.2 Linear approximation of the functions g1 and g2

4.2 Linear approximation of the functions g1

and g2

HC-128 uses two functions g1, g2 of similar kind. The two ‘+’ operations in g1

or g2 are believed to be a source of high nonlinearity, but we find good linear
approximation in this case by using the result of linear approximation of the
addition of three integers.

Let us first present a brief outline to the linear approximation of addition
of n-bit integers modulo 2n. Consider three integers X = (Xn−1, . . . , X0), Y =
(Yn−1, . . . , Y0), Z = (Zn−1, . . . , Z0) of n-bits each. Let the addition modulo 2n

be S = (X +Y) mod 2n, and the GF(2) addition corresponding to each bit be
T = X⊕Y , . Similarly consider S ′ = (X+Y +Z) mod 2n, and T ′ = X⊕Y ⊕Z.

For n = 8, the probabilities of Si = Ti and S ′i = T ′i are presented in the
following table. We observe that while Prob(Si = Ti) tends to 1

2 as i increases,

i Prob(Si = Ti) (For two integers) Prob(S ′i = T ′i) (For three integers)
0 1.00000000 1.00000000
1 0.75000000 0.50000000
2 0.62500000 0.37500000
3 0.56250000 0.34375000
4 0.53125000 0.33593750
5 0.51562500 0.33398438
6 0.50781250 0.33349609
7 0.50390625 0.33337402

Table 4.1: Linear Approximaton of Addition for first 8 bits.

Prob(S ′i = T ′i) tends to 1
3 . This shows that Prob(S ′i = 1 ⊕ Xi ⊕ Yi ⊕ Zi) is

approximately 2
3 for i ≥ 2 and thus the i-th bit (i ≥ 2) of addition modulo 2n

of three integers is highly correlated to the complement of the bitwise XOR of
the integers

Linear approximations of modulo-2n addition of k many n-bit integers have
been studied in [118]. For k = 2, the probability of the equality of XOR and

Chapter 4: Study of HC-128 Keystream

modulo-2n sum in the b-th least significant bit tends to 1
2 as b increases. Below,

we briefly discuss the case for k = 3, i.e., the XOR-approximation of modulo
addition of three integers, that would be subsequently used in approximating
g1, g2. We do not claim that the probability calculation in Proposition 4.1
below as our contribution, but we present an outline for better understanding.

As we would be using the keystream word number as subscript, we denote
the b-th least significant bit of an n-bit word w by [w]b, 0 ≤ b ≤ n − 1, i.e.,
w = ([w]n−1, [w]n−2, . . . , [w]1, [w]0). This notation is also extended to [w]b,
where b > n− 1. In that case, [w]b will mean [w]b mod n.

LetX, Y, Z be three n-bit integers; S = (X+Y +Z) mod 2n, T = X⊕Y ⊕Z,
the bitwise XOR. Let [C]b denote the carry bit produced in the b-th step
of the addition of X, Y and Z. Since three bits are involved, [C]b can take
the values 0, 1 and 2. For the LSB addition, we assume [C]−1 = 0. Denote
ρb,v = Prob([C]b = v), b ≥ −1, v ∈ {0, 1, 2}. We know that Prob([S]b =
[T]b) = Prob([C]b−1 = 0 or 2) = ρb−1,0 + ρb−1,2 = 1− ρb−1,1.

The following recurrences are easy to show.

1. ρb+1,0 = 1
2ρb,0 + 1

8ρb,1.

2. ρb+1,1 = 1
2ρb,0 + 3

4ρb,1 + 1
2ρb,2.

3. ρb+1,2 = 1
8ρb,1 + 1

2ρb,2.

The solution gives ρb,1 = 2
3(1− 1

4b+1) and so we have the following result.

Proposition 4.1. For 0 ≤ b ≤ n− 1, Prob([S]b = [T]b) = 1
3(1 + 1

22b−1).

The following corollary gives an immediate approximation to Proposi-
tion 4.1.

Corollary 4.2. For 0 ≤ b ≤ n− 1, Prob([S]b = [T]b) = pb, where

pb =

1 if b = 0;
1
2 if b = 1;
1
3 (approximately) if 2 ≤ b ≤ n− 1.

63 4.2 Linear approximation of the functions g1 and g2

During the keystream generation part of HC-128, the array P is updated
as

P [i mod 512] = P [i mod 512] + g1(P [i� 3], P [i� 10], P [i� 511]),

where
g1(x, y, z) =

(
(x≫ 10)⊕ (z≫ 23)

)
+ (y≫ 8).

Thus, the update rule can be restated as

Pup[i mod 512] = P [i mod 512] +
(
(P [i� 3]≫ 10)

⊕ (P [i� 511]≫ 23)
)

+ (P [i� 10]≫ 8). (4.1)

In consistence with the notations in [128, Section 4], we may write the
keystream generation step as follows. For 0 ≤ i mod 1024 < 512,

si =

h1(P [i� 12])⊕ Pup[i mod 512], for 0 ≤ i mod 512 ≤ 11;

h1(Pup[i� 12])⊕ Pup[i mod 512], for 12 ≤ i mod 512 ≤ 511.
(4.2)

Let P ′up denote the updated array P , when we replace the two ‘+’ operators
by ‘⊕’ in the right hand side of Equation (4.1).

Then for 0 ≤ b ≤ n − 1, the b-th bit of the updated words of the array P
would be given by

[
P ′up[i mod 512]

]b
=
[
P [i mod 512]

]b
⊕
[
P [i� 3]

]10+b

⊕
[
P [i� 511]

]23+b
⊕
[
P [i� 10]

]8+b
.

We define

Chapter 4: Study of HC-128 Keystream

s′i =

h1(P [i� 12])⊕ P ′up[i mod 512], for 0 ≤ i mod 512 ≤ 11;

h1(Pup[i� 12])⊕ P ′up[i mod 512], for 12 ≤ i mod 512 ≤ 511.

Each s′i can be considered as the “distorted” value of si due the XOR-
approximation of the sum of three integers in Equation (4.1). From Corol-
lary 4.2 of Proposition 4.1 and the definition of s′i, the following result is
immediate.

Lemma 4.3. For 0 ≤ i mod 1024 < 512 and 0 ≤ b ≤ n− 1,
Prob

([
s′i
]b

=
[
si
]b)

= Prob
([
P ′up[i mod 512]

]b
=
[
Pup[i mod 512]

]b)
= pb.

We may construct 32-bit integers ζi’s as estimates of the keystream words
si’s as follows.

[ζi]b =

[
s′i
]b

if b = 0, 1;

1⊕
[
s′i
]b

if 2 ≤ b < 32.

Thus, we have the following result.

Theorem 4.4. The expected number of bits where the two 32-bit integers si
and ζi match is approximately 21.5.

Proof. Letmb = 1, if [si]b = [ζi]b; otherwise, letmb = 0, 0 ≤ b ≤ 31. Hence, the

total number of matches is given by M =
31∑
b=0

mb. By linearity of expectation,

E(M) =
31∑
b=0

E(mb) =
31∑
b=0

Prob(mb = 1).

From Lemma 4.3 and the construction of ζi, we have

Prob(mb = 1) =

pb if b = 0, 1;

1− pb if 2 ≤ b < 32.

This gives E(M) ≈ 1 + 1
2 + 30 · (1− 1

3) = 21.5.

Theorem 4.4 shows the association of the HC-128 keystream word si with
its linear approximation ζi.

65 4.3 A class of distinguishers by extending the LSB-based distinguisher

. . .

Old P array: P [0] P [1] . . . P [511]
Keystream: s0 s1 . . . s511

Intermediate Q array: Q[0] Q[1] . . . Q[511]
Keystream: s512 s513 . . . s1023

New P array: P [0] P [1] . . . P [511]
Keystream: s1024 s1025 . . . s1535

New Q array: Q[0] Q[1] . . . Q[511]
Keystream: s1536 s1537 . . . s2047

. . .

Table 4.2: Evolution of the Arrays P and Q and Correspondence with the Keystream
Words.

4.3 A class of distinguishers by extending the
LSB-based distinguisher

In this section, we use the linear approximation of the feedback functions g1, g2

described in the previous section to construct 30 more bit level distinguishers.

4.3.1 Brief outline of the LSB distinguisher of HC-128

Before presenting the ideas in this section, let us revisit the keystream word
generation of HC-128. The keystream words are generated using both the
arrays P and Q, each consisting of 512 many words. However, the updates of
P and Q arrays are independent. For 512 iterations, the array P is updated
with the older values from P itself and for the next 512 iterations the array
Q is updated with the older values of Q. This method continues alternatively.
Table 4.2 shows how the keystream words si’s are related to the array elements
P [i]’s and Q[i]’s.

In general, for 0 ≤ (i mod 1024) < 512, the keystream output word of HC-
128 is generated as si = h1(P [i� 12])⊕ P [i mod 512], following an update of
P [i mod 512] by adding to it g1(P [i� 3], P [i� 10], P [i� 511]), as formulated

Chapter 4: Study of HC-128 Keystream

in Equations (4.1) and (4.2) of Section 4.2. Let P [i � 12] at the i-th step
be denoted by zi. From Equation (4.2), it is clear that any occurrence of
P [i mod 512] can be replaced by si ⊕ h1(zi). Performing this replacement in
Equation (4.1), we get, for 10 ≤ i mod 512 < 511,

si ⊕ h1(zi) =
(
si−1024 ⊕ h′1(zi−1024)

)
+ g1

(
si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)

)
. (4.3)

Here h1(.) and h′1(.) indicate two different functions since they are related
to two P arrays at two different 1024 size blocks that act as two different
S-boxes.

Inside g1, we have three rotations, one XOR and one addition and outside
g1 we have one more addition. Since the LSB of the XOR of any number of
words equals the LSB of the sum of those words, we can write Equation (4.3)
as

[si]0 ⊕ [si−1024]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23

= [h1(zi)]0 ⊕ [h′1(zi−1024)]0 ⊕ [h1(zi−3)]10 ⊕ [h1(zi−10)]8 ⊕ [h′1(zi−1023)]23.

Thus, for 1024τ + 10 ≤ j < i < 1024τ + 511,
[si]0 ⊕ [si−1024]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23

= [sj]0 ⊕ [sj−1024]0 ⊕ [sj−3]10 ⊕ [sj−10]8 ⊕ [sj−1023]23, if and only if H(ξi) =
H(ξj), where,

H(ξi) = [h1(zi)]0 ⊕ [h′1(zi−1024)]0 ⊕ [h1(zi−3)]10 ⊕ [h1(zi−10)]8 ⊕ [h′1(zi−1023)]23.

Here ξi = (zi, zi−1024, zi−3, zi−10, zi−1023) is an 80-bit input and H(.) can be
assumed to be a random 80-bit-to-1-bit S-box.

The following result (with proof for better clarity) gives the collision prob-
ability for a general random m-bit-to-n-bit S-box.

Proposition 4.5. [128, Theorem 1] Let H be an m-bit-to-n-bit S-box and
all those n-bit elements are randomly generated, where m ≥ n. Let x1 and
x2 be two m-bit random inputs to H. Then H(x1) = H(x2) with probability

67 4.3 A class of distinguishers by extending the LSB-based distinguisher

2−m + 2−n − 2−m−n.

Proof. If x1 = x2 (this happens with probability 2−m), then H(x1) = H(x2)
happens with probability 1. If x1 6= x2 (this happens with probabil-
ity 1 − 2−m), then H(x1) = H(x2) happens with probability 2−n. Thus,
Prob (H(x1) = H(x2)) = 2−m · 1 + (1− 2−m) · 2−n.

Coming back to HC-128, m = 80 and n = 1 for the S-box whose outputs
are H(ξi) and H(ξj), we have, according to Proposition 4.5,

Prob (H(ξi) = H(ξj)) = 1
2 + 2−81.

Hence, for 1024τ + 10 ≤ j < i < 1024τ + 511,
Prob

(
[si]0 ⊕ [si−1024]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23

= [sj]0 ⊕ [sj−1024]0 ⊕ [sj−3]10 ⊕ [sj−10]8 ⊕ [sj−1023]23
)

= 1
2 + 2−81.

Thus, a distinguisher can be mounted based on the equality of the least
significant bits of the keystream word combinations si ⊕ si−1024 ⊕ (si−3 ≫

10)⊕ (si−10 ≫ 8)⊕ (si−1023 ≫ 23) and sj⊕sj−1024⊕ (sj−3 ≫ 10)⊕ (sj−10 ≫

8) ⊕ (sj−1023 ≫ 23). According to [128, Section 4], this distinguisher re-
quires approximately 2164 many equations of the above form or a total of 2156

many keystream words for a success probability 0.9772. It has been mentioned
in [128] that the distinguishing attack exploiting the other 31 bits will not be
effective due to the use of modulo addition. In contrary to the belief of the
designer of HC-128, we show in the next section that the distinguisher works
for all the bits (except one) in the keystream words.

4.3.2 Our extension to other bits

Our analysis shows that there exist biases in the equality of 31 out of the 32 bits
(except the second least significant bit) of the word combinations si⊕si−1024⊕
(si−3 ≫ 10) ⊕ (si−10 ≫ 8) ⊕ (si−1023 ≫ 23) and sj ⊕ sj−1024 ⊕ (sj−3 ≫

10)⊕ (sj−10 ≫ 8)⊕ (sj−1023 ≫ 23), which leads to a distinguisher for each of
those 31 bits separately.

Our analysis generalizes the idea of [128, Section 4] by applying Corol-
lary 4.2. We refer to the visualization of the array P as explained in Table 4.2

Chapter 4: Study of HC-128 Keystream

of Section 4.3.1 and focus on Equation(4.3):

si ⊕ h1(zi) =
(
si−1024 ⊕ h′1(zi−1024)

)
+ g1

(
si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)

)
.

We replace the two ‘+’ operations (one inside and one outside) g1 by ‘⊕’.
Then as per the discussion following Corollary 4.2, we can write, for 10 ≤
i mod 1024 < 511,
[si]b ⊕ [si−1024]b ⊕ [si−3]10+b ⊕ [si−10]8+b ⊕ [si−1023]23+b

= [h1(zi)]b⊕ [h′1(zi−1024)]b⊕ [h1(zi−3)10+b]⊕ [h1(zi−10)]8+b⊕ [h′1(zi−1023)]23+b

holds with probability p0 = 1 for b = 0, with probability p1 = 1
2 for b = 1 and

with probability pb ≈ 1
3 for 2 ≤ b ≤ 31.

In short, we can write, for 0 ≤ b ≤ 31,

Prob
(
[ψi]b = Hb(ξi)

)
= pb,

where the 32-bit integer ψi is constructed as:

[ψi]b = [si]b ⊕ [si−1024]b ⊕ [si−3]10+b ⊕ [si−10]8+b ⊕ [si−1023]23+b

and

Hb(ξi) = [h1(zi)]b ⊕ [h′1(zi−1024)]b ⊕ [h1(zi−3)]10+b

⊕ [h1(zi−10)]8+b ⊕ [h′1(zi−1023)]23+b.

Here ξi = (zi, zi−1024, zi−3, zi−10, zi−1023) is an 80-bit input and each Hb(.),
0 ≤ b ≤ 31, is a random 80-bit-to-1-bit S-box. Obviously, for 0 ≤ b ≤ 31,
Prob

(
[ψi]b = Hb(ξi)⊕ 1

)
= 1− pb.

Thus, we can state the following technical result.

Lemma 4.6. For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob
(
[ψi]b ⊕ [ψj]b = Hb(ξi)⊕Hb(ξj)

)
= qb

69 4.3 A class of distinguishers by extending the LSB-based distinguisher

where

qb =

1 if b = 0;
1
2 if b = 1;
5
9 (approximately) if 2 ≤ b ≤ 31.

Proof. Prob
(
[ψi]b ⊕ [ψj]b = Hb(ξi)⊕Hb(ξj)

)
= Prob

(
[ψi]b = Hb(ξi)

)
· Prob

(
[ψj]b = Hb(ξj)

)
+Prob

(
[ψi]b = Hb(ξi)⊕ 1

)
· Prob

(
[ψj]b = Hb(ξj)⊕ 1

)
= pb · pb + (1− pb) · (1− pb).
Substituting the values of pb from Corollary 4.2, we get the result.

Obviously, for 0 ≤ b ≤ 31, Prob
(
[ψi]b ⊕ [ψj]b = Hb(ξi)⊕Hb(ξj)⊕ 1

)
=

1− qb.

For a given b, all the Hb(ξi)’s are the outputs of the same random secret
80-bit-to-1-bit S-box Hb(.). So setting m = 80 and n = 1 in Proposition 4.5,
we get the following corollary.

Corollary 4.7. For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob (Hb(ξi) = Hb(ξj)) = 1
2 + 2−81.

Obviously, Prob (Hb(ξi) = Hb(ξj)⊕ 1) = 1
2 − 2−81.

Combining the above results, we get the following theorem.

Theorem 4.8. For 1024τ + 10 ≤ j < i < 1024τ + 511, Prob
(
[ψi]b = [ψj]b

)
=

rb, where

rb =

1
2 + 2−81 if b = 0;
1
2 if b = 1;
1
2 + 2−81

9 (approximately) if 2 ≤ b ≤ 31.

Proof. Prob
(
[ψi]b = [ψj]b

)
= Prob

(
[ψi]b ⊕ [ψj]b = Hb(ξi)⊕Hb(ξj)

)
· Prob (Hb(ξi) = Hb(ξj))

+Prob
(
[ψi]b ⊕ [ψj]b = Hb(ξi)⊕Hb(ξj)⊕ 1

)
· Prob (Hb(ξi) = Hb(ξj)⊕ 1).

Substituting values from Lemma 4.6 and Corollary 4.7, we get the result.

Chapter 4: Study of HC-128 Keystream

One may consider the probability in the form of p + ε, where p = 1
2 is the

expected probability and ε is the bias. Then it is possible to directly use the
Piling-up lemma as described in [121, page 80]. Note that for the special case
of b = 0, we have a distinguisher based on the non-uniform probability 1

2 +2−81

in the equality of the LSB’s of ψi and ψj. This corresponds to a bias of 2−81

and is exactly the distinguisher described in [128, Section 4]. Our results show
that we can also mount a distinguisher of around the same order for each of the
30 bits corresponding to b = 2, 3, . . . , 31 based on the non-uniform probability
1
2 + 2−81

9 with a bias of 2−81

9 .

Two random 32-bit integers are expected to match in 16 bit positions. Be-
low we show that if one performs a bitwise comparison of the 32-bit elements
ψi = ([ψi]31, [ψi]30, . . . , [ψi]0) and ψj = ([ψj]31, [ψj]30, . . . , [ψj]0) in HC-128,
where 1024τ + 10 ≤ j < i < 1024τ + 511, then the expected number of
matches between the corresponding bits is more than 16, and to be precise, is
approximately 16 + 13

12 · 2
−79.

Theorem 4.9. For 1024τ + 10 ≤ j < i < 1024τ + 511, the expected number of
bits where the two 32-bit integers ψi and ψj match is approximately 16+ 13

12 ·2
−79.

Proof. Let mb = 1, if [ψi]b = [ψj]b; otherwise, let mb = 0, 0 ≤ b ≤ 31. Hence,

the total number of matches is given by M =
31∑
b=0

mb. From Theorem 4.8, we

have Prob(mb = 1) = rb. Hence, E(mb) = rb and by linearity of expectation,

E(M) =
31∑
b=0

E(mb) =
31∑
b=0

rb. Substituting the values of rb’s from Theorem 4.8,

we get E(M) ≈ 16 + 13
3 · 2

−81.

Thus our contributions in this section constitute of

• identifying 30 many slightly weaker distinguishers other than the one
described in [128] at bit level (Theorem 4.8);

• further, all these distinguishers can be taken together to mount a word
level distinguisher for HC-128 (Theorem 4.9) of the same order of com-
plexity as the bit level distinguishers.

These distinguishers have not been identified in [128].

71 4.4 A new distinguisher

4.4 A new distinguisher

In this section, we present a new distinguisher. Once again, we refer to the
visualization of the array P as explained in Table 4.2. For the analysis in
this section, we introduce few notations. The keystream generation occurs in
blocks of 512 words. If B1, B2, B3, B4, . . . denote successive blocks, the array
P is updated in blocks B1, B3, B5, . . . and the array Q is updated in blocks
B2, B4, B6, . . ., and so on. Without loss of generality, consider a block B2t+1

(for some fixed t) of 512 keystream word generation in which the array P is
updated. More specifically, the symbol P without any subscript or superscript
denote the updated array in the current block B2t+1. Let P−1 and P−2 denote
the updated arrays in blocks B2t−1 and B2t−3 respectively.

From Equation (4.1) (see Section 4.2), using the equality of XOR and sum
for the least significant bit, we can write, for 10 ≤ i mod 512 < 511,

[
P [i]

]0
=
[
P−1[i]

]0
⊕
[
P [i� 3]

]10
⊕
[
P−1[i� 511]

]23
⊕
[
P [i� 10]

]8
. (4.4)

Similarly, we have

[
P−1[i]

]0
=
[
P−2[i]

]0
⊕
[
P−1[i� 3]

]10
⊕
[
P−2[i� 511]

]23
⊕
[
P−1[i� 10]

]8
. (4.5)

XOR-ing both sides of Equation (4.4) and Equation (4.5) and rearranging
terms, we get, for 10 ≤ i < 511,

[
P [i]

]0
⊕
[
P−2[i]

]0
=

([
P [i� 3]

]10
⊕
[
P−1[i� 3]

]10
)

⊕
([
P [i� 10]

]8
⊕
[
P−1[i� 10]

]8)
⊕
([
P−1[i� 511]

]23
⊕
[
P−2[i� 511]

]23
)
.

(4.6)

As in Section 4.2, let the primed array name denote the updated array,
when the two ‘+’ operators are replaced by ‘⊕’ in the update rule (Equation
(4.1)). Thus,

Chapter 4: Study of HC-128 Keystream

[
P ′[i�3]

]10
=
[
P−1[i�3]

]10
⊕
[
P [i�6]

]20
⊕
[
P−1[i�514]

]33
⊕
[
P [i�13]

]18
, (4.7)

[
P ′[i� 10]

]8
=
[
P−1[i� 10]

]8
⊕
[
P [i� 13]

]18
⊕
[
P−1[i� 521]

]31
⊕
[
P [i� 20]

]16
,

(4.8)
and

[
P ′−1[i� 511]

]23

=
[
P−2[i�511]

]23
⊕
[
P−1[i�514]

]33
⊕
[
P−2[i�1022]

]46
⊕
[
P−1[i�521]

]31
. (4.9)

Equations (4.7),(4.8) and (4.9) hold for the ranges 13 ≤ i < 514, 20 ≤
i < 521 and 9 ≤ i < 510 respectively.

XOR-ing both sides of Equations (4.6),(4.7), (4.8) and (4.9), and rear-
ranging terms, we get, for 20 ≤ i < 510,

[
P [i]

]0
⊕
[
P−2[i]

]0
⊕
[
P [i� 6]

]20
⊕
[
P [i� 20]

]16
⊕
[
P−2[i� 510]

]14

=
([
P [i� 3]

]10
⊕
[
P ′[i� 3]

]10
)

⊕
([
P [i� 10]

]8
⊕
[
P ′[i� 10]

]8)
⊕
([
P−1[i� 511]

]23
⊕
[
P ′−1[i� 511]

]23
)
.

(4.10)

Lemma 4.10. For 1024τ + 20 ≤ i < 1024τ + 510,

Prob
([
P [i]

]0
⊕
[
P−2[i]

]0
⊕
[
P [i� 6]

]20

⊕
[
P [i� 20]

]16
⊕
[
P−2[i� 510]

]14
= 0

)
≈ 13

27 .

73 4.4 A new distinguisher

Proof. From Equation (4.10), we can write,

Prob
([
P [i]

]0
⊕
[
P−2[i]

]0
⊕
[
P [i� 6]

]20
⊕
[
P [i� 20]

]16

⊕
[
P−2[i� 510]

]14
= 0

)
= Prob(λ1 ⊕ λ2 ⊕ λ3 = 0)

where λ1 =
[
P [i � 3]

]10
⊕
[
P ′[i � 3]

]10
, λ2 =

[
P [i � 10]

]8
⊕
[
P ′[i � 10]

]8
,

λ3 =
[
P−1[i� 511]

]23
⊕
[
P ′−1[i� 511]

]23
.

Now, from Lemma 4.3 (see Section 4.2), we get Prob(λ1 = 0) = Prob(λ2 =
0) = Prob(λ3 = 0) ≈ 1

3 .

Again, XOR of three terms yield 0, if either all three terms are 0 or exactly
one is 0 and the other two are 1’s.

Hence, Prob(λ1 ⊕ λ2 ⊕ λ3 = 0) ≈ (1
3)3 +

(
3
1

)
(1

3)(2
3)2 = 13

27 .

Now, we present our new distinguisher. As in Section 4.3, we denote P [i�
12] at the i-th step by zi and replace P [i mod 512] by si ⊕ h1(zi). Thus, for
1024τ + 20 ≤ i < 1024τ + 510, the event([
P [i]

]0
⊕
[
P−2[i]

]0
⊕
[
P [i� 6]

]20
⊕
[
P [i� 20]

]16
⊕
[
P−2[i� 510]

]14
= 0

)
can be alternatively written as (χi = H(Zi)), where

χi = s0
i ⊕ s0

i−2048 ⊕ s20
i−6 ⊕ s16

i−20 ⊕ s14
i−2046 and

H(Zi) = h1(zi)0 ⊕ h′′1(zi−2048)0 ⊕ h1(zi−6)20 ⊕ h1(zi−20)16 ⊕ h′′1(zi−2046)14.

Here Zi = (zi, zi−2048, zi−6, zi−20, zi−2046) is an 80-bit input and H(.) can be
assumed to be a random 80-bit-to-1-bit S-box. Here h1(.) and h′′1(.) indicate
two different functions since they are related to two P arrays at two different
blocks and hence act as two different S-boxes.

With this formulation, Lemma 4.10 can be restated as

Prob((χi = H(Zi)) ≈
13
27 . (4.11)

Further, from Proposition 4.5, for 1024τ + 20 ≤ j < i < 1024τ + 510,

Prob (H(Zi) = H(Zj)) = 1
2 + 2−81. (4.12)

Chapter 4: Study of HC-128 Keystream

Theorem 4.11. For 1024τ + 20 ≤ j < i < 1024τ + 510,

Prob (χi = χj) ≈
1
2 + 1

36 · 281 ,

where χu = s0
u ⊕ s0

u−2048 ⊕ s20
u−6 ⊕ s16

u−20 ⊕ s14
u−2046.

Proof. We need to combine the probability expressions of Equations (4.11)
and (4.12). For 1024τ + 20 ≤ j < i < 1024τ + 510,

Prob (χi ⊕ χj = H(Zi)⊕H(Zj))

= Prob (χi = H(Zi)) · Prob (χj = H(Zj)) +

Prob (χi = H(Zi)⊕ 1) · Prob (χj = H(Zj)⊕ 1)

≈
(13

27

)2
+
(

1− 13
27

)2
= 365

36 .

P rob (χi = χj)

= Prob (χi ⊕ χj = H(Zi)⊕H(Zj)) · Prob (H(Zi) = H(Zj)) +

Prob (χi ⊕ χj = H(Zi)⊕H(Zj)⊕ 1) · Prob (H(Zi) = H(Zj)⊕ 1)

≈ 365
36 ·

(1
2 + 2−81

)
+
(

1− 365
36

)
·
(1

2 − 2−81
)

= 1
2 + 1

36 · 281 .

The aforesaid analysis shows that there exist biases in the event (χi = χj),
which can be used to mount a distinguishing attack. The probability of the
above event can be written as pχ(1 + qχ), where pχ = 1

2 and qχ = 1
36280 .

According to [14, Section 4.1], one would require 42

pχq2
χ

= 3122165 pairs of
keystream word combinations of the form (χi, χj) for a success probability
0.9772. Since each block of 512 = 29 keystream words provides approximately(

512
2

)
≈ 217 many pairs, the required number of keystream words is approxi-

mately 3122156 ≈ 2192156 = 2175.

Though our distinguisher is slightly weaker than what mentioned in [128],
ours is the only known distinguisher other than the one identified in [128]. The
distinguisher presented in Theorem 4.11 may be extended to other bits in a
similar line that we have studied in Section 4.3.2 for the distinguisher of [128].

75 4.5 State leakage in keystream

However, the bias would be weaker than that presented in Theorem 4.11 and
the extended distinguisher would require more keystream words.

Subsequent to our work, Stankovski et al. [120] combined our bit-level
distinguishers to mount word-based distinguisher that required 2152.537 many
32-bit keystream blocks.

4.5 State leakage in keystream

Whereas the previous sections concentrated on the functions g1, g2; here, in
a different direction, we study the other two functions h1, h2. Without loss
of generality, we focus on the keystream block corresponding to the P array,
i.e., the block of 512 rounds where P is updated in each round and Q remains
constant. As j runs from 0 to 511, we denote the corresponding output h1(P [j�
12])⊕P [j] by sj. Here, h1(x) = Q[x(0)] +Q[256 +x(2)]. The results we present
in this section are in terms of the function h1. The same analysis holds for the
function h2 in the other keystream block.

In [36], it has been observed that Prob(sj ⊕ sj+1 = P [j]⊕P [j+ 1]) ≈ 2−16,
where sj, sj+1 are two consecutive keystream output words. We study that in
more detail in this section and in the process we find a sharper association in
Theorem 4.15 which gives twice the above probability.

The following technical result establishes that XOR of two words of P is
leaked in the keystream words if the corresponding values of h1(.) collide.

Lemma 4.12. For 0 ≤ u 6= v ≤ 511, su ⊕ sv = P [u] ⊕ P [v] if and only if
h1(P [u� 12]) = h1(P [v � 12]).

Proof. We have su = h1(P [u � 12]) ⊕ P [u] and sv = h1(P [v � 12]) ⊕ P [v].
Thus, su ⊕ sv =

(
h1(P [u � 12]) ⊕ h1(P [v � 12])

)
⊕ (P [u] ⊕ P [v]). The term(

h1(P [u�12])⊕h1(P [v�12])
)
vanishes if and only if su⊕sv = P [u]⊕P [v].

Now we detail the result related to collision in h1. Note that the array P
from which the input to the function h1 is selected and the array Q from which
the output of h1 is chosen can be assumed to contain uniformly distributed
32-bit elements. In Lemma 4.13, which is in a more general setting than just

Chapter 4: Study of HC-128 Keystream

HC-128, we use notations h and U ; these may be considered to model h1 and
Q respectively.

Lemma 4.13. Let h(x) = U [x(0)] +U [x(2) + 2m] be an n-bit to n-bit mapping,
where each entry of the array U is an n-bit number, U contains 2m+1 many
elements and x(0) and x(2) are two disjoint m-bit segments from the n-bit input
x. Suppose x and x′ are two n-bit random inputs to h. Assume that the entries
of U are distributed uniformly at random. Then for any collection of t distinct
bit positions {b1, b2, . . . , bt} ⊆ {0, 1, . . . , n− 1}, 0 ≤ t ≤ n,

Prob

(
t∧
l=0

(
[h(x)]bl = [h(x′)]bl

))
= γm,t

where γm,t = 2−2m + (1− 2−2m)2−t.

Proof. Each value v ∈ [0, 2n − 1] can be expressed as the modulo 2n sum
of two integers a, b ∈ [0, 2n − 1] in exactly 2n ways, since for each choice of
a ∈ [0, 2n − 1], the choice of b is fixed as b = (v − a) mod 2n. It is given that
each U [α] is uniformly distributed over [0, 2n−1]. Thus, for uniformly random
α, β ∈ [0, 2m+1−1], the sum (U [α]+U [β]) mod 2n is also uniformly distributed
and so is any collection of t bits of the sum.

Now, h(x) = U [x(0)] + U [x(2) + 2m] and h(x′) = U [x′(0)] + U [x′(2) + 2m] can
be equal in bit positions b1, b2, . . . , bt in the following two ways.

1. x(0) = x′(0) and x(2) = x′(2). This happens with probability 2−m · 2−m.

2. The event “x(0) = x′(0) and x(2) = x′(2)” does not happen and still(
U [x(0)] + U [x(2) + 2m]

)
and

(
U [x′(0)] + U [x′(2) + 2m]

)
match in the t bits

due to random association. This happens with probability (1−2−2m)·2−t.

Adding the two components, we get the result.

Note that γm,t depends only on m, t and not on n, as is expected from the
particular form of h1(.) that uses only 2m bits from its n-bit random input.
For HC-128, we have n = 32 and m = 8. For the equality of the whole output
word of h1(.), we need to set t = n = 32. Thus, Prob (h1(x) = h1(x′)) = γ8,32 =
2−16 +2−32−2−48 ≈ 0.0000152590, which is slightly greater than 2−16. We like

77 4.5 State leakage in keystream

to point out that if one checks the equality of two n-bit random integers, then
the probability of that event is 2−n only, which is as low as 2−32 for n = 32.

Next we formalize the result given in [36].

Theorem 4.14. In HC-128, consider a block of 512 many keystream words
corresponding to the array P . For 0 ≤ u 6= v ≤ 511,

Prob ((su ⊕ sv) = (P [u]⊕ P [v])) = γ8,32 > 2−16.

Proof. The result follows from Lemma 4.12 and Lemma 4.13.

Now, we present a sharper result which gives twice the probability of the
observation in [36].

Theorem 4.15. In HC-128, consider a block of 512 many keystream words
corresponding to the array P . For any u, v, 0 ≤ u 6= v < 500, if

(
(s(0)
u =

s(0)
v) & (s(2)

u = s(2)
v)

)
, then

Prob ((su+12 ⊕ sv+12) = (P [u+ 12]⊕ P [v + 12])) ≈ 1
215 .

Proof. From Lemma 4.12, s(b)
u ⊕ s(b)

v = P [u](b) ⊕ P [v](b) if and only if

h1(P [u� 12])(b) = h1(P [v � 12])(b),

for b = 0, 1, 2, 3. Given that s(0)
u = s(0)

v and s(2)
u = s(2)

v , we have P [u](0) =
P [v](0) and P [u](2) = P [v](2) if and only if

h1(P [u� 12])(0) = h1(P [v � 12])(0) and h1(P [u� 12])(2) = h1(P [v � 12])(2).

Thus, using Lemma 4.13,

Prob
(
P [u](0) = P [v](0) & P [u](2) = P [v](2) | s(0)

u = s(0)
v & s(2)

u = s(2)
v

)
= Prob

(
h1(P [u� 12])(0) = h1(P [v � 12])(0) &

h1(P [u� 12])(2) = h1(P [v � 12])(2)
)

= γ8,16 ≈
1

215 ,

By definition, h1(x) = Q[x(0)] + Q[256 + x(2)]. So the equalities P [u](0) =

Chapter 4: Study of HC-128 Keystream

P [v](0) and P [u](2) = P [v](2) give h1(P [u]) = h1(P [v]) and this in turn gives
su+12 ⊕ sv+12 = P [u+ 12]⊕ P [v + 12] by Lemma 4.12.

For random keystream, the event (s(0)
u = s(0)

v & s(2)
u = s(2)

v) occurs with
probability 2−16. If the probability of this event in HC-128 is away from 2−16,
then we would immediately have a distinguisher. Our experiments did not
reveal any observable bias for this event. However, it would be interesting to
investigate if there exists a bias of very small order for this or a similar event
in HC-128.

The Glimpse Main Theorem [56, 82] is an important result on the weak-
ness of RC4 stream cipher. It states that at any round, Prob(S[j] = i− z) =
Prob(S[i] = j − z) ≈ 2−7, where S is the internal state of RC4, i and j

are the deterministic and the pseudo-random indices respectively and z is the
keystream output byte. This result quantifies the leakage of state informa-
tion into the keystream of RC4. Note that the leakage probability is twice
the random association 2−8. Our Theorem 4.15 is a Glimpse-like theorem on
HC-128 that shows the leakage of state information into the keystream with a
probability≈ 2−15 which is much more than 2−31 (two times the random associ-
ation 2−32), and is in fact two times the square-root of the random association.
However, in RC4, the Glimpse theorem turns the key-state correlations into
key-keystream correlations [65,79] that lead to practical attacks. On the other
hand, in case of HC-128, no key-state correlations have been discovered so far.
So the state leakage in HC-128 keystream, as of now, does not pose any threat
to the use of the cipher.

4.6 Conclusion

In this chapter, we study the linear approximation of the feedback functions
g1, g2 of HC-128. Using this result, we extend the least significant bitwise
distinguisher proposed by the designer himself to all the bits (except one) of the
32-bit keystream output word. We also present a new distinguisher by properly
choosing pairs of five keystream word combinations from three consecutive
blocks corresponding to only P (or only Q) array. Further, we have studied
the idea of Dunkelman in detail towards the secret state information leakage

79 4.6 Conclusion

in keystream output words. Though our results do not have any immediate
threat to the applicability of HC-128, these provide further insight into the
cryptanalysis of HC-128.

this page intentionally left blank

Part II

Side Channel and
Implementation Issues

81

Chapter 5
Side Channel Attacks and Impact on
HC series of Stream Ciphers

5.1 Motivation

Side channel attacks are extremely implementation specific. An attack is tailor-
made for a specific cipher algorithm implemented in a specific model. In a
commercially popular device with large user-base, the immediate reaction to
such an attack is to change the underlying cryptographic algorithm as quickly
as possible. In such a case, a variant of the original algorithm forms a prefer-
ential choice, because its structural similarity with the original cipher makes
it implementation-friendly on existing hardware. For example, in case of Wi-
Fi networks, when the RC4 implementation in WEP protocol suffered several
attacks [82,84,122–124], a natural choice in the subsequent WPA protocol was
a variant of RC4 implementation (with different key and IV size and different
form of key and IV mixing), before the longterm change-over to the block ci-
pher AES in WPA2. A natural question is: what is the effect of a side channel
technique on a variant of the cipher algorithm implemented in a similar model?
The motivation for such an investigation is to study the feasibility of using a
cipher variant as a mode of recovering from a successful side channel attack.
The following works studied side channel vulnerability of HC series of stream
ciphers, viz., HC-128 and HC-256.

83

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

• a differential fault attack on HC-128 [64],

• a cache timing analysis analysis on HC-256 [130].

For both the above works, extending the attack on one HC variant to the other
is not straight-forward. In [64], there is no mention about the extendibility
of the attack to HC-256. On the other hand, the author of [130] mentions
the following point in a subsequent work [131] that studied the cache timing
analysis of all the eSTREAM finalists.

HC-128 ... has a slightly smaller inner state ... and surprisingly big
changes of the internal workings. Most state update equations are
modified, and this has a profound impact on the above cache timing
attack. It turns out that the attack can not be transferred to HC-128
in a straightforward way. Thus, further analysis of HC-128 is necessary
to determine its resistance against cache timing attacks.

It is important to note that one of the major differences in the structure
of HC-128 and HC-256 is that in the former the two state tables are updated
independently, whereas in the latter they are inter-dependent. This makes
extending the differential fault analysis of HC-128 [64] to HC-256 a challenging
task.

In this chapter, the HC-128 fault attack and the HC-256 cache analysis
are extended onto the HC-256 and HC-128 ciphers respectively under similar
models. The techniques applied on one variant is not trivially translatable to
the other and the issue was left open until the work presented in this chapter.
A technique has been proposed to recover half the state of HC-128 using cache
analysis, which can be cascaded with the differential attack towards a full
state recovery and hence key recovery. Similarly, the state leakage of HC-
256 is analyzed under differential fault attack model to achieve partial state
recovery.

5.1.1 Layout of the chapter

A brief description of cache-analysis and differential fault attack is presented
in the first section.

85 5.2 Cache and fault attack

Next, the effect of the attacks on one HC variant to the other is analyzed.
Specifically, analysis has been carried out on how much state information can
be leaked when the HC-128 variant is chosen against the cache analysis attack
on HC-256, and the latter is chosen against the differential fault attack of the
former. For the study the same implementations that are considered in [64,130]
have been used.

In Section 5.3, the description of the cache analysis model as applied to
HC-128 along with the inferences have been presented. This issue had been
left as an open problem in [130]. In Section 5.4 we analyze the fault attack
on HC-256. We conclude the chapter and discuss possible future works in
Section 5.5.

5.2 Cache and fault attack

We first present an overview of Cache analysis and fault attacks that would be
used in the chapter.

5.2.1 Cache analysis attack

Cache analysis is a side channel cryptanalysis technique that has been intro-
duced independently by Bernstein [15] and Osvik et al. [94], primarily for the
AES block cipher. We give a simple description of the cache analysis adapted
from [130]. Cache is a temporary storage area that is closer to the CPU com-
pared to the RAM and is used to replicate frequently accessed data for enabling
faster access. Data once stored in the cache, can be further used by accessing
the cached copy rather than by re-fetching from the RAM. If the CPU finds
the data it needs in the cache, a cache hit is said to occur. Otherwise a cache
miss occurs and the cache must be immediately loaded with the requisite data
from the RAM. Cache management in modern processors divides the available
cache memory into blocks of b bytes. For a given block, all the b bytes must be
loaded together. To ensure consistency between the data in the RAM and the
cache, a record of cache blocks being loaded into the cache is maintained. This
record serves as the initial raw-data for commencing the cache analysis. The
adversary first fills the entire cache with his own data. Next, during normal

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

computation, user’s data replaces some data of the adversary. When adversary
tries to reload his own data from the cache, if it takes longer time, then he
knows the address of the user’s data from the cache record.

This method can be considered as a cache access attack. However, since the
time to load the data plays a crucial role in leaking the address of the data, we
follow the same nomenclature as in [130] and call this as cache timing attack.

5.2.2 Fault attack

Fault Attack [21] is the kind of SCA where computational faults are induced
in the device to extract the information. This involves two steps process.
The first step is fault injection and the second step includes exploitation of
the induced fault. Faults can be inserted in the system by creating abnormal
conditions like high or low voltage, temperature variations, clock cycle tampers
and radiations. The fault exploitation involves analysis of generated output of
such systems in erroneous environment. The goal may be to corrupt the value
of an internal state register or memory location or to make a small change
in the execution flow, such as skipping an instruction or changing a memory
address etc. The corresponding change in the cipher output obtained are used
to extrapolate the internal state.

A differential fault attack (DFA) against a stream cipher resets the cipher
with the same key, but injecting different faults. The resulting keystreams
have small differences and the attack exploits these differentials. It is most
widely used form of Fault Analysis, as the changes and results of the erroneous
device can be significantly observed.

Certain measures against fault attack include computing a part or whole of
a cryptographic algorithm twice or more, however, it degrades the performance.
Apart from that, another measure exists wherein the integrity of a signature
is checked after computation.

Though in general, there are certain other countermeasures available, yet
owing to the serious amount of threat posed by DFA and the parameters it
usually takes into account for analysis, it is required to develop stronger counter
measures for ensuring better security.

87 5.3 Cache analysis of HC-128

5.3 Cache analysis of HC-128

In the attack model, we assume that the adversary is running a special process
in the CPU in which the cipher is executing. The adversary’s process executes
calls so as to fill the entire cache with his own data, causing the HC-128 cached
data to be evicted. When the HC-128 process gains control of the CPU it must
reload data into the cache pertinent to current instruction. The cache block
size b in present day processors range from 16 bytes to 128 bytes. The arrays
P and Q have 512 many word entries. As four bytes make a word, b/4 array
elements will be mapped to a single cache block size. If the cache block is
aligned with the index of the array, we will have the elements from indices 0 to
(b/4)−1 in the first cache block and the elements from indices (b/4) to (b/2)−1
in the second block and so on, till the elements from indices 511− (b/4) to 511
in the final cache block.

5.3.1 Bits obtainable from cache information

The keystream words are generated using both the arrays P and Q, each
consisting of 512 many words. However, the updates of P and Q arrays are
independent. For 512 many iterations, the array P is updated with the older
values from P itself and during this time the array Q is accessed but not up-
dated. For the next 512 many iterations the array Q is updated with the older
values of Q and during this time the array P is accessed for keyword generation
but not updated. This access and update pattern continues alternatively. At
this phase, the key-stream is generated using two functions h1, h2 of similar
kind. The equations used are as follows.

sj = h1(P [j � 12])⊕ P [j] (keystream when P is updated),

sj = h2(Q[j � 12])⊕Q[j] (keystream when Q is updated).

Every time the h1 (or h2) function is called, it uses bytes 0 and 2 of P [j�12]
(or Q[j�12]) to access the elements of Q (or P) array. Since a cache with block
size b holds b/4 array elements, the cache blocks can be numbered using the first
8− log2(b/4) bits. For each call, two elements of the array are accessed. This
gives 16−2 log2(b/4) bits of each element of the arrays P and Q, corresponding

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

Cache Block Size b: 16 32 64 128
No. of bits obtained: 12 10 8 6

Table 5.1: Cache block size vs. number of bits learned.

to the cache fill which is, sought at the time h1 or h2 is called. Thus, the number
of bits obtained depends on b and is given in Table 5.1.

Using the above, we can form an array with the known elements of P and
Q. Let Pk and Qk denote the array corresponding to the k-th iteration of the
update. On completion of the KSA, we will get the first array denoted by P0

and Q0. On generation of the first 512 keystream words, we get another array
denoted by P1 and for the next 512 words we get the Q1 array, and so on.

5.3.2 Constructing bytes 0 and 2 of each array element

Since h1 and h2 are similar, without any loss of generality we present the case
for P1, and this is valid for Q1 also. For 0 ≤ j ≤ 500, we can rewrite the
keystream generation equation sj = h1(P [j � 12])⊕ P [j] as follows.

Q[u] +Q[v] = s(j + 12)⊕ P1[j + 12], (5.1)

where u = P [j](0) and v = P [j](2).

The keystream s is known. For a cache block size of 32 bytes, the first
5 most significant bits of each of u and v are known. Thus, u � 3 and
32 + (v � 3) denote the cache blocks loaded for computing h1. Within these
blocks (in Q0), we exhaustively search the elements that would give a sum
identical to the right hand side of Equation (5.1).

These additions are across two chunks of 5 bits and so additional carry bits
need to be accounted. For each element P [j], there are (b/4).(b/4) = b2/16
calculations. Finding a correct single match gives the unknown bits of bytes
0 and 2 of P1. Finding more than one match means that we have a set of
values out of which one is the correct candidate. Considering the HC-128
keystream is uniformly random, the frequency of such ties would be very low.

89 5.4 Fault attack on HC-256

The procedure is repeated for all elements of P and Q array.

5.3.3 Finding the remaining sixteen bits for each ele-
ment

Since bytes 1 and 3 of the array elements are never used in h1 (or h2), obtaining
any information about these bits is not possible by the above cache analysis. If
one considers the g1 (or g2) function and propagates the known 10 bits across
many updates, one can guess some bits considering the carry propagation.
However, we could not get much information from such analysis. In the cache
attack of HC-256 [130], the advantage was that all the four bytes of the array
elements are used inside the h1 (or h2) functions, giving leakage of all the 32
bits eventually.

In order to find the remaining 16 bits for each element in case of HC-128,
we propose to use the techniques of differential fault analysis [64] in combi-
nation with the cache analysis suggested here. According to [64], they need
to solve a set of 32 systems of linear equations over Z2 in 1024 variables. If
one performs the cache analysis proposed in this paper first, immediately the
problem reduces to 16 systems of linear equations over Z2 in 1024 variables.

According to [76], the key schedule of HC-128 is reversible and hence once
the full state is recovered, the secret key can be easily found.

5.4 Fault attack on HC-256

The model that we use for inserting faults in HC-256 is similar to that used
for the attack on HC-128 [64] with a slightly stronger assumption as regards to
the fact that one needs to know the location of the fault. Such an assumption
is not entirely impractical. In [116,117], the authors discuss how to flip precise
bits in SRAM and EEPROM, or change the state of any individual CMOS
transistor on a chip. We only require a change in at least one of the 32 bits of
a word at a specific location. Like [64], we also do not need to know the value
of the fault.

In practice, we know that the updates of P and Q occur alternatively.

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

The fault is assumed to be inserted into the array that is not being updated.
Any variation in the keystream would imply that a faulty element has been
accessed. The block of 1024 keystream generation in which P (or Q) is updated
is referred as the P (or Q)-block and the keystream is denoted by sP (or sQ).
Let the primed variables s′P and s′Q denote the ‘faulty’ keystream, i.e., the
keystream generated after fault injection. We denote the location (index) of
the fault as f .

In P -block, the keystream is generated as

sP,j = h1(P [j � 12])⊕ P [j]

=
(
Q
[
(P [j � 12])(0)

]
+Q

[
256 + (P [j � 12])(1)

]
+Q

[
512 +

(P [j � 12])(2)
]

+Q
[
768 + (P [j � 12])(3)

])
⊕ P [j].

Suppose we inject a fault at Q[f] before P [0] is updated in P -block. We rerun
the key generation algorithm 1024 times to generate 1024 faulty keystream
words corresponding to the current P -block.

We compare sP,j with s′P,j for j = 0, . . . , 511. Whenever sP,j 6= s′P,j, we
know that the faulty keystream has been accessed.

The noticeable faults observed in the keystream are either due to a faulty
value of Q entering the h1 function or a faulty value of Q entering the update
function of P .

Definition 5.1. When a faulty Q (or P) array element enters in h1 (or h2),
we call this an opportune event.

Definition 5.2. When a faulty Q (or P) array element is referred inside g1

(or g2), we all this a traverse event.

These cases are analyzed below one by one.

5.4.1 Faulty Q entering in computation of h1

Suppose an opportune event occurs and f is the location of the fault, i.e., Q[f]
is the faulty value accessed inside h1. Here the location of a faulty Q element
gives information of a byte of P . The keystream index j where sP,j and s′P,j

91 5.4 Fault attack on HC-256

differs, refers to
byte 0 of P [j � 12] if 0 ≤ f ≤ 255,
byte 1 of P [j � 12] if 256 ≤ f ≤ 511,
byte 2 of P [j � 12] if 512 ≤ f ≤ 767 or
byte 3 of P [j � 12] if 768 ≤ f ≤ 1023.

Since all the four bytes of P are used inside h1 (as indices to lookup into
array Q), one could retrieve all the bytes of P by injecting faults at all the
1024 entries of Q in turn, if the faulty value never entered in the update of
P . But in practice, the faulty value enters in the update of P and therefore
the keystream indices where sP,j and s′P,j differs do not correspond to distinct
bytes of the words of P . Assuming the P and the Q arrays to be uniformly
random, we can theoretically estimate how many words of the P array would
actually be revealed for the proposed attack model.

Theorem 5.3. The expected number of bytes of P [i] leaked through h1 function
is given by 4(1023

1024)i+1, 0 ≤ i ≤ 1023.

Proof. Before P [i] is used in the keystream generation, all the i + 1 elements
from P [0] to P [i] are updated using the function g. The faulty Q[f] enters in
each of these updates with probability 1/1024, assuming the array elements
to be uniformly random. Thus, the probability that it does not enter in any
particular one of these updates is 1 − 1

1024 = 1023
1024 . Assuming the events cor-

responding to Q[f] entering into the updates of different rounds to be inde-
pendent, the probability that it does not enter in any of the i + 1 updates
is given by αi = (1023

1024)i+1. For 0 ≤ b ≤ 3, let Xi,b = 1, if the byte b of
P [i] is revealed successfully; otherwise Xi,b = 0. The total number of bytes
of P [i] revealed is given by Yi = ∑3

b=0 Xi,b. The expectation of Xi,b is given
by E[Xi,b] = Prob(Xi,b = 1) = αi, for any b, 0 ≤ b ≤ 3. By linearity of
expectation, E[Yi] = ∑3

b=0 E[Xi,b] = 4αi.

In Fig. 5.1, we compare the theoretical estimate with the empirical values
of the number of bytes of P [i] leaked from the h1 function, 0 ≤ i ≤ 1023, when
each element of Q is faulted once. We see that the plots are almost identical.
The empirical values were obtained by averaging over 1 million iterations, and
each time HC-256 was run with a new randomly generated secret key.

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

An immediate consequence of Theorem 5.3 is Corollary 5.4, that gives the
theoretical estimate of the number of words of the array P that are actually
leaked.

Corollary 5.4. The expected number of words of the array P leaked through
h1 function is 647.

Proof. Refer to Yi defined in the proof of Theorem 5.3. Total number of bytes
revealed is given by ∑1023

i=0 Yi, whose expected value is given by 4∑1023
i=0 (1023

1024)i+1.
Thus, the expected number of words revealed is given by ∑1023

i=0 (1023
1024)i+1 =

646.84 ≈ 647.

Figure 5.1: Number of bytes of P array elements leaked from h1 function

5.4.2 Faulty Q entering in update of P

Since the update of P involves Q (unlike HC-128), faulty Q[f] is eventually
referred inside g1. When such a traverse event happens, it does not yield any
more information within the particular update. However, this case assists in
finding elements of the previous updates as follows. Recall the update of P .

P [j] = P [j] + P [j � 10] + g1(P [j � 3], P [j � 1023]),

where g1(x, y) = ((x≫ 10)⊕ (y≫ 23)) +Q[(x⊕ y) mod 1024].

93 5.4 Fault attack on HC-256

So whenever we observe a mismatch between sP,j and s′P,j, that may be due
to the fact that P [j � 3] ⊕ P [j � 1023] mod 1024 refers to the faulty element
of Q.

Since the index of the faulty Q element is known, if any one of the elements
P [j � 3] and P [j � 1023] is known, the other element can be easily computed.
Except for P [0], all the elements of the form P [j�1023] are from the previously
updated P array. Similarly, all the elements of the form P [j � 3] refer to the
updated values of P array, except for P [0], P [1] and P [2].

While keeping track of these indices, the elements found in subsequent
updates can be used for finding elements of the previous updates. We find
that when we propagate the knowledge from the second update into the first
update, the probability increases. Similar trend continues as one increases the
number of updates. Our experimental results reveal that after faulting four
successive updates of P and Q, the first ten bits of approximately 85% elements
of P and Q pertaining to first update can be obtained. Fig. 5.2 shows how the
values obtained from the first, the second and the fifth updates help in finding
values in the current update. Table 5.2 gives the numerical data for all the
five updates. All the values were obtained by averaging over 10000 simulations
with randomly generated secret keys.

Figure 5.2: Probability of finding the first ten bits of P array elements from several
updates

Thus, we are able to get approx. 877 values of the first ten bits, fourth

Chapter 5: Side Channel Attacks and Impact on HC series of Stream Ciphers

Type No. of updates #words (first 10 bits leaked)
only h fault 1 646.8
both h and g fault 1 805.1
both h and g fault 2 860.0
both h and g fault 3 871.0
both h and g fault 4 875.0
both h and g fault 5 877.6

Table 5.2: Number of words with first ten bits leaked vs. number of subsequent
updates incorporated.

array update onwards. Thus, a total 647 × 22 + 8776 bits ≈ 719 words for
each array are known.

5.4.3 Differentiating the two cases and obtaining
additional elements

Experiments show that if the opportune event occurs, then the keystream dif-
ferences (sP,j vs. s′P,j) occur at random indices (j), whereas if the traverse
event occurs then the keystream differences follow a sequential pattern. This
is because a fault in keystream position si due to faulty P [i], which in turn is
caused via an update involving the faulty Q[f], would result in its being used
in the update function of P [i + 3], thereby altering the value of si+3. This in
turn creates a fault in position si+6 by virtue of the faulty value being used in
the update of P [i+ 6].

Since the first ten bits of both P and Q function are known, by propagating
these values across many updates of P array, one can endeavor to find the
missing bits by guess and determine strategy. The analysis is tedious and non-
trivial and at this stage we leave it as an open problem. It would be interesting
to look at the combinatorial aspects of this guess and determine attack.

5.5 Conclusion

We showed how the cache analysis of HC-256 [130] can be extended to HC-
128 and how the differential fault analysis of HC-128 [64] can be extended to

95 5.5 Conclusion

HC-256. The first attack leads to half state recovery of HC-128 and when
combined with the differential fault analysis can lead to the full state recovery
and key recovery of HC-128. With the second attack, we have been able to
perform partial state recovery of HC-256. Two interesting future works could
be to study the feasibility of using the cache analysis alone to achieve full state
recovery of HC-128 and that of mounting the differential fault attack alone to
achieve full state recovery of HC-256.

Our findings show that the side channel vulnerability for a particular im-
plementation of a cipher may percolate to its variants also under similar condi-
tions, albeit in a different degree. This vulnerability is still exploitable through
refinement of the attack vectors. So, while selecting a cipher variant to thwart
side channel vulnerabilities, extra caution must be exercised.

this page intentionally left blank

Chapter 6
Implementing HC-128 in Hardware

In the recent years, VLSI technology has grown in a fast pace as predicted by
Moore’s law. There have been considerable advances in the platforms available
for implementation, since the HC-128 cipher was designed eight years ago. In
this chapter we present a comprehensive design study of implementing HC-128
on contemporary architectures to achieve high throughput.

6.1 Motivation and contributions

In the present scenario, embedded processors have become an emerging can-
didates to implement ciphers. After a quick review of the implementation
of HC-128 on general purpose CPU, we study the implementation in several
embedded processors and on a state-of-the-art customizable processor in Sec-
tion 6.3. Implementation of HC-128 on modern embedded processors is also an
important area of study. Quite naturally, the speed achieved in this situation
may not be very enthusiastic compared to general purpose processors. How-
ever, once the cipher is widely deployed in commercial domain, one may like to
use it on low end hand-held devices. Work in this direction has been reported
earlier for embedded micro-controllers [87] and wireless sensor networks. Once
HC-128 becomes more popular, one may try to achieve higher speed for the
key-stream generation. Given the overheads of general purpose processors, it
is clear that one can always obtain further speed-up using application specific
hardware accelerator and such a design of HC-128 may efficiently be used in a

97

Chapter 6: HC-128 Implementation in Hardware

cryptographic co-processor.

Next, in Section 6.4, we present detailed ASIC implementation of HC-128
that can be included as a module in a cryptographic co-processor. To boost
the performance, in Section 6.5, we propose novel parallelization strategies
both in terms of key/IV set-up and keystream generation. These efforts yield
more than 3 times throughput improvement compared to the fastest software
speed reported in eStream. Our strategies are also useful to completely hide
the initialization latency by employing a multi-session HC-128 execution. Our
study serves two major purposes towards the deployment of HC-128 stream
cipher. First, it reports several novel and generic performance improvement
strategies for HC-128. Second, several design points are explored ranging from
customizable co-processor to fully dedicated hardware accelerators. Though
HC-128 is a software cipher, we believe that instead of software-only bench-
marking, a complete design study is crucial to identify advantages/bottlenecks
of HC-128.

6.2 HC-128 on general purpose CPU’s

HC-128 is primarily designed as a software stream cipher aiming for sequential
execution on general purpose processors. However, it contains several coarse-
grained and fine-grained parallelism opportunities. Some of these parallelism
has been exploited in order to obtain fast software implementation on general
purpose processor cores. The software performances reported, for stream en-
cryption, in eSTREAM project web-page [37] are summarized in Table 6.1 and
Table 6.2. For the initialization speed, the total duration of key and IV setup
are reported.

The parallelism options reported in the available literature [128] mainly
relied on loop-unrolling. The optimized implementation, as presented in [128],
unrolled 16 consecutive iterations of keystream generation. Though the it-
erations contain dependencies, it can efficiently execute with deep pipelining
and data forwarding as supported by modern general purpose processors. Fi-
nally, large bit-width is used for storing the keywords and encryption, thereby
exploiting SIMD extensions of modern microprocessors.

99 6.2 HC-128 on general purpose CPU’s

Processor Clock Freq. Initialization
(GHz) cycles/setup setups/second

Intel Pentium M 1.7 25947.56 65516.76
Intel Pentium 4 2.8 57008.26 49115.69
ADM Athlon 64 X2 4200+ 2.2 23346.63 94232.02
Alpha EV6 0.5 42184.67 11852.65
HP 9000/785 0.875 19911.01 43945.54

Table 6.1: HC-128 Key and IV initialization on general purpose processors

Processor Clock Freq. Key Generation
(GHz) cycles/byte Gbps

Intel Pentium M 1.7 3.07 4.43
Intel Pentium 4 2.8 3.76 5.95
ADM Athlon 64 X2 4200+ 2.2 2.86 6.19
Alpha EV6 0.5 3.9 1.03
HP 9000/785 0.875 2.75 2.54

Table 6.2: HC-128 Keystream generation on general purpose processors

Chapter 6: HC-128 Implementation in Hardware

6.3 Experiment with embedded & customiz-
able processors

In this section, we analyze the available performance figures for HC-128 for
embedded processors. Furthermore, several experiments have been conducted
and reported on customization of an embedded processor for improving the
software runtime performance of HC-128.

6.3.1 Implementation on embedded processors

Only one implementation of HC-128 on embedded micro-controller has been
reported so far. It is observed that the large RAM size does not fit into
many 8-bit micro-controllers [87]. ATmega128l from Atmel’s 8-bit AVR micro-
controller family, running at 8 MHz clock, is used.

We implemented the HC-128 stream cipher on another dominant embed-
ded processor, namely ARM Cortex-A8. We ran HC-128 on a TI OMAP3530
platform, where ARM Cortex-A8 is run at 550 MHz. For compilation, CodeS-
ourcery ARM compiler is used with -O3 -march=armv7-a options. ARM cy-
cle counter is used for estimating the number of cycles. No optimization at
C-level or assembly-level is performed. The results of executing HC-128 on
ATmega128l and ARM Cortex-A8 are presented in Table 6.3. Note that, both
the processors reported here, i.e., ATmega128l and ARM Cortex-A8 can run
faster as per their specifications at 16 MHz and 1 GHz respectively. Assum-
ing the cycle count will remain intact at a higher clock, we also report the
corresponding speed numbers.

6.3.2 Implementation on customizable processor

Customizing a basic processor templates with instruction-set architecture ex-
tensions and micro-architectural modifications are commonly found in the port-
folio of several IP vendors. In this experiment, IRISC, a customizable RISC
processor template is chosen, which is based on the IPs distributed with a high-
level processor design framework. The template processor description supports
a basic 32-bit RISC instruction set with predicated instruction execution. The

101 6.3 Experiment with embedded & customizable processors

Processor Clock Frequency Initialization
(GHz) cycles/setup setups/second

ATmega128l [87] 8 2084788 3.84
ATmega128l (esti-
mated)

16 2084788 7.68

ARM Cortex-A8
(implemented)

550 85696 6418.04

ARM Cortex-A8
(estimated)

1000 85696 12836.08

IRISC (Core Area
41.35 NAND
KGates)

769 231695 3320.02

Table 6.3: HC-128 Key and IV initialization on embedded & customizable embedded
processors.

micro-architecture contains a 5-stage pipeline supporting synchronous accesses
to program and data memory. The core features 16 32-bit general purpose
registers and a range of special purpose registers. On the basis of the initial
profiling results of HC-128 on the processor template, several architectural
modifications are performed. These are described briefly in the following.

Special Purpose Registers: A special purpose 10-bit counter for HC-128 is
defined in the processor template.

Special Purpose Memories: The processor template supported only one
data memory. This restricted the possible speed-up of the architecture consid-
erably. Therefore, two additional memories for P and Q array are defined.

Custom Instruction Extensions: Special instructions supporting rotate left
and rotate right are defined. In functions f1, f2, g1 and g2, rotation of two
values are done followed by XOR operation. For this, a custom instruction
rotate_xor is defined. For address generation in h1 and h2, a special purpose
instruction shift_xor_add is defined.
In order to allow fast access of P and Q memories, custom load and store
instructions are defined with additional addressing support for modulo minus
operations based on the counter. While extending for this custom instructions,
it was also made sure that the custom instructions do not increase the proces-

Chapter 6: HC-128 Implementation in Hardware

Processor Clock Frequency Key Generation
(GHz) cycles/byte Gbps

ATmega128l [87] 8 168.81 0.38 Mbps
ATmega128l (esti-
mated)

16 168.81 0.76 Mbps

ARM Cortex-A8
(implemented)

550 11.06 0.39 Gbps

ARM Cortex-A8
(estimated)

1000 11.06 0.79 Gbps

IRISC 769 15 0.41 Gbps

Table 6.4: HC-128 keystream generation on embedded & customizable embedded
processors.

sor critical path. The final processor description was processed by Synopsys
Processor Designer to generate the HDL description [27]. The HDL descrip-
tion is synthesized with Synopsys Design Compiler, topographical mode for
65 nm technology library. The synthesis results and runtime performance are
presented in Table 6.3. From the speed perspective, it could be observed that
IRISC significantly outweighs the earlier results on ATmega micro-controller
and achieves comparable results as ARM. This study provides us with a back-
ground on achievable throughput on embedded processors. As we will observe
in the following sections, further speed-up in software-based implementation
will require a multi-threaded execution platform.

6.4 Hardware accelerator implementation of
HC-128

It should be noted that the HC-128 accelerator implementation needs to be
configurable for loading new keys and initialization vectors. To that end, we
utilized the same high-level synthesis flow used for processor designing and
carefully designed a micro-architecture with least necessary configurability [27].
For example, the micro-architecture contained two sets of instructions for ini-
tialization and keystream generation respectively. In order to have an area-

103 6.4 Hardware accelerator implementation of HC-128

efficient design, the ASIC for initialization and key stream generation are built
around the same underlying hardware structure.

Figure 6.1: Pipeline structure for keystream generation

6.4.1 Implementation of Keystream Generation

The major bottleneck in the ASIC implementation for HC-128 is large area
overhead from its storage, i.e., P and Q arrays. For our storage implementa-
tion, dual-port read/write synchronous SRAM is used with single-cycle access
latency. The accelerator is initially conceived in the 4-stage pipeline structure
as shown in Figure 6.1. For the sake of simplicity, only the processing of if-
block in the keystream generation algorithm is shown. The else-block utilizes
exactly the same structure with an additional multiplexer controlled by the
counter k.

The storage accesses of keystream generation algorithm are distributed in
the 4-stage pipeline structure HC1, HC2, HC3 and HC4 in a manner that
the SRAM access restrictions are not violated if only one pipeline stage is
active at any given cycle. Efficient distribution of the computation in the
pipeline stages is important for achieving a low critical path, i.e., a high clock
frequency. To that effect, the computation is triggered from the innermost
kernel of functions g1 or g2, i.e., the rotate operation followed by the xor is
computed as soon as the data is available in pipeline stage HC2. In stage
HC3, further processing of g1 is done and the addresses for accessing Q array
is computed. In the same stage, the read requests for Q array are placed.
In the final stage, the remaining computations for keystream generation and
updating the P array are performed. Subsequently, a write request to P array

Chapter 6: HC-128 Implementation in Hardware

is made. Note that, because of this write request, a new iteration of keystream
generation cannot be started until the next cycle. This means, every iteration
of keystream generation occupies the complete pipeline for 4 cycles, thereby
providing a keystream generation speed of 1 word per 4 cycles or 1 byte/cycle.
The gate-level synthesis results at 65 nm technology node achieved a total
area of 3.72 KGates with 4 KBytes of RAM. The fastest clock frequency is
determined to be 1.82 GHz indicating 14.56 Gbps throughput.

For improved initialization speed, the initialization module of HC-128 is
also included in the design. The initialization part of HC-128 is distributed
into 4 phases. The first 3 phases perform a given set of operations using P ,
Q and auxiliary array W [128]. The last phase essentially runs the keystream
generation step 1024 times, where instead of generating the final keystream,
the arrays are updated with the final result at each step. For this purpose,
we re-used the pipeline structure exactly as depicted earlier in Figure 6.1.
The area and timing results after including initialization module is reported
in Table 6.5 (base implementation).

6.5 Parallelization strategies

Certain parallelization strategies seem to be interesting towards the implemen-
tation aspects of HC-128. First of all, long initialization latency is considered
a drawback, especially for stream ciphers. Although our proposed accelerator
does the initialization considerably faster than available implementations, it
remains important to check if the initialization can be managed without any
delay.

6.5.1 Parallelizing initialization with keystream gener-
ation

The proposed accelerator for key and IV setup shares several computation with
the keystream generation. To invoke the initialization in parallel to keystream
generation, it requires duplication of the pipeline structure. A second set of
P and Q array will be needed, too. The initialization can work on a set of

105 6.5 Parallelization strategies

P , Q array while the other set is being used for keystream generation. The
keystream generation operation can switch to a new key and IV with a latency
of only 1 cycle. The support for parallel initialization increases area overhead
as reported in Table 6.5.

6.5.2 Parallelizing keystream generation

The keystream generation itself can be further parallelized by efficient duplica-
tion of resources. For that, we study the algorithm and partition the keystream
generation into two phases namely, key generation and self-update. These two
phases can be separately triggered. The key idea is that when, the self update
for P array takes place, the key generation will take place from Q array and
an old copy of P array.

Key generation

For the key generation, updated value of P or Q array is required at index i.
This can be taken directly from the updated P1 or Q1 array. However, the
values stored at index i � 12 gets updated during the self update function,
which is not the desired value for key generation function. For example, when
the value of i is 1, i� 12 points to array index 501. This P array value at this
index gets updated during self-update function later. For key generation, one
needs to have the old value though. Therefore, for correct computation of h1

and h2 functions, two additional arrays P3 and Q3 are maintained. During the
key generation, P1 or Q1 arrays reflect the updated versions, whereas P2 or
Q2 contain old values that suffice for current iterations. During key generation
from P1 or Q1, a subsequent data transfer to P2 or Q2 is done to prepare for
the next else or if block respectively.

Self update

The self update always works on the P1 or Q1 array, with a subsequent loading
to P3 or Q3 array as required. The updating works on a different indexing, j.

Chapter 6: HC-128 Implementation in Hardware

A
rea

C
lock

K
eystream

Initialization
C
om

binational
Sequential

R
A
M

size
Frequency

G
eneration

(setups/second)
(N

A
N
D

K
gates)

(N
A
N
D

K
gates)

(K
B
yte)

(G
H
z)

(cycles/byte)
(G

bps)
B
ase

Im
plem

entation
6.43

1.76
9

1.67
1

13.36
211499.49

ParallelInitialization
11.73

2.48
13

1.67
1

13.36
211499.49

ParallelK
eystream

G
eneration

10.06
3.60

21
1.67

0.75
17.81

192751.62
O
dd-Even

M
em

ory
Partitioning

10.28
2.37

21
1.43

0.5
22.88

243617.23

Table
6.5:

Perform
ance

ofhardw
are

accelerator

107 6.5 Parallelization strategies

Initialization

In order to trigger the parallel keystream generation algorithm, the initializa-
tion of key and IV needs to be done with additional care. The 3rd and 4th
phase of key and IV setup (as described in [128, Section 2]) needs to be done
for all P1, P2, Q1 and Q2. In this work, it is done by first running the key and
IV setups for P1, Q1 arrays followed by a copying to P2 and Q2 respectively.

Figure 6.2: Pipeline structure for parallel keystream generation

Pipeline structure

In addition to the parallel initialization structure, two parallel 4-stage ASIC
pipelines are conceived to accommodate the parallel keystream generation al-
gorithm. The self update and keystream generation phases are distributed
in the 4 pipeline stages as shown in Figure 6.2. Though the key generation
phase is much faster now, accomplishing within 3 pipeline stages, the self up-
date process still spans the entire pipeline. However, since the write request in
self update process accesses the array Q3 (or P3), the pipeline can accommo-
date a new iteration of self update in its first stage. Therefore, one iteration
of self-update requires 3 cycles to complete. This ensures that one word of key
is generated every 3 cycles.

Chapter 6: HC-128 Implementation in Hardware

Pipeline Stage Operation with Memory Partitioning
HC1 request Q1odd[j � 3], Q1odd[j � 511]

request Q1even[j � 10], Q1even[j]
read Q1odd[j � 3], Q1odd[j � 511]

HC2 read Q1even[j � 10], Q1even[j];
request Q1even[j � 12];
process g1, add; write Q1even[j]

HC3 read Q1even[j � 12]; write Q3[j � 12]

Table 6.6: Pipeline organization with odd-even memory partitioning

6.5.3 Odd-even memory partitioning

A careful study in the update part of the pipeline designed in Figure 6.2 reveals
that the accesses to the memoryQ1 is a bottleneck, spreading the iteration over
3 pipeline stages. Thanks to our intuitive design, the access indices follow a
pattern with alternate access to odd and even memory locations. This previous
design decision is now leveraged by creating two memories from Q1 namely,
Q1_odd and Q1_even. This distribution allowed to squeeze the self update
pipeline in 3 stages. The keystream generation still spreads over 3 pipeline
stages. However, a new iteration can start in pipeline stage HC1 when the
current iteration is in pipeline stage HC3. The operation distribution per
pipeline stage for the update part is shown briefly in the above table.

As we could overlap the write access of the last pipeline stage with a new
iteration starting at the first pipeline stage, the self update phase now takes 2
cycles per iteration. This strategy increases the keystream generation through-
put to 1 word/2 cycles.

All the above design points are implemented in form of Verilog RTL and
synthesized with Synopsys Design Compiler, Topographical mode, using a 65
nm technology library. The detailed results discussed so far are presented
in Table 6.5. It is interesting to note that the split up of key generation
and self updating, as done for parallel keystream generation also resulted into
less combinational circuit. This happened due to the fact that the splitting
avoided several combinational logic to be on the critical path, for which sim-

109 6.6 Conclusion

pler implementation could be synthesized. The memory partitioning approach
resulted into little increase in the critical path because of the arithmetic op-
erations now being performed in a single stage. For the same design point, a
gain in sequential area is observed by avoiding several pipeline registers. The
highest throughput for key stream generation in a software implementation is
6.19 Gbps (see Table 6.2). In comparison, the fastest implementation we could
achieve is 22.88 Gbps, which is more than 3 times the fastest reported software
implementation. The initialization task, combining key and IV set up together,
is more than 2 times faster than the fastest reported software implementation.
The results justify a closer look at the multi-core software implementation for
HC-128 and/or deploying dedicated accelerator for HC-128 in heterogeneous
embedded platforms.

6.6 Conclusion

In this chapter, we investigated different design points of a implementing HC-
128 stream cipher on contemporary as well as futuristic platforms. We have
achieved significant throughput improvement compared to state-of-the-art sys-
tems for the keystream generation as well as for the initialization with novel
parallelization strategies. The design points offer a variety of area and through-
put options for hardware accelerator-based implementations.

this page intentionally left blank

Chapter 7
Conclusion and Future Work

In this thesis, a detailed study have been performed on the design, analysis
and implementation of HC-128 stream cipher. The study spanned from theo-
retical cryptanalysis to compact cipher implementation, covering side-channel
cryptanalysis also in the journey. As discussed earlier, the primary reason of
choosing HC-128 as the thesis topic was, because it was one of the few ciphers
amongst 34 submissions of the eStream comptetition with no significant crypt-
analytic results. Though the work carried out, does not break the cipher, it
has definitely propelled interest in the cryptology community, which is evident
by an increase in related publications subsequent to our initial work.

Note that the HC-128 cipher belongs to the genre of array based stream
ciphers. Though many ciphers in this class have been analyzed critically and
shown to have several vulnerabilities, HC-128 remained a strong exception.
Through our work, we have shed light on the important structural features of
HC-128, that may lead to realistic attacks in future.

7.1 Summary

After a brief introduction to cryptology and stream ciphers in Chapter 1, we
described the HC-128 and HC-256 stream ciphers and enlisted the existing
results on the two ciphers in Chapter 2.

In Chapter 3, we showed that if any one of the two internal state arrays of

111

Chapter 7: Conclusion and Future Work

HC-128 and just 2048 keystream words are known, one can construct the other
state array completely in 242 time complexity. In addition, one can recover the
Key. This analysis reveals a structural weakness of the cipher and theoretically
establishes some novel combinatorial properties of HC-128 keystream genera-
tion algorithm. Though this does not affect the actual security of the cipher,
it is an interesting observation related to the the internal structure. In this
chapter, we also propose a design modification of HC-128 that resists such half-
state exposure. We evaluate the performance of our new design in the eStream
testing framework and compare the speed with that of actual HC-128.

In Chapter 4, we exploited linear approximation in the feedback functions
g1, g2 of HC-128. There are three 32-bit additions in each of these feedback
functions. We reviewed the analysis of approximating the additions by bit-wise
XOR operators, and thereby could extend the “least significant bit" based
distinguisher (presented by the designer of the cipher) of HC-128 to other
bits of the 32-bit word. We also presented a new distinguisher by properly
choosing pairs of five keystream word combinations from three consecutive
blocks corresponding to only P (or only Q) array. In this chapter, we also
looked into the problem of state leakage in keystream. In [36], it has been
observed that Prob(sj ⊕ sj+1 = P [j] ⊕ P [j + 1]) ≈ 2−16, where sj, sj+1 are
two consecutive keystream output words. We studied that in more detail and
found a sharper association which gives twice the above probability.

In Chapter 5 we showed how the cache analysis of HC-256 [130] can be
extended to HC-128 and how the differential fault analysis of HC-128 [64] can
be extended to HC-256. The first attack led to half state recovery of HC-128
and when combined with the differential fault analysis can lead to the full
state recovery and key recovery of HC-128. With the second attack, we have
been able to perform partial state recovery of HC-256. Our findings show that
the side channel vulnerability for a particular implementation of a cipher may
percolate to its variants also, albeit in a different degree. This vulnerability is
still exploitable through refinement of the attack vectors. So, while selecting a
cipher variant to thwart side channel vulnerabilities, one must exercise extra
caution.

In Chapter 6, we studied efficient hardware implementation of HC-128 on
different platforms. Advancement of VLSI technology (particularly, embed-

113 7.2 Future works and open problems

ded processors) have removed the boundary between software and hardware.
Irrespective of the fact that HC-128 is a software stream cipher, it is has
thus become important to analyze the hardware design parameters of HC-128
which happens to be the fastest software stream cipher of eStream. After a
review of the implementation of HC-128 on general purpose CPU, we studied
the implementation in several embedded processors and on a state-of-the-art
customizable processor. Further, we present detailed ASIC implementation of
HC-128 that can be included as a module in a cryptographic co-processor. We
also proposed novel parallelization strategies both in terms of key/IV set-up
and keystream generation. These efforts yielded more than 3 times through-
put improvement compared to the fastest software speed reported in eStream.
Our strategies can completely hide the initialization latency by employing a
multi-session HC-128 execution. In short, the analysis in this chapter served
two major purposes towards the deployment of HC-128 stream cipher. First, it
reported several novel and generic performance improvement strategies for HC-
128. Second, several design points were explored ranging from customizable
co-processor to fully dedicated hardware accelerators.

7.2 Future works and open problems

Research is a never-ending journey. A thesis attempts to solve some open
problems and in the process creates more open problems than it started with.
This thesis is no exception. Here we list the most important ones amongst the
possible future extensions of our work and the new problems that our work
has opened up.

In the work on internal state in Chapter 3, we showed that half the internal
state leaks the other half of the internal state and thus in turn leaks the entire
state. A possible generalization could be the case where instead of half if we
know only α fraction of the internal state. What fraction β (as a function
of α) of the total internal state can be inferred from this. This is very hard
and non-trivial. Another caveat of our work is that we assumed the known
half-state to be either the entire P array or the entire Q array. What if we
know half of the internal state, but partly from P and partly from Q? This
is also an interesting open problem. In this chapter, we also argued why our

Chapter 7: Conclusion and Future Work

strategy of half-state to full-state expansion cannot be extended to HC-256.
However, there could be other strategies that might expand γ-fraction of the
internal state of HC-256 to δ (> γ)-fraction of its state. Investigating such
strategies is also important in the anaylsis of HC series of ciphers.

In Chapter 4, we have discovered few new but weak distinguishers (not of
practical complexity). An obvious question is: can we have stronger distin-
guishers? Moreover, we proved some correlations between state and keystream.
So another related open problem is: can this state-leakage or any other undis-
covered form of state-leakage be used to mount a (full or partial) state-recovery
attack on HC-128? Similar questions can be asked for HC-256 as well.

Two interesting future works that naturally arise from the side channel
analysis of Chapter 5 are as follows:

1. Can the cache analysis alone lead to full state recovery of HC-128?

2. Can the differential fault attack alone be used to mount full state recovery
of HC-256?

Apart from these, one may also look into alternative fault model. For example,
we have assumed that the location of the fault is known for HC-256. A stronger
model may work with faults at unknown location.

The speed achieved in the hardware designs attempted in Chapter 6 is not
very enthusiastic compared to general purpose processors. However, once the
cipher is widely deployed in commercial domain, one may like to use it on low
end hand-held devices. Work in this direction has been reported earlier for
embedded micro-controllers [87] and wireless sensor networks. Once HC-128
becomes more popular, one may try to achieve higher speed for the key-stream
generation. Given the overheads of general purpose processors, it is clear that
one can always obtain further speed-up using application specific hardware
accelerator and such a design of HC-128 may efficiently be used in a crypto-
graphic co-processor. This gives rise to a wide area of open research - not only
for increasing throughput, but also in terms of other performance parameters,
like reducing the gate count, power minimization, etc. In addition, it will
be interesting to explore the application of these parallelization techniques to
other stream ciphers. Alternatively, it is necessary to check the functionality

115 7.3 Final words

of the light weight forms of HC-256 and HC-128 and their resiliency in the
current scenario of resource constrained environment.

7.3 Final words

The HC series of stream ciphers have been in the horizon for close to a decade.
This thesis marks culmination of five years of dedicated research on the cipher.
It appears that the designer has taken care of resistance against practical
attacks. However, cryptography and cryptanalysis are always at arm’s race
and we never know what is coming up next.

this page intentionally left blank

Bibliography

[1] 3rd Generation Partnership Project. Specification of the 3GPP confi-
dentiality and integrity algorithms 128-EEA3 & 128-EIA3. ETSI/SAGE
Specification – Document 2: ZUC Specification, v1.6, June 28, 2011.

[2] Carlisle Adams and Steve Lloyd. Understanding PKI: Concepts, Stan-
dards, and Deployment Considerations. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj
Rohatgi. The EM Side-Channel(s). In Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 29–45. Springer, 2002.

[4] Manfred Josef Aigner, Stefan Mangard, Francesco Menichelli, Renato
Menicocci, Mauro Olivieri, Thomas Popp, Giuseppe Scotti, and Alessan-
dro Trifiletti. Side channel analysis resistant design flow. In ISCAS.
IEEE, 2006.

[5] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. Electronic Colloquium on Computational
Complexity (ECCC), 3(65), 1996.

[6] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Frank Thomson Leighton and Peter W.
Shor, editors, STOC, pages 284–293. ACM, 1997.

117

BIBLIOGRAPHY

[7] Frederik Armknecht and Matthias Krause. Algebraic Attacks on Com-
biners with Memory. In Dan Boneh, editor, CRYPTO, volume 2729 of
Lecture Notes in Computer Science, pages 162–175. Springer, 2003.

[8] S. Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on
Stream Ciphers. European Convention on Security and Detection, IEEE
Conference Publication, May 1995.

[9] Subhadeep Banik and Subhamoy Maitra. A Differential Fault Attack
on MICKEY 2.0. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES, volume 8086 of Lecture Notes in Computer Science, pages 215–
232. Springer, 2013.

[10] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential
Fault Attack on the Grain Family of Stream Ciphers. In Emmanuel
Prouff and Patrick Schaumont, editors, CHES, volume 7428 of Lecture
Notes in Computer Science, pages 122–139. Springer, 2012.

[11] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted Communication. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages
600–616. Springer, 2003.

[12] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-
Only Cryptanalysis of GSM Encrypted Communication. J. Cryptology,
21(3):392–429, 2008.

[13] Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R.
Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Lev-
enson, Mark Vangel, David L. Banks, Nathanael Alan Heckert, James F.
Dray, and San Vo. SP 800-22 Rev. 1a. A Statistical Test Suite for Ran-
dom and Pseudorandom Number Generators for Cryptographic Appli-
cations. Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States, 2010.

[14] Riddhipratim Basu, Shirshendu Ganguly, Subhamoy Maitra, and
Goutam Paul. A complete characterization of the evolution of rc4 pseudo
random generation algorithm. J. Mathematical Cryptology, 2(3):257–289,
2008.

119 BIBLIOGRAPHY

[15] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report,
The University of Illinois at Chicago, 2005.

[16] Eli Biham, Louis Granboulan, and Phong Q. Nguyen. Impossible Fault
Analysis of RC4 and Differential Fault Analysis of RC4. In Henri Gilbert
and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in
Computer Science, pages 359–367. Springer, 2005.

[17] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[18] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers. In Tatsuaki Okamoto, editor, ASI-
ACRYPT, volume 1976 of Lecture Notes in Computer Science, pages
1–13. Springer, 2000.

[19] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis
of A5/1 on a PC. In Bruce Schneier, editor, FSE, volume 1978 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2000.

[20] C. Blundo and P. D’Arco. The Key Establishment Problem. Lecture
Notes in Computer Science, Springer, 2004.

[21] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract).
In Walter Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[22] Dirk Bouwmeester, Artur Ekert, Anton Zeilinger, et al. The Physics of
Quantum Information, volume 38. Springer Berlin, 2000.

[23] Colin A. Boyd and Anish Mathuria. Protocols for Authentication and
Key Establishment. Information Security and Cryptography. Springer,
2003.

[24] C. D. Cannière. eStream Testing Framework. Available online at http:
//www.ecrypt.eu.org/stream/perf [last accessed on April 30, 2014].

http://www.ecrypt.eu.org/stream/perf
http://www.ecrypt.eu.org/stream/perf

BIBLIOGRAPHY

[25] Anne Canteaut and Michaël Trabbia. Improved Fast Correlation Attacks
Using Parity-Check Equations of Weight 4 and 5. In Bart Preneel, edi-
tor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 573–588. Springer, 2000.

[26] Anupam Chattopadhyay, Ayesha Khalid, Subhamoy Maitra, and Shash-
wat Raizada. Designing High-throughput Hardware Accelerator for
Stream Cipher HC-128. In ISCAS, pages 1448–1451. IEEE, 2012.

[27] Anupam Chattopadhyay, Heinrich Meyr, and Rainer Leupers. LISA: a
Uniform ADL for Embedded Processor Modelling, Implementation and
Software Toolsuite Generation. Processor Description Languages, pages
95–130, 2008.

[28] Colin Cooper and Alan Frieze. The Size of the Largest Strongly Con-
nected Component of a Random Digraph with a Given Degree Sequence.
Comb. Probab. Comput., 13(3):319–337, May 2004.

[29] Nicolas Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 176–194. Springer, 2003.

[30] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers
with Linear Feedback. In Eli Biham, editor, EUROCRYPT, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer, 2003.

[31] Joan Daemen and Paris Kitsos. The Self-synchronizing Stream Cipher
Moustique. In Matthew J. B. Robshaw and Olivier Billet, editors, The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 210–223. Springer, 2008.

[32] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Jean-
Jacques Quisquater and Bruce Schneier, editors, CARDIS, volume 1820
of Lecture Notes in Computer Science, pages 277–284. Springer, 1998.

[33] David Deutsch. Quantum theory, the Church-Turing Principle and the
Universal Quantum Computer. Proceedings of the Royal Society of Lon-
don, 400:97–117, 1985.

121 BIBLIOGRAPHY

[34] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic tech-
niques. In AFIPS National Computer Conference, volume 45 of AFIPS
Conference Proceedings, pages 109–112. AFIPS Press, 1976.

[35] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[36] O. Dunkelman. A Small Observation on HC-128, November 2007.
Available online athttp://www.ecrypt.eu.org/stream/phorum/read.
php1,1143 [last accessed on April 10, 2011].

[37] ECRYPT Stream Cipher Project eStream. The current eSTREAM port-
folio. Available online at http://www.ecrypt.eu.org/stream/index.
html.

[38] Wieland Fischer, Berndt M. Gammel, O. Kniffler, and J. Velten. Dif-
ferential Power Analysis of Stream Ciphers. In Masayuki Abe, editor,
CT-RSA, volume 4377 of Lecture Notes in Computer Science, pages 257–
270. Springer, 2007.

[39] Martin Gagné. Identity-Based Encryption. In Henk C. A. van Tilborg
and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security
(2nd Ed.), pages 594–596. Springer, 2011.

[40] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme
based on Discrete Logarithms. IEEE Transactions on Information The-
ory, 31(4):469–472, 1985.

[41] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-Key Cryp-
tosystems from Lattice Reduction Problems. In Burton S. Kaliski Jr.,
editor, CRYPTO, volume 1294 of Lecture Notes in Computer Science,
pages 112–131. Springer, 1997.

[42] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[43] Jovan Dj. Golic and Miodrag J. Mihaljevic. A Generalized Correlation
Attack on a Class of Stream Ciphers Based on the Levenshtein Distance.
J. Cryptology, 3(3):201–212, 1991.

http://www.ecrypt.eu.org/stream/phorum/read.php1,1143
http://www.ecrypt.eu.org/stream/phorum/read.php1,1143
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/index.html

BIBLIOGRAPHY

[44] S. Golomb. Shift Register Sequences. Aegean Park Press, 1982.

[45] Jennie C. Hansen and Jerzy Jaworski. Large Components of Bipartite
Random Mappings. Random Struct. Algorithms, 17(3-4):317–342, 2000.

[46] Philip Hawkes and Gregory G. Rose. Rewriting Variables: The Com-
plexity of Fast Algebraic Attacks on Stream Ciphers. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer
Science, pages 390–406. Springer, 2004.

[47] Martin E. Hellman. A Cryptanalytic time-memory Trade-off. IEEE
Transactions on Information Theory, 26(4):401–406, 1980.

[48] Jonathan J. Hoch and Adi Shamir. Fault analysis of stream ciphers. In
Marc Joye and Jean-Jacques Quisquater, editors, CHES, volume 3156 of
Lecture Notes in Computer Science, pages 240–253. Springer, 2004.

[49] Jeffrey Hoffstein, Jill Pipher, and J.H. Silverman. An Introduction to
Mathematical Cryptography. Springer Publishing Company, Incorpo-
rated, 1 edition, 2008.

[50] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-
Based Public Key Cryptosystem. In Joe Buhler, editor, ANTS, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer,
1998.

[51] Michal Hojsík and Bohuslav Rudolf. Differential Fault Analysis of Triv-
ium. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in
Computer Science, pages 158–172. Springer, 2008.

[52] Jin Hong and Palash Sarkar. New Applications of Time Memory Data
Tradeoffs. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture
Notes in Computer Science, pages 353–372. Springer, 2005.

[53] Thomas Johansson and Fredrik Jönsson. Fast Correlation Attacks Based
on Turbo Code Techniques. In Michael J. Wiener, editor, CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 181–197.
Springer, 1999.

123 BIBLIOGRAPHY

[54] Thomas Johansson and Fredrik Jönsson. Improved Fast Correlation At-
tacks on Stream Ciphers via Convolutional Codes. In Jacques Stern,
editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 347–362. Springer, 1999.

[55] Alireza Jolfaei, Ahmadreza Vizandan, and Abdolrasoul Mirghadri. Image
Encryption Using HC-128 and HC-256 Stream Ciphers. Int. J. Electron.
Secur. Digit. Forensic, 4(1):19–42, February 2012.

[56] Robert J. Jenkins Jr. ISAAC and RC4. Published on the Internet at
http://burtleburtle.net/bob/rand/isaac.html, 1996.

[57] David Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Scribner, December
1996.

[58] I. B. Kalugin. The Number of Components of a Random Bipartite Graph.
Discrete Math. Appl., 1(3):289–299, 1989.

[59] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. Chapman and Hall/CRC Press, 2007.

[60] Firdous Kausar and Ayesha Naureen. A Comparative Analysis of HC-
128 and Rabbit Encryption Schemes for Pervasive Computing in WSN
Environment. In Proceedings of the 3rd International Conference and
Workshops on Advances in Information Security and Assurance, ISA ’09,
pages 682–691, Berlin, Heidelberg, 2009. Springer-Verlag.

[61] Auguste Kerckhoffs. La cryptographie Militaire. Journal des Sciences
Militaires, pages 161–191, 1883.

[62] Ayesha Khalid, Deblin Bagchi, Goutam Paul, and Anupam Chattopad-
hyay. Optimized GPU Implementation and Performance Analysis of HC
Series of Stream Ciphers. In Taekyoung Kwon, Mun-Kyu Lee, and Dae-
sung Kwon, editors, ICISC, volume 7839 of Lecture Notes in Computer
Science, pages 293–308. Springer, 2012.

[63] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public
Key Cryptosystem by Relinearization. In Michael J. Wiener, editor,

http://burtleburtle.net/bob/rand/isaac.html

BIBLIOGRAPHY

CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
19–30. Springer, 1999.

[64] Aleksandar Kircanski and Amr M. Youssef. Differential Fault Anal-
ysis of HC-128. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science,
pages 261–278. Springer, 2010.

[65] Andreas Klein. Attacks on the RC4 stream cipher. Des. Codes Cryptog-
raphy, 48(3):269–286, 2008.

[66] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional
differential cryptanalysis of trivium and KATAN. In Selected Areas in
Cryptography, pages 200–212. Springer, 2012.

[67] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[68] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computa-
tion, 48(177):203–209, January 1987.

[69] Neal Koblitz. Hyperelliptic Cryptosystems. J. Cryptology, 1(3):139–150,
1989.

[70] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO,
volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[71] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

[72] Sandeep Kumar, Kerstin Lemke, and Christof Paar. Some Thoughts
about Implementation Properties of Stream Ciphers. In SASC - State of
the Art of Stream Ciphers Workshop, 2004.

125 BIBLIOGRAPHY

[73] Joseph Lano, Nele Mentens, Bart Preneel, and Ingrid Verbauwhede.
Power Analysis of Synchronous Stream Ciphers with Resynchroniza-
tion Mechanism. In Workshop Record of SASC 2004 – The State of
the Art of Stream Ciphers, pages 327–333, 2004. Available online at
http://www.ecrypt.eu.org/stvl/sasc/record.html.

[74] Gregor Leander, Erik Zenner, and Philip Hawkes. Cache Timing Analysis
of LFSR-Based Stream Ciphers. In Matthew G. Parker, editor, IMA Int.
Conf., volume 5921 of Lecture Notes in Computer Science, pages 433–
445. Springer, 2009.

[75] Steven Levy. Crypto: How the Code Rebels Beat the Government–Saving
Privacy in the Digital Age. Penguin USA, New York, NY, USA, 2001.

[76] Yunyi Liu and Tuanfa Qin. The Key and IV Setup of the Stream Ciphers
HC-256 and HC-128. Networks Security, Wireless Communications and
Trusted Computing, International Conference on, 2:430–433, 2009.

[77] Yi Lu and Serge Vaudenay. Faster Correlation Attack on Bluetooth
Keystream Generator E0. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 407–425.
Springer, 2004.

[78] Michael Luby and Charles Rackoff. How to Construct Pseudoran-
dom Permutations from Pseudorandom Functions. SIAM J. Comput.,
17(2):373–386, 1988.

[79] Subhamoy Maitra and Goutam Paul. New Form of Permutation Bias
and Secret Key Leakage in Keystream Bytes of RC4. In Kaisa Nyberg,
editor, FSE, volume 5086 of Lecture Notes in Computer Science, pages
253–269. Springer, 2008.

[80] Subhamoy Maitra, Goutam Paul, and Shashwat Raizada. Some Observa-
tions on HC-128. In International Workshop on Coding and Cryptology,
WCC 2009, Ullensvang, Norway, PreProceedings, pages 527–539, 2009.

[81] Subhamoy Maitra, Goutam Paul, Shashwat Raizada, Subhabrata Sen,
and Rudradev Sengupta. Some observations on HC-128. Des. Codes
Cryptography, 59(1-3):231–245, 2011.

http://www.ecrypt.eu.org/stvl/sasc/record.html

BIBLIOGRAPHY

[82] Itsik Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode.
In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in
Computer Science, pages 395–411. Springer, 2005.

[83] Itsik Mantin. Predicting and Distinguishing Attacks on RC4 Keystream
Generator. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
Lecture Notes in Computer Science, pages 491–506. Springer, 2005.

[84] Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In
Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer
Science, pages 152–164. Springer, 2001.

[85] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Certain
Stream Ciphers. J. Cryptology, 1(3):159–176, 1989.

[86] Willi Meier and Othmar Staffelbach. Correlation Properties of Combin-
ers with Memory in Stream Ciphers. J. Cryptology, 5(1):67–86, 1992.

[87] Gordon Meiser, Thomas Eisenbarth, Kerstin Lemke-Rust, and Christof
Paar. Efficient Implementation of eStream ciphers on 8-bit AVR micro-
controllers. In SIES, pages 58–66. IEEE, 2008.

[88] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 2001.

[89] R. Merkle and M. Hellman. Hiding Information and Signatures in Trap-
door Knapsacks. IEEE Trans. Inf. Theor., 24(5):525–530, September
2006.

[90] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C.
Williams, editor, CRYPTO, volume 218 of Lecture Notes in Computer
Science, pages 417–426. Springer, 1985.

[91] Michael Molloy and Bruce A. Reed. The Size of the Giant Component
of a Random Graph with a Given Degree Sequence. Combinatorics,
Probability & Computing, 7(3):295–305, 1998.

[92] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

127 BIBLIOGRAPHY

[93] Information Society Technologies (IST) Programme of the Euro-
pean Commission. Performance of Optimized Implementations of the
NESSIE Primitives, version 2.0, IST-1999-12324, 2003.

[94] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: The Case of AES. In David Pointcheval, editor, CT-
RSA, volume 3860 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2006.

[95] Sarbani Palit, Bimal K. Roy, and Arindom De. A Fast Correlation Attack
for LFSR-Based Stream Ciphers. In Jianying Zhou, Moti Yung, and
Yongfei Han, editors, ACNS, volume 2846 of Lecture Notes in Computer
Science, pages 331–342. Springer, 2003.

[96] Goutam Paul, Subhamoy Maitra, and Shashwat Raizada. A Theoretical
Analysis of the Structure of HC-128. In Tetsu Iwata and Masakatsu
Nishigaki, editors, IWSEC, volume 7038 of Lecture Notes in Computer
Science, pages 161–177. Springer, 2011.

[97] Goutam Paul and Shashwat Raizada. Impact of Extending Side Channel
Attack on Cipher Variants: A Case Study with the HC Series of Stream
Ciphers. In Andrey Bogdanov and Somitra Kumar Sanadhya, editors,
SPACE, volume 7644 of Lecture Notes in Computer Science, pages 32–44.
Springer, 2012.

[98] M. O. Rabin. Digitalized Signatures and Public-key Functions as In-
tractable as Factorization. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1979.

[99] Josyula R. Rao and Pankaj Rohatgi. EMpowering Side-Channel Attacks.
IACR Cryptology ePrint Archive, 2001:37, 2001.

[100] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

[101] Matthew J. B. Robshaw. Stream ciphers. Technical Report, RSA Labo-
ratories, 1995.

BIBLIOGRAPHY

[102] Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher
Designs - The eSTREAM Finalists, volume 4986 of Lecture Notes in
Computer Science. Springer, 2008.

[103] Rainer A. Rueppel. Analysis and design of stream ciphers. CCES Com-
munications and Control Engineering Series. Springer-Verlag Berlin Hei-
delberg New York, Berlin, 1986.

[104] Markku-Juhani Olavi Saarinen. A Time-Memory Tradeoff Attack
Against LILI-128. In Joan Daemen and Vincent Rijmen, editors, FSE,
volume 2365 of Lecture Notes in Computer Science, pages 231–236.
Springer, 2002.

[105] A. I. Saltykov. The Number of Components in a Random Bipartite
Graph. Discrete Mathematics and Applications, 5(6):86–94, 1995.

[106] Gautham Sekar and Bart Preneel. Improved distinguishing attacks on
hc-256. In Tsuyoshi Takagi and Masahiro Mambo, editors, Advances in
Information and Computer Security, volume 5824 of Lecture Notes in
Computer Science, pages 38–52. Springer Berlin Heidelberg, 2009.

[107] Adi Shamir. A Polynomial Time Algorithm for Breaking the Basic
Merkle-Hellman Cryptosystem. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO, pages 279–288. Plenum Press, New
York, 1982.

[108] Adi Shamir. A Polynomial-time Algorithm for Breaking the Basic
Merkle-Hellman Cryptosystem. IEEE Transactions on Information The-
ory, 30(5):699–704, 1984.

[109] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In
G. R. Blakley and David Chaum, editors, CRYPTO, volume 196 of Lec-
ture Notes in Computer Science, pages 47–53. Springer, 1984.

[110] Adi Shamir. Stream Ciphers: Dead or Alive? In Pil Joong Lee, edi-
tor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science,
page 78. Springer, 2004.

[111] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell
System Technical Journal, Vol 28, pp. 656âĂŞ715, Oktober 1949.

129 BIBLIOGRAPHY

[112] Claude E. Shannon and Warren Weaver. The Mathematical Theory of
Communication. University of Illinois Press, Urbana and Chicago, 1949.

[113] Peter W. Shor. Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring. In FOCS, pages 124–134. IEEE Computer Society,
1994.

[114] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM J. Comput.,
26(5):1484–1509, 1997.

[115] Simon Singh. The Code book, the Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Anchor, 1999.

[116] Sergei P. Skorobogatov. Semi-invasive Attacks – A New Approach to
Hardware Security Analysis, 2005.

[117] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction
Attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, CHES, volume 2523 of Lecture Notes in Computer Science, pages
2–12. Springer, 2002.

[118] Othmar Staffelbach and Willi Meier. Cryptographic Significance of the
Carry for Ciphers Based on Integer Addition. In Alfred Menezes and
Scott A. Vanstone, editors, CRYPTO, volume 537 of Lecture Notes in
Computer Science, pages 601–614. Springer, 1990.

[119] Paul Stankovski, Martin Hell, and Thomas Johansson. Analysis of Xor-
rotation with Application to an HC-128 Variant. In Willy Susilo, Yi Mu,
and Jennifer Seberry, editors, ACISP, volume 7372 of Lecture Notes in
Computer Science, pages 419–425. Springer, 2012.

[120] Paul Stankovski, Sushmita Ruj, Martin Hell, and Thomas Johans-
son. Improved distinguishers for HC-128. Des. Codes Cryptography,
63(2):225–240, 2012.

[121] Douglas R. Stinson. Cryptography - Theory and Practice. Discrete math-
ematics and its applications series. CRC Press, 2006.

BIBLIOGRAPHY

[122] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. Using the
Fluhrer, Mantin, and Shamir Attack to Break WEP. In NDSS. The
Internet Society, 2002.

[123] Erik Tews. Attacks on the WEP protocol. IACR Cryptology ePrint
Archive, 2007:471, 2007.

[124] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104
bit WEP in less than 60 seconds. IACR Cryptology ePrint Archive,
2007:120, 2007.

[125] Kris Tiri, Patrick Schaumont, and Ingrid Verbauwhede. Side-Channel
Leakage Tolerant Architectures. In ITNG, pages 204–209. IEEE Com-
puter Society, 2006.

[126] Hongjun Wu. Cryptanalysis of Stream Cipher Alpha1. In Lynn Margaret
Batten and Jennifer Seberry, editors, ACISP, volume 2384 of Lecture
Notes in Computer Science, pages 169–175. Springer, 2002.

[127] Hongjun Wu. A New Stream Cipher HC-256. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science,
pages 226–244. Springer, 2004.

[128] Hongjun Wu. The Stream Cipher HC-128. In Matthew J. B. Robshaw
and Olivier Billet, editors, The eSTREAM Finalists, volume 4986 of
Lecture Notes in Computer Science, pages 39–47. Springer, 2008.

[129] Hongjun Wu and Feng Bao. Cryptanalysis of Stream Cipher COS(2,
128) Mode I. In Lynn Margaret Batten and Jennifer Seberry, editors,
ACISP, volume 2384 of Lecture Notes in Computer Science, pages 154–
158. Springer, 2002.

[130] Erik Zenner. A Cache Timing Analysis of HC-256. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in
Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
199–213. Springer, 2008.

[131] Erik Zenner. Cache Timing Analysis of eStream Finalists. In Helena
Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, editors,

131 BIBLIOGRAPHY

Symmetric Cryptography, number 09031 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Genesis of cryptology
	Modern cryptology
	Categorization of cryptosystems
	Adversary and the attack models
	Overview of stream ciphers
	Stream cipher cryptanalysis
	Motivation for the thesis
	Contribution and thesis plan
	Prerequisites for the reader

	Background
	The HC series of Stream Ciphers
	Description of HC-128
	Description of HC-256
	Chronology of recent works
	Publications included in this Thesis

	I Analysis of HC-128 Stream Cipher
	Internal Structure
	Reconstruction of one array from another
	Design modifications
	Performance Evaluation
	Conclusion

	Study of HC-128 Keystream
	Introduction
	Linear approximation of the functions g1 and g2
	A class of distinguishers by extending the LSB-based distinguisher
	A new distinguisher
	State leakage in keystream
	Conclusion

	II Side Channel and Implementation Issues
	Side Channel Attacks and Impact on HC series of Stream Ciphers
	Motivation
	Cache and fault attack
	Cache analysis of HC-128
	Fault attack on HC-256
	Conclusion

	HC-128 Implementation in Hardware
	Motivation and contributions
	HC-128 on general purpose CPU's
	Experiment with embedded & customizable processors
	Hardware accelerator implementation of HC-128
	Parallelization strategies
	Conclusion

	Conclusion and Future Work
	Summary
	Future works and open problems
	Final words

	Bibliography

