
Some Studies on Selected Stream Ciphers.

Analysis, Fault Attack & Related Results

by

Subhadeep Banik

under the supervision of

Professor Subhamoy Maitra

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Applied Statistics Unit

Indian Statistical Institute

203, B.T. Road, Kolkata-700 108, India.

Submitted: May 2014, Minor Revision: February 2015

s.banik_r@isical.ac.in
http://www.isical.ac.in/~asu
http://www.isical.ac.in

“There are no shortcuts to any place worth going.”

Beverly Sills

Abstract

Stream Ciphers are important Symmetric Cryptological primitives, built for the pur-

pose of providing secure message encryption. As no formal security proofs exist, our

confidence in these algorithms is largely based on the fact that intense cryptanalysis has

been carried out over several years without revealing any weakness. This thesis makes

some independent contributions to the cryptanalysis of a selection of stream ciphers.

In this thesis, we take a closer look at two stream ciphers viz. RC4+ designed by Maitra

et al. at Indocrypt 2008 and GGHN designed by Gong et al. at CISC 2005. Both these

ciphers were designed as viable alternatives to the RC4 stream cipher. It is shown that

a distinguishing attack requiring around 227 keystream bytes can be mounted on RC4+.

Also, a differential fault attack on RC4+ requiring 216 faults is presented. Thereafter,

two cryptanalytic results are presented against the GGHN stream cipher. First, it is

shown that numerous short cycles occur during the keystream generation phase of the

cipher. Secondly, it is shown that a randomized variant of this cipher is expected to reach

the all zero state in just around 2147 iterations, after which the cipher only produces the

zero keystream byte at every iteration.

The Grain family of stream ciphers (Grain v1, Grain-128 and Grain-128a) designed by

Ågren, Hell, Johansson, Maximov and Meier are a prominent family of stream ciphers

especially since Grain v1 is included in the hardware portfolio of eStream. We first

outline probabilistic methods that compute Key-IV pairs in the Grain family that can

generate key-streams which are either almost similar in the initial segment, or exact

shifts (the value of the shift being 2lp , where lp is the length of the pad in bits used

in the design of Grain) of each other throughout the generation of the stream. We

then investigate the possibility of obtaining related Key-IV pairs that produce shifted

keystream bits with smaller shifts. In a work by De Cannière et. al. at Africacrypt

2008, a method for finding related Key-IV pairs that produced i-bit shifted keystream

(for Grain v1 and Grain-128) was proposed that required 4i random trials. The method

mainly took advantage of the fact that in both Grain v1 and Grain 128, the symmetric

all 1 constant was used as the pad. We propose a new algorithm that improves the

complexity to 2i random trials. Furthermore, in the above work, it was observed that

devising such a method for Grain-128a was not possible as the pad used in this cipher

was asymmetric. However, we present a different technique to find related Key-IV pairs

that produce 32-bit shifted keystream bits for Grain-128a in around 232 random trials.

We also present another method that finds related Key-IV pairs that produces shifted

keystream bits for shifts lesser than 32. The second method produces ε-bit shifted key-

streams (for 0 < ε < 32) using 232

1−2−ε random trials.

Thereafter, we describe a set of three differential fault attacks on the Grain family, each

of which is mounted under different experimental setups in which the attacker is granted

varying degrees of freedom. The first attack assumes that the attacker can synchronize

the timing of fault injection with a given stage of the cipher operation. Also, it is

assumed that a fault causes a change in the logical value of precisely one of the flip-flops

of the registers storing the internal state of the cipher (i.e a single bit-flip). Although he

cannot choose the register location to be faulted, a flip-flop once faulted can be faulted

multiple times. The second attack obviates the requirement of multiple faults on the

same register location, but assumes that the attacker can still inject single bit-flipping

time synchronized faults. The third attack requires the attacker to exercise minimal

control over fault injections, i.e., the attack will be carried out under the assumption

that the fault is neither time-synchronized, nor is there any guarantee that it causes a

single bit flip at a random register location. Instead, the attacker is certain that the

fault he injects toggles the logic value at a maximum of three contiguous flip-flops. This

attack enlists the use of SAT solvers to reduce the number of faults required to complete

the attack.

As far as the Differential Cryptanalysis of reduced round Grain v1 is concerned, the

best results were those published by Knellwolf et al. in Asiacrypt 2011. In an extended

version of the paper, it was shown that it was possible to retrieve five expressions in

the Secret Key bits for a variant of Grain v1 that employs 97 rounds (in place of 160)

in its Key Scheduling process using 227 chosen IVs. The authors had arrived at the

values of these Secret Key expressions by observing certain biases in the keystream bits

generated by the chosen IVs. These biases were observed purely experimentally and no

theoretical justification was provided for the same. In this work, we revisit Knellwolf’s

attacks on Grain v1 and try to provide a theoretical framework that will serve to prove

the correctness of the attack. We describe a tool that serves to track the differential

trails introduced in the cipher via the IV during the Key scheduling phase. By tracking

these differentials it is possible to prove the bias in the keystream bits generated by the

chosen IVs.

The stream cipher MICKEY 2.0 designed by Babbage and Dodd is also a part of eS-

tream’s hardware portfolio and hence a fairly important stream cipher. We describe

a Differential Fault Attack under the assumption that the attacker can inject time-

synchronized, single bit-flipping faults. Thereafter the attack is carried out if the in-

jected fault toggles a maximum of three neighboring flip-flops. Thereafter, SAT solvers

are used to reduce the fault requirement, both in the single bit-flip and multiple bit-flip

models.

A Scan-Chain is a popular DFT (Design for Testability) technique, which is used to

check whether a chip is functioning properly or not. It provides the designer an easy

way to ascertain whether the device has any structural defects or not. We analyze

Scan-Chain based hardware design and the related vulnerabilities that may creep into

a cryptosystem implemented with Scan Chains. We follow up on a work by Agrawal

et. al. at Indocrypt 2008, in which, a scan based attack on the stream cipher Trivium

was presented. We show why the same attack can not be extended to MICKEY 2.0,

and suggest an alternative strategy to attack MICKEY 2.0 via Scan-Chains. Further,

in the in the above work, an XOR gate based countermeasure was suggested to protect

Scan-Chains from cryptanalytic attacks. We show that this countermeasure may fail to

protect the underlying cryptosystem under certain classes of cryptanalytic attacks. It

goes on to suggest a novel Double Feedback XOR-CHAIN countermeasure that is shown

to be secure against the given class of cryptanalytic attacks. It is also shown than that

such a Double Feedback XOR-CHAIN structure, like an ordinary Scan-Chain, may also

be used for DFT purposes.

Acknowledgements

I had once held a belief, that I entertained almost religiously, that human beings are by

nature selfish, that every thing we do is motivated purely by self-interest and nothing

more. That period, is thankfully, long in the past. Now, I believe that although the

propensity to be motivated by personal interests shall always persist in us, the instinct

to come to the assistance of a fellow sufferer is also inherent in each of us. A human

being is essentially this bundle of contradictions, and the lives we live are evidence of

the fact that the desire to help has decidedly outshone the desire to harm.

To the people who made me the person I am, my family, I shall always be thankful.

Although my father and grandmother could not be here to witness my graduation, I

hope that they are proud of my achievements. To my mother and sister, who have stood

by me come whatever may, no words are sufficient to repay the gratitude. To them I

can only make a solemn promise, that I would make a better human being of myself.

My supervisor Prof Subhamoy Maitra had taken the risk of putting his faith in me, at a

time when I was at the lowest point of my professional career. What exactly influenced

him to take responsibility of overseeing my dissertation, I shall never know, but I am

indeed grateful that he did eventually make the decision, for without his support I would

be nowhere.

Whatever knowledge I have acquired in the domain of cryptography has been courtesy

the technical inputs given by Palash da, Kishan da, and Mridul da. I must thank them

for the tremendous work they have done over the past few years. I must also thank

Prof Mandar Mitra and the members of the Research Fellow Advisory Committee of

the Computer and Communication Sciences Division of ISI Kolkata for their role in

facilitating my transfer to the Applied Statistics Unit.

Over the years I have been blessed with great friends, and the rapport and camaraderie

I have shared with them have diminished the perpetual gloom that seems to hang over

me. With Sonu, Purnendu, Shashank, Abhishek, Ranju and others I have shared every

moment of pleasure and pain over the past few years. It has been truly remarkable

such friends around. I would also take a moment to thank Goutam da, Santanu da,

Srimanta da, Sibu da, Sanjay, Somindu, Sumit, Sourav, Toshan, Indranil, Subhabrata,

Avik, Nilanjan, Amarjit and all other members of the ASU family for the constant

encouragement and support. I would also extend my gratitude towards my co-authors

Meltem, Anusha and Raghu for the support given by them.

As the shadows lengthen, and the general sense of darkness shrouds my existence, I

understand it is time to bid adieu and I am but left to ruminate over the glorious

ix

memories of the past. Over the years, I have benefited from the actions of so many

people, so many known and unknown forces, that I shudder to think of living in a world

where people would stop helping each other. To all those people, I shall, for ever and

always, remain indebted.

Contents

Abstract v

Acknowledgements ix

List of Figures xvii

List of Tables xix

List of Publications xxi

1 Introduction 1

1.1 Introductory Notions . 2

1.2 Cryptology in the Modern Era . 3

1.3 Types of Cryptographic Schemes . 4

1.3.1 Symmetric Key Cryptosystems . 4

1.3.2 Public Key Cryptosystems . 6

1.3.3 Hash Functions . 8

1.4 Stream Ciphers and the eStream Project 9

1.4.1 One-Time Pad and Perfect Secrecy 10

1.4.2 Using an Initialization Vector . 12

1.4.3 Attack models . 12

1.4.4 The eStream Project . 16

1.5 Motivation of this Thesis . 17

1.6 Organization of this Thesis . 18

2 Background and Preliminaries 23

2.1 Boolean Functions . 23

2.1.1 Representation of Boolean Functions 23

2.1.2 Walsh Spectrum . 25

2.2 Recurrences and Feedback Shift Registers 26

2.2.1 Primitive Polynomials and Maximum length LFSRs 27

2.2.2 Nonlinear Feedback Shift Registers (NFSR) 28

2.3 Elementary Discrete Probability Theory 29

2.3.1 Probability Distribution Function 29

2.3.2 Conditional Probability . 31

xi

xii CONTENTS

2.3.3 Independent Events . 32

2.3.4 Joint Distribution Functions and Independence of Random Variables 33

2.3.5 Bayes’ Formula . 34

2.3.6 Expectation of a Random variable 35

2.3.7 Variance/Standard Deviation of a Random variable 36

2.3.8 Important Probability Distribution Functions 37

2.3.9 Coupon Collector’s Problem . 39

2.4 Markov Chains . 40

2.4.1 Transition Matrix . 40

2.4.2 Absorbing Markov Chains . 42

2.5 Pseudorandomness and Distinguishing Attack 45

2.5.1 Computational Indistinguishability 45

2.5.2 Distinguishing the Distributions Ber(p0) and Ber(p0(1 + q0)) . . . 48

2.6 Fault Attacks . 49

2.6.1 Fault Models . 51

2.7 Scan based Side Channel Attacks . 52

2.7.1 Introduction to Scan Attacks . 53

2.8 Conclusion . 55

3 Analysis of RC4 variants 57

3.1 GGHN Stream Cipher . 58

3.1.1 Our Results . 60

3.2 Short Cycles in GGHN(n,m) . 61

3.3 Evolution of a Randomized variant of GGHN cipher 66

3.3.1 Towards estimating the actual GGHN PRGA 71

3.4 The RC4+ stream cipher . 74

3.4.1 Our Results . 75

3.5 Distinguishing Attack on RC4+ . 75

3.5.1 Distinguishing RC4+ from Random Sources 77

3.5.2 Experimental Results . 77

3.6 Differential Fault Analysis of RC4+ . 77

3.6.1 Inferring the values of j in each round 79

3.6.1.1 Ascertaining j . 79

3.6.1.2 Error Analysis . 80

3.6.1.3 Fault Requirement . 80

3.6.2 Reconstructing the permutation S 80

3.7 Conclusion . 83

4 Related Key-IV pairs of Grain 85

4.1 Grain family of stream ciphers . 86

4.1.1 Structure of ciphers in Grain family 87

4.2 Complete Mathematical Description of the ciphers 88

4.2.1 Grain v1 . 88

4.2.2 Grain-128 . 89

4.2.3 Grain-128a . 90

4.3 Reversible KSA and PRGA of the Grain family 91

4.4 Existing cryptanalytic results on the Grain family 92

CONTENTS xiii

4.4.1 Distinguishing Attacks . 92

4.4.2 Key recovery Attacks . 93

4.4.3 Cube Attacks . 93

4.4.4 Fault Attacks . 93

4.4.5 Slide based Related Key Attacks 94

4.4.6 Other results . 94

4.4.7 Our results . 94

4.5 Related Key-IV pairs in Grain family . 95

4.5.1 Search for related Key-IV pairs in Grain v1 95

4.5.2 Examples of related Key-IV pairs in Grain v1 97

4.5.3 Related Key-IV’s in Grain-128 . 99

4.5.4 Related Key-IV’s in Grain-128a . 100

4.6 Occurrence of Key-IV pairs that produce shifted key-streams 101

4.6.1 Improved strategy over [44] for small shift 102

4.7 Key-IV Pairs producing Shifted Keystream in Grain-128a 106

4.7.1 Key-IV pairs producing Keystream with smaller shifts 108

4.8 Conclusion . 110

5 Differential Fault Analysis of Grain 115

5.1 Introduction . 115

5.1.1 Fault Attacks on other Stream Ciphers 117

5.1.2 Our Results . 118

5.2 Obtaining the Location of the Fault . 119

5.2.1 Differential Grain . 120

5.2.2 The routine FLocI(Eφ) . 123

5.2.3 First and Second Signature Vectors Q1
φ,Q2

φ 125

5.2.4 Improving the success probabilities: Third and Fourth signature
Vectors . 126

5.3 DFA on Grain under relaxed assumptions 131

5.3.1 Determining the LFSR Internal State 132

5.3.2 Determining the NFSR Internal State 135

5.3.3 Finding the Secret Key and Complexity of the Attack 138

5.4 DFA on Grain under stricter assumptions 138

5.4.1 Beginning the attack . 139

5.4.2 Finding the secret key and complexity of the attack 144

5.4.3 Attacking the actual ciphers . 144

5.5 DFA against Grain family with very few faults and minimal assumptions . 149

5.5.1 Populating the bank of equations for Grain v1 and Grain-128 . . . 151

5.5.2 Populating the bank of equations for Grain-128a 152

5.5.3 Using the SAT Solver . 154

5.6 Experimental Results . 155

5.6.1 Identifying Multiple bit faults . 156

5.6.2 Identifying Fault Locations for Injections at random time 157

5.7 Conclusion . 159

6 Conditional Differential Cryptanalysis of Grain 161

6.1 Introduction . 161

xiv CONTENTS

6.2 Knellwolf’s attack on Grain v1 . 162

6.3 The Differential Engine ∆GrainKSA . 167

6.3.1 Generalized Grain cipher . 167

6.3.2 ∆GrainKSA . 167

6.4 Proving the biases . 171

6.4.1 ∆φ-GrainKSA with overrides . 172

6.4.2 Computing Pr[z97 ⊕ z′97 = 0] . 176

6.4.3 Biases in the other Sets . 177

6.5 Conclusion and Open Problems . 177

7 Differential Fault Analysis of MICKEY 2.0 179

7.1 Introduction . 179

7.2 Structure of MICKEY 2.0 . 180

7.3 An alternate description of MICKEY 2.0 PRGA and a summary of results 184

7.4 Complete description of the Attack . 187

7.4.1 Faulting specific bits of R,S . 190

7.4.2 How to identify the random locations where faults are injected . . 192

7.4.3 Issues related to the length of the IV 198

7.4.4 Complexity of the Attack . 198

7.5 Case of Multiple bit faults . 200

7.5.1 The bit r0 is affected. 200

7.5.2 The bits r67 and r99 are affected. 201

7.5.3 The bits s0, s34 and s99 are affected. 202

7.6 Improvement Using SAT Solver . 204

7.6.1 Experiments . 207

7.6.2 Multiple bit faults . 208

7.7 Conclusion . 210

8 Improved Scan-Chain based Attacks and Related Countermeasures 213

8.1 Introduction . 213

8.1.1 Our Results . 215

8.2 Scan-Chain Attack: Background and Preliminaries 215

8.3 Attacking MICKEY 2.0 . 218

8.3.1 Finding the length of the scan-chain 218

8.3.2 Strategy to find the location of the counter bits 219

8.3.3 Strategy to find the location of the other internal state bits 221

8.4 Attacking the XOR-CHAIN Countermeasure Scheme 223

8.4.1 The SET attack on the XOR-CHAIN structure 224

8.4.2 Attacking MICKEY 2.0 in presence of XOR-CHAIN 226

8.5 Securing the Scan-Chain: Using the Double Feedback XOR-CHAIN . . . 227

8.5.1 Testability . 227

8.5.2 Resistance against SET and RESET attacks 231

8.6 Conclusion . 231

9 Conclusion 233

9.1 Summary of Technical Results . 233

9.2 Open Problems . 237

CONTENTS xv

9.3 Final Words . 239

Bibliography 241

List of Figures

2.1 A Feedback Shift Register . 27

2.2 Structure of a CMOS flip-flop . 50

2.3 Example of a Scan-chain using Multiplexers 53

4.1 Structure of Stream Cipher in Grain Family 88

4.2 Authentication mechanism in Grain-128a 90

4.3 Construction of the Related Key-IV function. 95

4.4 Construction of Related Key-IV pairs in Grain Family 107

7.1 The variable clocking architecture of MICKEY 181

7.2 Constructing the state R0. Starting from PRGA round 99, any bit cal-
culated at PRGA round i is used to determine state bits of round i − 1.
. 188

7.3 Constructing the state S0. Starting from PRGA round 99, any bit calcu-
lated at PRGA round i is used to determine state bits of round i− 1. . . 189

7.4 Constructing the last a bits of the state R0. 205

8.1 Diagram of a Scan-chain . 216

8.2 Scan-enabled D FF . 216

8.3 Diagram of the XOR-CHAIN scheme proposed in [11] 224

8.4 Double Feedback XOR-CHAIN . 227

xvii

List of Tables

1.1 The eStream Portfolio . 17

3.1 Theoretical bounds and experimental values of f(N) for different values
of N = 2n in BIT-RAND-GGHN-PRGA(n, 1). 70

3.2 Average number of steps required for t LSBs to be zero for all the elements
of S as well as the integer k. The algorithms considered are RAND-
GGHN-PRGA(4, 16), RAND-GGHN-PRGA′(4, 16) and RAND-GGHN-
PRGA′′(4, 16). 73

3.3 KSA routine for RC4+ . 74

3.4 PRGA routine for RC4+ . 75

3.5 No. of rounds vs. average no. of bytes recovered for Algorithm 3.9. 83

5.1 The engine ∆φ-GRAIN . 127

5.2 Output of FLEL(3) for Grain v1 (ADT implies Affine Differential Tuple) . 145

5.3 Output of FLEL(2) for Grain v1 . 145

5.4 Output of FLEN (1) for Grain v1 . 146

5.5 Output of FLEN (3) for Grain v1 . 146

5.6 Output of FLEL(1) for Grain-128 . 146

5.7 Output of FLEN (1) for Grain-128 . 147

5.8 Output of FLEL(1) for Grain-128a . 147

5.9 Output of FLEN (1) for Grain-128a . 148

5.10 Experimental Results . 156

7.1 The sequences COMP0, COMP1, FB0, FB1 182

7.2 The update functions ρ, β for MICKEY 2.0 185

7.3 The functions θi . 190

7.4 A summary of the best Fault Attacks reported against the hardware port-
folio of eStream . 211

8.1 Set Ak of IVs which can determine the location of the kth LSB of counter
register . 220

8.2 The Set Aχ of IVs which can determine the location of the bits of Registers
R,S. (The IVs are of the form 0i. The values of i are listed in the table.) 223

xix

List of Publications

This dissertation is a culmination of my research work at the Applied Statistics Unit at

the Indian Statistical Institute Kolkata from the period 2011–2013. I hope that all the

experience that I have gained during this period is adequately reflected into the thesis.

Following are the list of publications that have been used in the thesis. Chapter 3 is

based on the papers [21, 27]. Chapter 4 is based on [25, 26]. Chapter 5 is based on

[22–24, 120]. Chapter 6 is based on [18]. Chapter 7 is based on [20, 28]. Chapter 8 is

based on [19].

[18] Subhadeep Banik. Some Insights into Differential Cryptanalysis of Grain v1. In

ACISP, volume 8544 of Lecture Notes in Computer Science, pages 34–49. Springer,

2014.

[19] Subhadeep Banik and Anusha Chowdhury. Improved Scan-Chain Based Attacks

and Related Countermeasures. In INDOCRYPT, volume 8250 of Lecture Notes in

Computer Science, pages 78–97. Springer, 2013.

[20] Subhadeep Banik and Subhamoy Maitra. A Differential Fault Attack on MICKEY

2.0. In CHES, volume 8086 of Lecture Notes in Computer Science, pages 215–232.

Springer, 2013.

[21] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. On the Evolution of

GGHN Cipher. In INDOCRYPT, volume 7107 of Lecture Notes in Computer Sci-

ence, pages 181–195. Springer, 2011.

[22] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on the Grain Family of Stream Ciphers. In CHES, volume 7428 of Lecture

Notes in Computer Science, pages 122–139. Springer, 2012.

xxi

xxii LIST OF PUBLICATIONS

[23] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on the Grain Family under Reasonable Assumptions. In INDOCRYPT,

volume 7668 of Lecture Notes in Computer Science, pages 191–208. Springer, 2012.

[24] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on Grain-128a Using MACs. In SPACE, volume 7644 of Lecture Notes in

Computer Science, pages 111–125. Springer, 2012.

[25] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Some Results on Related

Key-IV Pairs of Grain. In SPACE, volume 7644 of Lecture Notes in Computer

Science, pages 94–110. Springer, 2012.

[26] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar, and Meltem Sönmez Turan.

A Chosen IV Related Key Attack on Grain-128a. In ACISP, volume 7959 of Lecture

Notes in Computer Science, pages 13–26. Springer, 2013.

[27] Subhadeep Banik, Santanu Sarkar, and Raghu Kacker. Security Analysis of the

RC4+ Stream Cipher. In INDOCRYPT, volume 8250 of Lecture Notes in Computer

Science, pages 297–307. Springer, 2013.

[28] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Improved Differential

Fault Attack on MICKEY 2.0. To appear in Journal of Cryptographic Engineering,

2014. DOI : 10.1007/s13389-014-0083-9.

[120] Santanu Sarkar, Subhadeep Banik, and Subhamoy Maitra. Differential Fault At-

tack against Grain family with very few faults and minimal assumptions. To appear

in IEEE Transactions on Computers, 2014. DOI: 10.1109/TC.2014.2339854.

Dedicated to my Father and Grandmother, who would have been
the proudest people on Earth to see me graduate.

xxiii

Chapter 1

Introduction

The word cryptography evokes varied sentiments in a wide and diverse range of people.

While to an outsider, its applications are limited to certain inscrutable aspects of en-

cryption and network security, to a researcher dabbling in this field, the possibilities are

endless. Over the last few decades, the cryptological research fraternity has made some

remarkable progress by formally redefining security notions and thus helping establish

cryptology as a full-fledged discipline. Today, cryptology is heavily ingrained with the

social fabric; it directly or indirectly affects in ways that most of us do not even realize.

In the coming days, as the Internet phenomenon unravels and the whole world slowly

becomes a giant network of computers interconnected by optical cables, an increasing

number of people would be connected to one one another. It would not be unrealistic

to project that almost half the world’s population would become internet users in the

near future. In such a scenario, the question of trust and safety assumes paramount

importance. A lot of network users nowadays are worried about the safety of the data

they store on devices as simple as a PC or sophisticated as a network database or a

Cloud. Security of entities like passwords, financial transactions over the internet, state

secrets etc. are also some of the common security issues staring at us in the face to-

day. As the computer processors get faster and human beings are able to call upon

larger computational resources, the so called proverbial adversary, out to compromise

our security on the internet, only gets stronger and more powerful. Cryptology, to some

extent, helps to allay the general sense of paranoia and skepticism that may develop as a

result of this. It helps build confidence in users about the underlying network protocols

already in place to ensure protection against threats. It tells us that it is OK to use our

credit cards to make any purchase on the web, or store any kind of sensitive data over a

network. It prepares us for the 21st century, where people are more likely to spend over

half their lives glued to a computer.

1

2 Chapter 1: Introduction

1.1 Introductory Notions

Until not very long ago, cryptography referred almost exclusively to encryption, which is

the process of converting ordinary information (called plaintext) into unintelligible text

(called ciphertext), rendering it unreadable by interceptors or eavesdroppers who have no

knowledge of the encryption process. Decryption is the reverse, in other words, moving

from the unintelligible ciphertext back to plaintext. A cipher is a pair of algorithms that

govern the encryption and the reversing decryption processes. The detailed operation

of a cipher is controlled both by the algorithm and in each instance by a key. The

key is typically a small string over some alphabet used to initiate the encryption and

decryption processes. The knowledge of the key is usually sufficient for any entity to

both encrypt any plaintext and decrypt the corresponding ciphertext. Hence for message

confidentiality purposes, the key is ideally a secret, known only to the communicants.

A cryptosystem is the ordered list of elements of finite possible plaintexts, finite possible

ciphertexts, finite possible keys, and the encryption and decryption algorithms which

correspond to each key. Keys are important, as ciphers without variable keys can be

trivially broken with only the knowledge of the cipher used and are therefore useless (or

even counter-productive) for most purposes. Historically, ciphers were often used directly

for encryption or decryption without additional procedures such as authentication or

integrity checks.

Cryptanalysis is the term used to denote the study of methods for obtaining the meaning

of encrypted plaintext by observing the ciphertext, without access to the key normally

required to do so; i.e., it is the study of how to crack encryption algorithms or their

implementations.

Although the 21st century has seen the application and analysis of cryptological protocols

assuming critical importance to individuals, organizations and governments alike, the

earliest use of crypto can be dated back to 1900 BC when the Egyptians used secret

code to carve text on stone tablets. However, the earliest instances of encryption were

limited to use of the main classical cipher types as follows.

• Transposition ciphers, which rearranges the order of letters in a message (e.g.,

‘good morning’ is encrypted to ‘dogo ngrinom’ in a simple rearrangement scheme).

Scytale is an example of a transposition cipher used by the Spartan Military [7].

• Substitution ciphers, which systematically replaces letters or groups of letters with

other letters or groups of letters (e.g., ‘fly at once’ becomes ‘gmz bu podf’ by

replacing each letter with the one following it in the Latin alphabet). An early

substitution cipher was the Caesar cipher, in which each letter in the plaintext was

Chapter 1: Introduction 3

replaced by a letter some fixed number of positions further down the alphabet. It

is known that Julius Caesar used it with a shift of three letters to communicate

with his generals [7].

The discipline of Steganography which deals with hiding the existence of a message so

as to keep it confidential, was also first developed in parallel. An early example, from

Herodotus, concealed a message-a tattoo on a slave’s shaved head-under the regrown

hair [7]. Another Greek method was developed by Polybius (now called the “Polybius

Square”). More modern examples of steganography include the use of invisible ink,

microdots, and digital watermarks to conceal information. This discipline is considered

to widely different from cryptology as it aims to conceal the existence of a message,

whereas classical cryptology would only aim to alter the intelligibility of a message [7].

The systematic evolution of cryptology over the ages makes for fascinating reading. The

most complete non-technical account of the subject is Kahn’s “The Codebreakers” [84].

This book traces cryptography from its initial and limited use by the Egyptians some

4000 years ago, to the 20th century where it played a crucial role in the outcome of both

world wars.

1.2 Cryptology in the Modern Era

Over the years, the method of storing and transmitting data has changed dramatically.

As we move into the era of computers, almost all data is stored electronically in one

format or the other. Thus today, the ability to do any kind of data-processing is much

greater than in the past and all indications point to astronomical increases in computa-

tional resources in the foreseeable future. In this scenario, any kind of communication

would involve transmission over an untrusted medium, which includes just about any

network, particularly the Internet. Furthermore, the underlying network used for com-

munication may not only be untrusted but also seek to actively tamper with with any

data traveling through it. In such a scenario, cryptology outlines the specific security

requirements that must be fulfilled:

• Confidentiality/Secrecy is the security notion used to imply that the content

of information is available to all but those authorized to have it.

• Data integrity is the notion which addresses the issue of unauthorized alteration

of data. To ensure data integrity, the underlying protocol must have the ability to

detect data manipulation by any unauthorized entity. Data manipulation includes

4 Chapter 1: Introduction

all operations that result in insertion, deletion, or substitution of characters in a

message.

• Authentication is the notion dealing with the process of proving one’s identi-

fication. It is imperative that both the sender and receiver identify each other

before communication. Furthermore, information delivered over a channel should

be authenticated as to origin, date of origin, data content, time sent, etc. For these

reasons this aspect of cryptography is usually subdivided into two major classes:

entity authentication and data origin authentication.

• Non-repudiation deals with preventing an entity from denying previous com-

mitments or actions. When disputes arise due to an entity denying that certain

actions were taken, a means to resolve the situation is necessary.

There are, in general, three types of cryptographic schemes typically used to accom-

plish these goals: secret key (or symmetric) cryptography, public-key (or asymmetric)

cryptography, and hash functions, each of which is described in the following Section.

1.3 Types of Cryptographic Schemes

Broadly speaking, there are in general three classes of Cryptosystems: Symmetric Key,

Public Key and Hash Functions [107]. We will take a brief look at these generic classes:

1.3.1 Symmetric Key Cryptosystems

In Symmetric Key cryptography, the same key is used for both encryption and decryp-

tion. The algorithm, used to encrypt the plaintext, is assumed to be publicly known.

The sender uses the key (or some set of rules) to encrypt the plaintext and sends the

ciphertext to the receiver. The receiver applies the same key (or rule-set) to decrypt the

message and recover the plaintext. Because a single key is used for both functions, secret

key cryptography is also called symmetric encryption. With this form of cryptography,

it is obvious that the key must be known to both the sender and the receiver; that, in

fact, is the secret. The biggest difficulty with this approach, of course, is the distribution

of the key.

Symmetric Key Cryptosystems are generally categorized as being either stream ciphers

or block ciphers.

• A Stream cipher is an algorithm that takes a Secret Key K as input, which is

usually a small binary string of around 80−256 bits, and applies a set a of rules to

Chapter 1: Introduction 5

produce a long sequence of pseudorandom bits/bytes/words commonly known

as the keystream. The sequence is called pseudorandom, because it should not

be distinguished from a truly random sequence in practical time. We will discuss

the notion of pseudorandomness in detail in the next chapter.

This sequence of bits/bytes/words is usually xored with each bit/byte/word of

the plaintext to produce the encrypted ciphertext. So, if P = p0, p1, p2, . . . repre-

sents the bits/bytes/words of the plaintext, and κ = k0, k1, k2, . . . represents the

keystream bits/bytes/words produced by the Stream Cipher using the Secret Key

K, then the encryption rule is given by

ci = pi ⊕ ki , ∀i,

where C = c1, c2, . . . represents the ciphertext bits/bytes/words. Since the Secret

Key is already known to the receiver, he can compute the keystream bits k0, k1, . . .

at his end, which are then used to decrypt the ciphertext as follows:

pi = ci ⊕ ki , ∀i.

Stream ciphers can be broadly classified into two categories. Self-synchronizing

stream ciphers calculate the ith keystream bit/byte/word ki as a function of the

previous n bits in the keystream, i.e. ki−1, ki−2, . . . , ki−n. An example of such a

stream cipher is Moustique [49]. An obvious problem while using such a cipher is

error propagation; a garbled bit/byte/word in transmission will result in n garbled

bits/bytes/words at the receiving side. On the other hand, Synchronous stream

ciphers generate the keystream bits/bytes/words in a fashion independent of any of

the previous keystream bits/bytes/words. The same keystream generation func-

tion is used at sender and receiver ends. While synchronous stream ciphers do

not propagate transmission errors, they are, by their nature, periodic so that the

keystream will eventually repeat. All the stream ciphers analyzed in this thesis

(Grain Family, MICKEY 2.0, RC4+, GGHN) are synchronous stream ciphers.

• A Block Cipher, in contrast, is a deterministic algorithm that encrypts fixed-

length groups of bits, called blocks, with an unvarying transformation that is

specified by a symmetric key. Unlike in Stream cipher encryption, where each

plaintext bit/byte/word is xored with a keystream element, Block ciphers encryp-

t/decrypt each block of data separately using a fixed set of encryption/decryption

rules. Block ciphers are important elementary components in the design of many

cryptographic protocols, and are widely used to implement encryption of bulk data.

Mathematically, if Pb denotes a block of b plaintext bits, and K is the Secret Key,

6 Chapter 1: Introduction

then the Block Cipher is completely defined by the Encryption and Decryption

functions EK and DK respectively. The functions EK , DK are usually permuta-

tions on the space {0, 1}b and are completely defined by the Secret Key K, with

DK being the inverse permutation of EK . The encryption of the plaintext block

Pb is given by Cb = EK (Pb), and since DK is the inverse of EK , the decryption

rule is given by DK (Cb) = DK (EK (Pb)) = Pb.

Lucifer [127] is generally considered to be the first civilian block cipher, developed

at IBM in the 1970s based on work done by Horst Feistel. A revised version of

the algorithm was adopted as a U.S. government Federal Information Processing

Standard: FIPS PUB 46 Data Encryption Standard (DES) [2]. It was chosen

by the U.S. National Bureau of Standards (NBS) after a public invitation for

submissions and some internal changes by NBS (and, potentially, the NSA). DES

was publicly released in 1976 and has been widely used.

DES has been superseded as a United States Federal Standard by the AES (Ad-

vanced Encryption Standard), adopted by NIST in 2001 after a 5-year public

competition [1]. The cipher was developed by two Belgian cryptographers, Joan

Daemen and Vincent Rijmen, and submitted under the name Rijndael [50].

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits,

whereas Rijndael can be specified with block and key sizes in any multiple of 32

bits, with a minimum of 128 bits. The blocksize has a maximum of 256 bits, but

there are no specific bounds imposed on the keysize. AES operates on a 4 × 4

column-major order matrix of bytes, termed the state (versions of Rijndael with a

larger block size have additional columns in the state).

1.3.2 Public Key Cryptosystems

Public-key cryptography, also known as asymmetric cryptography, refers to a crypto-

graphic algorithm which requires two separate keys, one of which is secret (or private)

and the other of which is public. Although different, the two parts of this key pair are

mathematically linked. The public key is used to encrypt plaintext or to verify a digital

signature; whereas the private key is used to decrypt ciphertext or to create a digi-

tal signature. The term “asymmetric” stems from the use of different keys to perform

these opposite functions, each the inverse of the other - as contrasted with conventional

(“symmetric”) cryptography which relies on the same key to perform both.

Public-key algorithms are based on mathematical problems which currently admit no

efficient solution that are inherent in certain integer factorization, discrete logarithm,

and elliptic curve relationships. It is computationally easy for a user to generate his/her

Chapter 1: Introduction 7

own public and private key-pair and to use them for encryption and decryption. The

strength lies in the fact that it is “impossible” (computationally unfeasible) for a properly

generated private key to be determined from its corresponding public key. Thus the

public key may be published without compromising security, whereas the private key

must not be revealed to anyone not authorized to read messages or perform digital

signatures. Public key algorithms, unlike symmetric key algorithms, do not require a

secure initial exchange of one (or more) secret keys between the parties.

There are three main uses for public-key cryptography:

• Key Exchange Protocols, in which two parties communicate among themselves to

obtain a shared Secret Key in such a manner that any third person eavesdropping

on their conversation has does not become privy to this shared Secret Key. This

protocol is used widely to establish Secret Keys between two parties for subsequent

use in Symmetric Key Algorithms.

• Public-key encryption, in which a message is encrypted with a recipient’s public

key. The message cannot be decrypted by anyone who does not possess the match-

ing private key, who is thus presumed to be the owner of that key and the person

associated with the public key. This is used in an attempt to ensure confidentiality.

• Digital signatures, in which a message is signed with the sender’s private key

and can be verified by anyone who has access to the sender’s public key. This

verification proves that the sender had access to the private key, and therefore is

likely to be the person associated with the public key. This also ensures that the

message has not been tampered, as any manipulation of the message will result

in changes to the encoded message digest, which otherwise remains unchanged

between the sender and receiver.

An analogy to public-key encryption is that of a locked mail box with a mail slot. The

mail slot is exposed and accessible to the public - its location (the street address) is, in

essence, the public key. Anyone knowing the street address can go to the door and drop

a written message through the slot. However, only the person who possesses the key

can open the mailbox and read the message.

An analogy for digital signatures is the sealing of an envelope with a personal wax seal.

The message can be opened by anyone, but the presence of the unique seal authenticates

the sender.

A central problem with the use of public-key cryptography is confidence/proof that a

particular public key is authentic, in that it is correct and belongs to the person or entity

8 Chapter 1: Introduction

claimed, and has not been tampered with or replaced by a malicious third party. The

usual approach to this problem is to use a public-key infrastructure (PKI) [10], in which

one or more third parties, known as certificate authorities, certify ownership of key pairs.

Pretty Good Privacy (PGP) [65], is a data encryption program, which in addition to

being a certificate authority structure, has used a scheme generally called the “web of

trust”, which decentralizes such authentication of public keys by a central mechanism,

and substitutes individual endorsements of the link between user and public key.

Examples of well-regarded asymmetric key techniques for varied purposes include:

• Diffie-Hellman key exchange protocol [53]

• RSA encryption algorithm (PKCS#1) [5]

• Cramer-Shoup cryptosystem [48]

• DSS (Digital Signature Standard), which incorporates the Digital Signature Algo-

rithm [3]

• McEliece cryptosystem [106]

• NTRUEncrypt cryptosystem [77]

1.3.3 Hash Functions

A hash function is any algorithm that maps data of arbitrary length to data of a fixed

length, and are primarily used to construct message digests. Thus, it can be represented

by a map h : {0, 1}∗ → {0, 1}n. A hash function should be deterministic: when it is

invoked twice on identical data (e.g. two strings containing exactly the same characters),

the function should produce the same value. This is crucial to the correctness of virtually

all algorithms based on hashing. Hash functions are typically not invertible, meaning

that it is not possible to reconstruct the input data x from its hash value h(x) alone.

This is known as the First Preimage Resistance property of Hash Functions.

Since, hash functions map a relatively large domain to a fixed size range, there are

bound to be distinct input strings x1, x2 so that h(x1) = h(x2). This event is known

as a collision of the hash function. However, such collisions are generally difficult to find

in practice. This is known as the Collision Resistance property of Hash Functions. Also,

given some hash value h(x), it is difficult to find some y such that h(x) = h(y). This is

known as the Second Preimage Resistance property of Hash Functions.

Hash algorithms are typically used to provide a digital fingerprint of a file’s contents,

often used to ensure that the file has not been altered by an intruder or virus. Hash

Chapter 1: Introduction 9

functions are also commonly employed by many operating systems to encrypt passwords.

Hash functions, then, provide a measure of the integrity of a file.

The NIST hash function competition [6] was an open competition held by the US Na-

tional Institute of Standards and Technology (NIST) to develop a new hash function

called SHA-3 to complement the older SHA-1 and SHA-2. The competition was formally

announced on November 2, 2007. After 5 years of competition, the design proposal en-

titled Keccak [34], submitted by Guido Bertoni, Joan Daemen, Gilles Van Assche and

Michaël Peeters, was declared the winner of the competition.

One may ask why there are three different types of cryptographic schemes and why only

one encryption paradigm is not sufficient. The answer is that each scheme is optimized

for some specific application(s). Hash functions, for example, are well-suited for ensuring

data integrity because any change made to the contents of a message will result in the

receiver calculating a different hash value than the one placed in the transmission by

the sender. Since it is highly unlikely that two different messages will yield the same

hash value, data integrity is ensured to a high degree of confidence. Symmetric key

cryptography, on the other hand, is ideally suited to encrypting messages, thus providing

privacy and confidentiality. The sender can generate a session key on a per-message basis

to encrypt the message; the receiver, of course, needs the same session key to decrypt

the message. Key exchange, of course, is a key application of public-key cryptography.

Asymmetric schemes can also be used for non-repudiation and user authentication; if the

receiver can obtain the session key encrypted with the sender’s private key, then only this

sender could have sent the message. Public-key cryptography could, theoretically, also

be used to encrypt messages although this is rarely done because secret-key cryptography

operates many times faster than public-key cryptography.

1.4 Stream Ciphers and the eStream Project

As defined earlier, a stream cipher is a symmetric key primitive where plaintext bit-

s/bytes are combined with a pseudorandom bit/byte/word stream called keystream. In

a stream cipher each plaintext bit/byte/word is encrypted one at a time with the corre-

sponding bit/byte of the keystream, to give a bit/byte/word of the ciphertext stream.

In practice, the combining operation is usually a bitwise exclusive-or (xor). Mathemat-

ically, a stream cipher is a set of two functions F, G and a finite state vector σ (known

simply as internal state) whose value is updated continuously by the function F . If σt

is the value of the state vector at some time instant t, K denotes the Secret Key used

10 Chapter 1: Introduction

by the cipher, and pt denotes the tth plaintext bit/byte then:

σt+1 = F (σt, pt,K)

kt = G (σt, pt)

where kt denotes the tth keystream bit/byte. Note that for synchronous stream ciphers,

the output of the functions F, G do not depend on pt.

1.4.1 One-Time Pad and Perfect Secrecy

Stream ciphers can be viewed as approximating the action of a proven unbreakable

cipher, the one-time pad (OTP). A one-time pad uses a keystream of completely random

digits, i.e., the keystream must be chosen uniformly randomly from the set of keystream

digits. This means that each element of the set of keystream digits must have equal

probability of being chosen. The keystream is combined with the plaintext digits one

at a time to form the ciphertext. The digits may be elements of any arbitrary set, e.g.

the English Alphabet (for which keystream digit and plaintext digit are added modulo

26 to produce the cipher text), but for most practical purposes, as in the case of stream

ciphers, the digit is a bit/byte and the encryption operation is simply a bitwise xor of

the plaintext and keystream.

One-time pads are “information-theoretically secure” in that the encrypted message

(i.e., the ciphertext) provides no information about the original message to a crypt-

analyst (except the maximum possible length of the message). This is a very strong

notion of security first developed during the second World War by Claude Shannon

and proved, mathematically, to be true for the one-time pad by Shannon about the

same time. Shannon proved, using information theory considerations, that the one-time

pad has a property he termed perfect secrecy; that is, the ciphertext gives abso-

lutely no additional information about the plaintext. We will give a modified although

equivalent proof of Shannon’s perfect secrecy of the OTP. Before we do that, let us

state a few notations: We will let P,C,κ denote the `-bit plaintext, ciphertext and the

keystream respectively, and let P, C,K denote the set of all `-bit plaintexts, ciphertexts

and keystream respectively.

Definition 1.1. An encryption scheme Enc satisfies perfect secrecy if for all plaintexts

P1, P2 ∈ P and all ciphertexts C ∈ C, we have

Prκ∈K [Enc(κ, P1) = C] = Prκ∈K [Enc(κ, P2) = C]

Chapter 1: Introduction 11

where both probabilities are taken over the choice of κ ∈ K and over any other ran-

domness introduced, if any, by the algorithm Enc.

In other words, the attacker cannot even get any partial information about the message

from the ciphertext since all messages give identical distributions on the ciphertext.

Theorem 1.2. OTP encryption satisfies the perfect secrecy requirement.

Proof. Take any P ∈ P and any C ∈ C, and let κ∗ = P ⊕ C. Note that:

Prκ∈K [Enc(κ, P) = C] = Prκ∈K [κ⊕ P = C]

= Prκ∈K [κ = C ⊕ P]

= Prκ∈K
[
κ = κ∗

]
=

1

2`

Since the equation holds for every P ∈ P, it follows that for every P1, P2 ∈ P we have

Prκ∈K [Enc(κ, P1) = C] = Prκ∈K [Enc(κ, P2) = C] =
1

2`

Despite Shannon’s proof of its security, the one-time pad has serious drawbacks in prac-

tice:

• It requires perfectly random one-time pads which must have the same length as

the message to be encrypted, which is a non-trivial software requirement. The

only practical solution, in this respect, is a stream cipher, which takes as input

a small random binary string as input and produces a sequence of pseudorandom

bits.

• Any segment of the keystream digits once used can not be reused, hence the name

One Time Pad. Indeed, because if the same κ is used to encrypt two plaintexts

P1, P2 to give C1 = P1 ⊕ κ and c2 = P2 ⊕ κ then the attacker can simply xor

C1, C2 to get

C1 ⊕ C2 = P1 ⊕κ⊕ P2 ⊕κ = P1 ⊕ P2

Now, if the attacker somehow knows one of the plaintexts P1 then he can easily

get to know the value of P2 by computing P2 = C1 ⊕ C2 ⊕ P1.

12 Chapter 1: Introduction

1.4.2 Using an Initialization Vector

An Initialization Vector (IV) is a fixed-size input to a cryptographic primitive that is

typically required to be random or pseudorandom. Randomization is crucial for encryp-

tion schemes to achieve semantic security, a property whereby repeated usage of the

scheme under the same key does not allow an attacker to infer relationships between

segments of the encrypted message.

In the context of stream ciphers, we know that the same key will always produce the

same keystream. This means that repeatedly using the same key is just as bad as reusing

a One Time Pad. To solve this problem one must use a different Secret Key for every

message that is to be encrypted, which is not always feasible. To overcome this, the

concept of initialization vectors is useful. The IV is a typically a random binary string

that changes with every instance of the cipher that is used to add some randomness to

the output of the cipher. In this case the design of the stream cipher somehow allows

the IV and the Secret Key information to be loaded on to the state vector of the stream

cipher. Since this value of the IV is random and unique, it makes the output of the

stream cipher different than other outputs, even if the same key is used. This is useful

when key exchange is expensive. Initialization Vectors are generally made public, and

all attack models assume that the adversary has knowledge of the value of the IV.

1.4.3 Attack models

Kerkchoffs’s Principle: In 1883, Auguste Kerckhoffs wrote two journal articles on La

Cryptographie Militaire [87], in which he stated that a cryptosystem should be secure

even if everything about the system, except the Secret Key, is public knowledge. This

statement is the fundamental basis of all cryptological schemes and cryptosystems are

specifically designed so that any attacker who knows every detail of the cryptosystem,

except the Secret Key would be unable to break the system. Keeping the design secret

in commercial domain has no scientific justification. It may be leaked easily. The design

should be such that the designer himself cannot break the system without knowing the

key.

Thus any attack we will discuss, in the context of a stream cipher, assumes the fact that

the attacker is aware of the exact design details. The attack model we will discuss in this

context is a chosen plaintext attack. In this model it is assumed that the attacker is

able to choose one or more than one plaintexts Pi obtain the corresponding ciphertexts

Ci produced due to the encryption. Note that, for a stream cipher, the bitwise xor of the

plaintext and ciphertext bits reveals the keystream. Thus the basic aim of the attacker,

Chapter 1: Introduction 13

when attacking a stream cipher, is to gain some meaningful knowledge of the Secret Key

by simply observing one or more keystream sequences.

Goals of the Attacker: The ultimate goal of any attacker is to determine the Secret

Key that is used to produce the given keystream sequence. However the attacker may

also wish to do one of the following:

State Recovery Attack: The attacker may wish to compute one of the values of the

state vector σt at some time instant t. This allows forward generation of the

keystream, i.e., the attacker is able to compute the keystream sequence starting

from kt, kt+1, . . . If the state update function F is invertible and independent of the

Secret Key, then this allows to move backwards and compute σt−1, σt−2, . . . , σ0,

and also the Secret Key.

Distinguishing Attack: The attacker may wish to distinguish the output keystream

sequence produced by a stream cipher from an ideal random source. For that he

defines a test statistic on a bit string such that the values it takes for uniform

random strings and for the keystream are sequence significantly different. He

then computes the value of the test statistic for the given keystream sequence and

according to the value of this statistic determines if the sequence was produced by

the given stream cipher or not. Sometimes distinguishing attacks can be converted

to key recovery attacks [94].

Attack Paradigms: We will now list some of the popular attack techniques employed

against stream ciphers.

Time-Memory-Data Tradeoff Attacks: First introduced by Hellman in [75], Time-

Memory-Data (TMD) Tradeoff attacks are a generic method to perform state

recovery of stream ciphers. The attacker precomputes a set of state vectors σ and

a segment of keystream bits produced by this each of the states and stores them in

an easily accessible table. In the online stage of the attack, the attacker examines

several keystream segments and checks if the corresponding keystream segment is

present in the table.

Correlation Attacks: In this attack paradigm, the attacker tries to establish some

probabilistic relation between the Secret Key bits or bits of the state vector with

the keystream. For example, if the attacker ascertains that Pr [K[0] = k0] =
1
2 + 1

4 = 3
4 , i.e. the first bit of the Secret Key equals the first keystream bit with

high probability (the value 1
4 is often referred to as the bias of K[0] towards k0).

In such an event, the attacker simply collects keystream segments by running the

14 Chapter 1: Introduction

stream cipher with the same Secret Key and sufficient number of IVs. If he runs

the experiment N number of times, the value of the first keystream bit will equal

the value of the first Secret Key bit in about 3N
4 of these cases, thus revealing the

actual value of K[0]. Correlation attacks were first introduced in [123] and have

since led to seminal research in the field of Correlation Immune Boolean Functions.

Chosen IV Attacks: The model used in Chosen IV attacks is as follows. The adver-

sary is given access to an Oracle which is in possession of an unknown quantity

(typically the Secret Key). The adversary can choose a public parameter of his

choice (typically the IV) and ask the Oracle to encrypt a message of his choice.

In the context of stream ciphers, this implies that the adversary is able to obtain

keystream bits by querying the Oracle possessing the Secret Key with any IV of

his choice. The above process can be repeated with different IVs of the adversary’s

choice. The task of the adversary could be either (i) to compute the Secret Key effi-

ciently or, (ii) to distinguish the keystream output from a random stream. The first

model has been successfully employed in cube attacks on stream ciphers [55–57].

A cube attack is a particular instance of a chosen IV attack in which the attacker

queries the Oracle for keystream segments produced due to all possible IVs over

a subset of IV bits. The second model has been used in distinguishing attacks on

reduced round variants of stream and block ciphers [58, 61, 94, 128].

Related Key Attacks: This attack model relaxes the requirements of the chosen IV

attack slightly. It is assumed that the adversary can somehow obtain keystream

bits corresponding to the Key-IV pair [fi(K), IVi,j], i, j = 0, 1, 2, . . ., where fi :

K → K is a function from the Key-space K on to itself and K is the Secret Key.

As before the adversary attempts to recover the value of K. Chosen IV related

Key attacks were successfully reported against Grain v1 and Grain-128 [96].

Side Channel Attacks: In cryptography, a side channel attack is any attack based

on information gained from the physical implementation of a cryptosystem, rather

than brute force or theoretical weaknesses in the algorithms. For example, timing

information, power consumption, electromagnetic leaks or even sound can provide

an extra source of information which can be exploited to break the system. Some

side-channel attacks require technical knowledge of the internal operation of the

system on which the cryptography is implemented, although others such as differ-

ential power analysis are effective without such information. Typical side channel

attacks include:

• Timing Attacks: A timing attack watches data movement into and out of

the CPU, or memory, on the hardware running the cryptosystem or algorithm.

Simply by observing variations in how long it takes to perform cryptographic

Chapter 1: Introduction 15

operations, it might be possible to determine the entire Secret Key. The

reader may refer to the Cache timing attacks on AES proposed by Bernstein

in [32].

• Power Analysis Attacks: A power analysis attack can provide even more

detailed information by observing the power consumption of a hardware de-

vice such as CPU or cryptographic circuit. These attacks are roughly catego-

rized into simple power analysis (SPA) and differential power analysis (DPA).

For an introduction to Power Analysis Attacks, the reader is referred to the

seminal paper by Kocher [95].

• Fault Attacks: The principle in these type of attacks is to induce faults or

other unexpected environmental conditions into cryptographic implementa-

tions, to reveal their internal states. For example, a smartcard containing an

embedded processor might be subjected to high temperature, unsupported

supply voltage or current, excessively high overclocking, strong electric or

magnetic fields, or even ionizing radiation to influence the operation of the

processor. The processor may begin to output incorrect results due to phys-

ical data corruption, which may help a cryptanalyst deduce the instructions

that the processor is running, or what its internal data state is.

Typically, in the context of stream ciphers, optical faults using camera flashes/

laser-guns [124, 125] are induced in the registers storing the internal state

vector, as a result of which the logic values stored by one or more flip-flops

are toggled. As a result, the device implementing the stream cipher, starts

behaving abnormally and produces keystream which it would otherwise not

produce in a normal mode of operation. This is often referred to as faulty

keystream sequence and may be used by the attacker to gain some non-trivial

information about the Secret Key.

• Scan Chain Attacks: Scan-chains are one of the most commonly-used DFT

(Design for Testability) techniques, which are used to check whether a chip is

functioning properly or not. It provides the designer an easy way to ascertain

whether the device has any structural defects or not. In this design method-

ology, all the flip-flops in the design are replaced with scan type flip-flops

that contains a multiplexer to select either a normal mode functioning or a

scan mode functioning. The design is made controllable and observable by

chaining all these flip-flops together and shifting test data in and out. By

suitably altering the control value to the multiplexer, the chip can be used

for normal or scan test mode of operation. After selecting scan-test mode,

the user is able to input test patterns of his choice into the device and there-

after scan out the contents of all the flip-flops connected to the scan-chain.

16 Chapter 1: Introduction

If a cryptosystem is implemented using such Scan Chains, then by observing

the data shifted out of the chain, the attacker is often able to determine the

internal state of the cipher.

Other Weaknesses: Apart from the aforementioned attack paradigms, an attacker

may look for other weaknesses in the stream cipher design. Some of them are as

follows:

• Short Cycles: As already stated, a Stream Cipher consists of a state vector

σ that is updated by a function F . The output keystream bit/byte is a

computed by function G of the internal state vector. Since the state σ consists

of a finite number of bits, it stands to reason that the set of all possible values

it can take on is also finite, and therefore any internal state vector must after

a finite number of state updates return to its initial state. When this happens

the keystream bits/bytes also start to repeat. Usually, for all well designed

ciphers such cycles have immensely large periods which can not be calculated

on a normal PC. Sometimes, however, stream ciphers have been known to

produce cycles of small period. An example is the famous Finney Cycle

[60] reported in relation to the stream cipher RC4 [4]. Short cycles are an

undesirable property of stream ciphers, because if the attacker is sure that the

cipher is in a state that cycles after a short time, he will be able to predict the

forward generation of keystream bits. Also, Finney cycles were successfully

used in [38] to mount a fault attack against RC4.

• Slid Key-IV pairs: It is often observed that in a stream cipher, there

exist distinct Key-IV pairs (K1, IV1) and (K2, IV2) that produce keystream

sequences that are finite shifts of one another. Although such Key-IV pairs

do not always lead to a cryptanalytic attack, any user who has once used the

Key-IV pair (K1, IV1) for encryption might not want to use the pair (K2, IV2)

for subsequent encryption. There also have been instances where such slid

pairs have been exploited to mount Related Key attacks on a stream cipher.

For example, in [96], slid pairs were used to perform a Related Key attack

against the stream ciphers Grain v1 and Grain-128.

1.4.4 The eStream Project

eSTREAM is the name given to a project to design new stream ciphers suitable for

widespread adoption, organized by the EU ECRYPT network. It was set up as a result

of the fact that all six stream ciphers submitted to the NESSIE project had been crypt-

analyzed. The call for primitives was first issued in November 2004. The project was

Chapter 1: Introduction 17

completed in April 2008. The project was divided into separate phases and the project

goal was to find algorithms suitable for different application profiles.

The eSTREAM portfolio ciphers fall into two profiles. Profile 1 stream ciphers are

particularly suitable for hardware applications with restricted resources such as limited

storage, gate count, or power consumption. Profile 2 contains stream ciphers more

suitable for software applications with high throughput requirements. The portfolio [47]

currently contains the following ciphers:

Profie 1 (HW) Profile 2 (SW)

Grain v1 [73] Salsa20 [33]

MICKEY 2.0 [16] Sosemanuk [30]

Trivium [43] HC128 [133]

Rabbit [40]

Table 1.1: The eStream Portfolio

1.5 Motivation of this Thesis

The main motivation of this thesis is to study a few selected stream ciphers, both from

the eStream portfolio and elsewhere, and analyze how the cipher designs hold up against

certain typical cryptanalytic attack models. RC4 [4] is the most widely used software

stream cipher and is used in popular protocols such as Transport Layer Security (TLS)

(to protect Internet traffic) and WEP (to secure wireless networks). While remarkable

for its simplicity and speed in software, certain weaknesses [102, 105] has been reported

against the cipher. For over a decade, there has been seminal research to look for design

paradigms that would somehow lead to a cipher with comparable ease of implementation

and speed in software as RC4 and at the same time be free of its known weaknesses. As a

result, the last decade has seen numerous design proposals like [111, 114, 138] etc. In this

thesis, we take a closer look at two of such stream ciphers i) RC4+ designed by Maitra

et al. [100] and ii) GGHN designed by Gong et al. [68], that were originally proposed

as alternatives to RC4. We have found certain weaknesses in these designs which we

present in this thesis. This leads us to conclude that eliminating the weaknesses of RC4

and at the same time preserving its simplicity is a highly complicated search and would

require more painstaking research.

Thereafter we review two families the Hardware ciphers currently in the final portfolio

of eStream.

18 Chapter 1: Introduction

• The Grain Family of Stream ciphers, i.e. Grain v1 [73], Grain-128 [74] and Grain-

128a [13] designed by Ågren, Hell, Johansson, Maximov and Meier.

• MICKEY 2.0 [16] designed by Babbage and Dodd.

We investigate several avenues of cryptanalysis against these ciphers. For the Grain

family, we devise methods to compute Related Key-IV pairs that produce slid keystream

sequences. We also investigate the possibility of mounting a Differential Fault Attack

against both the Grain family and MICKEY 2.0, under various adversarial situations.

We also investigate the possibility of mounting a Scan based side channel attack on the

stream cipher MICKEY 2.0. We found that an existing strategy of Scan based attack

against the stream cipher Trivium [11], was ineffective against MICKEY 2.0, and hence

he have provided an alternative strategy to deal with this cipher. We also make some

broad observations regarding the countermeasures taken to secure Scan Chains against

a class of cryptanalytic attacks.

Performing such analysis against these ciphers is important as no formal security proofs

are available for them. In fact their security stems from the amount of confidence the

professionals in the industry ans academia have in the strengths of these ciphers.

1.6 Organization of this Thesis

The thesis is organized in the following way:

1. Chapters 1, 2 provide a brief introduction to cryptology and outline the mathe-

matical preliminaries necessary to read the thesis.

2. Chapter 3 is concerned with the analysis of the stream ciphers RC4+ and GGHN.

3. Chapters 4, 5, 6 is involved with the analysis of the Grain family of Stream Ciphers.

4. Chapters 7, 8 is deals with the analysis of the cipher MICKEY 2.0 and introduction

to Scan Chain based attacks.

It is strongly recommended that the reader reads Chapters 1, 2 of the thesis before

proceeding with the rest of the thesis. Also, it is recommended that the reader reads

Chapter 4 before Chapters 5,6 and Chapter 7 before Chapter 8. For the benefit of the

reader, a short summary of the Chapters in this thesis is presented below:

Chapter 1: Introduction 19

Chapter 1 This chapter provides a brief introduction to cryptology and the various

broad classifications of cryptographic protocols. It also provides a brief introduc-

tion to Stream ciphers, the notion of Perfect Secrecy and discusses the various

attack paradigms associated with Stream ciphers. Finally it introduces the reader

to the eStream project which was specifically created to promote innovative design

methodologies in Stream Ciphers and whose final portfolio may now be considered

to consist of the state-of-the-art stream cipher designs.

Chapter 2 This chapter provides all the mathematical background necessary to read

the thesis.

Chapter 3 This chapter is divided into two halves. In the first half, the stream cipher

RC4+ is analyzed. It is shown that much like RC4, a distinguishing attack re-

quiring around 227 keystream bytes can be mounted on RC4+. Also, a differential

fault attack on RC4+ requiring 216 faults is presented. The attack presents a step

by step analysis of how the internal state of the cipher may be recovered from the

knowledge of the faulty keystream bytes. In the second half of the chapter, two

cryptanalytic results are presented against the GGHN stream cipher. First, it is

shown that numerous short cycles occur during the keystream generation phase

of the cipher. Secondly, it is shown that a randomized variant of this cipher is

expected to reach the all zero state in just around 2147 iterations, after which the

cipher only produces the zero keystream byte at every iteration. Although this ob-

servation does not lead to any cryptanalytic attack on the cipher, it gives the user

a limit of the amount of keystream bytes that may be safely used for encryption

with such cipher designs. This chapter is based on the publications [21, 27].

Chapter 4 This chapter introduces the reader to the Grain family of stream ciphers.

It provides a complete mathematical description of the ciphers in the family and

enumerates all known cryptanalytic attempts reported against this family. There-

after, we outline methods to compute Key-IV pairs in the Grain family that can

generate key-streams which are either

• Almost similar in the initial segment, or

• Exact shifts of each other throughout the generation of the stream.

This chapter is based on the publications [25, 26].

Chapter 5 This chapter is involved with the Different Fault Analysis (DFA) of the

Grain Family. It describes a set of three attacks on the Grain family, each of

which is mounted under different setups in which the attacker is granted varying

degrees of freedom.

20 Chapter 1: Introduction

• The first attack assumes that the attacker can exercise maximum control over

the fault injection. First it is assumed that he can synchronize the timing

of fault injection with a given stage of the cipher operation. Second, it is

assumed that the fault that he injects, causes a change in the logical value of

precisely one of the flip-flops of the registers storing the internal state (i.e a

single bit-flip). Although he cannot choose the register location to be faulted,

a flip-flop once faulted can be faulted multiple times.

• The second attack obviates the requirement of multiple faults on the same

register location, but assumes that the attacker can still inject single bit-

flipping time synchronized faults.

• The third attack requires the attacker to exercise minimal control over fault

injections, i.e., the attack will be carried out under the assumption that the

optical fault is not time-synchronized, nor is there any guarantee that it

causes a single bit flip at a random register location. Instead, the attacker is

certain that the fault he injects toggles the logic value at a maximum of three

contiguous flip-flops. This attack enlists the use of SAT solvers to reduce the

number of faults required to complete the attack.

This chapter is based on the publications [22–24, 120].

Chapter 6 This chapter begins with a brief description of Knellwolf’s Conditional Dif-

ferential Cryptanalysis [94] of reduced round Grain v1. The attack found the

values of five expressions in the Secret Key bits of a variant of Grain v1 that em-

ploys only 97 out of the 160 rounds in its Key Scheduling. The values of these

Secret Key expressions were deduced by observing certain non-randomness/bias

in the keystream bits generated by the chosen IVs. The non-randomness were

observed purely experimentally and no theoretical justification was provided for

the same. In this chapter a theoretical explanation is provided of the correctness

of Knellwolf’s attck. First, a tool is constructed to track the the differential trails

introduced in the cipher via the IV during the Key Scheduling part of the cipher

operation. Using the results obtained from this tool the non-randomness in the

keystream bits for the chosen IVs is proven. This chapter is based on the work

presented in [18].

Chapter 7 This chapter concentrates on the stream cipher MICKEY 2.0. It starts

with a mathematical description of the specifications of the cipher, and goes on to

describe a Differential Fault Attack under the assumption that the attacker can

inject time-synchronized, single bit-flipping optical faults. Thereafter the attack

is carried out if the injected fault toggles a maximum of three neighboring flip-

flops. In the second part of this chapter, SAT solvers are used to reduce the fault

Chapter 1: Introduction 21

requirement, both in the single bit-flip and multiple bit-flip models. This chapter

is based on the work presented in [20, 28].

Chapter 8 A Scan-Chain is a popular DFT (Design for Testability) technique, which

is used to check whether a chip is functioning normally or not. It provides the

designer an easy way to ascertain whether the device has any structural defects

or not. This chapter introduces the reader to Scan-Chain based hardware design

and the related vulnerabilities that may creep into a cryptosystem implemented

with Scan Chains. In [11], A Scan based attack on the stream cipher Trivium [43]

was presented. The chapter outlines why the same attack can not be extended

to MICKEY 2.0 [16], and suggests an alternative strategy to attack MICKEY

2.0 via Scan-Chains. Further, in [11], an XOR gate based countermeasure was

suggested to protect Scan-Chains from cryptanalytic attacks. The chapter also

shows that this countermeasure may fail to protect the underlying cryptosystem

under certain classes of cryptanalytic attacks. It goes on to suggest a novel Double

Feedback XOR-CHAIN countermeasure that is shown to be secure against the

given class of cryptanalytic attacks. It is also shown than that such a Double

Feedback XOR-CHAIN structure, like an ordinary Scan-Chain, may also be used

for DFT purposes. This chapter is based on the work presented in [19].

Chapter 9 This chapter concludes the thesis. Here we present a comprehensive sum-

mary of our work that has been discussed throughout the thesis. We also discuss

open problems which might be interesting for further investigation along this line

of research.

We frequently use basic results of Boolean Functions, linear algebra and probability

theory in this thesis, and expect the reader to possess a good grasp on these topics.

Although we present a comprehensive overview of all necessary mathematical prelimi-

naries in Chapter 2, a graduate level training in mathematics is recommended to read

the material comfortably.

Chapter 2

Background and Preliminaries

This chapter provides the reader with a comprehensive overview of the mathematical

framework that may be needed to read this thesis. The results in this chapter are mostly

basic. Still we provide a few proofs for better understanding of the reader. Note that,

GF(2) denotes the finite field of the two elements {0, 1}. We will use both notations

interchangeably in this thesis.

2.1 Boolean Functions

An n-variable Boolean Function f is a map from {0, 1}n → {0, 1}. The support Sup(f)

of the function f is defined as the set

Sup(f) = {x ∈ {0, 1}n : f(x) = 1}.

The weight of f is denoted by wt(f) and is defined to be the cardinality of Sup(f). An

n-variable Boolean Function f is said to be balanced if wt(f) is equal to 2n−1. It is said

to be unbalanced otherwise. The distance between two n-variable Boolean functions

f and g is denoted by d(f, g) and is defined as the cardinality of the following set D:

D = {x ∈ {0, 1}n : f(x)⊕ g(x) = 1}.

It is easy to see that d(f, g) = Cardinality of D = wt(f ⊕ g).

2.1.1 Representation of Boolean Functions

There are two standard ways of representing a Boolean Function:

23

24 Chapter 2: Background and Preliminaries

• Truth Table representation,

• Algebraic Normal Form representation.

Truth Table A truth table is a tabulation of all possible combinations of input values

and their corresponding outputs. Let σ(0), σ(1), . . . , σ(2n − 1) be respectively the n-

bit binary representations of the integers 0, 1, . . . , 2n − 1. Then the truth table of the

function f is given by the vector Tf :

Tf = [f (σ(0)) , f (σ(1)) , . . . , f (σ(2n − 1))]

Thus, the truth table representation of f requires 2n bits.

Algebraic Normal Form (ANF) Apart from the truth table, another important way

to represent a Boolean function is by its Algebraic Normal Form (ANF). A n-variable

Boolean function f can expressed as a a multivariate polynomial f(x1, . . . , xn) over

GF(2). This polynomial can be expressed as a sum of products representation of all

distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely, f(x1, . . . , xn)

can be written as

ω0 ⊕
⊕

1≤i≤n
ωixi ⊕

⊕
1≤i<j≤n

ωijxixj ⊕
⊕

1≤i<j<k≤n
ωijkxixjxk · · ·

⊕
ω12...nx1x2 . . . xq,

where the coefficients ωi, ωij , . . . , ω12...n ∈ {0, 1}. This is the ANF representation of f .

The number of variables in the highest order product term with nonzero coefficient is

called the algebraic degree, or simply the degree of f and denoted by deg(f). Functions

of algebraic degree at most one are called Affine Functions. Affine Functions which

have ω0 = 0 are called Linear Functions.

The set of all n-variable affine (respectively linear) functions is denoted by A(n) (re-

spectively L(n)). Therefore, for a fixed ω = (ω1, ω2 . . . , ωn) ∈ {0, 1}n, an affine function

is of the form ω · x ⊕ ω0, where ω · x = ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ ωnxn is the inner product

over GF(2).

The nonlinearity of an n-variable function Boolean Function f , denoted by nl(f) is

defined as

nl(f) = min
g∈A(n)

(d(f, g)),

i.e., the minimum distance from the set of all n-variable Affine Functions.

Chapter 2: Background and Preliminaries 25

2.1.2 Walsh Spectrum

For the point ω = (ω1, ω2 . . . , ωn) ∈ {0, 1}n, let us define the n-variable Linear function

Lω = ω · x = ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ ωnxn. The Walsh transform of the Boolean Function

f(x) on the point ω is defined as

Wf (ω) =
∑

x∈{0,1}n
(−1)Lω(x)⊕f(x)

From, the definition of Wf (ω) it is clear that whenever Lω(x) ⊕ f(x) = 0, the sum is

increased by 1, and when Lω(x)⊕ f(x) = 1, the sum is decreased by 1. So, we have

Wf (ω) = (2n − wt(Lω ⊕ f)) · 1 + wt(Lω ⊕ f) · (−1)

= 2n − 2 wt(Lω ⊕ f)

= 2n − 2 d(Lω, f).

The vector [Wf (σ(0)),Wf (σ(1)), . . . ,Wf (σ(2n − 1))] is called the Walsh Spectrum of f .

If, among all the functions in A(n), the minimum distance of f occurs for the linear

function Lω′ , for some ω′ ∈ {0, 1}n, then the above equation implies that the value of

Wf (ω′) is the maximum among all the other elements in the Walsh spectrum of f . On

the other hand, if the minimum distance occurs for the affine function 1 ⊕ Lω′ , then

−Wf (ω′) will have the maximum value. Therefore, in terms of the Walsh spectrum, the

nonlinearity of f is given by

nl(f) = 2n−1 − 1

2
· max
ω∈{0,1}n

|Wf (ω)|.

Parseval’s Theorem One important identity related to the Walsh spectra of any n-

variable Boolean function f is the Parseval’s identity [54] which gives

∑
ω∈{0,1}n

W 2
f (ω) = 22n.

It is clear that the maximum nonlinearity is achieved when the maximum absolute

value of the Walsh spectrum is minimized. For n even, given the implications of the

Parseval’s Theorem, this happens when Wf (ω) = ±2n/2, for all ω ∈ {0, 1}n. These

functions, having nonlinearity 2n−1 − 2n/2−1, are known as Bent Functions [118]. For

n odd, no concrete results are available. For n ≤ 7, it is known that the maximum

possible nonlinearity can be 2n−1 − 2
n−1
2 [110]. It has been shown in [86, 113] that one

can achieve nonlinearity strictly greater than 2n−1 − 2
n−1
2 for n ≥ 9.

26 Chapter 2: Background and Preliminaries

Correlation Immunity An n-variable Boolean function f is called m-CI (Correlation

Immune of the mth order) if and only if its Walsh Spectrum satisfies

Wf (ω) = 0, ∀ 1 ≤‖ ω ‖≤ m,

where ‖ · ‖ denotes the number of non-zero elements in a vector. An m-CI function f

is called m-resilient if it is balanced as well. For an n-variable m-CI function f , deg(f)

is bounded by the relation deg(f) ≤ n −m. If f is m-resilient, deg(f) is bounded by

deg(f) ≤ n−m− 1 (see [123] for details).

2.2 Recurrences and Feedback Shift Registers

A sequence of elements b0, b1, b2, . . . ∈ GF (2) is said to satisfy a recurrence relation of

order n if bn+k can be expressed as a Boolean Function of the previous n elements of

the sequence, i.e.,

bn+k = f(bn+k−1, bn+k−2, . . . , bk)

The recurrence is said to be Linear if the function f is a linear Boolean Function, and

is said to be Non-Linear if f is nonlinear.

The standard way of constructing hardware implementations of such sequences is by

employing Feedback Shift Registers (FSR) (See Fig 2.1). The design consists of a cas-

cade of n number of D Flip-flops connected serially. The output of each flip-flop is

connected to a set of gates implementing the Boolean logic for the feedback function f ,

the output of which is connected to the input port of the first flip-flop, thus completing

the feedback circuit. The flip-flops are initialized with the values b0, b1, . . . , bn−1. At

each clock edge the values in the flip-flops are shifted towards the left by 1 flip-flop,

and an updated value emanating from the circuit for the Boolean logic for f , is stored

in the first flip-flop. Thus, it is easy to see that after the kth clock edge, the flip-flops

carry the values [bk, bk+1, . . . , bn+k−1]. This vector is often referred to as the state of the

register at time k. FSR’s implementing linear recurrences are called Linear Feedback

Shift Registers (LFSR), and those implementing nonlinear recurrences are called

Nonlinear Feedback Shift Registers (NFSR).

Period of an FSR The period of the sequence b0, b1, b2, . . . generated by an FSR is

defined as the minimum positive integer T such that bk+T = bk, for all positive integers

k. Since FSRs are finite state machines with the maximum number of states being 2n,

if the FSR is implemented with n flip-flops, it stands to reason that the period of any

sequence generated by an FSR is less than or equal to 2n.

Chapter 2: Background and Preliminaries 27

FF FF FF FF

CLOCK

Boolean Logic for f

...

...

...

t = 0 bn−1 bn−2 bn−3 · · · b0 Output

t = 1 bn bn−1 bn−2 · · · b1 b0
t = 2 bn+1 bn bn−1 · · · b2 b1
t = 3 bn+2 bn+1 bn · · · b3 b2
t = 4 bn+3 bn+2 bn+1 · · · b4 b3

Figure 2.1: A Feedback Shift Register

Reversibility An FSR is said to be reversible if the knowledge of any state vector

[bk, bk+1, . . . , bn+k−1] can lead to the unique determination of the previous state vector

[bk−1, bk, . . . , bn+k−2], for all k > 1. It was shown in [63], that an FSR is reversible if its

update function f(bn+k−1, bn+k−2, . . . , bk) can be written in the following manner

f(bn+k−1, bn+k−2, . . . , bk) = bk ⊕ f ′(bn+k−1, bn+k−2, . . . , bk+1).

This can easily be verified since it can be seen that given [bk, bk+1, . . . , bn+k−1], we only

need to determine bk−1 uniquely to prove that the FSR is reversible. Since we have

bn+k−1 = f(bn+k−2, bn+k−3, . . . , bk−1)

= bk−1 ⊕ f ′(bn+k−2, bn+k−3, . . . , bk),

i.e., bk−1 = bn+k−1 ⊕ f ′(bn+k−2, bn+k−3, . . . , bk).

Thus, bk−1 is uniquely determined.

2.2.1 Primitive Polynomials and Maximum length LFSRs

Consider the linear recurrence given by the following update rule:

bn+k = cn−1bn+k−1 ⊕ cn−2bn+k−2 ⊕ · · · ⊕ c1bk+1 ⊕ c0bk.

28 Chapter 2: Background and Preliminaries

Define the feedback polynomial p(x) for this recurrence as:

p(x) = xn + cn−1 · xn−1 + cn−2 · xn−2 + · · ·+ c1 · x+ c0

Notice that, if the LFSR is initialized with the all zero vector, i.e., b0 = b1 = · · · =

bn−1 = 0, then according to its update rule, it will forever remain in that state. How-

ever, an LFSR generates a sequence of period 2n − 1, if its feedback polynomial is a

primitive polynomial. Primitive Polynomials are important mathematical objects

used extensively in Coding theory, Finite Fields and Algebraic Geometry. A detailed

discussion of such polynomials is beyond the scope of this thesis (please refer to [98] for

more details), but we shall give an equivalent definition for the purpose of understanding

the material covered in the thesis.

Definition 2.1. Consider the polynomial p(x) with degree n and coefficients in GF (2).

Define the set of polynomials

Sm = {a0 + a1 · x+ · · ·+ an−1 · xn−1 : ai ∈ GF (2)} − {0}
Sp = {xi mod p(x) : 0 ≤ i ≤ 2n − 2}

Note that Sm is the set of all polynomials over GF (2) of degree n − 1 except the zero

polynomial. Sp is the set of polynomials obtained by taking the remainder when xi (for

i ∈ [0, 2n−2]) is divided by p(x). The polynomial p(x) is said to be primitive if Sp = Sm.

An example of a primitive polynomial over GF(2) is x4 + x+ 1.

An LFSR employing a primitive polynomial as its feedback polynomial is called a maxi-

mum length LFSR. As previously stated, a maximum length LFSR produces a sequence

with period 2n−1, also popularly called an m-sequence. Such sequences have extremely

useful statistical properties and are used extensively Digital Broadcasting and Spread

Spectrum Communications. However these sequences are cryptographically weak, and

given 2n bits of such a sequence it is possible to employ the Berlekamp-Massey algorithm

[103] to recover not only the initial state but also the feedback polynomial. Hence, LF-

SRs must be employed with some kind of nonlinearity to construct secure cryptographic

primitives.

2.2.2 Nonlinear Feedback Shift Registers (NFSR)

As stated previously, an FSR with a nonlinear feedback function f is said to be a Non-

linear Feedback Shift Register (NFSR). NFSRs combined with LFSRs are the principal

design components of many stream ciphers. For example, two of the three ciphers in the

Hardware portfolio of eStream, i.e., Grain v1 [73] and MICKEY 2.0 [16] are constructed

Chapter 2: Background and Preliminaries 29

in this manner, whereas the the third cipher in the Hardware portfolio, i.e., Trivium [43]

is composed of 3 NFSRs.

The theory regarding NFSRs is not as developed as that of LFSRs. However, there

has been extensive characterization of NFSRs that produce sequences of period 2n also

known as Debruijn Sequences. For more details on this topic one may refer to [46, 63].

2.3 Elementary Discrete Probability Theory

The world around us is full of phenomena we perceive as random or unpredictable. For

example, when we toss a coin we can either expect to land a Head or a Tail, when we

roll a die we can expect one of the possible elements from the set {1, 2, 3, 4, 5, 6}. We

aim to model these phenomena as outcomes of some experiment. The set of all possible

outcomes of an experiment are elements of a sample space Ω, and subsets of Ω are

called events. The events are assigned a probability, a real number between 0 and 1

that expresses how likely the event is to occur.

We represent the outcome of the experiment by a capital Roman letter, such as X, called

a random variable. In this thesis, we will consider the case where the experiment has

only finitely many possible outcomes, i.e., the sample space is finite. Since the sample

space is finite, the random variable is said to be discrete.

2.3.1 Probability Distribution Function

We next describe the assignment of probabilities to each event of the sample space. In

this context, we will define the concept of a probability distribution function.

Definition 2.2. Let X be a random variable which denotes the value of the outcome of

a certain experiment, and assume that this experiment has only finitely many possible

outcomes. Let Ω be the sample space of the experiment (i.e., the set of all possible values

of X, or equivalently, the set of all possible outcomes of the experiment.) A distribution

function for X is a real-valued function Pr(·) : Ω → R(0, 1) where R(0, 1) denotes the

set of reals between and including 0 and 1, and which satisfies:

1. Pr(ω) ≥ 0, for all ω ∈ Ω , and

2.
∑

ω∈Ω Pr(ω) = 1.

30 Chapter 2: Background and Preliminaries

For any subset E of Ω, we define the probability of E to be the number Pr(E) given by

Pr(E) =
∑
ω∈E

Pr(ω).

Note that if E = ∅, we assign Pr(E) = 0.

Example 2.1. A die is rolled once. We let X denote the outcome of this experiment.

Then the sample space for this experiment is the 6-element set

Ω = {1, 2, 3, 4, 5, 6},

where each outcome i, for i = 1, . . . , 6, corresponds to the number of dots on the face

which turns up. The event

E = {2, 4, 6}

corresponds to the statement that the result of the roll is an even number. The event

E can also be described by saying that X is even. Unless there is reason to believe the

die is loaded, the natural assumption is that every outcome is equally likely. Adopting

this convention means that we assign a probability of 1
6 to each of the six outcomes.

Mathematically we express this as Pr(i) = 1
6 , for 1 ≤ i ≤ 6. In this example, therefore

Pr(E) = Pr(2) + Pr(4) + Pr(6) = 1
2 , as the events are mutually exclusive.

In many cases, events can be described in terms of other events through the use of the

standard constructions of set theory. We will briefly look a few identities regarding

probabilities when defined on sets.

Theorem 2.3. Let X be a random variable which denotes the value of the outcome of

a certain experiment, and assume that this experiment has only finitely many possible

outcomes. Let Ω be the sample space of the experiment. then the following properties

hold regarding the probability distribution function Pr(·) hold:

1. Pr(E) ≥ 0 for every E ⊂ Ω

2. Pr(Ω) = 1 and Pr(∅) = 0

3. If E ⊂ F ⊂ Ω then Pr(E) ≤ Pr(F)

4. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

5. If A and B are disjoint subsets, i.e., A ∩B = ∅ then Pr(A ∪B) = Pr(A) + Pr(B)

6. Pr(Ac) = 1− Pr(A)

Chapter 2: Background and Preliminaries 31

Proof. Properties 1 and 2 follow from the definition of the probability distribution func-

tion. To prove property 3 note that if E ⊂ F then every element ω that belongs to E

also belongs to F . Therefore,

∑
ω∈E

Pr(ω) ≤
∑
ω∈F

Pr(ω)⇒ Pr(E) ≤ Pr(F).

To prove property 4, we can divide the set A ∪ B in three parts. The 1st part consists

of elements belonging only to A and not B (therefore belonging to A − A ∩ B), the

second part consists of elements belonging only to B and not A (therefore belonging to

B − A ∩ B) , and the third part consists of elements common to both A and B, i.e.,

belonging to A ∩B. So we have,

Pr(A ∪B) =
∑

ω∈A∪B
Pr(ω) =

∑
ω∈A−A∩B

Pr(ω) +
∑

ω∈B−A∩B
Pr(ω) +

∑
ω∈A∩B

Pr(ω)

= Pr(A)− Pr(A ∩B) + Pr(B)− Pr(A ∩B) + Pr(A ∩B)

= Pr(A) + Pr(B)− Pr(A ∩B)

Property 5 follows from property 4. To prove Property 6 we note that Ω = A ∪ Ac.
Since A and Ac are disjoint sets we use Properties 2, 5 to write

1 = Pr(Ω) = Pr(A ∪Ac) = Pr(A) + Pr(Ac)⇒ Pr(Ac) = 1− Pr(A).

2.3.2 Conditional Probability

In this section we ask and answer the following question. Suppose we assign a distribu-

tion function to a sample space and then learn that an event E has occurred. How should

we change the probabilities of the remaining events? We shall call the new probability

for an event F the conditional probability of F given E and denote it by Pr(F |E).

Example 2.2. An experiment consists of rolling a die once. Let X be the outcome. Let

F be the event X = 6, and let E be the event X > 4. Since X ∼ U({1, 2, 3, 4, 5, 6}), we

have, Pr(F) = 1
6 . Now suppose that the die is rolled and we are told that the event E has

occurred. This leaves only two possible outcomes: 5 and 6. In the absence of any other

information, we would still regard these outcomes to be equally likely, so the conditional

probability of F becomes 1
2 , making Pr(F |E) = 1

2 .

Let Ω = {ω1, ω2, . . . , ωr} be the original sample space with distribution function Pr(ωj)

assigned. Suppose we learn that the event E has occurred. We want to assign a new

32 Chapter 2: Background and Preliminaries

distribution function Pr(ωj |E) to reflect this fact. Clearly, if a sample point ωj is not in

E, we want Pr(ωj |E) = 0. Moreover, in the absence of information to the contrary, it

is reasonable to assume that the probabilities for ωk ∈ E should have the same relative

magnitudes that they had before we learned that E had occurred. For this we require

that

Pr(ωk|E) = c · Pr(ωk)

or all ωk ∈ E, with c being some positive constant. We also must have

Pr(ωk|E) = c ·
∑
ωk∈E

Pr(ωk) = 1 ⇒ c =
1∑

ωk∈E Pr(ωk)
=

1

Pr(E)

(Note that this requires us to assume that Pr(E) > 0). Thus, we will define

Pr(ωk|E) =
Pr(ωk)

Pr(E)

for all ωk ∈ E. We will call this new distribution the conditional distribution given E.

For a general event F , this gives

Pr(F |E) =
∑

ωk∈F∩E
Pr(ωk|E) =

∑
ωk∈F∩E

Pr(ωk)

Pr(E)
=

Pr(F ∩ E)

Pr(E)

We call Pr(F |E) the conditional probability of F given E.

Example 2.3. Let us return to the example of rolling a die. Recall that F is the event

X = 6, and E is the event X > 4. Note that E ∩ F is the event F . So, the above

formula gives

Pr(F |E) =
Pr(F ∩ E)

Pr(E)
=

Pr(F)

Pr(E)
=

1/6

2/6
=

1

2
.

in agreement with the calculations performed earlier.

2.3.3 Independent Events

It often happens that the knowledge that a certain event E has occurred has no effect

on the probability that some other event F has occurred, that is, that Pr(F |E) = Pr(F).

If this is true, we might say that F is independent of E. This idea is formalized in the

following definition of independent events.

Definition 2.4. Let E and F be two events. We say that they are independent if either

• Both events have positive probability and

Pr(E|F) = Pr(E) and Pr(F |E) = Pr(F),

Chapter 2: Background and Preliminaries 33

• Or, at least one of the events has probability 0.

The following theorem provides another way to check for independence.

Theorem 2.5. Two events E and F are independent if and only if

Pr(E ∩ F) = Pr(E)Pr(F).

Proof. If either event has probability 0, then the two events are independent and the

above equation is true, so the theorem is true in this case. Thus, we may assume that

both events have positive probability. Assume that E and F are independent. Then

Pr(E|F) = Pr(E), and so

Pr(E ∩ F) = Pr(E|F)Pr(F) = Pr(E)Pr(F).

Assume next that Pr(E ∩ F) = Pr(E)Pr(F). Then

Pr(E|F) =
Pr(E ∩ F)

Pr(F)
= Pr(E).

Similarly,

Pr(F |E) =
Pr(E ∩ F)

Pr(E)
= Pr(F).

Therefore, E and F are independent.

2.3.4 Joint Distribution Functions and Independence of Random Vari-

ables

It is frequently the case that when an experiment is performed, several different quan-

tities concerning the outcomes are investigated. If we have several random variables

X1, X2, . . . , Xn which correspond to a given experiment or a set of different experiments,

then we can consider the joint random variable X = (X1, X2, . . . , Xn) defined by writing,

as an n-tuple, the corresponding n outcomes for the random variables X1, X2, . . . , Xn.

Thus, if the random variable Xi has, as its set of possible outcomes the set Ri, then the

set of possible outcomes of the joint random variable X is the Cartesian product of the

Ri’s, i.e., the set of all n-tuples of possible outcomes of the Xi’s. Thus the sample space

is written as

Ω = R1 ×R2 × · · · ×Rn

The function which gives the probability of each of the outcomes of X is said to be the

joint distribution function of X.

We now look at another important definition.

34 Chapter 2: Background and Preliminaries

Definition 2.6. The random variables X1, X2, . . . , Xn are said to be mutually indepen-

dent if

Pr(X1 = r1, X2 = r2, . . . , Xn = rn) = Pr(X1 = r1) · Pr(X2 = r2) · · ·Pr(Xn = rn)

for any choice of (r1, r2, . . . , rn) ∈ R1 × R2 × · · · × Rn. Thus, if X1, X2, . . . , Xn are

mutually independent, then the joint distribution function of the random variable X is

just the product of the individual distribution functions.

Example 2.4. Suppose we toss a coin three times. The basic random variable X cor-

responding to this experiment has eight possible outcomes, which are the ordered triples

consisting of Heads and Tails. We can also define the random variable Xi , for i = 1, 2, 3,

to be the outcome of the ith toss. Since, the coin is fair, the distribution functions of

X1, X2, X3 are identical and defined by Pr(H) = p, Pr(T) = 1−p. Since one toss does not

affect the outcome of the other, X1, X2, X3 can be assumed to be mutually independent.

Thus, the joint distribution for the random variable X can be written as

Pr[X1 = x1, X2 = x2, X3 = x3] = Pr[X1 = x1] · Pr[X2 = x2] · [X3 = x3].

So if x1 = Heads, x2 = Tails, x3 = Tails, we have Pr[X1 = x1, X2 = x2, X3 = x3] =

p · (1− p)2.

2.3.5 Bayes’ Formula

Suppose we have a set of events H1, H2, . . . ,Hm that are pairwise disjoint and such that

the sample space Ω satisfies the equation

Ω = H1 ∪H2 ∪ · · · ∪Hm

We call these events hypotheses. We also have an event E that gives us some information

about which hypothesis is correct. We call this event evidence. We have a set of prior

probabilities Pr(H1),Pr(H2), . . . ,Pr(Hm) for the hypotheses. If we know the correct

hypothesis, we know the probability for the evidence. That is, we know Pr(E|Hi) for all

i. We want to find the probabilities for the hypotheses given the evidence. That is, we

want to find the conditional probabilities Pr(Hi|E). These probabilities are called the

posterior probabilities.

Before we proceed further, recall that the events Hi are mutually disjoint ans ∪mi=1Hi =

Ω. This implies that the events E ∩Hi are also mutually disjoint, and we have

E = (E ∩H1) ∪ (E ∩H2) ∪ · · · ∪ (E ∩Hm) (2.1)

Chapter 2: Background and Preliminaries 35

By Property 5 Theorem 2.3, this implies

Pr(E) = Pr(E ∩H1) + Pr(E ∩H2) + · · ·+ Pr(E ∩Hm)

= Pr(H1) Pr(E|H1) + Pr(H2) Pr(E|H2) + · · ·+ Pr(Hm) Pr(E|Hm)
(2.2)

We start with the identity

Pr(Hi|E) =
Pr(Hi ∩ E)

Pr(E)
.

Since we have Pr(Hi ∩ E) = Pr(Hi) Pr(E|Hi), we can rewrite the above equation as

Pr(Hi|E) =
Pr(Hi) Pr(E|Hi)

Pr(E)

=
Pr(Hi) Pr(E|Hi)

Pr(H1) Pr(E|H1) + Pr(H2) Pr(E|H2) + · · ·+ Pr(Hm) Pr(E|Hm)

=
Pr(Hi) Pr(E|Hi)∑m
i=1 Pr(Hi) Pr(E|Hi)

.

The above identity is known as Bayes’ formula.

2.3.6 Expectation of a Random variable

Consider the random variable X on the finite sample space Ω = {ω1, ω2, . . . , ωn} having

a probability distribution function Pr(·). Then the expectation of X is denoted by the

symbol E[X] ands defined as:

E[X] =

n∑
i=1

ωi · Pr(ωi).

The expectation of any random variable X can be considered the average outcome of

X, i.e., it is the value of X one would expect to find if one could repeat the experiment

an infinite number of times and take the average of all the values obtained.

Example 2.5. Let X represent the outcome of a roll of a six-sided die. The possible

values for X are 1, 2, 3, 4, 5, 6, all equally likely (each having the probability of 1
6). The

expectation of X is

E[X] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5.

36 Chapter 2: Background and Preliminaries

Note that the expectation of any function g : Ω→ R of the random variable X is denoted

as E[g(X)] and is calculated similarly

E[g(X)] =
n∑
i=1

g(ωi) · Pr(ωi).

So in the previous example the expectation of X2 is given as

E[X2] = 1 · 1

6
+ 4 · 1

6
+ 9 · 1

6
+ 16 · 1

6
+ 25 · 1

6
+ 36 · 1

6
= 15

1

6
.

Linearity of Expectation The expected value operator (or expectation operator) E

is linear in the sense that if X, Y are any two random variables then the following hold:

E[X + c] = E[X] + c,

E[X + Y] = E[X] + E[Y],

E[aX] = aE[X].

Conditional Expectation Let X and Y be discrete random variables defined on the

sample spaces ΩX , ΩY respectively, then the conditional expectation of X given the

event Y = y is a function of y over the range of Y and is defined as:

E(X|Y = y) =
∑
x∈ΩX

x Pr(X = x|Y = y) =
∑
x∈ΩX

x
Pr(X = x, Y = y)

Pr(Y = y)
.

2.3.7 Variance/Standard Deviation of a Random variable

Variance measures how far a set of numbers is spread out. (A variance of zero indicates

that all the values are identical). A small variance indicates that the data points tend to

be very close to the mean (expected value) and hence to each other, while a high variance

indicates that the data points are very spread out from the mean and from each other.

The square root of variance is called the standard deviation. Mathematically variance

of a random variable X is defined as:

Var(X) = E[(X −E[X])2]

= E
[
X2 − 2XE[X] + (E[X])2

]
= E

[
X2
]
− 2E[X]E[X] + (E[X])2

= E
[
X2
]
− (E[X])2.

Chapter 2: Background and Preliminaries 37

2.3.8 Important Probability Distribution Functions

In this part, we will look at a few probability distribution functions that we are likely

to encounter later in the thesis.

Uniform Distribution The uniform distribution on a sample space Ω containing n

elements ω1, ω2, . . . , ωn is the function Pru defined by

Pru(ωi) =
1

n
, ∀i ∈ {1, 2 . . . , n}.

If a random variable X on the sample space Ω follows the probability distribution func-

tion Pru, then we say that X is uniformly distributed, and denote it by the symbol

X ∼ U(Ω).

Expectation/Variance: The expectation of X is given by

E[X] =

n∑
i=1

1

n
· ωi =

∑n
i=1 ωi
n

The Variance of X is given by

Var(X) = E
[
X2
]
− (E[X])2 =

∑n
i=1 ω

2
i

n
−
(∑n

i=1 ωi
n

)2

For example, the tossing of an unbiased coin or a rolling of a fair die invokes a uniform

distribution on the sets {Head,Tail} and {1, 2, 3, 4, 5, 6} respectively. In general, when-

ever we assume that all outcomes of an experiment are equally likely, then the random

variable X which represents the outcome of an experiment of this type, is said to be

uniformly distributed.

Bernoulli Distribution The Bernoulli Distribution is limited to a sample space Ω

containing the two elements {0, 1}. The probability distribution function PrBer is given

by

PrBer(ω) =

{
p, if ω = 1,

1− p, if ω = 0.

If a random variable X follows the probability distribution function PrBer, we denote it

by the symbol X ∼ Ber(p).

Expectation/Variance: The expectation of X is given by

E[X] = p · 1 + (1− p) · 0 = p

38 Chapter 2: Background and Preliminaries

The Variance of X is given by

Var(X) = E
[
X2
]
− (E[X])2 = p(1− p)

The Bernoulli Distribution can be used to model the outcomes of experiments which

yield only two outcomes. For example, tossing a biased coin where Pr(Head) = 3
4 . If

we denote Head by the symbol 1 and Tail by the symbol 0, then the tossing of this coin

invokes the random variable X ∼ Ber(3
4).

Binomial Distribution The binomial distribution is the discrete probability distribu-

tion of the number of successes in a sequence of n independent yes/no experiments, each

of which yields success with probability p. It can also be defined as the distribution

of the random variable which counts the number of heads which occur when a coin is

tossed n times, assuming that on any one toss, the probability that a Head occurs is p.

The distribution function is given by the formula

PrBin(k) =

(
n

k

)
· pk(1− p)n−k, for 0 ≤ k ≤ n.

If a random variable X follows the probability distribution function PrBin, we denote it

by the symbol X ∼ Binomial(n, p).

Expectation/Variance: The expectation of X is given by

E[X] =
n∑
k=0

k ·
(
n

k

)
· pk(1− p)n−k = np.

The Variance of X is given by

Var(X) = E
[
X2
]
− (E[X])2 = np(1− p)

Note that, if X1, X2, X3, . . . , Xn are independent, identically distributed random vari-

ables, all ∼ Ber(p), then Y =
∑n

k=1Xk ∼ Binomial(n, p).

Geometric Distribution Consider a Bernoulli process continued for an infinite number

of trials; for example, tossing a biased coin (with Pr(Head) = p) an infinite sequence of

times, till we get a Head. Let X denote the random variable counting the number of

trials up to and including the first success. Then we can see that

PrGeo(X = k) = (1− p)k−1 · p.

Chapter 2: Background and Preliminaries 39

Expectation/Variance: The expectation of X is given by

E[X] =
∞∑
k=1

k · (1− p)k−1 · p =
1

p
.

The Variance of X is given by

Var(X) = E
[
X2
]
− (E[X])2 =

1− p
p2

.

If a random variable X follows the probability distribution function PrGeo, we denote it

by the symbol X ∼ Geo(p).

2.3.9 Coupon Collector’s Problem

In probability theory, the coupon collector’s problem describes the “collect all coupons

and win” contests. It asks the following question: Suppose that there is an urn of n

different coupons, from which coupons are being collected, equally likely, with replace-

ment. How many coupons do you expect you need to draw with replacement before

having drawn each coupon at least once? We will give a preliminary solution to the

problem here. For a detailed analysis of this problem, one may refer to [59].

Let T be the time to collect all n coupons, and let ti be the time to collect the ith coupon

given i − 1 coupons have been collected. Think of T and ti as random variables. Note

that t1 is always 1. Observe that the probability of collecting a new coupon given i− 1

coupons is pi = (n−(i−1))
n . Therefore, ti ∼ Geo(pi). Therefore the expectation of this

random variable is E[ti] = 1
pi

. Since T = t1 +t2 +t3 + . . ., by the linearity of expectations

we have:

E(T) = E(t1) + E(t2) + · · ·+ E(tn) =
1

p1
+

1

p2
+ · · ·+ 1

pn

=
n

n
+

n

n− 1
+ · · ·+ n

1
= n ·

(
1

1
+

1

2
+ · · ·+ 1

n

)
= n ·Hn.

Here Hn is the nth harmonic number. Using the asymptotics of the harmonic numbers,

we obtain:

E(T) ≈ n ·Hn = n lnn+ γn+
1

2
, as n→∞,

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant.

40 Chapter 2: Background and Preliminaries

2.4 Markov Chains

Modern probability theory studies processes for which the knowledge of previous out-

comes influences predictions for future experiments. In principle, when we observe a

sequence of chance experiments, all of the past outcomes could influence our predictions

for the next experiment. For example, this should be the case in predicting a student’s

grades on a sequence of exams in a course. But to allow this much generality would

make it very difficult to prove general results. In 1907, A. A. Markov began the study

of an important new type of chance process. In this process, the outcome of a given

experiment can affect the outcome of the next experiment. This type of process is called

a Markov chain.

Definition 2.7. Markov Property A set of random variables X1, X2, X3, . . . , Xn on

the sample space Ω is said to satisfy the Markov property if

Pr[Xn = xn|Xn−1 = xn−1, . . . , X1 = x1] = Pr[Xn = xn|Xn−1 = xn−1]

for all x1, x2, . . . , xn ∈ Ω. Thus this random process usually characterized as memo-

ryless: the next state depends only on the current state and not on the sequence of

events that preceded it. The sequence of states X1, X2, X3, . . . , Xn is then said to follow

a Markov Chain.

We describe a Markov chain as follows: We have a set of states, S = {s1, s2, . . . , sr}. The

process starts in one of these states and moves successively from one state to another.

Each move is called a step. If the chain is currently in state si , then it moves to state sj

at the next step with a probability denoted by pij , and this probability does not depend

upon which states the chain was in before the current state. The probabilities pij are

called transition probabilities. Note that if at stage t the state variable is denoted by the

random variable Xt, then pij is simply the conditional probability given by the formula

pij = Pr[Xt+1 = sj |Xt = Si]

The process can remain in the state it is in, and this occurs with probability pii. An

initial probability distribution, defined on S, specifies the starting state. Usually this is

done by specifying a particular state as the starting state.

2.4.1 Transition Matrix

We will explain the concept of a Transition Matrix with the help of the following example.

Chapter 2: Background and Preliminaries 41

Example 2.6. Consider a country in which there are three types of weather: Rainy,

Nice and Snowy, denoted by the symbols R,N, S respectively. They never have two nice

days in a row. If they have a nice day, they are just as likely to have snow as rain the

next day. If they have snow or rain, they have an even chance of having the same the

next day. If there is change from snow or rain, only half of the time is this a change to

a nice day. With this information we form a Markov chain as follows. We consider the

sample space as the kinds of weather, i.e., Ω = {R,N, S}. From the above information

we determine the transition probabilities. These are most conveniently represented in a

matrix as

R N S

P =

R

N

S

1/2 1/4 1/4

1/2 0 1/2

1/4 1/4 1/2

 .

The entries in the first row of the matrix P in the above Example represent the proba-

bilities for the various kinds of weather following a rainy day. Similarly, the entries in

the second and third rows represent the probabilities for the various kinds of weather

following nice and snowy days, respectively. Such a square array is called the matrix of

transition probabilities, or simply the Transition Matrix.

We consider the question of determining the probability that, given the chain is in state

i today, it will be in state j two days from now. We denote this probability by p
(2)
ij .

Notice that if it is rainy today then the event that it is snowy two days from now is the

disjoint union of the following three events:

1. It is rainy tomorrow and snowy two days from now,

2. It is nice tomorrow and snowy two days from now, and

3. It is snowy tomorrow and snowy two days from now.

Denoting {R,N, S} by the symbols {1, 2, 3}, we have

p
(2)
13 = Pr[Xt+2 = 3|Xt = 1]

=
3∑
i=1

Pr[Xt+1 = i|Xt = 1] Pr[Xt+2 = 3|Xt+1 = i]

= p11p13 + p12p23 + p13p33.

42 Chapter 2: Background and Preliminaries

This equation should remind the reader of a dot product of two vectors; we are taking

the inner product of the first row of P with the third column of P. Note that the

inner product of two vectors X = [x1, x2 . . . , xn] and Y = [y1, y2, . . . , yn] is defined as∑n
i=1 xiyi. In general, if a Markov chain has r states, then

p
(2)
ij =

r∑
k=1

pikpkj .

We will now state two theorems which are easy to prove by using the above observation

and induction.

Theorem 2.8. Let P be the transition matrix of a Markov chain. The (i, j)th entry pij

of the matrix Pn gives the probability that the Markov chain, starting in state si, will be

in state sj after n steps.

Theorem 2.9. Let P be the transition matrix of a Markov chain, and let u be the

probability vector which represents the starting distribution, i.e., the distribution of the

initial state variable X1. Then the probability distribution of the state variable Xn, i.e.,

after n stages is given by

u(n) = u ·Pn.

2.4.2 Absorbing Markov Chains

The subject of Markov chains is best studied by considering special types of Markov

chains. The first type that we shall study is called an absorbing Markov chain.

Definition 2.10. A state si of a Markov chain is called absorbing if it is impossible to

leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing state,

and if from every state it is possible to go to an absorbing state (not necessarily in one

step). In an absorbing Markov chain, a state which is not absorbing is called transient.

Canonical Form Consider an arbitrary absorbing Markov chain. Renumber the states

so that the transient states come first. If there are r absorbing states and t transient

states, the transition matrix will have the following canonical form

P =

(
Q R

0 I

)
.

Here I is the r×r identity matrix, 0 is the r× t zero matrix, R is a nonzero t×r matrix,

and Q is a t × t matrix. As previously denoted, the first t states are transient and the

last r states are absorbing. A standard matrix algebra argument shows that Pn is of

the form

Chapter 2: Background and Preliminaries 43

Pn =

(
Qn ∗
0 I

)
.

The form of Pn shows that the entries of Qn give the probabilities for being in each of

the transient states after n stages for each possible transient starting state. First we

prove that the probability of being in the transient states after n stages approaches zero

as n→∞. Thus every entry of Qn approaches zero as n approaches infinity.

Theorem 2.11. [70, Theorem 11.3] In an absorbing Markov chain, the probability

that the process will be absorbed is 1 (i.e., Qn → 0 as n→∞).

Proof. From each transient state sj it is possible to reach an absorbing state. Let mj be

the minimum number of steps required to reach an absorbing state, starting from sj .

Let pj be the probability that, starting from sj , the process will not reach an absorbing

state in mj steps. Let m be the largest of all the mj ’s and let p be the largest of all

pj ’s. The probability of not being absorbed in m steps is less than or equal to p, in 2m

steps less than or equal to p2, etc. Since p < 1 these probabilities tend to 0. Since the

probability of not being absorbed in n steps is monotone decreasing, these probabilities

also tend to 0, hence limn→∞Qn = 0.

The Fundamental Matrix We will now define the concept of a Fundamental Matrix

for an absorbing Markov Chain.

Theorem 2.12. [70, Theorem 11.4] For an absorbing Markov chain the matrix

I−Q has an inverse N given by

N = I + Q + Q2 + · · · .

The (i, j)th entry nij of the matrix N is the expected number of times the chain is in

state sj, given that it starts in state si.

Proof. Let (I−Q)x = 0, that is x = Qx. Then, iterating this we see that x = Qnx.

Since Qn → 0, we have Qnx → 0, so x = 0. Thus (I−Q)−1 = N exists. Note next

that

(I−Q)(I + Q+Q2 + · · ·+ Qn) = I−Qn+1.

Thus multiplying both sides by N gives

I + Q+Q2 + · · ·+ Qn = N(I−Qn+1).

44 Chapter 2: Background and Preliminaries

Letting n tend to infinity we have

N = I + Q + Q2 + · · · .

Let si and sj be two transient states, and assume that i and j are fixed. Let Bk be a

random variable which equals 1 if the chain is in state sj after k steps, and equals 0

otherwise, given that the starting state is si. For each k, this random variable depends

upon both i and j. We have

Pr[Bk = 1] = qkij , Pr[Bk = 0] = 1− qkij .

where q
(k)
ij is the ijth entry of Qk. Therefore, Bk ∼ Ber(qkij), and so E[Bk] = q

(k)
ij . The

expected number of times the chain is in state sj in the first n steps, given that it starts

in state si, is clearly

E[B0 +B1 + · · ·Bn] = q
(0)
ij + q

(1)
ij + · · ·+ q

(n)
ij .

Letting n tend to infinity we have

E[B0 +B1 + · · ·] = q
(0)
ij + q

(1)
ij + · · · = nij .

For an absorbing Markov chain P, the matrix N = (I−Q)−1 is called the Fundamental

Matrix for P.

Time to Absorption We now consider the question: Given that the chain starts in

state si, what is the expected number of steps before the chain is absorbed? The answer

is given in the next theorem.

Theorem 2.13. [70, Theorem 11.5] Let ti be the expected number of steps before the

chain is absorbed, given that the chain starts in state si, and let t be the column vector

whose ith entry is ti. Then

t = Nc,

where c is a column vector all of whose entries are 1.

Proof. If we add all the entries in the ith row of N, we will have the expected number

of times in any of the transient states for a given starting state si, that is, the expected

time required before being absorbed. Thus, ti is the sum of the entries in the ith row of

N. If we write this statement in matrix form, we obtain the theorem.

Chapter 2: Background and Preliminaries 45

Thus if the vector u denotes the distribution of the initial state variable, then the average

absorption time, given that the chain starts from any arbitrary state, is given by the

inner product of u and t.

2.5 Pseudorandomness and Distinguishing Attack

In Section 1.3.1, we had introduced the notion of pseudorandomness in the context of

stream ciphers. We had pointed out that stream ciphers are generators of pseudorandom

sequences. In this part we will discuss the notion of pseudorandom generators formally.

Loosely speaking, these are efficient deterministic programs that expand short, randomly

selected seeds (i.e., Secret Keys) into much longer “pseudorandom” bit sequences that

are computationally indistinguishable from truly random sequences by efficient algo-

rithms. Hence the notion of computational indistinguishability (i.e., indistinguishability

by efficient procedures) also plays a pivotal role in our discussion.

2.5.1 Computational Indistinguishability

As stated earlier, the concept of computational indistinguishability is the basis for our

definition of pseudorandomness. The concept of efficient computation leads naturally to

a new kind of equivalence between objects: Objects are considered to be computationally

equivalent if they cannot be differentiated by any efficient procedure.

Before we proceed we must define the word “efficient” procedure, or give some notion

about the term “efficient”. Consider an algorithm A that takes as input an element

x ∈ S, where the cardinality of the set S is bounded by 2p(n) for some polynomial p, i.e.,

x can be encoded in atmost p(n) bits. Then we will call A efficient if the total number

of computational steps taken by A is bounded by poly(n) for some polynomial function

poly. Algorithms can be either deterministic or probabilistic. A deterministic algorithm

Adet, for a given input, always returns the same output. Thus if R is the output space

of the algorithm, then Adet is simply a map between S → R. A probabilistic algorithm

Aprob, uses some additional random strings, that it generates internally to arrive at an

output. Since, at each instance the algorithm may generate different random strings,

the output of probabilistic algorithms are not always the same. The additional random

strings used by Aprob is often called random coins of Aprob. If C denotes the random

coin space, then Aprob is essentially a map from S × C → R.

Suppose we have two infinite sequences {xn}n∈N and {yn}n∈N, and we need to devise an

algorithm D that will take any one of the two sequences and determine if it is {xn}n∈N

46 Chapter 2: Background and Preliminaries

or not. If yes, the algorithm outputs 1, and we say that D has accepted the sequence.

Otherwise, the algorithm outputs 0, and we say that D has rejected the sequence.

The sequences {xn}n∈N and {yn}n∈N are said to be computationally indistinguishable if

no efficient procedure can tell them apart. In other words, no efficient algorithm D can

accept infinitely many xn’s while rejecting the yn’s (i.e., for every efficient algorithm D

and all sufficiently large n, it holds that D accepts xn if and only if D accepts yn).

Similarly, two distributions are called computationally indistinguishable if no efficient

algorithm can tell them apart. Given an efficient algorithm D, we consider the proba-

bility that D accepts (e.g., outputs 1 on input) a string taken from the first distribution.

Likewise, we consider the probability that D accepts a string taken from the second

distribution. If these two probabilities are close, we say that D does not distinguish the

two distributions. We will introduce the following definition at this point.

Definition 2.14. Probability Ensemble [67, Chapter 3.2]: Let I be a countable1

index set. An ensemble indexed by I is a sequence of random variables indexed by

I. Namely, the family of random variables X = {Xi}i∈I , where each Xi is a random

variable, is an ensemble indexed by I.

Typically, we shall use N as the index set. An ensemble of the form X = {Xn}n∈N has

each Xn ranging over strings of length polynomial in n. We will now formally denote

the notion of computational indistinguishability.

Definition 2.15. Polynomial-time Indistinguishability [67, Chapter 3.2] Two

ensembles, X = {Xn}n∈N and Y = {Yn}n∈N, are indistinguishable in polynomial time

if for every probabilistic polynomial-time algorithm D, every positive polynomial p(·),
and all sufficiently large n’s,

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < 1

p(n)
.

The LHS of the above inequality is called Distinguishing Advantage of D distin-

guishing X from Y and is denoted by the symbol AdvD(X,Y).

The probabilities in the foregoing definition are taken over the corresponding random

variables Xi (or Yi) and the internal random coin of algorithm D. Implicit in the defini-

tion is the condition that the algorithm, D, must decide based on a single sample from

one of the distributions. One might conceive of a situation in which the algorithm try-

ing to distinguish between two distributions, could access as many samples as it needed.

Hence two ensembles that cannot be distinguished by polynomial-time algorithms look-

ing at multiple samples are deemed indistinguishable by polynomial-time sampling.

1A set is I is said to be countable if there exists a bijection f between I → N

Chapter 2: Background and Preliminaries 47

It turns out that if some polynomial-time algorithm can generate samples in polynomial

time, then indistinguishable by polynomial-time sampling is equivalent to computational

indistinguishability. The full discussion of this axiom is out of the scope of this thesis.

Interested readers may please refer [67, Chapter 3.2]

Next we will define the notion of pseudorandomness. Note that Un denotes a random

variable uniformly distributed over the set of strings of length n. The ensemble {Un}n∈N
is called the standard uniform ensemble. Ensembles that are computationally indistin-

guishable from a uniform ensemble are called pseudorandom. Thus we have the following

definition.

Definition 2.16. Pseudorandom Ensembles [67, Chapter 3.2]: The ensembleX =

{Xn}n∈N is called pseudorandom if there exists a uniform ensemble U = {Ul(n)}n∈N such

that X and U are indistinguishable in polynomial time.

Here l : N → N is a function computable in polynomial time. Note that the length of

each string Xn is not necessarily n, whereas we require that the length of Un be strictly

equal to n. In fact, the previous definition requires that, with very high probability,

the length of Xn to be equal to l(n). We will now formally define the notion of a

pseudorandom generator.

Definition 2.17. Pseudorandom Generator [67, Chapter 3.2] A pseudorandom

generator is a deterministic polynomial-time algorithm G satisfying the following two

conditions:

1. Expansion: There exists a function l : N → N such that l(n) > n for all n ∈ N,

and |G(s)| = l(|s|) for all s ∈ 0, 1. (Here | · | denotes the length of a binary string)

2. Pseudorandomness: The ensemble {G(Un)}n∈N is pseudorandom.

The function l is called the expansion factor of G.

The input s to the generator is called its seed or Secret Key. The expansion condition

requires that the algorithm G map n-bit long seeds into l(n)-bit long strings, with

the condition l(n) > n. The pseudorandomness condition requires that the output

distribution induced by applying algorithm G to a uniformly chosen seed be polynomial-

time-indistinguishable from a uniform distribution.

48 Chapter 2: Background and Preliminaries

2.5.2 Distinguishing the Distributions Ber(p0) and Ber(p0(1 + q0))

We will end this section with a famous result proposed in [102], which aims to distinguish

two distributions X and Y such that X ∼ Ber(p0) and Y ∼ Ber(p0(1 + q0)) using

multiple samples.

Theorem 2.18. [102, Theorem 2] We have two distributions X and Y such that

X ∼ Ber(p0) and Y ∼ Ber(p0(1 + q0)) for all i. Given that there exists an efficient

algorithm to extract multiple samples from these distributions, then for small q0, n =

O
(

1
p0·q20

)
samples suffice to distinguish X from Y with a constant probability of success.

(Note that given two functions f(n) and g(n), we say that f(n) = O(g(n)) if there exist

constants c > 0 and N > 0 such that f(n) ≤ c · g(n) for all n ≥ N .)

Proof. Let NX , NY be the random variables specifying the number of occurrences of 1

in n samples. Then we have already seen that NX ∼ Bin(n, p0) and NY ∼ Bin(n, p0(1+

q0)). Their expectations, variances and standard deviations are:

E(NX) = np0, E(NY) = np0(1 + q0),

Var(NX) = np0(1− p0) ≈ np0, Var(NY) = np0(1 + q0)(1− p0(1 + q0)) ≈ np0(1 + q0),

SD(NX) ≈ √np0, SD(NY) ≈
√
np0(1 + q0).

Here SD(X) denotes the standard deviation of any random variable X. We will consider

of that value of n to be sufficient, that induces a difference of at least one standard

deviation between the expectations of the two distributions. Thus

E(NY)−E(NX) ≥ SD(NX),

np0(1 + q0)− np0 ≥
√
np0

np0q0 ≥
√
np0

n ≥ 1

p0q2
0

.

Thus, n = O
(

1
p0·q20

)
is sufficient for the distinguishing attack.

In [102], this result was used to distinguish the output if the stream cipher RC4 from

random. It was proven that the probability that the second byte Z2 output by RC4

is 0 with probability Pr[Z2 = 0] = 2
N , where N = 256. Note that for an ideal cipher

ppr[Z2 = 0] = 1
N . So for RC4 we have NY ∼ Ber

(
2
N

)
whereas for an ideal cipher

NX ∼ Ber
(

1
N

)
. So we have p0 = q0 = 1

N , and by the above result O(N) samples would

be sufficient to distinguish RC4 from random.

Chapter 2: Background and Preliminaries 49

2.6 Fault Attacks

Fault Attacks belong to a class of Side Channel Attacks where the attacker intentionally

tampers with the circuitry of the device implementing any cryptosystem, with the view

of gaining any non-trivial information by the output produced by such tampered device.

Ever since, Kocher et al.’s work [95] on Differential Power Analysis, such attacks became

very popular among the cryptological community. In fact, power analysis attacks can

be regarded as a sub-class of a non-invasive side channel attacks, that do not require

the attacker to interfere with the circuitry or the electrical signals of the device under

attack. Non-invasive attacks are extremely popular because of the relative low capital

investment required to perform the attack. For example, power analysis attacks would

typically require an oscilloscope to measure power consumption traces, a computer to

monitor the attack and a few probes to connect the device to the oscilloscope.

Before the publication of Skorobogatov and Anderson’s work [125] on optical fault in-

duction, invasive and semi-invasive side-channel attacks like fault/error injections

required relatively high capital investment. One of the most popular way of introducing

errors was by inducing glitches, i.e., introducing voltage transients in the clock or power

line of the device under attack. In time, chip manufacturers started to take adequate

precautions to prevent such side channel attacks. For example random clock jitter was

often introduced to make power analysis more difficult, and circuits were devised that

could sense the introduction of glitches and reset the device immediately.

In such scenario, Skorobogatov and Anderson’s work [125], was of extremely significant

in the field of Side Channel Cryptanalysis. First of all, due to the rapid shrinking of

the feature size of a CMOS transistor, any kind of invasive or semi-invasive attack was

getting more and more difficult. Furthermore, the work showed that the attack could

be carried out by illuminating any flip-flop with a standard camera flashgun or a laser

pointer that was bought for $30 and $8 respectively.

The authors of [125], observed that any semiconductor transistor was sensitive to the

effect of ionizing radiations such as lasers [71]. Laser energy was known to be able

to ionize any integrated circuit’s semiconductors if its photon energy was greater than

the band gap of the semiconductor. Laser radiation of wavelength 1.06 µm wavelength

and 1.17 eV photon energy has a penetration depth of 700 µm was used to ionize the

p-n junctions of a semiconductor in [82]. [112] notes that it is possible to move from

infrared radiations to visible light as photon absorption increases at higher frequencies.

This coupled with the fact that

• modern chips have become considerably thinner, and

50 Chapter 2: Background and Preliminaries

Figure 2.2: Structure of a CMOS flip-flop

• considerably less energy is required to ionize transistors with smaller feature size,

have made visible light lasers an attractive choice for inducing faults in semiconductor

devices. The authors [125] performed their experiments on a common micro-controller

chip PIC16F84 which contains around 68 bytes of on chip memory. The structure of

a flip-flop in this chip is shown in Figure 2.2. The flip-flop made with CMOS logic

consists of 6 flip-flops T1 − T6. The authors observed that if T3 was opened for a very

short time using some external stimulus it would cause the flip-flop to change state, i.e.,

if the flip-flop was storing the Boolean logic 0 it would change to 1 and vice versa. A

common camera flash was used to illuminate the chip. The chip was de-packaged and

the camera flash was fixed with duct tape over it. By exposing the flip-flops of the chip

to light from the camera flash operated remotely from a PC, the authors were able to

change the state of the one of the individual flip-flops of the chip.

The only limitation in performing the attack was that the flash did not produce even

monochromatic light, so it was difficult to control the area of the chip where the light is

applied. To overcome this limitation, the attack was repeated with a laser pointer with

similar results.

Ever since, fault attacks have been extensively analyzed by the research community for

more than a decade [37, 41]. Block ciphers like Advanced Encryption Standard and the

Digital Encryption Standard, Public key cryptosystems like implementations of CRT-

RSA, DSA/RSA based signatures, Elliptic Curve Cryptosystems have all come under

Chapter 2: Background and Preliminaries 51

the purview of such attacks (please refer to [83] for an extensive analysis of all such

attacks). Ever since the work of Hoch and Shamir [76], there has been extensive fault

analysis of stream ciphers too.

2.6.1 Fault Models

Over the years, there have been numerous fault attacks reported against stream ci-

phers [35, 36, 38, 78, 79, 81, 85, 90, 91, 119]. All these attacks are performed under

roughly similar adversarial situations, i.e., situations in which the attacker has the abil-

ity to inject different types of faults in the underlying cryptographic device. In this part,

we will briefly discuss these adversarial situations which we will call fault models for

convenience.

• The attacker is in possession of the physical device in which the stream cipher

has been implemented. He therefore, knows the IV and the keystream generated

by the stream cipher. Additionally, in [85], the attacker is assumed to be able to

derive keystream sequences off the cipher by inputing IV’s of his own choice.

• By applying optical faults, the attacker is assumed to be able to apply bit-flipping

faults with a partial control of their location. That is to say, the attacker is able

only partially able to control the register location where he injects a bit-flipping

fault. Thus, he can not exactly choose the location of the fault. Some attacks

like [35, 85], assumes that the attacker, once he faults a particular location, is

additionally able to inject faults on that location over and over again without

restriction.

• The attacker is able to exercise full control over the timing of application of faults,

by choosing the time of the fault trigger by synchronizing it with the I/O signal.

Shift registers are regularly clocked, and one keystream bit is computed per clock

cycle. Hence, the attacker can identify steps in the execution, and so it is possible

for the attacker to inject a fault at any particular point of the operation. Another

popular way of controlling the fault timing would be by synchronizing it with the

power consumption curves of the device implementing the cryptosystem [52]. This

method can be used when there is no possible way to trigger the faults using I/O

signals of the device.

• The attacker from time to time resets the cryptographic device to its original state.

In this thesis we will discuss differential fault attacks on selected stream ciphers under

different fault models. We will generally start with fault models that assume that the

52 Chapter 2: Background and Preliminaries

adversary can apply single-bit flipping faults that can be synchronized with with any

particular stage of the cipher operation. Under some cases, we will analyze situations

in which the adversary is unable to guarantee that the injected fault has flipped only a

single bit and/or situations in which the attacker is unable to synchronize faults with

either the I/O signal of the chip or its power consumption trace.

2.7 Scan based Side Channel Attacks

While manufacturing any hardware product, DFT techniques are design efforts that are

specifically employed to ensure that a device is testable. Single scan-chains are one of

the most popular and effective ways of providing testability to any hardware device. The

objective of the scan-chain is to make testing easier by providing a way to set and observe

every flip-flop in an IC. Unlike the functional tests that check chip functionality, scan

tests cover stuck-at-faults, caused by manufacturing problems. Physical manufacturing

defects, such as

• silicon defects, photo-lithography defects, mask contamination

• process variation or defective oxide etc.

may lead to electrical defects such as shorts (bridging faults), opens, transistors stuck

on open, changes in threshold voltage etc. which may lead to digital logic being stuck

at either the 0 or 1 value at one or many of the flip-flops. It may also lead to slower

transitions among the flip-flops causing delay faults which hamper the proper functioning

of a cryptosystem.

Scan-chain testing can be done to check whether a chip is functioning normally or not.

It provides the designer an easy way to ascertain whether the device has succumbed to

the above mentioned defects or not. Scan has been generally accepted as the standard

method of testing chips due to high fault coverage and relatively lower area overhead.

Inserting scan-chains while designing the chip requires a few additional/multiplexed pins

to the primary inputs/outputs to serve as the SCAN-ENABLE, SCAN-IN and SCAN-

OUT. Internally, there is little impact on the design since the standard flip-flops (FFs)

are replaced by scan-enabled flip-flops (SFFs) (i.e., flip-flops with an input multiplexer)

which are then linked to one another creating a shift register (scan-chain). Scan-enabled

flip-flop contains a multiplexer to select either a normal mode functioning or a scan mode

functioning. By suitably altering the control value to the multiplexer, the chip can be

used for normal or test mode of operation. After selecting test mode, the user is able

to input test patterns of his choice into the device and thereafter scan out the contents

Chapter 2: Background and Preliminaries 53

of all the flip-flops connected to the scan-chain. An example of a scan-chain the Figure

2.3. SCAN-ENABLE selects between normal/functional and test mode operations. Note

that the SCAN-ENABLE signal controls each multiplexer, choosing between the normal

mode input of the FF or the output of the previous SFF in the chain.

Scan chains allow the tester to control and observe internal states of the circuit by

loading/unloading input patterns/test responses. In order to load test patterns, the

SCAN-ENABLE signal is asserted and each bit of the pattern is shifted in at each clock.

When the entire input pattern is serially loaded, the SCAN-ENABLE signal is deactivated

for one or more cycles. During these cycles (capture mode), the input test patterns are

applied to the combinatorial logic and the response is stored in the sequential elements.

SCAN-ENABLE is activated again (shift-mode) and the internal state can be scanned out

and be analyzed by the tester. At the same time the next input pattern is loaded. In

other words, using scan chains essentially transforms the circuit into pure combinatorial

logic, which is much easier to test than sequential logic. Scan testing achieves the dual

objective of testability controllability and observability. Controllability is the ability

to change the state of internal nodes using only the primary inputs, while observability

means the ability to observe the state of internal nodes using only the primary outputs.

Inserting scan-based DFT structures in a design allows the designer to achieve very

high fault coverage using Automatic Test Pattern Generation (ATPG) tools during

manufacturing tests.

FFSCAN-IN

0

1

0

1

0

1FF FF

SCAN-OUT

CLOCK

SCAN-ENABLE

Combinational Logic

....

....

....

Figure 2.3: Example of a Scan-chain using Multiplexers

2.7.1 Introduction to Scan Attacks

Scan-chains are incorporated in a circuit for thorough structural testing. However, it

can be targeted by attackers to extract secret information from security chips. The scan

chains can act as a side-channel through which confidential information, such as secret

keys stored inside the chip, can be recovered.

54 Chapter 2: Background and Preliminaries

Though the scan-chain test approach provides better controllability and observability

to the test engineer, it can be used by an attacker to read chip internal data, to read

stored secret information and to determine the position of all the scan elements in a

chain. Only a few pins need to be externally controlled and monitored: the SCAN-IN,

the SCAN-ENABLE, and the SCAN-OUT. By observing the scan chain output during

the operations of the underlying cryptosystem repeatedly, the secret information can be

deduced through knowledge of the encryption algorithm. The ability of the circuit to

switch between normal and test mode as well as the possibility to stop the execution

of the cryptographic circuit at any time in test mode and scan out the responses is

exploited in scan-based attacks.

The following assumptions are made in the differential scan attack presented in this

work.

• The SCAN-ENABLE, SCAN-IN, SCAN-OUT pins can be controlled by the attacker.

• Details of the cryptographic algorithm are known to the attacker.

• The time required to execute the target operation is known to the attacker. In

other words, the attacker is aware of the operations executed in any single-step of

the cryptographic algorithm.

• The attacker is able to manipulate all the public variables in the cipher. In a

stream cipher, this is typically the IV.

• The secret key is assumed to be securely stored in memory and not included on

the scan chain.

• The attacker is assumed to have physical access to the circuit containing the scan-

chain DFT, and hence can control and observe the scan chain contents through

the external scan inputs and outputs.

We will present a more comprehensive analysis of such attacks in Chapter 7. In [11], A

Scan based attack on the stream cipher Trivium [43] was presented. It will be shown why

the same attack can not be extended to MICKEY 2.0 [16], and suggests an alternative

strategy to attack MICKEY 2.0 via Scan Chains. Further, in [11], an XOR gate based

countermeasure was suggested to protect Scan Chains from cryptanalytic attacks. It will

also be shown that this countermeasure may fail to protect the underlying cryptosystem

under certain classes of cryptanalytic attacks. A novel Double Feedback XOR-CHAIN

countermeasure is proposed that is shown to be secure against the given class of crypt-

analytic attacks. It is also proven than that such a Double Feedback XOR-CHAIN

structure, like an ordinary Scan Chain, may also be used for DFT purposes.

Chapter 2: Background and Preliminaries 55

2.8 Conclusion

This chapter was mainly intended for the purposes of providing the necessary theoretical

background required to read this thesis comfortably. Now that we have covered the

preliminary topics of mathematics and cryptography that constitute the foundation of

this thesis, we can get into the technical results. One may refer back to the preliminaries

whenever similar methods in the following chapters are encountered.

Chapter 3

Analysis of RC4 variants

RC4 is the most widely used software stream cipher and is used in popular protocols

such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure

wireless networks). Because of its simplicity and speed in software, RC4 is immensely

popular among designers and cryptanalysts alike. The cipher was designed by Ron

Rivest of RSA Security in 1987, and it remained a trade secret until 1994, when an

anonymous user leaked its source code to the Cypherpunks mailing list. Since then the

cipher has undergone rigorous cryptanalysis, and a number of weaknesses have been

reported against the cipher. Most prominent among them are as follows.

• One of the most famous cryptanalytic result on RC4 was shown by Mantin and

Shamir in 2001 [102]. They showed that the second output byte of the cipher

was biased towards zero with probability 2
N , where N = 256 is the size of the

state array S used in RC4. The bias is significant since for an ideal cipher this

probability should have been only 1
N . This leads to a distinguishing attack on RC4

with around O(N) samples.

• A state recovery attack was proposed by Maximov and Khovratovich in [105]. The

attack recovers the internal state of the cipher in around 2241 operations.

Due to the aforesaid reasons, there has been extensive research in recent years to come

up with RC4-like stream ciphers that while marginally slower in software, would wipe

out the known shortcomings of RC4. Many such ciphers like RC4A [114], NGG [111],

GGHN [68], VMPC [138], RC4+ [100] have been proposed by various researchers to fulfill

this objective. However, most of the aforementioned ciphers have had distinguishing

attacks reported against them [104, 115, 131, 132].

In this chapter, we take a closer look at two of the ciphers of this family - GGHN and

RC4+. The GGHN stream cipher was presented in CISC 2005 [68]. This cipher has

57

58 Chapter 3: Analysis of RC4 variants

been motivated from RC4 with the idea to obtain further speed-up by considering word-

oriented keystream output instead of byte-oriented ones (in this case 1 word = 4 bytes).

We prove that there exist a large number of short cycles of length equal to the length

of the state array used in the cipher. Then towards having a theoretical analysis of

GGHN type evolution, we study a randomized model of this cipher. Using the thoery of

Markov chains, we show how this model evolves to all zero state much faster than what

is expected in an ideal cipher.

The RC4+ stream cipher was proposed by Maitra and Paul at Indocrypt 2008 [100].

The authors had claimed that RC4+ ironed out most of the weaknesses of the RC4

stream cipher and was only marginally slower than RC4 in software. In this chapter we

show that it is possible to mount a distinguishing attack on RC4+ based on the bias

of the first output byte. The distinguisher requires around 226 samples produced by

different keys of RC4+. In the second part of the chapter we study the possibility of

mounting the differential fault attack on RC4+, along the lines of the fault attack on

RC4 proposed by by Biham et. al. in FSE 2005. We will show that that the RC4+

is vulnerable to differential fault attack and it is possible to recover the entire internal

state of the cipher at the beginning of the PRGA by injecting around 217.2 faults.

3.1 GGHN Stream Cipher

The GGHN (name follows from the first character of the surnames of the four coau-

thors Gong, Gupta, Hell and Nawaz) cipher [68] was proposed from the motivation of

extending RC4 from the byte-oriented model to word-oriented model. This cipher has

received attention in literature as evident from the cryptanalytic results by Paul and

Preneel (Asiacrypt 2006) [115], Tsunoo, Saito, Kubo and Suzaki (IEEE-IT, 2007) [132]

and Kircanski and Youssef (CCDS 2010) [89].

It is needless to mention that RC4 is the most popular stream cipher in the area of

cryptology from commercial as well as theoretical interest. The algorithm has two parts:

the Key Scheduling Algorithm (KSA) and the Pseudo-Random Generation Algorithm

(PRGA), as given below in Algorithm 3.1 and Algorithm 3.2. As can be seen the cipher

consists of an array S of 28 elements of 1 byte each. The elements in the array represent

some permutation on the set {0, 1, . . . , 255}.

Since the structure of RC4 is quite elegant, it has attracted in-depth cryptanalysis in

many papers (one may refer to the recent papers [101, 105, 122] and the references

therein).

Chapter 3: Analysis of RC4 variants 59

Input: Secret Key K.
Output: S-Box S generated by K.

Initialize S = {0, 1, 2, . . . , N − 1};
Initialize counter: j = 0;
for i = 0, . . . , N − 1 do

j = (j + S[i] +K[i]) mod N ;
Swap S[i]↔ S[j];

end

Algorithm 3.1: RC4 KSA

Input: S-Box S, from KSA output.
Output: Pseudorandom stream z.

Initialize the counters: i = j = 0;
while keystream is required do

i = (i+ 1) mod N ;
j = (j + S[i]) mod N ;
Swap S[i]↔ S[j];
z = S[(S[i] + S[j]) mod N];

end

Algorithm 3.2: RC4 PRGA

One limitation of RC4 is that its output generation is in bytes (8-bits) and it is natural

to extend the idea to word oriented (4 or 8 bytes in general) output that will produce the

keystream much faster. The 32 or 64-bit processors are ready for such applications. For

storing 8-bit permutations, one needs only 28 bytes, but for storing 32-bit permutations,

a huge array of size 232 words (1 word = 4 bytes, here) is required. As this is impractical,

there are several efforts to work with small random arrays, instead of complete random

permutations. The GGHN cipher [68] is an example of such a cipher which is indeed

as simple and elegant looking as RC4. On the other hand, as it will be shown in this

chapter, it is a classical example that a simple and elegant cipher can have quite a few

weaknesses. Before proceeding further, let us first describe the GGHN cipher.

Input: S-Box S: an m-bit integer array of N = 2n locations, initially loaded with

certain predefined value;

Input: Key array K: an m-bit integer array of l locations;

Input: An integer r for number of rounds;

Output: Pseudorandom S-Box S and a pseudorandom m-bit integer k;

j = 0, k = 0, t = 0,M = 2m;

while t < r do

for i = 0, . . . , N − 1 do
j = (j + S[i] +K[i mod l]) mod N ;

Swap S[i]↔ S[j];

S[i] = (S[i] + S[j]) mod M ;

k = (k + S[i]) mod M ;

end

t = t+ 1;

end

Algorithm 3.3: GGHN-KSA(n,m)

60 Chapter 3: Analysis of RC4 variants

Input: S-Box S and integer k from GGHN-KSA(n,m);

Output: m-bit Keystream words z

i = 0, j = 0,M = 2m;

while Keystream is generated do
i = (i+ 1) mod N ;

j = (j + S[i]) mod N ;

k = (k + S[j]) mod M ;1

z = (S[(S[i] + S[j]) mod N] + k) mod M ;

S[(S[i] + S[j]) mod N] = (k + S[i]) mod M ;2

end

Algorithm 3.4: GGHN-PRGA(n,m)

Note that the authors define a family of ciphers GGHN(n,m) indexed by the parameters

n,m. The version proposed for use is GGHN(8, 32), i.e., the version in which the array S

has 28 entries each of size 32 bits. Regarding the security of GGHN(8, 32), the following

results are available in literature:

• a 232.89 distinguisher [115] based on the observation that the least significant bit

of the keystream words are biased to zero;

• a 230.02 distinguisher [132] based on the equality of the least significant bits of the

first two keystream words;

• structural weakness of GGHN(8, 32) has been presented in [89], where it has been

shown that out of 8240 bits (256 · 32 bits for S, 32 bits for k and 8 · 2 bits for i, j)

of the internal state if 2064 bits can be obtained (a fault attack is presented too

on how to obtain those bits) then the complete state can be explored effectively.

3.1.1 Our Results

In Section 3.2, we study the evolution of GGHN PRGA. We first note that once all

the words become even, half of the state array will not be updated further. More

importantly, we identify a lot of short cycles in this cipher. As a general result, given a

GGHN(n,m) cipher, we prove by construction that there are cycles of length 2n which

starts from i = 0, j = 0, k ≡ −1 mod 2n, S[r] ≡ 1 mod 2n, ∀r ∈ [0, 2n − 1], r 6= 2 and

S[2] ≡ 0 mod 2n with the constraint that

k0 ≡ −
(
s0 + 3 · s1 +

2n−1∑
r=3

sr

)
mod 2m, s2 ≡ −

(
3 · s1 +

2n−1∑
r=3

sr

)
mod 2m.

Chapter 3: Analysis of RC4 variants 61

Thereafter, we noted the following comment related to certain weakness of the cipher

pointed out by the authors themselves [68, Section 4.7].

“When all entries are even and k is even, then all outputs as well as all future entries

will be even, resulting in a biased keystream. The state update function in RC4(n,m) is

not an invertible mapping so it will always be possible to enter one of these weak states.

However the probability that all state entries, as well as k are even is very low, 2−257.

From this we can conclude that these weak states are of no concern to the security of

the cipher.”

In [68], the authors used the notation RC4(n,m) to denote GGHN(n,m) as RC4(n,m)

and while coming up with the probability 2−257, they considered n = 8,m = 32 (note

that N = 2n,M = 2m). Now for the cipher to enter the all even state all the N LSBs of

S and the LSB of k must be zero. Assuming that all these N + 1 LSBs are identically

and independently distributed according to Ber(1
2), the joint probability of them being

zero is 2−(N+1) = 2−257, and so the authors assume that i would take around 2257 rounds

for the cipher to reach this state.

We got motivated to investigate a theoretical model of this cipher where all the indices

are chosen uniformly at random. This is presented in Section 3.3, where we study a

randomized version of GGHN cipher. Using the theory of Markov chains, we show that

the number of iterations to reach the all even state is much less than 2N+1. For N = 256,

instead of 2257, it is only 2142.16. In fact, our analysis shows, that the expected number

of iterations to reach for the cipher to reach the all zero state is 32 ·2142.16 = 2147.16 only.

3.2 Short Cycles in GGHN(n,m)

Refer to GGHN-PRGA(n,m) as in Algorithm 3.4. Immediately one can note the fol-

lowing result.

Lemma 3.1. Consider the situation when all the elements of S and k have evolved to

even values. Then half of the elements of S which are indexed by odd values will never

be modified further.

Proof. Since all the values of S array are even, S[i] + S[j] is also even and so is (S[i] +

S[j]) mod N . Thus, in the line marked 2 of Algorithm 3.4, the left hand side S[(S[i] +

S[j]) mod N] will be S[l] where l is even. Thus only the even indexed locations will be

updated and the odd indexed locations will not be modified at all.

62 Chapter 3: Analysis of RC4 variants

This is indeed a weakness of the design. However, we now present more important

results related to short cycles of the cipher. One may note that there are well known

short cycles for RC4 which are famous as Finney cycles, but the initial conditions in

RC4 PRGA are so chosen that such cycles cannot occur [60]. We now show that the

GGHN PRGA(n,m) algorithm may fall into a cycle where a given state repeats after a

certain number of iterations. To explain things clearly, we move step by step with several

intermediate results and examples. We will first illustrate the case for GGHN(2, 2), i.e.,

with the array S having 4 cells each containing 2 bit data.

Proposition 3.2. For the GGHN PRGA(2, 2), the initial condition

S[0] = 1, S[1] = 1, S[2] = 0, S[3] = 1, i = j = 0, k = 3

forms a cycle of length 4.

Proof. The algorithm starts from the given state i = 0, j = 0, k = 3, S[0] = 1, S[1] =

1, S[2] = 0, S[3] = 1 and goes through the following states before returning to the

initial one:

i = 1, j = 1, k = 0, S[0] = 1, S[1] = 1, S[2] = 1, S[3] = 1,

i = 2, j = 2, k = 1, S[0] = 1, S[1] = 1, S[2] = 2, S[3] = 1,

i = 3, j = 3, k = 2, S[0] = 1, S[1] = 1, S[2] = 3, S[3] = 1.

It is interesting to see that the value S[i] + S[j] ≡ 2 mod 4 is an invariant, and thus at

every stage of the cycle, only the value S[2] gets altered in the array S. Also i = j at

all the stages of the cycle.

Now let us present a more generalized result.

Lemma 3.3. For the GGHN PRGA(2,m) with m ≥ 2, consider an initial condition

of the form i = j = 0, S[0] = s0 ≡ 1 mod 4, S[1] = s1 ≡ 1 mod 4, S[2] = s2 ≡
0 mod 4, S[3] = s3 = 1 mod 4, k = k0 ≡ 3 mod 4. If

k0 ≡ −(s0 + 3s1 + s3) mod 2m and

s2 ≡ −(3s1 + s3) mod 2m

are satisfied, then a cycle of length 4 will be formed.

Proof. It is clear that the values in S array and k are in the range [0, . . . , 2m − 1] and

i, j are in [0, . . . , 3]. Because of the restrictions placed on S[r], r = 0, 1, 2, 3 and k the

Chapter 3: Analysis of RC4 variants 63

values of i and j will always remain same during the evolution. Furthermore, the value

S[i] + S[j] ≡ 2 mod 4 is an invariant, and hence, S[2] is the only location of the array

S that undergoes alteration at each step of the cycle as follows. In the following state

sequence ‘+’ stands for addition modulo 2m.(
i = 1, j = 1, k = k0 + s1

S[0] = s0, S[1] = s1, S[2] = k0 + 2s1, S[3] = s3

)
(

i = 2, j = 2, k = 2k0 + 3s1

S[0] = s0, S[1] = s1, S[2] = 3k0 + 5s1, S[3] = s3

)
(

i = 3, j = 3, k = 2k0 + 3s1 + s3

S[0] = s0, S[1] = s1, S[2] = 2k0 + 3s1 + 2s3, S[3] = s3

)
(

i = 0, j = 0, k = 2k0 + 3s1 + s3 + s0

S[0] = s0, S[1] = s1, S[2] = 2k0 + 3s1 + s3 + 2s0, S[3] = s3

)
For this to represent a cycle the conditions 2k0 + 3s1 + s3 + s0 ≡ k0 mod 2m and 2k0 +

3s1 + s3 + 2s0 ≡ s2 mod 2m must hold. That is to say k0 needs to satisfy the modular

equation k0 ≡ −(s0 + 3s1 + s3) mod 2m and s2 needs to satisfy the equation s2 ≡
−(3s1 + s3) mod 2m.

Note that asm ≥ 2, k0 ≡ −(s0+3s1+s3) mod 4 ≡ 3 mod 4 and s2 ≡ −(3s1+s3) mod 4 ≡
0 mod 4 that are indeed consistent with the condition presented in the statement of this

lemma.

To explain further, if we choose any arbitrary s0, s1, s3 ∈ [0, 2m−1] satisfying s0, s1, s3 ≡
1 mod 4, we can easily calculate s2 and k from the above equations such that the state

i = 0, j = 0, k = k0, S[0] = s0, S[1] = s1, S[2] = s2, S[3] = s3 is the initial

state of a cycle of length 4. For example, in the system GGHN(2, 8) if we take s0 =

69, s1 = 141, s3 = 9, using the above equations we get k0 = 11 and s2 = 80 and so

i = 0, j = 0, k = 11, S[0] = 69, S[1] = 141, S[2] = 80, S[3] = 9 forms a cycle of length

4.

In fact, for GGHN(2,m), there are other examples of short cycles not covered by

Lemma 3.3 for cycles of length 4. One can start with any of the following cases and then

proceed similar to Lemma 3.3 to get different conditions:

(i) i = 0, j = 2, k ≡ 3 mod 4, S[0] ≡ 1 mod 4, S[1] ≡ 3 mod 4, S[2] ≡ 0 mod 4, S[3] ≡
3 mod 4,

(ii) i = 0, j = 2, k ≡ 0 mod 4, S[0] ≡ 3 mod 4, S[1] ≡ 0 mod 4, S[2] ≡ 3 mod 4, S[3] ≡
2 mod 4,

64 Chapter 3: Analysis of RC4 variants

(iii) i = 0, j = 0, k ≡ 1 mod 4, S[0] ≡ 3 mod 4, S[1] ≡ 3 mod 4, S[2] ≡ 0 mod 4, S[3] ≡
3 mod 4,

(iv) i = 0, j = 1, k ≡ 0 mod 4, S[0] ≡ 2 mod 4, S[1] ≡ 1 mod 4, S[2] ≡ 2 mod 4, S[3] ≡
2 mod 4.

Similarly the GGHN(3,m) PRGA has a cycle of length 8 of the form i = 0, j = 7, k ≡
0 mod 8 and the array S equal to {0, 3, 0, 0, 3, 4, 0, 3} modulo 8; and also the initial state

variables S[i] = si and k = k0 need to satisfy the following modular matrix equation.

0 0 3 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 18 0 4 5 0 0 7

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 15 0 4 5 7 0 6

0 0 5 0 1 2 0 0 2

0 0 15 0 4 5 0 0 6

·

s0

s1

s2

s3

s4

s5

s6

s7

k0

=

s0

s1

s2

s3

s4

s5

s6

s7

k0

mod 2m

In these equations s1, s2, s4, s5 can be chosen from [0, 2m−1] such that s1 ≡ 3 mod 8, s2 ≡
0 mod 8, s4 ≡ 3 mod 8, s5 ≡ 4 mod 8. The remaining state variables are then calculated

by solving the above equations giving the complete state which forms a cycle of length

23. For example, in GGHN(3, 8), letting s1 = 3, s2 = 24, s4 = 83, s5 = 20 we can use the

above modular matrix equation to get k0 = s6 = 200, s3 = 216, s0 = 16, s7 = 131.

Now we present a result for GGHN(n, n).

Lemma 3.4. The state i = 0, j = 0, k = 2n − 1, S[r] = 1, ∀r ∈ [0, 2n − 1], r 6=
2, and S[2] = 0 forms a cycle of length 2n in GGHN(n, n) PRGA algorithm.

Proof. Given this particular initial state, the algorithm runs through the states as given

below

i = 1, j = 1, k = 0, S[r] = 1, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 1,

i = 2, j = 2, k = 1, S[r] = 1, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 2,

...

i = 2n − 1, j = 2n − 1, k = 2n − 2, S[r] = 1, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 2n − 1.

before returning to the initial state. As before the quantity S[i] + S[j] ≡ 2 mod 2n is

an invariant throughout the cycle, and hence S[2] is the only location of the array S to

undergo changes.

Chapter 3: Analysis of RC4 variants 65

Now we construct a cycle in the most general case for GGHN(n,m).

Theorem 3.5. In the GGHN(n,m) PRGA algorithm, one can obtain a cycle of length

2n starting with the initial state i = 0, j = 0, k = k0 ≡ −1 mod 2n, S[r] = sr ≡
1 mod 2n, ∀r ∈ [0, 2n − 1], r 6= 2, and S[2] = s2 ≡ 0 mod 2n under the conditions

k0 ≡ −
(
s0 + 3 · s1 +

2n−1∑
r=3

sr

)
mod 2m and

s2 ≡ −
(

3 · s1 +

2n−1∑
r=3

sr

)
mod 2m.

Proof. One can check that the value S[i] + S[j] = 2 mod 2n is an invariant. Now the

states are evolved as follows. In the following state sequence ‘+’ stands for addition

modulo 2m.

(
i = j = 1, k = k0 + s1

S[r] = sr, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = k0 + 2s1

)
(

i = j = 2, k = 2k0 + 3s1

S[r] = sr, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 3k0 + 5s1

)
(

i = j = 3, k = 2k0 + 3s1 + s3

S[r] = sr, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 2k0 + 3s1 + 2s3

)
...(

i = j = i0, k = 2k0 + 3s1 +
∑i0

r=3 sr

S[r] = sr, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 2k0 + 3s1 +
∑i0

r=3 sr + si0

)
...(

i = j = 0, k = 2k0 + s0 + 3s1 +
∑2n−1

r=3 sr

S[r] = sr, ∀r ∈ [0, 2n − 1], r 6= 2, S[2] = 2k0 + 2s0 + 3s1 +
∑2n−1

r=3 sr

)

Thus to get a cycle of length 2n we need to satisfy k0 ≡ 2k0 + s0 + 3s1 +
2n−1∑
r=3

sr mod 2m

and s2 ≡ 2k0 + 2s0 + 3s1 +

2n−1∑
r=3

sr mod 2m. From which we get

k0 ≡ −
(
s0 + 3 · s1 +

2n−1∑
r=3

sr

)
mod 2m and

s2 ≡ −
(

3 · s1 +
2n−1∑
r=3

sr

)
mod 2m.

66 Chapter 3: Analysis of RC4 variants

It is possible to choose S[r] ≡ 1 mod 2n for all r ∈ [0, 2n − 1] except r = 2. Then one

can obtain the values satisfying the conditions mentioned in Theorem 3.5. For example,

in GGHN(8, 32) if sr = 1, ∀ r ∈ [0, 2n − 1] except r = 2, then we would obtain

k0 = 232 − (28 + 1) and s2 = 232 − 28.

This is the first time such short 2n-length cycles are shown for the cipher GGHN(n,m).

That is, the cycles are as short as the length of the S array itself. One may easily see that

for r 6= 2, S[r] ≡ 1 mod 2n, ∀r ∈ [0, 2n − 1]. Thus, for each location of S array (except

the 2nd one), we have 2m−n options. Thus there are at least (2m−n)2n−1 = 2(m−n)(2n−1)

initial conditions for which GGHN(n,m) will land into a short cycle equal to the S-array

length. This number is however only a small fraction of the total number of possible

initial states (2m(2n+1)) of the GGHN PRGA cipher. So the probability, that a randomly

initialized GGHN state falls into a short cycle of this kind is atleast

pcycle =
(2m−n)2n−1

2m(2n+1)

One may also start with several other conditions and explore different kinds of short

cycles.

3.3 Evolution of a Randomized variant of GGHN cipher

We have so far studied the exact GGHN cipher. It has been clearly shown that the

cipher has weaknesses due to the short cycles. Now to have a view of the evolution of

similar kinds of ciphers, we would like to present a theoretical model where the indices

are chosen independently and uniformly at random from [0, N − 1]. In this regard, we

make the assumption that

j, (S[i] + S[j]) mod N and i

are chosen independently and uniformly at random from [0, . . . , N −1] and we call them

a, b, c respectively. In fact, it is clear from the design of the GGHN PRGA [68] that the

authors tried to simulate j, (S[i]+S[j]) mod N as pseudorandom indices and we consider

the same here in the theoretical model. However, the index i has been incremented by

one in each step of GGHN [68] and the only difference in our randomized model is that

the index i is also taken as a random index. We here consider the evolution from the

situation when the KSA is completed and we assume that the values of the array S as

Chapter 3: Analysis of RC4 variants 67

well as k are chosen uniformly at random from the set of m-bit integers. Let us now

describe the algorithm which we will call RAND-GGHN-PRGA(n,m).

while Keystream is generated do
Select a, b, c uniformly at random from [0, N − 1];

k = (k + S[a]) mod M ;

z = (S[b] + k) mod M ;

S[b] = (k + S[c]) mod M ;

end

Algorithm 3.5: RAND-GGHN-PRGA(n,m)

We will first show that there exists a function f(N) such that it is expected that in f(N)

steps the array S of RAND-GGHN-PRGA(n,m) will be all even. For this we can work

with the following algorithm considering S as a bit-array and k as a single bit. The bits

of the S array as well as k are initially chosen uniformly at random from {0, 1}. Since

we are working with the least significant bit only, it is enough to use XOR (i.e., GF(2)

addition) as the least significant bit is same for both XOR and modulo M addition. We

call the algorithm BIT-RAND-GGHN-PRGA(n, 1).

while the loop is required to be run do
Select a, b, c uniformly at random from [0, N − 1];
k = (k ⊕ S[a]);1

S[b] = (k ⊕ S[c]);2

end

Algorithm 3.6: BIT-RAND-GGHN-PRGA(n, 1)

We want to find the expected number of iterations after which all the elements in S as

well as k become zero. We use results related to Markovian process and one may either

refer to either Section 2.4 or [70, Chapter 11] for more details of this technique.

Theorem 3.6. Following BIT-RAND-GGHN-PRGA(n, 1), let S be a binary array of

length N . The elements of S as well as k are filled independently and uniformly at

random from {0, 1}. Then there is a function f(N) such that it is expected that all

elements of S as well as k will be zero in f(N) steps.

Proof. Consider that q denotes the number of 1’s in S. Hence it should be sufficient to

analyze the Markov chain with state (q, k) ∈ {0, N} × {0, 1}. At the t-th stage, denote

qt as the number of 1’s in S and kt as the value of k. The transitions of this chain are

68 Chapter 3: Analysis of RC4 variants

given by

kt+1 =

{
1⊕ kt, with probability qt

N ,

kt, otherwise
(3.1)

and

qt+1 =

qt + 1, with probability qt
N

(
1− qt

N

)
if kt+1 = 0,

qt − 1, with probability qt
N

(
1− qt

N

)
if kt+1 = 0,

qt + 1, with probability
(
1− qt

N

)2
if kt+1 = 1,

qt − 1, with probability
(qt
N

)2
if kt+1 = 1,

qt otherwise.

(3.2)

If q = 0 and k = 0, then the process terminates as it will remain in the same state. We

obtain the expected number of steps t to hit (qt, kt) = (0, 0) given any initial state.

Note that q follows Binomial(N, 1
2) and k is uniform in {0, 1}. It is convenient to

write the transition matrix M as Mf = MqMk, where Mk (respectively Mq) gives the

transition probability for Step 1 (respectively Step 2) of Algorithm 3.6. It is easy to see

that both Mk and Mq are (2N + 1)× (2N + 1) matrices.

Now we describe the matrices Mk,Mq following (3.1) and (3.2). Let j be the column

index from 1 to 2N+1. Let vj = d j−1
2 e (where d·e denotes the greatest integer function).

The diagonal entries of Mk are 1 − vj
N for the column j. The off-diagonal entries (the

matrix entries adjoining the diagonal) of Mk are
vj
N with one entry for each column, i.e.

the entry appears just below the diagonal if j is even and just above if j is odd (see

Example 3.1). Here the ordering of (qt, kt) that we follow is given as (0, 1), (1, 0), (1, 1),

(2, 0), (2, 1), . . ., (n, 1).

The diagonal elements of Mq are 1 − 2vj
N

(
1− vj

N

)
for j-th column with even j and

1 −
(vj
N

)2 − (1− vj
N

)2
for odd j. The other non-zero elements of Mq appear exactly

two rows above and two rows below each diagonal element. These values are equal to
vj
N

(
1− vj

N

)
for even j in both upper and lower rows. For odd j the values are

(vj
N

)2
and(

1− vj
N

)2
for upper and lower rows respectively.

Note that, Mk is a (right) stochastic matrix, i.e., each of its column values sum to one,

while Mq (and hence Mf also) is stochastic except for second column, whose sum is one

minus the probability of transition to (q = 0, k = 0) state.

To calculate the expected survival time of the process, we need the fundamental matrix

F = (I −Mf)−1. The element Fij gives the expected number of times the process visits

state i given the process started from the state j. Summing over the columns of F , we

Chapter 3: Analysis of RC4 variants 69

get the expected total survival time for each initial state (except for which q = 0, k = 0,

as the survival time is 0 for that case).

Now consider a vector E of length 2N + 1. Each element of the vector E is the column

sum of the matrix F , i.e., E = 1T F . We interpret E as a vector indexed by 1 to

2N + 1 and the ith entry of E is the just the expected time taken to reach the all

zero state given that the chain started initially from the ith state. Also consider the

initial state distribution vector v of 2N + 1 length given by v[1] = 1
2N+1 and for q ≥ 1,

v[2q] = v[2q+ 1] =
(
N
q

)
1

2N+1 . Then f(N) = E · v gives the expected survival time which

we denote by f(N).

Now we will describe the approach of Theorem 3.6 in detail with the following example.

Example 3.1. Let us consider the case N = 4. The entries of Mk,Mq are the transition

probabilities of Steps 1 and 2 of Algorithm 3.6 respectively. Here the ordering of the

states as (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0) and (4, 1). The transition

matrices will be as follows.

Mk =
1

4

4 0 0 0 0 0 0 0 0

0 3 1 0 0 0 0 0 0

0 1 3 0 0 0 0 0 0

0 0 0 2 2 0 0 0 0

0 0 0 2 2 0 0 0 0

0 0 0 0 0 1 3 0 0

0 0 0 0 0 3 1 0 0

0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 4 0

,Mq =
1

16

0 0 1 0 0 0 0 0 0

0 10 0 4 0 0 0 0 0

16 0 6 0 4 0 0 0 0

0 3 0 8 0 3 0 0 0

0 0 9 0 8 0 9 0 0

0 0 0 4 0 10 0 0 0

0 0 0 0 4 0 6 0 16

0 0 0 0 0 3 0 16 0

0 0 0 0 0 0 1 0 0

Hence the final transition matrix MqMk will be

Mf =
1

64

0 1 3 0 0 0 0 0 0

0 30 10 8 8 0 0 0 0

64 6 18 8 8 0 0 0 0

0 9 3 16 16 3 9 0 0

0 9 27 16 16 27 9 0 0

0 0 0 8 8 10 30 0 0

0 0 0 8 8 18 6 64 0

0 0 0 0 0 3 9 0 64

0 0 0 0 0 3 1 0 0

.

70 Chapter 3: Analysis of RC4 variants

The fundamental matrix (elements written upto two decimal places) will be

F =

1.33 0.25 0.33 0.29 0.29 0.29 0.29 0.29 0.29

5.33 5.97 5.33 5.65 5.65 5.65 5.65 5.65 5.65

5.33 3.41 5.33 4.37 4.37 4.37 4.37 4.37 4.37

6.00 5.10 6.00 7.80 6.80 6.99 7.11 7.11 7.11

10.00 8.02 10.00 10.76 11.76 11.57 11.45 11.45 11.45

5.33 4.37 5.33 6.19 6.19 7.83 7.21 7.21 7.21

5.33 4.37 5.33 6.19 6.19 7.01 8.03 8.03 8.03

1.33 1.09 1.33 1.55 1.55 1.83 1.93 2.93 2.93

0.33 0.27 0.33 0.39 0.39 0.48 0.46 0.46 1.46

.

So E, whose entries are sum of columns, will be

E = 1T F =
[
40.33 32.87 39.33 43.19 43.19 46.02 46.52 47.52 48.52

]
Here the initial state distribution vector v = 1

32 (1, 4, 4, 6, 6, 4, 4, 1, 1). Hence E ·v = 41.05

gives the expected number of steps where all elements of S and also k are zero.

For BIT-RAND-GGHN-PRGA(n, 1), in Table 3.1, we present theoretical bounds and

experimental observations on the expected number of iterations required to get all entries

of S as well as k to be zero for different values of array lengthN . The theoretical exercises

related to formation of matrices were done with the help of SAGE [129]. For numerical

experiments, the programs were written in C language (the random number generator of

“GNU project C compiler in Linux environment Ubuntu 11.04” was used to get a, b, c)

and the average is taken over 105 runs. For the cases N ≥ 32, we could not perform

the experiments because of the long execution time and hence we left the corresponding

entries blank. One may note that we get quite close results in theory and experiment.

N f(N) Experiment

4 41.05 41.02

8 280.49 279.89

12 1463.27 1469.15

16 7118.88 7111.03

20 33836.28 33433.15

32 3423401.56 -

64 619282894484.52 -

128 14919136419435860915574.98 -

256 6230189288473573925071742121365315064452309.75 -

Table 3.1: Theoretical bounds and experimental values of f(N) for different values
of N = 2n in BIT-RAND-GGHN-PRGA(n, 1).

Chapter 3: Analysis of RC4 variants 71

As 6230189288473573925071742121365315064452309 ≈ 2142.16, following Table 3.1, we

can say that when length of S is 256, all the elements of S as well as k become zero

within expected 2142.16 steps for N = 256. Note that, for a properly designed cipher one

can expect that it will reach the all even state in 2N+1 = 2257 iterations as there are

256 LSBs of the 256 locations in the state array S and 1 LSB of k. In the randomized

model, the expected time to get into such an even state requires much less number of

iterations than 2257.

Now consider Algorithm 3.5 and here we have the following result.

Lemma 3.7. In the algorithm RAND-GGHN-PRGA(n,m), all the elements of S as

well as the integer k are expected to be zero in m · f(N) iterations.

Proof. From Theorem 3.6, for Algorithm 3.6, it is expected that in f(N) iterations all

entries of S as well as k will be zero. Now consider Algorithm 3.5. When the Least

Significant Bits (LSBs) of all the elements of S and k become zero, it will remain zero

for all further steps. We know that, the LSBs of the elements of S and k are expected

to be be zero after f(N) steps. Then the operations will not affect the next significant

bit and for those bits of S and k, one can expect to get zero in the next f(N) iterations

again. Proceeding in this way, after m · f(N) steps all elements S and as well as the

integer k will be zero.

For RAND-GGHN-PRGA(n,m) (in Algorithm 3.5), where n = 8 and m = 32 (i.e.,

N = 28 and M = 232), one can expect after 32 × 2142.16 = 2147.16 iterations, all entries

of S and k will become zero. For an ideally designed cipher one can expect that it

will reach the all zero state in expected 2(N+1)m = 28224 iterations as there are 256 · 32

bits of the 256 length state array S and an additional 32 bits of k. In this randomized

model, the expected time to get into such an all zero state requires much less number

of iterations than 28224.

3.3.1 Towards estimating the actual GGHN PRGA

It is interesting to see how similar or dissimilar the evolution of RAND-GGHN-PRGA is

when compared to the actual PRGA of GGHN. One striking dissimilarity, already noted

in Lemma 3.1, is that after the actual PRGA of GGHN the state array S evolves to the

all even state and the cells of the state array marked by odd indices do not undergo any

further change. Hence the PRGA of actual GGHN does not evolve to the all zero state

(unless the odd-indexed places of S had already become zero, which is extremely less

probable). Hence, it is not possible to do a similar analysis for the exact cipher.

72 Chapter 3: Analysis of RC4 variants

However one can analyze and compare the evolution of several randomized variants of

the original PRGA. In this regard, once again we would like to remind that the variables

a, b, c of the RAND-PRGA-GGHN algorithm correspond to j, S[i] + S[j], i

of actual GGHN PRGA. In the RAND-PRGA-GGHN algorithm we have made the

assumption that the variables a, b, c are chosen uniformly at random. One can come up

with two other variants of this cipher RAND-GGHN-PRGA′ and RAND-GGHN-PRGA′′

given below which are closer to the actual GGHN PRGA. In RAND-GGHN-PRGA′, the

variable c (corresponding to i of the original GGHN PRGA) is not selected randomly

but incremented by 1 after each iteration as in the original GGHN PRGA. In RAND-

GGHN-PRGA′′, both c and a (corresponding to i and j of the original GGHN PRGA)

are not chosen randomly but incremented as in the original cipher. If the variable b

too were to be not chosen randomly and incremented as in the original cipher, then the

resulting PRGA would be exactly same as the original GGHN PRGA, but as already

explained the analysis of a such a cipher can not be performed due to restrictions of the

model. As it turns out RAND-GGHN-PRGA′′ is the model which most closely resembles

the original cipher.

c = 0;

while Keystream is generated do
Select a, b uniformly at random from [0, N − 1];

c = (c+ 1) mod N ;

k = (k + S[a]) mod M ;

z = (S[b] + k) mod M ;

S[b] = (k + S[c]) mod M ;

end

Algorithm 3.7: RAND-GGHN-PRGA′(n,m)

c = a = 0;

while Keystream is generated do
Select b uniformly at random from [0, N − 1];

c = (c+ 1) mod N ;

a = (a+ S[c]) mod N ;

k = (k + S[a]) mod M ;

z = (S[b] + k) mod M ;

S[b] = (k + S[c]) mod M ;

end

Algorithm 3.8: RAND-GGHN-PRGA′′(n,m)

Chapter 3: Analysis of RC4 variants 73

To have a view of how the theoretical result of Lemma 3.7 matches with practice we

consider the case of n = 4,m = 16 for RAND-GGHN-PRGA(n,m). From Table 3.2 we

note that the number steps for one additional set of bits to be zero is almost equal for

RAND-GGHN-PRGA. This corresponds to Lemma 3.7. In the experiments for RAND-

GGHN-PRGA(n,m), we have observed that when the t-th LSBs of each location of the

S array and k become all zero for the first time, at that point the (t+ u)-th LSBs look

random for u > 0.

We also consider the other two randomized variants of the cipher and note the number

of iterations each variant of the cipher takes to reach the all zero state. The results

are average of 105 independent runs. The LSBs of all the entries of S become zero in

expected 7130.88 steps RAND-GGHN-PRGA whereas it takes 10906.15 steps in RAND-

GGHN-PRGA′ and 9089.36 steps in RAND-GGHN-PRGA′′; the next significant bit

of those become zero in expected 14235.94 steps in RAND-GGHN-PRGA and so on.

From experiments, we note that RAND-GGHN-PRGA′ evolves to all zero state after

more number of steps than RAND-GGHN-PRGA. However, RAND-GGHN-PRGA′′,

the closest model to actual GGHN PRGA, evolves to all zero state much faster than

RAND-GGHN-PRGA.

t RAND-GGHN-PRGA RAND-GGHN-PRGA′ RAND-GGHN-PRGA′′

0 7130.88 10906.15 9089.36

1 14235.94 21826.94 14517.11

2 21352.26 32824.21 17271.46

3 28483.93 43716.31 18821.33

4 35613.17 54635.29 20092.96

5 42710.16 65527.85 21320.74

6 49791.33 76423.01 22544.97

7 56895.35 87361.42 23766.03

8 63981.16 98236.69 24985.67

9 71040.10 109174.21 26199.41

10 78158.61 120082.29 27418.34

11 85253.82 131058.35 28637.54

12 92328.69 141963.34 29855.91

13 99448.96 152865.53 31075.49

14 106477.86 163751.12 32296.63

15 113568.96 174659.31 33510.00

Table 3.2: Average number of steps required for t LSBs to be zero for all the ele-
ments of S as well as the integer k. The algorithms considered are RAND-GGHN-

PRGA(4, 16), RAND-GGHN-PRGA′(4, 16) and RAND-GGHN-PRGA′′(4, 16).

74 Chapter 3: Analysis of RC4 variants

3.4 The RC4+ stream cipher

The RC4+ cipher was proposed by Maitra and Paul at Indocrypt 2008 [100]. The

authors had claimed that RC4+ while marginally slower than RC4 in software, would

resist all the known distinguishing and state recovery attacks against RC4. To the best

of our knowledge, no cryptanalytic advance has been made against this cipher.

The physical structure of RC4+ is the same as that of RC4. It consists of a permutation

S of N = 256 elements from the integer ring Z256. It also uses two index pointers

i, j of size 1 byte each. As in RC4, during the Key Scheduling Algorithm(KSA), S is

initialized to the identity permutation and mixed using a Secret Key K of size l bytes

(typically l = 16). Then, the array S is further scrambled using an l byte IV, after

which another layer of zig-zag scrambling is performed. The exact details of the KSA

are given in Table 3.3. Note that all addition operations are performed in Z256, and ⊕
denotes bitwise-XOR. The array V used in the KSA is defined as

V [i] =

IV [127− i], if 128− l ≤ i ≤ 127,

IV [i− 128], if 128 ≤ i ≤ 127 + l

0, otherwise.

Input: Secret Key K, Initial
Vector IV

Output: Permutation S on Z256

for i = 0 to 255 do
S[i] = i;

end
j ← 0
Key Loading

for i = 0 to 255 do

j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end
IV Loading

for i = 127 to 0 do

j ←
(j + S[i])⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

for i = 128 to 255 do

j ←
(j + S[i])⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

Zig-Zag Scrambling

for y = 0 to 255 do
if y ≡ 0 mod 2 then

i = y
2 ;

end
else

i = 128− y+1
2 ;

end
j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end

Table 3.3: KSA routine for RC4+

Chapter 3: Analysis of RC4 variants 75

The PRGA routine of RC4+ deviates slightly from the simplistic structure of RC4. In

order to protect against the well known second output byte bias of Mantin-Shamir [102]

and the permutation recovery attack of Maximov and Khovratovich [105], the designers

propose to make the output keystream byte functions of a few other locations of the

permutation array S. The details of the PRGA routine are given in Table 3.4. Note

that � and � denote right and left bitwise shifts respectively.

Input: Permutation S on Z256

Output: Output Keystream bytes Z

i = j = 0;
while Keystream is required do

i← i+ 1;
j ← j + S[i];
Swap S[i], S[j];

t← S[i] + S[j];
t′ ← (S[i� 3⊕ j � 5] + S[i� 5⊕ j � 3])⊕ 0xAA;
t′′ ← j + S[j];

Zi = (S[t] + S[t′])⊕ S[t′′];
end

Table 3.4: PRGA routine for RC4+

3.4.1 Our Results

In Section 3.5, we will show that the first output byte produced by RC4+ is negatively

biased towards 1. In fact we will prove that the probability that the first output byte is

equal to 1 is around 1
N − 1

2N2 , where N = 256 is the number of elements of the array S

used in the design. Using this observation we will mount a distinguishing attack against

RC4+ that requires around 226 output keystreams produced by (a) Secret Keys chosen

uniformly at random or (b) any fixed Secret Key used with IVs chosen uniformly at

random. In Section 3.6, we revisit the Differential Fault Attack on RC4 proposed by

Biham et. al. in FSE 2005 [38]. We explore the possibility of mounting such a fault

attack on RC4+. We will show that by injecting around 217.2 faults, it is possible to

recover the internal state of the cipher efficiently.

3.5 Distinguishing Attack on RC4+

In this section we will prove that the first output byte Z1 (when the value of the index

i = 1) is negatively biased towards 1. We will prove that Pr(Z1 = 1) = 1
N − 1

2N2 . The

76 Chapter 3: Analysis of RC4 variants

initial state of the RC4+ PRGA is denoted by S0.

Lemma 3.8. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. If S0[1] = 1 and

S0[2] is even, then Z1 can never take the value 1.

Proof. We refer to the PRGA algorithm in Table 3.4. Initially i = j = 0. After

the increment operations the new values of i, j are as follows: i = 0 + 1 = 1 and

j = 0 + S0[i] = 0 + S0[1] = 1. Since i = j even after the increment operations, the

subsequent swap operation does not bring about any change in the array S0. Thereafter

the values of t, t′, t′′ are calculated as follows:

t = S0[i] + S0[j] = 2 · S0[1] = 2.

t′ = (S0[i� 3⊕ j � 5] + S0[i� 5⊕ j � 3])⊕ 0xAA

= (S0[1� 3⊕ 1� 5] + S0[1� 5⊕ 1� 3])⊕ 0xAA

= (2 · S0[32])⊕ 0xAA

Finally t′′ = j+S0[j] = 1 +S0[1] = 1 + 1 = 2. Therefore we have Z1 = (S0[2] +S0[t′])⊕
S0[2]. Suppose that Z1 = 1, then we will have

(S0[2] + S0[t′])⊕ S0[2] = 1 ⇒ S0[2] + S0[t′] = S0[2]⊕ 1

Since S0[2] is even, we must have S0[2] ⊕ 1 = S0[2] + 1. Hence the previous equation

reduces to:

S0[2] + S0[t′] = S0[2] + 1 ⇒ S0[t′] = 1

S0 is a permutation and hence injective. So S0[t′] = S0[1] = 1 can only imply that t′ = 1.

Thus we have

(2 · S0[32])⊕ 0xAA = 1

The LHS of the above equation is clearly an even number whereas the RHS is odd. This

gives rise to a contradiction, and therefore Z1 = 1 can clearly not hold.

Corollary 3.9. The above Lemma would still hold if any even pad instead of 0xAA were

used in the design.

Theorem 3.10. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. The probability

that Z1 = 1 is given by the equation Pr(Z1 = 1) = 1
N − 1

2N2 (where N = 256).

Proof. Let E denote the event: “S0[1] = 1 and S0[2] is even”. Then it is clear that

Pr[E] =
N
2
·(N−2)!

N ! ≈ 1
2N . From Lemma 3.8, we have Pr[Z1 = 1|E] = 0. By standard

Chapter 3: Analysis of RC4 variants 77

randomness assumptions, we have Pr[Z1 = 1|Ec] = 1
N (this has been verified by extensive

computer experiments with 220 random keys). Therefore we have

Pr[Z1 = 1] = Pr[Z1 = 1|E] · Pr[E] + Pr[Z1 = 1|Ec] · Pr[Ec]

= 0 · 1

2N
+

1

N
·
(

1− 1

2N

)
=

1

N
− 1

2N2
.

3.5.1 Distinguishing RC4+ from Random Sources

Let X be the probability distribution of Z1 in an ideal random stream, and let Y be

the probability distribution of Z1 in streams produced by RC4+ for randomly chosen

keys. Let the event e denote Z1 = 1, which occurs with probability of 1
N in X and

1
N − 1

2N2 = 1
N ·
(
1− 1

2N

)
in Y . By using the Theorem 2.18 with p0 = 1

N and q0 = − 1
2N ,

we can conclude that we need about 1
p0q20

= 4 · N3 = 226 output samples to reliably

distinguish the two distributions.

3.5.2 Experimental Results

By performing extensive computer simulations with (a) one billion random keys, and

(b) a fixed key with one billion random IVs, the probability Pr[Z1 = 1] was found to be

around 2−8− 2−17.03. This is consistent with the theoretical value of 1
N − 1

2N2 proven in

Theorem 3.10.

3.6 Differential Fault Analysis of RC4+

In [38], a Differential Fault Attack and an Impossible Fault Attack of the RC4 stream

cipher was proposed. The Impossible Fault Attack uses random faults on the i or j

indices of the RC4 PRGA to drive the cipher into a special state called Finney state [60].

The Finney states are called impossible states because they can not occur under normal

mode of operation of RC4 and hence the unusual name of the attack. By injecting

around 216 faults on either the i or j register, the cipher is expected to enter a Finney

State. From observing the faulty output bytes of RC4 it is possible to assess if the

cipher has indeed entered a Finney State. Since any Finney state cycles back after

255 · 256 = 65280 iterations of the cipher, the attacker selects one of the interleaved

cycles in the output stream as the internal state. Once the internal state is obtained at

some point in time, it is possible to backtrack and find the initial state at the beginning

78 Chapter 3: Analysis of RC4 variants

of the PRGA. Note that, since the PRGA update operations of RC4 and RC4+ are

exactly similar, an impossible fault attack on RC4+ may also be carried out using the

same techniques outlined in [38].

Applying the Differential Fault Attack (DFA) of [38] to RC4+, however, is not so

straightforward. Before proceeding, we note that the PRGA of RC4 is exactly the

same as that of RC4+, the only difference being that RC4 outputs S[t] instead of

(S[t] + S[t′])⊕ S[t′′]. We will state in brief the DFA algorithm in [38].

A. Perform a key setup (KSA) with the unknown key and run the RC4 PRGA for

around 1000 iterations, and record the output stream Zi, (1 ≤ i ≤ 1000) for later

analysis.

B. Process the following 256 times with l being set from 0 to 255, giving 256 faulty

output streams

1. Restart the cipher and perform a key setup with the same unknown key.

2. Make a fault in S[l].

3. Run the RC4 PRGA 30 steps, and record the faulty output stream Z1
i [l] for

later analysis.

C. Repeat Step B with fault injection in kth (2 ≤ k ≤ 1000) PRGA iteration instead

of just after key setup. Record the faulty keystream sequence Zki [l] in each case

(thus Zki [l] is the faulty ith keystream byte when the location S[l] has been faulted

at PRGA round k).

For any i, the output byte Zi is a function of just 3 locations of the S array: i, j, S[i] +

S[j]. So evidently, the output byte of all the Zii [l]’s (note Zii [l] is the first output byte

obtained after faulting S[l] at round i), except for three of them, are the same as in

the faultless output byte Zi. The identification of these three streams leak the values

of i, j, S[i] + S[j], but not which is which. Of course, the value of i is always known,

thus the only task is to identify which is j and which is S[i] + S[j]. After the values

of j, S[i] + S[j] are obtained for sufficiently many PRGA rounds i, a cascade guessing

technique is employed in [38] to eliminate incorrect guesses of j from j, S[i] + S[j] and

thereafter reconstruct the initial permutation S. For more details, we refer the reader

to [38].

However in RC4+, the output byte is a function of 7 locations of the S array: i, j, S[i]+

S[j], j+S[j], i� 3⊕j � 5, i� 5⊕j � 3, (S[i� 3⊕j � 5]+S[i� 5⊕j � 3])⊕ 0xAA.

Therefore repeating the above procedure in the case of RC4+ would leak a maximum

of 7 indices in each round, of which only the value of i is known with certainty. The

Chapter 3: Analysis of RC4 variants 79

values of the other 6 indices can not be assigned with certainty. Thus, on the face of it,

performing DFA on RC4+ seems to be more difficult than RC4. However as we will see

in Section 3.6.1, this is not so.

3.6.1 Inferring the values of j in each round

As we have seen, performing steps A, B, C for RC4+, leaks the values of 6 indices.

Although the attacker knows that these are the values of the indices j, S[i] + S[j], j +

S[j], i� 3⊕ j � 5, i� 5⊕ j � 3, (S[i� 3⊕ j � 5] + S[i� 5⊕ j � 3])⊕ 0xAA, he is

unable to ascertain which of these 6 values correspond to which index. We will later see

in Section 3.6.2, that if the attacker can correctly establish the value of only the index

j, it will be enough to reconstruct the permutation S at the beginning of the PRGA.

Before we outline our strategy to find the value of j, we will look at a result that will

help us build the attack.

Lemma 3.11. For any value of i, consider two values j1, j2. If i� 3⊕ j1 � 5 = i�
3⊕ j2 � 5, and i� 5⊕ j1 � 3 = i� 5⊕ j2 � 3, then j1 = j2.

Proof. Rearranging the terms in both equations we get (j1⊕j2)� 5 = 0 = (j1⊕j2)� 3.

Then, j1 ⊕ j2 = 0 is the only solution to the equation and so j1 = j2.

3.6.1.1 Ascertaining j

For any round i, the attacker has with him 6 values corresponding to the indices j, S[i]+

S[j], j+S[j], i� 3⊕j � 5, i� 5⊕j � 3, (S[i� 3⊕j � 5]+S[i� 5⊕j � 3])⊕ 0xAA.

Let us call these six values k1, k2, . . . , k6. He of course does not know the correspondence

between the k1, . . . , k6 and the indices. Without loss of generality let k1 be the correct

value of j. Then evaluating the functions i � 3 ⊕ k1 � 5 and i � 5 ⊕ k1 � 3 will

lead to two of the values in k2, k3, . . . , k6 i.e. those corresponding to i � 3 ⊕ j � 5

and i � 5 ⊕ j � 3. The probability that any other ka, 2 ≤ a ≤ 6 will on evaluating

i� 3⊕ ka � 5 and i� 5⊕ ka � 3 will lead to two elements of {k1, k2, . . . , k6} is very

low. Therefore given any i the strategy will be as follows

• For a = 1 to 6

1. Compute Ma = i� 3⊕ ka � 5 and Na = i� 5⊕ ka � 3.

2. If Ma, Na ∈ {k1, k2, k3, k4, k5, k6} then j = ka.

80 Chapter 3: Analysis of RC4 variants

The strategy of the attacker will be to determine the values of j for around 602 con-

secutive values of i. As will be seen in Section 3.6.2, this will suffice to reconstruct the

permutation S at the beginning of the PRGA.

3.6.1.2 Error Analysis

Lemma 3.11 guarantees that any value ka different j, when used to calculate Ma, Na

will result in values not equal to both i � 3 ⊕ j � 5 and i � 5 ⊕ j � 3. Therefore,

a confusion will only occur when some value ka 6= j on evaluating i � 3 ⊕ ka � 5 and

i � 5 ⊕ ka � 3 also leads to two elements of {k1, k2, . . . , k6} (which are not equal to

i� 3⊕ j � 5 and i� 5⊕ j � 3). In such an event the attacker must guess one from

the multiple values of j extracted by the algorithm. Experiments with 220 random keys

show that in the first 602 rounds there are around 5 to 6 confusions on average, and each

confusion usually gives no more than 2 values of j to choose from. The attacker can

simply guess the values of j during these rounds and use it in the algorithm for state

recovery that will be discussed in the next subsection.

3.6.1.3 Fault Requirement

As we will see in the next subsection, around 602 values of j are required to reconstruct

S. Since each round requires 256 faults, the total fault requirement is around 602×256 ≈
217.23.

3.6.2 Reconstructing the permutation S

We will now present the Algorithm 3.9 that will be used to reconstruct the state S. The

technique used here is similar to the algorithm presented in [51]. The algorithm works

under the principle that if j1, j2 are the values of j in two successive PRGA rounds then

the the value of S[i1] is given as j2 − j1.

We assume that the algorithm starts from PRGA round t armed with M values of j

in consecutive PRGA rounds. First, a two dimensional array acc is used, whose r-th

row contains the triplet (ir, jr, zr). After each subsequent round t + r, the algorithm

reverts to the initial round t and in the process uses new entries to check if the array

guess (which is the temporary array used to guess the state S) can be populated further.

Thereafter the algorithm again performs a forward pass up to the round t + r + 1 to

further populate the array guess as much as possible. The strategy is formally presented

in Algorithm 3.9.

Chapter 3: Analysis of RC4 variants 81

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . ,M − 1)}.
Output: Permutation array St+m for some m ∈ [0,M − 1].

numKnown← 0;
m← 0;
for u from 0 to N − 1 do

guess[u]← EMPTY ;
end
acc[0][0]← it;
acc[0][1]← jt;
for u from 1 to M − 1 do

acc[u][0]← it+u;
acc[u][1]← jt+u;
acc[u][2]← zt+u;

end
repeat

it+m+1 ← acc[t+m+ 1][0], jt+m+1 ← acc[t+m+ 1][1],
zt+m+1 ← acc[t+m+ 1][2];
if guess[it+m+1] = EMPTY then

guess[it+m+1]← jt+m+1 − jt+m;
end
backtrack(t+m, t);
processForward(t, t+m+ 1);
m← m+ 1;
numKnown← Number of non-empty entries in the array guess;

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then

Fill the remaining single EMPTY location of the array guess;
for u from 0 to N − 1 do

St+m[u]← guess[u];
end

end

Algorithm 3.9: The algorithm for state recovery with backward and forward passes.

Algorithm 3.9 uses two subroutines. The subroutine backtrack(r, t) presented in Algo-

rithm 3.10 performs a backward pass, tracing all state information back from the current

round r to a previous round t < r. The subroutine processForward(r, t), presented in

Algorithm 3.11 evolves the state information in the forward direction from a past round

r to the current round t > r. Note that Algorithm 3.9 returns the array St+m (the value

of S at PRGA round t+m) where m is the minimal value for which St+m can be fully

constructed. Thereafter the value of S at any previous round can be easily calculated

as the state update of RC4+, like RC4, is one-one and invertible.

Experimental Results. We present some experimental evidences. Experimental result

showing the average number of bytes recovered (over 100 random simulations) against

the number of rounds used is shown in Table 3.5. It shows that around 602 consecutive

82 Chapter 3: Analysis of RC4 variants

Subroutine backtrack(r, t)

repeat
ir ← acc[r][0];
jr ← acc[r][1];
swap(guess[ir], guess[jr]);
r ← r − 1;

until r = t ;

Algorithm 3.10: Subroutine backtrack

Subroutine processForward(r, t)

repeat
ir = acc[r][0];
jr = acc[r][1];
zr = acc[r][2];
tr = Sr[ir] + Sr[jr];
t′r = (Sr[ir � 3⊕ jr � 5] + Sr[ir � 5⊕ jr � 3])⊕ 0xAA;
t′′r = jr + Sr[jr];
swap(guess[ir], guess[jr]);

if

(
guess[ir] 6= EMPTY ∧ guess[jr] 6= EMPTY ∧ guess[tr] 6=

EMPTY ∧ guess[ir � 3⊕ jr � 5] 6= EMPTY ∧ guess[ir � 5⊕ jr � 3] 6=
EMPTY ∧ guess[t′r] 6= EMPTY

)
then

if guess[t′′r] = EMPTY then
guess[t′′r]← zr ⊕

(
guess[tr] + guess[t′r]

)
;

end

end

if

(
guess[ir] 6= EMPTY ∧ guess[jr] 6= EMPTY ∧ guess[tr] 6=

EMPTY ∧ guess[ir � 3⊕ jr � 5] 6= EMPTY ∧ guess[ir � 5⊕ jr � 3] 6=
EMPTY ∧ guess[t′′r] 6= EMPTY

)
then

if guess[t′r] = EMPTY then
guess[t′r]←

(
zr ⊕ guess[t′′r]

)
− guess[tr];

end

end

if

(
guess[ir] 6= EMPTY ∧ guess[jr] 6= EMPTY ∧ guess[ir � 3⊕ jr � 5] 6=

EMPTY ∧ guess[ir � 5⊕ jr � 3] 6= EMPTY ∧ guess[t′r] 6=
EMPTY ∧ guess[t′′r] 6= EMPTY

)
then

if guess[tr] = EMPTY then
guess[tr]←

(
zr ⊕ guess[t′′r]

)
− guess[t′r];

end

end
r ← r + 1;

until r = t ;

Algorithm 3.11: Subroutine processForward

Chapter 3: Analysis of RC4 variants 83

values of j are required to reconstruct the entire of S.

Rounds M 100 200 300 400 500 602

#Bytes Recovered 84 144 194 233 249 255

Table 3.5: No. of rounds vs. average no. of bytes recovered for Algorithm 3.9.

3.7 Conclusion

In this chapter we have analyzed the GGHN [68] and RC4+ [100] stream ciphers and

presented several cryptanalytic results related to them. In the case of GGHN, our main

motivation was to study the evolution of the cipher and we show that the cipher has

several weaknesses that include a large family of short cycles of length equal to the length

of the state array. We also concentrated on a theoretical model of the cipher (referred

as RAND-GGHN-PRGA) in which the indices of the cipher are chosen uniformly at

random from a certain range of values. Our analysis shows that such model evolves

to all zero state much faster than what is expected in an ideal cipher. We have also

presented experimental results related to two other models RAND-GGHN-PRGA′ and

RAND-GGHN-PRGA′′, the second one being very close to the actual GGHN PRGA

and we found that it evolves to the all-zero state much faster. However, theoretical

modelling of these two requires further investigation. The analysis in this chapter may

be used by the future designers to consciously avoid the GGHN kind of evolution while

designing a modified version of RC4.

Secondly, we have also presented some weaknesses of the RC4+ stream cipher. First, a

distinguishing attack requiring around 226 output samples was presented, based on the

bias of the first output byte. Thereafter, a Differential Fault Attack requiring around

217.2 faults was reported against the cipher. The results show that designing reinforce-

ments to strengthen RC4 is not an easy task. It would be worthwhile to discover a

design paradigm that not only rids RC4 of its weaknesses but also preserves its innate

simplicity.

Chapter 4

Related Key-IV pairs of Grain

The Grain family of stream ciphers is one of the candidates in the eStream [116] hardware

portfolio. It is because of its simplicity and elegance in design that it has attracted con-

siderable attention from cryptologists worldwide. The family consists of three ciphers-

Grain v1, Grain 128, Grain 128a, and each cipher presents unique challenges in terms of

cryptanalysis. Although several researchers have analyzed the structure and evolution

of the Grain family and its variants, cryptanalysis of Grain remains an open problem.

This chapter provides an insight into the current status quo vis-a-vis the security of the

Grain family and concludes with a list of open problems.

In this chapter, we explain how one can obtain Key-IV pairs for Grain family of stream

ciphers that can generate output key-streams which are either

• Almost similar in the initial segment, or

• Exact shifts of each other throughout the generation of the stream.

Let lP be the size of the pad used during the key loading of Grain. For the first case,

we show that in expected 2lP invocations of the Key Scheduling Algorithm (this will

be explained in Section 4.1.1) and its reverse routine, one can obtain two related Key-

IV pairs that can produce same output bits in 75 (respectively 112 and 115) selected

positions among the initial 96 (respectively 160) bits for Grain v1 (respectively Grain-128

and Grain-128a).

For Grain v1 and Grain-128, a similar idea works in showing that given any Key-IV, one

can obtain another related Key-IV in expected 2lP trials such that the related Key-IV

pairs produce shifted key-streams. We also provide an efficient strategy to obtain related

Key-IV pairs that produce exactly i-bit shifted key-streams for small i. Our technique

85

86 Chapter 4: Related Key-IV pairs of Grain

pre-computes certain equations that help in obtaining such related Key-IV pairs in 2i

expected trials. The aforementioned related Key-IV pairs are obtained by exploiting

the fact that, not Grain v1 and Grain-128 employ symmetric padding. Based on this

symmetric padding, Lee et al. presented a chosen IV related Key attack on Grain v1

and Grain-128 at ACISP 2008 [96]. Thereafter, the designers introduced Grain-128a

having an asymmetric padding. As a result, the method applied to obtain Key-IV pairs

that produce shifted keystream pairs for Grain v1 and Grain-128 can not be extended to

Grain-128a. We present a new method that succeeds that in obtaining related Key-IV

pairs for Grain-128a that produce shifted keystreams.

4.1 Grain family of stream ciphers

The Grain v1 stream cipher is in the hardware profile of the eStream portfolio [116] that

has been designed by Hell, Johansson and Meier in 2005 [73]. It is a synchronous bit

oriented cipher, although it is possible to achieve higher throughput at the expense of

additional hardware. The physical structure of Grain is simple as well as elegant and it

has been designed so as to require low hardware complexity.

It would be worthwhile to mention that the initial design proposal [72] (let us call it

Grain v0) to the Phase 1 of the eStream project was a little different from the current

description of Grain v1. Two cryptanalytic advances were reported against Grain v0.

• The first was a state recovery attack proposed by Berbain et. al. in [31]. The

attack took advantage of the fact that the NFSR update function had a resiliency

of 1, i.e., it was possible to approximate the NFSR update function by a linear

function of one variable. This lead to a probabilistic relation between the LFSR

state variables and the output keystream of Grain v0. By accumulating a sufficient

number of such equations the system was solved using a Maximum Likelihood

Decoding method like the Fast Walsh Transform.

• A distinguishing attack requiring 261.4 keystream bits and O(240) memory and

time was reported in [88]. This attack again took advantage of the low resiliency

of the NFSR update function and the output function of Grain v0.

Following these attacks on the initial design of the cipher, the modified version Grain

v1 [73] was proposed. The designers made 2 significant changes to the design of Grain v0.

First, the NFSR update function was changed to a boolean function with high resiliency.

Second, a set of bits from the NFSR were linearly XOR-ed to the output function.

These changes were able to successfully thwart the aforementioned attacks. Later, the

Chapter 4: Related Key-IV pairs of Grain 87

designers came up with a second version of Grain, i.e., Grain-128 [74] that uses 128 bit

Key. Thereafter, cipher Grain-128a [12] was designed for the dual purpose of message

authentication alongside message encryption, i.e., given an arbitrary length message,

the cipher along with the encrypted ciphertext produces a 32 Message Authentication

Code, for the purpose of preservation of message integrity.

4.1.1 Structure of ciphers in Grain family

The exact structure of the Grain family is explained in Figure 4.1. It consists of an n-bit

LFSR and an n-bit NFSR. Certain bits of both the shift registers are taken as inputs to

a combining Boolean function, whence the key-stream is produced. The update function

of the LFSR is given by the equation yt+n = f(Yt), where Yt = [yt, yt+1, . . . , yt+n−1] is

an n-bit vector that denotes the LFSR state at the tth clock interval and f is a linear

function on the LFSR state bits obtained from a primitive polynomial in GF (2) of degree

n. The NFSR state is updated as xt+n = yt⊕g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1] is

an n-bit vector that denotes the NFSR state at the tth clock interval and g is a non-linear

function of the NFSR state bits.

The output key-stream is produced by combining the LFSR and NFSR bits as zt =

h′(Xt, Yt) =
⊕

a∈A xt+a ⊕ h(Xt, Yt), where A is some fixed subset of {0, 1, 2, . . . , n− 1}.

Key Loading Algorithm (KLA)

The Grain family uses an n-bit key K, and an m-bit initialization vector IV , with

m < n. The key is loaded in the NFSR and the IV is loaded in the 0th to the (m− 1)th

bits of the LFSR. The remaining mth to (n − 1)th bits of the LFSR are loaded with

some fixed pad P ∈ {0, 1}n−m. Hence at this stage, the 2n bit initial state is of the

form K||IV ||P . Note that n−m = lP denotes the length of the pad used in the design.

These terms will be used interchangeably in the course of this chapter.

Key Scheduling Algorithm (KSA)

After the KLA, for the first 2n clocks, the key-stream produced at the output point of

the function h′ is XOR-ed to both the LFSR and NFSR update functions, i.e., during the

first 2n clock intervals, the LFSR and the NFSR bits are updated as yt+n = zt ⊕ f(Yt),

xt+n = yt ⊕ zt ⊕ g(Xt).

88 Chapter 4: Related Key-IV pairs of Grain

Pseudo-Random key-stream Generation Algorithm (PRGA)

After the completion of the KSA, zt is used as the Pseudo-Random key-stream bit. It is

no longer XOR-ed to the LFSR and the NFSR. Therefore during this phase, the LFSR

and NFSR are updated as yt+n = f(Yt), xt+n = yt ⊕ g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/
/

zt

⊕

⊕

Figure 4.1: Structure of Stream Cipher in Grain Family

4.2 Complete Mathematical Description of the ciphers

4.2.1 Grain v1

Grain v1 consists of an 80 bit LFSR and an 80 bit NFSR. It uses an 80-bit Key and a

64-bit IV, and a 16-bit pad P = 0x ffff. Certain bits of both the shift registers are

taken as inputs to a combining Boolean function, whence the key-stream is produced.

The update function of the LFSR is given by the equation

yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕ yt+13 ⊕ yt ∆
= f(Yt).

The NFSR state is updated as follows

xt+80 = yt ⊕ g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15

xt+14, xt+9, xt),

Chapter 4: Related Key-IV pairs of Grain 89

where g(xt+63, xt+62, . . . , xt)

∆
= g(Xt) = xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28 ⊕ xt+21⊕

xt+14 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33 ⊕ xt+15xt+9⊕
xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21 ⊕ xt+63xt+45xt+28xt+9⊕
xt+60xt+52xt+37xt+33 ⊕ xt+63xt+60xt+21xt+15⊕
xt+63xt+60xt+52xt+45xt+37 ⊕ xt+33xt+28xt+21xt+15xt+9⊕
xt+52xt+45xt+37xt+33xt+28xt+21.

The output key-stream is produced by combining the LFSR and NFSR bits as follows

zt =
⊕
a∈A

xt+a ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
∆
=
⊕
a∈A

xt+a ⊕ h(Xt, Yt)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4)

= s1 ⊕ s4 ⊕ s0s3 ⊕ s2s3 ⊕ s3s4 ⊕ s0s1s2 ⊕ s0s2s3 ⊕ s0s2s4 ⊕ s1s2s4 ⊕ s2s3s4.

4.2.2 Grain-128

The cipher uses an 128-bit Key and a 96-bit IV, and a 32-bit pad P = 0x ffff ffff.

The LFSR of Grain-128 is updated as

yt+128 = yt+96 ⊕ yt+81 ⊕ yt+70 ⊕ yt+38 ⊕ yt+7 ⊕ yt,

where the NFSR is updated as

xt+128 = yt⊕xt ⊕ xt+26 ⊕ xt+56 ⊕ xt+91 ⊕ xt+96 ⊕ xt+3xt+67 ⊕ xt+11xt+13⊕
xt+17xt+18 ⊕ xt+27xt+59 ⊕ xt+40xt+48 ⊕ xt+61xt+65 ⊕ xt+68xt+84.

The output key-stream bit is produced as

zt =
⊕
j∈B

xt+j⊕yt+93⊕h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+95)

where B = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1⊕s2s3⊕s4s5⊕s6s7⊕s0s4s8.

90 Chapter 4: Related Key-IV pairs of Grain

4.2.3 Grain-128a

The cipher uses an 128-bit Key and a 96-bit IV, and an asymmetric 32-bit pad P =

0x ffff fffe. The LFSR update functions of Grain-128 and Grain-128a are the same.

There is a slight difference in the NFSR update function and the output function.

The NFSR update function for Grain-128a is given by

xt+128 =yt ⊕ xt ⊕ xt+26 ⊕ xt+56 ⊕ xt+91 ⊕ xt+96 ⊕ xt+3xt+67 ⊕ xt+11xt+13⊕
xt+17xt+18 ⊕ xt+27xt+59 ⊕ xt+40xt+48 ⊕ xt+61xt+65 ⊕ xt+68xt+84⊕
xt+88xt+92xt+93xt+95 ⊕ xt+22xt+24xt+25 ⊕ xt+70xt+78xt+82.

The output key-stream bit is generated as

zt=
⊕
j∈B

xt+j⊕yt+93⊕h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+94),

where the function h and the set B are same as defined for Grain-128.

Authentication

As already mentioned, the Grain-128a cipher gives the user an option of producing a 32

bit Message Authentication Code (MAC) along with the encrypted ciphertext. We will

describe the mechanism as explained in [13].

The basic design follows a Toeplitz matrix based Universal Hash Function Construction.

Assume that we have a message of length L defined by the bits m0, . . . ,mL−1. Set

mL = 1. To provide authentication, two registers, called accumulator and shift register of

size 32 bits each, are used (See Figure 4.2). The content of accumulator and shift register

at time t are denoted by a0
t , . . . , a

31
t and rt, . . . , rt+31, respectively. The accumulator is

initialized through at0 = zt, 0 ≤ t ≤ 31 and the shift register is initialized through rt =

z32+t, 0 ≤ t ≤ 31. The shift register is updated as rt+32 = z64+2t+1. The accumulator

is updated as ajt+1 = ajt ⊕mtrt+j for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L. The final content of

accumulator, a0
L+1, . . . , a

31
L+1 is the 32 bit tag used as the MAC.

Accumulator

Shift register
z64+2t+1

/
mt //

Figure 4.2: Authentication mechanism in Grain-128a

Chapter 4: Related Key-IV pairs of Grain 91

4.3 Reversible KSA and PRGA of the Grain family

One may note that given any arbitrary state and the information about its evolution

(the number of clocks in KSA or PRGA), one can calculate the corresponding state SK0

at the beginning of the KSA. This is because the state update functions in both the KSA

and PRGA in the Grain family are one-to-one and invertible. Hence one can construct

the KSA−1 routine that given an input 2n bit vector denoting the internal state of the

cipher at the end of the KSA, returns the 2n bit vector giving internal state of the cipher

at the beginning of the KSA. One can similarly describe a PRGA−1 routine that inverts

one round of the PRGA.

Given the primitive polynomial of the Grain LFSR, the feedback function f is of the

form

f(Yt) = yt ⊕ f ′(Y ′t),

where Y ′t = [yt+1, . . . , yt+n−1] is an (n− 1)-bit vector obtained from Yt by removing the

first term. The NFSR update function g is of the form

g(Xt) = xt ⊕ g′(X ′t),

where X ′t = [xt+1, . . . , xt+n−1] is an (n − 1)-bit vector obtained from Xt by removing

the first term xt. This implies that the functions g′, f ′ does not depend on the terms

xt, yt respectively. This is necessary as well as sufficient for the state update function

of the NFSR and LFSR to be one-one [63]. In fact, it has been shown in [63], that

any feedback shift register with update functions of the above form, would lead to a

state sequence diagram that would be branchless, i.e., if each state were regarded as a

node in a connected graph, then the in-degree and out-degree of each node would be

exactly 1. Due to this, the state update maps of the Grain family of ciphers during both

the KSA and the PRGA are one to one and invertible, i.e., given any particular state,

during any iteration of the KSA or the PRGA, it is possible to determine the previous

state. Given the NFSR and LFSR state after the completion of KSA, Algorithm 4.1 will

determine the NFSR and LFSR state at the beginning of the KSA. One can similarly

invert the PRGA. Given the NFSR and LFSR state during any clock interval of the

PRGA, Algorithm 4.2 will determine the LFSR and NFSR state in the preceding clock

interval.

92 Chapter 4: Related Key-IV pairs of Grain

Input: State S0 = x0, . . . , xn−1, y0, . . . , yn−1

Output: State SK0 = x0, . . . , xn−1, y0, . . . , yn−1

for 2n clocks do
lj = yn−1 and nj = xn−1

yi = yi−1 and xi = xi−1 for i = n− 1, n− 2, . . . , 1
z =

⊕
a∈A xa ⊕ h(x0, . . . , xn−1, y0, . . . , yn−1)

y0 = z ⊕ lj ⊕ f ′(y1, . . . , yn−1)
x0 = z ⊕ nj ⊕ y0 ⊕ g′(x1, . . . , xn−1)

end

Algorithm 4.1: KSA−1 routine for the Grain Family

Input: State S0 = x0, . . . , xn−1, y0, . . . , yn−1

Output: The preceding state x0, . . . , xn−1, y0, . . . , yn−1 of the PRGA

lj = yn−1 and nj = xn−1

yi = yi−1 and xi = xi−1 for i = n− 1, n− 2, . . . , 1

y0 = lj ⊕ f ′(y1, . . . , yn−1)

x0 = nj ⊕ y0 ⊕ g′(x1, . . . , xn−1)

Algorithm 4.2: One round PRGA−1 routine for the Grain family

In other words, given any arbitrary state and the information about its evolution (the

number of clocks in KSA or PRGA), one can calculate the corresponding state at the

beginning of the KSA.

4.4 Existing cryptanalytic results on the Grain family

4.4.1 Distinguishing Attacks

There is till date no distinguishing attack against the full versions of any of the ciphers

in this family which works for all possible Key-IV pairs. However such attacks have

been reported against variants of Grain in which the number of rounds in the KSA

have been reduced. In [58], a distinguisher based on the d-monomial test was reported

against Grain-128 when the number of initialization rounds was reduced from 256 to

192 rounds. In [128], a distinguishing attack on a variant of Grain-128 that uses 246

initialization rounds was presented, which works for less than half of the keys. In [14],

cube testers were used in order to distinguish Grain-128 from random for up to 237

initialization rounds. In [97], cube testers were used to distinguish a variant of Grain-

128a, that uses 189 out of the 256 rounds.

Chapter 4: Related Key-IV pairs of Grain 93

In [137], a distinguishing attack against the full versions of Grain v1 and Grain-128

was reported. But the attack worked for an extremely small fraction 2−n of the entire

Key-IV space. The attack exploited the situation that for about 2−n fraction of Key-IVs

the LFSR goes into the all-zero state just after the completion of the KSA and never

comes out of it during the PRGA. In such a scenario, the NFSR becomes autonomous

and a distinguishing attack can be mounted using the linear biases of the NFSR update

function g.

4.4.2 Key recovery Attacks

In [61], a key-recovery attack was reported against a variant with of Grain-128 with

180 initialization rounds. In [44], the sliding property was used to speedup exhaustive

search by a factor of two. In [94], conditional differential cryptanalysis was used to

distinguish and recover 5 Key bits i) a variant of Grain v1 that uses 104 of the 160 KSA

rounds and ii) a variant of Grain-128 that employs 213 out of the 256 KSA rounds. This

attack works for all Key-IV pairs. A Time-Memory tradeoff attack was reported in [39]

using the low sampling resistance of the cipher. In [108], the low sampling resistance

was combined with the fact that output function of Grain v1 is 2-normal, to propose an

improved TMD-Tradeoff attack.

4.4.3 Cube Attacks

Cube attacks was first introduced by Dinur and Shamir in [55] and have become a useful

tool to cryptanalyze stream ciphers. In [56], three cryptanalytic advances were made

against Grain-128. The first attack ran in practical time complexity and recovered the

full 128-bit key when the number of initialization rounds was reduced to 207. The second

attack worked on a Grain-128 variant with 250 initialization rounds and was faster than

exhaustive search by a factor of about 228. An attack against the full version of Grain-

128 was also presented which was able to recover the full key only when it belonged to

a subset of 2118 of all possible keys. This third attack is faster than exhaustive search

by a factor of about 215.

An improved attack over [56] was presented in [57], in which an attack faster than

exhaustive search by 238 for all possible keys, was proposed.

4.4.4 Fault Attacks

Fault attacks on stream ciphers have gained attention ever since the work of Hoch

and Shamir [76] describing such an attack was published and such attacks have been

94 Chapter 4: Related Key-IV pairs of Grain

successfully employed against a number of stream ciphers. In [35] fault attacks against

Grain-128 was reported under the assumption that a fault at a random LFSR location

could be reproduced more than once. [85] repeated the attack on Grain-128 under the

same assumptions but targeted the NFSR for injecting faults.

4.4.5 Slide based Related Key Attacks

In both Grain v1 and Grain-128, the symmetric padding of all ones is used during the

initialization of the internal state of the cipher, before the Key-IV mixing. Due to this

symmetric padding, slide attacks based on the observation that one can obtain Key-IV

pairs that produce ε-bit shifted keystream with probability 2−2ε, were reported in [44].

The symmetric padding used in the initialization of Grain v1 and Grain-128 was also

exploited in [96] to mount a chosen IV related Key attack. Their main idea is to use

related Keys and chosen IVs to obtain shifted keystream and then to carefully study the

scenario to obtain the Secret Key bits. However due to the asymmetric nature of the

pad used in Grain-128a, such analysis can not be extended to this cipher.

4.4.6 Other results

A TMD Tradeoff attack was proposed in [136], but some of the assumptions used in this

paper were erroneous and as such the validity of this attack is questionable.

4.4.7 Our results

Our results in this chapter are motivated towards studying how given a Key-IV, one can

efficiently obtain another Key-IV so that the generated output key-streams are

• Almost similar in the initial segment or

• Exact shifts of each other throughout the key-stream generation.

We call these Key-IV pairs “related” following [44, Section 3].

Since the Grain family of stream ciphers are essentially finite state machines, we can

make several interesting observations. Any pair of internal states during the key-stream

production stage (say S0 and S0,∆) that differ only in a few bit positions (say not exceed-

ing three), produce very similar key-stream bits at-least in the first few output rounds.

The idea therefore is to come up with two distinct Key-IV pairs (K, IV) and (K, IV)∆,

Chapter 4: Related Key-IV pairs of Grain 95

(K, IV)
KLA

SK0
KSA

S0

(K, IV)∆
KLA−1

SK0,∆
KSA−1

S0,∆

∆φ

Figure 4.3: Construction of the Related Key-IV function.

so that after the key initialization round, produce the states S0, S0,∆ respectively. These

Key-IV pairs would then produce key-stream which would be initially very similar to

one another.

On the other hand, since the state update functions of the cipher are one-to-one and

invertible, two distinct Key-IV pairs (K, IV) and (K ′, IV ′) will never produce exactly

the same state S after the kSA. However, it may be possible that the Key-IV pair

(K ′, IV ′), after producing a certain number of output bits (say i), lands on the state

S which is the same state that (K, IV) lands on after Key initialization. Since Grain

is a finite state machine, the key-stream produced by (K ′, IV ′) after these i rounds is

exactly the same as that produced by (K, IV). These Key-IV pairs will then produce i

bit shifted key-stream.

Though our work does not have any immediate implication towards breaking any cipher

of the Grain family, the observations are relevant in cryptographic scenario.

4.5 Related Key-IV pairs in Grain family

Let us now explain our interpretation of related Key-IV pairs. This is in line of what

is explained in [44, Section 3]. For this we need the construction of the related Key-IV

function φ as illustrated in Figure 4.3. Note that we require both routines KSA and KLA

to be uniquely reversible for a successful construction of φ. The goal of constructing φ is

to obtain a pair of related Key-IVs (K, IV) and (K, IV)∆ such that they produce either

almost similar initial key-streams or shifted key-streams throughout the generation.

With explicit construction of such functions φ, we will show that given any Key-IV

(K, IV) in the Grain family, it is possible to find related Key-IV pair (K, IV)∆.

4.5.1 Search for related Key-IV pairs in Grain v1

The non-linear function h in Grain v1, that takes inputs from both the linear and non-

linear registers to produce the key-stream, taps the 64th bit of the LFSR and no bit

in between 65th and the 79th. This implies that if there exist two initial states S0

96 Chapter 4: Related Key-IV pairs of Grain

and S0,∆ ∈ {0, 1}160 during the PRGA, such that S0 and S0,∆ differ in only a few bit

positions, then there is a good possibility that some initial bits (may not be contiguous)

of the key-stream will be same. We explain the complete scenario with a specific case

here, when the last bit of the two states are different, and all other bits are identical.

So, this is single-bit differential for the state S0. However, there are many other such

possibilities that may also be explored.

Let us consider that S0 and S0,∆ differ only in the 79th LFSR position. In such a case,

it is easy to check that they will produce identical key-stream for some initial PRGA

rounds. We will also show that it is possible to produce Key-IV pairs (K0, IV0) and

(K1, IV1) with Ki ∈ {0, 1}80 and IVi ∈ {0, 1}64 so that after key-scheduling the pair

(K0, IV0) produces the initial state S0 of the PRGA and the pair (K1, IV1) produces the

initial state S0,∆.

First, we will look at a method to compute such related pairs (K0, IV0) and (K1, IV1).

The method works because the KSA is invertible, i.e., given an initial state of the key-

stream production stage it is possible to back-track and determine the Key-IV pair that

produced it. The following method is, in principle, similar to the technique used by

Zhang et al [137]. The basic idea is to generate at random Key-IV pair K0, IV0 ∈
{0, 1}80 × {0, 1}64 and calculate the initial state S0 of the PRGA. Then after flipping

the y79 bit of S0 we produce the state S0,∆ and backtrack to find out if there exists a

Key-IV pair that produces S0,∆. We will state the algorithm formally now.

Output: Key-IV pair’s that produces almost similar initial key-stream or Failure

Randomly choose a Key-IV pair (K, IV) ∈ {0, 1}80 × {0, 1}64;

Obtain the initial state of the KSA SK0 = [K || IV || 0x ffff];

Run the KSA for 160 clocks to produce an initial state S0 ∈ {0, 1}160;

Construct S0,∆ from S0 by flipping the bit y79;

Compute SK0,∆ = KSA−1(S0,∆) as the KSA routine is invertible;

if SK0,∆ is of the form [K̃ || ˜IV || 0x ffff] then

Return (K, IV) and (K, IV)∆ = (K̃, ˜IV) as the related Key-IV pairs;
end
else

Return failure;
end

Algorithm 4.3: Search for related Key-IV pairs in Grain v1

Given that lP is the length of the Pad P (which is a specific pattern among all the lP bit

patterns), it is expected that we will be able to obtain related Key-IV pairs in 2lP = 216

Chapter 4: Related Key-IV pairs of Grain 97

runs of the algorithm (as if obtaining the specific pattern through random search). The

next thing that we need to check is the propagation of the single-bit differential into the

key-stream of the cipher during the PRGA. This is described in the following technical

result.

Theorem 4.1. For Grain v1, the two initial states S0, S0,∆ ∈ {0, 1}160 which differ only

in the 79th position of the LFSR, produce identical output bits in 75 specific positions

among the initial 96 key-stream bits produced during the PRGA.

Proof. Any input differential introduced in the 79th LFSR position takes 15 clocks be-

fore appearing at the 64th position, and hence the first 15 bits z0 to z14 will be exactly

the same. In the 16th round, the differential arrives at the 64th position of the LFSR,

which contributes an input to the Boolean function h and hence this bit may be different.

Hereafter, the differential proceeds to the 63rd LFSR position, which does not provide an

input to h and hence in this round the output is the same. In the next round the differen-

tial is at the 62nd position, which although does not feed the output function h, provides

an input to the LFSR update function, due to which a difference reappears in the 79th

position. This new difference will now affect the key-stream after 15 rounds. Thus by

keeping track of the propagation of the differential for the first 96 PRGA rounds it is pos-

sible to determine which rounds produce the same output bit. At all rounds numbered

k ∈ [0, 95] \ {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91, 93, 94, 95}, the

difference exists only in positions that do not provide input to the Boolean function h

and hence at these clocks the key-stream bit produced by the two states are essentially

the same. At all other clock rounds the difference appears at positions which provide

input to h. Hence the key-stream produced at these clocks may be different. After 96

rounds the input difference is fed to the non-linear update function g of the NFSR, and

hereafter the propagation of the difference would depend on the particular NFSR state

at that point.

4.5.2 Examples of related Key-IV pairs in Grain v1

In case of a practical search for related pairs of Key-IV, we notice that the Algorithm

4.3 is expected to run 216 times for obtaining one pair of related Key-IV’s. Now, this

invocation may be accomplished in many ways. First we consider the example for the

situation as mentioned in Algorithm 4.3.

98 Chapter 4: Related Key-IV pairs of Grain

Multiple Key-IV trials with a Fixed Differential.

Consider a fixed differential ∆ for all the Key-IV pairs. In this case, Algorithm 4.3 needs

to run expected 216 times with different randomly chosen (K, IV)’s to obtain a related

Key-IV pair (K, IV) and (K, IV)∆. In case of Grain v1, this ∆ represents ‘flipping

the last bit of the LFSR’. With expected 216 queries in each case, we obtained related

Key-IV pairs during the experiments. One such example is as follows.

Key IV S

bf6689cead5ece39758c bdfa0025ac44a4fe 52f71a93959ff900ffa9 15c61a47522fffaf8a77

e166bc5aa1952733ab2a aed6838b948399a0 52f71a93959ff900ffa9 15c61a47522fffaf8a76

One can check that out of the initial 96 key-stream bits, 75 specific bits are same as per

Theorem 4.1 and in particular, 78 are same in this case.

Single Key-IV trial with a Multiple Differentials.

Now suppose a more practical situation, where a single pair of Key-IV is provided, and

one has to produce a related pair of Key-IV corresponding to the one given. In this

situation, one may experiment with different values of ∆. If around 216 different ∆’s

can be used, then given a specific (K, IV) a related Key-IV pair may be expected. In

this case, the expected number of invocations of KSA−1 is 216, one for each ∆. However,

the number of KSA invocation is only one as we have only a single Key-IV pair for the

complete strategy.

In case of Grain v1, we first observed that the single-bit change in the LFSR results

towards related initial bits of the key-stream. Similar situation is expected to happen

for 1, 2 or 3-bit changes in the LFSR, as the changes are still minor compared to the

total size of the state. Thus, we chose a simple family of ∆ where a single bit differential

is introduced in at most 3 bits out of the 75 bits of the LFSR; the LFSR has 80 bits

and we exclude the 4 bits (3rd, 25th, 46th, 64th) that go to the Boolean function h and

the 0th bit that goes to the NFSR. One may note that
(

75
1

)
+
(

75
2

)
+
(

75
3

)
> 216 and thus

it is expected to obtain a related Key-IV pair.

Below we present an example, where the states differ in three bit positions of the LFSR,

namely 47, 52, 54. Out of the initial 80 key-stream bits produced, 55 are same.

Key IV S

bde8d3c319ff4d234706 f363180e262b6cc5 a74e7c7799b00f3c94e1 bf0315b589691f82085a

b223a57ce1578708677a 371d2d93363b014b a74e7c7799b00f3c94e1 bf0315b589681582085a

Chapter 4: Related Key-IV pairs of Grain 99

4.5.3 Related Key-IV’s in Grain-128

The structure of Grain-128 is similar to Grain v1. The only differences are in the update

functions of the LFSR, NFSR, the combining output function and the sizes of the LFSR

and NFSR. The key is loaded in the NFSR and the IV is loaded in the 0th to the 95th

bits of the LFSR. The remaining 96th to 127th bits of the LFSR are loaded with 1’s

(the 32-bit pad P , i.e., lP = 32). Here 256 rounds of KSA are executed after which

the key-stream is produced. As in Grain v1, here too, the KSA is invertible. After an

expected number of 2lP = 232 trials two related Key-IV pairs (K, IV) and (K, IV)∆ can

be found. For these Key-IV pairs, the KSA gives initial states S0 and S0,∆ that differ

only in the 127th bit position.

Propagation of the Differential.

The following result describes the differential propagation characteristics of the single-bit

differential ∆ in case of Grain-128.

Theorem 4.2. For the Grain-128 stream cipher, two initial states S0, S0,∆ ∈ {0, 1}256

which differ only in the 127th position of the LFSR, produce identical output bits in 112

specific positions among the initial 160 key-stream bits produced during the PRGA.

Proof. As described in Theorem 4.1, a similar analysis applies in the case of Grain-128.

By tracking the evolution of the single bit differential introduced at the 127th LFSR

position, it is possible to determine the clock rounds for which the output key-stream

is exactly similar for the related Key-IV pairs which give rise to such a differential after

the KSA. In Grain-128, the output key-stream for the following rounds numbered

k ∈ [0, 159] \ {32, 34, 48, 64, 66, 67, 79, 80, 81, 85, 90, 92, 95, 96, 98, 99, 106, 107,

112, 114, 117, 119, 122, 124, 125, 126, 128, 130, 131, 132, 138, 139,

142, 143, 144, 145, 146, 148, 149, 150, 151, 153, 154, 155, 156, 157,

158, 159}

produced by S0 and S0,∆ are identical.

Below we present a related Key-IV pair for Grain-128. One can verify that out of the

first 160 keystream bits produced by the Key-IV pairs in the given example, 112 specific

bits are same as per Theorem 4.2 and 132 bits are same in total.

100 Chapter 4: Related Key-IV pairs of Grain

Key IV S

60287a5ecf99724716a83bf81a9735cf 62b6f21aa5d6511f43cb51f0 7bb026436bc29b585e676e90961830e0

7e86e48d2370eeda43ddd098a4b3e7d2

dc260a0042112620772443311b933f08 c026cf1526950adee08fbe14 7bb026436bc29b585e676e90961830e0

7e86e48d2370eeda43ddd098a4b3e7d3

4.5.4 Related Key-IV’s in Grain-128a

As already mentioned, the LFSR update functions of Grain-128 and Grain-128a are the

same. There is a slight difference in the NFSR update function and the output function.

Also Grain-128a uses the pad 0x ffff fffe in the last 32 bits of the LFSR instead of

the all 1 pad.

It is known that the first 64 output bits of Grain-128a are used for initializing the MAC

and thereafter each alternative bit is used as the key-stream and the other bit is used

for constructing the MAC. Let us first refer to all these bits as as output bits (these are

referred as pre-output stream in [12]) and then analyze the exact scenario.

Propagation of the Differential.

The following result describes the differential propagation characteristic of the single-bit

differential ∆ in case of Grain-128a.

Theorem 4.3. For the Grain-128a stream cipher, two initial states S0, S0,∆ ∈ {0, 1}256

which differ only in the 127th position of the LFSR, produce identical output bits in 115

specific positions among the initial 160 output bits produced during the PRGA.

Proof. The proof follows a similar analysis as done for Grain v1 and Grain-128. The

output bits for rounds

k ∈ [0, 159] \ {33, 34, 48, 65, 66, 67, 80, 81, 85, 91, 92, 95, 97, 98, 99, 106, 107, 112,

114, 117, 119, 123, 124, 125, 127, 128, 129, 130, 131, 132, 138, 139,

142, 143, 144, 145, 146, 149, 150, 151, 154, 155, 156, 157, 159}

produced by S0 and S0,∆ are identical.

In case of Grain-128a, the Pad is of length lP = 32 bits, and the number of bits that

are same in the key-streams produced by S0 and S0,∆ is 115. Thus, the complexity of

getting related pairs in these cases is expected 232. Moreover, 11 bits in the key-stream,

the bits {34, 66, 81, 92, 98, 124, 128, 130, 145, 150, 156} are always different in Z and Z∆.

Chapter 4: Related Key-IV pairs of Grain 101

This is because at these rounds the difference appears on one of the NFSR state bits

which are linearly added to the output of the h(·) function to produce the keystream.

Out of the initial 160 output bits from Grain-128a, the initial 64 are used for MAC.

Thus we are now left with 160− 64 = 96 bits. Again out of those, half of them will be

used for MAC and half of them will be used as key-stream bits. Thus, we have actually

considered 48 key-stream bits. The first 160 output bits are indexed as 0 to 159. Among

them the even numbered bits from 64 to 159 are the key-stream bits. One may note

that given two related Key-IV pairs, for the initial 48 key-stream bits, 30 will be exactly

same, 8 will be exactly complement of each other and rest 10 cannot be determined

before-hand.

Below we present a related Key-IV pair for Grain-128a. One can verify that out of the

first 48 keystream bits produced by the Key-IV pairs in the given example, 30 specific

bits are same as per Theorem 3 and 33 bits are same in total.

Key IV S

54fd23a7e54f8fb096a45189b65f0fff 5a7fb7b76c303592b74422c3 36a0589046e177ae325a4b60154084cd

fc74e3c99cad9a2f2fcbf394d44f15fd

1c21c39e9404b1c347ee8dc594f3d040 9db86204107b9ac4d401cc2d 36a0589046e177ae325a4b60154084cd

fc74e3c99cad9a2f2fcbf394d44f15fc

4.6 Occurrence of Key-IV pairs that produce shifted key-

streams

The size of the Key-IV space in Grain being {0, 1}n ×{0, 1}m, one may expect that the

cipher produces 2n+m different key-streams. However, many of these key-streams are

finite bit-position shifts of one another, that is natural in this kind of design. We have

already noted that both the KSA and PRGA routines in the Grain family are invertible.

Thus, given any Key-IV in the Grain family, it may be possible to find another Key-IV

pair that produces a bit-shifted key-stream.

Let ψ : {0, 1}2n → {0, 1}2n be the state update function during the PRGA of Grain.

The goal is to construct a related key function φ : {0, 1}n × {0, 1}m → {0, 1}n × {0, 1}m

such that (K0, IV0) and φ(K0, IV0) produce shifted key-streams. The construction of φ

in our constrained model of the stream cipher is as in Algorithm 4.4.

Thus, given any Key-IV in the Grain family, it is possible to find another Key-IV such

that both of them produce key-streams which are finite bit shifts of one another, in

an expected 2lP iterations where lP is the length of the pad P . This holds under the

assumption that, after the reverse KSA routine the last lP bits of the LFSR are uniformly

102 Chapter 4: Related Key-IV pairs of Grain

Output: Key-IV pair that produces shifted key-stream or return failure

Randomly choose a Key-IV pair (K, IV) ∈ {0, 1}n × {0, 1}m;

Obtain the initial state of the KSA SK0 = [K || IV || P];

Run the KSA for 2n clocks to produce an initial state S0 ∈ {0, 1}2n;

Initialize i = 1;

Construct the state Si by running one more round of the PRGA;1

Reverse the KSA routine to generate the initial state SKi = KSA−1 (Si);

if SKi is of the form [K̃ || ˜IV || P] then

Return related Key-IV pair (K, IV), (K, IV)i = (K̃, ˜IV), and the shift i;
i← i+ 1;

end

if i is greater than some predefined threshold then

Return failure;
end

Return to step 1 and repeat after running another round of the PRGA;

Algorithm 4.4: Related Key-IV function φ for shifted key-streams in Grain

distributed. Hence, it is expected that we will be able to obtain related Key-IV pairs in

2lP iterations of the loop.

We present a set of examples here for each of the stream cipher in the Grain family.

Given the Key-IV pairs in column 1 of the following table, column 2 gives a related

Key-IV pair that produces shifted key-stream. Column 3 gives the length of the shift.

Grain Key-IV Key-IV Shift

v1 4567b66f51b956542319 f0f9d3bc4f2d0001e11d 72343

96b81c6c97ed8853 67e95df014caf50a ≈ 216.14

128 fca5c3705794a26266f58d06f7e87b9f 990aa66d1d816db4d81cf42ab62937b2 236757088

cf74e27475fc36e159069606 54345cb47fed0997dc1a73d4 ≈ 227.82

128a 2b953abc7427e1c260b2995039766123 01f8cda5aa35dece20154a986e24e4d8 2642097831

81a25f710a9a24aed1644d9f 4bf4f64d462d379453928a7a ≈ 231.30

4.6.1 Improved strategy over [44] for small shift

In [44], Key-IV pairs in Grain v1, that produce shifted key-streams, were demonstrated.

The idea is as follows. First we demonstrate the idea for for 1-bit shift for simplicity of

explanation. If K0 ∈ {0, 1}n and IV0 ∈ {0, 1}m denote a Key-IV, then the initial state

of the KSA is denoted by B0 = K0 and C0 = IV0||P . After the first round of KSA, the

updated initial states are denoted by B1||C1.

Chapter 4: Related Key-IV pairs of Grain 103

• If C1 can be written in the form IV1||P for IV1 ∈ {0, 1}m, thenB1||C1 = K1||IV1||P
is another valid initial state of the KSA. So if the KSA starts with the state B1||C1

instead of B0||C0, it may produce one bit-shifted key-streams.

• An added sufficiency condition is required. The 1st output bit produced by the

KSA initial state B0, C0 during the PRGA must be 0. This is required to ensure

that the state after the 2nth round of the KSA using B1||C1, is the same as the

state after the 1st PRGA round using (B0, C0).

If both the above conditions are satisfied then (K0, IV0) and (K1, IV1) will indeed pro-

duce 1-bit shifted key-streams. Both the events have a probability of occurrence of 1
2

and hence a related Key-IV pair may be found with probability 1
4 by randomly choosing

Key-IV pairs. This idea extends to i rounds, so that two Key-IV pairs which produce

i-bit shifted key-stream may be obtained with probability (1
4)i.

However, in this section we show that the probability may be improved to (1
2)i by

explicitly characterizing the structure of the Key-IV which, in every round of KSA out

of those i rounds, produce valid KSA internal states.

To analyze this, let us study the KSA in more detail. Given a key IV pair K0 =

x0, x1, . . . , xn−1 and IV0 = y0, y1, . . . , ym−1, the state update function during the KSA

can be presented in the following way. Consider that x
[j]
i (y

[j]
i) is the value in the

ith cell of the NFSR (LFSR) in the jth KSA round. Denote B0
∆
= x

[0]
0 , x

[0]
1 , . . . , x

[0]
n−1,

C0
∆
= y

[0]
0 , y

[0]
1 , . . . , y

[0]
m−1||P = y

[0]
0 , y

[0]
1 , . . . , y

[0]
n−1.

Input: B0, C0

Output: Bi, Ci, for i = 1 to u

for i = 1 to u do

y[i] ← f(Y [i−1]) where Y [i−1] = y
[i−1]
0 , y

[i−1]
1 , . . . , y

[i−1]
n−1

x[i] ← y
[i−1]
0 ⊕ g(X [i−1]) where X [i−1] = x

[i−1]
0 , x

[i−1]
1 , . . . , x

[i−1]
n−1

z[i] ←⊕
a∈A x

[i−1]
a ⊕ h(X [i−1], Y [i−1])

Bi = (x
[i]
0 , x

[i]
1 , . . . , x

[i]
n−2, x

[i]
n−1)← (x

[i−1]
1 , x

[i−1]
2 , . . . , x

[i−1]
n−1 , x

[i] ⊕ z[i])

Ci = (y
[i]
0 , y

[i]
1 , . . . , y

[i]
n−2, y

[i]
n−1)← (y

[i−1]
1 , y

[i−1]
2 , . . . , y

[i−1]
n−1 , y

[i] ⊕ z[i])

end

Algorithm 4.5: Obtaining Grain KSA Relations

In Grain v1, for B1||C1 to represent a valid initial state of the KSA it must be of the

form [K̃ || ˜IV || P], Thus following Algorithm 4.5, this will occur if y[1] ⊕ z[1] = 1 in the

104 Chapter 4: Related Key-IV pairs of Grain

first iteration of the KSA (where y[i], z[i] are as defined in Algorithm 4.5). This implies

y62 ⊕ y51 ⊕ y38 ⊕ y23 ⊕ y13 ⊕ y0 ⊕
⊕
a∈A

xa ⊕ h(y3, y25, y46, y64, x63) = 1, (4.1)

that evaluates to

y62 =((y25 ⊕ x63 ⊕ 1)y3 ⊕ y25x63 ⊕ x63 ⊕ 1)y46 ⊕ y23 ⊕ y25 ⊕ x10 ⊕ y38 ⊕ y51⊕
x1 ⊕ x2 ⊕ x31 ⊕ x43 ⊕ x4 ⊕ x56 ⊕ y0 ⊕ y3 ⊕ y13 ⊕ 1.

This covers the case of [44] for 1-bit shift. Now, towards the extension, let us consider

the case for 2-bit shift.

For both B1||C1 and B2||C2 to be valid initial states, in addition to (4.1), we need the

following condition (y[2] ⊕ z[2] = 1) to hold:

y63 ⊕ y52 ⊕ y39 ⊕ y24 ⊕ y14 ⊕ y1 ⊕
⊕
a∈A

xa+1 ⊕ h(y4, y26, y47, y65, x64) = 1. (4.2)

Solving (4.1) and (4.2), we obtain

y62 =((y25 ⊕ x63 ⊕ 1)y3 ⊕ y25x63 ⊕ x63 ⊕ 1)y46 ⊕ y23 ⊕ y25 ⊕ x10 ⊕ y38 ⊕ y51⊕
x1 ⊕ x2 ⊕ x31 ⊕ x43 ⊕ x4 ⊕ x56 ⊕ y0 ⊕ y3 ⊕ y13 ⊕ 1,

y63 =((y26 ⊕ x64 ⊕ 1)y4 ⊕ y26x64 ⊕ x64 ⊕ 1)y47 ⊕ y24 ⊕ y26 ⊕ x11 ⊕ y39 ⊕ y52⊕
x2 ⊕ x3 ⊕ x32 ⊕ x44 ⊕ x5 ⊕ x57 ⊕ y1 ⊕ y4 ⊕ y14 ⊕ 1.

Similarly, by solving together equations of the form y[i] ⊕ z[i] = 1 for each successive

round of the KSA, we would be able to determine the necessary conditions that need

to be satisfied for each successive internal state (Bi||Ci), i = 1, 2, . . . to be valid initial

states of the Grain v1 KSA. In the Appendix at the end of this chapter, we present the

equations required for 11-bit shift. It can be seen in the Appendix that the solutions

to the equations, so obtained, for the individual IV variables yi are themselves quite

complicated algebraic equations, and thus computing them by randomly selecting the

degrees of freedom ri may take some finite computational time T . In such an event it

would be more appropriate to express the computational complexity as T · 2i. Using

mathematical tools like SAGE [129], we could arrive at the solution to the simultaneous

equations y[i] ⊕ z[i] = 1 for upto i = 12. Beyond i = 12, we coould not obtain solutions

in a reasonable time period and we would need further investigations.

Satisfying these equations are necessary but not sufficient to find a chain of Key-IV

pairs that produce shifted key-streams. In order for valid Key-IV pairs derived from

B0||C0, B1||C1, . . . , Bi||Ci to produce shifted key-streams, the first i output bits produced

Chapter 4: Related Key-IV pairs of Grain 105

by the Key-IV derived from B0||C0 during the PRGA must be zero. By randomly

choosing Key-IV pairs satisfying the above conditions, it is expected that after 2i trials

one such pair will be obtained that outputs i zeros in the first i rounds of the PRGA.

This is precisely the complexity of the routine needed to find a chain of i such related

Key-IV pairs. Thus it improves the complexity of 22i presented in [44, Section 3].

Example 4.1. In the Grain family of stream cipher given the Key-IV pairs in column

1 of the following table, column 2 gives a related Key-IV pair that produces shifted key-

stream. Column 3 gives the length of the shift. We could successfully obtained related

Key-IV pairs for shifts upto 12. Below, we provide examples for 12-bit shifts.

Grain Key-IV Key-IV Shift

v1 8ca87875d334c9de694a 87875d334c9de694abbc 12

5246f9d65f5eaef9 6f9d65f5eaef9fff

128 b8d3dac27cbfeae545a508e9e551c095 3dac27cbfeae545a508e9e551c095753 12

bba4d4a0465a4448627e22ed 4d4a0465a4448627e22edfff

Non-applicability of such analysis on Grain-128a

It has already been pointed out in [44, Section 3.4] that such a strategy will not work if

the self-similarity of the pad (initialization constant) is eliminated. Subsequently, this

strategy has been implemented in Grain 128a [12]. Grain-128a resists this due to the

asymmetric nature of the pad P used during the KLA. In this cipher, the pad length is

32 bits and the value of P =0x ffff fffe, i.e., it consists of 31 ones followed by a zero.

Therefore after one round of KSA the last 32 bits of the LFSR may either be 0x ffff

fffc or 0x ffff fffd depending on whether the feedback value was 0 or 1. A similar

analysis for the first 32 rounds of the KSA will show that it is not possible for the last

32 bits of the LFSR to have the value P =0x ffff fffe in any of these rounds. This

is because P is such that it cannot be written in the form Ps||A, where Ps is any s bit

suffix of P and A is any (32 − s)-bit string over {0, 1}. It is however possible that in

the 33rd round of the KSA, the last 32 bits of the LFSR is equal to P . However, finding

such Key-IV pairs by solving equations as above may not be possible in real time due

to large degree and number of monomials in these equations. If one attempts to find

such Key-IV pairs by choosing the initial states randomly, then too the complexity of

the task is expected to be (232)2 = 264. However in Section 4.7, we will provide a way

around this difficulty for Grain-128a.

106 Chapter 4: Related Key-IV pairs of Grain

4.7 Key-IV Pairs producing Shifted Keystream in Grain-

128a

In [44], a method to obtain Key-IV pairs K, IV and K ′, IV ′ in Grain v1 and Grain-

128, that produce ε-bit shifted keystream bits by performing a random experiment 22ε

times was presented. The complexity was improved to 2ε in the work described in

Section 4.6.1. Both these techniques utilized the fact that the padding P used in Grain

v1 and Grain-128 was symmetric, i.e. a string of all ones. And in [44], it was suggested

that the method would fail if an asymmetric padding was used. This is precisely the

strategy employed in Grain-128a, where the padding is P =0x ffff fffe is a set of 31

ones followed by a single zero.

In this section, we explain how despite of the asymmetric nature of P , one can obtain

related Key-IV pairs K, IV and K ′, IV ′ in Grain-128a such that they produce exactly

32-bit shifted keystream by running a random experiment 232 times. We begin by noting

that the state update functions in both the KSA and PRGA in the Grain family are

one-to-one and invertible. This is because the state update functions of the NFSR and

the LFSR can be written in the form

g(x0, x1, . . . , x127) = x0 ⊕ g′(x1, . . . , x127)

f(y0, y1, . . . , y127) = y0 ⊕ f ′(y1, . . . , y127).

This implies that one can construct the KSA−1 routine that takes a 2n bit vector Si

denoting the internal state of the cipher at any ith round of the KSA, returns the 2n bit

vector Si−1 denoting the internal state of the cipher at the previous round of the KSA.

The same is true for the PRGA. A detailed description of the KSA−1 routine are given

in Algorithm 4.1.

Given this information, our strategy to find related Key-IV pairs in Grain-128a will be

as follows. Let K = (k0.k1, k2, . . . , k127) be the Key. We choose a 96-bit IV of the form

IV = (v0, v1, . . . , v63, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

)

Therefore the initial state

S = K||IV ||P =(s0, s1, . . . , s255)

=(k0, . . . , k127, v0, . . . , v63, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

).

Chapter 4: Related Key-IV pairs of Grain 107

If we apply the KSA−1 to S, 32 times, then we get the following internal state;

S′ = (a0, a1, . . . , a31, k0, k1, . . . , k95, b0, b1, . . . , b31, v0, v1, v63, 1, . . . , 1, 0).

where the values of ai, bi for 0 ≤ i ≤ 31 are given by polynomial functions in k0, . . . , k127,

v0, . . . , v63. The exact form of these functions can be found out by executing the KSA−1

routine 32 times.

Note that S′ is a valid initial state for Grain-128a, since it is of the form K ′||IV ′||P ,

where the value of K ′ = (a0, a1, . . . , a31, k0, k1, . . . , k95) and the corresponding value of

IV ′ = (b0, b1, . . . , b31, v0, v1, v63). Therefore if one were to initialize Grain-128a with

K ′, IV ′ then the internal state of the cipher after the KSA round 32 + t will be the

same as the internal state after t rounds of initialization with K, IV . This would be true

for all t ≤ 224. After this, the cipher initialized with K ′, IV ′ would enter the PRGA

phase while the one initialized with K, IV would still be in the KSA phase. As we have

already seen, in the Grain family of ciphers, the output bit feedback to the internal state,

is discontinued after the KSA. Therefore the state updates in the next 32 rounds are not

guaranteed to be identical. The situation has been explained pictorially in Fig. 4.4.

K||IV ||P

State W ′

State WState W

State W ′′

K ′||IV ′||P

K||IV ||P

KSA

KSA

32

224

32

32 times KSA−1

KSA

PRGA

Figure 4.4: Construction of Related Key-IV pairs in Grain Family

For the state updates to be identical in the next 32 rounds, it is necessary and sufficient

that the cipher initialized with K ′, IV ′ produces zero keystream bits for each of these

32 rounds. After this, both systems run in PRGA mode and so if the internal state of

the cipher with K, IV just after the KSA is equal to the internal state of the cipher

with K ′, IV ′ after 32 PRGA rounds, then they will remain the same forever thereafter.

In such a situation the (32 + t)th PRGA state produced by K ′, IV ′ will be equal to the

108 Chapter 4: Related Key-IV pairs of Grain

tth PRGA state produced by K, IV for all t > 0. In such a situation it is natural that

K ′, IV ′ and K, IV will produce 32 bit shifted keystream bits.

Now if we choose random values of K ∈ {0, 1}128 and IV = V ||P with V ∈ {0, 1}64,

then it is expected that in one out of 232 trials we will obtain a K ′, IV ′ which produces

an all zero output stream in the first 32 PRGA rounds. If so, K ′, IV ′ and K, IV will

produce 32 bit shifted keystream bits. The arguments are formalized in Algorithm 4.6.

Output: Key-IV pairs K ′, IV ′ and K, IV that generate 32 bit shifted keystream

s← 0;

while s = 0 do

Choose K ∈R {0, 1}128, V ∈R {0, 1}64;

IV ← V ||P ;

Run KSA−1(K||IV ||P) routine for 32 clocks and produce state
S′ = (K ′||IV ′||P);

if K ′, IV ′ produces all zero keystream bits in the first 32 PRGA rounds then

s← 1;

Return (K, IV) and (K ′, IV ′);
end

end

Algorithm 4.6: Constructing Key-IV pairs that generate 32 bit shifted keystream

Example 4.2. In the following table, we present two Key-IV pairs that generate 32-bit

shifted keystreams for Grain-128a. It can be seen that the second Key-IV pair has been

obtained by the right shifting the first Key-IV pair by 32 bits. The pairs were found in

around 232 random trials using Algorithm 4.6. It should be noted that output bits given

in the table includes the bits used for authentication and encryption.

Pair Key IV Output bits

1 9bbe 7e2b b99d 1477 5a7c 21e9 3a77 41d5c1f0387c

0317 9f3b a1aa 8c70 52ce ffff fffe 3bf64e031725

2 f32a 7bd3 9bbe 7e2b 032d 0fee 5a7c 0000000041d5c1f0387c

b99d 1477 0317 9f3b 21e9 3a77 52ce 3bf64e031725

4.7.1 Key-IV pairs producing Keystream with smaller shifts

In Section 4.6.1, the difficulty of finding Key-IV pairs in Grain-128a that produce

keystream bits with small shifts was mentioned. Although we have been able to obtain

Key-IV pairs producing 32 bit shifted keystream segments, one natural question arises

Chapter 4: Related Key-IV pairs of Grain 109

as to whether it is possible to obtain Key-IV pairs that produce keystream segments

with shift smaller than 32 bits.

We will recap the basic idea of Section 4.6.1 that worked well for Grain v1, Grain-128.

If K0 ∈ {0, 1}n and IV0 ∈ {0, 1}m denote a Key-IV (note n = 80, 128 and m = 64, 96

for Grain v1 and Grain-128 respectively), then the initial state of the KSA is denoted

by B0 = K0 and C0 = IV0||P . After the first round of KSA, the updated initial states

are denoted by B1||C1. Now if

(i) C1 can be written in the form IV1||P for IV1 ∈ {0, 1}m, then B1||C1 = K1||IV1||P is

another valid initial state of the KSA. So if the KSA starts with the state B1||C1

instead of B0||C0, it may produce one bit-shifted keystreams provided

(ii) the 1st output bit produced during the PRGA must be 0 that appears from the

KSA initial state B0, C0. This is required to ensure that the state after the 2nth

round of the KSA using B1||C1, is the same as the state after the 1st PRGA round

using (B0, C0).

If these conditions are satisfied then (K0, IV0) and (K1, IV1) will indeed produce 1-bit

shifted keystreams. These events have a probability of occurrence of 1
2 each and hence

a related Key-IV pair could be found with probability 1
4 by randomly choosing Key-

IV pairs. This idea of the attack extends to r rounds, so that two Key-IV pairs which

produce ε-bit shifted keystream could be obtained with probability (1
4)ε. The probability

of success could be increased to (1
2)ε by explicitly characterizing the form of B0||C0 for

which the first condition (i) is satisfied with probability 1.

Due to the asymmetric padding used in Grain-128a, this procedure was not applicable

to this cipher. However, it is also possible to obtain two Key-IV pairs in Grain-128a

K1, IV1 and K2, IV2 that produce ε-bit shifted keystream bits (where 1 ≤ ε ≤ 31) by

using a modification of the idea in Section 4.6.1.

We choose a random Key-IV pair K1, IV1 and run the KSA algorithm for 256 rounds

to get the state S0 ∈ {0, 1}256. Thereafter we run the PRGA ε (0 ≤ ε ≤ 31) rounds to

get the state Sε. The KSA inverse is then run on Sε to get a state S′ε. If S′ε is of the

form K2||IV2||P for some K2 ∈ {0, 1}128 and IV2 ∈ {0, 1}96, then it is easy to see that

K1, IV1 and K2, IV2 will produce ε bit shifted keystream. Note that if the first ε bits

produced by K1, IV1 are all zeros then the S′ε obtained in this algorithm, will be simply

the state which is obtained by loading the cipher with K1, IV1 and running the KSA for

ε rounds. If ε < 32, then due to the asymmetric padding of Grain-128a, S′ε will never be

of the form K2||IV2||P . So in order for the algorithm to succeed we need the following

events to occur

110 Chapter 4: Related Key-IV pairs of Grain

1. The first ε output bits produced by K1, IV1 should not be all zero. This occurs

with probability 1− 2−ε.

2. S′ε should be of the form K2||IV2||P . This occurs with probability 2−lP = 2−32.

Hence, the success probability of the algorithm is 2−ε ·0+(1−2−ε)·2−32 = (1−2−ε)·2−32

So, in around 232

1−2−ε random trials we can to find these slid pairs. In the following table,

we present two Key-IV pairs that generate ε-bit shifted keystreams (for ε = 1, 2)

Pair Key IV Shift ε

(i) 5b28 340e e5d0 1d6d da8f 4f5a 811e

2ede 55bb 2213 a1d3 9f39 1e9f 39ae 1

(ii) 6570 e009 580e 59c2 a658 3ef4 e98a

5b9d 1ae3 4600 ef1b 307d 3896 1274

(i) aecf e876 4dd8 522c 5c53 4d90 50c4

37d0 7f94 bfa6 199b 0868 c408 683f 2

(ii) f29d 3b7b afca 48d0 4eb3 52a2 d12b

bccb cb9d 3bdc 47f1 2362 a3ca a1ec

4.8 Conclusion

In this chapter, we have studied a model of stream cipher where the key and IV are

directly loaded in the state variables and the remaining part of the state is filled up with

some kind of padding. For the Grain family, given the length of the padding lP , it was

shown that given any Key-IV one can easily construct another pair with expected 2lP

time complexity that produces same bits at a significant amount of initial key-stream.

With expected 216 invocations of the KSA and its inverse routine, we could recover

related Key-IV pairs of Grain v1 that produce key-streams with 75 identical bits out of

the first 96 bits. The effect of our work on Grain-128 and Grain-128a is also similar and

we could obtain related Key-IV pairs for both the ciphers within an expected complexity

of 232 such that the two output streams match at 112 and 115 bits out of the first 160

bits in Grain-128 and Grain-128a respectively.

Further, we have studied the related Key-IV pairs of Grain that produce shifted key-

streams.

• We demonstrate how one can obtain a related Key-IV in expected 2lP trials for

any given Key-IV such that the pair can generate key-streams that are finite shifts

of one another. This idea works for all the versions of Grain.

Chapter 4: Related Key-IV pairs of Grain 111

• We could also construct Key-IV pairs that produce i-bit shifted key-streams in 2i

trials and our experiments work for upto i = 12. This is applicable for Grain v1

and Grain-128, but not for Grain-128a.

For, Grain-128a we used a slightly modified approach to obtain

• Related Key-IV pairs that generates 32 bit shifted keystream, in an expected 232

random trials.

• We could also construct Key-IV pairs that produce ε-bit shifted key-streams using
232

1−2−ε random trials.

As all the algorithms described in this chapter run in time proportional to 2lp , it stands

to reason that one of the ways of preventing such analysis on a design level, would have

been to increase the value of lp. This is precisely the approach used in stream ciphers

like Trivium [43] and ZUC [8].

Another popular approach used to prevent such analysis altogether is the ones used in

KATAN [45] and Quark [15], where update of two shift registers would be controlled by

a third register which is usually initialized to a fixed constant at the start of operations.

Performing this analysis on then would require a simultaneous synchronization of the

third register for the related Key-IV pair, which is not possible as it always starts with

a fixed constant. This of course requires extra hardware and hence increases the area

and power consumption of the device implementing the cipher.

Appendix: Solution of equation system in Section 4.6.1

The solution for the system y[i] ⊕ z[i] = 1 for i = 1, . . . , 11 as described in Section 4.6.1

is as follows.

xi = ri+1 0 ≤ i ≤ 79

yi = ri+81 0 ≤ i ≤ 52,

112 Chapter 4: Related Key-IV pairs of Grain

where r1, r2, . . . , r133 are the degrees of freedom.

y53 =
(

(r108 ⊕ r66 ⊕ 1)r129 ⊕ 1
)
r86 ⊕

(
r108r66 ⊕ r66 ⊕ 1

)
r129 ⊕ r106 ⊕ r108 ⊕ r121 ⊕ r13

⊕r34 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r59 ⊕ r7 ⊕ r83 ⊕ r96

y54 =
(

(r109 ⊕ r67 ⊕ 1)r130 ⊕ 1
)
r87 ⊕

(
r109r67 ⊕ r67 ⊕ 1

)
r130 ⊕ r107 ⊕ r109 ⊕ r122 ⊕ r14

⊕r35 ⊕ r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8 ⊕ r84 ⊕ r97

y55 =
(

(r110 ⊕ r68 ⊕ 1)r131 ⊕ 1
)
r88 ⊕

(
r110r68 ⊕ r68 ⊕ 1

)
r131 ⊕ r108 ⊕ r110 ⊕ r123 ⊕ r15 ⊕

r36 ⊕ r48 ⊕ r6 ⊕ r61 ⊕ r7 ⊕ r85 ⊕ r9 ⊕ r98

y56 =
(

(r111 ⊕ r69 ⊕ 1)r132 ⊕ 1
)
r89 ⊕

(
r111r69 ⊕ r69 ⊕ 1

)
r132 ⊕ r10 ⊕ r109 ⊕ r111 ⊕ r124

⊕r16 ⊕ r37 ⊕ r49 ⊕ r62 ⊕ r7 ⊕ r8 ⊕ r86 ⊕ r99

y57 =
(

(r112 ⊕ r70 ⊕ 1)r133 ⊕ 1
)
r90 ⊕

(
r112r70 ⊕ r70 ⊕ 1

)
r133 ⊕ r100 ⊕ r11 ⊕ r110 ⊕ r112

⊕r125 ⊕ r17 ⊕ r38 ⊕ r50 ⊕ r63 ⊕ r8 ⊕ r87 ⊕ r9

Chapter 4: Related Key-IV pairs of Grain 113

y58 =
[
(r71 ⊕ 1)r91 ⊕ r71 ⊕ 1

]
r106 ⊕

[
(r71 ⊕ 1)r91 ⊕ r71 ⊕ 1

]
r108 ⊕

[
(r71 ⊕ 1)r91 ⊕ r71

⊕1
]
r83 ⊕

[
(r71 ⊕ 1)r91 ⊕ r71 ⊕ 1

]
r96 ⊕

[
(r71 ⊕ 1)r91 ⊕ (r71 ⊕ r91)r113 ⊕ r71 ⊕ 1

]
r121 ⊕

[
(r71 ⊕ 1)r91 ⊕ (r71 ⊕ r91)r113 ⊕

(
(r66 ⊕ 1)r71 ⊕ ((r66 ⊕ 1)r71 ⊕ r66 ⊕ 1)r91 ⊕

((r71 ⊕ 1)r91 ⊕ r71 ⊕ 1)r108 ⊕ ((r66 ⊕ 1)r71 ⊕ (r66 ⊕ 1)r91 ⊕ (r71 ⊕ r91)r108)r113 ⊕ r66
⊕1
)
r129 ⊕ r71 ⊕ 1

]
r86 ⊕

[
(r66 ⊕ 1)r71 ⊕

(
(r66 ⊕ 1)r71 ⊕ r66 ⊕ 1

)
r91 ⊕

(
(r66r71

⊕r66)r91 ⊕ r66r71 ⊕ r66
)
r108 ⊕

(
(r66 ⊕ 1)r71 ⊕ (r66 ⊕ 1)r91 ⊕ (r66r71 ⊕ r66r91)r108

)
r113 ⊕ r66 ⊕ 1

]
r129 ⊕

[
(r71 ⊕ r91)r106 ⊕ (r71 ⊕ r91)r108 ⊕ (r71 ⊕ r91)r83 ⊕ (r71 ⊕ r91)

r96 ⊕
(
r13 ⊕ r34 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r59 ⊕ r7

)
r71 ⊕

(
r13 ⊕ r34 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r59

⊕r7
)
r91 ⊕ 1

]
r113 ⊕

[
r13 ⊕ r34 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r59 ⊕ r7

]
r71 ⊕

[(
r13 ⊕ r34 ⊕ r4 ⊕

r46 ⊕ r5 ⊕ r59 ⊕ r7
)
r71 ⊕ r13 ⊕ r34 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r59 ⊕ r7 ⊕ 1

]
r91 ⊕ r10 ⊕ r101 ⊕ r111

⊕r12 ⊕ r126 ⊕ r13 ⊕ r18 ⊕ r34 ⊕ r39 ⊕ r4 ⊕ r46 ⊕ r5 ⊕ r51 ⊕ r59 ⊕ r64 ⊕ r7 ⊕ r88 ⊕ r9

y59 =
[
(r72 ⊕ 1)r92 ⊕ r72 ⊕ 1

]
r107 ⊕

[
(r72 ⊕ 1)r92 ⊕ r72 ⊕ 1

]
r109 ⊕

[
(r72 ⊕ 1)r92 ⊕ r72 ⊕ 1

]
r84 ⊕

[
(r72 ⊕ 1)r92 ⊕ r72 ⊕ 1

]
r97 ⊕

[
(r72 ⊕ 1)r92 ⊕ (r72 ⊕ r92)r114 ⊕ r72 ⊕ 1

]
r122 ⊕[

(r72 ⊕ 1)r92 ⊕ (r72 ⊕ r92)r114 ⊕
(

(r67 ⊕ 1)r72 ⊕ ((r67 ⊕ 1)r72 ⊕ r67 ⊕ 1)r92 ⊕ ((r72 ⊕ 1)

r92 ⊕ r72 ⊕ 1)r109 ⊕
(
(r67 ⊕ 1)r72 ⊕ (r67 ⊕ 1)r92 ⊕ (r72 ⊕ r92)r109

)
r114 ⊕ r67 ⊕ 1

)
r130

⊕r72 ⊕ 1
]
r87 ⊕

[
(r67 ⊕ 1)r72 ⊕ ((r67 ⊕ 1)r72 ⊕ r67 ⊕ 1)r92 ⊕

(
(r67r72 ⊕ r67)r92 ⊕ r67

r72 ⊕ r67
)
r109 ⊕

(
(r67 ⊕ 1)r72 ⊕ (r67 ⊕ 1)r92 ⊕ (r67r72 ⊕ r67r92)r109

)
r114 ⊕ r67 ⊕ 1

]
r130 ⊕

[
(r72 ⊕ r92)r107 ⊕ (r72 ⊕ r92)r109 ⊕ (r72 ⊕ r92)r84 ⊕ (r72 ⊕ r92)r97 ⊕

(
r14 ⊕ r35

⊕r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8
)
r72 ⊕

(
r14 ⊕ r35 ⊕ r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8

)
r92 ⊕ 1

]
r114

⊕
[
r14 ⊕ r35 ⊕ r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8

]
r72 ⊕

[
(r14 ⊕ r35 ⊕ r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8)r72

⊕r14 ⊕ r35 ⊕ r47 ⊕ r5 ⊕ r6 ⊕ r60 ⊕ r8 ⊕ 1
]
r92 ⊕ r10 ⊕ r102 ⊕ r11 ⊕ r112 ⊕ r127 ⊕ r13 ⊕

r14 ⊕ r19 ⊕ r35 ⊕ r40 ⊕ r47 ⊕ r5 ⊕ r52 ⊕ r6 ⊕ r60 ⊕ r65 ⊕ r8 ⊕ r89

y60 = (r73 ⊕ 1)r9 ⊕
[
(r73 ⊕ 1)r93 ⊕ r73 ⊕ 1

]
r108 ⊕

[
(r73 ⊕ 1)r93 ⊕ r73 ⊕ 1

]
r110 ⊕

[
(r73 ⊕ 1)

r93 ⊕ r73 ⊕ 1
]
r98 ⊕

[
(r73 ⊕ 1)r93 ⊕ (r73 ⊕ r93)r115 ⊕ r73 ⊕ 1

]
r123 ⊕

[
(r73 ⊕ 1)r93 ⊕

(r73 ⊕ r93)r115 ⊕ r73 ⊕ 1
]
r85 ⊕

[
(r73 ⊕ 1)r93 ⊕ (r73 ⊕ r93)r115 ⊕

(
(r68 ⊕ 1)r73 ⊕ ((r68 ⊕

1)r73 ⊕ r68 ⊕ 1)r93 ⊕ ((r73 ⊕ 1)r93 ⊕ r73 ⊕ 1)r110 ⊕
(
(r68 ⊕ 1)r73 ⊕ (r68 ⊕ 1)r93 ⊕ (r73

⊕r93)r110
)
r115 ⊕ r68 ⊕ 1

)
r131 ⊕ r73 ⊕ 1

]
r88 ⊕

[
(r68 ⊕ 1)r73 ⊕ ((r68 ⊕ 1)r73 ⊕ r68 ⊕ 1)r93

⊕
(

(r68r73 ⊕ r68)r93 ⊕ r68r73 ⊕ r68
)
r110 ⊕

(
(r68 ⊕ 1)r73 ⊕ (r68 ⊕ 1)r93 ⊕ (r68r73 ⊕ r68

r93)r110
)
r115 ⊕ r68 ⊕ 1

]
r131 ⊕

[
r15 ⊕ r36 ⊕ r48 ⊕ r6 ⊕ r61 ⊕ r7

]
r73 ⊕

[
(r73 ⊕ r93)

r108 ⊕ (r73 ⊕ r93)r110 ⊕ (r73 ⊕ r93)r98 ⊕
(
r15 ⊕ r36 ⊕ r48 ⊕ r6 ⊕ r61 ⊕ r7

)
r73 ⊕

(
r15

⊕r36 ⊕ r48 ⊕ r6 ⊕ r61 ⊕ r7 ⊕ r9
)
r93 ⊕ r73r9 ⊕ 1

]
r115 ⊕

[
(r73 ⊕ 1)r9 ⊕

(
r15 ⊕ r36 ⊕

r48 ⊕ r6 ⊕ r61 ⊕ r7
)
r73 ⊕ r15 ⊕ r36 ⊕ r48 ⊕ r6 ⊕ r61 ⊕ r7 ⊕ 1

]
r93 ⊕ r103 ⊕ r11 ⊕ r113 ⊕

r12 ⊕ r128 ⊕ r14 ⊕ r15 ⊕ r20 ⊕ r36 ⊕ r41 ⊕ r48 ⊕ r53 ⊕ r6 ⊕ r61 ⊕ r66 ⊕ r7 ⊕ r90

114 Chapter 4: Related Key-IV pairs of Grain

y61 = (r74 ⊕ 1)r10 ⊕
[
(r74 ⊕ 1)r94 ⊕ r74 ⊕ 1

]
r109 ⊕

[
(r74 ⊕ 1)r94 ⊕ r74 ⊕ 1

]
r111 ⊕

[
(r74 ⊕ 1)r94

⊕r74 ⊕ 1
]
r99 ⊕

[
(r74 ⊕ 1)r94 ⊕ (r74 ⊕ r94)r116 ⊕ r74 ⊕ 1

]
r124 ⊕

[
(r74 ⊕ 1)r94 ⊕ (r74 ⊕ r94)

r116 ⊕ r74 ⊕ 1
]
r86 ⊕

[
(r74 ⊕ 1)r94 ⊕ (r74 ⊕ r94)r116 ⊕

(
(r69 ⊕ 1)r74 ⊕ ((r69 ⊕ 1)r74 ⊕ r69

⊕1)r94 ⊕ ((r74 ⊕ 1)r94 ⊕ r74 ⊕ 1)r111 ⊕
(
(r69 ⊕ 1)r74 ⊕ (r69 ⊕ 1)r94 ⊕ (r74 ⊕ r94)r111

)
r116

⊕r69 ⊕ 1
)
r132 ⊕ r74 ⊕ 1

]
r89 ⊕

[
(r69 ⊕ 1)r74 ⊕ ((r69 ⊕ 1)r74 ⊕ r69 ⊕ 1)r94 ⊕

(
(r69r74 ⊕ r69)

r94 ⊕ r69r74 ⊕ r69
)
r111 ⊕

(
r69 ⊕ 1)r74 ⊕ (r69 ⊕ 1)r94 ⊕ (r69r74 ⊕ r69r94)r111

)
r116 ⊕ r69

⊕1
]
r132 ⊕

[
r16 ⊕ r37 ⊕ r49 ⊕ r62 ⊕ r7 ⊕ r8

]
r74 ⊕

[
(r74 ⊕ r94)r109 ⊕ (r74 ⊕ r94)r111 ⊕

(r74 ⊕ r94)r99 ⊕
(
r16 ⊕ r37 ⊕ r49 ⊕ r62 ⊕ r7 ⊕ r8

)
r74 ⊕

(
r10 ⊕ r16 ⊕ r37 ⊕ r49 ⊕ r62

⊕r7 ⊕ r8
)
r94 ⊕ r10r74 ⊕ 1

]
r116 ⊕

[
r74 ⊕ 1)r10 ⊕

(
r16 ⊕ r37 ⊕ r49 ⊕ r62 ⊕ r7 ⊕ r8

)
r74

⊕r16 ⊕ r37 ⊕ r49 ⊕ r62 ⊕ r7 ⊕ r8 ⊕ 1
]
r94 ⊕ r104 ⊕ r114 ⊕ r12 ⊕ r129 ⊕ r13 ⊕ r15 ⊕ r16 ⊕ r21

⊕r37 ⊕ r42 ⊕ r49 ⊕ r54 ⊕ r62 ⊕ r67 ⊕ r7 ⊕ r8 ⊕ r91

y62 =
(
r106 ⊕ r64 ⊕ 1)r84 ⊕ r106r64 ⊕ r64 ⊕ 1

)
r127 ⊕ r104 ⊕ r106 ⊕ r11 ⊕ r119 ⊕ r132 ⊕ r2 ⊕ r3 ⊕

r32 ⊕ r44 ⊕ r5 ⊕ r57 ⊕ r81 ⊕ r84 ⊕ r94 ⊕ 1

y63 =
(

(r107 ⊕ r65 ⊕ 1)r85 ⊕ r107r65 ⊕ r65 ⊕ 1
)
r128 ⊕ r105 ⊕ r107 ⊕ r12 ⊕ r120 ⊕ r133 ⊕ r3 ⊕ r33

⊕r4 ⊕ r45 ⊕ r58 ⊕ r6 ⊕ r82 ⊕ r85 ⊕ r95 ⊕ 1

Chapter 5

Differential Fault Analysis of

Grain

In this chapter, we will study a differential fault attack (DFA) against the Grain family

of stream ciphers. We will look at a set of three attacks on the Grain family of stream

ciphers, each of which is mounted under different experimental setups in which the

attacker is granted varying degrees of freedom. We have already seen in Chapter 2 that

most fault attacks require an adversary to physically alter the logic at some random

register location of a given cryptographic device. We will begin with an adversary who

exercises maximum control over the precision and timing of faults and then build up to

the case where the adversary requires least control over fault injections. In this way, in

some sense, we will strengthen the nature of attack over the Grain family. It would be

worthwhile to mention, that all the attacks work due to certain properties of the output

functions and corresponding choices of the LFSR taps employed in the Grain family.

More specifically we have used certain cryptographic properties of the derivatives of the

output function h used in the Grain family. In each of the attack techniques, we will

first present methods to identify the register locations of a randomly applied fault and

then construct set of linear/non-linear equations to obtain the contents of the LFSR and

the NFSR.

5.1 Introduction

Fault attacks have received serious attention in cryptographic literature for more than

a decade [37, 41]. Such attacks have successfully cryptanalyzed block ciphers like Ad-

vanced Encryption Standard and the Digital Encryption Standard, Public key cryptosys-

tems like implementations of CRT-RSA, DSA/RSA based signatures, Elliptic Curve

115

116 Chapter 5: Differential Fault Analysis of Grain

Cryptosystems (please refer to [83] for an extensive analysis of all such attacks). Fault

attacks on stream ciphers have gained momentum ever since the work of Hoch and

Shamir [76] and this model of cryptanalysis, though optimistic, has successfully been

employed against a number of proposals. Fault attacks study the mathematical robust-

ness of a cryptosystem in a setting that is weaker than its original or expected mode of

operation. A typical attack scenario consists of an adversary who injects a random fault

(using laser shots/clock glitches or optical faults using a camera flashgun [124, 125]) in a

cryptographic device as a result of which one or more bits of its internal state are altered.

The faulty output from this altered device is then used to deduce information about its

internal state/secret key. In order to perform the attack, the adversary requires certain

privileges like the ability to re-key the device, control the timing and/or location of the

fault etc. The more privileges the adversary is granted, the more the attack becomes

impractical and unrealistic.

The Grain family of stream ciphers [12, 73, 74] has received a lot of attention from

the cryptological community as it is in the hardware profile of eStream [116]. Prior

to the publication of the series of works related to the differential fault analysis of the

Grain family described in this chapter, two results on the fault analysis of Grain-128

had already been published [35, 85]. Both these attacks were performed under a similar

experimental setup. We will begin by briefly discussing the setup.

• The attacker is in possession of the physical device in which the stream cipher

has been implemented. He therefore, knows the IV and the keystream generated

by the stream cipher. Additionally, in [85], the attacker is assumed to be able to

derive keystream sequences off the cipher by inputing IV’s of his own choice.

• By applying optical faults, the attacker is assumed to be able to apply bit-flipping

faults with a partial control of their location in te register. Now, in order to

this, the attacker uses a dummy device that is architecturally similar or close to

the target device. During a preliminary fault setup stage, he attacks the dummy

device. He scans this device by injecting faults on different areas and analyzes the

corresponding faulty outputs. Finally the attacker replaces the test device with

the target device and attempts to inject faults with respect to the previous setup.

The number of additional adjustments is as small as the test device is close to the

target device.

• In this way, the attacker is able only partially able to control the register location

where he injects a bit-flipping fault. That is to say, he can not exactly choose the

location of the fault. But once he is able to fault any particular location, he is able

to inject faults on that location over and over again without restriction.

Chapter 5: Differential Fault Analysis of Grain 117

• The attacker is able to exercise full control over the timing of application of faults,

by choosing the time of the fault trigger by synchronizing it with the I/O signal.

Shift registers are regularly clocked, and one keystream bit is computed per clock

cycle. Hence, the attacker can identify steps in the execution, and so it is possible

for the attacker to inject a fault at any particular point of the operation. Another

popular way of controlling the fault timing would be by synchronizing it with the

power consumption curves of the device implementing the cryptosystem [52]. This

method can be used when there is no possible way to trigger the faults using I/O

signals of the device.

• The attacker from time to time resets the cryptographic device to its original state.

To sum up, the attacker is able to flip exactly one bit lying in some register location

without choosing its location but at a chosen point in time. He then has the option

of either re-injecting the fault at the same location, or resetting the device to apply a

fresh fault at some other random register location. In addition, [35] assumes that the

attacker is able to restrict its faults to the LFSR of Grain-128, whereas [85] assumes that

the faults are restricted to the NFSR. However, both the attacks described in [35, 85]

are applicable only to Grain-128, whose algebraic structure is arguably the simplest in

the Grain family. The output function h of Grain-128, is the sum of a quadratic bent

function and a degree 3 monomial, whereas the NFSR update function g is the sum of a

simple quadratic bent function and some linear terms. This is a lot simpler as compared

to Grain v1 which has a complicated degree 3 output function h and an NFSR update

function g with an algebraic degree of 6. The fact that the methodology of [35, 85] can

not be extended towards Grain v1 or Grain-128a was the primary motivation to pursue

research in this area.

5.1.1 Fault Attacks on other Stream Ciphers

We have already known about two fault attacks on Grain-128 [35, 85] and the Differential

and Impossible fault attack on RC4 [38]. Apart from these, there has been extensive

fault analysis on most of the ciphers in final portfolio of eStream. We list some of them

below.

Trivium A differential fault attack of Trivium was first published by Hojs‘ık and Rudolf

in [78]. The attack required around 43 random faults on an average and took ad-

vantage of the relatively simple quadratic output functions of the cipher. This

attack was later improved by the same authors in [79] using a floating model of

the cipher. The attack now required only around 3.2 faults on average. In [109],

118 Chapter 5: Differential Fault Analysis of Grain

SAT solvers were first used to propose an improved fault attack that required as

little as 2 faults to cryptanalyze the cipher. In [81], the cipher is attacked under a

more restrictive fault model that does not assume that the attacker can synchro-

nize the timing of fault injection.

Sosemanuk A fault attack on Sosemanuk was first presented in [119]. The attack,

which recovers the secret inner state of the cipher, requires around 6144 faults,

and a time complexity equivalent to around 248 Sosemanuk iterations and a stor-

age of around 238.17 bytes. The attack was later improved in [99]. The new attack

required 4608 faults, time complexity of 235.16 Sosemanuk iterations and 223.46

bytes of storage.

Rabbit A fault attack on Rabbit was first presented in [91]. The attack requires around

128−256 faults, a precomputed table of size 241.6 bytes and recovers the complete

internal state of Rabbit in about 238 steps. The attack was later improved in [36].

In this attack, it was shown that by modifying modular additions of the next-state

function, 32 faulty outputs were enough for recovering the whole internal state of

the cipher in O(234) iterations.

HC-128 A fault attack on HC-128 was first presented in [90].To perform the attack,

the authors exploit the fact that some of the inner state words in HC-128 may

be utilized several times without being updated. The attack requires about 7968

faults and recovers the complete internal state of HC-128 by solving a set of 32

systems of linear equations over GF (2) in 1024 variables.

5.1.2 Our Results

In the remainder of this chapter we will show how an attacker with varying degrees of

freedom can approach the problem of performing a fault attack on all the three ciphers

of the Grain family. In Section 5.3, we will begin with a powerful attacker who in

addition to a dummy device also possesses the ability to synchronize and control the

timing of his faults, so that he is able to fault exactly one random register location over

and over again. Then, in Section 5.4, we will explore a more realistic situation in which

the attacker does not possess the ability to fault any random register location more than

once. Finally, in Section 5.4, we present our strongest attack yet on the Grain family in

which

• we show a drastic reduction in the number of faults required to perform the attack

and

Chapter 5: Differential Fault Analysis of Grain 119

• explore the situation when a resource-constrained attacker is

1. unable to synchronize the timing of fault injection.

2. unable to guarantee that an injected fault flips the logic at only a single

register location. We consider the case when an applied fault may with a

uniform probability distribution, affect the logic values at upto 3 consecutive

register locations.

Also, in all our attacks we assume that the attacker is unable to restrict fault injections

to either only the LFSR as in [35] or only the NFSR as in [85]. We assume that a

randomly injected fault has has equal probability of hitting either the LFSR or the

NFSR. This to the best of our knowledge is the best and the most realistic fault attack

reported against the Grain family.

5.2 Obtaining the Location of the Fault

Central to the attack procedures that we shall describe, is the ability of the attacker

to deduce the location of a randomly injected fault by simply examining the faulty

keystream produced as a result of it (we will consider the single bit-flip model for the

time being and build up to the multi-bit flip model later in the chapter). Unless otherwise

stated, we will assume that the attacker injects the fault just at the start of the PRGA

(we will consider the case of unsynchronized faults later in the chapter). Now, in order

to deduce the fault location, we will define a set of Signature vectors for every register

location in the cipher and compare the difference of the faulty and fault-free keystreams

with these vectors. Thereafter, after a process of matching and elimination the attacker

would be able, with high probability, conclusively able to determine the location of the

injected fault.

For example, assume that the attacker injects a fault at the beginning of the PRGA

stage of Grain v1. Suppose, that the attacker wants to preclude the possibility that the

fault has been injected in the 79th location of the LFSR. Let S0, S0,∆79 ∈ {0, 1}160 be

the initial states of the PRGA which differ only in the 79th LFSR position. Then, we

have already seen in Theorem 4.1, that the 2 states produce identical output bits in 68

specific positions among the initial 80 keystream bits produced during the PRGA. That

is to say, if an input differential is introduced in the 79th LFSR position via a bit-flipping

fault, then at all rounds numbered

k ∈ [0, 79] \ {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76},

120 Chapter 5: Differential Fault Analysis of Grain

the difference exists in positions that do not provide input to the Boolean function h and

hence at these clocks the keystream bit produced by the faulty and faultless states are

essentially the same. At all other clock rounds the difference appears at positions which

provide input to h. Hence the keystream produced at these clocks may be different. So,

if the attacker observes that 15th faulty and fault-free keystream bits are different, he

can immediately conclude that the fault could not have been injected in the 79th LFSR

location. Note, that the attacker needs to do a similar analysis for all the 160 register

locations and then come to a conclusion about the actual fault location. In order to do

that one must devise a generalization of the above ideas, which we proceed to describe

next.

5.2.1 Differential Grain

In this subsection, we will define a tool to compute the differential trails of any cipher

in the Grain family. Therefore let us define a generalized1 Grain stream cipher which

will cover the descriptions of Grain v1, Grain-128 and Grain-128a as well. We already

know that any cipher in the Grain family consists of an n-bit LFSR and an n-bit NFSR

(see Figure 4.1). The update function of the LFSR is given by the equation

yt+n = f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa ,

where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the

tth clock interval and f is a linear function on the LFSR state bits obtained from a

primitive polynomial in GF (2) of degree n. The NFSR state is updated as

xt+n = yt ⊕ g(Xt) = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb).

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state at the

tth clock interval and g is a non-linear function of the NFSR state bits. The output

key-stream is produced by combining the LFSR and NFSR bits as

zt = xt+l1 ⊕ xt+l2 ⊕ · · · ⊕ xt+lc ⊕ yt+i1 ⊕ yt+i2 ⊕ · · · ⊕ yt+id⊕
h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw).

Here h is another non-linear combining Boolean function. So it is clear that Grain v1,

Grain-128 and Grain-128a are particular instances of the generalized Grain cipher.

Let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the generalized Grain PRGA and

S0,∆φ
be the initial state which differs from S0 in some register location φ ∈ [0, 2n− 1].

Chapter 5: Differential Fault Analysis of Grain 121

Now, if φ ∈ [0, n−1], we will consider φ to be the φth LFSR location, and if φ ∈ [n, 2n−1],

we will consider φ to be the (φ− n)th NFSR location.

The task is to ascertain how the corresponding internal states in the tth round St and

St,∆φ
will differ from each other, for some integer t > 0. One such tool appeared in [35],

but our approach is improved and more involved. We present the following algorithm

which we will call D-Grain that takes as input the difference location φ ∈ [0, n−1] and

the round r, and returns

(i) a set of r integer arrays χt, for 0 ≤ t < r, each of length c+ d,

(ii) a set of r integer arrays Υt, for 0 ≤ t < r, each of length e+ w and

(iii) an integer array ∆Z of length r.

Note that as already defined in the description of generalized Grain, d, c are the number

of LFSR, NFSR bits which are linearly added to the output function h. And e, w are

the number of LFSR, NFSR bits that are input to the function h.

Now consider the corresponding generalized differential engine ∆φ-Grain with an n-cell

LFSR ∆L and an n-cell NFSR ∆N . All the elements of ∆L and ∆N are integers. We

will denote the tth round state of ∆L as ∆Lt = [ut, ut+1, . . . , ut+n−1] and that of ∆N as

∆Nt = [vt, vt+1, . . . , vt+n−1]. Initially all the elements of ∆N,∆L are set to 0, with the

only exception that

• If φ ∈ [0, n− 1], then the cell numbered φ of ∆L is set to 1.

• Else if φ ∈ [n, 2n− 1], then the cell numbered φ− n of ∆N is set to 1.

The initial states ∆N0,∆L0 are indicative of the difference between S0 and S0,∆φ
and

we will show that the tth states ∆Nt,∆Lt are indicative of the difference between St and

St,∆φ
. ∆L updates itself as

ut+n = ut + ut+f1 + ut+f2 + · · ·+ ut+fa mod 2

and ∆N updates itself as

vt+n = ut + 2 ·OR(vt, vt+g1 , vt+g2 , . . . , vt+gb).

The rationale behind the update functions will be explained later. Here OR is a map

from Zb+1 → {0, 1} which roughly represents the logical ‘or’ operation and is defined as

OR(k0, k1, . . . , kb) =

{
0, if k0 = k1 = k2 = · · · = kb = 0,

1, otherwise.

122 Chapter 5: Differential Fault Analysis of Grain

Let

χt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id]

Υt = [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw].

Note that χt(Υt) is the set of cells in ∆φ-Grain which corresponds to the bits which are

linearly added to the output function h (input to h) in the tth PRGA stage of the actual

cipher.

If V is a vector having non-negative integral elements, then V v β, (for some positive

integer β), implies that all elements of V are less than or equal to β. The tth key-stream

element ∆zt produced by this engine is given as

∆zt =

0, if Υt = 0 AND χt v 1 AND ‖ χt ‖ is even

1, if Υt = 0 AND χt v 1 AND ‖ χt ‖ is odd

2, otherwise.

Here 0 denotes the all zero vector, and ‖ · ‖, as defined in Section 2.1.2, denotes the

number of non-zero elements in a vector. Initially ∆N0,∆L0 represent the difference of

S0 and S0,∆φ
. As the PRGA evolves, the only non-zero element (having value 1) of ∆L

propagates and so does the difference between St and St,∆φ
. Since the LFSR in Grain

is updated by a linear function, whenever the difference between St and St,∆φ
is fed

back via the update function, a 1 is fed back in ∆L. Now when the difference between

St and St,∆φ
propagates to some NFSR tap location gi (for some value of t), then this

difference may or may not be fed back, depending on the nature of the Boolean function

g and the current state St. Hence in such a case the propagation of the differential is

probabilistic. Note that in all such situations, either the integer 2 or 3 is fed back in

∆N as is apparent from the update equation for vt+n. Therefore whenever

1. some cell in ∆Lt or ∆Nt is 0, it implies that the corresponding bits are equal in

St and St,∆φ
with probability 1;

2. some cell in ∆Lt or ∆Nt is 1, it implies that the corresponding bits are different

in St and St,∆φ
with probability 1;

3. some cell in ∆Lt or ∆Nt is 2 or 3, it implies that the corresponding bits are

different in St and St,∆φ
with some probability 0 < pd < 1.

Also, note that whenever Υt is 0, it implies that all the bits of St and St,∆φ
that provide

inputs to the non-linear function h are the same (for all choices of S0). Whenever all

elements of χt are less than or equal to 1, it implies that each one of the elements of St

Chapter 5: Differential Fault Analysis of Grain 123

and St,∆φ
which linearly adds on to the output function h to produce the output key-

stream bit is either equal or different with probability 1. When both these events occur,

the key-stream bits produced by St and St,∆φ
are definitely the same if ‖ χt ‖ is an even

number, as an even number of differences cancel out in GF(2). When this happens, ∆φ-

Grain outputs ∆zt = 0. If ‖ χt ‖ is an odd number, then the key-stream bits produced

by St and St,∆φ
are different with probability 1. In this case ∆zt = 1. In all other

cases, the difference of the key-stream bits produced by St and St,∆φ
is equal to 0 or

1 with some probability, and then ∆zt = 2. We describe the routine D-Grain(φ, r) in

Algorithm 5.1 which returns the arrays χt,Υt for 0 ≤ t < r and ∆Z = [∆z0, . . . ,∆zr−1].

5.2.2 The routine FLocI(Eφ)

Let S0 ∈ {0, 1}2n be the initial state of the Grain family PRGA described in Section 5.2.1

and S0,∆φ
be the initial state resulting after injecting a single bit fault in some register

location φ ∈ [0, 2n − 1] at the beginning of the PRGA. Let Z = [z0, z1, . . . , z2n−1]

and Zφ = [zφ0 , z
φ
1 , . . . , z

φ
2n−1] be the first 2n key-stream bits produced by S0 and S0,∆φ

respectively. Define a 2n bit vector Eφ over GF(2) defined as follows. Let Eφ be the

bitwise logical XNOR (complement of XOR) of Z and Zφ, i.e.,

Eφ = 1⊕ Z ⊕ Zφ.

Similarly we define Eφ = 1⊕ Eφ. We will now describe the fault location identification

routine FLocI(Eφ) the task of which is to determine the fault location φ by analyzing

the vector Eφ.

Note that, in Grain-128a due to the provision of optional authentication, the entire

Z and Zφ may not be available to the attacker. Thus, we will deal with the case of

Grain-128a separately.

Grain v1 and Grain-128 Since S0 can have 2n+m values (each arising from a different

combination of the n bit key and m bit IV, the remaining n−m padding bits are fixed),

each of these choices of S0 may lead to different patterns of Eφ. The bitwise logical

AND of all such vectors Eφ is denoted as the First Signature vector Q1
φ for the fault

location φ. Similarly the bitwise logical AND of all such vectors Eφ is denoted as the

Second Signature vector Q2
φ for the fault location φ. Note that whenever Q1

φ(i) (Q2
φ(i))

is 1 for any i ∈ [0, 2n − 1] this implies that the ith key-stream bit produced by S0 and

S0,∆φ
is equal (different) for all choices of S0.

124 Chapter 5: Differential Fault Analysis of Grain

Input: φ: An fault location ∈ [0, 2n− 1], an integer r(> 0);

Output: An integer array ∆Z of r elements;

Output: Two integer arrays χt,Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1]← 0, [v0, v1, . . . , vn−1]← 0;

t← 0;

if φ ∈ [0, n− 1] then
uφ = 1;

end
else

vφ−n = 1;
end

while t < r do
/* The modification for Proof of Lemma 5.1 goes here */;1

Υt ← [uh1 , uh2 , . . . , uhe , vj1 , vj2 , . . . , vjw] ;

χt ← [vl1 , vl2 , . . . , vlc , ui1 , ui2 , . . . , uid];

if Υt = 0 AND χt v 1 then
if |χt| is EVEN then

∆zt ← 0;

end
if |χt| is ODD then

∆zt ← 1;

end

end
else

∆zt ← 2;

end
t1 ← u0 + uf1 + uf2 + . . .+ ufa mod 2;

t2 ← u0 + 2 ·OR(v0, vg1 , vg2 , . . . , vgb);

[u0, u1, . . . , un−2, un−1]← [u1, u2, . . . , un−1, t1];

[v0, v1, . . . , vn−2, vn−1]← [v1, v2, . . . , vn−1, t2];

t = t+ 1;
end
∆Z = [∆z0,∆z1, . . . ,∆zr−1];

Return [χ0, χ1, . . . , χr−1], [Υ0,Υ1, . . . ,Υr−1], ∆Z

Algorithm 5.1: D-Grain(φ, r)

This implies that if ∆φZ = [∆φz0,∆φz1, . . . ,∆φz2n−1] is the third output of the routine

D-Grain(φ, 2n), then

Q1
φ(i) =

{
1, if ∆φzi = 0,

0, otherwise.
Q2
φ(i) =

{
1, if ∆φzi = 1,

0, otherwise.

Chapter 5: Differential Fault Analysis of Grain 125

Grain-128a Grain-128a has a different encryption strategy in which the first 64 key-

stream bits and every alternate key-stream bit thereof is used to construct the mes-

sage authentication code and therefore unavailable to the attacker. To circumvent

this problem, in Grain-128a every re-keying is followed by a fault injection at the be-

ginning of round 64 of the PRGA instead of round 0. Hence the vectors Z,Zφ are

defined as Z = [z64, z66, . . . , z318] and Zφ = [zφ64, z
φ
66, . . . , z

φ
318]. As before, we define

E(φ) = 1⊕Z ⊕Zφ and E(φ) = 1⊕E(φ) and Q1
φ,Q2

φ are defined as the bitwise AND of

all possible E(φ), E(φ) respectively. Note that if a fault is applied at a random LFSR

location φ at the 64th PRGA round, then the tth state of ∆φ-Grain will align itself with

the (64 + t)th state of Grain-128a. This implies that if ∆φZ = [∆φz0,∆φz1, . . . ,∆φz255]

is the third output of the routine D-Grain(φ, 256), then

Q1
φ(i) =

{
1, if ∆φz2i = 0,

0, otherwise.
Q2
φ(i) =

{
1, if ∆φz2i = 1,

0, otherwise.

5.2.3 First and Second Signature Vectors Q1
φ,Q2

φ

The task for the fault identification routine is to determine the value of φ given the

vector Eφ. For any element V ∈ {0, 1}l, define the set

BV = {i : 0 ≤ i < l, V (i) = 1}

i.e. Bv is the support of of V . Now define a relation � in {0, 1}l such that for any two

elements V1, V2 ∈ {0, 1}l, we will have V1 � V2 if BV1 ⊆ BV2 . Now we check the elements

in BEφ and BEφ . By definition, these are the PRGA rounds i during which zi = zφi and

zi 6= zφi respectively. By the definition of the first and second Signature vector proposed

above, we know that for the correct value of φ, BQ1
φ
⊆ BEφ , BQ2

φ
⊆ BEφ and hence

Q1
φ � Eφ,Q2

φ � Eφ. So our strategy would be to search over all the 2n first Signature

vectors and formulate the first candidate set

Ψ0,φ = {ψ : 0 ≤ ψ ≤ 2n− 1, Q1
ψ � Eφ}.

If |Ψ0,φ| is 1, then the single element in Ψ0,φ will give us the fault location φ. If not, we

then formulate the second candidate set

Ψ1,φ = {ψ : ψ ∈ Ψ0,φ, Q2
ψ � Eφ}.

If |Ψ1,φ| is 1, then the single element in Ψ1,φ will give us the fault location φ. If Ψ1,φ

has more than one element, we will be unable to decide conclusively at this stage.

126 Chapter 5: Differential Fault Analysis of Grain

Experimental Results

After comparing the differential vector Eφ with the first and second signature vectors

of all the 2n register locations using the strategy outlined above. After the comparison

with the signature vectors the routine will either output

1. The LFSR or NFSR location φ of the induced fault, OR

2. If |Ψ1,φ| > 1, then it outputs a failure message ⊥.

We performed computer experiments by simulating random single bit faults for 220

randomly chosen Key-IVs. The probability that this algorithm identifies the correct

fault location in the LFSR or the NFSR i.e. Pr(|Ψ1,φ| = 1) is around 0.99 for Grain v1,

1.00 for Grain-128 and 0.81 for Grain-128a.

5.2.4 Improving the success probabilities: Third and Fourth signature

Vectors

While the probabilities of success of fault location identification are very high (close

to 1) for both Grain v1 and Grain-128, it is around 0.81 for Grain-128a. One of the

reasons why the success probability relatively low for Grain-128a is because in the event

the cipher is used for the dual purpose of authentication and encryption, it does not

make each and every key-stream bit directly available to the adversary. As has been

explained, the key-stream bits of the first 64 rounds and every alternate round thereafter

contribute to the computation of the MAC and is not directly available to the adversary.

This limits the information available to the location identification algorithm and hence

the slightly low success probability.

This leaves plenty of room for improving the success probabilities towards 1. We already

know that given a single bit fault in the internal state of the cipher, the faulty and the

faultless key-streams at certain PRGA rounds are guaranteed to be equal and they are

also guaranteed to be different at certain other rounds. However there may be situations

when the difference of the faulty and faultless key-stream bits at a certain PRGA round

i, i.e., zi ⊕ zφi is deterministically equal or unequal to the difference of the faulty and

faultless key-stream bits zj⊕zφj at some other PRGA round j even though the difference

of these bits at either rounds i or j themselves is not guaranteed to be either 0 or 1.

That is to say if δt0 = zt0 ⊕ zφt0 , and δt1 = zt1 ⊕ zφt1 for two integers t0, t1, then there

exist certain values of φ, t0 and t1, for which

Chapter 5: Differential Fault Analysis of Grain 127

A. δt0 = δt1 always holds but δt0 = 0, δt1 = 0 or δt0 = 1, δt1 = 1 does not hold for all

values of S.

B. δt0 = 1⊕ δt1 always holds but δt0 = 0, δt1 = 1 or δt0 = 1, δt1 = 0 does not hold for

all values of S.

We will first use the tool D-Grain(φ, r) proposed in Section 5.2.1 that can be used to

analyze all the 3 versions of Grain. Briefly recalling, D-Grain(φ, r) is an algorithm that

performs simple truncated differential analysis of the Grain cipher. It takes two inputs:

(a) the fault location φ ∈ [0, 2n− 1] in either the LFSR or NFSR, and (b) the number

of PRGA rounds r for which the analysis is to be performed. The algorithm initializes a

differential engine ∆φ-GRAIN, which consists of an n-integer LFSR and NFSR with the

same taps as a given version of Grain, but with different update functions. Table 5.1

presents a comparison.

Grain cipher

LFSR Update yt+n = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa
NFSR Update xt+n = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb)

∆φ-GRAIN

LFSR Update ut+n = ut + ut+f1 + ut+f2 + . . .+ ut+fa mod 2
NFSR Update vt+n = ut + 2 ·OR(vt, vt+g1 , . . . , vt+gb)

Table 5.1: The engine ∆φ-GRAIN

Let us denote the symbols St = Xt||Yt and Sφt = Xφ
t ||Y φ

t the corresponding internal

states at round t, which differed in the LFSR location φ at the beginning of the PRGA.

Also let ηt, θt (resp. ηφt , θ
φ
t) be the tth round vectors of St (resp. Sφt) that contribute

to the output key-stream bit as a linear mask and input to the function h respectively.

Then it has been shown in Section 5.2.1, that if the ith element of χt (resp. Υt) is

(1) 0, then the ith bits of ηt and ηφt (θt and θφt) is equal for all values of S0,

(2) 1, then the ith bits of ηt and ηφt (θt and θφt) is unequal for all values of S0,

(3) 2 or 3, then the difference between the ith bits of ηt and ηφt (θt and θφt) is probabilistic.

Similarly, if ∆zt is 0 or 1, it implies that zt and zφt are respectively equal or unequal for

all S0. However if this output is 2 then the difference is probabilistic.

Consider the situation when for some particular value of φ the output in the tth0 PRGA

round of D-Grain(φ, r) i.e. [χt0 ,Υt0 ,∆zt0] be such that

(i) Υt0 = 0 and

128 Chapter 5: Differential Fault Analysis of Grain

(ii) χt0 has all but one element equal to 0, and this non-zero element is strictly greater

than 1, i.e. vt0+lw > 1 for some w ≤ c and all other vt0+lk , ut0+ik equals 0.

Then following (1) - (3), for all values of S, we must have θt0 = θφt0 and ηt0 and ηφt0
have all but their wth element deterministically equal. Let us call the difference of the

wth elements of these vectors equal to δ. If P(·) denotes the GF(2) sum of the elements

of a vector, then we have

δt0 = zt0 ⊕ zφt0 = P(ηt0)⊕ h(θt0)⊕ P(ηφt0)⊕ h(θφt0) = δ (say).

Consider the output of D-Grain(φ, r) at the PRGA round t1 = t0 − le + lw for some

le < lw. Note that due to the evolution of the LFSR of ∆φ-GRAIN the difference of the

eth element of χt1 must be equal to the wth element of χt0 . Now if (iii) all the remaining

elements of χt1 and the entire of Υt1 are all 0′s, then following the previous argument

we have

δt1 = zt1 ⊕ zφt1 = P(ηt1)⊕ h(θt1)⊕ P(ηφt1)⊕ h(θφt1) = δ.

Thus at PRGA rounds t0, t1 we have δt0 = δt1 = δ, even though δ itself is not determin-

istic. Experimental results have shown that for all the three versions of Grain, taking

r = 2n, there exist such pairs t0, t1 for many values of φ.

Similarly consider some other PRGA round t1 = t0 − le′ + lw for some le′ < lw. Then

the difference of the e′-th element of χt1 must be equal to the wth element of χt0 . Now

if (iv) Υt1 = 0 and (v) there exists some w′ such that χt1 [w′] = 1 and all the remaining

elements of of χt1 is 0, this implies that

(vi) all elements of θt1 and θφt1 are deterministically equal,

(vii) the w′-th elements of ηt1 and ηφt1 are deterministically unequal,

(viii) the difference δ between the e′-th element of ηt1 and ηφt1 is probabilistic and

(ix) all other elements of ηt1 and ηφt1 are deterministically equal.

When this occurs,

δt1 = zt1 ⊕ zφt1 = P(ηt1)⊕ h(θt1)⊕ P(ηφt1)⊕ h(θφt1) = 1⊕ δ.

Thus at PRGA rounds t0, t1 we have δt0 = 1⊕δt1 = δ even though δ is non-deterministic.

As above, the existence of φ for which there exist PRGA rounds t0, t1 that satisfy (i),(ii)

Chapter 5: Differential Fault Analysis of Grain 129

and (iv),(v) for all the three versions of Grain, can be shown by construction, i.e., by

executing the D-GRAIN (φ, r) routine for r = 2n and for all φ ∈ [0, 2n− 1].

Example 5.1. Let S, S∆38 be two internal states in Grain v1, that differ only in the

LFSR location 38 at the beginning of the PRGA. Then although z79 = z38
79 , z104 = z38

104⊕1

or z79 = z38
79⊕1, z104 = z38

104⊕1 does not hold for all values of S, z79⊕z38
79 = z104⊕z38

104⊕1

always holds.

Example 5.2. Again, let S, S∆0 be two internal states in Grain v1 that differ only in

the LFSR location 0 at the beginning of the PRGA. Then although z41 = z0
41, z66 = z0

66

or z41 = z0
41 ⊕ 1, z66 = z0

66 ⊕ 1 does not hold for all values of S, z41 ⊕ z0
41 = z66 ⊕ z0

66

always holds.

Now by performing a differential trail analysis using D-Grain(φ, r) for all the register

locations φ in the LFSR and the NFSR we will obtain a set of PRGA rounds for most of

the register locations at which the difference between the faulty and faultless key-stream

bits are thus related. This fact can be further utilized to improve the success probability

of the identification algorithm. For example, suppose the given identification algorithm

using the first two signature vectors, narrows down the set Ψ1,φ to {0, 25}. Now suppose,

we observe that z41⊕ zφ41 = 1⊕ z66⊕ zφ66. We can immediately conclude that φ 6= 0, and

hence φ = 25 must be the actual fault location.

We will now formalize the above ideas by first defining the Third and Fourth sig-

nature vectors Q3
φ,Q4

φ ∈ {0, 1}2n. As before, we index the n LFSR locations as

0, 1, . . . , n− 1 and the n NFSR locations as n, n+ 1, . . . , 2n− 1. Then for every register

location φ ∈ [0, 2n− 1] define the set of tuples

Cφ3 = {(i, j) : i 6= j and zi ⊕ zφi = zj ⊕ zφj = δ, ∀ S0, but 0 < Pr(δ = 0) < 1}

and Cφ4 = {(i, j) : i 6= j and zi ⊕ zφi = zj ⊕ zφj ⊕ 1 = δ, ∀ S0, but 0 < Pr(δ = 0) < 1}

Now we define Q3
φ,Q4

φ as

Q3
φ(i) = Q3

φ(j) =

{
max(i, j), if (i, j) ∈ Cφ3
0, otherwise.

Q4
φ(i) = Q4

φ(j) =

{
max(i, j), if (i, j) ∈ Cφ4
0, otherwise.

The max() function has been chosen to ensure that for two distinct pairs (i0, j0) 6=
(i1, j1) ∈ Cφt , we have Qtφ(i0) 6= Qtφ(i1). Now for φ to be the correct fault location for

some differential vector Eφ we must have Eφ(i) = Eφ(j) whenever Q3
φ(i) = Q3

φ(j) 6= 0

130 Chapter 5: Differential Fault Analysis of Grain

and Eφ(i) = 1⊕Eφ(j) whenever Q4
φ(i) = Q4

φ(j) 6= 0. Let us denote these conditions by

the notations Eφ C Q3
φ and Eφ C Q4

φ. Now, our strategy would be to take the second

candidate set Ψ1,φ and examine all the 2n third Signature vectors and formulate the

third candidate set defined as

Ψ2,φ = {ψ : ψ ∈ Ψ1,φ, Eφ CQ3
ψ}.

If |Ψ2,φ| is 1, then the single element in Ψ2,φ will give us the fault location φ. If not, we

then formulate the fourth candidate set

Ψ3,φ = {ψ : ψ ∈ Ψ2,φ, Eφ CQ4
ψ}.

If |Ψ3,φ| is 1, then the single element in Ψ3,φ will give us the fault location φ. If Ψ3,φ

has more than one element, we will be unable to decide conclusively at this stage and

the algorithm returns a failure message.

We now formally define our fault location identification algorithm FLocI(Eφ) in Algo-

rithm 5.2.

Input: The vector Eφ

Output: The fault location φ ∈ [0, 2n− 1] or a failure message ⊥

Compute the vectors Q1
φ,Q2

φ,Q3
φ,Q4

φ

Formulate the set Ψ0,φ = {ψ : 0 ≤ ψ ≤ n− 1, Q1
ψ � Eφ}.

if |Ψ0,φ| = 1 then
Return the single element in Ψ0,φ

end

Formulate the set Ψ1,φ = {ψ : ψ ∈ Ψ0,φ, Q2
ψ � Eφ}.

if |Ψ1,φ| = 1 then
Return the single element in Ψ1,φ

end

Formulate the set Ψ2,φ = {ψ : ψ ∈ Ψ1,φ, Eφ CQ3
ψ}.

if |Ψ2,φ| = 1 then
Return the single element in Ψ2,φ

end

Formulate the set Ψ3,φ = {ψ : ψ ∈ Ψ2,φ, Eφ CQ4
ψ}.

if |Ψ3,φ| = 1 then
Return the single element in Ψ3,φ

end

Return ⊥.

Algorithm 5.2: The routine FLocI(Eφ)

Chapter 5: Differential Fault Analysis of Grain 131

Experimental Results

We again performed computer experiments by simulating random single bit faults for

220 randomly chosen Key-IVs. The probability that the routine FLocI(Eφ) identifies the

correct fault location in the LFSR or the NFSR i.e. Pr(|Ψ3,φ| = 1) is around 1.00 for

Grain v1, 1.00 for Grain-128 and 0.81 for Grain-128a.

5.3 DFA on Grain under relaxed assumptions

Now, once the attacker has deduced the location of an injected fault, he can proceed to

use this information to mount an attack on the cipher. In this section we will describe

an attack on the Grain family, under the most relaxed of assumptions, i.e., we assume

that the attacker is well equipped and has the power to do the following:

• Inject multiple, time-synchronized, single bit-flipping faults in the same albeit

random register location.

• Reset the device implementing the cipher and restart cipher operations afresh.

As already explained, there have been two other works presented in [35, 85], that crypt-

analyze Grain-128 under the same fault model. However the algebraic structure of

Grain-128 is relatively simple as the NFSR update g in Grain-128 is quadratic and the

output function h is the sum of only one cubic monomial and a quadratic bent function.

This is not the scenario in Grain v1, where the Boolean functions are of more com-

plicated structure in their Algebraic Normal Form. Therefore, in this chapter, we will

concentrate on Grain v1 as a case study to explain our novel approach. However, the

attack is indeed generic and it will apparent that it works for any version of the Grain

family.

The novel idea this fault attack is based on certain specific observations related to the

output Boolean function h. For Grain v1, h is a 5-variable function with the differential

property that

h(s0, s1, s2, s3, s4)⊕ h(1⊕ s0, 1⊕ s1, s2, s3, 1⊕ s4) = s2.

By using this differential property judicially, one can formulate several linear equations

on the LFSR state variables in the beginning of the PRGA, and by solving them we get

the complete LFSR state. Then we further note that h can be written as

s4 · u(s0, s1, s2, s3)⊕ v(s0, s1, s2, s3),

132 Chapter 5: Differential Fault Analysis of Grain

where

u(s0, s1, s2, s3)⊕ u(s0, 1⊕ s1, s2, 1⊕ s3) = 1.

This property helps us in determining the NFSR bits.

5.3.1 Determining the LFSR Internal State

Once the fault location φ has been identified we can proceed towards determining the

LFSR internal state at the beginning of the PRGA. Depending on the value of φ we do

one of the following.

• If 80 ≤ φ ≤ 159, i.e., the fault is injected in an NFSR location, we disregard the

faulty keystream bits and reset the cipher and look to hit an LFSR location.

• If 0 ≤ φ ≤ 37, we disregard the faulty keystream bits, and reset the cipher and

look to hit another LFSR location.

• If 38 ≤ φ ≤ 41, we look to apply another fault at the same location φ at the

beginning of PRGA round 20 and record the faulty keystream bits at certain

specific PRGA rounds. We then reset the cipher and look to hit another LFSR

location.

• If 42 ≤ φ ≤ 79, we look to apply another fault at the same location φ at the

beginning of PRGA round 20 and record the faulty keystream bits at certain

specific PRGA rounds. We reset the cipher again and apply faults at the location

φ at the beginning of PRGA rounds 204, 224 and record the faulty keystream bits

at certain other specific PRGA rounds. We then reset the cipher and look to hit

another LFSR location

• We continue this process till all LFSR locations 38 to 79 have been hit.

Before describing the attack in detail let us state the following symbolic notations that

we shall be using henceforth.

Some notations

1. St = [xt0, x
t
1, . . . , x

t
79 yt0, y

t
1, . . . , y

t
79] is used to denote the internal state of the

cipher at the beginning of round t of the PRGA. Thus xti (yti) denotes the ith

NFSR (LFSR) bit at the start of round t of the PRGA. When t = 0, we use

S0 = [x0, x1, . . . , x79 y0, y1, . . . , y79] to denote the internal state for convenience.

Chapter 5: Differential Fault Analysis of Grain 133

2. St,∆φ
(t1, t2) is used to denote the internal state of the cipher at the beginning of

round t of the PRGA, when a fault has been injected in LFSR location φ at the

beginning of the tth1 and the tth2 PRGA round.

3. zφi (t1, t2) denotes the keystream bit produced in the ith PRGA round, after faults

have been injected in LFSR location φ at the beginning of the tth1 and the tth2

PRGA round. zi is the fault-free ith keystream bit.

Beginning the attack

We start by making the following observation about the output Boolean function h in

Grain v1: h(s0, s1, s2, s3, s4)⊕h(1⊕ s0, 1⊕ s1, s2, s3, 1⊕ s4) = s2. Note that s0, s1, s2, s3

correspond to LFSR locations 3, 25, 46, 64 respectively and s4 corresponds to the NFSR

location 63. This implies that if two internal states S and S∆ be such that they differ

in LFSR locations 3, 25 and NFSR location 63 and in no other location that contributes

inputs to the output keystream bit, then the difference of the keystream bit produced

by them will be equal to the value in LFSR location 46. Getting differentials at exactly

these 3 locations may be difficult by injecting a single fault, but may be achieved if we

faulted the same LFSR location twice, as will be explained by the following lemma.

Lemma 5.1. If a fault is injected in LFSR location 38+r (0 ≤ r ≤ 41), at the beginning

of the PRGA rounds λ and λ + 20 (λ = 0, 1, . . .), then in round number 55 + λ + r of

the PRGA, the faulty internal state S55+λ+r,∆38+r(λ, λ + 20) and the fault-free internal

state S55+λ+r will differ in LFSR locations 3, 25 and NFSR location 63 and in none of

the other 9 tap locations that contributes to the output keystream bit.

Proof. We will prove the Lemma for λ = 0. That the proof will hold for any λ > 0 is

obvious from the statement. The proof requires the analysis of the differential trail of the

successive PRGA rounds and thus one must execute the D-Grain(38 + r, 160) routine

(see Algorithm 5.1). However, this is slightly tricky as the D-Grain routine assumes

that the fault is always injected at the start of PRGA and does not make provision for

multiple fault injection at the same location. In order to circumvent this, we will modify

the D-Grain routine as follows: we replace the comment in Line 1 of D-Grain, i.e.,

Algorithm 5.1 by the statement

If t = 20 then uφ = 1

This will now take care of the double fault situation. After executing this routine for

all φ = 38 + r (0 ≤ r ≤ 41), one will observe that Υ55+r will have 1 in the positions

134 Chapter 5: Differential Fault Analysis of Grain

corresponding to LFSR locations 3, 25 and NFSR location 63. All other elements of

Υ55+r and χ55+r will be zeroes, thus proving the Lemma.

The above lemma implies that if λ = 0, i.e., if faults are injected at the beginning of the

PRGA and round 20 at location 38 + r, 0 ≤ r ≤ 41 of the LFSR, then in the PRGA

round 55 + r we will have

z55+r ⊕ z38+r
55+r(0, 20) = y55+r

46 ∀r ∈ [0, 41].

Now since the NFSR does not influence the LFSR during the PRGA, y55+r
46 is a linear

function of the initial LFSR bits y0, y1, . . . , y79 for all 0 ≤ r ≤ 41. For example, by

analyzing the LFSR we have

y55
46 = y3 ⊕ y16 ⊕ y21 ⊕ y26 ⊕ y34 ⊕ y41 ⊕ y44 ⊕ y54 ⊕ y59 ⊕ y65 ⊕ y72.

So in this process, we obtain 42 linear equations in the original LFSR bits y0, y1, . . . , y79.

We need another 38 equations such that the resulting 80 equations are linearly indepen-

dent. We have attempted to find the remaining 38 equations by resetting the cipher and

then introducing faults later in the PRGA. If we let λ = 204, i.e., if double faults were

introduced in LFSR locations 42 + r with 0 ≤ r ≤ 37 at the beginning of the PRGA

rounds 204 and 224, then by the previous analysis it may be deduced that

z263+r ⊕ z42+r
263+r(204, 224) = y263+r

46 ∀r ∈ [0, 37].

This provides us with another 38 equations. We have observed that these equations are

linearly independent. Writing these equations in matrix notation, we have LY = W .

The rows of the matrix L is defined by the linear functions y55
46, y

56
46, . . . , y

96
46, y

263
46 , . . . , y

300
46 .

Further, Y = [y0 y1 . . . y79]T and W is the column vector defined as follows

W (r) = z55+r ⊕ z38+r
55+r(0, 20) 0 ≤ r ≤ 41,

W (42 + r) = z263+r ⊕ z42+r
263+r(204, 224) 0 ≤ r ≤ 37.

Since the matrix L and its inverse can be pre-computed beforehand, the vector Y =

L−1W can be calculated immediately after applying the faults and calculating W .

Note that for the second round of fault injections the choice of fault locations 42 ≤ φ ≤ 79

and PRGA rounds 204, 224 is by no means unique. By searching over various values of

λ, one may be able to obtain a set of linearly independent equations for other choices of

fault locations and PRGA rounds.

Chapter 5: Differential Fault Analysis of Grain 135

Remark 5.2. The method works in a similar manner for Grain-128 and Grain-128a. For

example, the output function in Grain-128 is h(s0, s1, s2, s3, s4, s5, s6, s7, s8) = s0s1 ⊕
s2s3 ⊕ s4s5 ⊕ s6s7 ⊕ s0s4s8, where s0 and s4 corresponds to NFSR variables. One can

check that for any α ∈ {001000000, 000100000, 000000100, 000000010}, h(x)⊕ h(x⊕ α)

is a linear function of LFSR variables only.

5.3.2 Determining the NFSR Internal State

Once the LFSR internal state of the initial PRGA round is known, one can then proceed

to determine the NFSR internal state. In [31] it was shown, that this could have been

done efficiently for the initial version of the cipher i.e. Grain v0. After the attack

in [31] was reported, the designers made the necessary changes to Grain v1, Grain-128

and Grain-128a so that for these new ciphers, determining the NFSR state form the

knowledge of the LFSR state was no longer straightforward. In order to determine the

NFSR bits, we look into the decomposition of the Boolean function h in more detail. The

attack we will describe in this section can be mounted due to the following observations

on the Grain output function h.

A. h(·) can be written in the form sj · u(·) ⊕ v(·) where sj corresponds to a variable

which takes input from an NFSR tap location;

B. There exists a differential β such that u(s)⊕ u(s⊕ β) = 1;

C. v(s)⊕ v(s⊕ β) = a function of variables that takes input from LFSR locations only.

For Grain v1, h(s0, s1, s2, s3, s4) = s4 · u(s0, s1, s2, s3)⊕ v(s0, s1, s2, s3), where

u(s0, s1, s2, s3) = 1⊕ s3 ⊕ s0s2 ⊕ s1s2 ⊕ s2s3,

v(s0, s1, s2, s3) = s1 ⊕ s0s3 ⊕ s2s3 ⊕ s0s1s2 ⊕ s0s2s3

Thus we note that (i) u, v are functions on the LFSR bits only, (ii) u(s0, s1, s2, s3) ⊕
u(s0, 1⊕ s1, s2, 1⊕ s3) = 1 and (iii) v(s0, s1, s2, s3)⊕ v(s0, 1⊕ s1, s2, 1⊕ s3) = 1⊕ s0⊕ s2.

Hence h satisfies all the properties listed above.

The fault-free keystream bit at the tth round can now be rewritten as zt =
⊕

a∈A x
t
a ⊕

xt63 · u(yt3, y
t
25, y

t
46, y

t
64) ⊕ v(yt3, y

t
25, y

t
46, y

t
64). Consider two internal states St and St,∆

which differ in the LFSR locations 25 and 64 and in no other location, that provides

input to h. If zt and zt,∆ are the keystream bits produced by St and St,∆ in that round,

then using the previous observation we can see that

zt ⊕ zt,∆ = xt63 ⊕ v(yt3, y
t
25, y

t
46, y

t
64)⊕ v(yt3, 1⊕ yt25, y

t
46, 1⊕ yt64).

136 Chapter 5: Differential Fault Analysis of Grain

Let ct =
[
v(yt3, y

t
25, y

t
46, y

t
64)⊕v(yt3, 1⊕yt25, y

t
46, 1⊕yt64)

]
. Since the LFSR internal state is

already available, ct can be computed immediately, and hence the difference of the two

keystream bits plus the value of ct gives us the value at the NFSR location 63 at round

t of the PRGA. In the next Lemma, we shall investigate when this differential pattern

in the internal state is obtained by employing the same fault injection strategy in the

previous subsection.

Lemma 5.3. Let S0, S1, S2, . . . be the successive internal states of the PRGA for Grain

v1. Then the faulty state St,∆φ
(0, 20) will differ from St at LFSR locations 25, 64 and

none of the other 10 tap locations that feed the output function for the following values

of φ, t: (i) φ = 51 + r, t = 91 + r for 0 ≤ r ≤ 28, (ii) φ = 62 + r, t = 55 + r for

0 ≤ r ≤ 17, (iii) φ = 62 + r, t = 75 + r for 0 ≤ r ≤ 15.

Proof. The proof follows from an analysis of the differential trails of Grain v1 PRGA,

and is similar to the proof for Lemma 5.1.

The Lemma essentially implies that if faults are injected at the beginning of the PRGA

and round 20 at location 51 + r of the LFSR (0 ≤ r ≤ 28), then in the PRGA round

91 + r we will have

z91+r ⊕ z51+r
91+r(0, 20)⊕ c91+r = x91+r

63 ∀r ∈ [0, 28].

Also, the following equations hold:

z55+r ⊕ z62+r
55+r(0, 20)⊕ c55+r = x55+r

63 ∀r ∈ [0, 17],

z75+r ⊕ z62+r
75+r(0, 20)⊕ c75+r = x75+r

63 ∀r ∈ [0, 15].

Since the LHS of all the above equations are known, we can therefore calculate the value

of the NFSR location 63 for all PRGA rounds 55, 56, . . ., 72, 75, 76, . . ., 119. Because of

the shifting property of the NFSR, the equations xji = xj+1
i−1 ∀i ∈ [1, 79] hold. Therefore

knowing x55
63, x

56
63, . . . , x

72
63, x

75
63, x

76
63, . . ., x

119
63 is equivalent to knowing x103

15 , x
103
16 , . . . , x

103
32 ,

x103
35 , x

103
36 , . . . , x

103
79 , i.e., we now know 63 out of the 80 NFSR state bits of S103.

Finding the Remaining Bits

Any bits of the NFSR internal state not found out in the previous subsection could be

obtained by performing an exhaustive search over them. However, if h is such that both

u, v are functions on the LFSR bits only then the attack can be further simplified. Since

the function h in Grain v1 satisfies this property, we proceed to determine the remaining

Chapter 5: Differential Fault Analysis of Grain 137

17 NFSR bits of S103. These may be found by a combination of solving equations and

guesswork. Since the 80 LFSR bits of S0 have already been found in the previous section,

one can efficiently calculate the 80 LFSR bits of S103 by running the Grain v1 PRGA

routine. This is because the LFSR evolves independently during the PRGA. Then, by

observing the fault-free output keystream bits we can write the following equations:

z102+γ = x103
0+γ ⊕ x103

1+γ ⊕ x103
3+γ ⊕ x103

9+γ ⊕ x103
30+γ ⊕ x103

42+γ ⊕ x103
55+γ ⊕ u102+γx

103
62+γ ⊕ v102+γ ,

for γ = 0, 1, . . . , 14, where ui = u(yi3, y
i
25, y

i
46, y

i
64) and vi = v(yi3, y

i
25, y

i
46, y

i
64). Since the

LFSR initial state is known, ui,vi are available. Consider the set of 15 equations given

above. In the last equation it can be seen that x103
14 is the only unknown and hence its

value may be easily calculated. Once x103
14 is known, x103

13 becomes the only unknown

in the 14th equation and its value too may be immediately calculated. Backtracking in

this manner one can calculate upto x103
5 from the 6th equation. At this point we have

calculated the value of 73 NFSR bits of S103. The 5th equation is

z106 = x103
4 ⊕ x103

5 ⊕ x103
7 ⊕ x103

13 ⊕ x103
34 ⊕ x103

46 ⊕ x103
59 ⊕ u106x

103
66 ⊕ v106.

This equation has two unknowns x103
4 and x103

34 and so the value of either unknown can

not be calculated conclusively. Similarly the 4th equation has two unknowns x103
3 and

x103
33 . If we try out all the possibilities of x103

34 , x
103
33 then the value of the remaining 5

unknowns may be calculated uniquely. So we do an exhaustive search over the 2 bits

(4 possible candidates) for S103. The correct S103 may be found out by observing the

keystream bits z103, z104, . . ., as required. We eliminate any candidate S103 vector that

does not produce the required keystream bit sequence. This routine thus gives us the

entire S103 vector. Note that in order to recover the NFSR state one does not have to

inject any additional faults other than those already injected to determine the LFSR

state.

Remark 5.4. If the function h in Grain v1 were such that it could not be decomposed

into u and v as above, then the attack would not have been as straightforward. The

attack here is efficient as u and v are of certain nice structures and their inputs are from

LFSR bits only. The LFSR bits are already known after the recovery of the LFSR bits

and that helps in recovering the NFSR state easily. It can be checked that the output

function of Grain-128 and Grain-128a also follows properties (A), (B), (C) given at

the beginning of this section and thus renders them vulnerable to this attack.

138 Chapter 5: Differential Fault Analysis of Grain

5.3.3 Finding the Secret Key and Complexity of the Attack

It has already been explained in Section 4.3 that the KSA and PRGA routines in the

Grain family are invertible. Once we have all the bits of S103, by running the inverse

PRGA routine described in Algorithm 4.2 103 times, we obtain the initial PRGA state

S0. Thereafter, by running the inverse KSA described in Algorithm 4.1 routine one can

recover the secret key.

The attack complexity directly depends on the number of fault experiments to be per-

formed such that all of locations in [38, 79] of the LFSR are covered. To have this, the

expected number of fault experiments is 160 ·∑42
i=1

1
i ≈ 688.

Further depending on the LFSR location hit, during the attack phase, one needs to

inject 2 or 4 extra faults for determining the internal state. Therefore, the expected

number of faults that our attack needs is 688 + 4× 38 + 2× 4 ≈ 29.73.

To determine the internal state, we have to perform one matrix multiplication, and solve

a set of 78 linear equations and then exhaustively search over 2 variables. After that,

103 invocations of the PRGA−1 routine and a single invocation of the KSA−1 routine

are needed to determine the Secret Key.

Thus the dominant time/memory consuming process in our attack is the multiplication of

L−1W which requires around 80×80 bits to store L−1 and 802 ≈ O(212.6) bit operations

to calculate the product.

5.4 DFA on Grain under stricter assumptions

So far we had analyzed the situation when an all powerful adversary had the ability

to inject multiple faults at a random but unknown register location. We will tighten

the screws slightly in this Section and take away this power from the attacker. This

makes for a far more realistic attack scenario as an adversary may not always possess

the precision to inject multiple faults in the same register location. So in the attack that

we are about to describe we assume that the attacker has the following liberties:

• He can inject a single, time-synchronized, single bit-flipping fault at some random

register location.

• He can reset the device implementing the cipher and restart cipher operations

afresh.

Chapter 5: Differential Fault Analysis of Grain 139

It can be argued that the attack described in the previous section was a first order

differential attack on the Grain family, since, a linear first order derivative of the output

function, i.e., h(x) ⊕ h(x ⊕ α) was used to determine linear equations to solve for the

LFSR state. So far, we have ignored higher order differential properties of the function

h. In this section we look into higher order differential properties of the output function

h of the three ciphers of the Grain family. Since these output functions are of algebraic

degree three there exist numerous higher order derivatives of these functions which are

also linear. In this Section we shall utilize these properties of the output function to

formulate linear equations which when solved together will reveal the internal state of

the cipher.

Before we go into the mathematical details of the attack, let us define a few terms that

we shall be using to describe the attack.

Definition 5.5. Consider a q-variable Boolean function F and any vector α ∈ {0, 1}q.
We refer to the function F (x⊕α) as a translation of F . The set of all possible translations

of a given function F is denoted by the term ‘Translation Set’ and by the symbol AF .

Since a q-variable function can have at most 2q translations, the cardinality of AF is

atmost 2q.

Definition 5.6. Consider a q-variable Boolean function F and its translation set AF .

Any GF(2) linear combination F̂ of the functions in AF , i.e.,

F̂ (x) = c1F (x⊕ α1)⊕ c2F (x⊕ α2)⊕ · · · ⊕ ciF (x⊕ αi),

where c1, c2, . . . , ci ∈ {0, 1} is said to be a derivative of F . If F̂ happens to be an affine

Boolean function and c1 = c2 = · · · = ci = 1 then the set of vectors π = [α1, α2, . . . , αi]

is said to be an affine differential tuple of F . If none of the vectors in π is 0 then π

is said to be a weight i affine differential tuple of F otherwise π is said to be a weight

(i− 1) affine differential tuple.

5.4.1 Beginning the attack

As in the previous Section, let us first describe some notations that we will hence-

forth use. Note that some notations are in common with the notations described in

Section 5.3.1.

1. St = [xt0, x
t
1, . . . , x

t
n−1 yt0, y

t
1, . . . , y

t
n−1] is used to denote the internal state of

the cipher at the beginning of round t of the PRGA. Thus xti (yti) denotes the

ith NFSR (LFSR) bit at the start of round t of the PRGA. When t = 0, we use

S0 = [x0, x1, . . . , xn−1 y0, y1, . . . , yn−1] to denote the internal state for convenience.

140 Chapter 5: Differential Fault Analysis of Grain

2. St,∆φ
is used to denote the internal state of the cipher at the beginning of round t

of the PRGA, when a fault has been injected in LFSR location φ at the beginning

of the PRGA round.

3. zφi denotes the key-stream bit produced in the ith PRGA round, after faults have

been injected in LFSR location φ at the beginning of the PRGA round. zi is the

fault-free ith key-stream bit.

4. ηt = [xtl1 , x
t
l2
. . . , xtlc , y

t
i1
, yti2 . . . , y

t
id

] is the set of elements in St which contribute to

the output key-stream bit function linearly and correspondingly the vector θt =

[yth1 , y
t
h2
, . . . , ythe , x

t
j1
, xtj2 , . . . , x

t
jw

] is the subset of St which forms the input to the

combining function h.

5. If v is an integer vector all elements of which are either 0 or 1, then we express v

as a vector over GF(2) and denote it by the symbol ṽ.

6. If w is a vector over GF(2) then P(w) denotes the GF(2) sum of the elements of

w.

Determining the LFSR.

During PRGA, the LFSR evolves linearly and independent of the NFSR. Hence, yti

for any i ∈ [0, n − 1] and t ≥ 0 is a linear function of y0, y1, . . . , yn−1. Let S0 and

S0,∆φ
be two initial states of the Grain PRGA that differ in only the register location

φ ∈ [0, 2n−1]. Let [χ0,φ, χ1,φ, . . . , χ2n−1,φ], [Υ0,φ,Υ1,φ, . . . ,Υ2n−1,φ], ∆φZ be the outputs

of D-Grain(φ, 2n).

Let [0, α1] be a weight 1 affine differential tuple of h, such that h(x)⊕h(x⊕α1) = h01(x)

is a function of variables that takes input from LFSR locations only. If, for some round

t of the PRGA, we have χt,φ v 1, Υt,φ v 1 and Υ̃t,φ = α1, then we can conclude that

the tth round fault-free and faulty internal states St and St,∆φ
differ deterministically in

the bit locations that contribute to producing the output key-stream bit at round t. In

such a scenario, the GF(2) sum of the fault-free and faulty key-stream bit at round t is

given by

zt ⊕ zφt = P(ηt)⊕ h(θt)⊕ P(ηt ⊕ χ̃t,φ)⊕ h(θt ⊕ Υ̃t,φ)

= P(χ̃t,φ)⊕ h(θt)⊕ h(θt ⊕ α1) = P(χ̃t,φ)⊕ h01(θt).

Note that in the above equation P(χ̃t,φ) ⊕ h01(θt) is an affine Boolean function in the

LFSR state bits of St = [yt0, y
t
1, . . . , y

t
n−1] and hence [y0, y1, . . . , yn−1]. Since zt ⊕ zφt is

already known to us, this gives us one linear equation in [y0, y1, . . . , yn−1]. The trick

is to get n such linear equations which are linearly independent by searching over all

possible values of φ and affine differential tuples of h. Of course h may not have an

Chapter 5: Differential Fault Analysis of Grain 141

affine differential tuple [0, α1] of weight 1 or even if it does Υ̃t,φ = α1 and χt,φ v 1 may

not hold for any t or φ. In such situations, one can look at other higher weight affine

differential tuples.

Exploring higher weight affine differential tuples. Consider λ fault locations

φi ∈ [0, 2n− 1]. Let [χ0,φi , . . . , χ2n−1,φi], [Υ0,φi , . . . ,Υ2n−1,φi], ∆φiZ be the λ outputs of

D-Grain(φi, 2n) for i ∈ [1, λ].

Case 1: λ is odd

Let [0, α1, α2, . . . , . . . , αλ] be a weight λ (where λ is an odd number) affine differential

tuple of h, such that h(x) ⊕⊕λ
i=1 h(x ⊕ αi) = H1(x) is a function of variables that

takes input from LFSR locations only. If for some round t of the PRGA, χt,φi v 1,

Υt,φi v 1 and Υ̃t,φi = αi for all i ∈ [1, λ], then by the arguments outlined in the previous

subsection, we conclude

zt ⊕
λ⊕
i=1

zφit = P(ηt)⊕ h(θt)⊕
λ⊕
i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=

λ⊕
i=1

P(χ̃t,φi)⊕H1(θt).

If λ is odd then we can not exploit differential tuples of the form [α1, α2, . . . , . . . , αλ]

where all αi 6= 0 as an odd number of terms do not cancel out in GF(2).

Case 2: λ is even

Instead, if [α1, α2, . . . , . . . , αλ] is a weight λ (λ is an even number) affine differential tuple

of h, such that
⊕λ

i=1 h(x⊕αi) = H2(x) is a function of variables, that takes inputs from

LFSR locations only, then by the previous arguments we have

λ⊕
i=1

zφit =
λ⊕
i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=

λ⊕
i=1

P(χ̃t,φi)⊕H2(θt).

Note that each of the above cases gives us one linear equation in [y0, y1, . . . , yn−1]. We

formally state the routine FLEL(λ) in Algorithm 5.3 that attempts to find such linear

equations by investigating weight λ affine differential tuples.

Solving the system

Ideally we need n linearly independent equations in [y0, y1, . . . , yn−1] to solve the LFSR.

If a call to FLEL(1) does not give us the requisite number of equations then we must call

FLEL(2) and if required FLEL(3) to obtain the required number of equations. Note that

the number of iterations in the outer most ‘for’ loop is of FLEL(λ) is
(
n
λ

)
≈ O(nλ), so

beyond a certain value of λ, it may not be practically feasible to call FLEL(λ). Assuming

142 Chapter 5: Differential Fault Analysis of Grain

Input: λ: An integer > 0;
Output: Set of Rounds t, locations [φ1, φ2, . . . , φλ], Affine expression in

[y0, y1, . . . , yn−1]; Tuples [α1, . . . , αλ]

for φ1 = 0 to n− 1, φ2 = 0 to n− 1, . . . , φλ = 0 to n− 1 do
if All φj’s are pairwise unequal then

for i = 1 to λ do
([χ0,φi , . . . , χ2n−1,φi], [Υ0,φi , . . . ,Υ2n−1,φi], ∆φiZ) = D-Grain(φi, 2n)

end
for t = 0 to 2n− 1 do

if χt,φi v 1 AND Υt,φi v 1, ∀i ∈ [1, λ] then
if λ is odd then

H1(x) = h(x)⊕λi=0 h(x⊕ Υ̃t,φi) ;
if H1 is a function only on LFSR bits then1

Output Round t, Locations [φ1, φ2, . . . , φλ], Expression
⊕λi=1P(χ̃t,φi)⊕H1(θt);

Output Tuple [0, Υ̃t,φ1 , . . . , Υ̃t,φλ]

end

end
else

H2(x) = ⊕λi=0h(x⊕ Υ̃t,φi) ;
if H2 is a function only on LFSR bits then2

Output Round t, Locations [φ1, φ2, . . . , φλ], Expression
⊕λi=1P(χ̃t,φi)⊕H2(θt);

Output Tuple [Υ̃t,φ1 , . . . , Υ̃t,φλ]

end

end

end

end

end

end

Algorithm 5.3: FLEL(λ)

that we have n outputs from the successive FLEL(λ) routines of the form

ti, [φ1,i, φ2,i, . . . , φλi,i], γi ⊕
⊕

n−1
j=0 ci,jyj , [α1,i, α2,i, . . . , αλi,i],

∀i ∈ [0, n−1], if λi is even. Else the last output will be of the form [0, α1,i, α2,i, . . . , αλi,i].

Then we can write the equations so obtained in matrix form LY = W , where L is the

n×n coefficient matrix {ci,j} over GF(2), Y is the column vector [y0, y1, . . . , yn−1]t and

W is a column vector whose ith element W (i) is defined as follows:

Chapter 5: Differential Fault Analysis of Grain 143

W (i) =

γi ⊕ zti ⊕
λi⊕
j=1

z
φj,i
ti

, if λi is odd,

γi ⊕
λi⊕
j=1

z
φj,i
ti

, if λi is even.

If the equations are linearly independent then L is invertible. Thus, the solution Y of

the above system are obtained by computing L−1W . Both L and its inverse may be

precomputed and hence the solution can be obtained immediately after recording the

faulty bits.

Determining the NFSR.

Once the LFSR state has been determined, we proceed to finding the NFSR state. Since

the NFSR updates itself non-linearly, the method used to determine the NFSR initial

state will be slightly different from the LFSR. If λ is odd, let [0, α1, α2, . . . , αλ] be a

weight λ (where λ is an odd number) tuple of h (not necessarily affine differential), such

that h(x) ⊕⊕λ
i=1 h(x ⊕ αi) = H1(x) = x′ ⊕ H11(x) where x′ is a variable that takes

input from an NFSR location and H11(x) is a function only on the LFSR variables. If

for some round t of the PRGA χt,φi v 1 and Υt,φi v 1 and Υ̃t,φi = αi for all i ∈ [1, λ],

then by the arguments outlined in the previous subsection we conclude

zt ⊕
λ⊕
i=1

zφit = P(ηt)⊕ h(θt)⊕
λ⊕
i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=

λ⊕
i=1

P(χ̃t,φi)⊕H1(θt) =
λ⊕
i=1

P(χ̃t,φi)⊕H11(θt)⊕ xtjr ,

for some r ∈ [1, w]. Since, the LFSR is already known, H11(θt) can be calculated and

that leaves xtjr as the only unknown in the equation, whose value is also calculated

immediately after recording the faulty bits and solving the LFSR.

The λ even case can be dealt with similarly. We can describe another routine FLEN (λ)

which will help in determining the NFSR state. This routine is similar to the FLEL(λ)

routine described in Algorithm 5.3. The only differences are that line 1 will change to

if H1(x) = x′ ⊕H11(x) where x′ is an NFSR term and H11(x) depends on LFSR

variables only.

Line 2 of Algorithm 5.3 will also change accordingly. With the help of FLEN (λ) routine,

we can obtain specific NFSR state bits at various rounds of operation of the PRGA.

144 Chapter 5: Differential Fault Analysis of Grain

Due to the shifting property of shift registers, the following equation holds xti = xt+1
i−1.

For example, calculating x30
46 and x32

50 is the same as determining the two NFSR state

bits of the internal state S30: x30
46 and x30

52.

Hence by using the FLEN (λ) for successive values of λ, one can obtain all the n NFSR

state bits of St for some t ≥ 0. Since the LFSR initial state of S0 is already known and

due to the fact that the LFSR operates independent of the NFSR in the PRGA, the

attacker can compute the LFSR state bits of St by simply running the Grain PRGA

forward for t rounds and thus compute the entire of St.

5.4.2 Finding the secret key and complexity of the attack

It is known that the KSA, PRGA routines in the Grain family are invertible (see Al-

gorithms 4.1, 4.2). Once we have all the bits of St, by running the PRGA−1 (inverse

PRGA) routine for t rounds one can recover S0. Thereafter the KSA−1 (inverse KSA)

routine can be used to find the secret key.

The attack complexity directly depends on the number of re-keyings to be performed

such that approximately all of locations in [0, n − 1] of the LFSR are covered. Since

each re-keying is followed by exactly one fault injection, the expected number of fault

injection is 2n ·∑n
i=1

1
i ≈ 2n · ln n (this is approximately equal to 29.45 for n = 80 and

210.3 for n = 128). Thereafter, the attack requires one matrix multiplication between an

n× n matrix and an n× 1 vector to recover the LFSR, and solving a few equations to

get the NFSR state. After this, t invocations of the PRGA−1 and a single invocation of

the KSA−1 gives us the secret key.

Note that, construction of the matrix L and running the FLEL(λ) and FLEN (λ) can be

done beforehand and thus do not add to the attack complexity. However, these routines

are a part of the pre-processing phase, the exact runtime of which will depend on the

nature of the functions g, h and also the choice of taps used in the cipher design.

5.4.3 Attacking the actual ciphers

Now we will provide the details of the actual attack on Grain v1, Grain-128 and Grain-

128a.

Chapter 5: Differential Fault Analysis of Grain 145

Grain v1

In Grain v1 the non linear combining function is of the form

h(s0, s1, s2, s3, s4) = s1⊕s4⊕s0s3⊕s2s3⊕s3s4⊕s0s1s2⊕s0s2s3⊕s0s2s4⊕s1s2s4⊕s2s3s4.

Here only s4 corresponds to an NFSR variable. This function has 4 affine differential

tuples of weight 1, only one of which ([0, α = 11001]) leads to a derivative which is a

function of only LFSR variables. However, Υ̃t,φ = α and χt,φ v 1 does not hold for any

t or φ. Hence one needs to look at higher weight tuples.

A call to FLEL(3) returns 78 linearly independent equations. The result is given in

Table 5.2.

t φ1 φ2 φ3 Range Expression ADT

45 + i 62 + i 24 + i 70 + i i ∈ [0, 9]
55 + i 72 + i 16 + i 51 + i i ∈ [0, 7] 00000,
63 + i 13 + i 24 + i 59 + i i ∈ [0, 9] 00100,
73 + i 33 + i 26 + i 51 + i i ∈ [0, 10] yt46 00110,
84 + i 44 + i 37 + i 38 + i i ∈ [0, 6] 01000
91 + i 53 + i 44 + i 41 + i i ∈ [0, 8]
100 + i 70 + i 53 + i 60 + i i ∈ [0, 8]

109 79 71 69
77 + i 45 + i 51 + i 38 + i i ∈ [0, 5] 00000,
83 + i 72 + i 57 + i 44 + i i ∈ [0, 4] yt3 ⊕ yt25 ⊕ yt64 01100,

94 62 79 55 10000,
10110
00000,

95 78 63 56 yt3 ⊕ yt25 ⊕ yt46 ⊕ yt64 01001,
01100,
10110

Table 5.2: Output of FLEL(3) for Grain v1 (ADT implies Affine Differential Tuple)

t φ1 φ2 Range Expression ADT

110 + i 64 + i 77 + i i ∈ [0, 1] yt46 00001,
11000

Table 5.3: Output of FLEL(2) for Grain v1

A call to FLEL(2) gives us the 2 other equations required to solve the system. The

result is shown in Table 5.3. One can verify that the linear equations so obtained are

linearly independent and thus LFSR can be solved readily. A call each to FLEN (1) and

146 Chapter 5: Differential Fault Analysis of Grain

t φ1 Range Expression ADT

55 + i 23 + i i ∈ [0, 14] 00000,
70 + i 77 + i i ∈ [0, 2] 1⊕ yt3 ⊕ yt46 ⊕ xt63 01010
91 + i 62 + i i ∈ [0, 5]

Table 5.4: Output of FLEN (1) for Grain v1

t φ1 φ2 φ3 Range Expression ADT

00000,
17 + i i 1 + i 20 + i i ∈ [0, 27] 1⊕ yt3 ⊕ yt46 ⊕ xt63 00001,

00010,
45 + i 28 + i 13 + i 48 + i i ∈ [0, 9] 10000

00000,
73 + i 53 + i 33 + i 26 + i i ∈ [0, 17] 1⊕ yt3 ⊕ xt63 00010,

00100,
00110

Table 5.5: Output of FLEN (3) for Grain v1

FLEN (3) gives us all the NFSR bits of S80. The output of these routines are given as

in Tables 5.4 and 5.5. A look at these tables shows that the attacker can calculate the

values of xt63 for all t ∈ [17, 96]. This is equivalent to calculating x80
i for all i ∈ [0, 79].

Thereafter, S0 and the secret key may be obtained as per the techniques outlined in

Section 5.4.2.

Grain-128

In Grain-128 the non linear combining function is of the form h(s0, s1, . . . , s8) = s0s1 ⊕
s2s3⊕s4s5⊕s6s7⊕s0s4s8. Only s0, s4 correspond to the NFSR variables. This function

has 4 affine differential tuples of weight 1 which produce derivatives on LFSR variables.

A call to FLEL(1) produces all the 128 equations needed to solve the LFSR. The output

of this routine is given in Table 5.6.

t φ1 Range Expression ADT

i 20 + i i ∈ [0, 107] yt13 000 000 000,
000 100 000

61 + i 50 + i i ∈ [0, 19] yt60 000 000 000,
000 000 010

Table 5.6: Output of FLEL(1) for Grain-128

Chapter 5: Differential Fault Analysis of Grain 147

t φ1 Range Expression ADT

i 8 + i i ∈ [0, 115] xt12 000 000 000,
010 000 000

33 + i 75 + i i ∈ [0, 11] xt95 000 000 000,
000 001 000

Table 5.7: Output of FLEN (1) for Grain-128

A call to FLEN (1) gives us all the NFSR bits of S12. The output of this routine is in

Table 5.7. Thus, FLEN (1) gives us xt12 for all t ∈ [0, 115], and xt95 for all t ∈ [0, 11].

This is equivalent to all the NFSR state bits of S12. Thereafter, S0 and the secret key

may be obtained as per the techniques outlined in Section 5.4.2.

Grain-128a

In Grain-128a, the first 64 key-stream bits and every alternate key-stream bit thereof

are used to construct the message authentication code and therefore unavailable to the

attacker. To resolve this problem, in Grain-128a every re-keying is followed by a fault

injection at the beginning round 64 of the PRGA instead of round 0 and the goal of the

attacker is to reconstruct the internal state at the 64th instead of the 0th PRGA round.

Note that if a fault is applied at a random LFSR location φ at the 64th PRGA round,

then the tth state of ∆φ-Grain will align itself with the (64 + t)th state of the actual

cipher. Hence, in a slight departure from the notation introduced in the previous section

we will call the 64th PRGA state S0 and all other notations are shifted with respect to

t accordingly (e.g., St refers to the (64 + t)th PRGA state etc).

The key-stream bit at every odd numbered round (after round 64 of the PRGA) is used

for making the MAC and is unavailable to the attacker. Hence after calling FLEL(1) the

attacker must reject all outputs with an odd value of t. Even then the attacker obtains

all the equations required to solve the LFSR. The output is presented in Table 5.8.

Similarly a call to FLEN (1) after rejecting outputs with odd values of t, gives us 112

NFSR bits of S62. The output is given in Table 5.9.

t φ1 Range Expression ADT

6 + 2i 26 + 2i i ∈ [0, 50] yt13 000 000 000,
108 + 2i 70 + 2i i ∈ [0, 12] 000 100 000

2i 13 + 2i i ∈ [0, 33] yt20 000 000 000,
001 000 000

28 + 2i 107 + 2i i ∈ [0, 10] yt60 000 000 000,
50 + 2i 1 + 2i i ∈ [0, 18] 000 000 010

Table 5.8: Output of FLEL(1) for Grain-128a

148 Chapter 5: Differential Fault Analysis of Grain

t φ1 Range Expression ADT

50 + 2i 58 + 2i i ∈ [0, 34] 000 000 000,
120 + 2i 96 + 2i i ∈ [0, 15] xt12 010 000 000
152 + 2i 102 + 2i i ∈ [0, 12]

2i 42 + 2i i ∈ [0, 42] xt95 000 000 000,
86 + 2i 38 + 2i i ∈ [0, 4] 000 001 000

Table 5.9: Output of FLEN (1) for Grain-128a

At this point, the attacker could simply guess the remaining 16 bits of S62 or give a call

to FLEN (2) and thus increase the complexity of the preprocessing stage. As it turns

out, the attacker can do even better without going for these two options. The 16 NFSR

bits not determined at this point are x62
2i+1, for 0 ≤ i ≤ 15. Let us now look at the

equations for the key-stream bits z62+2j for j ∈ [0, 8],

z62+2j =
⊕

i∈B x62
i+2j ⊕ x62

15+2j ⊕ y62
93+2j ⊕ h(θ62+2j),

where B = {2, 36, 45, 64, 73, 89}. Now, x62
15+2j , j ∈ [0, 8] is the only unknown in each of

these equations and so its value can be calculated immediately. This leaves us with the

7 unknown bits x62
1 , x

62
3 , . . . , x

62
13. In addition to the entries in Table 5.9, FLEN (1) also

gives the output

t = 96 + 2i, φ1 = 48 + 2i, xt95, [0, 000 001 000], ∀i ∈ [0, 6].

This gives us the bits x96+2i
95 or equivalently x64+2i

127 for i ∈ [0, 6]. Let us write the NFSR

update function g in the form g(X) = x′ ⊕ g′(X), where x′ corresponds to the variable

that taps the 0th NFSR location. Then looking at the NFSR update rule for Grain-128a,

we have

x64+2i
127 = y63+2i

0 ⊕ x63+2i
0 ⊕ g′(X63+2i) = y62

1+2i ⊕ x62
1+2i ⊕ g′(X63+2i),

∀i ∈ [0, 6]. Again, x62
1+2i, i ∈ [0, 6] is the only unknown in these equations and so its

value can be calculated immediately. This gives us all the NFSR bits of S62. Using the

techniques in Section 5.4.2, S0 can be calculated. Since this state corresponds to the

64th PRGA state, the PRGA−1 routine needs to be run 64 more times before invoking

the KSA−1 routine which would then reveal the secret key.

Chapter 5: Differential Fault Analysis of Grain 149

5.5 DFA against Grain family with very few faults and

minimal assumptions

In this Section, we describe our final attack on the Grain family of stream ciphers. The

adversary, in this attack, is assumed to be equipped with the minimum powers, i.e.,

• He can inject an unsynchronized fault at some random register location, but there

is no guarantee that it would flip the logic at a single register location.

• He can reset the device implementing the cipher and restart cipher operations

afresh.

One of the striking features of the attack we will discuss here, is the drastic reduction

in the number of faults required to mount the attack. Whereas the previous attacks in

Sections 5.3, 5.4 required in excess of 29 faults, the attack we describe here will take less

than 10 faults for all the three ciphers in the Grain family.

In the previous attacks that we have described, the technique of attack has been roughly

the same:

1. Find the location of a randomly applied fault.

2. Use this information to formulate linear equations on the initial LFSR state.

3. If sufficient number of linear equations have been generated, the solve for the LFSR

state.

4. Once the LFSR state is known, formulate some more linear equations to get the

NFSR state.

Note that the attack protocol relies heavily on the formulation of linear equations to

solve for the LFSR/NFSR states. Since a fault at a random register location does not

always lead to a linear equation, our previous attack techniques relied on rekeying and

reinjecting faults until sufficient number of linear equations are found. This is one of the

reasons the fault count in the previous attacks is slightly on the higher side. On the other

hand, every fault does lead to a new set of non-linear equations on the LFSR/NFSR

state resulting from each faulty keystream bit. So, far we have not taken advantage

of this enormous bank of non-linear equations. If we could utilize an equation solver

that could solve these non-linear equations, we would the be able to think in terms of

reducing the fault requirement.

150 Chapter 5: Differential Fault Analysis of Grain

For more than a decade, there has been seminal research in the area of algebraic crypt-

analysis, the principal idea of which is to solve multivariate polynomial systems that

describe a cipher. For a very brief introduction in this, one may refer [109, Section 5].

The DFA on Trivium [109] requires only 2 faults and this is far fewer than the fault re-

quirements against the Grain family. This motivates us to see how this kind of algebraic

cryptanalysis can be exploited towards DFA against Grain family.

SAT solvers have been used extensively in algebraic cryptanalysis [29]. These solvers are

based on the Boolean satisfiability problem which is basically the problem of determining

if there exists an interpretation that satisfies a given Boolean formula. In other words,

it establishes if the variables of a given Boolean formula can be assigned in such a way

as to make a given Boolean formula evaluate to TRUE. In this attack, we have made

use of the SAT Solver Cryptominisat-2.9.5 [126] installed with SAGE 5.7 [129] to solve

the bank of equations that we get from each faulty keystream bit. In our experience,

given sufficient number of equations, the solver is able to come up with a solution in a

time ranging from a few minutes to a few hours.

In order to explain the flow of the attack we will first assume that the attacker can

indeed apply a time synchronized, single bit-flipping fault at a random register location.

We will later (in Sections 5.6.1, 5.6.2) discuss the issues related to the following:

• We will first deal with the case when the attacker can apply a time synchronized

fault that may disturb the logic in up to 3 continuous register locations. We will

explain how an attacker can distinguish, with high probability, whether a faulty

keystream segment has been produced due to a multiple bit or a single bit-flipping

of the original faultless internal state. In the event that the attacker finds a faulty

keystream has been produced due to a multiple bit-flip, he will simply discard the

keystream, and inject fault afresh so that he obtains a faulty keystream produced

due to a single bit-flip whose location he can conclusively identify.

• We will then investigate the case when the attacker cannot fully synchronize the

timing of his fault with the start of the PRGA, and the best he can do is inject

the fault at some PRGA round τ ≤ τmax. We will outline how the attacker can

find the value of τ and proceed with the attack.

So initially, let us for the time being consider that the fault will be injected after the

KSA, i.e., just before the PRGA starts. We will begin by explaining how the attacker

builds up a bank of multivariate equations on the LFSR/NFSR state variables before

feeding it to the SAT Solver.

Chapter 5: Differential Fault Analysis of Grain 151

5.5.1 Populating the bank of equations for Grain v1 and Grain-128

We will now explain the method of obtaining a large number of equations that will be

used for algebraic cryptanalysis. For the time being we will consider the case that will

work for Grain v1 or Grain-128. The case of Grain-128a will be little different that we

will discuss next.

Equations from fault-free key-stream

Consider the equations from the `-bit fault-free key-stream z0, . . . , z`−1. As discussed,

the LFSR state just after the KSA (at the beginning of the 0-th clock) is given by

Y0 = [y0, y1, . . . , yn−1] and the NFSR state is X0 = [x0, x1, . . . , xn−1]. In general, the

value of ` required to complete the attack is more than 160 for all the three versions of

Grain. But it is not feasible to compute the Algebraic Normal Form (ANF) of z159 on

any standard PC, for any version of Grain. For example using a workstation with 1.83

GHz processor, 3 GHz RAM and 2 MB system cache, computing the ANF of any z` in

Grain v1, for ` > 44 is infeasible. The ANF of z44 itself has algebraic degree 17 and

consists of 80643 monomials.

Also we have to keep in mind that we expect to solve these solutions using SAT solver.

SAT solvers solve a polynomial equation system by converting the ANF′s to their equiv-

alent Conjunctive Normal Forms (CNF′s). As we will see in Section 5.5.3, the repre-

sentation of each degree d monomial requires d + 1 CNF clauses. Thus to enable the

SAT solver to solve the system efficiently, the degrees of the expressions in the equation

system must also be controlled.

In order to overcome both limitations, we use a technique popularly used in ANF-CNF

conversions [29]. At each PRGA round t > 0, we introduce two new variables yt+n, xt+n

to update the LFSR and NFSR state respectively. To illustrate the technique, let us

denote the states at the beginning of the t-th (t ≥ 0) PRGA round as

Yt = [yt, yt+1, . . . , yt+n−1], Xt = [xt, xt+1, . . . , xt+n−1].

Given these, we formulate the following equations.

1. LFSR equation: yt+n = f(Yt).

2. NFSR equation: xt+n = yt ⊕ g(Xt).

152 Chapter 5: Differential Fault Analysis of Grain

3. Key-stream equation:

zt =
n−1⊕
i=0

biyt+i ⊕
n−1⊕
i=0

aixt+i ⊕ h(yt, . . . , yt+n−1, xt, . . . , xt+n−1).

In the Grain family, while the first equation is linear, the degrees of the other two

equations are also not very high. We initially start with 2n variables, y0, y1, . . . , yn−1

and x0, x1, . . . , xn−1. Then corresponding to each key-stream bit zt, we introduce two

new variables yt+n, xt+n and obtain three more equations. Thus we have in total 2n+2`

variables and 3` equations. The advantages of using such a technique are as follows.

• First of all it allows us to formulate the expression for z` (via a series of equations)

for values of ` ≥ 159. Instead, if at each round t > 0, the variables yt+n, xt+n

were replaced by their equivalent algebraic expressions in y0, y1, . . . , yn−1 and

x0, x1, . . . , xn−1, this would never have been possible on an ordinary PC.

• Since the expressions in the LFSR and NFSR cells always stay linear, this allows us

to control the algebraic degree and the number of monomials in each of the 3`

equations so obtained.

Equations from faulty key-streams

We use a similar technique to extract equations from faulty key-streams. Let us assume

that a fault is injected in the LFSR location φ at PRGA round 0. The same method will

work if the fault is injected in the NFSR. Since we re-key the cipher with the same Key-

IV before injecting a fault, after fault injection we obtain the state y0, y1, . . . , yφ−1, 1⊕
yφ, yφ+1 . . . , yn−1 and x0, x1, . . . , xn−1 at the start of PRGA. Then corresponding to

each key-stream bit zt, we introduce two new variables yφt+n, x
φ
t+n and obtain three more

equations. Thus we have additional 2` variables and 3` equations.

Total number of variables and equations

Given that we introduce ν faults after these re-keyings, the total number of variables is

2n+ 2(ν + 1)` and the total number of equations is 3(ν + 1)`.

5.5.2 Populating the bank of equations for Grain-128a

We will now explain the formation of equations for Grain-128a. Here the first 64 key-

stream bits z0, . . . , z63 and every other (alternating) key-stream bits thereafter are used

to construct MAC. Hence these bits are unavailable to the attacker.

Chapter 5: Differential Fault Analysis of Grain 153

Equations from fault-free key-stream

Consider the equations from the `-bit fault-free key-stream z64, z66, . . . , z64+2`−2 as only

alternative key-stream bits are used for encryption. Hence, similar to the above, we have

the following equations.

1. Two LFSR equations: yt+n = f(Yt) and yt+n+1 = f(Yt+1).

2. Two NFSR equations: xt+n = yt ⊕ g(Xt) and xt+n+1 = yt+1 ⊕ g(Xt+1).

3. One Key-stream equation:

zt =

n−1⊕
i=0

biyt+i ⊕
n−1⊕
i=0

aixt+i ⊕ h(yt, . . . , yt+n−1, xt, . . . , xt+n−1).

We initially start with 2n variables, y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1. Then cor-

responding to each key-stream bit zt, we introduce four new variables yt+n, yt+n+1,

xt+n, xt+n+1 and obtain five more equations. Thus we have in total 2n + 4` variables

and 5` equations.

Equations from faulty key-streams

Let us consider that a fault is injected in the LFSR location φ at the beginning of the

PRGA. Again, the method works similarly if the fault is injected in the NFSR. Since

we will re-key the cipher with the same Key-IV, in such a case we will obtain the state

y0, y1, . . . , yφ−1, 1⊕ yφ, yφ+1 . . . , yn−1 and x0, x1, . . . , xn−1. Then corresponding to each

key-stream bit zt, we introduce four new variables yφt+n, y
φ
t+n+1, x

φ
t+n, x

φ
t+n+1 and obtain

five more equations. Thus we have additional 4` variables and 5` equations.

Total number of variables and equations

Given that we introduce ν faults after these re-keyings, the total number of variables is

2n + 4(ν + 1)` and the total number of equations is 5(ν + 1)`. All these equations are

used in the SAT solver to obtain y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1. This completes

the attack. As the ciphers in the Grain family are invertible both in KSA and PRGA,

one can also get the secret key efficiently.

154 Chapter 5: Differential Fault Analysis of Grain

5.5.3 Using the SAT Solver

To solve polynomial systems of multivariate equations by SAT solvers, the attacker

initially converts the system from Algebraic Normal Form (ANF) to Conjunctive Normal

Form (CNF). We will show some standard techniques of how this can be done.

Conversion of monomials: Any monomial of the form x1x2 · · ·xd is first equated to

another variable β (say). The tautological equivalent of β = x1x2 · · ·xd is β ⇔
x1x2 · · ·xd, which is same as the boolean expression β XNOR x1x2 · · ·xd. This

therefore can be expressed as

(β ∨ x1) ∧ (β ∨ x2) ∧ · · · ∧ (β ∨ xd) ∧ (β ∨ x1 ∨ x2 ∨ · · · ∨ xd)

As can be seen this adds d + 1 clauses to the system each of which need to be

TRUE for the correct solution.

Conversion of linear expressions: A linear system of the form x1 +x2 + . . .+xk = 1

can be expressed equivalently as the boolean expression x1 XOR x2 XOR · · ·xk.
For example x1 + x2 + x3 + x4 = 1 can be expressed as

(x1 ∨ x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3 ∨ x4)∧

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

A linear system of the form x1 + x2 + . . . + xk = 0 can be expressed equivalently

as the boolean expression (x1 XOR x2 XOR · · ·xk)′.

Conversion of large XOR chains: In the above system, the number of clauses ob-

tained depends on the value k. It can easily be shown that this number is 2k−1. To

prevent accumulation of such large chain of clauses, we introduce dummy variables

γi at each stage. For example, x1 + x2 + . . .+ xk = 0 is equivalent to:

x1 + x2 + x3 + γ1 = 0, γ1 + x4 + x5 + γ2 = 0, · · · γM + xk−2 + xk−1 + xk = 0.

This gives rise to M = k
2 − 1 equations each having 24−1 = 8 clauses.

Example 5.3. To solve the equation system x1x2+x2x3+x4 = 0, x2x3+x3+x1 =

0, we translate the system into the following form [1] β1 = x1x2, [2] β2 = x2x3,

[3] β1 + β2 + x4 = 0, [4] β2 + x3 + x1 = 0.

[1] gives us (β1 ∨ x1) ∧ (β1 ∨ x2) ∧ (β1 ∨ x1 ∨ x2) = TRUE.

Chapter 5: Differential Fault Analysis of Grain 155

[2] gives us (β2 ∨ x2) ∧ (β2 ∨ x3) ∧ (β2 ∨ x2 ∨ x3) = TRUE.

[3] gives us (β1∨β2∨x4)∧ (β1∨β2∨x4)∧ (β1∨β2∨x4)∧ (β1∨β2∨x4) = TRUE.

[4] gives us (x1∨β2∨x3)∧ (x1∨β2∨x3)∧ (x1∨β2∨x3)∧ (x1∨β2∨x3) = TRUE.

After the system of algebraic equations have been converted to their equivalent CNF,

they are passed on to the SAT solver for extracting a solution.

5.6 Experimental Results

In this section we present the experimental results in detail. After the fault location

and injection time of a particular faulty key-stream vector have been identified using

the signature vectors, a system of equations are formulated using the steps outlined in

Section 5.5.1, and the equations are then fed into a SAT solver. There are several issues

that have been optimized.

• The number of faults is the most significant figure that we minimize using the SAT

solvers. This implies that we also reduce the number of re-keyings of the cipher.

• The number of faulty key-stream bits required to solve the system is also important.

In our experiments, We have used 2n key-stream bits corresponding to each fault,

i.e., 2 · 80 = 160 for Grain v1 and 2 · 128 = 256 for Grain-128 and Grain-128a. In

fact, for Grain-128a, we use even fewer key-stream bits as we obtain more equations

per key-stream bit.

We have solved the equations using SAT solver Cryptominisat-2.9.5 [126] installed with

SAGE 5.7 on Linux Ubuntu 2.6. The hardware platform is an HP Z800 workstation

with 3GHz Intel(R) Xeon(R) CPU. We have considered three different cases: (i) the

faults are introduced in LFSR only, (ii) the faults are introduced in NFSR only, and

(iii) the faults are introduced in both LFSR and NFSR (here we consider that expected

half of the faults are injected in LFSR and the other half in NFSR). The results have

been presented in Table 5.10. We have presented the time required for the SAT solver

part only as the time for identifying the location of the fault using signature vectors is

negligible. For each row, we consider a set of ten (10) experiments. As it is not easy

to count the exact number of computational steps required in the SAT solver, we have

reported the amount of time required in seconds.

We note that with very little amount of key-stream, the attack takes longer time. The

number of faults may be reduced further with more computational effort.

156 Chapter 5: Differential Fault Analysis of Grain

Table 5.10: Experimental Results

Faults in LFSR only
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
10 160 16.48 49.23 27.40

Grain v1 9 160 22.10 32.71 40.50
8 160 18.62 92.34 48.40
5 256 5.21 9.43 7.10

Grain-128 4 256 9.03 96.68 34.40
3 256 24.52 361.53 163.70
11 175 14.47 37.85 23.60

Grain-128a 10 175 26.82 253.15 52.74

Faults in NFSR only
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
11 160 27.93 105.44 55.35

Grain v1 10 160 21.14 89.50 43.64
9 160 29.64 123.98 56.35
6 256 16.64 196.32 93.45

Grain-128 5 256 22.87 380.01 147.70
11 175 179.62 8453.14 1542.27

Grain-128a 10 175 175.07 8387.21 1495.54

Faults in both LFSR and NFSR
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
11 160 54.96 1420.71 220.90

Grain v1 10 160 19.17 452.30 352.20
6 256 6.48 14.32 10.41

Grain-128 5 256 12.18 37.56 22.15
4 256 27.63 4876.53 581.80
11 175 46.45 259.34 101.10

Grain-128a 10 175 69.63 5144.56 1472.35

5.6.1 Identifying Multiple bit faults

So far we have discussed an attack scenario where an injected fault flips exactly one bit

value at a random register location. We now relax the requirements of the attack, and

assume a fault model that allows the attacker to inject a fault that affects more than

one locations. Our strategy would be that, if it is found that the fault injection has

flipped the logic at more than one register location, we will discard the keystreams and

not use them for further processing.

We consider the case when at most three consecutive locations can be disturbed by a

single fault injection. Thus, three cases are possible:

(a) exactly one bit is flipped (n cases each for the LFSR and NFSR and hence a total

on 2n cases),

Chapter 5: Differential Fault Analysis of Grain 157

(b) 2 consecutive locations i, i+ 1 are flipped (2(n− 1) cases),

(c) 3 consecutive locations i, i+ 1, i+ 2 are flipped (2(n− 2) cases) .

Studying such a model makes sense if we attack an implementation of Grain where the

register cells are physically positioned linearly one after the other.

It is clear that such a fault model allows a total of 2(n+n− 1 +n− 2) = 6n− 6 types of

faults out of which only n are single bit-flips. We assume that each of these 6n− 6 cases

are equally probable. The success of our attack that we have described in Section 5.5

will depend on the ability of the attacker to deduce whether a given faulty key-stream

vector has been produced as a result of a single bit toggling of any register location or

a multiple-bit toggle. Thus, we need to design a fault location identification algorithm

that analyzes a faulty key-stream and (i) if the faulty key-stream has been produced

due to a single bit toggling of any location, the algorithm should output that particular

position, and (ii) if the faulty key-stream has been produced due to multiple-bit toggling

of locations, the algorithm should infer that the faulty key-stream could not have been

produced due to a single bit toggle.

To solve the problem, will use the same fault location identification routine FLocI de-

scribed in Algorithm 5.2. For the method to be a success, the routine would

• Return the fault location numbers for all possible cases when a single location is

toggled (n out of 6n− 6 cases), i.e., when |Ψ3,φ| = 1

• Return the failure message ⊥ in case |Ψ3,φ| > 1,

• Return the message ∅ if |Ψ3,φ| = 0, which is a conclusive identification of a multiple

bit-flip.

After experimenting with randomly chosen single, double and triple bit faults for around

220 Key-IV pairs, it was found that the probability that the algorithm successfully rejects

a faulty stream produced due to a multiple bit fault i.e. Pr(Ψ3,φ = ∅) is 0.94 for Grain

v1, 0.99 Grain-128 and 0.86 for Grain-128a.

5.6.2 Identifying Fault Locations for Injections at random time

Until now we have assumed that the adversary is able to inject all faults at the begin-

ning of a fixed PRGA round. This is usually practical as fault injections are usually

synchronized with the power consumption curves of the device implementing the cryp-

tosystem [52]. In this section we show that it is possible to attack Grain even if this

158 Chapter 5: Differential Fault Analysis of Grain

requirement is relaxed. We will show that if the adversary injects a fault at a PRGA

round τ where τ ∈ [0, τmax − 1]. In such an event, it is possible for the adversary, with

high probability, determine the values of the fault location φ and the injection time τ .

Before we get into further details, let us recap a few things and look at a definition that

we will be using extensively.

The location identification algorithm that presented so far (call it FLocI(Eφ) takes the

difference vector Eφ = Z ⊕ Zφ, and returns the following

• The fault location φ if the set Ψ3,φ has cardinality 1.

• The ∅ message if the set Ψ3,φ has cardinality 0, which is indicative of the fact that Zφ

was generated due to multiple bit fault.

• A failure message ⊥ if the set Ψ3,φ has cardinality strictly greater than 1. This case

may arise for both single and multiple bit faults.

Definition 5.7. Two distinct fault location and time injection pairs (φ, τ) and (φ′, τ ′)

are said to be equivalent if they produce the same faulty key-stream.

For example in Grain v1, faulting the NFSR location 70 at PRGA round 0 would produce

the same faulty key-stream as faulting NFSR location 69 at PRGA round 1. This is

because the difference that is induced in location 70 at PRGA round 0 shifts to location

69 in PRGA round 1 anyway. Thus (70, 0) and (69, 1) are equivalent pairs. However

(62, 0) and (61, 1) are not equivalent since 62 is a tap for the update function of the

NFSR for Grain v1. A difference induced in PRGA round 0 in location 62 travels to

both locations 61 and 79 in the next round. Whereas a fault at location 61 in round 1

would affect only this location and not location 79.

Let us denote the elements of Eφ = [e0, e1, e2, . . .]. Also define the vector Eφi =

[ei, ei+1, . . .]. Let us assume that the vector Eφ has been produced due to fault in-

jection at some LFSR or NFSR location φ at time τ where 0 ≤ τ ≤ τmax − 1. To

identify (φ, τ) the adversary runs the routine FLI(Eφi) for all i ∈ [0, τmax − 1]. As a

result, the adversary could obtain

1. The output φ+i for all values of i. Note that since the pairs (φ+i, i) are equivalent,

he can assume that (φ, 0) are the true values of (φ, τ).

2. The output φ+ i for some values of i and a failure messages for some other values

of i. The adversary then takes the minimum value of i = imin for which FLI(Eφi)

succeeds and assumes (φ+ imin, imin) to be the true values of (φ, τ).

Chapter 5: Differential Fault Analysis of Grain 159

3. The failure message for all values of i. In this event he rejects the key-stream.

However, the probability of this outcome is quite low.

4. If he obtains ∅ for some value of i he deduces multiple-bit injection and rejects the

key-stream.

5. If he obtains the outputs φ1 for i = i1 and φ2 for i = i2 such that (φ1, i1) and

(φ2, i2) are not equivalent then he deduces that the algorithm has failed and rejects

the keystream.

Experiments performed for around 220 random Key-IVs the probability of Case 5 oc-

curring is only about 0.089 for Grain v1 if we take τmax = 10. For for Grain-128, taking

τmax = 15, the failure probability comes to 0.079. For higher values of τmax the failure

probability becomes non-negligible.

This approach, however, fails for Grain-128a. Recall, that every alternate key-stream bit

in Grain-128a is used for the computation of MAC and is therefore not directly available

to the attacker. It is easy to see that the given approach will fail in all cases when the

injection time is an odd number.

5.7 Conclusion

In this chapter, the Differential Fault Analysis (DFA) against the Grain family of stream

ciphers has been studied under various fault models – some more restrictive and some

more relaxed. We have proposed three attacks on the Grain family of stream ciphers,

each of which imposes increasing degrees of difficulty on the attacker, and outlined meth-

ods that enables the attacker to recover the Secret Key under each of these conditions.

In the first attack, we assume that the attacker is able to inject time-synchronized, single

bit-flipping faults in the same albeit random register location. The attacker uses a linear

first order derivative of the output function h used in the Grain family to formulate lin-

ear equations and recover the internal state of the cipher at the beginning of the PRGA.

In the second attack, the attacker is no longer allowed to inject multiple faults on the

same register location. In this case, he uses higher order affine derivatives of the output

function h to formulate linear equations and recover the internal state.

In third and final attack, we propose a DFA of the Grain family that requires the

adversary to have the least control over fault injections, i.e., he exercises only partial

control over the time of injection, and he can only guarantee that the fault he has

injected affects no more than 3 continuous register locations. The algorithm we propose

first finds the location and injection time of a randomly applied bit fault (it rejects

160 Chapter 5: Differential Fault Analysis of Grain

the faulty stream if it infers that it was produced due to multiple bit fault) and then

populates a bank of equations in the internal state variables of the cipher at the start

of the PRGA. The algorithm then tries to solve the equations using the Cryptominisat-

2.9.5 SAT solver [126]. For all the three ciphers the solver is able to recover the entire

internal state using equations generated by less than or equal to 10 random faults in a

few minutes. This is, to the best of our knowledge, the best fault analysis that has been

reported against the Grain family.

As we have pointed out, the number of faults may be reduced further with more com-

putational effort. Dedicated hardware and parallel computation may be exploited in

this direction. However, this is not in the scope of this work as we are interested in the

proof-of-concept that can be achieved in a few minutes through a simple implementa-

tion. Estimating the minimum number of faults given some high-end hardware is an

important open question for future research.

Chapter 6

Conditional Differential

Cryptanalysis of Grain

As far as the Differential Cryptanalysis of reduced round Grain v1 is concerned, the

best results were those published by Knellwolf et al. in Asiacrypt 2011. In an extended

version of the paper, it was shown that it was possible to retrieve (i) 5 expressions in

the Secret Key bits for a variant of Grain v1 that employs 97 rounds (in place of 160)

in its Key Scheduling process using 227 chosen IVs and (ii) 1 expression in Secret Key

bits for a variant that employs 104 rounds in its Key Scheduling using 235 chosen IVs.

The authors had arrived at the values of these Secret Key expressions by observing

certain biases in the keystream bits generated by the chosen IVs. These biases were

observed purely experimentally and no theoretical justification was provided for the

same. In this chapter, we will revisit Knellwolf’s attacks on Grain v1 and try to provide

a theoretical framework that will serve to prove the correctness of these attacks. We

will also look at open problems which may possibly pave way for further research on

Differential Cryptanalysis of Grain v1.

6.1 Introduction

Cube attacks was first introduced by Dinur and Shamir in [55] and have been used

extensively to attack reduced round variants of the Grain family. In [56, 57], cube

attacks have been used to successfully cryptanalyze reduced-round variants as well as

full Grain 128. In [97], cube distinguishers were used to distinguish a variant of Grain-

128a, that employs 189 out of the 256 rounds in the Key Scheduling process. However,

due to the relative complex nature of the component functions used in the design of

Grain v1, there have not been many advances in this direction against it. The best

161

162 Chapter 6: Conditional Differential Cryptanalysis of Grain

published work on Grain v1 is by Knellwolf et al [94], an extended version of which

appeared in [93, Chapter 3.4]. The attack, which can be best described as a dynamic

cube attack over a single-dimensional cube, achieves the following objectives:

a) It retrieves 5 expressions in the Secret Key bits for a variant of Grain v1 that employs

97 rounds (in place of 160) in its Key Scheduling process using 227 chosen IVs.

b) It retrieves 1 expression in Secret Key bits for a variant that employs 104 rounds in

its Key Scheduling using 235 chosen IVs.

The values of these Secret Key expressions were obtained by observing certain non-

randomness in the keystream bits generated by the chosen IVs. More specifically, the

authors could enumerate a set of IVs for which, the sum of the output bits over the single

dimensional cube were biased towards 0. These biases were observed purely experimen-

tally and no theoretical justification was provided for the same. Providing a theoretical

explanation of these experimental observations has thus been an open problem in this

domain.

In this chapter we will try to provide some answers to these questions which have thus

far remained open. We will first briefly revisit the details of the attacks on Grain v1

described in [93, Chapter 3.4]. We will then describe a Differential Engine that will keep

track of the differential trails in the Key Scheduling part of the cipher. Using this tool

we will show that biases observed in the output cubes after 97 rounds respectively are

due to unbalanced derivatives of the NFSR update function g and output function h

used in the design of Grain v1, i.e., there exist differentials α, β for which the Boolean

Functions g(x)⊕ g(x⊕ α) and h(x)⊕ h(x⊕ β) are both unbalanced. For the attack on

104 rounds, the author of [93] observes that the bias is observed in only about 50% of

the cases, and at this point it is not exactly clear what algebraic conditions the Secret

Key needs to satisfy in order to observe the bias and perform the Key recovery.

6.2 Knellwolf’s attack on Grain v1

The paper [94] by Knellwolf et al. at Asiacrypt 2011 remains the best published result

in the field of cryptanalysis of Grain v1 in terms of the number of rounds attacked. We

will describe a slightly modified version of the same attack that appeared in [93, Chapter

3.4]. As alluded to earlier, the attack can be described as a dynamic cube attack over a

cube of dimension one. Grain v1 employs a 64 bit IV, and the 37th IV bit was chosen

as the cube variable. Algebraically, this is equivalent to analyzing two initializations of

Chapter 6: Conditional Differential Cryptanalysis of Grain 163

the Grain v1 cipher, one with the initial state equal to

X0 = [k0, k1, . . . , k79], Y0 = [ν0, ν1, . . . , ν37, . . . , ν63, 1, 1, . . . , 1],

and the other with the initial state equal to

X ′0 = [k0, k1, . . . , k79], Y ′0 = [ν0, ν1, . . . , 1⊕ ν37, . . . , ν63, 1, 1, . . . , 1].

where K = [k0, k1, . . . , k79], V = [ν0, ν1, . . . , ν37, . . . , ν63], and V ′ = [ν0, ν1, . . . , 1 ⊕
ν37, . . . , ν63] are the formal notations for the Secret Key and the two IVs that differ in

the 37th position. Let Xi, Yi and X ′i, Y
′
i denote the NFSR, LFSR states at the ith KSA

round produced during the evolution of X0, Y0 and X ′0, Y
′

0 respectively.

The two initializations by X0, Y0 and X ′0, Y
′

0 , thus, imply that at the beginning of the

Key Scheduling Algorithm (KSA), a differential is introduced in the 37th LFSR bit. It

seems inevitable that as more and more KSA rounds are completed the difference would

inevitably spread to the NFSR as well, i.e., there exists some i for which Xi and X ′i
would no longer be algebraically equal. The strategy of the attackers, in [93], was to

delay the inevitable and prevent the diffusion of the differential to the NFSR for as many

KSA rounds as possible, by imposing certain algebraic conditions on the IV and Secret

Key bits. As a result of this the attacker obtains several algebraic relations between

the Secret Key bits and the IV bits that must be satisfied if the differential is to be

contained in the LFSR for as long as possible. These relations may be of the following

types :

Type 1: A relation of the form F1(V) = 0, i.e., involving only the IV bits.

Type 2: A relation of the form F2(K,V) = 0, i.e., involving both the Secret Key and

the IV bits.

Now let the term zt, z
′
t respectively be used describe the output bit produced in the tth

KSA round by the Key-IV pair K,V and K,V ′ (note that when we try to cryptanalyze

Grain v1 reduced to r KSA rounds, the values of the output bits zt, z
′
t for all t < r

are unavailable to the attacker). The attacker now analyzes the pair of simplified cipher

initializations where the the differential originally introduced in the 37th LFSR bit is

prevented from propagating into the NFSR by imposing suitable Type 1, 2 relations

between the Key and IV bits. In such a simplified cipher, the attacker now tries to find

some i for which the distribution of the sum zi⊕ z′i shows some non-randomness. Based

on this randomness the attacker tries to guess the values of one or several expressions in

164 Chapter 6: Conditional Differential Cryptanalysis of Grain

the Secret Key bits. We will illustrate this attack paradigm with this concrete example

as described below.

1. The attacker begins to analyze the two algebraic systems resulting from the ini-

tialization of Grain v1 by the Key-IV pairs K,V and K,V ′ respectively. Thus the

attacker has to analyze the evolution of the difference between the states Xi, Yi and

X ′i, Y
′
i for increasing values of i starting from 0, with X0 = K,Y0 = V ||0x ffff

and X ′0 = K,Y ′0 = V ′||0x ffff as described above.

2. The attacker then looks at all KSA rounds t during which the differential could

propagate to the NFSR. The first such instance occurs at round t = 12, when the

difference originally introduced at LFSR bit 37 at t = 0, now sits in LFSR location

25 which feeds the output function h. Since during the KSA the NFSR is updated

as xt+n = g(Xt) ⊕ yt ⊕ zt, the difference generated between the updated NFSR

bits x80+12 and x′80+12 is given by

x80+12 ⊕ x′80+12 = [g(X12)⊕ y12 ⊕ z12]⊕ [g(X ′12)⊕ y′12 ⊕ z′12]

= z12 ⊕ z′12 = ν15ν58 ⊕ ν58k75 ⊕ 1

By algebraic calculation it can be verified that X12 = X ′12 and y12 = y′12 and hence

the above result follows. Now, the attacker must therefore set x80+12 ⊕ x′80+12 =

ν15ν58⊕ ν58k75⊕ 1 = 0 to prevent the propagation of this differential. This can be

achieved by setting ν58 ⊕ 1 = 0 and

C1 : ν15 ⊕K1 = 0, (6.1)

where K1 = k75⊕1. Thus we obtain one Type 1 relation and one Type 2 relation.

3. The next instance of difference propagation occurs at KSA round t = 34. At this

round, the difference generated between the updated NFSR bits x80+34 and x′80+34

is given by

x80+34 ⊕ x′80+34 =[g(X34)⊕ y34 ⊕ z34]⊕ [g(X ′34)⊕ y′34 ⊕ z′34] = z34 ⊕ z′34

=y98 ⊕ y59y80 ⊕ y80y98 ⊕ y80x97

This difference can be nullified if we set y98 = y80 = 0. Now, both y98 and y80 are

functions of k0, k1, . . . , k79 and ν0, ν1, . . . , ν63 and hence y98 = y80 = 0 is satisfied

if we impose the following conditions: ν0 = 0, ν1 = 0, ν3 = 0, ν4 = 0, ν5 = 0, ν21 =

0, ν25 = 0, ν26 = 0, ν27 = 0, ν43 = 0, ν46 = 0, ν47 = 0, ν48 = 0

Chapter 6: Conditional Differential Cryptanalysis of Grain 165

C2 : ν13 ⊕ ν23 ⊕ ν38 ⊕ ν51 ⊕ ν62 ⊕K2 = 0, (6.2)

C3 : ν2 ⊕ ν18 ⊕ ν31 ⊕ ν40 ⊕ ν41 ⊕ ν53 ⊕ ν56 ⊕K3 = 0, (6.3)

where

K2 = k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56,

and K3 is a polynomial expression of degree 7 with 39 monomials and 31 key

variables.

4. The next instance is at t = 40. Again it can be verified that

x80+40 ⊕ x′80+40 = [g(X40)⊕ y40 ⊕ z40]⊕ [g(X ′40)⊕ y′40 ⊕ z′40] = z40 ⊕ z′40

= ν43y86 ⊕ ν43 ⊕ y86x103 ⊕ y86 ⊕ x103

The difference is nullified if we set ν43 = 0, y86 = 0, and x103 = 0 for which the

following conditions are imposed: ν8 = 0, ν9 = 0, ν10 = 0, ν19 = 0, ν28 = 0, ν29 =

0, ν31 = 0, ν44 = 0, ν49 = 0, ν51 = 0, ν52 = 0, ν53 = 0, ν57 = 0

C4 : ν6 ⊕K4 = 0, (6.4)

C5 : ν7 ⊕ ν20 ⊕ ν23 ⊕ ν32 ⊕ ν45 ⊕K5 = 0, (6.5)

K4 = k7 ⊕ k8 ⊕ k10 ⊕ k16 ⊕ k37 ⊕ k49 ⊕ k62 ⊕ 1

and K5 is a polynomial expression of degree 15 with 2365 monomials in 57 key

variables.

The five Type 2 relations C1, C2, . . . , C5 obtained in Equations (6.1)-(6.5) are crucial to

the Key recovery attack. First note that due to the several Type 1 relations that assign

27 of the IV bits to 0 or 1, the effective IV space is reduced to {0, 1}37. We will partition

this space into 25 disjoint sets Ti, 0 ≤ i < 32 as follows. Let {ν2, ν6, ν7, ν13, ν15} be the

set of dynamic cube variables. Let K1,K2, . . . ,K5 be the unknown key expressions as

described above and write U = [K1,K2,K3,K4,K5]. Then, for each U ∈ {0, 1}5 the set

TU can be generated as follows:

166 Chapter 6: Conditional Differential Cryptanalysis of Grain

1. Define the Set

TU ← {V ∈ {0, 1}64 | ν58 = 1, ν0 = 0, ν1 = 0, ν3 = 0, ν4 = 0, ν5 = 0, ν21 = 0,

ν25 = 0, ν26 = 0, ν27 = 0, ν43 = 0, ν46 = 0, ν47 = 0,

ν48 = 0, ν8 = 0, ν9 = 0, ν10 = 0, ν19 = 0, ν28 = 0,

ν29 = 0, ν31 = 0, ν44 = 0, ν49 = 0, ν51 = 0, ν52 = 0,

ν53 = 0, ν57 = 0}

2. For all V ∈ TU, adjust ν2, ν6, ν7, ν13, ν15 according to U:

ν15 ← K1, ν13 ← ν23 ⊕ ν38 ⊕ ν51 ⊕ ν62 ⊕K2,

ν2 ← ν18 ⊕ ν31 ⊕ ν40 ⊕ ν41 ⊕ ν53 ⊕ ν56 ⊕K3

ν6 ← K4, ν7 ← ν20 ⊕ ν23 ⊕ ν32 ⊕ ν45 ⊕K5

The attacker observes that if the conditions C1 to C5 are all satisfied then the

distributions of z97 ⊕ z′97 and z104 ⊕ z′104 exhibit non-random behavior. More

specifically, it was experimentally observed that

Pr
[
z97 ⊕ z′97 = 0 | Ci is satisfied ∀i ∈ [1, 5]

]
=

1

2
+ ε1, (6.6)

Pr
[
z104 ⊕ z′104 = 0 | Ci is satisfied ∀i ∈ [1, 5]

]
=

1

2
+ ε2, (6.7)

where ε1, ε2 are some positive biases. Note that these biases were observed experi-

mentally and no theoretical proof was provided for them. In this chapter, we shall

attempt to provide a theoretical framework to prove the bias at round 97.

To mount the attack, the attacker tries to compute the distribution of z97⊕z′97 and

z104⊕z′104 in each of the 32 sets TU. Observe that all the conditions C1, C2, . . . , C5

are satisfied in only one of these sets TU0 where U0 is the correct value of U. The

attacker will therefore be able to observe the bias in the set TU0 , and by stan-

dard randomness assumptions, fail to observe any bias in the other sets, thereby

determining the values of the five expressions K1,K2, . . . ,K5. As it turns out, it

the attacker may observe bias in three other sets TU′ , where the values of U′ are

different from the correct U0. In fact the conditions C2, C3 need not be satisfied

and thus the bias will be observed in all the other 3 sets where C1, C4, C5 are

satisfied but C2, C3 are not, and we shall provide a framework to prove this.

Chapter 6: Conditional Differential Cryptanalysis of Grain 167

6.3 The Differential Engine ∆GrainKSA

In order to prove the biases observed in the distribution of z97 ⊕ z′97 and z104 ⊕ z′104 we

will define a tool ∆GrainKSA that will keep track of the differential trails of any cipher in

the Grain family during the Key Scheduling process. The tool is a modification of the

engine D-Grain that appeared in Algorithm 5.1. Note that while D-Grain computed

the differential trails during the PRGA, our engine will do so during the KSA.

6.3.1 Generalized Grain cipher

To begin, let us rewrite the definition of the generalized Grain stream cipher that was

introduced in Section 5.2.1. The cipher covers the descriptions of Grain v1, Grain-128

and Grain-128a. We already know that any cipher in the Grain family consists of an

n-bit LFSR and an n-bit NFSR (see Figure 4.1). The update function of the LFSR is

given by the equation

yt+n = f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa ,

where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the

tth clock interval and f is a linear function on the LFSR state bits obtained from a

primitive polynomial in GF (2) of degree n. The NFSR state is updated as

xt+n = yt ⊕ g(Xt) = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb)

= yt ⊕ xt ⊕ xt+g1 ⊕ · · · ⊕ xt+gb0 ⊕ g
′(xt+gb0+1

, xt+gb0+2
, . . . , xt+gb)

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state at the

tth clock interval and g is a non-linear function of the NFSR state bits in which the NFSR

locations 0, g1, g2, . . . , gb0 only contribute linearly. The output key-stream is produced

by combining the LFSR and NFSR bits as

zt = xt+l1 ⊕ xt+l2 ⊕ · · · ⊕ xt+lc ⊕ yt+i1 ⊕ yt+i2 ⊕ · · · ⊕ yt+id⊕
h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw).

Here h is another non-linear combining Boolean function. So it is clear that Grain v1,

Grain-128 and Grain-128a are particular instances of the generalized Grain cipher.

6.3.2 ∆GrainKSA

As defined earlier, let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the generalized

Grain KSA and Sφ0 = [Xφ
0 ||Y φ

0] be the initial state which differs from S0 in some LFSR

168 Chapter 6: Conditional Differential Cryptanalysis of Grain

location φ ∈ [0,m−1], where m is the length of the IV. Note that, in the particular case

of Grain v1, where we introduce the difference in the 37th IV bit, the notation X ′0, Y
′

0

actually implies X37
0 , Y 37

0 in this context.

The task is to ascertain how the corresponding internal states in the tth round St and Sφt

will differ from each other, for some integer t > 0. We present the following algorithm

which we will call ∆GrainKSA that takes as input the difference location φ ∈ [0,m − 1]

and the value r of the number of rounds, and returns the following: (i) a set of r integer

arrays χt, for 0 ≤ t < r, each of length c + d, (ii) a set of r integer arrays Υt, for

0 ≤ t < r, each of length e+ w and (iii) an integer array ∆Z of length r.

Note that as already defined in the description of generalized Grain, d, c are the number

of LFSR, NFSR bits which are linearly added to the output function h. And e, w are

the number of LFSR, NFSR bits that are input to the function h.

Now consider the corresponding generalized differential engine ∆φ-GrainKSA with an n-

cell LFSR ∆L and an n-cell NFSR ∆N . All the elements of ∆L and ∆N are integers.

We will denote the tth round state of ∆L as ∆Lt = [ut, ut+1, . . . , ut+n−1] and that of

∆N as ∆Nt = [vt, vt+1, . . . , vt+n−1]. Initially all the elements of ∆N,∆L are set to 0,

with the only exception that – The cell numbered φ of ∆L is set to 1.

The initial states ∆N0,∆L0 are indicative of the difference between S0 and Sφ0 and we

will show that the tth states ∆Nt,∆Lt are indicative of the difference between St and

Sφt . Define the function lin : ∪∞i=1Zi+ → {0, 1, 2} (where Z+ is the set of non negative

integers)

lin(q1, q2, . . . , qi) =

{
q1 + q2 + · · ·+ qi mod 2 if max(q1, q2, . . . , qi) ≤ 1,

2, otherwise.

Define the intermediate variables `t, rt, Ωt as follows:

`t = lin (ut, ut+f1 , . . . , ut+fa), rt = lin (ut, vt, vt+g1 , · · · , vt+gb0)

Ωt = 2 · OR(vt+gb0+1
, vt+gb0+2

, . . . , vt+gb).

Here OR is a map from ∪∞i=1Zi+ → {0, 1} which roughly represents the logical ‘or’

operation and is defined as

OR(q0, q1, . . . , qi) =

{
0, if q0 = q1 = q2 = · · · = qi = 0,

1, otherwise.

Chapter 6: Conditional Differential Cryptanalysis of Grain 169

Let χt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id], and also define the vector Υt =

[ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw]. Note that χt(Υt) is the set of cells in ∆φ-

GrainKSA which corresponds to the bits which are linearly added to the output function

h (input to h) in the tth KSA stage of the actual cipher. The tth key-stream element πt

produced by this engine is given as

πt = lin (lin(χt), 2 · OR(Υt))

Here 0 denotes the all zero vector. Now ∆L updates itself as ut+n = lin(`t, πt). And

similarly, ∆N updates itself as vt+n = lin(rt, Ωt, πt). We will now explain the rationale

behind choosing the internal variables and then explain clearly the working of the engine:

1. The Keystream element πt: We will begin with the working hypothesis that if any

element in the differential engine is :

→ 0, the difference of the corresponding elements in St and Sφt is always 0.

→ 1, the difference of the corresponding elements in St and Sφt is always 1.

→ 2, the difference of the corresponding elements in St and Sφt is probabilistically

either 0 or 1 and the exact value would depend on the exact value of the

initial vector S0 and actual update functions.

For example if some element ut+n is 0 we can assume that the corresponding LFSR

bits yt+n and yφt+n are always equal, if πt is 1 for some t, then we can assume that

difference of the keystream bits zt and zφt is always unequal etc. We will show that

this hypotheses is correct as we go along trying to explain the rationale behind the

various elements of the engine.

The function lin(∆) computes the modulo 2 sum of the elements of the vector

∆ only if all its elements are 0 or 1, otherwise it returns 2. This captures the

notion of difference propagation rules over ordinary GF(2) addition. Let x

and xφ be vectors in the original cipher initializations S0 and Sφ0 respectively,

whose contents need to be summed for some intermediate cipher operation.

Let δ = x⊕xφ, then the difference of sums of the bits of x and xφ is equal to

the sum of the contents of δ. Now if the elements of δ are always 0 or 1 (this

corresponds to all elements of ∆ being either 0 or 1 in the differential engine),

it implies that the corresponding elements of x and xφ are respectively always

equal or different. Then, the difference of sums of the bits of x and xφ will

either be always 0 or 1 and is given by the sum of elements of δ. In such

an event, lin(∆) computes the modulo 2 sum of the elements of ∆ which

is either 0 or 1. If, however, some corresponding elements x and xφ are

170 Chapter 6: Conditional Differential Cryptanalysis of Grain

only probabilistically equal (this corresponds to some elements of ∆ being

equal to 2), then the difference between the sums of their contents is also

probabilistically 0 or 1. In such an event, lin(∆) returns 2.

The function 2 · OR(∆) returns 0 only if all elements of the vector ∆ is 0 and

returns 2 otherwise. This captures the notion of difference propagation rules

over non-linear Boolean functions. Again, let x and xφ be vectors in the

original cipher initializations S0 and Sφ0 respectively, which are fed to some

non-linear function F during some intermediate cipher operation. As above,

let δ = x⊕ xφ. Then difference between F (x) and F (xφ) is deterministically

0 only if all elements of δ are also deterministically 0 (this corresponds to all

elements of ∆ being 0). If even one element of δ is not deterministically 0 then

the difference between F (x) and F (xφ) becomes probabilistic and depends on

the nature of the Boolean Function F (x)⊕F (xφ). In such an event, 2·OR(∆)

returns 2.

Now observe the equation defining πt. Note that χt consists of tap locations that

add linearly to the output function and Υt consists of the locations that feed the

non-linear h function in the original generalized Grain cipher. Thus the lin() of

lin(χt) and 2 · OR(Υt) will effectively capture the difference between actual tth

round keystream bits zt and zφt in the two initializations of the generalized cipher.

2. Update rule of ∆L: In the original cipher, the update to the LFSR is the GF(2)

sum of 2 parts: the keystream bit zt and the linear update function f over the

LFSR bits yt, yt+f1 , yt+f2 , . . . , yt+fa . The function `t = lin(ut, ut+f1 , . . . , ut+fa)

captures the difference propagation over the linear sum. So the definition of ut+n

which is lin(`t, πt) captures the difference between yt+n and yφt+n.

3. Update rule of ∆N : In the original cipher, the update to the NFSR is the GF(2)

sum of 4 parts: the keystream bit zt, the LFSR bit yt, the linear function over

the NFSR bits xt, xt+g1 , . . . , xt+gb0 and the non-linear update function g′ over

the bits xt+gb0+1
, . . . , xt+gb . The function rt = lin (ut, vt, vt+g1 , · · · , vt+gb0) cap-

tures the difference propagation over the linear parts, and Ωt = 2 · OR(vt+gb0+1
,

vt+gb0+2
, . . . , vt+gb) captures the difference over the non-linear function g′. And

thus the definition of vt+n which is lin(rt, Ωt, πt) captures the difference between

xt+n and xφt+n.

Chapter 6: Conditional Differential Cryptanalysis of Grain 171

4. An exception to the rule: Our definition of πt some times fails to capture the exact

difference between zt and zφt . We will demonstrate this with an example: We go

back to our original system in Grain v1 where the differential is introduced via the

37th IV bit and therefore we run the engine ∆37-GrainKSA. At round 30 the values

of χt and Υt are as follows:

t = 30 : χt = 0, Υt = [ut+3 = 0, ut+25 = 0, ut+46 = 0, ut+64 = 1, vt+63 = 0]

Here 0 is the all zero vector. This implies that if we introduce an IV differential

at location 37 then at KSA round 30 all state bits in S30 and S37
30 involved in the

computation of their respective keystream bits are equal except the bits yt+64 and

y37
t+64, which are deterministically unequal, i.e., yt+64 = 1 ⊕ y37

t+64 always holds.

Then, it follows that

z30 ⊕ z37
30 = h(y33, y55, y76, y94, x93)⊕ h(y33, y55, y76, 1⊕ y94, x93)

= y33y76 ⊕ y33 ⊕ y76x93 ⊕ y76 ⊕ x93 = 1.

The above follows because y76 is initialized to 1 as it is a part of the 0x ffff

padding that is used in Grain v1. Thus, z30 and z37
30 are deterministically unequal.

But according to the definition of πt, the value of π30 would be computed as 2. To

prevent a situation like this one must always check if for some t, the values of χt

and Υt throw up an exception. If it does we must assign the value 1 to πt. Thus

the definition of πt can be rewritten thus:

πt =

{
1 if χt,Υt throws up an exception

lin (lin(χt), 2 · OR(Υt)) otherwise.

We present an algorithmic description of ∆φ-GrainKSA in Algorithm 6.1.

6.4 Proving the biases

We will now provide a theoretical frame work to prove the biases reported in Equa-

tions (6.6), (6.7) using the differential engine ∆φ-GrainKSA that was described in the

previous Section. Note that the probability values we shall work out are computed over

the randomness due to the Key bits and the those IV bits not assigned by the Type

1, 2 relations in Section 6.2. However, these results also hold, even if the Key is fixed,

and the randomness comes only from the IV bits. Before we do that let us look at the

following Lemma that we will use. As the lemma is quite straightforward, we state it

here without proof.

172 Chapter 6: Conditional Differential Cryptanalysis of Grain

Input: φ: An LFSR location ∈ [0,m− 1], an integer r(> 0);

Output: An integer array ∆Z of r elements;

Output: Two integer arrays χt,Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1]← 0, [v0, v1, . . . , vn−1]← 0;

t← 0;

uφ = 1;
while t < r do

Υt ← [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw] ;

χt ← [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id];

`t ← lin(ut, ut+f1 , ut+f2 , . . . , ut+fa);

rt ← lin(ut, vt, vt+g1 , · · · , vt+gb0);

Ωt ← 2 · OR(vt+gb0+1
, vt+gb0+2

, . . . , vt+gb);

if χt,Υt throws up an exception then
πt ← 1

end
else

πt ← lin (lin(χt), 2 · OR(Υt))
end
ut+n ← lin(πt, `t);

vt+n ← lin(πt, rt, Ωt);

/*Any modification goes here */;1

t = t+ 1;
end
∆Z = [∆z0,∆z1, . . . ,∆zr−1];

Return [χ0, χ1, . . . , χr−1], [Υ0,Υ1, . . . ,Υr−1], ∆Z

Algorithm 6.1: ∆φ-GrainKSA

Lemma 6.1. Let F be an i-variable Boolean function, with wt(F) = w. If the vector X

is chosen uniformly from {0, 1}i then Pr[F (X) = 0] = 1− w
2i

.

6.4.1 ∆φ-GrainKSA with overrides

The system ∆φ-GrainKSA works fine to track differential trails produced due to difference

introduced in the φth IV bit. But notice that, Knellwolf’s attack imposes several alge-

braic conditions among the Secret Key and IV bits in order to prevent the propagation

of any difference to the NFSR. So, in order to replicate the difference propagation in

Knellwolf’s system by using the engine ∆φ-GrainKSA certain modifications need to be

made to it.

Chapter 6: Conditional Differential Cryptanalysis of Grain 173

Since Knellwolf’s system introduces difference at the 37th IV bit, we run ∆37-GrainKSA.

Thereafter the propagation of the differential is stopped at t = 12, 34, 40. Hence at these

rounds ut+n, vt+n need to be manually assigned to 0. This corresponds to inserting the

following code snippet at line 1 of Algorithm 6.1.

if t ∈ {12, 34, 40} : ut+n ← 0, vt+n ← 0

Thereafter we look at the output produced by such a system at KSA round 97. The

values of χ97, Υ97 are as follows:

χ97 : [v98 = 0, v99 = 0, v101 = 0, v107 = 0, v128 = 2, v140 = 0, v153 = 2]

Υ97 : [u100 = 0, u122 = 1, u143 = 2, u161 = 2, v160 = 2]

This implies that of all the bits S97, S
′
97 involved in the computation of z97 and z′97 re-

spectively, the relations between only i) x128, x
′
128 ii) x153, x

′
153 iii) y143, y

′
143 iv) y161, y

′
161

v) x160, x
′
160 is probabilistic. Therefore we have

z97 ⊕ z′97 = [x128 ⊕ x′128]⊕ [x153 ⊕ x′153]⊕
[h(y100, y122, y143, y161, x160)⊕ h(y100, 1⊕ y122, y

′
143, y

′
161, x

′
160)]

(6.8)

We begin with the assumption that the random variables x128⊕x′128, x153⊕x′153, y143⊕
y′143, y161 ⊕ y′161 and x160 ⊕ x′160 are statistically mutually independent of one another.

It is difficult to prove this assumption theoretically but extensive computer simulations

have shown that one can make this assumption. We must therefore attempt to find the

distributions of these variables, to prove the bias.

A. x128 ⊕ x′128 : To find this distribution we need to look at the state of our modified

∆37-GrainKSA at t = 128−80 = 48. At this round the vectors χt,Υt are as follows:

χ48 : 0, Υ48 : [u51 = 0, u73 = 0, u94 = 1, u112 = 1, v111 = 0]

Among, the other state bits used in the computation of v128 only v110 = 1 and the

rest are 0.Thus we have

x128 ⊕ x′128 = [g(X48)⊕ y48 ⊕ z48]⊕ [g(X ′48)⊕ y′48 ⊕ z′48]

= [g(x48, x57, . . . , x110, x111)⊕ g(x48, x57, . . . , 1⊕ x110, x111)]⊕
[h(y51, y73, y94, y112, x111)⊕ h(y51, y73, 1⊕ y94, 1⊕ y112, x111)]

= x111 ⊕ y94x111 ⊕ y94 ⊕ y112x111 ⊕ y112

174 Chapter 6: Conditional Differential Cryptanalysis of Grain

The above equations follow because y73 = 1 as required by the padding rule of

Grain v1, and y51 = 0 as this is one of the Type 1 conditions imposed on the IV

bits. Assuming that the variables y94, x111, y112 are uniformly and independently

distributed, and since x111 ⊕ y94x111 ⊕ y94 ⊕ y112x111 ⊕ y112 is a Boolean Function

of weight 6 we can use Lemma 6.1 to say:

Pr[x128 ⊕ x′128 = 0] = 1− 6

8
=

1

4

B. x153 ⊕ x′153 : To find this distribution we need to look at the state of our modified

∆37-GrainKSA at t = 153− 80 = 73. At this round, it turns out that χt = Υt = 0.

Among the other elements involved in the computation of v153 only v110 = v135 = 1

and v133 = 2 and the rest are zero. Since v133 = 2, the difference between x133 and

x′133 is still probabilistic. We would need to compute the distribution of x133⊕x′133

before we can compute the distribution of x153 ⊕ x′153.

To find this distribution we look at ∆37-GrainKSA at t = 133 − 80 = 53. At this

round among all the elements involved in the computation of v153 only u117 = 1

and the rest are 0. So we have,

x133 ⊕ x′133 = [g(X53)⊕ y53 ⊕ z53]⊕ [g(X ′53)⊕ y′53 ⊕ z′53]

= h(y56, y78, y99, y117, x116)⊕ h(y56, y78, y99, 1⊕ y117, x116)

= y56y99 ⊕ y56 ⊕ y99x116 ⊕ y99 ⊕ x116

Again, assuming independent and uniform distribution of the inputs, and since

y56y99 ⊕ y56 ⊕ y99x116 ⊕ y99 ⊕ x116 is Boolean Function of weight 6, we have

Pr[x133 ⊕ x′133 = 0] = 1− 6

8
=

1

4

Now going back to the original problem, we have

x153 ⊕ x′153 = [g(X73)⊕ y73 ⊕ z73]⊕ [g(X ′73)⊕ y′73 ⊕ z′73]

= g(. . . , x110, . . . , x133, x135, . . .) ⊕ g(. . . , 1⊕ x110, . . . , x
′
133, 1⊕ x135, . . .)

Define

G1 = g(. . . , x110, . . . , x133, x135, . . .)⊕ g(. . . , 1⊕ x110, . . . , x133, 1⊕ x135, . . .)

G2 = g(. . . , x110, . . . , x133, x135, . . .)⊕ g(. . . , 1⊕ x110, . . . , 1⊕ x133, 1⊕ x135, . . .)

We have x153 ⊕ x′153 equal to G1 if x133 ⊕ x′133 = 0 and equal to G2 otherwise.

Since, G1 is a Boolean Function of weight 3456 and weight of G2 is 3840, under

Chapter 6: Conditional Differential Cryptanalysis of Grain 175

standard assumptions of independence we have

Pr[x153 ⊕ x′153 = 0] =
1∑
i=0

Pr[x133 ⊕ x′133 = i]Pr[G1 = i]

=
1

4

[
1− 3456

213

]
+

3

4

[
1− 3840

213

]
=

139

256

C. y143 ⊕ y′143 : As before we look at the output of ∆37-GrainKSA at t = 143− 80 = 63.

At this round we have χ63 = 0 and

Υ63 : [u66 = 0, u88 = 0, u109 = 0, u127 = 2, v126 = 2]

All other elements involved in the computation of u143 are zero. We therefore need

to compute the distributions of y127 ⊕ y′127 and x126 ⊕ x′126.

To compute the distribution of y127⊕y′127 we look at t = 47. All elements involved

in the computation of u127 is 0 except v110 = 1. So we have

y127 ⊕ y′127 = [f(Y47)⊕ z47]⊕ [f(Y ′47)⊕ z′47]

= h(y50, y72, y93, y111, x110)⊕ h(y50, y72, y93, y111, 1⊕ x110)

= y50y93 ⊕ y93 ⊕ y93y111 ⊕ y111 ⊕ 1

The above expression represents a balanced Boolean Function and hence we have

Pr[y127 ⊕ y′127 = 0] = 1
2 . To compute the distribution of x126 ⊕ x′126 we look at

t = 46. At this round all the elements involved in the computation of v126 are zero

except u110 = 1. So we have

x126 ⊕ x′126 = [g(X46)⊕ y46 ⊕ z46]⊕ [g(X ′46)⊕ y′46 ⊕ z′46]

= h(y49, y71, y92, y110, x109)⊕ h(y49, y71, y92, 1⊕ y110, x109)

= y92x109 ⊕ y92 ⊕ x109

This is an Boolean Function of weight 3 and so we have Pr[x126 ⊕ x′126 = 0] =

1− 3
4 = 1

4 . Now we have

y143 ⊕ y′143 = [f(Y63)⊕ z63]⊕ [f(Y ′63)⊕ z′63]

= h(y66, y88, y109, y127, x126)⊕ h(y66, y88, y109, y
′
127, x

′
126)

= h(1, y88, y109, y127, x126)⊕ h(1, y88, y109, y
′
127, x

′
126)

The above follows since y66 = 1 is a part of the padding used in Grain v1. For

i, j = 0, 1, define

hij = h(1, . . . , y127, x126)⊕ h(1, . . . , i⊕ y127, j ⊕ x126)

176 Chapter 6: Conditional Differential Cryptanalysis of Grain

h01, h11 are balanced functions and Pr[h10 = 0] = 1
4 . Assuming independence,

Pr[y143 ⊕ y′143 = 0] is given by the expression

1∑
i=0

1∑
j=0

Pr[y127 ⊕ y′127 = i]Pr[x126 ⊕ x′126 = j] · Pr[hij = 0] =
17

32

D. y161 ⊕ y′161 and x160 ⊕ x′160 : To compute the distribution of y161 ⊕ y′161 we need to

look at round t = 81. At this round both χt and Υt have many elements equal

to 2 and hence at this point we have to delve into several lower KSA rounds, and

frankly this exercise becomes a little tedious. Due to lack of space we do not

include extensive analysis of these two distributions and simply state the results.

Pr[y161 ⊕ y′161 = 0] = 0.5, Pr[x160 ⊕ x′160 = 0] = 0.4977

E. h(y100, y122, y143, y161, x160)⊕ h(y100, 1⊕ y122, y
′
143, y

′
161, x

′
160) : For the sake of con-

ciseness, let this expression be denoted by the symbol H and again for i, j, k = 0, 1,

let us define the functions

Hijk = h(y100, y122, y143, y161, x160)⊕ h(y100, 1⊕ y122, y143 ⊕ i, y161 ⊕ j, x160 ⊕ k)

It turns out that all Hijk are balanced except for H000 for which Pr[H000 = 0] = 1
4 .

Assuming independence, Pr[H = 0] is given by the expression:

1∑
i,j,k=0

Pr[y143 ⊕ y′143 = i] Pr[y161 ⊕ y′161 = j] Pr[x160 ⊕ x′160 = k] Pr[Hijk = 0]

= 0.467

6.4.2 Computing Pr[z97 ⊕ z′97 = 0]

Now we know from Equation (6.8), that z97⊕z′97 is the GF(2) sum of the three expressions

x128 ⊕ x′128, x153 ⊕ x′153 and H whose distributions we have just computed. Thus we

have

Pr[z97 ⊕ z′97 = 0] =
∑

i⊕j⊕k=0

Pr[x128 ⊕ x′128 = i] · Pr[x153 ⊕ x′153 = j] · Pr[H = k]

= 0.5014

The above bias has been verified by experiments with over 220 randomly chosen Secret

Keys.

Chapter 6: Conditional Differential Cryptanalysis of Grain 177

6.4.3 Biases in the other Sets

In [93], it was observed that bias can be observed in 3 other sets TU other than the one

indexed by the 5 correct Key expressions U0. These sets are those indexed by sets three

TU where a) C2 is not satisfied but C1 is, b) C1 is not satisfied but C2 is and c) None of

C1 or C2 is satisfied. This can be proven in a similar manner by performing the above

analysis with ∆37-GrainKSA with a different set of overrides than the ones used in the

previous proof. Note that for all the cases a-c, it implies that the differential at KSA

round t = 34 is not eliminated. So as before we analyze a modified ∆37-GrainKSA, i.e., a

modified Algorithm 6.1 in which Line 1 is replaced by

if t ∈ {12, 40} : ut+n ← 0, vt+n ← 0

6.5 Conclusion and Open Problems

In this chapter, we revisited Knellwolf’s attacks [93, 94], on Grain v1. The attacks,

which were the best published on Grain v1, in terms of the number of rounds attacked,

were based on certain biases that were observed experimentally in the distribution of

the keystream bits. There were however no theoretical proof of these biases. In this

work, we have tried to provide a theoretical framework to prove the biases and thus

prove correctness of these attacks.

One open problem in this area is, of course, to use the engine ∆φ-GrainKSA to attack

a higher number rounds of the KSA of Grain v1. Another important open problem in

this domain is to prove the bias at round 104. The author of [93] observes that at round

104, a bias is observed in one of the Sets in only about 50 % of the cases. It would be

a worthwhile exercise, to determine explicitly, the algebraic conditions the Secret Key

bits need to satisfy for the bias to be observed.

Chapter 7

Differential Fault Analysis of

MICKEY 2.0

In this chapter we describe the ideas leading to a Differential Fault Attack (DFA) on

MICKEY 2.0, a stream cipher from eStream hardware profile. Using standard assump-

tions for fault attacks, we first show that if the adversary can induce random single

bit faults in the internal state of the cipher, then by injecting around 216.7 faults and

performing 232.5 computations on an average, it is possible to recover the entire internal

state of MICKEY at the beginning of the key-stream generation phase. We further con-

sider the scenario where the fault may affect more than one (at most three) neighboring

bits and in that case we require around 218.4 faults on an average to mount the DFA.

We further show that if the attacker can solve multivariate equations (say, using SAT

solvers) then the attack can be carried out using around 214.7 faults in the single-bit

fault model and 216.06 faults for the multiple-bit scenario.

7.1 Introduction

The stream cipher MICKEY 2.0 [16] was designed by Steve Babbage and Matthew Dodd

as a submission to the eStream project. The cipher has been selected as a part of eS-

tream’s final hardware portfolio. MICKEY is a synchronous, bit-oriented stream cipher

designed for low hardware complexity and high speed. After a TMD tradeoff attack [80]

against the initial version of MICKEY (version 1), the designers responded with a tweak

to the design by increasing the state size from 160 to 200 bits and altering the val-

ues of some control bit tap locations. These changes were incorporated in MICKEY

2.0 and these are the only differences between MICKEY version 1 and MICKEY 2.0.

While MICKEY 2.0 uses an 80-bit key and a variable length IV, a modified version

179

180 Chapter 7: Differential Fault Analysis of MICKEY 2.0

of the cipher, MICKEY-128 2.0 that uses a 128-bit key [17] was also proposed by the

designers.

The name MICKEY is derived from “Mutual Irregular Clocking KEY-stream generator”

which describes the behavior of the cipher. The state consists of two 100-bit shift

registers named R and S, each of which is irregularly clocked and controlled by the

other. The cipher specification underlines that each key can be used with up to 240

different IVs of the same length, and that 240 key-stream bits can be generated from

each Key-IV pair. Very little cryptanalysis of MICKEY 2.0 is available in literature.

In fact it has been noted in [47, Section 3.2] that other than the observation related to

time or power analysis attacks [66] on straightforward implementations of the MICKEY

family, there have been no known cryptanalytic advances on these ciphers. Although,

in [130], non-smooth cryptanalysis of MICKEY 2.0 was presented. The attack, however,

had time complexity more than exhaustive search. Apart from these, no other published

results on MICKEY 2.0 are available. The work in this chapter presents cryptanalytic

result of MICKEY 2.0 in terms of differential fault attack.

Due to the extremely complex algebraic structure of MICKEY 2.0, it is not possible to

attack the cipher under the same attack model described in Section 5.3. That is to say,

against MICKEY 2.0, the attacker must be equipped with certain additional powers. In

the attack that we will describe, we assume that the attacker is able to do the following:

1. We assume that the adversary can re-key the cipher with the original Key-IV and

restart cipher operations multiple times.

2. He has precise control over the timing of the fault injection, i.e., the faults he injects

are time-synchronized.

3. He is able to flip exactly one bit lying in some random register location which he can

not choose. He is however able to register he intends to injects faults in, i.e., he is

able to target either the register R or the register S to inject faults.

4. Later, in Section 7.5, we will explore the situation when he can inject a fault that may

affect more than one value in contiguous register locations. We present explicit

results considering the events when upto three contiguous register locations may

be affected in R or S.

7.2 Structure of MICKEY 2.0

MICKEY 2.0 uses an 80-bit key and a variable length IV, the length of which may be

between 0 and 80 bits. The physical structure of the cipher consists of two 100 bit

Chapter 7: Differential Fault Analysis of MICKEY 2.0 181

registers R and S that exercise mutual control over each other’s evolution. Both the

registers are initialized to the all-zero state, and the three stages of register update (i)

IV loading, (ii) Key Loading, and (iii) Pre-Clock are executed sequentially before the

production of the first key-stream bit. Thereafter, during the PRGA (Pseudo Random

bitstream Generation Algorithm), key-stream bits are produced. Let r0, r1, r2, . . . , r99

denote the contents of the register R and s0, s1, s2, . . . , s99 denote the contents of the

register S. In order to describe the structure of the cipher and its working let us first

define the following routines.

Figure 7.1: The variable clocking architecture of MICKEY

Clocking register R

Let r0, r1, . . . , r99 be the state of the register R before clocking, and let r′0, r
′
1, . . . , r

′
99 be

the state of the register R after clocking. Define the integer array RTAPS as follows

RTAPS = { 0, 1, 3, 4, 5, 6, 9, 12, 13, 16, 19, 20, 21, 22, 25, 28, 37, 38, 41, 42,

45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67, 71, 72, 79, 80,

81, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97}

Now define an operation

CLOCK R(R, INPUT BIT R,CONTROL BIT R)

1. Define FEEDBACK BIT = r99 ⊕ INPUT BIT R

2. For 1 ≤ i ≤ 99 : r′i = ri−1. r′0 = 0.

3. For 0 ≤ i ≤ 99 : if i ∈ RTAPS, r′i = r′i ⊕ FEEDBACK BIT.

4. If CONTROL BIT R = 1:

For 0 ≤ i ≤ 99 : r′i = r′i ⊕ ri

182 Chapter 7: Differential Fault Analysis of MICKEY 2.0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

COMP0i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1
COMP1i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0
FB0i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0
FB1i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

COMP0i 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
COMP1i 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1
FB0i 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0
FB1i 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1

i 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

COMP0i 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
COMP1i 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0
FB0i 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0
FB1i 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0

i 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

COMP0i 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1
COMP1i 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0
FB0i 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0
FB1i 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1

i 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

COMP0i 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
COMP1i 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0
FB0i 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0
FB1i 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1

i 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0i 1 1 0 1 0 1 0 0 0 0 0 0 1 1
COMP1i 0 1 1 1 0 0 0 1 0 0 1 1 0 0
FB0i 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0
FB1i 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

Table 7.1: The sequences COMP0, COMP1, FB0, FB1

Clocking register S

Let s0, s1, . . . , s99 be the state of the register S before clocking, and let s′0, s
′
1, . . . , s

′
99 be

the state of the register S after clocking. Let ŝ0, ŝ1, . . . , ŝ99 be intermediate variables.

Define the four sequences COMP0i, 1 ≤ i ≤ 98; COMP1i, 1 ≤ i ≤ 98; FB0i, 0 ≤ i ≤ 99

and FB1i, 0 ≤ i ≤ 99 over GF(2) as in Table 7.1: Now define an operation

CLOCK S(S, INPUT BIT S,CONTROL BIT S)

1. Define FEEDBACK BIT = s99 ⊕ INPUT BIT S

2. For 1 ≤ i ≤ 98 : ŝi = si−1⊕
(
(si⊕ COMP0i)·(si⊕1⊕ COMP1i)

)
. ŝ0 = 0, ŝ99 = s98.

3. If CONTROL BIT S = 0:

For 0 ≤ i ≤ 99: s′i = ŝi ⊕ (FB0i · FEEDBACK BIT)

Chapter 7: Differential Fault Analysis of MICKEY 2.0 183

Else If CONTROL BIT S = 1:

For 0 ≤ i ≤ 99: s′i = ŝi ⊕ (FB1i · FEEDBACK BIT)

The CLOCK KG routine

We define another operation

CLOCK KG (R,S, MIXING , INPUT BIT)

1. CONTROL BIT R = s34 ⊕ r67, CONTROL BIT S = s67 ⊕ r33

2. If MIXING = 1 :

INPUT BIT R = INPUT BIT ⊕ s50

Else If MIXING = 0 :

INPUT BIT R = INPUT BIT

3. INPUT BIT S = INPUT BIT

4. CLOCK R(R, INPUT BIT R,CONTROL BIT R)

5. CLOCK S(S, INPUT BIT S,CONTROL BIT S)

Working of the Cipher

We will now describe the algorithm governing the functioning of the cipher. Let K =

k0, k1, . . . , k79 be the 80 bit key used by the cipher. Let IV = iv0, iv1, . . . , ivv−1 be the

v-bit IV (0 ≤ v ≤ 80). Then the cipher operates in the 4 stages as described below.

STAGE 1. IV loading

Initialize both R and S to the all-zero state.

For 0 ≤ i ≤ v − 1 : CLOCK KG(R,S, 1, ivi)

STAGE 2. Key loading

For 0 ≤ i ≤ 79 : CLOCK KG(R,S, 1, ki)

184 Chapter 7: Differential Fault Analysis of MICKEY 2.0

STAGE 3. Preclock Stage

For 0 ≤ i ≤ 99 : CLOCK KG(R,S, 1, 0)

STAGE 4. PRGA(Pseudo-Random stream generation algorithm)

i← 0

While key-stream is required

zi = r0 ⊕ s0

CLOCK KG(R,S, 0, 0)

i← i+ 1

7.3 An alternate description of MICKEY 2.0 PRGA and

a summary of results

We will now provide an alternate description of this stage of operation (PRGA) in

MICKEY 2.0. Consider the binary variables a0, a1, a2, a3. Let a0 be defined as

a0 =

{
a2, if a1 = 0

a3, if a1 = 1.

Then it is straightforward to see that a0 can be expressed as a multivariate polynomial

over GF(2), i.e.,

a0 = (1⊕ a1) · a2 ⊕ a1 · a3.

The state registers R and S, during the PRGA, are updated by a call to the CLOCK KG

routine, which in turn calls the CLOCK R and the CLOCK S routine. In both these

routines, the state is updated via a number of If-Else constructs. As a result of this, the

state update may be equivalently expressed as a series of multi-variate polynomials over

GF(2).

Let r0, r1, . . . , r99, s0, s1, . . . , s99 denote the internal state at a certain round during the

MICKEY PRGA and let r′0, r
′
1, . . . , r

′
99, s

′
0, s
′
1, . . . , s

′
99 denote the internal state at the

next round. Then it is possible to write

r′i = ρi(r0, r1, . . . , r99, s0, s1, . . . , s99),

s′i = βi(r0, r1, . . . , r99, s0, s1, . . . , s99),

Chapter 7: Differential Fault Analysis of MICKEY 2.0 185

∀i ∈ [0, 99], where ρi, βi are polynomial functions over GF(2). The exact forms of ρi, βi

are described in the following tables.

Table 7.2: The update functions ρ, β for MICKEY 2.0

i ρi βi

0 r0 · r67 ⊕ r0 · s34 ⊕ r99 s99
1 r0 ⊕ r1 · r67 ⊕ r1 · s34 ⊕ r99 s0 ⊕ s1 · s2 ⊕ s1 ⊕ s99
2 r1 ⊕ r2 · r67 ⊕ r2 · s34 s1 ⊕ s2 · s3 ⊕ s99
3 r2 ⊕ r3 · r67 ⊕ r3 · s34 ⊕ r99 r33 · s99 ⊕ s2 ⊕ s3 · s4 ⊕ s3 ⊕ s67 · s99 ⊕ s99
4 r3 ⊕ r4 · r67 ⊕ r4 · s34 ⊕ r99 r33 · s99 ⊕ s3 ⊕ s4 · s5 ⊕ s4 ⊕ s5 ⊕ s67 · s99 ⊕ 1

5 r4 ⊕ r5 · r67 ⊕ r5 · s34 ⊕ r99 s4 ⊕ s5 · s6 ⊕ s6 ⊕ s99
6 r5 ⊕ r6 · r67 ⊕ r6 · s34 ⊕ r99 r33 · s99 ⊕ s5 ⊕ s6 · s7 ⊕ s67 · s99
7 r6 ⊕ r7 · r67 ⊕ r7 · s34 r33 · s99 ⊕ s6 ⊕ s7 · s8 ⊕ s7 ⊕ s67 · s99 ⊕ s99
8 r7 ⊕ r8 · r67 ⊕ r8 · s34 r33 · s99 ⊕ s7 ⊕ s8 · s9 ⊕ s67 · s99 ⊕ s99
9 r8 ⊕ r9 · r67 ⊕ r9 · s34 ⊕ r99 r33 · s99 ⊕ s8 ⊕ s9 · s10 ⊕ s9 ⊕ s10 ⊕ s67 · s99 ⊕ s99 ⊕ 1

10 r9 ⊕ r10 · r67 ⊕ r10 · s34 r33 · s99 ⊕ s9 ⊕ s10 · s11 ⊕ s10 ⊕ s67 · s99 ⊕ s99
11 r10 ⊕ r11 · r67 ⊕ r11 · s34 s10 ⊕ s11 · s12 ⊕ s11 ⊕ s12 ⊕ s99 ⊕ 1

12 r11 ⊕ r12 · r67 ⊕ r12 · s34 ⊕ r99 s11 ⊕ s12 · s13 ⊕ s12 ⊕ s13 ⊕ s99 ⊕ 1

13 r12 ⊕ r13 · r67 ⊕ r13 · s34 ⊕ r99 s12 ⊕ s13 · s14 ⊕ s14 ⊕ s99
14 r13 ⊕ r14 · r67 ⊕ r14 · s34 r33 · s99 ⊕ s13 ⊕ s14 · s15 ⊕ s15 ⊕ s67 · s99 ⊕ s99
15 r14 ⊕ r15 · r67 ⊕ r15 · s34 r33 · s99 ⊕ s14 ⊕ s15 · s16 ⊕ s15 ⊕ s67 · s99
16 r15 ⊕ r16 · r67 ⊕ r16 · s34 ⊕ r99 s15 ⊕ s16 · s17 ⊕ s17
17 r16 ⊕ r17 · r67 ⊕ r17 · s34 r33 · s99 ⊕ s16 ⊕ s17 · s18 ⊕ s17 ⊕ s67 · s99 ⊕ s99
18 r17 ⊕ r18 · r67 ⊕ r18 · s34 r33 · s99 ⊕ s17 ⊕ s18 · s19 ⊕ s67 · s99
19 r18 ⊕ r19 · r67 ⊕ r19 · s34 ⊕ r99 s18 ⊕ s19 · s20 ⊕ s20 ⊕ s99
20 r19 ⊕ r20 · r67 ⊕ r20 · s34 ⊕ r99 r33 · s99 ⊕ s19 ⊕ s20 · s21 ⊕ s67 · s99 ⊕ s99
21 r20 ⊕ r21 · r67 ⊕ r21 · s34 ⊕ r99 r33 · s99 ⊕ s20 ⊕ s21 · s22 ⊕ s21 ⊕ s22 ⊕ s67 · s99 ⊕ s99 ⊕ 1

22 r21 ⊕ r22 · r67 ⊕ r22 · s34 ⊕ r99 r33 · s99 ⊕ s21 ⊕ s22 · s23 ⊕ s22 ⊕ s67 · s99 ⊕ s99
23 r22 ⊕ r23 · r67 ⊕ r23 · s34 s22 ⊕ s23 · s24 ⊕ s24 ⊕ s99
24 r23 ⊕ r24 · r67 ⊕ r24 · s34 r33 · s99 ⊕ s23 ⊕ s24 · s25 ⊕ s24 ⊕ s67 · s99 ⊕ s99
25 r24 ⊕ r25 · r67 ⊕ r25 · s34 ⊕ r99 r33 · s99 ⊕ s24 ⊕ s25 · s26 ⊕ s26 ⊕ s67 · s99 ⊕ s99
26 r25 ⊕ r26 · r67 ⊕ r26 · s34 s25 ⊕ s26 · s27 ⊕ s26 ⊕ s99
27 r26 ⊕ r27 · r67 ⊕ r27 · s34 s26 ⊕ s27 · s28 ⊕ s27 ⊕ s28 ⊕ s99 ⊕ 1

28 r27 ⊕ r28 · r67 ⊕ r28 · s34 ⊕ r99 r33 · s99 ⊕ s27 ⊕ s28 · s29 ⊕ s28 ⊕ s67 · s99 ⊕ s99
29 r28 ⊕ r29 · r67 ⊕ r29 · s34 s28 ⊕ s29 · s30 ⊕ s30
30 r29 ⊕ r30 · r67 ⊕ r30 · s34 r33 · s99 ⊕ s29 ⊕ s30 · s31 ⊕ s30 ⊕ s31 ⊕ s67 · s99 ⊕ 1

31 r30 ⊕ r31 · r67 ⊕ r31 · s34 r33 · s99 ⊕ s30 ⊕ s31 · s32 ⊕ s31 ⊕ s67 · s99 ⊕ s99
32 r31 ⊕ r32 · r67 ⊕ r32 · s34 s31 ⊕ s32 · s33 ⊕ s32 ⊕ s33 ⊕ s99 ⊕ 1

33 r32 ⊕ r33 · r67 ⊕ r33 · s34 r33 · s99 ⊕ s32 ⊕ s33 · s34 ⊕ s33 ⊕ s67 · s99
34 r33 ⊕ r34 · r67 ⊕ r34 · s34 s33 ⊕ s34 · s35
35 r34 ⊕ r35 · r67 ⊕ r35 · s34 s34 ⊕ s35 · s36 ⊕ s36
36 r35 ⊕ r36 · r67 ⊕ r36 · s34 s35 ⊕ s36 · s37
37 r36 ⊕ r37 · r67 ⊕ r37 · s34 ⊕ r99 r33 · s99 ⊕ s36 ⊕ s37 · s38 ⊕ s37 ⊕ s67 · s99
38 r37 ⊕ r38 · r67 ⊕ r38 · s34 ⊕ r99 r33 · s99 ⊕ s37 ⊕ s38 · s39 ⊕ s38 ⊕ s67 · s99
39 r38 ⊕ r39 · r67 ⊕ r39 · s34 r33 · s99 ⊕ s38 ⊕ s39 · s40 ⊕ s67 · s99 ⊕ s99
40 r39 ⊕ r40 · r67 ⊕ r40 · s34 r33 · s99 ⊕ s39 ⊕ s40 · s41 ⊕ s40 ⊕ s67 · s99 ⊕ s99
41 r40 ⊕ r41 · r67 ⊕ r41 · s34 ⊕ r99 r33 · s99 ⊕ s40 ⊕ s41 · s42 ⊕ s67 · s99 ⊕ s99
42 r41 ⊕ r42 · r67 ⊕ r42 · s34 ⊕ r99 s41 ⊕ s42 · s43 ⊕ s42
43 r42 ⊕ r43 · r67 ⊕ r43 · s34 s42 ⊕ s43 · s44 ⊕ s43 ⊕ s44 ⊕ 1

44 r43 ⊕ r44 · r67 ⊕ r44 · s34 s43 ⊕ s44 · s45 ⊕ s44 ⊕ s99

186 Chapter 7: Differential Fault Analysis of MICKEY 2.0

i ρi βi

45 r44 ⊕ r45 · r67 ⊕ r45 · s34 ⊕ r99 r33 · s99 ⊕ s44 ⊕ s45 · s46 ⊕ s46 ⊕ s67 · s99
46 r45 ⊕ r46 · r67 ⊕ r46 · s34 ⊕ r99 s45 ⊕ s46 · s47
47 r46 ⊕ r47 · r67 ⊕ r47 · s34 s46 ⊕ s47 · s48 ⊕ s48 ⊕ s99
48 r47 ⊕ r48 · r67 ⊕ r48 · s34 r33 · s99 ⊕ s47 ⊕ s48 · s49 ⊕ s67 · s99
49 r48 ⊕ r49 · r67 ⊕ r49 · s34 r33 · s99 ⊕ s48 ⊕ s49 · s50 ⊕ s49 ⊕ s50 ⊕ s67 · s99 ⊕ s99 ⊕ 1

50 r49 ⊕ r50 · r67 ⊕ r50 · s34 ⊕ r99 s49 ⊕ s50 · s51
51 r50 ⊕ r51 · r67 ⊕ r51 · s34 r33 · s99 ⊕ s50 ⊕ s51 · s52 ⊕ s67 · s99 ⊕ s99
52 r51 ⊕ r52 · r67 ⊕ r52 · s34 ⊕ r99 r33 · s99 ⊕ s51 ⊕ s52 · s53 ⊕ s67 · s99
53 r52 ⊕ r53 · r67 ⊕ r53 · s34 s52 ⊕ s53 · s54 ⊕ s53
54 r53 ⊕ r54 · r67 ⊕ r54 · s34 ⊕ r99 r33 · s99 ⊕ s53 ⊕ s54 · s55 ⊕ s55 ⊕ s67 · s99 ⊕ s99
55 r54 ⊕ r55 · r67 ⊕ r55 · s34 s54 ⊕ s55 · s56 ⊕ s55
56 r55 ⊕ r56 · r67 ⊕ r56 · s34 ⊕ r99 s55 ⊕ s56 · s57 ⊕ s56 ⊕ s57 ⊕ s99 ⊕ 1

57 r56 ⊕ r57 · r67 ⊕ r57 · s34 r33 · s99 ⊕ s56 ⊕ s57 · s58 ⊕ s57 ⊕ s67 · s99 ⊕ s99
58 r57 ⊕ r58 · r67 ⊕ r58 · s34 ⊕ r99 r33 · s99 ⊕ s57 ⊕ s58 · s59 ⊕ s67 · s99 ⊕ s99
59 r58 ⊕ r59 · r67 ⊕ r59 · s34 s58 ⊕ s59 · s60 ⊕ s60 ⊕ s99
60 r59 ⊕ r60 · r67 ⊕ r60 · s34 ⊕ r99 s59 ⊕ s60 · s61 ⊕ s61
61 r60 ⊕ r61 · r67 ⊕ r61 · s34 ⊕ r99 r33 · s99 ⊕ s60 ⊕ s61 · s62 ⊕ s61 ⊕ s62 ⊕ s67 · s99 ⊕ s99 ⊕ 1

62 r61 ⊕ r62 · r67 ⊕ r62 · s34 r33 · s99 ⊕ s61 ⊕ s62 · s63 ⊕ s62 ⊕ s63 ⊕ s67 · s99 ⊕ 1

63 r62 ⊕ r63 · r67 ⊕ r63 · s34 ⊕ r99 r33 · s99 ⊕ s62 ⊕ s63 · s64 ⊕ s63 ⊕ s67 · s99 ⊕ s99
64 r63 ⊕ r64 · r67 ⊕ r64 · s34 ⊕ r99 r33 · s99 ⊕ s63 ⊕ s64 · s65 ⊕ s64 ⊕ s67 · s99
65 r64 ⊕ r65 · r67 ⊕ r65 · s34 ⊕ r99 s64 ⊕ s65 · s66 ⊕ s65 ⊕ s66 ⊕ s99 ⊕ 1

66 r65 ⊕ r66 · r67 ⊕ r66 · s34 ⊕ r99 s65 ⊕ s66 · s67 ⊕ s66
67 r66 ⊕ r67 · s34 ⊕ r67 ⊕ r99 r33 · s99 ⊕ s66 ⊕ s67 · s68 ⊕ s67 · s99 ⊕ s68
68 r67 · r68 ⊕ r67 ⊕ r68 · s34 s67 ⊕ s68 · s69 ⊕ s68
69 r67 · r69 ⊕ r68 ⊕ r69 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s68 ⊕ s69 · s70 ⊕ s70
70 r67 · r70 ⊕ r69 ⊕ r70 · s34 s69 ⊕ s70 · s71 ⊕ s70 ⊕ s71 ⊕ 1

71 r67 · r71 ⊕ r70 ⊕ r71 · s34 ⊕ r99 s70 ⊕ s71 · s72 ⊕ s71 ⊕ s72 ⊕ 1

72 r67 · r72 ⊕ r71 ⊕ r72 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s71 ⊕ s72 · s73 ⊕ s72 ⊕ s73 ⊕ 1

73 r67 · r73 ⊕ r72 ⊕ r73 · s34 s72 ⊕ s73 · s74 ⊕ s74
74 r67 · r74 ⊕ r73 ⊕ r74 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s73 ⊕ s74 · s75 ⊕ s74 ⊕ s75 ⊕ 1

75 r67 · r75 ⊕ r74 ⊕ r75 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s74 ⊕ s75 · s76 ⊕ s75 ⊕ s76 ⊕ s99 ⊕ 1

76 r67 · r76 ⊕ r75 ⊕ r76 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s75 ⊕ s76 · s77 ⊕ s76 ⊕ s77 ⊕ s99 ⊕ 1

77 r67 · r77 ⊕ r76 ⊕ r77 · s34 s76 ⊕ s77 · s78 ⊕ s77 ⊕ s78 ⊕ 1

78 r67 · r78 ⊕ r77 ⊕ r78 · s34 s77 ⊕ s78 · s79 ⊕ s99
79 r67 · r79 ⊕ r78 ⊕ r79 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s78 ⊕ s79 · s80 ⊕ s80
80 r67 · r80 ⊕ r79 ⊕ r80 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s79 ⊕ s80 · s81
81 r67 · r81 ⊕ r80 ⊕ r81 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s80 ⊕ s81 · s82 ⊕ s81 ⊕ s82 ⊕ 1

82 r67 · r82 ⊕ r81 ⊕ r82 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s81 ⊕ s82 · s83 ⊕ s83 ⊕ s99
83 r67 · r83 ⊕ r82 ⊕ r83 · s34 s82 ⊕ s83 · s84 ⊕ s84 ⊕ s99
84 r67 · r84 ⊕ r83 ⊕ r84 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s83 ⊕ s84 · s85 ⊕ s85
85 r67 · r85 ⊕ r84 ⊕ r85 · s34 s84 ⊕ s85 · s86 ⊕ s86 ⊕ s99
86 r67 · r86 ⊕ r85 ⊕ r86 · s34 s85 ⊕ s86 · s87 ⊕ s86 ⊕ s87 ⊕ s99 ⊕ 1

87 r67 · r87 ⊕ r86 ⊕ r87 · s34 ⊕ r99 s86 ⊕ s87 · s88 ⊕ s87 ⊕ s99
88 r67 · r88 ⊕ r87 ⊕ r88 · s34 ⊕ r99 s87 ⊕ s88 · s89 ⊕ s88 ⊕ s89 ⊕ 1

89 r67 · r89 ⊕ r88 ⊕ r89 · s34 ⊕ r99 s88 ⊕ s89 · s90
90 r67 · r90 ⊕ r89 ⊕ r90 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s89 ⊕ s90 · s91 ⊕ s91 ⊕ s99
91 r67 · r91 ⊕ r90 ⊕ r91 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s90 ⊕ s91 · s92 ⊕ s99
92 r67 · r92 ⊕ r91 ⊕ r92 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s91 ⊕ s92 · s93 ⊕ s92 ⊕ s99
93 r67 · r93 ⊕ r92 ⊕ r93 · s34 s92 ⊕ s93 · s94
94 r67 · r94 ⊕ r93 ⊕ r94 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s93 ⊕ s94 · s95
95 r67 · r95 ⊕ r94 ⊕ r95 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s94 ⊕ s95 · s96 ⊕ s95 ⊕ s99
96 r67 · r96 ⊕ r95 ⊕ r96 · s34 ⊕ r99 r33 · s99 ⊕ s67 · s99 ⊕ s95 ⊕ s96 · s97 ⊕ s96 ⊕ s99
97 r67 · r97 ⊕ r96 ⊕ r97 · s34 ⊕ r99 s96 ⊕ s97 · s98 ⊕ s98
98 r67 · r98 ⊕ r97 ⊕ r98 · s34 s97 ⊕ s98 · s99 ⊕ s99
99 r67 · r99 ⊕ r98 ⊕ r99 · s34 r33 · s99 ⊕ s67 · s99 ⊕ s98

Chapter 7: Differential Fault Analysis of MICKEY 2.0 187

Before describing the attack, let us fix certain notations that will be used henceforth.

1. Rt = [rt0, r
t
1, . . . , r

t
99], St = [st0, s

t
1, . . . , s

t
99] is used to denote the internal states of

the R,S registers at the beginning of the round t of the PRGA. That is, rti , s
t
i

respectively denotes the ith bit of the registers R,S at the beginning of round t of

the PRGA. Note that rt+1
i = ρi(Rt, St) and st+1

i = βi(Rt, St).

2. The value of the variables CONTROL BIT R and CONTROL BIT S, at the PRGA

round t, are denoted by the variables CRt, CSt respectively. These bits are used

by the R,S registers to exercise mutual self control over each other. Note that

CRt = rt67 ⊕ st34 and CSt = rt33 ⊕ st67.

3. Rt,∆rφ(t0), St,∆rφ(t0) (resp. Rt,∆sφ(t0), St,∆sφ(t0)) are used to denote the internal

states of the cipher at the beginning of round t of the PRGA, when a fault has been

injected in location φ of R(resp. S) at the beginning of round t0 of the PRGA.

4. zi,∆rφ(t0) or zi,∆sφ(t0) denotes the key-stream bit produced in the ith PRGA round,

after a fault has been injected in location φ of R or S at the beginning of round

t0 of the PRGA. By zi, we refer to the fault-free key-stream bit produced in the

ith PRGA round.

With this background in hand, we present a summary of the results described in this

chapter. The complete attack, assuming that the adversary is able to induce single bit

faults in random register locations, is described in Section 7.4. In Section 7.5 we explore

the case when the adversary is able to induce a fault that affects the bit values of (ran-

dom) consecutive (upto 3) register locations. In Section 7.6 we propose improvements

of the attack using SAT Solvers, in both the single bit-flip and the multiple bit-flip

scenario. Section 7.7 concludes the chapter with a comparison of the state-of-the-art

fault attacks currently reported against the stream ciphers in the hardware portfolio of

eStream.

7.4 Complete description of the Attack

We start with some technical results that will be used later.

Lemma 7.1. Consider the first 100 internal states of the MICKEY 2.0 PRGA. If rt99

and CRt are known ∀t ∈ [0, 99], then the initial state R0 can be calculated efficiently.

Proof. Let the values of rt99 and CRt be known ∀t ∈ [0, 99]. We notice that the functions

ρi for all values of i ∈ [1, 99] are of the form ρi(·) = ri−1⊕ (s34⊕ r67) · ri⊕αi · r99, where

188 Chapter 7: Differential Fault Analysis of MICKEY 2.0

R0 r0 r1 · · · · · · r97 r98 r99 CR0

R1 r0 r1 · · · · · · r97 r98 r99 CR1

...

R97 r0 r1 · · · · · · r97 r98 r99 CR97

R98 r0 r1 · · · · · · r97 r98 r99 CR98

R99 r0 r1 · · · · · · r97 r98 r99 CR99

Known initially Calculated

Figure 7.2: Constructing the state R0. Starting from PRGA round 99, any bit
calculated at PRGA round i is used to determine state bits of round i− 1.

s34 ⊕ r67 is the value of CONTROL BIT R. It can be easily deduced that αi = 1, if

i ∈ RTAPS and is 0 otherwise. Now consider the following equation governing r99
99 :

r99
99 = ρ99(R98, S98) = r98

98 ⊕ CR98 · r98
99 ⊕ α99 · r98

99.

In the above equation, r98
98 is the only unknown and it appears as a linear term, and so

its value can be calculated immediately. We therefore know the values of 2 state bits of

R98: r98
99, r

98
98. Similarly look at the equations governing r98

99, r
98
98:

r98
99 = r97

98 ⊕ CR97 · r97
99 ⊕ α99 · r97

99,

r98
98 = r97

97 ⊕ CR97 · r97
98 ⊕ α98 · r97

99.

As before, r97
98 is the lone unknown term in the first equation whose value is determined

immediately. After this, r97
97 becomes the only unknown linear term in the next equation

whose value too is determined easily. Thus we know 3 bits of R97: r97
97+i, i = 0, 1, 2.

Continuing in such a bottom-up manner we can successively determine 4 bits of R96, 5

bits of R95 and eventually all the 100 bits of R0. (The process is explained pictorially

in Figure 7.2.)

Lemma 7.2. Consider the first 100 internal states of the MICKEY 2.0 PRGA. If R0 is

known and st99, CSt, CRt are known ∀t ∈ [0, 99], then the initial state S0 of the register

S can be determined efficiently.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 189

R0 r0 r1 · · · · · · r97 r98 r99 CR0 S0 s0 s1 · · · · · · s97 s98 s99 CS0

R1 r0 r1 · · · · · · r97 r98 r99 CR1 S1 s0 s1 · · · · · · s97 s98 s99 CS1

...
...

R97 r0 r1 · · · · · · r97 r98 r99 CR97 S97 s0 s1 · · · · · · s97 s98 s99 CS97

R98 r0 r1 · · · · · · r97 r98 r99 CR98 S98 s0 s1 · · · · · · s97 s98 s99 CS98

R99 r0 r1 · · · · · · r97 r98 r99 CR99 S99 s0 s1 · · · · · · s97 s98 s99 CS99

Known initially Calculated

Figure 7.3: Constructing the state S0. Starting from PRGA round 99, any bit calcu-
lated at PRGA round i is used to determine state bits of round i− 1.

Proof. Since R0 is known and so is CRt for each t ∈ [0, 99], we can construct all the bits

of R1 by calculating

r1
i = r0

i−1 ⊕ CR0 · r0
i ⊕ αi · r0

99, ∀i ∈ [1, 99],

and r1
0 is given by r0

0 · CR0 ⊕ r0
99. Once all the bits of R1 are known, all the bits of R2

can be determined by calculating

r2
i = r1

i−1 ⊕ CR1 · r1
i ⊕ αi · r1

99, ∀i ∈ [1, 99],

and r2
0 = r1

0 · CR1 ⊕ r1
99. Similarly all the bits of the states R3, R4, . . . , R99 can be

calculated successively. As before, we begin by observing that the functions βi for all

values of i ∈ [1, 99] are of the form

βi(·) = si−1 ⊕ λi · (s67 ⊕ r33) · s99 ⊕ β̂i(si, si+1, . . . , s99),

where s67 ⊕ r33 is the value of CONTROL BIT S and β̂i is a function that depends on

si, si+1, . . . , s99 but not any of s0, s1, . . . , si−1. It can be easily deduced that λi = 1 if

FB0i 6= FB1i and is 0 otherwise.

Now consider the following equation governing s99
99:

s99
99 = β99(R98, S98) = s98

98 ⊕ λ99 · CS98 · s98
99 ⊕ β̂99(s98

99).

In the above equation s98
98 is the only unknown and it appears as a linear term, and so

its value can be calculated immediately. We therefore know the values of the 2 state

190 Chapter 7: Differential Fault Analysis of MICKEY 2.0

i θi(·)
0 r0 ⊕ s0

1 r0 · r67 ⊕ r0 · s34 ⊕ r99 ⊕ s99

2 r0 · r66 · r67 ⊕ r0 · r66 · s34 ⊕ r0 · r67 · r99⊕
r0 · r67 · s33 ⊕ r0 · r67 · s34 · s35 ⊕ r0 · r67 · s34⊕
r0 · r67 ⊕ r0 · r99 · s34 ⊕ r0 · s33 · s34 ⊕ r0 · s34 · s35⊕
r33 · s99 ⊕ r66 · r99 ⊕ r67 · r99 · s34 ⊕ r98 ⊕ r99 · s33⊕
r99 · s34 · s35 ⊕ r99 · s34 ⊕ r99 ⊕ s67 · s99 ⊕ s98

Table 7.3: The functions θi

bits of S98: s98
99, s

98
98. Similarly consider the equations involving s98

99, s
98
98 :

s98
99 = s97

98 ⊕ λ99 · CS97 · s97
99 ⊕ β̂99(s97

99),

s98
98 = s97

97 ⊕ λ98 · CS97 · s97
99 ⊕ β̂98(s97

98, s
97
99).

As before, s97
98 is the lone unknown term in the first equation whose value can be de-

termined immediately. After this, s97
97 becomes the only unknown linear term in the

next equation whose value can also be obtained easily. Thus we know 3 bits of S97:

s97
97+i, i = 0, 1, 2. Continuing in such a bottom-up manner, we can successively deter-

mine 4 bits of S96, 5 bits of S95 and eventually all the 100 bits of S0. (The process is

explained pictorially in Figure 7.3.)

7.4.1 Faulting specific bits of R, S

The output key-stream bits zt, zt+1, . . . can also be expressed as polynomial functions

over Rt, St. We have

zt = rt0 ⊕ st0 = θ0(Rt, St),

zt+1 = rt+1
0 ⊕ st+1

0

= ρ0(Rt, St)⊕ β0(Rt, St) = θ1(Rt, St),

zt+2 = rt+2
0 ⊕ st+2

0

= ρ0(Rt+1, St+1)⊕ β0(Rt+1, St+1) = θ2(Rt, St).

The exact forms of θ0, θ1, θ2 are given in Table 7.3.

In the rest of this section we will assume that the adversary can (a) re-key the device

containing the cipher with the original Key-IV, (b) apply faults to specific bit locations

in the R,S registers and (c) exercise control over the timing of fault injection. Note that

(b) is a stronger assumption, but we do not need it in our attack. We are using this

Chapter 7: Differential Fault Analysis of MICKEY 2.0 191

assumption here to build a sub-routine. In the next sub-section we shall demonstrate

how the adversary can partially identify the location of any fault injected at a random

position by comparing the faulty and fault-free key-streams.

We observe the following differential properties of the functions θ0, θ1, θ2.

• θ1(. . . , r67, . . .)⊕ θ1(. . . , 1⊕ r67, . . .) = r0,

• θ1(r0, . . .)⊕ θ1(1⊕ r0, . . .) = s34 ⊕ r67,

• θ2(. . . , s99)⊕ θ2(. . . , 1⊕ s99) = s67 ⊕ r33.

These differential properties have the following immediate implications.

zt+1 ⊕ zt+1,∆r67(t) = rt0 (7.1)

zt+1 ⊕ zt+1,∆r0(t) = CRt (7.2)

zt+2 ⊕ zt+2,∆s99(t) = CSt (7.3)

The above equations hold for all the values of t = 0, 1, 2, This implies that if the

adversary is able to re-key the device with the original Key-IV pair multiple times and

apply faults at the PRGA rounds t = 0, 1, 2, 3, . . . , 100 at precisely1 the R register

locations 0, 67 and the S register location 99, then by observing the difference between

the fault-free and faulty key-stream bits, he would be able to recover the values of

rt0, CRt, CSt for all values of t = 0, 1, 2, . . . , 100. The fault at each register location must

be preceded by re-keying.

Determining the other bits

Hereafter, the values st0 for all t = 0, 1, 2, . . . , 100 may be found by solving: st0 = zt⊕ rt0.

Since β0(·) = s99, this implies that st+1
0 = st99, ∀t = 0, 1, 2, Therefore, calculating

the values of st0, ∀t ∈ [1, 100] is the same as calculating st99, ∀t ∈ [0, 99]. The values of

rt99, ∀t ∈ [0, 99] are obtained as follows. Consider the equation for zt+1:

zt+1 = θ1(Rt, St) = rt0 · rt67 ⊕ rt0 · st34 ⊕ rt99 ⊕ st99

= CRt · rt0 ⊕ rt99 ⊕ st99, ∀t ∈ [0, 99].

1We would again like to point out that our actual attack does not need precise fault injection at all
locations of R, S. This will be explained in the next sub-section.

192 Chapter 7: Differential Fault Analysis of MICKEY 2.0

Here, rt99 is the only unknown linear term in these equations and hence its value too can

be determined immediately. At this point, we have the following state bits with us:

[rt0, r
t
99, CRt, s

t
0, s

t
99, CSt], ∀t ∈ [0, 99].

Now by using the techniques presented in Lemma 7.1, we can determine all the bits of

the state R0. Thereafter using Lemma 7.2, one can determine all the bits of S0. Thus

we have recovered the entire internal state at the beginning of the PRGA.

7.4.2 How to identify the random locations where faults are injected

In this subsection we will show how the adversary can identify the locations of randomly

applied faults to the registers R and S. Although it will not be possible to conclusively

determine the location of faults applied to each and every location of R and the S

registers, we will show that the adversary can, with some probability, identify faulty

streams corresponding to locations 0, 67 of R and 99 of S. The adversary will then use

the techniques described in Subsection 7.4.1 to complete the attack.

To help with the process of fault location identification, as described for the Grain family

in Section 5.2.2, we define the first and second Signature Vectors for the location φ of

R as

Ψ1
rφ

[i] =

{
1, if zt+i = zt+i,∆rφ(t) for all Rt, St,

0, otherwise.

Ψ2
rφ

[i] =

{
1, if zt+i 6= zt+i,∆rφ(t) for all Rt, St,

0, otherwise.

for i = 0, 1, 2, . . . , l − 1. Here l ≈ 40 is a suitably chosen constant.

Remark 7.3. The value of l should be large enough so that one can differentiate, with

probability almost 1, 100 randomly generated bit sequences over GF(2) by comparing

the first l bits of each sequence. This requires the value of l to be at least 2·log2 100 ≈ 14.

We take l = 40, as computer simulations show that this value of l is sufficient to make

a successful distinction with high probability.

Similarly one can define Signature Vectors for any location φ the register S.

Ψ1
sφ

[i] =

{
1, if zt+i = zt+i,∆sφ(t) for all Rt, St,

0, otherwise.

Ψ2
sφ

[i] =

{
1, if zt+i 6= zt+i,∆sφ(t) for all Rt, St,

0, otherwise.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 193

The task for the fault location identification routine is to determine the fault loca-

tion φ of R (or S) by analyzing the difference between the sequences zt, zt+1, . . . and

zt,∆rφ(t), zt+1,∆rφ(t), . . . (or zt,∆sφ(t), . . .) by using the Signature Vectors Ψ1
rφ
,Ψ2

rφ
(or

Ψ1
sφ
,Ψ2

sφ
). Note that the ith bit of Ψ1

rφ
is 1 if and only if the (t + i)th key-stream bits

produced by Rt, St and Rt,∆rφ(t), St,∆rφ(t) are the same for all choices of the internal

state Rt, St and that ith bit of Ψ2
rφ

is 1 if the above key-stream bits are different for all

choices of the internal state.

The concept of Signature Vectors to deduce the location of a randomly applied fault was

introduced in Section 5.2.2 for the Grain family. However the analysis of Section 5.2.2

cannot be reproduced for MICKEY 2.0, since a lot of different register locations have

the same Signature Vector. However one can observe the following which are important

to mount the attack.

Theorem 7.4. The following statements hold for Signature Vectors Ψ1
rφ
,Ψ2

rφ
, Ψ1

sφ
,Ψ2

sφ

of MICKEY 2.0.

A. Ψ1
rφ

[0] = 1, ∀φ ∈ [1, 99] and Ψ2
r0 [0] = 1.

B. Ψ1
rφ

[0] = Ψ1
rφ

[1] = 1,∀φ ∈ [1, 99] \ {67, 99}.

C. Ψ2
r99 [1] = 1, and Ψ2

r67 [1] = 0.

D. Ψ1
sφ

[0] = 1,∀φ ∈ [1, 99] and Ψ2
s0 [0] = 1.

E. Ψ1
sφ

[0] = Ψ1
sφ

[1] = 1,∀φ ∈ [1, 99] \ {34, 99}.

F. Ψ2
s99 [1] = 1, and Ψ2

s34 [1] = 0.

Proof. A. We have

zt ⊕ zt,∆r0(t) = θ0(Rt, St)⊕ θ0(Rt,∆r0(t), St,∆r0(t))

= (rt0 ⊕ st0)⊕ (1⊕ rt0 ⊕ st0)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r0 [0] = 1. Also θ0 is not a function of any ri, si for i ∈ [1, 99] and so

θ0(Rt,∆rφ(t), St,∆rφ(t)) = θ0(Rt, St) ∀φ ∈ [1, 99]

and so we have

zt ⊕ zt,∆rφ(t) = θ0(Rt, St)⊕ θ0(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

194 Chapter 7: Differential Fault Analysis of MICKEY 2.0

So, Ψ1
rφ

[0] = 1 for all φ ∈ [1, 99].

B. Since θ1 is a function of r0, r67, s34, r99, s99 only, for any φ ∈ [1, 99]\{67, 99} we have

θ1(Rt,∆rφ(t), St,∆rφ(t)) = θ1(Rt, St).

Therefore zt+1 + zt+1,∆rφ(t) equals

θ1(Rt, St) + θ1(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99] \ {67, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ1
rφ

[1] = 1 for all φ ∈ [1, 99] \ {67, 99}.

C. We have zt+1 + zt+1,∆r99(t) equals

θ1(Rt, St) + θ1(Rt,∆r99(t), St,∆r99(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99)+

(rt0 · rt67 + rt0 · st34 + 1 + rt99 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r99 [1] = 1. Also zt+1 + zt+1,∆r67(t) equals

θ1(Rt, St) + θ1(Rt,∆r67(t), St,∆r67(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99)+

(rt0 · (1 + rt67) + rt0 · st34 + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r67 [1] = 0.

D. We have

zt + zt,∆s0(t) = θ0(Rt, St) + θ0(Rt,∆s0(t), St,∆s0(t))

= (rt0 + st0) + (rt0 + 1 + st0)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s0 [0] = 1. Also θ0 is not a function of any ri, si for i ∈ [1, 99] and so

θ0(Rt,∆sφ(t), St,∆sφ(t)) = θ0(Rt, St)

Chapter 7: Differential Fault Analysis of MICKEY 2.0 195

for all φ ∈ [1, 99] and so we have

zt + zt,∆sφ(t) = θ0(Rt, St) + θ0(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

So, Ψ1
sφ

[0] = 1 for all φ ∈ [1, 99].

E. Since θ1 is a function of r0, r67, s34, r99, s99 only, for any φ ∈ [1, 99]\{34, 99} we have

θ1(Rt,∆sφ(t), St,∆sφ(t)) = θ1(Rt, St).

Therefore zt+1 + zt+1,∆sφ(t) equals

θ1(Rt, St) + θ1(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99] \ {34, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ1
sφ

[1] = 1 for all φ ∈ [1, 99] \ {34, 99}.

F. We have zt+1 + zt+1,∆s99(t) equals

θ1(Rt, St) + θ1(Rt,∆s99(t), St,∆s99(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99)+

(rt0 · rt67 + rt0 · st34 + rt99 + 1 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s99 [1] = 1. Also zt+1 + zt+1,∆s34(t) equals

θ1(Rt, St) + θ1(Rt,∆s34(t), St,∆s34(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99)+

(rt0 · rt67 + rt0 · (1 + st34) + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s34 [1] = 0.

This concludes the proof.

Now, consider the attack scenario in which the adversary is able to re-key the device

with the same Key-IV multiple number of times and inject a single fault at a random

location of register R at the beginning of any particular PRGA round t ∈ [0, 100] and

obtain faulty key-streams. He continues the process until he obtains 100 different faulty

196 Chapter 7: Differential Fault Analysis of MICKEY 2.0

key-streams corresponding to 100 different fault locations in R and for each t ∈ [0, 100]

(as mentioned earlier this is done by comparing the first l bits of each faulty key-stream

sequence). Assuming that every location has equal probability of getting injected by

fault, the above process on an average takes around 100 ·∑100
i=1

1
i ≈ 29.02 faults [59] and

hence re-keyings for each value of t ∈ [0, 100] and hence a total of 101 · 29.02 ≈ 215.68

faults. The process has to be repeated for the S register, and so the expected number

of faults is 2 · 215.68 = 216.68.

If we define the vectors

Zt = [zt, zt+1, . . . , zt+l−1]

and correspondingly

∆rφZt = [zt,∆rφ(t), zt+1,∆rφ(t), . . . , zt+l−1,∆rφ(t)],

then the adversary at this point has knowledge of the 100 differential key-streams

ηt,rφ = Zt ⊕ ∆rφZt for each value of t ∈ [0, 100]. The adversary, however, does not

know the exact fault location corresponding to any differential stream, i.e., he has been

unable to assign fault location labels to any of the differential streams. With this infor-

mation in hand, we shall study the implications of the observations A to F.

Implication of A: For any t ∈ [0, 100], Ψ2
r0 [0] = 1 guarantees that there is at least

one differential stream with ηt,rφ [0] = 1 whereas Ψ1
rφ

[0] = 1,∀φ ∈ [1, 99] guarantees that

that there is exactly one differential stream with this property. This implies that out of

the 100 differential streams for any PRGA round t the one and only differential stream

with this property must have been produced due to a fault on the 0th location in R.

Labelling of this stream helps us determine the values of CRt for all t ∈ [0, 100] from

Equation (7.2).

Implication of B, C: Once the differential stream corresponding to the 0th location

has been labelled we now turn our attention to the remaining 99 streams. Statement B

guarantees that of the remaining 99 streams at least 97 have the property:

(P1) ηt,rφ [0] = ηt,rφ [1] = 0.

Statement C guarantees that the number of streams with the property:

(P2) ηt,rφ [0] = 0, ηt,rφ [1] = 1,

is at most 2 and at least 1. If the number of streams that satisfy (P1) is 98 and (P2) is 1,

then the lone stream satisfying (P2) must have been produced due to fault on location

Chapter 7: Differential Fault Analysis of MICKEY 2.0 197

99 of R. This immediately implies that ηt,r67 [1] = 0 which by Equation (7.1) in turn

implies that rt0 = 0. Else if the number of streams satisfying (P1) is 97 and (P2) is 2

then it implies that the streams satisfying (P2) were produced due to faults in location

67, 99 of R. This implies ηt,r67 [1] = rt0 = 1.

Repeating the entire process on Register S, one can similarly obtain the vectors ∆sφZt

and the differential streams ηt,sφ = Zt ⊕∆sφZt for all values of t ∈ [0, 100]. As before

the streams ηt,sφ are unlabeled. Let us now study the implications of D, E, F.

Implication of D: For any t ∈ [0, 100], Ψ2
s0 [0] = 1 guarantees that there is at least

one differential stream with ηt,sφ [0] = 1 whereas Ψ1
sφ

[0] = 1, ∀φ ∈ [1, 99] guarantees that

that there is exactly one differential stream with this property. This implies that out of

the 100 differential streams for any PRGA round t the one and only differential stream

with this property must have been produced due to a fault on the 0th location in S.

Implication of E, F: Once the differential stream corresponding to the 0th location has

been labelled we now turn our attention to the remaining 99 streams. The statement E

guarantees that of the remaining 99 streams at least 97 have the property

(P3) ηt,sφ [0] = ηt,sφ [1] = 0.

Statement F guarantees that the number of streams with the property

(P4) ηt,sφ [0] = 0, ηt,sφ [1] = 1,

is at most 2 and at least 1.

Case 1. If the number of streams that satisfy (P3) is 98 and (P4) is 1 then the lone

stream satisfying (P4) must have been produced due to fault at location 99 of S.

Once the stream corresponding to location 99 of S had been labelled, we can use

Equation (7.3) to determine CSt = ηt,s99 [2].

Case 2. If the number of streams satisfying (P3) is 97 and (P4) is 2 then it implies that

the streams satisfying (P4) had been produced due to faults in location 34, 99 of

S.

(i) Now if the bit indexed 2 of both these vectors are equal then we can deduce

CSt = ηt,s99 [2] = ηt,s34 [2].

(ii) A confusion occurs when ηt,s99 [2] 6= ηt,s34 [2]. In such a situation we would be

unable to conclusively determine the value of CSt.

198 Chapter 7: Differential Fault Analysis of MICKEY 2.0

Assuming independence, we assume that Cases 1, 2 have equal probability of occur-

rence. Given that Case 2 occurs, we can also assume that one of 2(i), 2(ii) occurs with

equal probability. Therefore, the probability of confusion, i.e., the probability that we

are unable to determine the value of CSt for any t can be estimated as 1
2 · 1

2 = 1
4 . Let γ

denote the number of t ∈ [0, 100] such that CSt cannot be conclusively determined then

γ is distributed according to γ ∼ Binomial(101, 1
4). Therefore the expected value of γ

is E[γ] = 101 · 1
4 = 25.25. Also the probability that

P (γ > 35) =

101∑
k=36

(
101

k

)(
1

4

)k (3

4

)101−k
≈ 0.01.

In such a situation, the adversary must guess the γ number of bit values of CSt to

perform the attack, which implies that the adversary must perform the calculations in

Section 7.4.1 and Lemma 7.1, Lemma 7.2 a total of 2γ times to complete the attack.

For the correct value of the guesses, the calculated state R0, S0 will produce the given

fault-free key-stream sequence. We present a complete description of the attack in

Algorithm 7.1.

7.4.3 Issues related to the length of the IV

It is known that MICKEY 2.0 employs a variable length IV of length at most 80. So if v

is the length of the IV then the cipher will run for v+80 (Key loading) +100 (Preclock)

clock rounds before entering the PRGA phase. Our attack requires that the first faults

are to be injected at the beginning of the PRGA. In order to do that the adversary

must know the value of v. This not a strong assumption as IVs are assumed to be

known. However even if the adversary does not know the IV or its length the attack

can be performed. Since 0 ≤ v ≤ 80 must be satisfied, the strategy of the adversary

who does not know the value of v will be as follows. He will inject the first set of faults

at clock round 260 which corresponds to the PRGA round p = 260− 180− v = 80− v.

After performing the attack, the adversary will end up constructing the internal state

Rp, Sp instead of R0, S0. Finding the value of p by looking at the fault-free key-stream

sequence is straightforward. However, finding R0, S0 is a slightly stronger result because,

as reported in [80], there is a finite entropy loss for each state update operation in the

MICKEY PRGA.

7.4.4 Complexity of the Attack

As mentioned in Section 7.4.2, the attack requires the adversary to obtain 100 different

faulty key-streams corresponding to all the fault locations in R for PRGA rounds t ∈

Chapter 7: Differential Fault Analysis of MICKEY 2.0 199

Generate and record the fault-free key-stream z0, z1, z2, . . . for some Key-IV K, IV
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆rφZt have not been obtained

do
Re-key the cipher with Key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in R at PRGA
round t;
Record the faulty key-stream sequence ∆rφZt;

end
t← t+ 1;

end
Calculate rt0, CRt, ∀t ∈ [0, 100] using A, B, C;
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆sφZt have not been obtained

do
Re-key the cipher with Key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in S at PRGA round
t;
Record the faulty key-stream sequence ∆sφZt;

end
t← t+ 1;

end
Using D, E, F calculate CSt, for all such t ∈ [0, 100] for which there is no
confusion;
Let the number of undecided CSt bits be γ;
for Each of the 2γ guesses of the undecided CSt’s do

Use techniques of Subsection 7.4.1 to compute
rt0, r

t
99, CRt, s

t
0, s

t
99, CSt, ∀t ∈ [0, 99];

Use Lemma 7.1, Lemma 7.2 to compute R0, S0;
if R0, S0 produce the sequence z0, z1, z2, . . . then

Output the required state R0, S0;
end

end

Algorithm 7.1: Fault Attack against MICKEY 2.0

[0, 100]. This requires 101 · 100 ·∑100
i=1

1
k ≈ 215.68 faults on an average. The same process

must be repeated for the register S and hence the expected number of total faults is

216.68. The computational overload comes from guessing the γ bits of CSt which cannot

be found by observing the differential key-streams. This requires a computational effort

proportional to 2γ . Since γ is distributed according to Binomial(101, 1
4), the expected

value of γ is 25.25. The expected value of the computation complexity is therefore given

by

E[2γ] =

101∑
k=0

(
101

k

)(
1

4

)k (3

4

)101−k
2k ≈ 232.5.

200 Chapter 7: Differential Fault Analysis of MICKEY 2.0

7.5 Case of Multiple bit faults

In this section we explore the situation in which the adversary is unable to induce a

single bit flip of the internal state every time he injects a fault. We assume that the

injection of fault may affect the bit values of at most three consecutive locations of the

state (indeed this can be extended further, but the analysis will become very tedious).

This gives rise to three situations (a) the attacker flips exactly one register bit (100

possibilities), (b) he flips 2 consecutive locations i, i+ 1 of R or S (99 possibilities), (c)

he flips 3 consecutive locations i, i+ 1, i+ 2 of R or S (98 possibilities). Studying such a

model makes sense if we attack an implementation of MICKEY where the register cells

of the R and S registers are physically positioned linearly one after the other. Now,

this attack scenario gives rise to 100 + 99 + 98 = 297 different instances of faults due to

any single fault injection, and we will assume that all these instances are equally likely

to occur. As before we will assume that the adversary can re-key the device with the

original Key-IV and obtain all the 297 faulty streams for any PRGA round t ∈ [0, 100]

by randomly injecting faults in either the R or S register. For each PRGA round, the

attacker thus needs around 297 ·∑297
i=1

1
i ≈ 210.7 faults. Thus the fault requirement for

the register R is 101 · 210.7 = 217.4. The process has to be repeated for the S register

and so the total fault requirement is 2 · 217.4 = 218.4.

Let Φ = {φ1, φ2, . . . , φk} denote the set of indices of k (k ≤ 3) continuous locations

in the R (or S) register. The notations Rt,∆rΦ(t0), St,∆rΦ(t0), Rt,∆sΦ(t0), St,∆sΦ(t0),

zi,∆rΦ(t0),∆rΦZt, ηt,rΦ , Ψ1
rΦ

[i],Ψ2
rΦ

[i], and Ψ1
sΦ

[i] and Ψ2
sΦ

[i] will be used in their usual

meanings in the context of multiple faults at all locations in Φ.

To begin with, in the single bit fault case, the attack depends on the successful identifi-

cation of the faulty streams produced due to faults in locations 0, 67 of R and 99 of S.

In the multiple bit fault case too, the success of the attack depends on the identification

of faulty streams that have been produced due to faults in these locations. We will deal

each of these situations separately.

7.5.1 The bit r0 is affected.

This could happen in 3 ways: a) r0 alone is toggled, b) r0, r1 are toggled, c) r0, r1, r2

are toggled. Let us state the following technical result.

Proposition 7.5. Ψ1
rΦ

[0] = 1, ∀Φ such that 0 /∈ Φ, but Ψ2
rΦ

[0] = 1,∀Φ that contain 0.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 201

Proof. Since θ0 is a function of r0, s0 only we will have

zt ⊕ zt,∆rΦ(t) = θ0(Rt, St)⊕ θ0(Rt,∆rΦ(t), St,∆rΦ(t))

=

{
0, if 0 /∈ Φ,

1, if 0 ∈ Φ

Hence the result.

This implies that any faulty stream with its first bit different from the fault-free first

bit must have been produced due to a fault that has affected r0 and vice versa. Thus

3 out of the 297 faulty streams have this property and they can be identified easily.

Furthermore since θ1(Rt, St)⊕ θ1(Rt,∆rΦ(t), St,∆rΦ(t)) = st34⊕ rt67 = CRt ∀Φ containing

0, the second bit in the all these faulty streams are equal and the difference of this bit

with the second fault-free bit gives us the value of CRt.

7.5.2 The bits r67 and r99 are affected.

r67 could be affected in 6 ways : a) r67 alone is toggled, b) r66, r67 are toggled, c) r67, r68

are toggled, d) r65, r66, r67 are toggled, e) r66, r67, r68 are toggled and f) r67, r68, r69 are

toggled. Also note that r99 could be affected in 3 ways: a) r99 is toggled, b) r98, r99 are

toggled and c) r97, r98, r99 are all toggled. Again we state the following propositions.

Proposition 7.6. Ψ1
rΦ

[0] = Ψ1
rΦ

[1] = 1, ∀Φ such that the indices 0, 67, 99 /∈ Φ.

Proposition 7.7. If 99 ∈ Φ then Ψ2
rΦ

[1] = 1. If 67 ∈ Φ then Ψ2
rΦ

[1] = 0.

Proof. Note that θ0 is a function of only r0, s0 and θ1 is a function of r0, r67, r99, s34, s99

only.

zt+1 ⊕ zt+1,∆rΦ(t) =

0, if 0, 67, 99 /∈ Φ, (G)

CRt, if 0 ∈ Φ, (H)

rt0, if 67 ∈ Φ, (K)

1, if 99 ∈ Φ. (L)

Hence the result.

In the above, (G) implies that out of the remaining 294 differential streams at least

294− 6− 3 = 285 satisfy

(P5) ηt,rΦ [0] = ηt,rΦ [1] = 0

and (L) implies that the number of differential streams with the property

(P6) ηt,rΦ [0] = 0, ηt,rΦ [1] = 1

202 Chapter 7: Differential Fault Analysis of MICKEY 2.0

is at least 3. A direct implication of (K) is that if the number of differential streams

satisfying (P5) is 285 and (P6) is 9 then rt0 = 1 and on the other hand if, the number

of streams satisfying (P5) is 291 and (P6) is 3 then rt0 = 0. These are exclusive cases,

i.e., the number of streams satisfying (P5) can be either 285 or 291. Since the values of

rt0, CRt for all t ∈ [0, 100] are now known, the attacker can now use the techniques of

Section 7.4.1 and Lemma 7.1 to calculate the entire initial state R0.

7.5.3 The bits s0, s34 and s99 are affected.

Following previous descriptions, we know that there are respectively 3, 6, 3 possibilities

of faults affecting s0, s34, s99. Again, we present the following technical results before

describing the attack.

Proposition 7.8. Ψ1
sΦ

[0] = 1, ∀Φ such that 0 /∈ Φ, but Ψ2
sΦ

[0] = 1, ∀Φ that contain 0.

Proposition 7.9. Ψ1
sΦ

[0] = Ψ1
sΦ

[1] = 1, ∀Φ such that the indices 0, 34, 99 /∈ Φ.

Proposition 7.10. If 99 ∈ Φ then Ψ2
sΦ

[1] = 1. If 34 ∈ Φ then Ψ2
sΦ

[1] = 0.

Proof. The proof is similar to those of previous propositions. Since θ0 is a function of

only r0, s0 and θ1 is a function of r0, r67, r99, s34, s99 only, we have

zt ⊕ zt,∆sΦ(t) = θ0(Rt, St)⊕ θ0(Rt,∆sΦ(t), St,∆sΦ(t))

=

{
0, if 0 /∈ Φ,

1, if 0 ∈ Φ

zt+1 ⊕ zt+1,∆sΦ(t) =

0, if 34, 99 /∈ Φ, (M)

rt0, if 34 ∈ Φ, (N)

1, if 99 ∈ Φ. (O)

Proposition 7.8 proves that there are exactly 3 differential streams out of 297 which

have ηsΦ [0] = 1. Further, (M) implies that of the remaining 294 streams, at least

294− 3− 6 = 285 satisfy

(P7) ηt,sΦ [0] = ηt,sΦ [1] = 0

and (O) implies that the number of streams that satisfy

(P8) ηt,sΦ [0] = 0, ηt,sΦ [1] = 1

is at least 3.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 203

CASE I.

If the number of streams that satisfy (P7) is 291 and (P8) is 3 then the streams satisfying

(P8) must have been produced due to the faults affecting s99. For these streams ηsΦ [2]

is given by:

zt+2 ⊕ zt+2,∆sΦ(t) =

CSt, if Φ = {99},
1⊕ CSt, if Φ = {98, 99}
1⊕ CSt. if Φ = {97, 98, 99}

So, for 2 of these 3 streams we have ηsΦ [2] = 1 ⊕ CSt. Hence, our strategy will be to

look at the bit indexed 2 of these 3 streams. Two of them will be equal and we designate

that value as 1⊕ CSt.

CASE II.

If the number of streams that satisfy (P7) is 285 and (P8) is 9 then the streams have

been produced due to faults that have affected s34 and s99. We have the identity

∑
Φ: 34∈Φ

ηt,sΦ [2] = rt0 · rt67 · st34 ⊕ rt99 · st34.

Therefore, the sum of the bits indexed 2 of all the differential streams that satisfy (P8)

is ∑
Φ: 34 or 99∈Φ

ηt,sΦ [2] = CSt ⊕ rt0 · rt67 · st34 ⊕ rt99 · st34.

At this time the entire initial state of the register R and all the values of CRt for

t ∈ [0, 100] are known to us. Hence, by Lemma 7.2, all values of rti for all t > 0 can be

calculated by clocking the register R forward. Also, since CRt = rt67 ⊕ st34 is known,

st34 = CRt ⊕ rt67 can be calculated easily. Therefore, in the previous equation, CSt

becomes the only unknown and thus its value can be calculated immediately.

At this point of time we have rt0, CRt, CSt for all values of t ∈ [0, 100]. Now using the

techniques of Section 7.4.1 and Lemmata 7.1, 7.2, we will be able to determine the entire

initial state R0, S0. Note that using this fault model although the fault requirement

increases, the adversary does not have to bear the additional computational burden of

guessing γ values of CSt.

204 Chapter 7: Differential Fault Analysis of MICKEY 2.0

7.6 Improvement Using SAT Solver

The main idea of algebraic cryptanalysis is to solve multivariate polynomial systems that

describe a cipher and this has been successfully exploited in DFA also. For a very brief

introduction in this, one may refer [109, Section 5]. The DFA on Trivium [109] requires

only 2 faults. The work on DFA against Grain family described in Section 5.5 also shows

that the number of faults can be reduced significantly (not more than 10). With this

motivation, we tried to exploit similar ideas for fault attacks against MICKEY 2.0. Our

analysis shows improvements over our result in Section 7.4.4; however, not as significant

as what could be achieved for Trivium or Grain family. Nevertheless, we identify several

other combinatorial patterns towards the improved DFA against MICKEY 2.0 in this

section. We will start with the following simple technical result.

Lemma 7.11. Suppose rt0 = 0 for some t ∈ [0, 99]. Then the location of a random fault

can be identified deterministically when it injects the 99th location of R.

Proof. This follows from Theorem 7.4B, 7.4C. We have already seen in Section 7.4.2,

that for any t, if rt0 = 0, then the number of differential streams satisfying (P2) is exactly

1. It follows from Theorem 7.4B, 7.4C, that this differential stream must have been

produced due to fault on location 99 of R.

Now we will prove another result when rt0 = 1.

Lemma 7.12. Suppose rt0 = 1 for some t ∈ [0, 99]. Then to decide that rt0 is indeed 1

and furthermore to find the value of CRt, one needs to inject around 183.33 faults on

average.

Proof. From Theorem 7.4A, 7.4B, 7.4C and their implications, it is clear that if rt0 = 1,

then the number of differential streams satisfying (P2) is 2 (produced due to faults on

locations 67, 99 of R) and if rt0 = 0, then the number of differential streams satisfying

(P2) is 1. Hence for any t, in the process of applying random faults, as soon as the

attacker obtains 2 streams satisfying (P2), he can conclude that rt0 = 1.

Also from the implication of Theorem 7.4A, we know that finding CRt requires the

faulty key-stream from location 0 of R. So, for any fixed t, if rt0 = 1, then deducing

rt0 and CRt requires faulty key-streams from locations 0, 67, 99 of R only, i.e, the faulty

keystream from location 0 of R and the two faulty keystreams satisfying (P2). By

injecting random faults, the attacker can expect to inject these 3 locations by applying

100 + 100
2 + 100

3 = 183.33 random faults. Hence the result.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 205

Note that, this is much less than the 29.02 faults required to obtain the 100 distinct faulty

key-streams corresponding to each fault location in R as discussed in Section 7.4.2.

Hence when rt0 = 1, we do not need to inject fault at every location of Rt to find the

value of rt0 and CRt. On the other hand when rt0 = 0, using Lemma 7.11, we can identify

the faulty key-stream resulting from fault on location 99 of R. We will use these faulty

key-streams as location of fault is known in our attack.

R0
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CR0

R1
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CR1

...

Ra−2
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa−2

Ra−1
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa−1

Ra
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa

Known initially Calculated

Figure 7.4: Constructing the last a bits of the state R0.

We will now state a more general form of Lemma 7.1.

Lemma 7.13. Let a ∈ [0, 99] be an integer. If we assume that rt99 and CRt are known

∀t ∈ [0, a], then the state bits r0
99−a, r

0
100−a, . . . , r

0
99 of the initial state R0 may be calcu-

lated efficiently.

Proof. The proof is exactly similar to that of Lemma 7.1. In Lemma 7.1, we started

with 1 bit of R99, i.e., r99
99, and then worked backwards to calculate the last 2 bits of

R98, 3 bits of R97 and in this manner the entire of R0. In this case we will start with 1

bit of Ra, i.e., ra99 and backtrack to calculate the last 2 bits of Ra−1, 3 bits of Ra−2 and

in this manner the bits r0
99−a, r

0
100−a, . . . , r

0
99 of R0. The process is explained pictorially

in Figure 7.4.

We will now investigate the situation when attacker injects faults at each round t ∈ [0, a].

Using Theorem 7.4 and its implications, the attacker can deduce the values of rt0 and

206 Chapter 7: Differential Fault Analysis of MICKEY 2.0

CRt ∀ t ∈ [0, a]. He can then find the values of rt99, ∀ t ∈ [0, a], using the arguments of

Section 7.4.1. Then using Lemma 7.13, he can compute r0
99−a, r

0
100−a, . . . , r

0
99. Now, let

us write the state R0 as

[r0
0, x1, . . . , x98−a, r0

99−a, r
0
100−a, . . . , r

0
99],

where xi’s are unknown for 1 ≤ i ≤ 98−a and r0
i are known for i = 0 and 99−a ≤ i ≤ 99.

We can write the state S0 as

[y0, y1, . . . , y99],

where yi’s are unknown for 0 ≤ i ≤ 99.

We will now describe the technique to formulate multivariate equations in xi, yi over

GF(2) which we will solve using a SAT Solver. We will formulate equations for the fault-

free key-stream bits first. We have already seen that the state bits of R1, S1, R2, S2, . . . ,

Rk, Sk, . . . can be expressed as polynomials over the state bits of R0, S0. However,

the algebraic degree and complexity of these polynomials increase exponentially with

increasing k. So much so that we could not compute the form of these polynomials

for k > 4 on a normal Desktop PC. To circumvent this situation, we take resort to

introducing new variables at every PRGA round of the cipher.

In the first round of PRGA, we introduce 200 new variables u1
i and v1

i for 0 ≤ i ≤ 99,

where u1
i corresponds to the state R1 and v1

i corresponds to S1. Hence we formulate 201

new equations which are

1. z0 = r0
0 ⊕ y0

2. u1
i = ρi(r

0
0, . . . , x99−a, r100−a, . . . , r99, y0, . . . , y99)

3. v1
i = βi(r

0
0, . . . , x99−a, r100−a, . . . , r99, y0, . . . , y99).

Hence, the states R1 and S1, obtained after running one round of PRGA, becomes

[u1
0, . . . , u

1
99] and [v1

0, . . . , v
1
99]

respectively. This technique is repeated in each successive round accompanied by the

introduction of 200 new variables. As MICKEY’s state update function is highly non

linear, this approach enables us to compute the symbolic forms (via a series of equations)

of any PRGA state RT , ST . Instead, if at each round k > 0, the variables uki , v
k
i were

replaced by their equivalent algebraic expressions in xi, yi, this would never have been

possible efficiently. By introducing new variables, after T rounds, we have a total of

201T equations.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 207

We will now formulate equations generated due to faulty key-stream bits. The attacker

can determine any faulty key-stream conclusively when it has been produced due to fault

at location 0 of R. So after T rounds, we have a total of T faulty key-stream sequences

generated due to fault on 0th location of R. To use these faulty key-streams, we proceed

as follows. Consider the case when an injected fault has toggled the location 0 of R at

t = 0. We denote this faulty state by the vector

[1⊕ r0
0, x1, . . . , x98−a, r0

99−a, r
0
100−a, . . . , r

0
99] and

[y0, y1, . . . , y99].

As before we use 200 new variables u1
i , v

1
i to the next faulty state. So we again get 201

new equations

1. z0,∆r0(0) = 1⊕ r0
0 ⊕ y0

2. u1
i = ρi(1⊕ r0

0, . . . , x99−a, r100−a, . . . , r99, . . . , y99)

3. v1
i = βi(1⊕ r0

0, . . . , x99−a, r100−a, . . . , r99, . . . , y99).

As before, we repeat the above for T ′ rounds with 200 new variables in each round.

Again, this results in a total of 201T ′ equations. The process can be repeated for fault

at any round t ∈ [0, T]. New equations and variables are formulated accordingly in each

case.

Again from Lemma 7.11, we know that ∀ t, we can identify any faulty key-stream

sequence produced due to fault on location 99 of R, when rt0 = 0. So whenever rt0 = 0,

we can formulate more equations. For example if r0
0 = 0, we start with the state

[r0
0, x1, . . . , x98−a, r0

99−a, r
0
100−a, . . . , 1⊕ r0

99] and

[y0, y1, . . . , y99],

and thereafter form equations by the introduction of new variables in each round.

7.6.1 Experiments

We assume all except the first 25 bits bits of R0 have been found out by injecting faults

and thereafter using Lemma 7.13, i.e., we take a = 75. We need to find S0 which

contains 100 unknown bits. To restrict the total number of equations, we use only first

38 key-stream bits, i.e., we take T = 38. We also use faulty key-stream bits for only first

T ′ = 12 rounds when the location of a faulty key-stream can be conclusively identified.

208 Chapter 7: Differential Fault Analysis of MICKEY 2.0

We feed the equation so formed into the SAT Solver Cryptominisat-2.9.5 [126] available

with SAGE 5.7 [129]. The solver is able to find the remaining 125 unknown bits in

1345.80 seconds on an average (averaged over 100 trials) on a PC powered by an Intel

Dual Core Processor, with a CPU speed of 1.83 GHz and 2 GB RAM.

Fault Requirement: Since a = 75, we need to apply faults in the first 75 PRGA

rounds. Among the 75 rounds, we can assume value of rt0 will be 1 at expected 75
2 times.

Whenever rt0 = 1, by Lemma 7.12, only 183.33 faults are sufficient. So expected number

of faults required in our attack is

75

2
· 100

100∑
i=1

1

i
+

75

2

(
100 +

100

2
+

100

3

)
≈ 214.68.

Thus we have a four-fold improvement in the number of faults compared to Section 7.4.4,

where expected number of fault was 216.68. This is the improvement achieved when we

solve non-linear equations using a SAT solver.

7.6.2 Multiple bit faults

From the discussion in Section 7.5, it is clear that the attacker can not conclusively

determine whether a given faulty key-stream has been produced due to a single bit or

a multiple bit fault. Hence the attacker cannot use faulty key-streams to formulate

equations. The best he can do is as follows. Find a bits of R0 by applying faults and

then find the remaining bits of R0, S0 by formulating equations for the fault-free key-

stream bits. By extensive experimentation, we have found that to obtain a solution in

reasonable time, the value of a has to be 100, i.e., we need to find out the entire state

of R0 before using the SAT solver. Using the technique of formulating equations using

extra variables, which was described in the previous subsection, we were able to find the

entire S0 using the SAT Solver, within 1206.18 seconds on an average (averaged over

100 trials).

Fault Requirement: The number of different Φ for which 0 ∈ Φ is 3 and as per

Proposition 7.5, these are used to calculate the value of CRt. Assuming rt0 = 1, among

the remaining 297− 3 = 294 different faulty key-streams, 9 would satisfy (P6). Of these

9, three are due to fault on location 99 and six are due to location 67. However when

rt0 = 0, the number of streams satisfying (P6) is only 3. Hence for any t, as soon as the

attacker can obtain four different key-streams satisfying (P6), he can conclude rt0 = 1.

Chapter 7: Differential Fault Analysis of MICKEY 2.0 209

When rt0 = 1, we will prove in Theorem 7.14 that the attacker requires 187.25 faults on

average to deduce the value of rt0 and CRt.

Theorem 7.14. 187.25 faults are sufficient to deduce rt0 = 1 and find CRt, in the mul-

tiple bit-flip scenario a fault flips the logic in atmost three contiguous register locations.

Proof. We know that we have a total of 297 different faulty streams. To deduce that

rt0 = 1 and find CRt, by injecting random faults, we need to obtain 4 different streams

out of a set of 9 specific streams (satisfying (P6)) and 1 out of a set of 3 other streams

(due to fault at location 0 of R) respectively. To find the expected number of faults to

achieve this target, we will use the following proposition.

Proposition 7.15. Consider five real numbers a1, . . . , a5 in (0, 1). Then, we have the

following identities

1.
∞∑
r1=0

· · ·
∞∑
r5=0

[
5∏
i=1

arii

]
=

5∏
i=1

1

(1− ai)

2.
∞∑
r1=0

...
r5=0

[
5∑
i=1

ri ·
5∏
i=1

arii

]
=

5∑
i=1

ai
(1− ai)2

5∏
j=1
j 6=i

1

(1− aj)

Suppose, we first obtain the 4 streams of the set of 9 in r1 +1, r1 + r2 +2, r1 + r2 + r3 +3

and r1 + r2 + r3 + r4 + 4 attempts respectively. Thereafter, we obtain the remaining

streams from the set of 3 after another r5+1 trials, i.e., we require r1+r2+r3+r4+r5+5

faults in total. We call this event Er1,...,r5 . Then Pr(Er1,...,r5) =

ar11

9

297
· ar22 ·

8

297
· ar33 ·

7

297
· ar44 ·

6

297
· ar55 ·

3

297

= ar11 a
r2
2 a

r3
3 a

r4
4 a

r5
5 ·

9072

2975
,

where a1 = 285
297 , a2 = 286

297 , a3 = 287
297 , a4 = 288

297 , a5 = 294
297 . Here ai’s denote the failure

probabilities, i.e., ai denotes the probability that, after obtaining i−1 required streams,

a random fault produces no stream of interest.

We may also fulfill our target by some other “ordering” of events. For example, we first

obtain 3 streams from the set of 9, then the single stream from the other set of 3 and

finally the remaining stream from the first set. There are 5 orderings in total. Denote

by bi, ci, di, ei the failure probabilities, in each of the other orderings.

It is easy to see that, b1 = c1 = d1 = e1 = a1, b2 = c2 = d2 = a2, b3 = c3 = a3, b4 =

a4, b5 = c5 = d5 = e5 = 291
297 , c4 = d4 = e4 = 290

297 , d3 = e3 = 289
297 , e2 = 288

297 .

210 Chapter 7: Differential Fault Analysis of MICKEY 2.0

Considering all cases, the required expected value is

E =
∞∑
r1=0
·
·

r5=0

(
5 +

5∑
i=0

ri

)(5∏
i=1

arii + · · ·+
5∏
i=1

erii

)
· 9072

2975

Now using Proposition 7.15, we get E = 187.25.

On the other hand if rt0 = 0, there is a total of 291 different faulty streams which satisfy

(P5) and only 3 which satisfy (P6). Now in the process of applying random fault and

resetting, as soon as we obtain 286 streams that satisfy (P5), we can conclude that rt0 = 0.

Hence in this case, the expected number of faults is approximately 297·∑291
i=6

1
i = 1178.77.

Thus, the expected number of faults required to find R0 is

100

2

(
187.2 + 1178.77

)
≈ 216.06.

This is more than four-fold improvement over the 218.4 faults reported in Section 7.5.

7.7 Conclusion

A differential fault attack against the stream cipher MICKEY 2.0 is presented. The work

is one of the first cryptanalytic attempts against this cipher and requires reasonable

computational effort. The attack works due to the simplicity of the output function

and certain register update operations of MICKEY 2.0 and would have been thwarted

had these been of a more complex nature. It would be interesting to study efficient

counter-measures with minimum tweak in the design.

Given our work in this chapter, differential fault attacks are now known against all of

the three ciphers in the hardware portfolio of eStream. The attacks on all the 3 ciphers

use exactly the same fault model that is similar to what described in this chapter. Let

us now summarize the fault requirements in Table 7.4.

To the best of our knowledge, there was no published fault attack on MICKEY 2.0.

prior to our work. One of the reasons this remained open for such a long time could be

that the cipher uses irregular clocking to update its state registers. Hence it becomes

difficult to determine the location of a randomly applied fault injected in either the

R or S register by simply comparing the faulty and fault-free key-streams. The idea

Chapter 7: Differential Fault Analysis of MICKEY 2.0 211

Cipher State size Average # Faults

Trivium [109] 288 2

Grain v1 [120] 160 ≈ 10
(Described in Section 5.5)

MICKEY 2.0 200 ≈ 214.7

Table 7.4: A summary of the best Fault Attacks reported against the hardware
portfolio of eStream

explained in Theorem 7.4 and its implications are instrumental in mounting the attack.

The total number of faults is indeed much higher when we compare it with the other

two eStream hardware candidates. However, this seems natural as MICKEY 2.0 has

more complex structure than Trivium or Grain v1. This is also important to point out

that while Grain and Trivium are susceptible to DFA with very few faults when SAT

solvers are exploited, such drastic results could not be attained for MICKEY 2.0.

Chapter 8

Improved Scan-Chain based

Attacks and Related

Countermeasures

Scan-chains are one of the most commonly-used DFT (Design for Testability) techniques.

DFT refers to design techniques that add certain testability features to a micro-electronic

hardware product design. However, the presence of scan-chains makes the device vulner-

able to scan-based attacks from cryptographic point of view. Techniques to cryptanalyze

stream ciphers like Trivium, with additional hardware for scan-chains, are already avail-

able in literature (Agrawal et. al. Indocrypt 2008 [11]). However, extending such ideas

to more complicated stream ciphers like MICKEY 2.0, is not possible as the state update

function used by MICKEY 2.0 is far more complex. In this chapter, we will describe a

general strategy to perform a scan-chain based attack on MICKEY 2.0. Furthermore, we

will look at the XOR-CHAIN based countermeasure that was proposed by Agrawal et.

al. in Indocrypt 2008, to protect Trivium from such scan-based attacks. We will show

that such an XOR-CHAIN based countermeasure is vulnerable to a SET attack. As

an alternative, we propose a novel countermeasure that can protect scan-chains against

such attacks.

8.1 Introduction

While manufacturing any hardware product, DFT techniques are design efforts that are

specifically employed to ensure that a device is testable. Single scan-chains are one of

the most popular and effective ways of providing testability to any hardware device. The

objective of the scan-chain is to make testing easier by providing a way to set and observe

213

214 Chapter 7: Scan-Chain based Attacks and Countermeasures

every flip-flop in an IC. Unlike the functional tests that check chip functionality, scan

tests cover stuck-at-faults, caused by manufacturing problems. Physical manufacturing

defects, such as

• silicon defects, photo-lithography defects, mask contamination

• process variation or defective oxide etc.

may lead to electrical defects such as shorts (bridging faults), opens, transistors stuck

on open, changes in threshold voltage etc. which may lead to digital logic being stuck

at either the 0 or 1 value at one or many of the flip-flops. It may also lead to slower

transitions among the flip-flops causing delay faults which hamper the proper functioning

of a cryptosystem.

Scan-chain testing can be done to check whether a chip is functioning normally or not.

It provides the designer an easy way to ascertain whether the device has succumbed

to the above mentioned defects or not. In this design methodology, all the flip-flops in

the design are replaced with scan type flip-flops. The design is made controllable and

observable by chaining all these flip-flops together and shifting test data in and out.

Scan type flip-flop contains a multiplexer to select either a normal mode functioning or

a scan mode functioning. By suitably altering the control value to the multiplexer, the

chip can be used for normal or scan test mode of operation. After selecting scan-test

mode, the user is able to input test patterns of his choice into the device and thereafter

scan out the contents of all the flip-flops connected to the scan-chain. It therefore gives

the following opportunities to the user:

1. Controllability: The ability to set the flip-flops to certain states or logic values.

2. Observability: The ability to observe the state of these flip-flops.

The flip side of this design paradigm is that this makes certain cryptosystems imple-

mented with such scan-chains in hardware, vulnerable to scan-based side channel attacks.

Scan-based attack is a semi-intrusive side channel attack that does not require the at-

tacker to actively tamper with the functioning of the cryptosystem as in optical/laser

fault attacks. The attacker takes advantage of the scan-chain already implemented in

the device and stops the normal mode of operation of the cryptosystem at some suitably

chosen time instant and scans out the content of all the flip-flops in the system. The

flip-flops usually store the internal state bits of the cryptosystem, and if the adversary

can deduce the correspondence between the individual bits of the scanned out vector and

the internal state bits, this may be enough to break the system. However, ascertaining

Chapter 7: Scan-Chain based Attacks and Countermeasures 215

such a correspondence is usually non-trivial and thus a fascinating area for cryptana-

lytic research. Scan-based attacks have already been reported against block ciphers like

AES [135] and DES [134] and stream-ciphers like RC4 [121] and Trivium [11].

8.1.1 Our Results

In [11], the stream cipher Trivium [43] was successfully cryptanalyzed using scan-based

attack. We will show that due to the complex structure of the state-update functions

used in MICKEY 2.0, extending the attack of [11] to MICKEY 2.0 is impossible. Our

contributions are therefore threefold:

1. We will propose a strategy to perform the scan-based attack on MICKEY 2.0 that

is independent of any specific physical implementation of the cipher.

2. In [11], the XOR-CHAIN based countermeasure was suggested to protect cryp-

tosystems from such attacks. We will show that such a countermeasure is vulner-

able to the SET attack.

3. As an alternative, we provide a countermeasure for scan-chains that will thwart a

SET or RESET attack. We will prove that incorporating such a countermeasure

will still allow the designer to control and test the scan-chain.

The organization of the chapter is as follows. In Section 8.2 we will give some back-

ground on how scan-based attacks are mounted and carried out against cryptosystems.

In Section 8.3, we will outline the details of the attack against MICKEY 2.0. In Sec-

tion 8.4, we propose an attack against the XOR-CHAIN based countermeasure and show

how MICKEY 2.0 can be attacked even in the presence of such a countermeasure. In

Section 8.5 we will outline the proposed countermeasure and discuss its security features

in detail. Section 8.6 concludes the chapter.

8.2 Scan-Chain Attack: Background and Preliminaries

A scan-based test involves construction of one or more scan-chains in a chip by connect-

ing the internal registers and flip-flops of a device and by making either ends of the chain

available to the boundary scan interface, via the SCAN-IN and SCAN-OUT ports (See

Fig 8.1). During testing, test vectors can be scanned in serially through the SCAN-IN

pin. The contents of the chain can also be scanned out in a serial manner through the

SCAN-OUT pin. During the testing phase, all flip-flops are disconnected from the combi-

natorial digital logic of the device and connected in single or multiple connected chains.

216 Chapter 7: Scan-Chain based Attacks and Countermeasures

As shown in Figure 8.2, this is done by placing a multiplexer infront of the D input

of each flip-flop controlled by the SCAN-ENABLE signal. In normal mode of operation,

the SCAN-ENABLE signal is set to 0, so the flip-flop accepts the D-input and the device

behaves normally. In test mode, the SCAN-ENABLE signal is set to 1 and in this event

the flip-flop accepts the SCAN-IN input. Scan-chains are automatically inserted into the

design by a Computer aided synthesis tool. The chain is usually organized according

to the physical positions of the flip-flops. One may note that any arbitrary pattern can

be given as input into the scan-chain, and the state of every flip-flop can be read out.

We will now discuss some salient features related to scan-chains and state clearly the

SCAN-IN FF FF FF FF

SCAN-OUT

CLOCK

SCAN-ENABLE

Combinational Logic

....

....

....

Figure 8.1: Diagram of a Scan-chain

D Q

CLK

D

SCAN-IN

SCAN-ENABLE

Figure 8.2: Scan-enabled D
FF

cryptographic model that is employed to mount a scan-based attack.

? Ability to assert the SCAN-ENABLE signal : We assume that the adversary is

able to control the SCAN-ENABLE input to the device i.e. he has the ability

to run the device under normal mode or test mode interchangeably. It is also rea-

sonable to assume that the adversary can time the changing of the SCAN-ENABLE

signal in synchronization with the system clock signal. In other words, he is able

to stop the normal mode of operation of the device after any given number of clock

rounds, drive the device into test mode and scan out the contents of the flip-flops

of the scan-chain serially, via the SCAN-OUT port.

? Knowledge of the cryptosystem used in the device : We assume that the ad-

versary knows the high-level algorithmic design details of the cryptosystem im-

plemented in the device (in this case MICKEY 2.0). Although, the adversary is

expected to know the general hardware structure of the cryptosystem, he does

not know exactly how many flip-flops have been used in the design. For example,

a typical implementation of MICKEY 2.0 ([42, 64, 69, 92, 117]) is expected to

have around 211 flip-flops (100 each for the R and S registers, 7 for the counter

register, and one each for INPUT BIT R, INPUT BIT S, CONTROL BIT R, CON-

TROL BIT S). But different implementations of the cipher may use extra flip-flops

as per the requirements of the designer. In this sense, the adversary must be able

Chapter 7: Scan-Chain based Attacks and Countermeasures 217

to come up with an attack strategy that is independent of any specific hardware

implementation of the cipher.

? Ability to manipulate the public variables : We assume that the adversary is

able to operate the cryptosystem using any public variable of his choice. In this

case, this implies that he can run the cipher using any IV of his choice, while the

Key remains secret. The Secret Key is usually stored in the memory (RAM) which

is not connected to the scan-chain.

? Knowledge of Scan-chain structure : Here, we assume that the adversary does

not have any knowledge of the structure of the scan-chain that ties the flip-flops

of the device together. The flip-flops in a scan-chain are not connected according

to their positions in their respective registers. Rather, a Computer-aided tool

optimizes the scan-chain according to the physical locations of the individual flip-

flops. He also does not know the number of flip-flops in the scan-chain, but as

shown in Section 8.3.1, finding this number is not difficult.

? Putting it all together : The online attack procedure of the scan-based attack is

very simple. The adversary lets the cryptosystem run in the normal mode for a

fixed number of clock rounds. He then asserts the SCAN-ENABLE signal, which

halts the normal operation mode, and scans out the content of the scan-chain se-

rially via the SCAN-OUT port. He will get a scanned out vector V, of the length

of the scan-chain. This scanned out vector contains all the state bits of the cryp-

tosystem at the clock round after which the normal mode of operation was halted.

However, since the structure of the scan-chain is unknown to the adversary, he is

unable to deduce the correspondence between the individual bits of V and indi-

vidual state bits of the cryptosystem. For example, he knows with certainty that

some element of V is equal to the 0th bit of the register R at the round when the

normal mode was halted, but he does not know which element. In other words,

he is unaware of the permutation π between the scanned out vector V and the

internal state of the cipher.

So any scan-based attack usually proceeds in two phases :

(a) Pre-processing stage → In this stage, the adversary performs various tests on

the device to gain information about the structure of the scan-chain and deduce

the structure of the permutation π. This is the stage that requires rigorous crypt-

analysis. Once the permutation π has been ascertained, the adversary proceeds to

the online stage.

(b) Online stage → The adversary lets the device get initialized with some un-

known Key and IV, and halts the device at some suitable clock round (in the case

of MICKEY 2.0, he stops the normal mode at the beginning of the PRGA). He

218 Chapter 7: Scan-Chain based Attacks and Countermeasures

then scans out the content of the flip-flops in the scan-chain through the SCAN-

OUT port and therefore gets the vector V. Since the permutation π is now known

to him, he is able to reconstruct the internal state of the cipher from V and this

completes the attack.

8.3 Attacking MICKEY 2.0

The keystream generator makes use of two registers R and S (100 bits each). The reg-

isters are updated in a non-linear manner using the control variables: INPUT BIT R,

INPUT BIT S, CONTROL BIT R, CONTROL BIT S. As referred to earlier, any imple-

mentation of the cipher contains flip-flops for the R,S registers and the 4 control vari-

ables. Furthermore, there must be 7 flip-flops for the counter register to keep track of

the number of rounds in the Preclock stage. For more details please refer to [16].

In [11], a scan-based attack on Trivium was presented. As we go along we will show that

the attack idea of [11] can not be extended to MICKEY-like ciphers whose state update

functions are much more complex. The keystream production stage in MICKEY 2.0 is

preceded by the three stages:- IV Loading, Key Loading and Preclock. Initially the R,S

registers are initialized to the all zero state. Then at each clock round, a variable length

IV [iv0, iv1, . . . , ivv−1] and the 80 bit Key [k0, k1, . . . , k79] is used to update the state by

successively executing the function CLOCK KG(R,S, 1, ivi), (for i → 0 to v − 1) and

CLOCK KG(R,S, 1, ki), (for i → 0 to 79). The strategy of the adversary in our attack

will be to operate the cipher in the IV loading stage using certain IV′s of his choice

and then halt the normal mode by asserting the SCAN-ENABLE signal and read out the

contents of the scan-chain. He will repeat this exercise multiple number of times. By

observing the scanned out vector in each case, he will attempt to deduce the structure

of the scan-chain.

8.3.1 Finding the length of the scan-chain

The attacker begins by resetting all the flip-flops of the scan-chain to zero and then

asserts the SCAN-ENABLE signal. The first input to SCAN-IN port is set to 1. As is

obvious from Figure 8.1, if there are n flip-flops in the chain, the scanned out vector

will contain n zeros (which is the initial state of the scan-chain) followed by the single

1 which comes from the first input to the scan-chain. Thus the attacker can deduce the

value of n easily.

Chapter 7: Scan-Chain based Attacks and Countermeasures 219

8.3.2 Strategy to find the location of the counter bits

Initially, the task of the adversary is to ascertain the location of the bits of the counter

register in the scanned out vector. In [11], the strategy to find the counter bits for

Trivium was as follows (note that Trivium uses an 11-bit counter register). The attacker

would initially RESET all the flip-flops in the scan-chain and run the cipher in the

normal mode for 210 − 1 clock rounds. The structure of Trivium is such that if all the

registers are initialized to the all-zero state, then it will continue to be in this state as

long as the cipher runs. Hence, the only bits which will change are those in the flip-

flops of the counter register which operates independently of the combinational logic of

the cipher. After 210 − 1 rounds the 10 least significant bits of the counter become all

1s. If the adversary now asserts the SCAN-ENABLE signal and reads out the content

of the scan-chain, he will observe exactly ten ones in the scanned-out vector. The bit

locations of these 1s indicate the position of the ten LSBs of the counter register in the

scan-chain. However, such an attack can not be extended to MICKEY 2.0. Initially,

all the flip-flops in the R,S registers are set to 0. If the IV Loading stage runs even

for a single clock round with the first IV bit equal to zero, the state of the S register

evaluates to 085804128010408643BC42800. This vector itself has 24 ones and so it is

clear that the strategy of [11] can not be extended to MICKEY 2.0. The strategy that

we propose is as follows. To find the location of the LSB of the counter the attacker will

use such IVs whose length is of the form l0 = 2α+ 1 i.e. an odd number. Whatever be

the value of the IV, after l0 rounds, the LSB of the counter register will always evaluate

to 1. After l0 rounds of IV loading, the attacker asserts the SCAN-ENABLE signal and

reads out the contents of the scan-chain. The attacker does this for n0 many IVs of odd

length and performs the bitwise AND of each of the n0 scanned out vectors. If n0 is

sufficiently large, all but one of the elements of this product vector becomes 0. Clearly,

the only non-zero element in the product vector corresponds to the location of the LSB

of the counter register.

To find the location of the next LSB, the attacker chooses IVs of length l1 = 4α + 2

or 4α + 3. It is clear that irrespective of the values of the IV, after l1 rounds of IV

loading, the second LSB of the counter register always evaluates to 1. The attacker

repeats the above process with n1 IVs of this form and as above, computes the bitwise

AND of all the scanned out vectors. If n1 is sufficiently large, all but one of the elements

of this product vector becomes 0 and the only non-zero element in the product vector

corresponds to the location of the second LSB of the counter register. The process can

similarly be extended to find the location of all the other bits of the counter register.

The above arguments have been formalized in Algorithm 8.1.

220 Chapter 7: Scan-Chain based Attacks and Countermeasures

Input: The index of the counter LSB k
Output: The Set Ak of IVs which determine the location of the kth LSB of

counter register
Output: The location index βk of the kth LSB of counter register in the scan-chain

Let P be a vector of n elements (n is the length of the scan-chain)
P← 1n;
w ← 0;
while ‖ P ‖6= 1 do

/* ‖ P ‖ denotes the number of 1s in P */

Generate a random Initial Vector IVw of length
lk = 2k+1α+ 2k + r, (0 ≤ r < 2k);

Append IVw to the Set Ak ;

Reset cipher and perform IV Loading with IVw ;

Assert the SCAN-ENABLE signal and read the scanned out vector V.

P = P&V (& denotes bitwise AND);

w ← w + 1;
end
for i = 1 TO n do

if P[i] = 1 then

βk ← i;
end

end
Return Ak, βk;

Algorithm 8.1: Algorithm to determine the location of counter bits

Algorithm 8.1 returns the location βk of the kth LSB of the counter register in the

scan-chain. It also returns the IV set Ak which helps determine βk. The values of Ak

∀k ∈ [0, 6] for an implementation of MICKEY 2.0, that uses the 211 flip-flops given

above, are included in the Table 8.1. Note that the IVs are of the form 0i and the values

of i are listed in the table.

kth LSB of counter Set Ak of IVs to find kth LSB

0th bit (LSB): 3, 5, 7, 9, 11, 13, 15, 17

1st bit: 3, 7, 11, 15, 19, 23, 27, 31

2nd bit: 4, 12, 20, 28, 36, 44, 52, 60

3rd bit: 8, 9, 10, 11, 12, 13, 14, 15

4th bit: 16, 17, 18, 19, 20, 21, 22, 23

5th bit: 32, 33, 34, 35, 36, 37, 38, 39

6th bit: 64, 65, 66, 67, 68, 69, 70, 71

Table 8.1: Set Ak of IVs which can determine the location of the kth LSB of counter
register

Chapter 7: Scan-Chain based Attacks and Countermeasures 221

8.3.3 Strategy to find the location of the other internal state bits

We will briefly recall the strategy of [11] to find the location of the state bits of Trivium.

Note that Trivium has an internal register of 288 bits. The 80 bit Secret Key is directly

loaded on to the first 80 bits of the register. The 80 bit IV is loaded on to the 94th to the

173rd bits of the register. The remaining 128 bits are loaded with a fixed initialization

constant. In order to find the location of the 2nd bit of the state register (say), the

adversary initializes the cipher with the Key 8000 0000 0000 0000 and the all zero

IV. The remaining bits of the register are initialized to all zero. As a result, before the

initialization stage begins, only the first register bit holds the value 1 and the rest 0.

The cipher is run in normal mode for one clock round, and then the SCAN-ENABLE

signal is asserted and the contents of the chain are scanned out. The state update of

Trivium is such that after the first initialization round, only the 2nd register bit has the

value 1 and the rest 0. So the scanned out vector that the adversary obtains has two 1s:

one in the location corresponding to the LSB of the counter register and the other in the

position corresponding to the 2nd bit of the state register. Since the attacker already

knows the location of the counter bits, he can easily deduce the location of the 2nd state

register bit. This approach cannot be extended to MICKEY 2.0 for two reasons:

• As we have already seen, the state update function of MICKEY 2.0 is way too complex.

• Unlike Trivium, MICKEY 2.0 does not allow direct loading of Key and IV bits on

to the state register. As mentioned earlier, initially the R,S registers are ini-

tialized to the all zero state. Then a variable length IV [iv0, iv1, . . . , ivv−1] and

the 80 bit Key [k0, k1, . . . , k79] is used to update the state by successively exe-

cuting CLOCK KG(R,S, 1, ivi), (for i → 0 to v − 1) and thereafter the routine

CLOCK KG(R,S, 1, ki), (for i→ 0 to 79).

The strategy that we propose is as follows. To find the location of the ith bit of the reg-

ister R (say), the attacker will use such Initial Vectors IVw = [iv0, iv1, . . . , ivv−1] which

after the IV Loading stage i.e. executing the routine CLOCK KG(R,S, 1, ivi), (for i→
0 to v−1) successively, leaves the ith bit of the registerR at value 1. Since the CLOCK KG

routine is known publicly, the attacker can easily select such IVs by random selection.

By standard randomness assumptions, one out of every two randomly selected IVs will

result in the ith bit of R being equal to 1 at the end of the IV Loading stage. The rest of

the attack is same as before. After IV Loading, the attacker asserts the SCAN-ENABLE

signal and reads out the scanned-out vector V. The attacker does this for mi many IVs

that result in the ith bit of R being 1 and performs the bitwise AND of each of the mi

scanned out vectors. If mi is sufficiently large, all but one of the elements of this product

222 Chapter 7: Scan-Chain based Attacks and Countermeasures

vector becomes 0. Clearly, the only non-zero element in the product vector corresponds

to the location of the ith bit of R.

Input: The internal state bit χ whose location in the scan-chain is to be
determined

Input: The set of index locations scan-chain T whose correspondence has been
determined

Output: The Set Aχ of IVs which determine the location of the state bit χ
Output: The location index βχ of the state bit χ in the scan-chain

Let P be a vector of n elements (n is the length of the scan-chain)
P← 1n;
w ← 0;

for ∀ i ∈ T do
P[i] = 0;

end
while ‖ P ‖6= 1 do

/* ‖ P ‖ denotes the number of 1s in P */

Generate a random Initial Vector IVw = [iv0, iv1, . . . , ivv−1];

Set R← 0, S ← 0 ;

Execute CLOCK KG(R,S, 1, ivi), (for i→ 0 to v − 1);

if The state bit χ = 1 then

Append IVw to the Set Aχ ;

Reset cipher and perform IV Loading with IVw ;

Assert the SCAN-ENABLE signal and read the scanned out vector V.

P = P&V (& denotes bitwise AND);
end

w ← w + 1;
end
for i = 1 TO n do

if P[i] = 1 then

βχ ← i;

end

end

Append βχ to the set T;
Return Aχ, βχ;

Algorithm 8.2: Algorithm to determine location of the state bit χ

Experimentally, the values of ni, mi for an implementation of MICKEY 2.0 with 211

flip-flops has been found to be around 8 to 20. To speed up the process, the attacker

can omit those bit locations of the scanned out vector V whose correspondence to some

flip-flop in the design have already been found out. For example, the attacker can omit

the bits of V which correspond to the counter register. He may also omit any other bits

Chapter 7: Scan-Chain based Attacks and Countermeasures 223

i Set Aχ of IVs to find R[i] Set Aχ of IVs to find S[i]

0 3, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22,
25, 26, 29, 30, 31, 34, 35, 36, 37

13, 16, 19, 22, 23, 25, 27, 28, 29, 33, 34,
36, 37, 38, 40

1 3, 4, 10, 12, 13, 16, 18, 22, 23, 25, 27,
28, 29, 31, 32, 34, 36

13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26,
27, 30, 31, 33, 34, 36, 39

2 4, 5, 6, 7, 11, 12, 14, 15, 17, 19, 23, 24,
26, 28, 29, 32, 33, 34, 37, 38, 39

13, 14, 16, 17, 19, 21, 24, 25, 26, 27, 29,
31, 32, 35, 36, 37, 38

3 3, 5, 7, 8, 10, 11, 14, 15, 18, 21, 22, 24,
27, 28, 30, 31, 33, 34, 39, 40

14, 17, 19, 22, 23, 26, 28, 30, 32, 33, 36,
39

4 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21,
28, 31, 32, 35, 36, 37, 40

1, 4, 7, 10, 16, 18, 21, 22, 23, 24, 26, 27,
28, 30, 31, 33, 35, 36, 37, 39

Table 8.2: The Set Aχ of IVs which can determine the location of the bits of Registers
R,S. (The IVs are of the form 0i. The values of i are listed in the table.)

of V whose correspondence with some internal state bit have already been determined.

The arguments have been formalized in Algorithm 8.2.

Algorithm 8.2 returns the location βχ of the state bit χ in the scan-chain. It also returns

the IV set Aχ which helps determine βχ. The values of Aχ for the first 5 bits of the

registers R, S, for an implementation of MICKEY 2.0 that use the 211 flip-flops given

above, are included in Table 8.2.

8.4 Attacking the XOR-CHAIN Countermeasure Scheme

The Flipped-Scan countermeasure technique to protect scan-chains was proposed in the

work [121]. This involved placing inverters at random points in the scan-chain. Security

stemmed from the fact that an adversary could not guess the number and positions of

the inverters. This technique was cryptanalyzed in [11] using a RESET attack. It was

shown that if all flip-flops in the scan-chain are initially RESET, then the positions

of the inverters can be completely determined by the 0 → 1 and 1 → 0 transitions in

the scanned-out vector. As an alternative, the XOR-CHAIN based countermeasure was

proposed in [11]. The technique involves placing XOR gates at random points of the

chain as described in Figure 8.3. Security again stems from the fact that an adversary

is unable to guess the number and positions of the XOR gates.

Notations

We assume that there are n flip-flops in the scan-chain. The state of the ith flip-flop

(1 ≤ i ≤ n) at clock round t (t ≥ 0) after the SCAN-ENABLE signal is asserted, is

given by the symbol Sti . The τ th (τ ≥ 1) round input to the scan-chain is given as xτ .

224 Chapter 7: Scan-Chain based Attacks and Countermeasures

Similarly the τ th round output of the scan-chain is denoted as yτ . We also define the

sequence ai, (1 ≤ i ≤ n) over GF(2) as follows. If there is an XOR gate before the ith

flip-flop then ai = 1 else ai = 0. The goal of the attacker is to determine the value of

the vector [a1, a2, . . . , an].

SCAN-IN
S1 S2 S3 S4 S5S6 Sn−1 Sn

SCAN-OUT

Figure 8.3: Diagram of the XOR-CHAIN scheme proposed in [11]

8.4.1 The SET attack on the XOR-CHAIN structure

Most standard VLSI designs provide a GLOBAL SET/RESET (GSR) pin to initialize all

flip-flops to some known state INIT during configuration [62]. The INIT value of flip-flop

primitives like FDP, FDPE, FDS etc. in the Xilinx Virtex 6 library [9] is 1 by default, i.e.

these flip-flops are SET after configuration. Our strategy to attack the XOR-CHAIN

would be to SET all the flip-flops in the chain and then assert the SCAN-ENABLE

signal. We will prove in Theorem 8.1, that by observing the values of the scanned-out

vector, the adversary will be able to determine the number and positions of the XOR

gates in the chain.

Theorem 8.1. If the scan-chain is initially SET i.e. S0
i = 1, ∀i ∈ [1, n], and x1 = 1,

then the value of the vector [a1, a2, . . . , an] can be determined efficiently by observing the

output bits yi, ∀i ∈ [1, n] of the scanned-out vector.

Proof. Define the symbol St0 = xt+1. Due to the architecture of the scan-chain, the

following equation holds for any t > 0, 1 ≤ i ≤ n:

Sti = St−1
i−1 ⊕ ai · St−1

i (8.1)

We will give a general outline of the proof first and sort out the more technical details

later. As can be seen from Figure 8.3, the first output bit y1 is given by y1 = S0
n = 1.

The second output bit is given by

y2 = S1
n = S0

n−1 ⊕ an · S0
n = 1⊕ an.

Chapter 7: Scan-Chain based Attacks and Countermeasures 225

The value of an is therefore given by 1⊕ y2. Now look at the equation governing y3.

y3 = S2
n = S1

n−1 ⊕ an · S1
n = S0

n−2 ⊕ an−1 · S0
n−1 ⊕ an · (S0

n−1 ⊕ an · S0
n)

= S0
n−2 ⊕ (an−1 ⊕ an) · S0

n−1 ⊕ an · S0
n

= 1⊕ an−1.

The value of an−1 is therefore given by 1⊕ y3. Now look at the equation for y4.

y4 =S3
n = S2

n−1 ⊕ an · S2
n

=S1
n−2 ⊕ an−1 · S1

n−1 ⊕ an ·
(
S0
n−2 ⊕ (an−1 ⊕ an) · S0

n−1 ⊕ an · S0
n

)
=S0

n−3 ⊕ (an−2 ⊕ an−1 ⊕ an) · S0
n−2 ⊕ (an−1 ⊕ an ⊕ anan−1) · S0

n−1 ⊕ an · S0
n

=1⊕ an−2 ⊕ an ⊕ anan−1.

Since the values of an, an−1 are known, the value of an−2 may be calculated as 1⊕ y4 ⊕
an⊕ anan−1. Proceeding in this manner we can deduce an−3 from y5, an−4 from y6, . . .,

an−i+3 from yi−1. At the ith stage, yi, (1 ≤ i ≤ n+ 1) can be written as

yi = S0
n−i+1 ⊕ bi,n−i+2 · S0

n−i+2 ⊕ bi,n−i+3 · S0
n−i+3 ⊕ · · · ⊕ bi,n · S0

n (8.2)

It can be shown that (i) bi,n−i+2 = an⊕an−1⊕· · ·⊕an−i+2, (ii) bi,n−i+3, bi,n−i+4, . . . , bi,n

are functions of an, an−1, . . . an−i+3 only. Since an, an−1, . . . an−i+3 are already known,

an−i+2 equals

1⊕ yi ⊕ an ⊕ an−1 ⊕ · · · ⊕ an−i+3 ⊕ bi,n−i+3 ⊕ · · · ⊕ bi,n.

The values of an, an−1, . . . , a1 may be found out in this manner. Now all that remains

to be shown are the proofs of (i), (ii). We will proceed by mathematical induction. Let

P (i) be the proposition defined as follows. For all k ∈ [1, n], (and k − i ≥ 0)

Sik = S0
k−i ⊕ ck−i+1 · S0

k−i+1 ⊕ . . .⊕ ck · S0
k

then

A. ck−i+1 = ak ⊕ ak−1 ⊕ · · · ak−i+1,

B. ck−i+2, . . . , ck are functions of ak−i+2, ak−i+3, . . . , ak only.

226 Chapter 7: Scan-Chain based Attacks and Countermeasures

For i = 1, S1
k = S0

k−1⊕ak ·S0
k and so P (1) is true. Assume P (i) is true for i = 2, 3, . . . , u.

For i = u+ 1,

Su+1
k = Suk−1 ⊕ ak · Suk

= S0
k−1−u ⊕ (ak−1 ⊕ ak−2 ⊕ · · · ⊕ ak−u) · S0

k−u ⊕ ηk−u+1 · S0
k−u+1 ⊕ · · ·⊕

ηk · S0
k ⊕ ak · (S0

k−u ⊕ γk−u+1 · S0
k−u+1 ⊕ · · · ⊕ γk · S0

k)

= S0
k−u−1 ⊕ (ak ⊕ · · · ⊕ ak−u) · S0

k−u ⊕ (ηk−u+1 ⊕ ak · γk−u+1) · S0
k−u+1

⊕ · · · ⊕ (ηk ⊕ ak · γk) · S0
k .

This proves A. By induction hypothesis on i = u, ηk−u+1, . . . , ηk, γk−u+1, . . . , γk are

functions of ak−u+1, . . . , ak only and so this proves B as well. It can be seen that (i),

(ii) follow from A, B.

8.4.2 Attacking MICKEY 2.0 in presence of XOR-CHAIN

One of the main difficulties of applying Algorithms 8.1 and 8.2, to any implementation

of MICKEY 2.0 protected by an XOR-CHAIN structure is that the scanned-out vector

will no longer represent the state of the scan-chain before the SCAN-ENABLE signal was

asserted. Because of the random placement of the XOR gates in the chain, the scanned

out vector V = [y1, y2, y3, . . . yn]T is a linear combination of the state of the scan-chain

S = [S0
1 , S

0
2 , S

0
3 , . . . , S0

n]T . From Equation (8.2), the relation between V and S is

given as :

S0
n = y1

S0
n−1 ⊕ b1,n · S0

n = y2

S0
n−2 ⊕ b2,n−1 · S0

n−1 ⊕ b2,n · S0
n = y3

...

S0
1 ⊕ bn,2 · S0

2 ⊕ · · · ⊕ bn,n−2 · S0
n−2 ⊕ bn,n−1 · S0

n−1 ⊕ bn,n · S0
n = yn

In matrix form these equations may be written as B · S = V. Once the attacker has

determined the values of [a1, a2, . . . , an] he can determine the values of bi,j ∀i, j and

hence the matrix B. Now we would like to point out that B is invertible over GF (2).

Clearly, B is a lower anti-triangular matrix with all the elements in the anti-diagonal

equal to 1. Therefore, it follows that Det(B) = 1, and hence the result. The attacker

can now deduce the state of the scan-chain before the assertion of the SCAN-ENABLE

signal, by computing S = B−1 ·V. The adversary can now apply Algorithms 8.1 and 8.2

to the vector S.

Chapter 7: Scan-Chain based Attacks and Countermeasures 227

8.5 Securing the Scan-Chain: Using the Double Feedback

XOR-CHAIN

Our motivation was to find a structure that would resist the SET and RESET attacks.

We found that a few simple tweaks to the XOR-CHAIN structure was sufficient to

secure the chain from the aforementioned attacks. The structure we propose is this: We

retain the idea of placing XOR gates at random points in the scan-chain. In the original

proposal, if ai was 1, the output of the ith flip-flop was fed back to the XOR gate placed

before it. In the structure that we propose, if ai is 1 (∀ i ∈ [1, n− 1]), then the output

of the ith and the (i + 1)th flip-flop would be fed back to the XOR gate placed infront

of the ith flip-flop (see Figure 8.4). For i = n, (i.e. for the last flip-flop in the chain) we

keep an = 0. We call this the “Double Feedback XOR-CHAIN” structure. We will first

prove that such a structure can be used to test the scan-chain efficiently. We will also

prove that such a structure would resist the SET and RESET attacks.

SCAN-IN
S1 S2 S3 S4 S5S6 Sn−1 Sn

SCAN-OUT

Figure 8.4: Double Feedback XOR-CHAIN

8.5.1 Testability

Because of the structure of the Double Feedback XOR-CHAIN, the flip-flops are updated

by the following recursive equation (See Figure 8.4).

Sti =

St−1
i−1 ⊕ ai · (St−1

i ⊕ St−1
i+1), if 1 < i < n,

St−1
i−1 , if i = n,

xt ⊕ ai · (St−1
i ⊕ St−1

i+1), if i = 1.

(8.3)

Let X = [x1, x2, . . . , xn] be the inputs in the first n clock rounds, to the scan-chain after

the assertion of SCAN-ENABLE signal. In the next n rounds, we read out the vector

Y = [yn+1, yn+2, . . . , y2n] from the SCAN-OUT pin. A necessary and sufficient condition

to be able to use Double Feedback XOR-CHAIN structure for testing purposes is that

the function mapping X → Y must be a bijection [11]. We will prove the bijection in

two steps. Denote by St = [St1, S
t
2, . . . , S

t
n]T the state of the scan-chain at the tth clock

round. We will first prove that the map between X → Sn is a bijection, and then we

228 Chapter 7: Scan-Chain based Attacks and Countermeasures

prove that the map between Sn → Y is also a bijection. First we note that Equation

(8.3) can be written in matrix form as follows:

St1

St2

St3

St4
...

Stn

=

a1 a1 0 0 0 · · · 0 0

1 a2 a2 0 0 · · · 0 0

0 1 a3 a3 0 · · · 0 0

0 0 1 a4 a4 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 1 0

St−1
1

St−1
2

St−1
3

St−1
4
...

St−1
n

⊕

xt

0

0

0
...

0

.

We can write this in compact form St = A · St−1⊕Xt. Here A is the tridiagonal matrix

defined above and Xt = [xt, 0, 0, . . . , 0]T . Before we prove the bijection we will look at a

few useful results regarding the structure of A and its powers.

Lemma 8.2. Consider the elements in the first column of Ap, (1 ≤ p ≤ n− 1). It can

be shown that Ap(p + 1, 1) = 1 and Ap(i, 1) = 0 for all i ∈ [p + 2, n]. (M(i, j) denotes

the element in the ith row and jth column of the matrix M)

Proof. The proof is by mathematical induction. The statement is obviously true for

p = 1. We assume that the statement is true for p = 2, 3, . . . , p0. Now Ap0+1(p0 + 2, 1)

is given by

Ap0+1(p0 + 2, 1) =
n⊕
k=1

A(p0 + 2, k) · Ap0(k, 1) = A(p0 + 2, p0 + 1) · Ap0(p0 + 1, 1) = 1.

Also the expansion for Ap0+1(i, 1) for any i ∈ [p0 + 3, n] is given by

Ap0+1(i, 1) =
n⊕
k=1

A(i, k) · Ap0(k, 1) = 0.

This completes the proof.

Lemma 8.3. Consider the elements in the last row of Ap, (1 ≤ p ≤ n − 1). It can be

shown that Ap(n, n− p) = 1 and Ap(n, j) = 0 for all j ∈ [1, n− p− 1].

Proof. The proof is similar to that of the previous lemma and we will again proceed by

induction. The statement is obviously true for p = 1. We assume that the statement is

true for p = 2, 3, . . . , p0. Now Ap0+1(n, n− p0 − 1) is given by

Ap0+1(n, n− p0 − 1) =
n⊕
k=1

Ap0(n, k) · A(k, n− p0 − 1)

= Ap0(n, n− p0) · A(n− p0, n− p0 − 1) = 1.

Chapter 7: Scan-Chain based Attacks and Countermeasures 229

Also the expansion for Ap0+1(n, j) for any j ∈ [1, n− p0 − 2] is given by

Ap0+1(n, j) =
n⊕
k=1

Ap0(n, k) · A(k, j) = 0.

This completes the proof.

Lemma 8.4. Let e1 = [1, 0, 0, . . . , 0]T . Then, the first columns of Ap, (1 ≤ p ≤ n− 1)

and In i.e.

In · e1, A · e1, A2 · e1, . . . , An−1 · e1

are linearly independent over GF(2). (In is the n× n identity matrix.)

Proof. If possible let

G = α0 · In · e1 ⊕ α1 · A · e1 ⊕ · · · ⊕ αn−1 · An−1 · e1 = 0, (8.4)

for some αi ∈ GF (2). From Lemma 8.2, it can be seen that the last element of the column

vectors In · e1 and Ap · e1 (for 1 ≤ p ≤ n − 2) are all 0. The last element of An−1 · e1

is however 1. Therefore, from Equation (8.4), the last element of G is αn which has to

be 0 if G = 0. Once αn = 0, by similar arguments, it can be deduced from Lemma 8.2,

that the second last element of G is αn−1. Thus αn−2 has to be 0 for Equation (8.4) to

hold. Proceeding in this manner we can prove that αn−3 = αn−2 = · · · = α0 = 0.

Lemma 8.5. Let en = [0, 0, 0, . . . , 1]. Then, the last rows of Ap, (1 ≤ p ≤ n − 1) and

In i.e.

en · In, en · A, en · A2, . . . , en · An−1

are linearly independent over GF(2).

Proof. The proof is exactly same as the one for Lemma 8.4. We make use of Lemma 8.3

to show that if β0 · en · In ⊕ β1 · en · A ⊕ β2 · en · A2 ⊕ . . . ⊕ βn−1 · en · An−1 = 0, then

βi = 0 for all i ∈ [0, n− 1].

Theorem 8.6. The function mapping the first n inputs to the scan-chain given by

X = [x1, x2, . . . , xn] to the state Sn of the scan-chain is a bijection.

Proof. We have already shown that the successive state vectors St of the scan-chain

are related by the equation St = A · St−1 ⊕ Xt, ∀t > 0 where Xt = [xt, 0, 0, . . . , 0]T .

Combining these equations for t = 1, 2, . . . n we get

Sn = An · S0 ⊕An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn. (8.5)

230 Chapter 7: Scan-Chain based Attacks and Countermeasures

The scan-chain is usually RESET before the SCAN-ENABLE signal is asserted, and so

S0 = 0 and therefore we have

Sn = An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn

= x1 · An−1 · e1 ⊕ x2 · An−2 · e1 ⊕ · · · ⊕ xn−1 · A · e1 ⊕ xn · In · e1.

Now, if possible let X ′ = [x′1, x
′
2, . . . , x

′
n] 6= X be a vector that leads to the same value

of Sn. So we have,

Sn = x′1 · An−1 · e1 ⊕ x′2 · An−2 · e1 ⊕ · · · ⊕ x′n−1 · A · e1 ⊕ x′n · In · e1.

Adding the equations we get

0 = (x1 ⊕ x′1) · An−1 · e1 ⊕ (x2 ⊕ x′2) · An−2 · e1 ⊕ · · · ⊕ (xn ⊕ x′n) · In · e1.

By Lemma 8.4, In ·e1, A·e1, A2 ·e1, . . . , An−1 ·e1 are linearly independent, so we

must have xi = x′i, ∀i ∈ [1, n]. Hence X = X ′ and so the function mapping X → S is

certainly an injection. Also both the domain and range of this map is the vector space

GF (2)n, which proves that the function is a bijection.

Theorem 8.7. The function mapping the state Sn of the scan-chain to the output vector

Y = [yn+1, yn+2, yn+3, . . . , y2n] is a bijection. Therefore the map between X → Y is also

a bijection.

Proof. We have yn+1 = Snn = en · Sn. Similarly, yn+2 = Sn+1
n = en · Sn+1 = en · (A·Sn⊕

Xn+1) = en · A · Sn. Generalizing in this manner, we have for all i ∈ [1, n],

yn+i = Sn+i−1
n = en · Sn+i−1 = en · (Ai−1 · Sn ⊕Ai−2 ·Xn+1 ⊕ · · · ⊕Xn+i−1)

= en · (Ai−1 · Sn ⊕ xn+1 · Ai−2 · e1 ⊕ · · · ⊕ xn+i−1 · In · e1)

By Lemma 8.2, the last element of the column vectors Ai−2 · e1,Ai−3 · e1, . . . , In · e1

are all 0 and so their dot product with en will also be 0. And so we have yn+i =

en · Ai−1 · Sn, ∀i ∈ [1, n]. We can therefore write

Y T =

en · In
en · A

...

en · An−1

 · Sn = C · Sn.

Chapter 7: Scan-Chain based Attacks and Countermeasures 231

By Lemma 8.5, the rows of C are linearly independent and so C is invertible. This

proves that the function mapping Sn → Y is a bijection. Combining this result with

Theorem 8.6, we can say that the function mapping X → Y is also a bijection.

8.5.2 Resistance against SET and RESET attacks

In a Double Feedback XOR-CHAIN structure, it can be shown that if the scan-chain

is initially RESET then the output in the first n rounds will be all 0. Similarly, if the

chain is initially SET then the output in the first n rounds will be all 1. This is because,

the initial contents of the scan-chain are simply shifted across each flip-flop regardless

of whether there is a XOR gate placed infront of it. From Equation (8.3), we know that

the value of S1
i = S0

i−1⊕ai · (S0
i ⊕S0

i+1). If ai = 0, i.e. if there is no XOR gate before the

ith flip-flop, then the content of the (i− 1)th flip-flop is simply shifted to the ith flip-flop

in the next round. On the other hand, if ai = 1, then we have S1
i = S0

i−1⊕S0
i ⊕S0

i+1. If

the scan-chain is initially RESET i.e. S0
j = 0, ∀j, then the updated value of S1

i is also

0 and thus equal to S0
i−1. If the scan-chain is initially SET i.e. S0

j = 1, ∀j, then the

updated value of S1
i is also 1 ⊕ 1 ⊕ 1 = 1 and thus also equal to S0

i−1. In either event,

the initial values of the flip-flops (whether all SET or RESET) are shifted across the

chain and this is the output obtained in the first n rounds. Thus it is clear that in both

attack scenarios no meaningful information about the vector [a1, a2, . . . , an−1] can be

obtained from the first n scanned-out bits. Thus the attacker must look at the output

bits yn+1, yn+2, . . . in hope of deducing [a1, a2, . . . , an−1]. From equation (8.5), we have

Sn = An · S0 ⊕An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn.

Note that S0 is the all 1 or the all 0 column vector in the case of SET or RESET

attack respectively. From Theorem 8.7, we have Y T = [yn+1, yn+2, . . . , y2n]T = C ·
Sn. Note that, An,An−1, . . . ,A are dense n × n matrices over the polynomial ring

GF (2)[a1, a2, . . . , an−1]. The relation Y T = C · Sn gives rise to n equations of degree

n − 1 each in a1, a2, . . . , an−1. Solving such a system of equations does not seem to be

easier than simply guessing the values [a1, a2, . . . , an−1] or breaking the cipher itself.

8.6 Conclusion

Although, scan-chains are a valuable tool to test an electrical device for faults, deploy-

ment of such scan-chains without having proper countermeasures in place can provide

an attacker with a potent side channel to cryptanalyze the underlying cryptosystem.

In this chapter we outline a strategy to perform a scan-based side channel attack on

232 Chapter 7: Scan-Chain based Attacks and Countermeasures

MICKEY 2.0 that is independent of the actual implementation of the cipher. We then

show that the XOR-CHAIN mechanism which was proposed in [11], is vulnerable to

the SET attack. As a countermeasure we propose the Double Feedback XOR-CHAIN

structure that resists the SET and RESET attacks. We have also presented detailed

analysis, showing that such a structure may indeed be used for DFT purposes.

Chapter 9

Conclusion

In this chapter, we conclude the thesis. We revisit the chapters one-by-one to summarize

the thesis. We mention the existing results and prior work (if any) in the direction. Most

importantly, we present the crux of the chapters, that is our contributions, improvements

and extensions to existing methods. Finally, we also discuss the future scope for research

and potential open problems in respective field of study.

9.1 Summary of Technical Results

Chapter 1 provided the introduction to the thesis, while Chapter 2 covered some math-

ematical topics the reader should know before reading the thesis comfortably. The main

technical results of the thesis are discussed in Chapters 3 to 7, and the highlights of

these chapters are as follows.

Chapter 3: Analysis of RC4 Variants

RC4+ [100] and GGHN [68] were two of the stream cipher designs that were proposed

as an alternative to the ubiquitous RC4 stream cipher after some weaknesses [102, 105]

were reported against it. The idea was to provide a robust design that while comparable

to RC4 in terms of speed in software, would also be free of the known weaknesses of

RC4.

Prior to our work on the GGHN cipher, two distinguishing attacks [115, 132] requiring

around 233 and 230 keystream bytes were reported against it. A fault attack against this

cipher was also reported in [89]. In this thesis, we have shown two results with regards

to the GGHN cipher:

233

234 Chapter 8: Conclusion

1. First, we demonstrated the existence of numerous short cycles that occur during

the evolution of the PRGA phase of the GGHN cipher.

2. Second, using the theory of Markov Chains, we have shown that a randomized

variant of the GGHN cipher goes to the all zero state in around 2147 iterations.

This is significant as once the the cipher reaches the all zero state it does not come

out of it and thereafter, continues to produce only the all zero keystream sequence.

For an ideal cipher, the all zero state should have taken around 2256 iterations to

occur.

Next we turned our attention to the RC4+ stream cipher, against which no cryptanalytic

advance had been reported prior to our work. Using the fact that the first output byte

Z1 produced by the cipher is negatively biased towards 1, i.e., Pr[Z1 = 1] = 1
N − 1

2N2 ,

(where N = 256 is the number of bytes in the internal state of the cipher) we were able

to mount a distinguishing attack on the cipher that requires around 226 first keystream

bytes produced by either different Secret Keys or the same Secret Key and different IVs.

In the next part of the chapter, we mounted a differential fault attack on the RC4+

stream cipher using around 217.2 faults. The main observation used to mount the attack

was that if the attacker came to know around 602 values of the internal variable j in

successive iterations of the cipher, then he could recover the entire internal state of the

cipher. We explain how the attacker would identify the correct value of j in any iteration

of the cipher, by applying faults in the internal state and hence complete the attack.

Chapter 4: Related Key-IV pairs of Grain

In this chapter we provided a formal introduction to the Grain family of stream ci-

phers [13, 73, 74]. We gave a detailed summary of the all the cryptanalytic attacks

reported against this family. We observed that due to the nature of the update func-

tions used the LFSR and the NFSR in all the three members of the Grain family, the

state updates during both the KSA and the PRGA are reversible. As a result, one can

formulate the KSA−1 algorithm that given the internal state after the completion of the

KSA algorithm, outputs the internal state at the beginning of the KSA phase. We also

described the PRGA−1 algorithm that inverts the state update of one PRGA round. Us-

ing these algorithms we were able to describe probabilistic methods that found related

Key-IV pairs in the Grain family that produce keystream bits that are

1. Almost similar in the initial segment, or

2. Exact shifts of each other throughout the generation of the stream. The value of

the shifts in this case is approximately 2lp where lp is the length of the pad in bits

used in the design (lp = 16 for Grain v1 and 32 for Grain-128 and Grain-128a).

Chapter 8: Conclusion 235

We then went on to investigate the possibility of obtaining related Key-IV pairs that

produce shifted keystream bits with smaller shifts. In [44], a method for finding related

Key-IV pairs that produced i-bit shifted keystream (for Grain v1 and Grain-128) was

proposed that required 4i random trials. The method mainly took advantage of the

fact that in both Grain v1 and Grain 128, the symmetric all 1 constant was used as

the pad. In this work, we have improved the method to 2i random trials. Furthermore,

in [44], it was observed that devising such a method for Grain-128a was not possible

as the pad used in this cipher was asymmetric. In the last part of the chapter, we

presented a method to find related Key-IV pairs that produce 32-bit shifted keystream

bits for Grain-128a. The method takes around 232 random trials. We presented another

method that finds related Key-IV pairs that produces shifted keystream bits for shifts

lesser than 32. The second method produces produce ε-bit shifted key-streams (for

0 < ε < 32) using 232

1−2−ε random trials.

Chapter 5: Differential Fault Analysis of Grain

Prior to our work, two fault attacks [35, 85] had been reported against the Grain family,

both against Grain-128. No cryptanalytic advance had been made against Grain v1 or

Grain-128a. In this chapter we have reported three fault attacks against all the three

members of the Grain family, under various adversarial situations:

1. In the first attack we assumed that the attacker can apply single bit flipping,

time-synchronized faults in some random unknown location of the internal state

of the cipher. In addition, the attacker retains the ability to inject multiple faults

in any particular register location. The attacker first deduces the location of the

register where the applied fault has flipped the logic. Then, by exploiting certain

first order differential properties of the output function h the attacker is able to

formulate the requisite number of linear equations to find out the entire internal

state of the cipher.

2. In the second attack, the attacker is still able to apply single bit flipping, time-

synchronized faults in random register locations, but can no longer apply multiple

faults in a singe register location. This attack uses, higher order differential proper-

ties of the output function h to formulate the necessary number of linear equations

to solve for the internal state of the cipher.

3. In the third attack, the attacker makes use of non-linear equations to speed up the

attack. After deducing the location of the fault, the attacker formulates a number

of algebraic equations in the internal state variables corresponding to each faulty

and faultless keystream bit output by the cipher. The bank of equations is then

fed to a SAT solver, which finds a solution to the equation system in reasonable

236 Chapter 8: Conclusion

amount of time. This leads to a drastic reduction in the number of faults required

to complete the attack. Whereas the previous attacks required in excess of 29

faults, the third attack takes less than 10 faults for all the three ciphers in the

Grain family.

Next, we explored the case when the attacker can apply a time synchronized fault

that may disturb the logic in up to 3 continuous register locations. Using certain

differential characteristics of the cipher, attacker is able distinguish, with high

probability, whether a faulty keystream segment has been produced due to a mul-

tiple bit or a single bit-flipping of the original faultless internal state. In the event

that the attacker finds a faulty keystream has been produced due to a multiple

bit-flip, he simply discards the keystream, and inject fault afresh until and unless

that he obtains a faulty keystream produced due to a single bit-flip whose location

he can conclusively identify. Finally, we investigated the case when the attacker

cannot fully synchronize the timing of his fault with the start of the PRGA, and

the best he can do is inject the fault at some PRGA round τ ≤ τmax. We explained

how the attacker is able find the value of τ and proceed with the attack.

Chapter 6: Conditional Differential Cryptanalysis of Grain

This chapter introduced the reader with a brief description of Knellwolf’s Conditional

Differential Cryptanalysis [93, 94] of reduced round Grain v1. The attack found the

values of five expressions in the Secret Key bits of a variant of Grain v1 that employs

only 97 out of the 160 rounds in its Key Scheduling. In [93], it was oblerved that if

certain algebraic conditions involving the Key and the IV bits are satisfied then the

following was observed.

Pr[z97 ⊕ z′97 = 0] =
1

2
+ ε

where z97, z
′
97 are the keystream bits produced in the 97th KSA round by two IVs which

differ in the 37th bit. Using this bias, 5 expressions in Secret Key bits were deduced.

The above bias was obtained purely experimentally and no theoretical explanation was

provided in [93, 94] of it. The chapter proposed the differential engine ∆φ-GrainKSA

that tracks differential trails introduced in the cipher during the KSA phase. Using

the results obtained from this engine, the distributions of several intermediate internal

variables of the cipher were computed and finally the bias in the distribution of z97⊕z′97

was proven.

Chapter 7: Differential Fault Analysis of MICKEY 2.0

This chapter formally introduced the reader to the stream cipher MICKEY 2.0 [16]. Al-

though the cipher is included in the final portfolio of eStream, no cryptanalytic advance

Chapter 8: Conclusion 237

had been made against it prior to our work. In this chapter we mounted a Differential

Fault Attack on MICKEY 2.0, under the standard assumption that the attacker is able

to inject single bit flipping, time-synchronized faults in some random unknown location

of the internal state of the cipher. The attack proceeded in the following manner.

1. We proved that the complete initial state of the cipher may be found out based

on the knowledge of some intermediate internal bits, by solving some simple linear

equations.

2. We then investigated how well-timed and well-localized fault injections could leak

those very intermediate bits of the secret state.

3. We then built a distinguisher that could detect where the fault had occurred, so

as to relax the hypothesis about the knowledge of the fault position in space.

We then relaxed the fault model and explored the situation in which a time synchronized

fault disturbs the logic in up to 3 continuous register locations. In the second part of

the chapter, we reduced the fault requirement by additionally making use of non-linear

equations resulting from each faulty keystream bit. As in the case of the Grain family,

a bank of equations were constructed which were fed to SAT solver which provided a

solution in reasonable time.

Chapter 8: Improved Scan-Chain based Attacks and related Counter-

measures

This chapter introduced the reader to Scan-Chain based hardware design and the re-

lated vulnerabilities that may creep into a cryptosystem implemented with Scan-Chains.

In [11], A Scan based attack on the stream cipher Trivium [43] was presented. It was

explained why the same attack could not be extended to MICKEY 2.0. Thereafter,

an alternative strategy to attack MICKEY 2.0 via Scan-Chains was suggested. Fur-

ther, in [11], an XOR gate based countermeasure was suggested to protect Scan Chains

from cryptanalytic attacks. We showed that this countermeasure may fail to protect

the underlying cryptosystem under the SET attack scenario. A novel Double Feedback

XOR-CHAIN countermeasure was then proposed that was shown to be secure against

this class of cryptanalytic attack. It was also shown than that such a Double Feed-

back XOR-CHAIN structure, like an ordinary Scan Chain, could also be used for DFT

purposes.

9.2 Open Problems

We will now discuss some open problems in this line of research.

238 Chapter 8: Conclusion

A. “Breaking” the ciphers: A cipher employing an n-bit Secret Key is said to be

“broken”, if a method for deducing the Secret Key, by simply observing the

keystream bits and in the absence of any Side Channel information, is found that

takes less than 2n operations. The attacker can at most be allowed to manipulate

the public variables of the cipher. Needless to say, that none of the eStream ciphers

analyzed in this thesis have been broken, and so this remains an open problem in

this domain.

B. Algebraic Cryptanalysis of Grain: With limited computational resources at our

disposal we were able to use SAT solvers to solve for the internal state of the Grain

family using as little as 10, 4, 10 faults for Grain v1, Grain-128 and Grain-128a

respectively. Note that each faulty keystream bit is essentially an extra source of

information, that provides an extra equation in the internal state variables, which

helps the SAT solver to come to a solution faster. This leads us to conjecture that

an attacker having access to larger computational power may be able to reduce

the number of faults required to attack the Grain family. It may even be possible

to come at a solution without making the use of any equation generated due to a

faulty keystream bit. The above statements, however, are merely conjectures and

whether or not they can be achieved in practice is an extremely interesting topic

of research.

C. Improving Knellwolf ’s attack on Grain v1: Although we were able to prove

the correctness of Knellwolf’s attack [93] for 97 round Grain v1, the attack at 104

rounds remains unclear. The author of [93] observes that at round 104, a bias is

observed in one of the Sets of Chosen IVs in only about 50 % of the cases. It

would be a worthwhile exercise, to determine explicitly, the algebraic conditions

the Secret Key bits need to satisfy for the bias to be observed. Another open

problem in this area is, of course, to use the engine ∆φ-GrainKSA to attack a higher

number rounds of the KSA of Grain v1.

D. Reducing the Fault requirement for MICKEY 2.0: The differential fault at-

tack proposed against MICKEY 2.0, described in Chapter 6, takes around 214.7

faults. This is considerably high when compared to the other two ciphers in the

hardware portfolio of eStream (see Table 7.4). This leaves plenty of room for fur-

ther improvement of this result. It would be worthwhile to explore whether it

would be possible to reduce the number of faults required to attack MICKEY 2.0.

E. Fixing RC4+: In Section 3.5, we had observed that the distinguishing attack that

was proposed against RC4+ would still work if any even pad other than 0xAA was

used in the design. Whether changing the value of the pad to an odd number

would prevent the distinguishing attack is worth looking into.

Chapter 8: Conclusion 239

9.3 Final Words

This thesis discusses a variety of cryptanalytic results against software based stream

ciphers like RC4+, GGHN and hardware based stream ciphers like the members of the

Grain family and MICKEY 2.0. By exposing some of the weaknesses in the designs of

RC4+ and GGHN, we have been able to ascertain that looking for design paradigms

that looks to rid RC4 of its known weaknesses and at the same time retains its innate

simplicity and elegance is a non-trivial task. Prior to our work, a generic strategy to

perform the fault analysis of the Grain family and MICKEY 2.0, were essentially open

problems. The thesis also provides useful insights regarding scan based side channel

attacks and their countermeasures. The research-work included in this thesis serves as

a precursor to what we believe would be a long line of research on stream ciphers and

side channel attacks.

Bibliography

[1] Advanced Encryption Standard process. From Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process.

[2] Data Encryption Standard. Federal Information Processing Standards Publication

46-3, 1999. http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.

pdf.

[3] Digital Signature Standard (DSS). Federal Information Processing Standards Pub-

lication 186-3, 1999. http://csrc.nist.gov/publications/fips/fips186-3/

fips_186-3.pdf.

[4] RC4 Stream Cipher. http://en.wikipedia.org/wiki/RC4.

[5] PKCS #1 v2.2: RSA Cryptography Standard. RSA Laboro-

taries, 2012. http://www.emc.com/collateral/white-papers/

h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf.

[6] SHA-3 Competition (2007-2012). NIST Information Technology Laboratory.

http://csrc.nist.gov/groups/ST/hash/sha-3/.

[7] Cryptography. From Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Cryptography.

[8] ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity

Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.6,

2011.

[9] Virtex-6 Libraries Guide for Schematic Designs, 2011. http://www.xilinx.com/

support/documentation/sw_manuals/xilinx13_1/virtex6_scm.pdf.

[10] Carlisle Adams and Steve LLoyd. Understanding PKI - Concepts, Standards and

Deployment Considerations. Pearson Education Inc., 2003. ISBN 0-672-32391-5.

[11] Mukesh Agrawal, Sandip Karmakar, Dhiman Saha, and Debdeep Mukhopadhyay.

Scan Based Side Channel Attacks on Stream Ciphers and Their Counter-Measures.

241

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://en.wikipedia.org/wiki/RC4
http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptography
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/virtex6_scm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/virtex6_scm.pdf

242 Bibliography

In INDOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages 226–

238. Springer, 2008.

[12] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. A New Version

of Grain-128 with Authentication. Symmetric Key Encryption Workshop 2011,

DTU, Denmark, February 2011, 2011.

[13] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a

new version of Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

[14] Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir.

Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream

Cipher Grain-128. In SHARCS - Special-purpose Hardware for Attacking Cryp-

tographic Systems, 2009.

[15] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.

Quark: A Lightweight Hash. J. Cryptology, 26(2):313–339, 2013.

[16] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0. eSTREAM,

ECRYPT Stream Cipher Project Report, 2005. http://www.ecrypt.eu.org/

stream/p3ciphers/mickey/mickey_p3.pdf.

[17] Steve Babbage and Matthew Dodd. The stream cipher MICKEY-128 2.0. eS-

TREAM, ECRYPT Stream Cipher Project Report, 2005. http://www.ecrypt.

eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf.

[18] Subhadeep Banik. Some Insights into Differential Cryptanalysis of Grain v1. In

ACISP, volume 8544 of Lecture Notes in Computer Science, pages 34–49. Springer,

2014.

[19] Subhadeep Banik and Anusha Chowdhury. Improved Scan-Chain Based Attacks

and Related Countermeasures. In INDOCRYPT, volume 8250 of Lecture Notes in

Computer Science, pages 78–97. Springer, 2013.

[20] Subhadeep Banik and Subhamoy Maitra. A Differential Fault Attack on MICKEY

2.0. In CHES, volume 8086 of Lecture Notes in Computer Science, pages 215–232.

Springer, 2013.

[21] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. On the Evolution of

GGHN Cipher. In INDOCRYPT, volume 7107 of Lecture Notes in Computer

Science, pages 181–195. Springer, 2011.

[22] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on the Grain Family of Stream Ciphers. In CHES, volume 7428 of Lecture

Notes in Computer Science, pages 122–139. Springer, 2012.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf

Bibliography 243

[23] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on the Grain Family under Reasonable Assumptions. In INDOCRYPT,

volume 7668 of Lecture Notes in Computer Science, pages 191–208. Springer, 2012.

[24] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A Differential Fault

Attack on Grain-128a Using MACs. In SPACE, volume 7644 of Lecture Notes in

Computer Science, pages 111–125. Springer, 2012.

[25] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Some Results on Re-

lated Key-IV Pairs of Grain. In SPACE, volume 7644 of Lecture Notes in Computer

Science, pages 94–110. Springer, 2012.

[26] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar, and Meltem Sönmez Turan.

A Chosen IV Related Key Attack on Grain-128a. In ACISP, volume 7959 of Lecture

Notes in Computer Science, pages 13–26. Springer, 2013.

[27] Subhadeep Banik, Santanu Sarkar, and Raghu Kacker. Security Analysis of the

RC4+ Stream Cipher. In INDOCRYPT, volume 8250 of Lecture Notes in Com-

puter Science, pages 297–307. Springer, 2013.

[28] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Improved Differential

Fault Attack on MICKEY 2.0. To appear in Journal of Cryptographic Engineering,

2014. DOI : 10.1007/s13389-014-0083-9.

[29] Gregory Bard, editor. Algebraic Cryptanalysis. Security and Cryptology. Springer,

2009. ISBN 978-0-387-88757-9.

[30] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert,

Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine Minier,

Thomas Pornin, and Hervé Sibert. Sosemanuk, a fast software-oriented stream

cipher. eSTREAM, ECRYPT Stream Cipher Project Report, 2006. http://www.

ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf.

[31] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain.

In FSE, volume 4047 of Lecture Notes in Computer Science, pages 15–29. Springer,

2006.

[32] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

[33] Daniel J. Bernstein. Salsa20/8 and Salsa20/12. eSTREAM, ECRYPT Stream

Cipher Project Report, 2006. http://www.ecrypt.eu.org/stream/papersdir/

2006/007.pdf.

http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf

244 Bibliography

[34] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Kec-

cak sponge function family, 2011. http://keccak.noekeon.org/specs_summary.

html.

[35] Alexandre Berzati, Cecile Canovas, Guilhem Castagnos, Blandine Debraize, Louis

Goubin, Aline Gouget, Pascal Paillier, and Stephanie Salgado. Fault Analysis

of Grain-128. IEEE International Workshop on Hardware-Oriented Security and

Trust, 2009.

[36] Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin. Fault Analysis of

Rabbit: Toward a Secret Key Leakage. In INDOCRYPT, volume 5922 of Lecture

Notes in Computer Science, pages 72–87. Springer, 2009.

[37] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-

tems. In CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages

513–525. Springer, 1997.

[38] Eli Biham, Louis Granboulan, and Phong Q. Nguyen. Impossible Fault Analysis

of RC4 and Differential Fault Analysis of RC4. In FSE, volume 3557 of Lecture

Notes in Computer Science, pages 359–367. Springer, 2005.

[39] Tor E. Bjorstad. Cryptanalysis of Grain using Time/Memory/Date Tradeoffs.

eSTREAM, ECRYPT Stream Cipher Project, Report 200508/012, 2008. http:

//www.ecrypt.eu.org/stream.

[40] Martin Boesgaard, Mette Vesterager, Thomas Christensen, and Erik Zenner. The

Stream Cipher Rabbit. eSTREAM, ECRYPT Stream Cipher Project Report,

2006. http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf.

[41] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance

of Checking Cryptographic Protocols for Faults (Extended Abstract). In EU-

ROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages 37–51.

Springer, 1997.

[42] Philippe Bulens, Kassem Kalach, Francois-Xavier Standaert, and Jean-Jacques

Quisquater. Hardware performance of eStream phase-III stream cipher candidates.

SASC, 2007. http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf.

[43] Christophe De Cannière and Bart Preneel. TRIVIUM -Specifications. eSTREAM,

ECRYPT Stream Cipher Project Report, 2005. http://www.ecrypt.eu.org/

stream/p3ciphers/trivium/trivium_p3.pdf.

[44] Christophe De Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain’s

Initialization Algorithm. In AFRICACRYPT, volume 5023 of Lecture Notes in

Computer Science, pages 276–289. Springer, 2008.

http://keccak.noekeon.org/specs_summary.html
http://keccak.noekeon.org/specs_summary.html
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf

Bibliography 245

[45] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and

KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.

In CHES, volume 5747 of Lecture Notes in Computer Science, pages 272–288.

Springer, 2009.

[46] Çagdas Çalik, Meltem Sönmez Turan, and Ferruh Özbudak. On Feedback Func-

tions of Maximum Length Nonlinear Feedback Shift Registers. IEICE Transac-

tions, 93-A(6):1226–1231, 2010.

[47] Carlos Cid and Matt Robshaw (editors). The eSTREAM Portfolio in 2012, 16

January 2012, Version 1.0. eSTREAM, ECRYPT Stream Cipher Project Report.

http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf.

[48] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably

Secure Against Adaptive Chosen Ciphertext Attack. In CRYPTO, volume 1462

of Lecture Notes in Computer Science, pages 13–25. Springer, 1998.

[49] Joan Daemen and Paris Kitsos. The self-synchronizing stream cipher Moustique.

eSTREAM, ECRYPT Stream Cipher Project Report, 2006. http://www.ecrypt.

eu.org/stream/p2ciphers/mosquito/mosquito_p2.pdf.

[50] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2.

[51] Apurba Das, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. Some Com-

binatorial Results towards State Recovery Attack on RC4. In ICISS, volume 7093

of Lecture Notes in Computer Science, pages 204–214. Springer, 2011.

[52] Blandine Debraize and Irene Marquez Corbella. Fault Analysis of the Stream

Cipher Snow 3G. In FDTC, pages 103–110, 2009.

[53] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE

Trans. on Information Theory, 22(6):644–654, 1976.

[54] Cunsheng Ding, Guozhen Xiao, and Weijuan Shan. The Stability Theory of Stream

Ciphers, volume 561 of Lecture Notes in Computer Science. Springer, 1991. ISBN

3-540-54973-0.

[55] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.

In EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 278–

299. Springer, 2009.

[56] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In

FSE, volume 6733 of Lecture Notes in Computer Science, pages 167–187. Springer,

2011.

http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/mosquito/mosquito_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/mosquito/mosquito_p2.pdf

246 Bibliography

[57] Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann. An

Experimentally Verified Attack on Full Grain-128 Using Dedicated Reconfigurable

Hardware. In ASIACRYPT, volume 7073 of Lecture Notes in Computer Science,

pages 327–343. Springer, 2011.

[58] H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A Framework

for Chosen IV Statistical Analysis of Stream Ciphers. In INDOCRYPT, volume

4859 of Lecture Notes in Computer Science, pages 268–281. Springer, 2007.

[59] Paul Erdős and Alfréd Rényi. On a classical problem of probability theory. Magyar

Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 6:215–220,

1961. Available at http://www.renyi.hu/~p_erdos/1961-09.pdf.

[60] Hal Finney. An RC4 cycle that can’t happen. Posting to sci. crypt , 1994.

[61] Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV Statistical Analysis

for Key Recovery Attacks on Stream Ciphers. In AFRICACRYPT, volume 5023

of Lecture Notes in Computer Science, pages 236–245. Springer, 2008.

[62] Thomas L. Floyd, editor. Digital Fundamentals (10th Edition). Prentice Hall,

2008. ISBN 978-0132359238.

[63] Harold Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Al-

gorithms. SIAM Rev., 24:195–221, 1982.

[64] Kris Gaj, Gabriel Southern, and Ramakrishna Bachimanchi. Comparison of

hardware performance of selected Phase II eSTREAM candidates. SASC, 2007.

http://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf.

[65] Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, 1991. ISBN

1-56592-098-8.

[66] Benedict Gierlichs, Lejla Batina, Christophe Clavier, Thomas Eisenbarth, Aline

Gouget, Helena Handschuh, Timo Kasper, Kerstin Lemke-Rust, Stefan Mangard,

Amir Moradi, and Elizabeth Oswald. Susceptibility of eSTREAM Candidates

towards Side Channel Analysis. SASC, 2008. http://www.ecrypt.eu.org/stvl/

sasc2008/.

[67] Oded Goldreich. Foundations of Cryptography - Basic Tools. Cambridge University

Press, 2003. ISBN 0-521-79172-3.

[68] Guang Gong, Kishan Chand Gupta, Martin Hell, and Yassir Nawaz. Towards a

General RC4-Like Keystream Generator. In CISC, volume 3822 of Lecture Notes

in Computer Science, pages 162–174. Springer, 2005.

http://www.renyi.hu/~p_erdos/1961-09.pdf
sci.crypt
http://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf
http://www.ecrypt.eu.org/stvl/sasc2008/
http://www.ecrypt.eu.org/stvl/sasc2008/

Bibliography 247

[69] Tim Good and Mohammed Benaissa. Hardware performance of eStream phase-

III stream cipher candidates. SASC, 2008. http://www.ecrypt.eu.org/stream/

docs/hardware.pdf.

[70] C. M. Grinstead and J. L. Snell, editors. Introduction to Probability. American

Mathematical Society, 2006. ISBN 978-0821807491.

[71] D.H. Habing. Use of Laser to Simulate Radiation-induced Transients In Semicon-

ductors and Circuits. IEEE Transactions on Nuclear Science, NS-12(6):91–100,

1965.

[72] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher for

Constrained Environments. eSTREAM, ECRYPT Stream Cipher Project Report,

2005. http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf.

[73] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher for

Constrained Environments. eSTREAM, ECRYPT Stream Cipher Project Report,

2005. http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf.

[74] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A Stream

Cipher Proposal: Grain-128. eSTREAM, ECRYPT Stream Cipher Project Re-

port, 2008. http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_

p3.pdf.

[75] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions

on Information Theory, 26(4):401–406, 1980.

[76] Jonathan J. Hoch and Adi Shamir. Fault Analysis of Stream Ciphers. In CHES,

volume 3156 of Lecture Notes in Computer Science, pages 240–253. Springer, 2004.

[77] Jeff Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte. Practical

lattice-based cryptography: NTRUEncrypt and NTRUSign. NTRU Cryptosys-

tems, 1998. https://www.securityinnovation.com/uploads/Crypto/lll25.

pdf.

[78] Michal Hojśık and Bohuslav Rudolf. Differential Fault Analysis of Trivium. In

FSE, volume 5086 of Lecture Notes in Computer Science, pages 158–172. Springer,

2008.

[79] Michal Hojśık and Bohuslav Rudolf. Floating Fault Analysis of Trivium. In IN-

DOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages 239–250.

Springer, 2008.

http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
https://www.securityinnovation.com/uploads/Crypto/lll25.pdf
https://www.securityinnovation.com/uploads/Crypto/lll25.pdf

248 Bibliography

[80] Jin Hong and Woo-Hwan Kim. TMD-Tradeoff and State Entropy Loss Consider-

ations of Streamcipher MICKEY. In INDOCRYPT, volume 3797 of Lecture Notes

in Computer Science, pages 169–182. Springer, 2005.

[81] Yupu Hu, Juntao Gao, Qing Liu, and Yiwei Zhang. Fault analysis of Trivium.

Des. Codes Cryptography, 62(3):289–311, 2012.

[82] A.H. Johnston. Charge Generation and Collection in p-n Junctions Excited with

Pulsed Infrared Lasers. IEEE Transactions on Nuclear Science, NS-40(6):1694–

1702, 1993.

[83] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography. Infor-

mation Security and Cryptography. Springer, 2012. ISBN 978-3-642-29655-0.

[84] David Kahn, editor. The Codebreakers: The Comprehensive History of Secret

Communication from Ancient Times to the Internet. Scribner, 1996. ISBN 978-

0684831305.

[85] Sandip Karmakar and Dipanwita Roy Chowdhury. Fault Analysis of Grain-128 by

Targeting NFSR. In AFRICACRYPT, volume 6737 of Lecture Notes in Computer

Science, pages 298–315. Springer, 2011.

[86] Selçuk Kavut, Subhamoy Maitra, and Melek D. Yücel. Search for Boolean Func-

tions With Excellent Profiles in the Rotation Symmetric Class. IEEE Transactions

on Information Theory, 53(5):1743–1751, 2007.

[87] Auguste Kerkchoffs. La cryptographie militaire. Journal des sciences militaires,

IX:161–191, 1883.

[88] Shahram Khazaei, Mehdi Hassanzadeh, and Mohammad Kiaei. Distinguishing

Attack on Grain. eSTREAM, ECRYPT Stream Cipher Project Report, 2005.

http://www.ecrypt.eu.org/stream/papersdir/071.pdf.

[89] Aleksandar Kircanski and Amr M. Youssef. On the structural weakness of the

GGHN stream cipher. Cryptography and Communications, 2(1):1–17, 2010.

[90] Aleksandar Kircanski and Amr M. Youssef. Differential Fault Analysis of HC-128.

In AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages

261–278. Springer, 2010.

[91] Aleksandar Kircanski and Amr M. Youssef. Differential Fault Analysis of Rabbit.

In Selected Areas in Cryptography, volume 5867 of Lecture Notes in Computer

Science, pages 197–214. Springer, 2009.

 http://www.ecrypt.eu.org/stream/papersdir/071.pdf

Bibliography 249

[92] Paris Kitsos. On the Hardware Implementation of the MICKEY-128 Stream

Cipher. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/059, 2006.

http://www.ecrypt.eu.org/stream/papersdir/2006/059.pdf.

[93] Simon Knellwolf. Cryptanalysis of Hardware-Oriented Ciphers, The Knapsack

Generator, and SHA-1. PhD Dissertation submitted to ETH Zurich, 2012. http:

//e-collection.library.ethz.ch/eserv/eth:5999/eth-5999-02.pdf.

[94] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional Differential

Cryptanalysis of NLFSR-Based Cryptosystems. In ASIACRYPT, volume 6477 of

Lecture Notes in Computer Science, pages 130–145. Springer, 2010.

[95] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.

In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397.

Springer, 1999.

[96] Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-Key Chosen

IV Attacks on Grain-v1 and Grain-128. In ACISP, volume 5107 of Lecture Notes

in Computer Science, pages 321–335. Springer, 2008.

[97] Michael Lehmann and Willi Meier. Conditional Differential Cryptanalysis of

Grain-128a. In CANS, volume 7712 of Lecture Notes in Computer Science, pages

1–11. Springer, 2012.

[98] Rudolf Lidl and Harald Niederreter. Introduction to Finite Fields and their Ap-

plications. Cambridge University Press, 1986. ISBN 0-521-30706-6.

[99] Zhouqian Ma and Dawu Gu. Improved Differential Fault Analysis of SOSE-

MANUK. In Eighth International Conference on Computational Intelligence and

Security (CIS), pages 487–491, Nov 2012. doi: 10.1109/CIS.2012.115.

[100] Subhamoy Maitra and Goutam Paul. Analysis of RC4 and Proposal of Additional

Layers for Better Security Margin. In INDOCRYPT, volume 5365 of Lecture Notes

in Computer Science, pages 27–39. Springer, 2008.

[101] Subhamoy Maitra, Goutam Paul, and Sourav Sengupta. Attack on Broadcast

RC4 Revisited. In FSE, volume 6733 of Lecture Notes in Computer Science, pages

199–217. Springer, 2011.

[102] Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In FSE,

volume 2355 of Lecture Notes in Computer Science, pages 152–164. Springer, 2001.

[103] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions

on Information Theory, 15(1):122–127, 1969.

http://www.ecrypt.eu.org/stream/papersdir/2006/059.pdf
http://e-collection.library.ethz.ch/eserv/eth:5999/eth-5999-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:5999/eth-5999-02.pdf

250 Bibliography

[104] Alexander Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A

and Weakness of RC4 Family of Stream Ciphers. In FSE, volume 3557 of Lecture

Notes in Computer Science, pages 342–358. Springer, 2005.

[105] Alexander Maximov and Dmitry Khovratovich. New State Recovery Attack on

RC4. In CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages

297–316. Springer, 2008.

[106] Robert J. McEliece. A public-key cryptosystem based on algebraic coding the-

ory. DSN progress report, 42(44):114–116, 1978. http://www.cs.colorado.edu/

~jrblack/class/csci7000/f03/papers/mceliece.pdf.

[107] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, editors. Handbook

of Applied Cryptography (Discrete Mathematics and Its Applications). CRC Press,

1996. ISBN 978-0849385230.

[108] Miodrag Mihaljevic, Sugata Gangopadhyay, Goutam Paul, and Hideki Imai. In-

ternal State Recovery of Grain-v1 Using Normality Order of the Filter Function.

IET Information Security, 6(2):55–64, 2012.

[109] Mohamed S. E. Mohamed, Stanislav Bulygin, and Johannes Buchmann. Improved

Differential Fault Analysis of Trivium. In COSADE 2011, Darmstadt, Germany,

February 24–25, 2011.

[110] Johannes Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56

(Corresp.). IEEE Transactions on Information Theory, 26(3):359–362, 1980.

[111] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. A 32-bit RC4-like

Keystream Generator. IACR Cryptology ePrint Archive, 2005:175, 2005.

[112] Edward D. Palik. Handbook of Optical Constants of Solids. Orlando Academic

Press, 1985. ISBN 978-0125444231.

[113] Nick J. Patterson and Douglas H. Wiedemann. Correction to ‘The covering radius

of the (215, 16) Reed-Muller code is at least 16276’ (May 83 354-356). IEEE

Transactions on Information Theory, 36(2):443, 1990.

[114] Souradyuti Paul and Bart Preneel. A New Weakness in the RC4 Keystream

Generator and an Approach to Improve the Security of the Cipher. In FSE, volume

3017 of Lecture Notes in Computer Science, pages 245–259. Springer, 2004.

[115] Souradyuti Paul and Bart Preneel. On the (In)security of Stream Ciphers Based

on Arrays and Modular Addition. In ASIACRYPT, volume 4284 of Lecture Notes

in Computer Science, pages 69–83. Springer, 2006.

http://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf
http://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf

Bibliography 251

[116] Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher Designs

- The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science.

Springer, 2008. ISBN 978-3-540-68350-6.

[117] Marcin Rogawski. Hardware evaluation of eSTREAM Candidates: Grain, Lex,

Mickey128, Salsa20 and Trivium. SASC, 2007. http://www.ecrypt.eu.org/

stream/papersdir/2007/025.pdf.

[118] O. S. Rothaus. On ”Bent” Functions. J. Comb. Theory, Ser. A, 20(3):300–305,

1976.

[119] Yaser Esmaeili Salehani, Aleksandar Kircanski, and Amr M. Youssef. Differential

Fault Analysis of Sosemanuk. In AFRICACRYPT, volume 6737 of Lecture Notes

in Computer Science, pages 316–331. Springer, 2011.

[120] Santanu Sarkar, Subhadeep Banik, and Subhamoy Maitra. Differential Fault At-

tack against Grain family with very few faults and minimal assumptions. To appear

in IEEE Transactions on Computers, 2014. DOI: 10.1109/TC.2014.2339854.

[121] Gaurav Sengar, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. Secured

Flipped Scan-Chain Model for Crypto-Architecture. IEEE Trans. on CAD of

Integrated Circuits and Systems, 26(11):2080–2084, 2007.

[122] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux. Statistical Attack on

RC4 - Distinguishing WPA. In EUROCRYPT, volume 6632 of Lecture Notes in

Computer Science, pages 343–363. Springer, 2011.

[123] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions for

cryptographic applications. IEEE Transactions on Information Theory, 30(5):

776–780, 1984.

[124] Sergei P. Skorobogatov. Optically Enhanced Position-Locked Power Analysis. In

CHES, volume 4249 of Lecture Notes in Computer Science, pages 61–75. Springer,

2006.

[125] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In

CHES, volume 2523 of Lecture Notes in Computer Science, pages 2–12. Springer,

2002.

[126] Mate Soos. CryptoMiniSat-2.9.5. http://www.msoos.org/cryptominisat2/.

[127] Arthur Sorkin. Lucifer, A Cryptographic Algorithm, 1983. http://fuseki.com/

lucifer.pdf.

http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf
http://www.msoos.org/cryptominisat2/
http://fuseki.com/lucifer.pdf
http://fuseki.com/lucifer.pdf

252 Bibliography

[128] Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In IN-

DOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages 210–226.

Springer, 2010.

[129] William Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009.

http://www.sagemath.org (Open source project initiated by W. Stein and con-

tributed by many).

[130] Elmar Tischhauser. Nonsmooth cryptanalysis, with an application to the stream

cipher MICKEY. J. Mathematical Cryptology, 4(4):317–348, 2011.

[131] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Maki Shigeri, Tomoyasu Suzaki,

and Takeshi Kawabata. The Most Efficient Distinguishing Attack on VMPC and

RC4A. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/037, 2005.

http://www.ecrypt.eu.org/stream/papersdir/037.pdf.

[132] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, and Tomoyasu Suzaki. A Distin-

guishing Attack on a Fast Software-Implemented RC4-Like Stream Cipher. IEEE

Transactions on Information Theory, 53(9):3250–3255, 2007.

[133] Hongjun Wu. HC-128. eSTREAM, ECRYPT Stream Cipher Project Report, 2006.

http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf.

[134] Bo Yang, Kaijie Wu, and Ramesh Karri. Scan Based Side Channel Attack on

Dedicated Hardware Implementations of Data Encryption Standard. In ITC, pages

339–344, 2004.

[135] Bo Yang, Kaijie Wu, and Ramesh Karri. Secure Scan: A Design-for-Test Architec-

ture for Crypto Chips. IEEE Trans. on CAD of Integrated Circuits and Systems,

25(10):2287–2293, 2006.

[136] Bin Zhang and Zhenqi Li. Near Collision Attack on the Grain v1 Stream Cipher.

In FSE, volume 8424 of Lecture Notes in Computer Science. Springer, 2013.

[137] Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain Family.

eSTREAM, ECRYPT Stream Cipher Project, Report 2009/109, 2009. http:

//www.ecrypt.eu.org/stream.

[138] Bartosz Zoltak. VMPC One-Way Function and Stream Cipher. In FSE, volume

3017 of Lecture Notes in Computer Science, pages 210–225. Springer, 2004.

http://www.sagemath.org
http://www.ecrypt.eu.org/stream/papersdir/037.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Publications
	1 Introduction
	1.1 Introductory Notions
	1.2 Cryptology in the Modern Era
	1.3 Types of Cryptographic Schemes
	1.3.1 Symmetric Key Cryptosystems
	1.3.2 Public Key Cryptosystems
	1.3.3 Hash Functions

	1.4 Stream Ciphers and the eStream Project
	1.4.1 One-Time Pad and Perfect Secrecy
	1.4.2 Using an Initialization Vector
	1.4.3 Attack models
	1.4.4 The eStream Project

	1.5 Motivation of this Thesis
	1.6 Organization of this Thesis

	2 Background and Preliminaries
	2.1 Boolean Functions
	2.1.1 Representation of Boolean Functions
	2.1.2 Walsh Spectrum

	2.2 Recurrences and Feedback Shift Registers
	2.2.1 Primitive Polynomials and Maximum length LFSRs
	2.2.2 Nonlinear Feedback Shift Registers (NFSR)

	2.3 Elementary Discrete Probability Theory
	2.3.1 Probability Distribution Function
	2.3.2 Conditional Probability
	2.3.3 Independent Events
	2.3.4 Joint Distribution Functions and Independence of Random Variables
	2.3.5 Bayes' Formula
	2.3.6 Expectation of a Random variable
	2.3.7 Variance/Standard Deviation of a Random variable
	2.3.8 Important Probability Distribution Functions
	2.3.9 Coupon Collector's Problem

	2.4 Markov Chains
	2.4.1 Transition Matrix
	2.4.2 Absorbing Markov Chains

	2.5 Pseudorandomness and Distinguishing Attack
	2.5.1 Computational Indistinguishability
	2.5.2 Distinguishing the Distributions Ber(p0) and Ber(p0(1+q0))

	2.6 Fault Attacks
	2.6.1 Fault Models

	2.7 Scan based Side Channel Attacks
	2.7.1 Introduction to Scan Attacks

	2.8 Conclusion

	3 Analysis of RC4 variants
	3.1 GGHN Stream Cipher
	3.1.1 Our Results

	3.2 Short Cycles in GGHN(n, m)
	3.3 Evolution of a Randomized variant of GGHN cipher
	3.3.1 Towards estimating the actual GGHN PRGA

	3.4 The RC4+ stream cipher
	3.4.1 Our Results

	3.5 Distinguishing Attack on RC4+
	3.5.1 Distinguishing RC4+ from Random Sources
	3.5.2 Experimental Results

	3.6 Differential Fault Analysis of RC4+
	3.6.1 Inferring the values of j in each round
	3.6.1.1 Ascertaining j
	3.6.1.2 Error Analysis
	3.6.1.3 Fault Requirement

	3.6.2 Reconstructing the permutation S

	3.7 Conclusion

	4 Related Key-IV pairs of Grain
	4.1 Grain family of stream ciphers
	4.1.1 Structure of ciphers in Grain family

	4.2 Complete Mathematical Description of the ciphers
	4.2.1 Grain v1
	4.2.2 Grain-128
	4.2.3 Grain-128a

	4.3 Reversible KSA and PRGA of the Grain family
	4.4 Existing cryptanalytic results on the Grain family
	4.4.1 Distinguishing Attacks
	4.4.2 Key recovery Attacks
	4.4.3 Cube Attacks
	4.4.4 Fault Attacks
	4.4.5 Slide based Related Key Attacks
	4.4.6 Other results
	4.4.7 Our results

	4.5 Related Key-IV pairs in Grain family
	4.5.1 Search for related Key-IV pairs in Grain v1
	4.5.2 Examples of related Key-IV pairs in Grain v1
	4.5.3 Related Key-IV's in Grain-128
	4.5.4 Related Key-IV's in Grain-128a

	4.6 Occurrence of Key-IV pairs that produce shifted key-streams
	4.6.1 Improved strategy over c4kucuk for small shift

	4.7 Key-IV Pairs producing Shifted Keystream in Grain-128a
	4.7.1 Key-IV pairs producing Keystream with smaller shifts

	4.8 Conclusion

	5 Differential Fault Analysis of Grain
	5.1 Introduction
	5.1.1 Fault Attacks on other Stream Ciphers
	5.1.2 Our Results

	5.2 Obtaining the Location of the Fault
	5.2.1 Differential Grain
	5.2.2 The routine FLocI(E)
	5.2.3 First and Second Signature Vectors Q1,Q2
	5.2.4 Improving the success probabilities: Third and Fourth signature Vectors

	5.3 DFA on Grain under relaxed assumptions
	5.3.1 Determining the LFSR Internal State
	5.3.2 Determining the NFSR Internal State
	5.3.3 Finding the Secret Key and Complexity of the Attack

	5.4 DFA on Grain under stricter assumptions
	5.4.1 Beginning the attack
	5.4.2 Finding the secret key and complexity of the attack
	5.4.3 Attacking the actual ciphers

	5.5 DFA against Grain family with very few faults and minimal assumptions
	5.5.1 Populating the bank of equations for Grain v1 and Grain-128
	5.5.2 Populating the bank of equations for Grain-128a
	5.5.3 Using the SAT Solver

	5.6 Experimental Results
	5.6.1 Identifying Multiple bit faults
	5.6.2 Identifying Fault Locations for Injections at random time

	5.7 Conclusion

	6 Conditional Differential Cryptanalysis of Grain
	6.1 Introduction
	6.2 Knellwolf's attack on Grain v1
	6.3 The Differential Engine GrainKSA
	6.3.1 Generalized Grain cipher
	6.3.2 GrainKSA

	6.4 Proving the biases
	6.4.1 -GrainKSA with overrides
	6.4.2 Computing Pr[z97z97=0]
	6.4.3 Biases in the other Sets

	6.5 Conclusion and Open Problems

	7 Differential Fault Analysis of MICKEY 2.0
	7.1 Introduction
	7.2 Structure of MICKEY 2.0
	7.3 An alternate description of MICKEY 2.0 PRGA and a summary of results
	7.4 Complete description of the Attack
	7.4.1 Faulting specific bits of R, S
	7.4.2 How to identify the random locations where faults are injected
	7.4.3 Issues related to the length of the IV
	7.4.4 Complexity of the Attack

	7.5 Case of Multiple bit faults
	7.5.1 The bit r0 is affected.
	7.5.2 The bits r67 and r99 are affected.
	7.5.3 The bits s0, s34 and s99 are affected.

	7.6 Improvement Using SAT Solver
	7.6.1 Experiments
	7.6.2 Multiple bit faults

	7.7 Conclusion

	8 Improved Scan-Chain based Attacks and Related Countermeasures
	8.1 Introduction
	8.1.1 Our Results

	8.2 Scan-Chain Attack: Background and Preliminaries
	8.3 Attacking MICKEY 2.0
	8.3.1 Finding the length of the scan-chain
	8.3.2 Strategy to find the location of the counter bits
	8.3.3 Strategy to find the location of the other internal state bits

	8.4 Attacking the XOR-CHAIN Countermeasure Scheme
	8.4.1 The SET attack on the XOR-CHAIN structure
	8.4.2 Attacking MICKEY 2.0 in presence of XOR-CHAIN

	8.5 Securing the Scan-Chain: Using the Double Feedback XOR-CHAIN
	8.5.1 Testability
	8.5.2 Resistance against SET and RESET attacks

	8.6 Conclusion

	9 Conclusion
	9.1 Summary of Technical Results
	9.2 Open Problems
	9.3 Final Words

	Bibliography

