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“The greatest and most important problems of life are all in a certain sense insoluble.

They can never be solved, but only outgrown ”

- Carl Jung, 1875 - 1961, psychiatrist, psychoanalyst.
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Chapter 1

Introduction

1.1 Prelude

This thesis deals with recursive systems used in theoretical and applied probability. Re-

cursive systems are stochastic processes {Xn}n≥1 where the Xn depends on the earlier

Xn−1 and also on some increment process which is uncorrelated with the process Xn. The

simplest example of a recursive system is the Random Walk, whose properties have been

extensively studied. Mathematically a recursive system takes the form

Xn = f(Xn−1, εn),

ε is the increment/ innovation procedure and f(·, ·) is a function on the product space of

xn and εn.

We first consider a recursive system called Self-Normalized sums (SNS) corresponding to

a sequence of random variables {Xn} (which is assumed to be symmetric about zero).

Here the sum of Xi is normalized by an estimate of the pth absolute moment constructed

from the Xi’s. The SNS are the most conservative among all normalized sums in the

sense that all the moments of the SNS exist even if Xi do not possess any finite moments.

We look at the functional version of the SNS called the Self-Normalized Process (SNP)

where the Xi’s come from a very general family called the domain of attraction of the

stable distribution with stability index α denoted by DA(α), for α ∈ (0, 2] (for definition

1
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see Section 2.2). We show that for any choice of α and p other than 2 the limiting

distributions of the SNP are either trivial or do not exist.

We consider another recursive system called the Adaptive Markov Chain Monte Carlo

(AMCMC) which is used extensively in statistical simulation. The motivation behind

this method is to get hold of a Markov Chain (MC) whose stationary distribution (if

it exists) is the distribution of interest, also called the target distribution, henceforth

denoted as ψ(·). One chooses a proposal distribution which is a conditional probability

distribution, say p(·|x) and then given a present value of the chain at xn generates a

new value y ∼ p(·|xn). The new value y is accepted with a certain probability, called

acceptance probability, which depends on the target distribution. It can be verified that

the MC constructed in this way has ψ(·) as the stationary distribution.

The usual choice of the proposal given the value of xn is a distribution which is symmetric

about the mean xn, say for example, Normal with mean 0 and variance σ2. Therefore

one has :

Xn+1 = Xn + εI(U < αn), where ε ∼ N(0, σ2),

and U is an Uniform (0, 1) random variable and αn = min{1, ψ(Xn+ε)
ψ(Xn)

}.
The problem with this choice is that even though in the long run this process Xn may

converge to ψ(·) the convergence may be show for bad choices of σ2. In practice the

choice of the unknown parameters that determine the speed of convergence are made to

depend on the present and/or past values of the chain in addition to some additional

quantities. This is called Adaptive MCMC (AMCMC) in statistical literature. We deal

with such an MC where the parameters depend on the present and/or past values of the

chain and on an indicator variable which takes the value one if the last generated sample

was accepted. It is not certain a priori that such an MC will also have ψ(·) as its invari-

ant distribution. One aspect of this thesis is to explore the convergence criteria of such

adaptive chains along with the their rate of convergence. We apply the diffusion approx-

imation procedure, which is basically scaling down the discrete process to a continuous

time diffusion process governed by a Stochastic Differential Equation (SDE). The gain is

that not only can we invoke standard convergence results for diffusion process, but we

can also apply the same diffusion approximation to other suitably defined processes and

then apply various techniques to compare their relative efficiency. This is possible since

there exists many discretization schemes for diffusion processes. See Kloeden and Platen

[39] for example.
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Although the standard Normal distribution is the standard choice of the proposal dis-

tribution we investigate whether other choices of the proposal and the various target

distributions also yield similar diffusion approximation results. We classify target distri-

butions according to three classes, each corresponding to some condition that ensures the

existence or non existence of the m.g.f of the target density ψ(·). We also show that this

condition is not necessary by explicitly considering the standard Cauchy as the target

density. We further prove a Theorem that rules out the heavy tailed distribution, in

particular the standard Cauchy distribution as a candidate for the proposal distribution.

This type of diffusion approximation is the cumulative addition of increments from the

proposal distribution normalized by a quantity θ which also changes with each iteration.

It is therefore possible to look upon it as a version of normalized sums of X ′is where the

normalization is by θ and the X ′is comes from the proposal distribution. In this context

we connect some of the results of the SNP to the diffusion approximation of AMCMC.

1.2 Self-Normalized Processes

The first example of recursive equation is what are popularly called the Self-Normalized

Process (SNP). This topic is dealt in Chapter 2. To understand the SNP we first define

the Self-Normalized Sums (SNS):

Yn,2 = Sn/Vn,2; where Sn =
n∑
i=1

Xi; Vn,2 = (
n∑
i=1

X2
i )

1
2 ,

under the assumptions that the denominator is never zero almost surely. This can be

written as a recursive process in Yn,2:

Yn+1,2 = Sn+1/Vn+1,2 =
( Vn,2
Vn+1,2

Yn,2 +
Xn+1

Vn+1,2

)
.

The origin of the study of the SNS is the Students t statistic which dates back to 1908

when William Gosset (“Student”) [28] considered the problem of statistical inference

on the mean µ when the standard deviation σ is unknown. Let X1, X2, . . . , Xn be an

i.i.d. sample from a distribution F (·) and let Xn = n−1
n∑
i=1

Xi be the sample mean and
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s2
n = (n− 1)−1

n∑
i=1

(
Xi−Xn

)2

be the sample variance. The t- statistics is then defined as

Tn =
√
n
(Xn − µ

sn

)
.

If F (·) is the N(µ, σ2) distribution then above statistics follows the t distribution with

n− 1 degrees of freedom, which tends to the standard Normal distribution as n→∞. It

has been shown that the limiting distribution of Tn is Normal distribution even if X ′is do

not follow Normal distribution, see [40]. When non-parametric tests were subsequently

introduced the t statistics was compared to non-parametric tests (sign test, rank test,

etc.) where F (·) typically had ‘fat’ tails with infinite second moment or even first absolute

moments.

Observe that when µ = 0 the t- statistics and the SNS are related by:

Tn = Yn,2

{ n− 1

n− Y 2
n,2

}1/2

.

From the above relation, if Tn or Yn,2 has a limiting distribution then so does the other

and they coincide, see Proposition (1) of Griffin [31]. Efron [20] and Logan B.F., Mallows

C. L., Rice S. O. and Shepp, L. A.,[40] derived the asymptotic distribution of SNS. Active

development in the Self-Normalized sums began in the late 1990’s with the seminal works

of Griffin and Kuelbs [29, 30] on laws of iterated logarithms for SNS of i.i.d. variables

belonging to the domain of attraction of a Normal or a stable law. Subsequently Bentkus

and Götze [10] derived a Berry Essen bound for the t statistics. The interest in the

asymptotics of SNS was renewed in the seminal work of Giné E., Götze F. and Mason M.

S. [27] who characterized the convergence of the SNS as:

Sn
Vn,2

L→ N(0, 1)

iff

E(Xi) = 0 and Xi lies in the domain of attraction of a Normal distribution.
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Later in Csörgő, Syszkowicz and Wang [17], a related result was proved for the Self-

Normalized partial sums processes, S[nt]/Vn,2, 0 ≤ t ≤ 1, namely

S[nt]

Vn,2

L→ W (t) in D[0, 1],

iff X ′is follow the same conditions as in Giné et al. [27] (viz., E(Xi) = 0 and Xi lies in the

domain of attraction of the Normal distribution), where W (·) is the Brownian motion in

[0, 1] and D[0, 1] is the space of all cádlág functions in [0, 1]. Since weak convergence in

[0,1] implies convergence of the finite dimensional distributions, the necessary condition

of this result comes from the results of Giné et al [27]. An important contribution

of the paper by Csörgő et al [17] is the fact that the Self-Normalized version of the

Donsker’s invariance principle also holds in the domain of attraction of the Normal law,

even without assuming the finite variance. This was in spirit with some properties of the

SNS where many standard results like the LIL and moderate deviations hold with much

less assumptions on the finiteness of the moments (see Griffin and Kuelbs [29] and Shao

[61]). The natural choice of the normalizing variable in the denominator of the SNS is

the L2 normalization given by (
n∑
i=1

X2
i )1/2. We investigate whether it is possible to find

other modes of normalization. Again it is clear that the normalization has something to

do with the index of stability parameter α ∈ (0, 2] of the ingredient random variables

Xi. So basically we have an infinite number of combinations of the parameter α and

normalization parameter p > 0. It is then certainly meaningful to ask for what choices

of (α, p) do we get a non-trivial limit. The same questions can be asked for the process

version of the SNS, called the Self-Normalized Process (SNP) defined later.

In a related (unpublished) work Basak and Dasgupta [4] showed the convergence of a

suitably scaled SNP to an Ornstein-Uhlenbeck (OU) process. There again, the ingredient

random variables come from the domain of attraction of a Normal distribution (stable

distribution with α = 2) and the normalization is L2 normalization. That work motivated

us to ask whether similar results can be guaranteed for other random variables and other

choices of normalization.
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In this thesis we are concerned with the process version of the Self-Normalized sums given

by :

Yn,p(t) =
S[nt]

Vn,p
+ (nt− [nt])

X[nt]+1

Vn,p
0 < t < 1 p > 0, (1.2.1)

where

V p
n,p =

n∑
i=1

|Xi|p.

This process Yn,p(·) is quite the same as that of Csörgő et al. [17] except that we make it

continuous by interpolating it between each sub intervals. In Chapter 2 we will look into

all possible combinations of the pair (p, α) and by the elimination process find the pairs

that give a nontrivial (i.e. non-degenerate) limiting distribution for the process.

1.3 MCMC and the Metropolis Hastings (MH) Al-

gorithm

The second example of recursive scheme that we consider is the Adaptive MCMC. But

before that we define what are commonly called the Markov Chain Monte Carlo (MCMC)

procedures. MCMC techniques have gained huge recognition over the last two decades.

It has been increasingly applied to diverse fields such as computer sciences, finance,

meteorology, statistical genetics and many others. It is used very much by Bayesians, to

simulate from the posterior distribution for general choice of prior distributions when the

normalizing constant is unknown. Its applicability can be gauged from the fact that only

twenty years since inception, a whole handbook of around six hundred pages has been

dedicated to MCMC theory and methods (see the book edited by S. Brooks, A. Gelman,

G. Jones, X. L. Meng [15]).
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1.3.1 MCMC

Quite often one is required to find the integral of a complicated function (possibly multi-

dimensional), say
∫
f(x)dx. Assume that the standard techniques of numerical integra-

tion, e.g. Gauss quadrature, are not easily usable in this case. Also assume that the

integral can be written in an equivalent way as:∫
f(x)dx =

∫
g(x)ψ(x)dx := Eψ[(g(X)],

where ψ(·) is a density function , i.e., ψ(·) ≥ 0,
∫
ψ(x)dx = 1. The Monte Carlo solution

to this problem is to generate a sample of size n, say X1, X2, . . . , Xn from the distribution

whose density function is ψ(·) and then approximate

∫
f(x)dx ≈ 1

n

n∑
i=1

g(Xi).

The above approximation is valid since by the Strong Law of large Numbers (SLLN) we

have that if V arψ(g(X)) <∞ then

1

n

n∑
i=1

g(Xi)
a.s→ Eψ(X),

which is the required integral. Also from the Central Limit Theorem, one can approximate

the error by
√
n
( 1

n

n∑
i=1

g(Xi)− Eψ(g(X))
)

d→ N(0, Vψ(g(X))).

Therefore the computation of the above integral boils down to the generation of a sample

from a distribution ψ(·) henceforth called the target density. The standard techniques of

simulation is the Inverse Transform method, which requires the existence of the inverse of

the distribution function in a closed form, the Accept- Reject algorithm, which requires

that the target distribution be dominated by a density from which sample generation

is easy, or any other transformation method. Consequently, the applicability of such

methods are slightly limited.

MCMC methods tackle the problem of simulation from a different perspective. Suppose

one agrees to sacrifice precision for a solution then he is willing to go for a sample that
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is not exactly generated from ψ(·) but approximately from ψ(·). The MCMC methods

entails the existence of an aperiodic, irreducible Markov chain {Xn} on X , which is the

support of the target distribution and whose invariant distribution is ψ(·). Under these

conditions it is guaranteed that the distribution of Xn will tend to ψ(·) as n → ∞. In

fact a stronger statement is true

||P n(x, ·)− ψ(·)||TV →∞

where the total variation (TV) of a measure ν(·) on (Ω,F) is defined as ||ν(·)||TV =

supA∈F ν(A) and P n(x, ·) = P (Xn ∈ ·|X0 = x), see [55]. TV convergence implies dis-

tributional convergence. Therefore in practice one would choose a very large n0 called

burn in and look at the sample {Xn0 , Xn0+1, Xn0+2, . . . Xn0+m} of size m. This sample

although not identical or independent has distribution very similar to ψ(·). Therefore

the problem boils down to : Given a target distribution ψ(·) how to obtain an aperiodic,

irreducible Markov Chain whose invariant distribution is ψ(·). This proverbial needle in

a haystack problem has a very simple solution given by the Metropolis- Hastings (MH)

algorithm and the Gibbs sampler.

1.3.2 MH algorithm

The MH algorithm, originally proposed by Metropolis et al. [44] and introduced in

statistical contexts by Hastings [32], constructs such a Markov chain in a surprisingly

simple way. Let ψ(·) have a (possibly un-normalized) density, say ψu. Let P (x, ·) be

any other Markov chain whose transitions also have a (possibly un-normalized) density,

i.e., Q(x, dy) ∝ q(x, y)dy. Then this method proceeds as follows. First choose some X0.

Then, given Xn, generate a proposal Yn+1 from Q(Xn, ·). Also flip an independent coin,

whose probability of heads equals α(Xn, Yn+1), where

α(x, y) = min
[
1,
ψu(y)q(y, x)

ψu(x)q(x, y)

]
,

where q(x, y) is the density of Q(x, ·) (assuming it exists). This choice for the acceptance

probability is due to the following definition and proposition.
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Definition: A measure ψ(·) satisfies the detailed balance (reversibility) condition if∫
E

ψ(dx)P (x, F ) =

∫
F

ψ(dy)P (y, E),

for some sets E and F belonging to the Borel σ-algebra defined on the state space of the

Markov chain.

A consequence of reversibility is :

Proposition 1. If a Markov chain is reversible with respect to ψ(·), then ψ(·) is the

stationary distribution of the chain.

Proof: We compute that for some set A ∈ σ(X )∫
X
ψ(dx)P (x,A) =

∫
A

ψ(dy)P (y,X ) =

∫
A

ψ(dy) = ψ(A),

since P (y,X ) = 1,∀y ∈ X . This proves stationary. �

Proposition 2. The MH algorithm described above satisfies the detailed balance con-

dition with respect to ψ(·).

Proof: We need to show

ψ(dx)P (x, dy) = ψ(dy)P (y, dx),

where P (x, dy) = q(x, y)α(x, y)dy. It suffices to assume that x 6= y (since if x = y then

the equations are trivial). But for x 6= y, setting c =
∫
X ψu(x)dx,

ψ(dx)P (x, dy) = [c−1ψu(x)dx][q(x, y)α(x, y)dy]

= c−1ψu(x)q(x, y) min{1, ψu(y)q(y, x)

ψu(x)q(x, y)
}dxdy

= c−1 min[ψu(x)q(x, y), ψu(y)q(y, x)]dxdy

which is symmetric in x and y. �

Therefore to run the Metropolis Hastings algorithm on a computer, we just need to

be able to run the proposal chain Q(x, ·) (which is easy for some suitable choices, say

Normal(0, σ2
x)) and to compute the acceptance probabilities and then do the accept/
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reject steps. Furthermore we only need to compute the ratios of densities, so we don’t

require the Normalizing constant c.

This method is very liberal on the choice for Q(x, ·). In fact depending on the different

forms for Q(x, ·) we have different versions of the MH algorithm, see, for example [55],

such as:

• Symmetric Metropolis Algorithm. Here q(x, y) = q(y, x) and hence α(x, y) =

min{1, ψu(y)
ψu(x)
}.

• Random Walk MH. Here q(x, y) = q(y − x). For example, perhaps Q(x, ·) =

N(x, σ2), or Q(x, ·) = Uniform(x− 1, x+ 1).

• Independence Sampler. Here q(x, y) = q(y)

• Langevin algorithm: Here the proposal is generated by

Yn+1 ∼ N(Xn + δ/25 log(ψ(Xn)), δ) δ > 0.

The last form is motivated by the discrete approximation to Langevin diffusion.

In this thesis we will be concerned with the Symmetric Random Walk MH (SRW MH)

algorithm (defined in the next subsection).

1.3.3 Drawbacks of the MH algorithm and the AMCMC pro-

cedure

1.3.3.1 The optimal scaling problem in the RW MH algorithm

Let ψu be the un-normalized target distribution. Consider running an MH algorithm

for ψu. The optimal scaling problem concerns the question of how should we choose the

proposal density for this algorithm. For example consider the RW MH algorithm with

the proposal distribution given by Q(x, ·) = N(x, σ2). In this case α = min{1, ψ(y)
ψ(x)
}. This

is also referred to as the Normal Symmetric RW MH (N-SRW MH) algorithm. Then the

problem becomes how should one choose σ.
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If σ2 is chosen to be very small then the proposed move y will be very near to the present

value x of the chain. Since α is the ratio of the densities at x and y, it will be very close

to 1. Consequently, the new point will have a high probability of acceptance. Now, since

the new value will be close to the chain’s previous value the chain will move extremely

slowly, leading to a very high acceptance rate even if the current point is in the valley

of ψ(·) distribution, thus yielding a very poor performance. On the other hand, if σ2 is

chosen to be too large, then the proposed value will usually be very far from the current

state. Consequently, the acceptance probability α(x, y) is likely to be very close to zero if

the current state is near a peak of the ψ(·) distribution. Unless the chain gets very lucky

the proposed value will almost never be accepted and the chain will get ’stuck’ at the

same state for a long time with poor acceptance rates. Thus, the choice of the proposal

scaling σ2 should therefore be ‘just right’ ( also called the Goldilocks principle after J.

Rosenthal, see [56]).

In a paper by Gelman A., Roberts G. and Gelman W. [25], the authors provided a partial

answer to this problem. Their method is outlined as follows:

To start let us assume that the un-normalized target distribution for the multivariate

X = (X(1), X(2), . . . , X(d)) ∈ Rd, for some d ∈ N, is :

ψu(x) =
d∏
i=1

f(xi), (1.3.2)

for x ∈ Rd and xi ∈ R, i.e., the target density is the product of the marginals. Al-

though this case is simple it provides useful insights which can be approximated in

other cases as well. For the RW-MH with multivariate Normal proposals set the pro-

posal variance to be σ2
dId where σ2

d = l2

d
where l is a constant to be chosen later. Let

{Xn} = {(X(1)
n , X

(2)
n , . . . , X

(d)
n )} be the MC on Rd. Also let {N(t)}t≥0 be a Poisson

process with rate d which is independent of {Xn}. Finally let

Zd
t = X

(1)
N(t), t ≥ 0.

Using results from Ethier and Kurtz [22] it has been shown in Gelman et al. [25] that

as d → ∞ the process {Zd
t }t≥0 converges weakly to the diffusion process {Zt}t≥0 which

satisfies the SDE

dZt = h(l)1/2dBt +
1

2
h(l)5 logψu(Zt)dt.
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Here

h(l) = 2l2Φ(−
√
Il

2
)

where I = E((log f)′(Z))2, Z having density f(·). Here h(·) corresponds to the speed

of the limiting diffusion. Numerically it turns out that the speed measure is maximized

if l = l̂ = 2.38/
√
I. If f(·) is the density of the N(0, 1) distribution, then I is 1 which

implies that the optimal value of l is 2.38. Also it is proved that the optimal asymptotic

acceptance rate of the algorithm is 0.234. So this method prescribes an optimal value

of the acceptance ratio albeit under a restrictive scenario. The conditions on the form

of the target distribution (1.3.2) was later extended by Roberts and Rosenthal [54] who

extended the above results for non-homogeneous target densities of the form

ψ(x) =
d∏
i=1

Cif(Cixi),

where Ci are real numbers, and later by Bedard and Rosenthal [8] who considered the

case of target distributions ψ(·) which had independent coordinates with vastly different

scaling.

1.3.3.2 Adaptive MCMC

The method in the previous sections only outlines what can be the possible acceptance

rates for an MH algorithm, but does not suggest any method by which that optimality

can be reached. For example, if the optimal acceptance rate for the independent MH

(i.e., the MH whose target is of the form (1.3.2) ) is 0.234, the question is how one can

find the appropriate proposal scaling whose optimal acceptance is as above.

One naive solution to this problem is to hand tune the algorithm to reach the optimal

acceptance rates. So for example, if the empirical acceptance rate exceeds the optimal

level one can decrease the proposal scaling by a quantity δ1; if the empirical acceptance

rate is below the optimal acceptance rate, one can similarly increase the proposal scaling

by a quantity, say δ2. However this method has a drawback in the sense that it requires

a manual supervisor who would monitor the output of the chain. Also the choices of δ

would then be subjective and the outputs cannot be obtained on a real time basis.

An alternative to this technique is to construct an algorithm that tunes the proposal ‘on
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the fly’, i.e., on a real time basis. Mathematically, let {Pγ}γ∈Y be a set of proposal kernels

indexed by the scale γ, also called the adaptation parameter, in an adaptation set Y , each

of which has ψ(·) as its stationary distribution, i.e., (ψPγ)(·) = ψ(·). Assuming that Pγ

is φ- irreducible and aperiodic (which it usually will be), this implies (see, for exmple,

Meyn and Tweedie [45]) that Pγ will be ergodic for ψ(·), that is

||Pγ(x, ·)− ψ(·)||TV → 0, (1.3.3)

for all x ∈ X , see [55] for the definition. Here ||µ(·)||TV is the total variation norm of a

measure defined by ||µ(·)||TV = supA∈F |µ(A)|. Let Γn be the adaptation parameter at

the nth iteration of the algorithm. Therefore the proposal kernel will be given by PΓn(·, ·).
The updation at this iteration given the value of Xn = x and Γn = γ will be governed by

the probability

P (Xn+1 ∈ A|Xn = x,Γn = γ,Xn−1, . . . , X0,Γn−1, . . . ,Γ0) = Pγ(x,A), (1.3.4)

for n = 0, 1, 2, . . .. Similarly Γn are updated according to some updating algorithm. In

principle the choice of Γn can be made to depend on the infinite past, though in practice

it is often the case that the pair {Xn,Γn} is a Markov chain. However since the aim of

the algorithms is to generate a sample from ψ(·) it is not straightforward that the chain

will preserve ergodicity. Ergodicity, for the above process (1.3.4), is defined in Roberts

and Rosenthal [57]) as,

T (x, γ, n) := ||A(n)((x, γ), ·)− ψ(·)||TV → 0, as n→∞, (1.3.5)

where

A(n)((x, γ), B) = P (Xn ∈ B|X0 = x,Γ0 = γ).

This means that whatever be the starting point (x, γ), the chain {Xn} always converges

in the TV norm to ψ(·). In general, any process {Xn} will not necessarily be ergodic even

if for every fixed γ ∈ Y the kernel Pγ is stationary. This is shown by a counter example

in Chapter 4 of [15] which we reproduce below.

Example 1: Let Y = {1, 2}, let X = {1, 2, 3, 4}, let ψ(1) = ψ(3) = ψ(4) = 0.333 and

ψ(2) = 0.001. Let each Pγ be an RW MH algorithm, with proposal Yn+1 ∼ U{Xn −
1, Xn + 1} for P1, or Yn+1 ∼ U{Xn − 2, Xn − 1, Xn + 1, Xn + 2} for P2. Define the
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adaptation by letting Γn+1 = 2 if the nth proposal was accepted, otherwise Γn+1 = 1.

Then each Pγ is reversible with respect to ψ, since, for example,

ψ(1)P1(1, 2) = ψ(1)
1

2
min{1, ψ(2)

ψ(1)
} =

1

2
ψ(2) = ψ(2)

1

2
min{1, ψ(1)

ψ(2)
} = ψ(2)P1(2, 1).

Similarly it can be shown for other values of (x, y, γ) that

ψ(x)Pγ(x, y) = ψ(y)Pγ(y, x).

However since ψ(2)
ψ(1)

= 1
333

the chain can get stuck at Xn = Γn = 1 for a long period of

time. Hence the limiting distributions will be skewed heavily toward 1 and less towards

3 and 4.

This example clearly shows that naive algorithms are not necessarily ergodic. �

Roberts and Rosenthal [57] gave a set of sufficient conditions for which an adaptive

algorithm will be ergodic. Their conditions are:

Proposition 3. 1. Simultaneous Uniform Ergodicity condition: For every ε >

0 there exists N0 = N0(ε) ∈ N such that ∀N ≥ N0,

||PN
γ (x, ·)− ψ(·)||TV ≤ ε,

for every fixed x ∈ X and γ ∈ Y , where PN
γ (x, ·) = Pγ(XN ∈ ·|X0 = x) and,

2. Diminishing Adaptation condition: limn→∞Dn = 0 in probability, where

Dn = sup
x∈X
||PΓn+1(x, ·)− PΓn(x, ·)||TV ,

is a Gn+1 random variable where

Gn = σ{X0, X1, . . . , Xn,Γ0,Γ1, . . . ,Γn}.

The first condition says that the time to convergence to ergodicity should be uniformly

bounded over all the adaptation parameters y ∈ Y and starting points x ∈ X ; the second

condition says that the change in the transition kernel over each iteration (measured in

the sense of total variation norm) should tend to zero as n tends to infinity. It has also
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been pointed out in the same paper that it is not required that the sum of the adaptation

be finite, in other words one can possibly have
∞∑
n=1

Dn =∞ with probability one.

It is easy to construct chains that satisfy condition (2). For example, one way to incor-

porate this into an algorithm is to change the transition kernel at the (n+ 1)st iteration

with probability p(n), such that p(n)→ 0 as n→∞.

Using the results of Gelman et al. [25], Haario, Saksman and Tamminen [33] were the

first to suggest the following Adaptive MH scheme. Their algorithm ran as :

Algorithm 1

1. Start with an initial X0 ∈ Rd.

2. At the time n−1 one has sampled X0,X1, . . . ,Xn−1. Choose a candidate point Y ∈
Rd from the proposal distribution qn(·|X0,X1, . . . ,Xn−1) ∼ N(Xn−1, Cn) where

Cn =

{
C0 n ≤ n0

sdCov(X0,X1, . . . ,Xn−1) + sdεId n > n0

where n0, sd, ε > 0 are suitably chosen constants and C0 is a suitably chosen disper-

sion matrix.

From the results of Gelman et al. [25] one choice of the parameter sd is 2.382/d, see

Haario et al. [33] for more details. Harrio et al. [33] also came up with an ergodic result

for the adaptive chain described here(Algorithm 1):

Proposition 4. (Theorem (1) of Haario et al. [33]): Let ψ(·) be the density of a target

distribution supported on a bounded measurable subset S ⊂ Rd, and assume that ψ(·) is

bounded from above. Let ε > 0 and µ0 be any initial distribution on S. Then the above

chain simulates properly the target distribution ψ(·): For any bounded and measurable

function f : S → R the equality

lim
n→∞

1

n+ 1
(f(X0) + f(X1) + · · ·+ f(Xn)) =

∫
S
f(x)ψ(dx),

holds almost surely.
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1.3.3.3 An adaptive MCMC based on the empirical acceptance rates

Based on the discussions above we suggest an adaptive MCMC (described here for the

univariate case only) that is based on the empirical acceptance rate. A slight variation of

the present algorithm was suggested by Prof Peter Green via personal communication :

Algorithm 2

1. Start with an initial (X0, θ0, ξ0) ∈ (X× (0,∞)×{0, 1}), where X is the state space.

2. At time n − 1 one has sampled (Xi, θi, ξi) for i = 1(1)n − 1. Propose a new point

from a Normal distribution, i.e., Y ∼ N(Xn−1, θn−1).

3. Accept the new point with the MH acceptance probability α(Xn−1, Y ) = min{1, ψ(Y )
ψ(Xn−1)

}.
If the point is accepted, set Xn = Y , otherwise Xn = Xn−1.

4. Update

θn = θn−1e
1√
n

(ξn−q), where q > 0⇔ log(θn) = log(θn−1) +
1√
n

(ξn − q)

5. Increase n by one unit and repeat the above from step 2.

Let us describe the algorithm. θn is the proposal scaling (tuning) parameter which is

adaptively tuned depending on whether the previous sample was accepted. If the gen-

erated sample Y is accepted then θn > θn−1, (i.e., ξn = 1) thus increasing the proposal

variance at the next step, allowing the chain to explore more regions in the state space.

If the sample was rejected (i.e., ξn = 0) then θn < θn−1, thus making the next proposal

move slightly conservative. Here q is a benchmark value. From the discussions in Section

1.3.3.1, a value for q for Normal target with independent components was suggested by

Gelman et al. [25] to be 0.234. This algorithm, in principle is similar to the Stochastic

Approximation procedure. See Andrieu and Moulines [1] for the connection between the

adaptive MCMC and the stochastic approximation procedure.

Chapters 3 and 4 will be devoted towards proving the asymptotic results about this chain

using the diffusion approximation procedure. In Chapter 5 we relax the assumption on

the target and proposal distribution used in the previous two chapters and also give a



Introduction 17

brief description of the diffusion approximation applied to multivariate AMCMC and its

limiting distribution.



Chapter 2

Self-Normalized Processes

2.1 Self-Normalized sums as recursive equations

The first example of recursive equations that we investigate is what is popularly called

Self-Normalized sums (SNS). Let {Xi} be a sequence of i.i.d random variables from the

distribution F (·). Then the SNS corresponding to {Xn} is defined as

Yn,p = Sn/Vn,p

where

Sn =
n∑
i=1

Xi; V p
n,p =

n∑
i=1

|Xi|p.

This can be looked upon as a recursive system by re-writing Yn,p as

Yn+1,p =
Vn,p
Vn+1,p

Yn,p +
Xn+1

Vn+1,p

.

In this chapter we will investigate the functional version of the SNS defined as:

Yn,p(t) :=
S[nt]

Vn,p
+ (nt− [nt])

X[nt]+1

Vn,p
,

where [x] is the greatest integer less than or equal to x, for any x ∈ R.

18
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2.2 Basic facts about Stable distributions

Stable distributions are a class of distributions that share some common property. The

need for stable distribution arose from the fact that for distributions with no finite vari-

ance (for example Cauchy) the CLT does not hold with
√
n normalization. However

properly normalized (which is n for Cauchy) the sequence of partial sums converge to a

distribution (in the above case to a Cauchy distribution). The family of limiting distri-

bution comprises the class of stable distributions. A formal definition is given below. In

this section we follow the convention due to Samorodnitsky and Taqqu [59].

Definition 1: Stable definition

A random variable X is said to have a stable distribution if it has a domain of attraction,

i.e., if there exists a sequence of i.i.d random variables {Yn} and sequences of reals {an}
and positive reals {dn} such that :

Y1 + Y2 + · · ·+ Yn
dn

+ an ⇒ X.

Some other equivalent definitions are given as following:

Definition 2: A random variable is said to have a stable distribution if for any positive

numbers A and B, there is a positive number C and a real number D such that

AX1 +BX2
d
= CX +D,

where X1, X2 are independent copies of X. The following proposition can be proved, see

Feller [23], Section VI.1 for a proof.

Proposition 5. For any stable distribution X, there is a number α ∈ (0, 2] such that

the constant C in the above definition satisfies

Cα = Aα +Bα.

The number α is called the index of stability, characteristic exponent or stability index.

A stable random variable X with index α is called α- stable. For example, if X follows

N(µ, σ2) then the following is true:

AX1 +BX2 ∼ N((A+B)µ, (A2 +B2)σ2)
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this implies

C2 = A2 +B2, and D = (A+B − C)µ.

Therefore X has a stable distribution with α = 2.

From the classical CLT the Normal distribution is a stable distribution with stability

index α = 2. The totality of the domain of attraction of Stable distribution with index

(α)(:= S(α)) is denoted by DA(α). Also, the totality of all distributions belonging to the

domain of attraction of a Normal distribution is denoted by DAN .

Another equivalent definition is

Definition 3: If X1, X2, . . . , Xn are i.i.d. copies of X then

X1 +X2 + · · ·+Xn
d
= CnX +Dn.

Remark 1. It turns out (see Feller [23], Theorem VI.1.1) that necessarily Cn = n1/α

where α is defined in the previous definition. In Definition (1) if X is the Normal dis-

tribution then all distributions having finite variance belong to the domain of attraction

of the Normal law by the statement of the ordinary central limit Theorem. Yi’s are said

to belong to the domain of attraction of S(α) if dn = n1/αh(n) where h(x), x > 0 is a

slowly varying function (at infinity), i.e., lim
x→∞

h(ux)/h(x) = 1, for all u > 0.

We state a property of slowly varying function. For a proof see, for example Senata [60]

Theorem 1.1.

Proposition 6. Uniform Convergence Theorem: If L(·) is a slowly varying function,

then for every fixed [a, b], 0 < a < b <∞ the relationship

lim
x→∞

L(λx)

L(x)
= 1

holds uniformly with respect to λ ∈ [a, b].

Definition 4: Another definition of stable laws is by characterization through character-

istic functions. In fact, it is the most useful definition since none of the stable distributions

except the Levy (α = 0.5), Cauchy(α = 1) and Normal (α = 2) admits a closed form of

the density. However in this thesis we are not going to use that characterization.
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We list the following properties of the Stable distributions and for distributions belonging

to the domain of attraction of S(α). For a proof see Feller [23];

1. For X ∈ DA(α), α ∈ (0, 2), E|X|p < ∞, ∀ 0 < p < α. If X ∈ DA(2) then the

second moment may also be finite. If X ∈ S(2) all the moments are finite.

2. If X ∈ DA(α), P (|X| > x) = x−αh(x), ∀x > 0, where h(·) is a slowly varying

function on [0,∞).

We state the Karamata’s Theorem for slowly varying functions that will be required later.

For a proof see, for example, [21], Theorem A3.6.

Proposition 7. Karamata’s Theorem: If h(·) is a slowly varying function then

1

h(x)

∫ x

x0

h(t)

t
dt→∞, as x→∞, for some x0 > 0.

We also state a result due to Lemma 3.2 of Giné et al [27]:

Proposition 8. If X ′is are i.i.d and belong to DA(2), E(Xi) = 0 and Sn and Vn are

defined as earlier then

Sn√
nl(n)

→ N(0, 1) in distribution

V 2
n,2

nl(n)
→ 1 in probability.

for some function l(n) which is slowly varying at ∞. In case of finite variance l(n) =

E(X2
i ) <∞,∀n.

The following is a characterization of DAN :

Lemma 1. If Xi are i.i.d and and X1 are symmetric about zero then

E
( X4

1

(
n∑
i=1

X2
i )2

)
= o(

1

n
)⇔ Xi ∈ DAN.
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Proof: The only if part is proved in Theorem 3.3 (see Equation 3.7) of Giné et al. [27].

For the if part, from part (a) of the Theorem

F ∈ DAN, E(X1) = 0⇒ Yn :=

n∑
i=1

Xi

(
n∑
i=1

X2
i )2

d→ N(0, 1).

Since Yn converges in distribution it is stochastically bounded. Hence by Corollary 2.6

(or Remark 2.7) of Gine et al. [27] there is convergence of moments to the moments of

the limiting distribution. Consequently lim
n→∞

E( Sn
Vn,2

)4 = 3. Moreover from Equation (3.8)

of [27]

E(
Sn
Vn,2

)4 = 3− 2nE(
X1

Vn,2
)4 + 8

(
n

2

)
E(
X1X

3
2

V 4
n,2

) + 36

(
n

3

)
E(
X1X2X

2
3

V 4
n,2

)

+ 24

(
n

4

)
E(
X1 . . . X4

V 4
n,2

). (2.2.1)

Following arguments similar Equation (2.4.5) and (2.4.6) we have that E( X1

V 4
n,2
|X2, . . . , Xn)

is zero. Hence the third, fourth and fifth expectation in the RHS of Equation (2.2.1)

are zero. Taking limits as n → ∞ on both sides of Equation (2.2.1) we have that

nE( X1

Vn,2
)4 → 0 which proves that E( X1

Vn,2
)4 = o( 1

n
). �.

We state a result, due to Darling [19], Theorem 5.1, on the limiting distribution of

n∑
i=1

Xi

X∗n

where X∗n = max{X1, X2, . . . , Xn} and Xi ∈ DA(α) with 0 < α < 1.

Proposition 9. Let Xi ≥ 0 and Xi ∈ DA(α) with 0 < α < 1, then

lim
n→∞

P
(
Sn < yX∗n

)
= G(y),

where G(y) has the characteristic function∫
eitydG(y) =

eit

1− α
∫ 1

0
(eitx − 1) dx

xα+1

.
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2.3 Self-Normalized sums and processes and the main

Theorem

A Self-Normalized sums (SNS) with i.i.d. components is defined as

Yn,2 =
Sn
Vn,2

, where Sn =
n∑
j=1

Xj, V 2
n,2 =

n∑
j=1

X2
i ,

where Xi are i.i.d. copies of a random variable X. Recursively,

Yn+1,2 =
Sn

Vn+1,2

+
Xn+1

Vn+1,2

=
( Vn,2
Vn+1,2

)
Yn,2 +

Xn+1

Vn+1,2

.

In fact, it is related to the Students t distribution, and it has been shown in Griffin [31]

that the latter has the same asymptotic distribution as the former. The first results

in SNS were proved by Efron [20], Logan et al. [40] where the latter showed that the

asymptotic distribution of the SNS was Normal if X belongs to the domain of attraction

of a Normal distribution, i.e., X ∈ DAN . Logan et al.. [40] also conjectured the ‘only

if’ part that was proved by Giné et al. in 1997 [27] thus renewing an interest in this topic

which was followed by works of many authors, see [17, 53, 61].

Extending the works of Giné et al. [27], Csörgő et al. [17] (also Račkauskas and Sequet

[53]) asked whether an invariance formula in the lines of classical FCLT can also be asked

for Self-Normalized processes. The answer was in the affirmative which was proved by

both of the authors. In Cs̈orgő et al. [17] a functional convergence form of the above

result was proved :

Proposition 10. As n→∞, the following statements are equivalent:

1. E(X) = 0 and X is in the domain of attraction of a Normal law.

2. S[nt0]/Vn,2
L→ N(0, t0) for t0 ∈ (0, 1].

3. S[nt]/Vn,2
L→ W (t) on (D[0, 1], ρ) where ρ is the sup-norm metric.



Limiting distribution of Self-Normalized Processes 24

4. On an appropriate probability space for X,X1, X2, . . . we can construct a standard

Wiener Process {W (t), 0 ≤ t <∞} such that

sup
0≤t≤1

|S[nt]/Vn,2 −W (nt)/
√
n| = op(1).

However in all the works cited above the normalization of the SNS (SNP) is with index

2. A pertinent question is whether we can expect to get similar results when different

normalization are taken. It is also clear that in that case we should also vary the choice

of the index parameter α of the Stable distribution, so in the general case α ∈ (0, 2].

Contrary to the discontinuous process in Csörgő et al. [17] we consider a continuous

process Yn,p(·) defined as :

Yn,p(t) =
S[nt]

Vn,p
+ (nt− [nt])

X[nt]+1

Vn,p
, 0 < t < 1, p > 0, (2.3.2)

where Sn =
n∑
i=1

Xi, Vn,p =
( n∑
i=1

Xp
i

)1/p

and the Xi ∈ DA(α), 0 < α ≤ 2. Here is the

main Theorem of this chapter:

Theorem 1. Let Xi be i.i.d copies of a random variable X which is symmetric about

zero and X ∈ DA(α). Let Yn,p(t), 0 < t < 1, be defined as in (2.3.2). Then Yn,p(·)
converges weakly to a Brownian motion if and only if p = α = 2.

Proof: The proof is done by the method of elimination. We apply the Prohorov’s

Theorem (see, for example, Billingsley, [14]): A sequence of probability measure {Pn} in

C[0, 1] converges if it is tight and the finite dimensional distributions (f.d.d) converge. In

Lemmas 5 - 7 we show that the finite dimensional distribution of Yn,p(t) converges to the

zero vector if 0 < p < α < 2 and 0 < p = α < 2 for any n ≥ 1. For p > α we obtain in

Lemma 8 the limiting form of the characteristic function of the finite dimensional vector

which turns out to be non-degenerate. In Lemma 2 we show that the process is tight

if and only if 0 < p ≤ α ≤ 2. The only case where we both have finite dimensional

convergence and tightness is when p = α = 2. The limiting distribution for the SNS in

this case was identified by Giné et al. as normal. The convergence in sup norm metric

for this choice of p and α follows directly from Proposition 10. �



Limiting distribution of Self-Normalized Processes 25

2.4 Proof of Theorem 1

2.4.1 A preliminary lemma

We first state a characterization result of the DA(2) distributions, see Feller [23] for a

proof :

Proposition 11. Let Xi be i.i.d. random variables with distribution function F . In

order that there exist constant {an}n≥1 and {bn}n≥1 such that

n∑
i=1

Yi − bn

an

L→ N(0, 1),

or, in other words, for X ∈ DA(2), a necessary and sufficient condition is :

lim
x→∞

x2P (|X1| > x)

E(X2
1I(|Xi| ≤ x))

= 0.

Using the above proposition we prove the following lemma :

Lemma 2. If X ∈ DA(α) then Y := sgn(X)|X|α/2 ∈ DAN, where sgn(x) is the sign

function defined by:

sgn(x) =


−1, if x < 0

0, if x = 0

1, if x > 0.

Proof: From Proposition 11 it is necessary and sufficient to prove that:

lim
y→∞

y2P (|Y | > y)

E(Y 2I(|Y | < y))
= 0.,
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Now,

y2P (|Y | > y) = y2P (|X|
α
2 > y)

= y2P (|X| > y
2
α )

= y2h(y
2
α )(y

2
α )−α = h(y

2
α )

by Property (2) of Stable distributions.

And,

E(Y 2I(|Y | < y)) = E(|X|αI(|X|
α
2 ≤ y))

= E(|X|αI(|X| ≤ y
2
α ))

=

∫ y
2
α

0

zαdF|X|(z)

=

∫ y
2
α

0

(

∫ z

0

αtα−1dt)dF|X|(z).

Applying Fubini’s Theorem and interchanging the order of integration we get

E(Y 2I(|Y | < y)) =

∫ y
2
α

0

α

∫ y
2
α

t

dF|X|(z)tα−1dt

= α

∫ y
2
α

0

P (t < |X| ≤ y
2
α )tα−1dt

= α

∫ y
2
α

0

P (|X| > t)tα−1dt− α
∫ y

2
α

0

P (|X| > y
2
α )tα−1dt

= α

∫ y
2
α

0

h(t)

t
dt− h(y

2
α ).

Hence,

lim
y→∞

y2P (|Y | > y)

E(Y 2I(|Y | < y))
= 1/

(
α lim
y→∞

1

h(y
2
α )

∫ y
2
α

0

h(t)

t
dt− 1

)
= 0.

by Karamata’s Theorem, see Proposition 7. �
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2.4.2 Finite Dimensional Convergence

Fix k ≥ 1. Select 0 < t1 < t2 < . . . < tk ≤ 1. We look at the finite dimensional

distribution of the random vector Yn,k =
(
Yn,p(t1), Yn,p(t2), . . . , Yn,p(tk)) as n→∞. We

do this for p < α, p = α and p > α.

2.4.2.1 Case 1: p < α

Lemma 3. If p < α, Sn
Vn,p

P→ 0

Proof: Since Xi ∈ DA(α), E|Xi|p < ∞, ∀ 0 < p < α. Now, Vn,p

n
1
p

=
( n∑
i=1
|Xi|p

n

) 1
p SLLN→(

E(|X|p)
) 1
p

= C <∞. Again since Xi ∈ DA(α), Sn/(n
1/αh(n)) converges in distribution

to an S(α) distribution, where h(·) is a slowly varying function at ∞. Therefore

Sn
Vn,p

=
Sn/n

1
p

Vn/n
1
p

= n
1
α
− 1
ph(n)

Sn/(n
1
αh(n))

Vn,p/n
1
p

Now since p < α, 1
α
− 1

p
< 0. h(·) is a slowly varying function (whose growth rate is

less than polynomial). Therefore h(n)

n
1
p−

1
α
→ 0. The ratio Sn/(n

1
α h(n))

Vn,p/n
1
p

converges to S(α) in

distribution by the Slutsky’s Theorem and therefore Sn/Vn,p converges to 0 in probability.

�

2.4.2.2 Case 2: p = α.

We have the following inequality involving Vn,α:

Lemma 4.

Vn,α ≥ Vn,1 ≥ Vn,β ≥ Vn,2, if α ≤ 1 ≤ β ≤ 2.
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Proof. For α ≤ 1, we have

( |xi|∑
|xi|

)α
≥ |xi|

n∑
i=1

|xi|
∀ i = 1, 2, . . . , n,

⇒ |xi|α ≥
|xi|
n∑
i=1

|xi|
(
n∑
i=1

|xi|)α

⇒
n∑
i=1

|xi|α ≥ (
n∑
i=1

|xi|)α.

The reverse is true for 2 ≥ β ≥ 1, i.e.,

(
n∑
i=1

|xi|)β ≥
n∑
i=1

|xi|β.

Combining the two we have

(
n∑
i=1

|xi|α)
β
α ≥ (

n∑
i=1

|xi|)β ≥
n∑
i=1

|xi|β

⇒ (
n∑
i=1

|xi|α)
1
α ≥ (

∑
|xi|β)

1
β .

First take α ≤ 1 and β = 1 and then α = 1 and β ≥ 1 to get,

(
n∑
i=1

|xi|α)
1
α ≥

∑
|xi| ≥ (

n∑
i=1

|xi|β)
1
β

⇒ Vn,α ≥ Vn,1 ≥ Vn,β (2.4.3)

Again consider the inequality

(
n∑
i=1

|yi|)p ≥
n∑
i=1

|yi|p for p > 1.
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Applying the above with yi = |xi|β and p = 2/β ∈ [1, 2] we get:

(
n∑
i=1

|xi|β)
2
β ≥

n∑
i=1

|xi|β(2/β) =
∑
|xi|2 ⇒ (

n∑
i=1

|xi|β)
1
β ≥ (

n∑
i=1

|xi|2)
1
2

⇒ Vn,β ≥ Vn,2. (2.4.4)

Combining (2.4.3) and (2.4.4) we have the lemma. �

Lemma 5. If 0 < p = α ≤ 1 and Xi are symmetric about 0, then lim
n→∞

E( Sn
Vn,p

)2 = 0.

Proof Note that,

E
( n∑
i=1

Xi

Vn,α

)2

=
n∑
i=1

E
( X2

i

V 2
n,α

)
+
∑

(i,j):i 6=j

E
(XiXj

V 2
n,α

)
=

n∑
i=1

E
( X2

i

V 2
n,α

)
+

n∑
i=1

E
(∑
j 6=i

Xi

Vn,α
E
( Xj

Vn,α
| Xi, i 6= j

))
(2.4.5)

For the second term note that since Xi are symmetric about 0, which implies that :

Xj

Vn,α

d
= − Xj

Vn,α
. (2.4.6)

Also from Lemma 4 we have

Vn,1
Vn,α

≤ 1 ⇒
n∑
i=1

|Xj|
Vn,α

≤ 1

|Xj|
Vn,α

≤ 1.

Therefore E(
Xj
Vn,α

) exists and is 0. Therefore from (2.4.5)

E
( n∑
i=1

Xi

Vn,α

)2

=
n∑
i=1

E
( X2

i

V 2
n,α

)
:= E(Zn) say. (2.4.7)
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Now,

Zn =
n∑
i=1

X2
i

V 2
n,α

≤
n∑
i=1

X2
i

V 2
n,2

= 1 by Lemma 4 (2.4.8)

Define Yi = sgn(Xi)|Xi|
α
2 . By Lemma 2, Yi ∈ DAN . Now

E(Zα
n ) = E

( n∑
i=1

X2
i

V 2
n,α

)α
≤ E

( n∑
i=1

|Xi|2α

(
n∑
i=1

|Xi|α)2

)
since α ≤ 1

= E
( n∑

i=1

Y 4
i

(
n∑
i=1

Y 2
i )2

)
= nE

( Y 4
1

(
n∑
i=1

Y 2
i )2

)
= o(1) by Lemma 1 (2.4.9)

Therefore Zn
Lα→ 0 and hence Zn

P→ 0. Applying the probabilistic version of DCT (see, for

example, Problem 2.37 in Athreya and Lahiri [2]) together with the bound as in (2.4.8)

we have E(Zn)→ 0 and hence the lemma is proved. �

We now proceed to prove the result for 1 < p = α < 2.

Lemma 6. If 1 < p = α < 2, then
∑
X2
i

V 2
n,α

P→ 0.

Proof. Define as above Yi = sgn(Xi)|Xi|
α
2 . From Lemma 2, Yi ∈ DAN . Therefore by

[50]

max
1≤i≤n

|Yi|

(
n∑
i=1

Y 2
i )

1
2

P→ 0 ⇔
max
1≤i≤n

|Xi|
α
2

(
n∑
i=1

|Xi|α)
1
2

P→ 0

⇔
( max

1≤i≤n
|Xi|

α
2

(
n∑
i=1

|Xi|α)
1
2

) 4
α P→ 0 ⇔

max
1≤i≤n

X2
i

V 2
n,α

P→ 0⇔ X̃∗n
V 2
n,α

P→ 0

(2.4.10)

where X̃∗n = max
1≤i≤n

X2
i . Using a result of Feller [23] we have that X2

i ∈ DA(α
2
) where
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α
2
∈ (1

2
, 1) Also from Proposition 9 we have that the ratio X̃n

∗
/

n∑
i=1

X2
i has a limit-

ing distribution and hence it is tight. So given ε, η > 0 obtain Kη > 0 such that

P (
n∑
i=1

X2
i /X̃

∗
n > Kη) < η, ∀n sufficiently large. Define δ = ε/Kη.Then,

P (

n∑
i=1

X2
i

V 2
n,α

> ε) ≤ P (

n∑
i=1

X2
i

V 2
n,α

> ε,
X̃∗n
V 2
n,α

> δ) + P (

n∑
i=1

X2
i

V 2
n,α

> ε,
X̃∗n
V 2
n,α

≤ δ)

≤ P (
X̃∗n
V 2
n,α

> δ) + P (

n∑
i=1

X2
i

X̃∗n

X̃∗n
V 2
n,α

> ε,
X̃∗n
V 2
n,α

≤ δ)

≤ P (
X̃∗n
V 2
n,α

> δ) + P (

n∑
i=1

X2
i

X̃∗n
>
ε

δ
)

= P
( X̃∗n
V 2
n,α

> δ
)

+ P
( n∑
i=1

X2
i

X̃∗n
> Kη

)
. (2.4.11)

By the choice of Kη the second term of (2.4.11) is less than η and from (2.4.10) the first

term can be made smaller than η by choosing n sufficiently large. We therefore have

P (
n∑
i=1

X2
i /V

2
n,p > ε) < 2η for n sufficiently large

and hence the lemma is proved. �

For 1 < p = α < 2 we have a slightly stronger statement assuming symmetry of Xi about

0:

Lemma 7. Let 1 < p = α < 2, and X ′is are symmetric about 0 and Xi ∈ DA(α). Then

limn→∞E( Sn
Vn,α

)2 = 0.
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Proof: From (2.4.7) we have that E(Sn/Vn,α)2 = E(
n∑
i=1

X2
i /V

2
n,α). By Lemma 4 we have

that

Vn,α ≥ Vn,2 for 0 < α ≤ 2,

⇒

n∑
i=1

X2
i( n∑

i=1

|Xi|α
) 2
α

≤

n∑
i=1

X2
i

n∑
i=1

X2
i

= 1.

And hence by applying the Lemma 6 and by BCT we have that

lim
n→∞

E
(
Sn/Vn,α

)2

= 0.

This proves the lemma. �

Remark 2. For Xi ∈ DA(α) symmetric about 0, we showed in Lemma 5, 6 and 7 that

V ar(Sn/Vn,p) → 0 for 0 < p = α < 2. Hence it is immediate that V ar(S[nt]/Vn,p) → 0.

Indeed for any fixed 0 ≤ t ≤ 1,

V ar
(S[nt]

Vn,p

)
= E

( [nt]∑
i=1

X2
i

V 2
n,p

)
≤ E

( n∑
i=1

X2
i

V 2
n,p

)
= V ar

( Sn
Vn,p

)
→ 0.

for 0 < p = α < 2. The result for k dimension can be obtained from the above result.

Note that the joint distribution of (
S[nt1]

Vn,p
,
S[nt2]

Vn,p
, . . . ,

S[ntk]

Vn,p
) can be obtained from the joint

distribution of

(
S[nt1]

Vn,p
,
S[nt2]

−S[nt1]

Vn,p
,
S[nt3]

−S[nt2]

Vn,p
, . . . ,

S[ntk]
−S[ntk−1]

Vn,p
) by a linear transformation. It is there-

fore sufficient to show that the joint distribution of the latter converges to zero. Write

S1 =
S[nt1]

Vn,p
, S2 =

S[nt2]
−S[nt1]

Vn,p
and Sk =

S[ntk]
−S[ntk−1]

Vn,p
. Now consider the variance of

any linear combination of them V ar(a1S1 + a2S2 + · · · + akSk) where a′is are any ar-

bitrary constants. Due to independence the cross product term vanishes and by Lem-

mas 5 - 7 the limiting variances are zero which implies that any linear combination

tends to zero in probability. Therefore φS1,S2,...,Sk(a1, a2, . . . , ak) → 1, where φS1,S2,...,Sk

is the joint characteristic function. Applying continuity Theorem we therefore have that

the limiting joint distribution of (S1, S2, . . . , Sk) and hence the limiting distribution of

(S[nt1]/Vn,p, S[nt2]/Vn,p, . . . , S[ntk]/Vn,p) is degenerate at 0.
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Remark 3. For 0 < p = α < 1 Lemma 5 also holds without the symmetric assumption.

Indeed, since Yi ∼ DA(2), where Yi = sgn(Xi)|Xi|
α
2 , we have by [50]

max
1≤i≤n

|Yi|

(
n∑
i=1

Y 2
i )

1
2

P→ 0 ⇔ X∗n
Vn,α

P→ 0, (2.4.12)

where X∗n = max
1≤i≤n

|Xi|. For α ∈ (0, 1) we have by Proposition 9 that the ratio

n∑
i=1
|Xi|

X∗n
has

a limiting distribution and is therefore tight. Therefore following the same sequence of

arguments as in the proof Lemma 5 we have

n∑
i=1

|Xi|

Vn,α

P→ 0⇒ Sn
Vn,α

P→ 0.

Now

|Sn| ≤ Vn,1 ≤ Vn,α,

which implies by BCT that

E
( Sn
Vn,α

)
→0 as n→∞ for 0 < p = α < 1.

However for 1 ≤ p = α < 2 some form of mean correction is needed since in the case of

positive random variables Sn = Vn,1 ≥ Vn,α ⇒ Sn
Vn,α
≥ 1, thus cannot converge to zero

in probability. Therefore assumption of symmetric about zero has been used which is

sufficient but possibly not necessary.

2.4.2.3 Case 3: p > α

The aim of this subsection is to find the limiting joint characteristic function of the

process Yn,p(t) at time points 0 < t1 < t2 < . . . tk < 1, ∀k ∈ N . Fix k ≥ 1. Defin-

ing mi = [nti] ∀i = 1, 2, . . . , k we first find the limiting joint characteristic function of

S1 :=
(
Sm1/n

1
α , (Sm2 − Sm1)/n

1
α , . . . , (Smk − Smk−1

)/n
1
α , V p

n,p/n
p
α

)
. From this applying a

transformation one can obtain the limiting joint distribution of
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S :=
(
Sm1/n

1
α

Vn,p/n
1
α
,
Sm2/n

1
α

Vn,p/n
1
α
, . . . ,

Smk/n
1
α

Vn,p/n
1
α

)
. Also since,

E(|Yn,p(t1)− S[nt1]/Vn,p|2) = E((nt1 − [nt1])2|X[nt1]|2/V 2
n,p)

≤ E(X2
[nt1]+1/V

2
n,p)

≤ E(X2
[nt1]+1/V

2
n,2) ∀p ≤ 2

=
1

n
, since [nt1] < n,

the difference between the two vectors
(
Yn,p(t1), Yn,p(t2), . . . , Yn,p(tk)

)
and S are asymp-

totically negligible. To prove that the finite dimensional distribution of the process Yn,p(·)
exists it therefore suffices to show the existence of the limiting characteristic function of

S1, say φS1(u1, u2, . . . , uk, s).

To find the required characteristic function we proceed along the same lines as in Logan

et al. [40]. Note that for appropriately chosen constants an, anSn and apnV
p
n,p has the same

limiting distribution as that in the case when Xi belongs to the stable distribution with

index α (also see Peña et al. [52], pg 208). So we may and do assume that Xi’s belong

to stable distributions (having density g(·)) which satisfies xα+1g(x)→ r as x→∞ and

|x|α+1g(x)→ l as x→ −∞ with r+ l > 0 which is the property of the tail of the density

of an S(α) distribution.

Lemma 8. S1 converges in distribution to a random vector whose characteristic function

is given by

exp
( k∑
i=1

∫
[exp{iuiy(ti)

1
α + is|y|p(ti)

p
α )} − 1]

K(y)

yα+1
dy
)

× lim
mk,n→∞

E
(
eil|X|

p/n
p
α

)n−mk
(2.4.13)

where K(y) =

{
r if y > 0

l if y < 0
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Proof The required characteristic function is

φS1(u1, u2, . . . , uk, s) = E
(

exp{i u1

n
1
α

Sm1 + i
u2

n
1
α

(Sm2 − Sm1) + . . .

+ i
uk

n
1
α

(Smk − Smk−1
) + i

s

n
p
α

V p
n,p}
)

= E
(

exp{i u1

n
1
α

Sm1 + i
u2

n
1
α

(Sm2 − Sm1) + . . .

+ i
uk

n
1
α

(Smk − Smk−1
) + i

s

n
p
α

(V p
n,p − V p

mk,p

+ V p
mk,p
− V p

mk−1,p
+ . . .+ V p

m2,p
− V p

m1,p
+ V p

m1,p
)}
)

= E
(
exp{i[ u1

n
1
α

Sm1 +
s

n
p
α

V p
m1,p

]

+ i[
u2

n
1
α

(Sm2 − Sm1) +
s

n
p
α

(V p
m2,p
− V p

m1,p
)]

+ . . .+
is

n
p
α

(V p
n,p − V p

mk,p
)}
)

Due to independence and identical distribution of X ′s we have

E[exp{i u1

n
1
α

Sm1 + i
s

n
p
α

V p
m1,p
}] = Em1 [exp{iu1

X

n
1
α

+ is(
|X|
n

1
α

)p}]

and

E[exp{i uj
n

1
α

(Smj − Smj−1
) + i

s

n
p
α

(V p
mj ,p
− V p

mj−1,p
)}]

= Emj−mj−1 [exp{iuj
X

n
1
α

+ is(
|X|
n

1
α

)p}], for j = 1, 2, . . . , k.

Now,

Em1 [exp{iu X

m
1
α
1

(
m1

n
)

1
α + iw(

|X|

m
1
α
1

)p(
m1

n
)
p
α}]

= [

∫
exp{iu x

m
1
α
1

(
m1

n
)

1
α + iw(

|x|

m
1
α
1

)p(
m1

n
)
p
α}g(x)dx]m1 , where g(·) is the density of X,

= [1 +

∫
(exp{iu x

m
1
α
1

(
m1

n
)

1
α + iw(

|x|

m
1
α
1

)p(
m1

n
)
p
α} − 1)g(x)dx]m1

= [1 +
1

m1

∫
(exp{iuy(

m1

n
)

1
α + iw|y|p(m1

n
)
p
α} − 1)g(m

1
α
1 y)× (m

1
α
1 y)

α+1 dy

yα+1
]m1

(writing x/m
1
α
1 = y).
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Since (exp{iuy(m1

n
)

1
α + iw|y|p(m1

n
)
p
α}− 1) is bounded by 2 and m

1
α

+1

1 g(m
1
α
1 y) is integrable

we apply bounded convergence theorem to get

lim
m1,n↑∞

cm1,n(u,w) =

∫
[exp{iuy(t1)

1
α + iw|y|p(t1)

p
α )} − 1]

K(y)

yα+1
dy,

where K(y) = limm1→∞(m
1
α
1 y)α+1g(m

1
αy) is given by

K(y) =

{
r if y > 0

l if y < 0

by the assumption on the tail of X and

cm1,n(u,w) =

∫
(exp{iuy(

m1

n
)

1
α + iw|y|p(m1

n
)
p
α} − 1)g(m

1
αy)m

1
α

+1dy.

Therefore

lim
m1,n→∞,m1/n→t1

Em1 [exp{iu X

m
1
α
1

(
m1

n
)

1
α + iw(

|X|

m
1
α
1

)p(
m1

n
)
p
α}]

= lim
m1,n→∞,m1/n→t1

[1 +
cm1,n

m1

(u,w)]m1

= exp{ lim
m1,n→∞,m1/n→t1

cm1,n(u,w)}.

The same thing can be done for Emj−mj−1 [exp{iuj X
n

1
α

+is |X|
p

n
p
α
}] . Let us call it cmj−1,mj ,n(uj, s)

for j = 1, 2, . . . , k.

Therefore

lim
m1,m2,...,mk,n→∞

φS1(u1, u2, . . . , uk, s)

= exp
( k∑
i=1

∫
[exp{iuiy(ti)

1
α + is|y|p(ti)

p
α )} − 1]

K(y)

yα+1
dy
)

× lim
mk,n→∞

En−mk
(
eil|X|

p/n
p
α

)
. �
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Remark 4. The second limit is the limit of the characteristic function of
1

n
p
α

n−mk∑
i=1

|Xi|p where Xi’s are identical and independently distributed as a stable distribu-

tion with index α . Using the fact that n−mk
n
→ 1− tk and |X|p is stable with index α

p
, by

Slutsky’s Lemma we have that 1

n
p
α

n−mk∑
i=1

|Xi|p =
(
n−mk
n

) p
α 1

(n−mk)
p
α

n−mk∑
i=1

|Xi|p
L→ (1− tk)Y ,

where Y ∈ S( p
α

). Hence by Levy’s continuity Theorem the last limit exists and we have

shown that the limiting characteristic function in the left side of Equation (2.4.13) exists

for p > α. (We have not identified the limiting distribution. For identification one can

see the procedure followed in Logan et al. [40]).

Remark 5. For p = α = 2 the convergence of finite dimensional distribution of Yn,p(t)

can be obtained from Proposition 10 since the Self-Normalized sums is converging in

probability to the Wiener process properly scaled in the sup norm metric.

2.4.3 Tightness

We first state and prove a lemma that will be used in Lemma 2.

Lemma 9. Sk/Vn,p is a martingale with respect to the filtration

Fk,n = σ{ X1

Vn,p
,
X2

Vn,p
, . . . ,

Xk

Vn,p
}, k = 1, 2, . . . , n

for every fixed n ∈ N.

Proof: Let us introduce the Rademacher variables ε1, ε2, . . . , εn i.i.d where P (εi = 1) =

P (εi = −1) = 1
2
, independent of X ′is. Since Xi is symmetric about zero the distribution

of Xi is same as X∗i := Xiεi and the distribution of Sn is same as the distribution of



Limiting distribution of Self-Normalized Processes 38

S∗n :=
n∑
i=1

Xiεi. Then

E(
Sk+1

Vn,p
|Fk,n) = E(

S∗k+1

Vn,p
|Fk,n)

= E
(
E(
S∗k +X∗k+1

Vn,p
|εi, i = 1, . . . , k)|Fk,n

)
= E

( S∗k
Vn,p

+ E(
X∗k+1

Vn,p
|εi, i = 1 . . . , k)|Fk,n

)
= E

( Sk
Vn,p
|Fk,n

)
=

Sk
Vn,p

,

since

E(
X∗k+1

Vn,p
|εi, i = 1, 2, . . . , k) = E(E(

X∗k+1

Vn,p
|Xk+1, Vn,p)|εi, i = 1, . . . , k) = 0.

�

For tightness of the process Yn,p(·) we have the following Theorem.

Theorem 2. The process {Yn,p(·)} is tight iff p ≤ α ≤ 2.

Proof : We first prove the if part and then the only if part.

If part: The process Yn,p(·) is tight if p ≤ α ≤ 2.

Proof: From Theorem 7.4 of Billingsley, [14] the process Yn,p(·) is tight if:

P (ωX(δ) ≥ 3ε) ≤
v∑
i=1

P ( sup
ti−1≤s<ti

|X(s)−X(ti−1)| ≥ ε)

for any partition 0 = t0 < t1 < t2 < . . . < tv = 1 such that min1<i<v(ti − ti−1) ≥ δ, and

ωX(δ) is the modulus of continuity defined by

ωx(δ) = sup
|s−t|≤δ

|xs − xt|.

Take partition ti = mi/n where 0 = m0 < m1 < . . . < mv = n. By the definition of the

process in (1.2.1) we have that supti−1<s<ti
|Yn,p(s)−Yn,p(ti−1)| = maxmi−1≤k<mi

|Sk−Smi−1|

Vn,p
.
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Therefore,

P (ωYn,p(δ) ≥ 3ε) ≤
v∑
i=1

P [ max
mi−1≤k<mi

|Sk − Smi−1
| ≥ εVn,p].

By the i.i.d. property of the sequence {Xn} the RHS of the above inequality is the same

as:

v∑
i=1

P [ max
k<mi−mi−1

|Sk| > εVn,p].

Choose mi = mi where m is an integer satisfying m = dnδe and v = dn/me. With this

choice v → 1/δ < 2/δ. Therefore for sufficiently large n,

P (ωYn,p , δ ≥ 3ε) ≤ vP (max
k≤m
|Sk|/Vn,p > ε)

≤ 2/δ P (max
k≤m
|Sk|/Vn,p > ε).

For fixed n ≥ 1, define a finite filtration by Fk,n = σ{ X1

Vn,p
, X2

Vn,p
, . . . , Xk

Vn,p
}, k = 1, 2, . . . , n.

Since X ′is are symmetric about zero we have that Sk/Vn,p is a martingale w.r.t the filtra-

tion Fk,n for k = 1, 2 . . . , n (see Lemma 9). Also since α < 2 the ratio

Vm,p
Vn,p

=
( m∑
i=1

|Xi|p

n∑
i=1

|Xi|p

) 1
p

=
(m
n

)
1
p (
h(m)

h(n)
)
1
p (

1
mh(m)

m∑
i=1

|Xi|p

1
nh(n)

n∑
i=1

|Xi|p

) 1
p

=
(m
n

) 1
p
(h(m)

h(n)

) 1
p
( 1
mh(m)

m∑
i=1

Y 2
i

1
nh(n)

n∑
i=1

Y 2
i

) 1
p

where Yi = |Xi|
p
2

. (2.4.14)
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Now Yi ∈ DAN from Lemma 2. From Proposition 8 we have that if Yi ∈ DAN then
n∑
i=1

Y 2
i

nh(n)

P→ 1. Now

h(m)

h(n)
=

h(dnδe)
h(n)

=
h(nδ − xn)

h(n)
, for some 0 < xn < 1,

=
h(n(δ − xn

n
))

h(n)
. (2.4.15)

For fixed δ, δ − xn
n

lies in some compact interval and from Proposition 6 we have that

the convergence of L(λx)
L(x)

to one is uniform (with respect to λ) for λ lying in any compact

interval. Hence
(
h(m)
h(n)

) 1
p

converges to 1 as n → ∞. Since dnδe
n
→ δ as n → ∞, applying

Slutsky’s lemma we have that

Vm,p/Vn,p
P→ δ

1
p .

Now,

1

δ
P (max

k≤m
|Sk|/Vn,p > ε) =

1

δ
P (max

k≤m

|Sk|
Vm,p

Vm,p
Vn,p

> ε),
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therefore writing Zm = maxk≤m
|Sk|
Vm,p

and Ym = Vm,p
Vn,p

we have

1

δ
P (max

k<m
|Sk|/Vn,p > ε)

=
1

δ
P (ZmYm > ε)

=
1

δ
{P (ZmYm > ε, Ym ≤ 2δ

1
p ) + P (ZmYm > ε, Ym > 2δ

1
p )}

≤ 1

δ
{P (ZmYm > ε, Ym ≤ 2δ

1
p ) + P (Ym > 2δ

1
p )}

≤ 1

δ
{P (Zm > ε/2δ

1
p ) + P (Ym > 2δ

1
p )}

≤ 1

δ
{P (Zm > ε/2δ

1
p ) + η} (choosing sufficiently large m

such that P (Ym − δ
1
p > δ

1
p ) < η)

≤ 1

δ
{(4δ

2
p/ε2)E(Sm/Vm,p)

2 + η}, by Doob’s inequality,

for non-negative submartingales

= (4δγ/ε2)E(Sm/Vm,p)
2 + η/δ, (2.4.16)

where γ = 2
p
−1. Now, for p ≤ α < 2, or for , p < α = 2, E(Sm/Vm,p)

2 tends to zero (see

Section 2.4.2.1, 2.4.2.2). Taking m→∞, (since m = dnδe) the right hand side in (2.4.16)

can be made arbitrarily small. This proves the lemma for p ≤ α < 2 and p < α = 2.

For the case p = α = 2, the lemma holds by Giné et al. [27] since it has been shown that

the Self-Normalized sums converges to the Normal distribution for p = α = 2. �.

Before proving the only if part we prove the following lemma.

Lemma 10. {Yn,p(·)} is tight ⇒ max1≤i≤n
|Xi|
Vn,p

P→ 0.

Proof. From Theorem 7.3 of Billingsley [14], the process Yn,p(·) is tight is equivalent to

∀ε > 0, ∀η > 0, ∃n0 and 0 < δ < 1 such that

P
(

sup
|t−s|<δ

|Yn,p(s)− Yn,p(t)| ≥ ε
)
≤ η, ∀n ≥ n0. (2.4.17)
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Assume that the hypothesis is true, which means that for every ε, η > 0, ∃0 < δ < 1 such

that (2.4.17) holds. Choose n0 sufficiently large so that 1
n
< δ ∀n > n0. Then we have

P ( sup
|t−s|< 1

n

|Yn,p(t)− Yn,p(s)| > ε) < P ( sup
|t−s|<δ

|Yn,p(t)− Yn,p(s)| > ε) ≤ η

(2.4.18)

Now by definition of the process Yn,p(·),

sup
|t−s|< 1

n

|Yn,p(t)− Yn,p(s)| ≥ max
1≤i≤n

|Xi|
Vn,p

⇒ P ( max
1≤i≤n

|Xi|
Vn,p

> ε) < P ( sup
|t−s|<δ

|Yn,p(t)− Yn,p(s)| > ε)

⇒ P ( max
1≤i≤n

|Xi|
Vn,p

> ε) < η, ∀n > n0,

by Equation (2.4.18). �

Remark 6. The converse is not necessarily true. To see this assume that max1≤i≤n
|Xi|
Vn,p

P→
0. Assume that there exists a δ1 such that (2.4.17) holds. Given such a δ1 > 0, for

any integer m we can get an n such that m
n
< δ1. Then for such a m,n we have

|Yn,p(t) − Yn,p(s)| ≤ (max1≤i≤n
m∑
j=1

|Xi+j|)/(Vn,p). But the hypothesis does not guaran-

tee that the right hand side converges to zero in probability.

We use the above lemma to prove the necessary part in the following lemma.

Only if part For 2 ≥ p > α the process is not tight.

Proof:

For 2 ≥ p > α observe that

max
1≤i≤n

|Xi|
Vn,p

P→ 0⇔
(

max
1≤i≤n

|Xi|
Vn,p

)p P→ 0⇔ max
1≤i≤n

|Xi|p∑
|Xi|p

P→ 0.

But |Xi|p ∈ DA(γ), where γ = α
p
< 1, for which Darling [19], Theorem 5.1, says that

if Yi ∈ DA(γ) where γ < 1 then max1≤1≤n
|Yi|∑
|Yi| converges in distribution to a non-

degenerate random variable G whose characteristic function is identified in the same
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paper. Thus, max1≤i≤n
|Xi|p∑
|Xi|p does not go to zero in probability. Hence, max1≤i≤n

Xi
Vn,p

cannot converge to zero in probability and therefore from Lemma 10 the process cannot

be tight.

For p > 2 = sup{ p1 : E|X1|p1 <∞} then |Xi|p ∈ DA(2
p
) and the proof is exactly similar.

Combining the if and the only if part we have the proof of Lemma 2. �

Remark 7. Consider the case when p > p1 > α = 2 where p1 is such that E(|X|p1) <∞.
In that case

|Yn| =
|Sn|
Vn,p
≥ |Sn|
Vn,p1

=
(
n

1
2
− 1
p1

) 1√
n
|

n∑
i=1

Xi|/
( 1

n

n∑
i=1

|Xi|p1
) 1
p1

→ ∞,

which proves that the f.d.d’s of Yn does not exists.

2.5 The stochastic process of Basak and Dasgupta

[4]

As an example let us consider another way of normalizing the SNS which is due to Basak

and Dasgupta [4]. Let Sj be defined as earlier, with Xi ∼ DAN . Let V 2
j,2 =

j∑
i=1

X2
i and

Yj = Sj/Vj,2. Then define the stochastic process Y n(·) as

Y n(0) = Yn

Y n(
l∑

j=n+1

b2
j) = Yl, l ≥ n+ 1, (2.5.19)

where b2
j+1 = 1

j+1
(= E(

X2
j+1

V 2
j+1

) ) since E
(

X2
i

V 2
j+1,2

)
is same for all i = 1, 2, . . . , j + 1 and

j+1∑
i=1

X2
i

V 2
j+1,2

= 1. At intermediate points the process is obtained by joining the nearest

points linearly. Since max{k :
k∑
j=n

1
j+1
≤ t} ∼ [net], for large n, the limiting distribution
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of Y n(t) is same as the limiting distribution of

Y[net] =
S[net]

V[net]

.

With this normalization the authors had the following result :

Proposition 12. Let {Xi}i≥1 be an i.i.d sample from the domain of attraction of a

Normal distribution. Let Y n(·) be defined as earlier. Then Y n(·) converges weakly in

C[0, 1] to the stationary Ornstein Uhlenbeck process with covariance function e−
1
2
|t−s|.

Remark 8. In Equation (2.5.19) the random variable Y1, Y2, . . . , Yn used in defining the

value of the first n stochastic processes {Y 1(t), Y 2(t), . . . , Y n(t)} at t = 0 is no longer used

in defining the subsequent stochastic processes with index n + 1 and upwards. Also the

way the stochastic processes Yn(·) are defined they are stationary. Indeed, the distribution

of Y n(t) is approximately same as S[net]/V[net] for large t. From Proposition 8 the joint

distribution of (S[net1 ]

V[net1 ]

,
S[net2 ] − S[net2 ]√
V 2

[net2 ]
− V 2

[net1 ]

, . . . ,
S[netk ] − S[netk−1 ]√
V 2

[netk ]
− V 2

[netk−1 ]

)

converges to the k-fold product of independent N(0, 1). Also note that

(V[net1 ]

V[neti ]

,

√
V 2

[net2 ]
− V 2

[net1 ]

V[neti ]

, . . . ,

√
V 2

[neti ]
− V 2

[neti−1 ]

V[neti ]

)
jointly converges in probability to

(e t12
e
t1
2

,

√
et2 − et1

e
ti
2

, . . .

√
eti − eti−1

e
ti
2

)
.

Hence writing,

S[neti ]

V[neti ]

=
V[net1 ]

V[enti ]

S[net1 ]

V[net1 ]

+
i∑
l=2

√
V 2

[netl ]
− V 2

[netl−1 ]

V[neti ]

S[netl ] − S[netl−1]√
V 2

[netl ]
− V 2

[netl−1 ]



Limiting distribution of Self-Normalized Processes 45

and using Slutsky’s Theorem, the limiting distribution of

(S[net1 ]

V[net1 ]

, . . . ,
S[netk ]

V[netk ]

)

is seen to be multivariate Normal with the covariance between
S
[neti ]

V
[neti ]

and
S
[ne

tj ]

V
[ne

tj ]

with i < j

being:

et1

eti/2etj/2
+

i∑
m=2

etm − etm−1

eti/2etj/2
= e−

1
2

(tj−ti).

In the above the random variables came from DAN . A natural question is whether a

converse to their ([6]) result exist. To do so, we define a new stochastic process Ỹ n(·)
where the random variables Xi come from DA(α) and the process is defined as:

Ỹ n
α,p(t) =

S[net]

V[net],p

,

where V p
[net],p =

[net]∑
i=1

|Xi|p and Xi ∼ DA(α) are symmetric about 0 and α ∈ (0, 2] and

p > 0. Now since both S[net] and V[net] has the same number of terms in the summation

one can argue as in Section 2.4.2 that the process will not have a non-trivial limiting

distribution unless p > α. Arguing along the same lines as in Section 2.4.3 that the

process is not tight unless p ≤ α. Combining these two we get that the only case when

the process has a non-trivial limiting distribution is when p = α = 2. The limiting

distribution of the process is an Ornstein Uhlenbeck process as stated in Proposition 12.

2.6 Summary

In this chapter we looked at the functional form of the classical Self-Normalized sums

Sn/Vn,p. This quantity arises naturally when defining the t statistics. It is known from

the works of Efron [20], Giné et al. [27], Csörgő et al. [17] that the natural class of

distributions for which we can expect a non-trivial limiting distribution for the SNS

should be the domain of attraction of the stable distribution. The above papers typically

dealt with L2 normalization where the random variables also belonged to the domain of

attraction of the S(2) distribution.
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In this chapter we have extended the above works by exploring into what happens if

the random variables are not restricted to the DA(2) family. Also we looked into the

possibility if we extend the scaling coefficient from 2 to p where p is any positive real.

Our results proved that we cannot expect any non-trivial limiting results for the SNP if

p and α are both not equal to 2.



Chapter 3

Diffusion approximation of Adaptive

MCMC

3.1 Introduction to AMCMC

The second example of recursive system that we consider is the Adaptive Markov Chain

Monte Carlo (AMCMC) algorithms. An AMCMC is a discrete time stochastic process

Xn, n = 1, 2, . . . on a general state space, say X , whose transition kernel is not only de-

pendent on the present state but also on the infinite history (or it might be dependent

on a parameter that is a function of the previous history of the chain). For example, if

Xn is a AMCMC, then the transition kernel P (Xn ∈ A|Xn−1 = x) will depend on x and

an adaptation parameter, say γn, taking values in some adaptation index set, say Γ. γn

might be a function of Xn = (X1, X2, . . . , Xn), or is a constant that change with each

iteration.

AMCMC typically arise in statistical simulation using the MCMC technique. MCMC is

a general strategy for generating samples {Xi, i = 0, 1, 2, . . .} from complex high dimen-

sional distributions, say ψ, defined on a space X ⊂ Rn(assumed for simplicity to have a

density with respect to the Lebesgue measure, also denoted by ψ(·)) from which integrals

of the type

I(f) :=

∫
X
f(x)ψ(x)dx

47
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for some ψ- integrable function f : X → Rn can be approximated using the estimator

ÎN(f) :=
1

N

n0+N∑
i=n0+1

f(Xi),

where n0 is the initial burn-in period and the random variable Xi are generated from a

MC which converges to ψ(·) in the total variation norm. The main building block of this

class of algorithms is the MH (Metropolis Hastings) algorithms. For the construction of

such algorithms and their properties see Section 1.3.

As discussed in the introduction the simplicity of the algorithm is both its strength and

weakness. The choice of the scale parameters are crucial, and bad choices could lead to

the samples which do not converge fast to the required distribution.

AMCMC eschews this problem by tuning the parameters in an optimal way. That is

to say that the parameters are so chosen that the convergence to ψ(·) becomes fast.

Usually the choice of the scaling parameter is the scale parameter of the density of the

transition kernel. However since the transition kernel is not the same at each iteration

any arbitrarily constructed AMCMC cannot guarantee convergence. Sufficient conditions

for ergodicity is given in Proposition 3 in Chapter 1.

Remark 9. In essence, condition 1 of Proposition 3 of Chapter 1 says that for any fixed

γ ∈ Γ and starting point x ∈ X , the transition kernel Pγ(·, ·) is ergodic (see definition

in Page 12). In addition, the rate of convergence to the invariant distribution is uniform

over all x ∈ X and γ ∈ Γ. Condition 2 there says that the change in the transition kernel

(as measured in total variation norm) over each iteration decreases to zero as n → ∞
uniformly over all x ∈ X .

From the definition of AMCMC (see Section 1.3 of Chapter 1) it is clear that this is

an example of a recursive system. In this chapter and the next we obtain the invariant

distribution of a suitably defined AMCMC, after performing the diffusion approximation

procedure to the process, see, for example [48]. Our choice of the AMCMC arises from

the fact that the adaptation parameter (also called tuning/ scaling parameter) should

depend on whether the sample generated from the proposal distribution is accepted or

not. If accepted, then the scaling parameter should increase by some amount and if

not, the scaling parameter should decrease. The next section gives the definition of the
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proposed AMCMC (a partial variation of this algorithm was suggested by Prof. P. Green

in a personal communication.)

3.2 Definition of the Adaptive MCMC algorithm

We assume that the target distribution ψ(·) is univariate and ψ′(x)
ψ(x)

grows linearly in

x. (The reason for this choice is explained in Remark 13). We recall the algorithm

(Algorithm 2) that was described in Section 1.3.3.3 in Chapter 1.

Algorithm 2:

1. Select arbitrary {X0, θ0, ξ0} ∈ R× (0,∞)×{0, 1} where R is the state space which

may be the real line or an interval of the same. Set n = 1.

2. Propose a new move, say Y, where Y ∼ N(Xn−1, θn−1).

3. Accept the new point with probability α(Xn−1, Y ) = min{1, ψ(Y )
ψ(Xn−1)

}.
If the point is accepted, set Xn = Y, ξn = 1; else Xn = Xn−1, ξn = 0.

4. θn = θn−1e
1√
n

(ξn−q), q > 0, ⇔ log(θn) = log(θn−1) + 1√
n
(ξn − q), q > 0.

5. n← n+ 1, and go to step 2.

The above algorithm is equivalent to the following:

Algorithm 2′:

1. Select arbitrary {X0, θ0, ξ0} ∈ R× (0,∞)× {0, 1}, where R is the state space. Set

n = 1.

2. Given Xn−1, θn−1, εn−1 generate

ξn ∼ Bernoulli
(

min
(

1,
ψ(Xn−1 + θn−1εn−1)

ψ(Xn−1)

))
and then

Xn = Xn−1 + θn−1ξnεn−1

where εn−1 ∼ N(0, 1),
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3. θn = θn−1e
1√
n

(ξn−q), q > 0, ⇔ log(θn) = log(θn−1) + 1√
n
(ξn − q), q > 0.

4. n← n+ 1 and go to step 2.

Let us describe the algorithm. θn is the proposal scaling (tuning) parameter which is

adaptively tuned depending on whether the previous sample was accepted or rejected.

If the sample was accepted then the proposal variance will increase allowing the chain

to explore more regions in the state space. If the past sample was rejected then the

variance will decrease making the move a more conservative one. Here q is a benchmark;

for multivariate Normal target density, where the components are independent, the value

0.238 is often appropriate, see Gelman et al. [25]. For a further generalization see Bedard

[9]. The tuning parameter can also be made to be dependent not only on whether the

previous sample was accepted but also on the proportions of samples accepted in the

history of the chain. However, this is not done in this thesis.

This algorithm is similar, in principle, to the Stochastic approximation (SA) procedure,

see Monro and Robbins [47], for an introduction to the SA procedure.

For the rest of this chapter we try to prove the ergodicity of the proposed AMCMC

algorithm.

Remark 10. 1. Note that the Diminishing Condition in Proposition 3 is satisfied since

from the definition of the algorithm log(θn+1) − log(θn) = op(
1√
n
) . Therefore

||Pθn+1(x, ·)− Pθn(x, ·)||TV→0.

2. It is difficult to verify that the rate of convergence is uniform over all choices of

(x, γ). Therefore the result in Proposition 3 cannot be applied directly in that

form.

Our aim in this chapter is to embed the discrete time chain into a continuous time

stochastic process. This method, called the diffusion approximation, is quite common in

probability theory. It has been applied to diverse fields, for example, econometric mod-

elling (Nelson [48]), branching processes (Ethier and Kurtz [22]), etc. Also the advantage

is that we can apply standard tools in continuous time stochastic processes, which are

not available for discrete time AMCMC. Diffusion approximation was also applied by

Gelman et al. in their paper [25], where they tried to obtain the optimal scaling proposal

of the (standard, multidimensional) MH algorithm. The next section gives details of the

technique.
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3.3 Diffusion Approximation

In this section we first present conditions developed by Stroock and Varadhan [65] for a

sequence of stochastic processes satisfying a stochastic difference equations to converge

weakly to an Itô Process.

Here is the formal set up: Let D([0,∞),Rn) be the space of mappings from [0,∞) into

Rn that are continuous from the right with left limits and let B(Rn) denote Borel sets

in Rn. D is a metric space when endowed with the Skorokhod metric (see Billingsley

[14]). For each h > 0 let Mkh be the σ-algebra generated by the random variables

X0,h,Xh,h, . . . ,Xkh,h for k ≥ 1 and let νh be a probability measure on (Rn,B(Rn)). For

each h > 0 and each k ≥ 1 let Πkh,h be a transition kernel for a homogeneous Markov

chain i.e.,

1. Πkh,h(x, ·) is a probability measure on (Rn,B(Rn)) for all x ∈ Rn;

2. Πkh,h(·, A) is a B(Rn) measurable for all A ∈ B(Rn).

For each h > 0, let Ph be the probability measure on D([0,∞),Rn) such that

Ph

(
X0,h ∈ A

)
= νh(A) ∀ A ∈ B(Rn), (3.3.1)

Ph

(
Xt,h = Xkh,h, kh ≤ t ≤ (k + 1)h

)
= 1, (3.3.2)

Ph

(
X(k+1)h,h ∈ A|Mkh

)
= Πkh,h(Xkh,h, A). (3.3.3)

almost surely under Ph ∀ k ≥ 0 and A ∈ B(Rn) .

For each h > 0, equation (3.3.1) specifies the distribution of the random starting point.

In Equation (3.3.2) we construct a continuous time process from the discrete time process

by making Xt,h a step function with jumps at time h, 2h, 3h, . . . etc. Equation (3.3.3)

states that for a fixed h > 0, {Xkh,h, k ≥ 1} is a Markov Chain with Πkh,h(·, ·) as the

transition kernel.
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We next define the infinitesimal diffusion and drift coefficients for any t, h > 0 as :

ah(x, t) = h−1

∫
Rn

(y − x)(y − x)′Π[t/h]h,h(x, dy)

= h−1D(X(k+1)h,h|Xkh,h = x) for any k ≥ 1;

bh(x, t) = h−1

∫
Rn

(y − x)Π[t/h]h,h(x, dy) = h−1E(X(k+1)h,h − x|Xkh,h = x) for any k ≥ 1;

∆h,ε(x, t) = h−1

∫
||y−x||>ε

Π[t/h]h,h(x, dy)

= h−1P (||X(k+1)h,h −Xkh,h|| > ε | Xkh,h = x) for any k ≥ 1, (3.3.4)

where D(X(k+1)h,h|Xkh,h = x) and E(X(k+1)h,h − x|Xkh,h = x) are the conditional dis-

persion and conditional expected deviation given that the value of Xkh,h is x respectively.

ah(x, t) and bh(x, t) are measures of the second moment and drift per unit of time respec-

tively. ∆h,ε(x, t) is the conditional probability of a jump of size ε or greater per unit of

time. The convergence results that we present below will require that ah(x, t) and bh(x, t)

converge to a finite limits and ∆h,ε(x, t) goes to zero for all ε > 0 as h ↓ 0. In particular

we assume the following, see [65]:

Assumptions

1. There exists a locally bounded measurable mapping a(x, t) : Rn × [0,∞) → M+
n×n

which are continuous in x for each t ≥ 0, and b(x, t) : Rn × [0,∞)→ Rn such that:

lim
h↓0
||ah(x, t)− a(x, t)|| = 0;

lim
h↓0
||bh(x, t)− b(x, t)|| = 0;

lim
h↓0

∆h,ε(x, t) = 0,

where M+
n×n denotes the space of all n× n non-negative definite matrices and || · ||

is the matrix/vector norm defined as:

||A|| =

{
[ATA]

1
2 if A is a column vector

[trace(ATA)]
1
2 if A is a matrix.

2. There exists a locally bounded measurable mapping σ(x, t) form Rn × [0,∞) →
Mn×n which are continuous in x for each t ≥ 0, such that for all x ∈ Rn and all
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t ≥ 0,

a(x, t) = σ(x, t)σ(x, t)′,

where Mn×n denotes the space of all n× n matrix.

3. As h ↓ 0, X0,h converges in distribution to a random variable X0 with a probability

measure ν0 on (Rn,B(Rn));

4. ν0, a(x, t) and b(x, t) uniquely specify the distribution of a diffusion process Xt,

with the initial distribution ν0, the the diffusion matrix a(x, t) and the drift vector

b(x, t).

Under the assumption we have the following Proposition. For a proof see Stroock and

Varadhan [65].

Proposition 13. Under Assumptions 1 - 4, the sequence of Xh,t process defined by

Equations (3.3.1) - (3.3.3) converges weakly (i.e., in distribution) as h ↓ 0 to the Xt

process defined by the stochastic integral equation

Xt = X0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dWn,s (3.3.5)

where Wn,t is an n-dimensional standard Brownian motion, independent of X0 and where

for any A ∈ B(Rn), P (X0 ∈ A) = ν0(A). Such an Xt process exists and is unique upto a

distribution.

Next we embed the discrete time Algorithm 2′ defined in Section 3.2 in a continuous time

process that has decreasing step sizes. For fixed n ≥ 1, we partition the half line [0,∞)

into sub intervals of length 1
n
. We start with the fixed point x0. Now given the value of

the process at time i
n
, i.e., Xn

(
i
n

)
= x, we propose a value following the N

(
x, 1√

n
θn

(
i
n

))
distribution. We have the correction factor 1

n
multiplied with the variance to incorporate

the diminishing adaptation condition, so that the difference between the proposal kernel

at times i
n

and i+1
n

goes to zero as n→∞. This proposed value is accepted with the usual

MH acceptance probability given in (1.3.2) at time i+1
n

. The indicator variable denoting

whether the proposed value is accepted is denoted by ξn

(
i
n

)
. Similar approximation is

done with the tuning parameter θn(·) starting with the initial value θ0.
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3.3.1 Embedding in continuous time of discrete AMCMC

The following gives the embedding of the discrete AMCMC into continuous times state

variable Xn(·)

Xn(0) = x0 ∈ R;

Xn

(i+ 1

n

)
= Xn

( i
n

)
+

1√
n
θn

( i
n

)
ξn

(i+ 1

n

)
εn

(i+ 1

n

)
, i=0, 1, . . . ,

Xn(t) = Xn

( i
n

)
, if i

n
≤ t < i+1

n
for some integer i. (3.3.6)

Here, ξn( i+1
n

) conditionally follows the Bernoulli distribution given by:

P
(
ξn(

i+ 1

n
) = 1|Xn(

i

n
), θn

( i
n

)
, εn

(i+ 1

n

))
= min

{ψ(Xn

(
i
n

)
+ 1√

n
θn

(
i
n

)
εn

(
i+1
n

))
ψ
(
Xn

(
i
n

)) , 1
}

and {εn( i
n
), i ≥ 1 } are all independent N(0, 1) random variables. This distribution of

ξn(·) comes directly from the form of the MH acceptance probability given in (1.3.2).

Tuning parameter θn(·)
The nth approximation to the tuning parameter θ(·) is defined as :

θn(0) = θ0 ∈ R+,

θn

(
i+ 1

n

)
= θn

(
i

n

)
e

1√
n

(ξn( i+1
n

)−qn( i
n

))
, i=0, 1, . . . ,

and θn(t) = θn(
i

n
), if i

n
≤ t < i+1

n
for some integer i. (3.3.7)

In the original discrete AMCMC the benchmark value of q, given in Step 3 of Algorithm

2′, was kept fixed. However if that is also done in the continuous AMCMC in Equation

(3.3.7) then the tuning parameter θn will converge to

{
∞ if q < 1;

0 if q = 1.
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It is exactly for this reason the constants in the tuning parameter given in Equation

(3.3.7) is an increasing function of n (also depending on a constant q > 0) that converges

to 1 as n→∞. In particular, for our example, we have qn

(
i
n

)
= 1− q√

n
for some q > 0.

For comparison purposes we also embed the discrete time standard MCMC (SMCMC)

in continuous times. The SMCMC algorithm is almost similar to the AMCMC, except

for the fact that the tuning parameter given by θ( i
n
) corresponding to SMCMC is kept

fixed at a constant level θ0, that is unchanged in the iterations. This is done in the next

subsection .

3.3.2 Embedding in continuous times of SMCMC

The continuous time process corresponding to SMCMC will therefore be :

Xn(0) = x0 ∈ R;

Xn

(i+ 1

n

)
= Xn

( i
n

)
+

1√
n
θ0ξn

(i+ 1

n

)
εn

(i+ 1

n

)
, i=0, 1, . . . , θ0 ∈ R+ = (0,∞),

Xn(t) = Xn

( i
n

)
, if i

n
≤ t < i+1

n
for some integer i. (3.3.8)

where ξn

(
i
n

)
has the same conditional distribution with θn replaced by θ0 where θ0 is the

fixed constant that is not updated in the iterations.

The following main Theorem of this chapter tells the outcome of the diffusion approxi-

mation of the Discrete AMCMC defined through Equations (3.3.6) to (3.3.7) and that of

the SMCMC defined through (3.3.8).

3.4 Main Theorem

Theorem 3. 1. Yn(t) :=
(
Xn(t), θn(t)

)
(where Xn(t) and θn(t) is given by (3.3.6)

and (3.3.7) respectively) converges weakly to a diffusion process which is the solution

to the SDE,

dYt = b(Yt)dt+ σ(Yt)dWt. (3.4.1)
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Here,

b(Yt) =

(
θ2
t

2

ψ′(Xt)

ψ(Xt)
, θt

(
q − θt√

2π

|ψ′(Xt)|
ψ(Xt)

))T
,

and

σ(Yt) =

(
θt 0

0 0

)
,

2. Similarly the SMCMC converges weakly to a diffusion to the process which is the

solution to the SDE

dXt =
ψ′(Xt)

ψ(Xt)

θ2
0

2
dt+ θ0dWt. (3.4.2)

and Wt is a two dimensional Brownian motion. See Remarks 12 for more details on the

conditions on ψ(·). Here xT is the transpose of a vector (or, a matrix) x.

Proof. Firstly, note that since Yn( i
n
) :=

(
Xn( i

n
), θn( i

n
)
)

is a homogeneous Markov

chain it defines a transition kernel

Πn(y, A) = P

(
Yn(

i+ 1

n
) ∈ A|Yn(

i

n
) = y

)
, ∀y ∈ R× R+ and ∀A ∈ B(R× R+).

Note that since the initial points of the AMCMC and the SMCMC is fixed at (x0, θ0)

Assumption 3 of Section 3.3 is automatically satisfied, where ν0 is the degenerate distribu-

tion at (x0, θ0). The proof then follows essentially by obtaining the ‘drift’ and ‘diffusion’

coefficients of the discretized process, as in Equations (3.3.4) and then finding its limit.

Formally, first obtain the quantities :

an(y, t) := (an,i,j(y, t))i,j=1,2 := n

∫
R
(z− y)(z− y)′Πn(y, dz),

bn(y, t) := (bn,k(y, t))k=1,2 := n

∫
R
(z− y)Πn(y, dz).
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The above is obtained by replacing h−1 by n in Equation (3.3.4).

Then find the matrix a and the vector b such that limn→∞ ||an(y, t) − a(y, t)|| = 0 and

limn→∞ ||bn(y, t) − b(y, t)|| = 0. Obtain the square root of matrix a(y, t)(say σ(y, t)),

which satisfies a(y, t) = σ(y, t)σ(y, t)T . These coefficients define a diffusion process

uniquely which is non-explosive (see Remark 12), and the limiting process is governed by

the equation:

dYt = b(Yt, t)dt+ σ(Yt, t)dWt,

where Wt is a two dimensional Wiener process. For the processes defined in (3.3.6) and

(3.3.7), the limiting quantities an(y, t) and bn(y, t) are

(for y = (x, θ) ):

lim
n→∞

bn,1(y, t) =
θ2

2

ψ′(x)

ψ(x)
,

lim
n→∞

bn,2(y, t) = θ(q − θ√
2π

|ψ′(x)|
ψ(x)

),

lim
n→∞

an,1,1(y, t) = θ2,

lim
n→∞

an,2,2(y, t) = 0,

lim
n→∞

an,2,1(y, t) = 0 = lim
n→∞

an,1,2(y, t)

See Section 3.5 for the derivations.

Since the trace norm of a matrix is a continuous function of its components we can say

that

||an(y, t)− a(y, t)|| → 0 and ||bn(y, t)− b(y, t)|| → 0

where

a(y, t) =

(
θ2 0

0 0

)
⇒ σ(y, t) =

(
θ 0

0 0

)

and b(y, t) =

(
θ2

2

ψ′(x)

ψ(x)
, θ(q − θ√

2π

|ψ′(x)|
ψ(x)

)

)T
.

This proves the Theorem. �



Diffusion approximation of AMCMC 58

3.5 Drift and diffusion coefficients

Writing y = (x, θ) we have

3.5.1 bn,1

bn,1(y, t)

= nE(Xn(
i+ 1

n
)−Xn(

i

n
)| Yn(

i

n
) = y), ∀i = 0, 1, . . . ,∀n ≥ 1

= E(
√
nθn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
)| Yn(

i

n
) = y)

=
√
nθ
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)IAn| Xn(

i

n
) = x, θn(

i

n
) = θ)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)IAcn| Xn(

i

n
) = x, θn(

i

n
) = θ)

)
.

where An(= An(x, θ)) is the set where ξn( i+1
n

) is one with probability 1, i.e,

An(x, θ) = {y :
ψ(x+ 1√

n
θy)

ψ(x)
> 1}.

Thus, lim
n→∞

Acn(x, θ) =
{ (−∞, 0) if ψ′(x) > 0

(0,∞) if ψ′(x) < 0.
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Therefore,

bn,1(y, t) =
√
nθ
(∫

An

εφ(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
εφ(ε)dε

)
=
√
nθ
(∫

An

εφ(ε)dε+

∫
Acn

εφ(ε)dε

+
θ√
n

ψ′(x)

ψ(x)

∫
Acn

ε2φ(ε)dε+O(
1

n
)
)
, by Taylor’s expansion,

=
√
nθ
(∫

R
εφ(ε)dε+

θ√
n

ψ′(x)

ψ(x)

∫
Acn

ε2φ(ε)dε+O(
1

n
)
)

= θ2ψ
′(x)

ψ(x)

∫
Acn

ε2φ(ε)dε+O(
1√
n

)

⇒ lim
n→∞

bn,1(y, t) = θ2ψ
′(x)

ψ(x)
lim
n→∞

∫
Acn

ε2φ(ε)dε

=
{ θ2 ψ

′(x)
ψ(x)

∫ 0

−∞ ε
2φ(ε)dε if ψ′(x) > 0

θ2 ψ
′(x)
ψ(x)

∫∞
0
ε2φ(ε)dε if ψ′(x) < 0

=
θ2

2

ψ′(x)

ψ(x)
.

3.5.2 bn,2

bn,2(y, t) = nE(θn(
i+ 1

n
)− θn(

i

n
)|Yn(

i

n
) = y), ∀i = 0, 1, . . .

= nE
(
θn(

i

n
){e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1}|Yn(
i

n
) = y

)
= nθ

( 1√
n
E(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

+ E(
1

2n
(ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y) +O(

1

n3/2
)
)

= θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

+
θ

2
E((ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y) +O(

1√
n

).
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Now,

θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

= θ
√
n
(
E(ξn(

i+ 1

n
)|Yn(

i

n
) = y)− qn(

i

n
)
)

= θ
√
n
(∫

An

φ(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
φ(ε)dε− qn(

i

n
)
)

= θ
√
n
(∫

An

φ(ε)dε

+

∫
Acn

{1 +
θ√
n

ψ′(x)

ψ(x)
ε+O(

1

n
)}φ(ε)dε− qn(

i

n
)
)

= θ
√
n(1− qn(

i

n
))

+ θ2ψ
′(x)

ψ(x)

∫
Acn

εφ(ε)dε+O(
1√
n

). (3.5.3)

And,

E
(

(ξn(
i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y

)
= E

(
ξn(

i+ 1

n
)2|Yn(

i

n
) = y

)
− 2qn(

i

n
)E
(
ξn(

i+ 1

n
)|Yn(

i

n
) = y

)
+ qn(

i

n
)2

=

∫
An

φ(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
φ(ε)dε

− 2qn(
i

n
)
(∫

An

φ(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
φ(ε)dε

)
+ qn(

i

n
)2

= (1− qn(
i

n
))2 +

1√
n

(1− 2qn(
i

n
))θ

ψ′(x)

ψ(x)

∫
Acn

εφ(ε)dε

+ O(
1

n
) −→ 0, (3.5.4)

as n→∞ (since 1− qn( i
n
) ≈ q√

n
), therefore

1√
n

(1− 2qn(
i

n
)) ≈ 1√

n
(

2q√
n
− 1).
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Thus, from (3.5.3) and (3.5.4) we have,

lim
n→∞

bn,2(y, t) = θq + θ2ψ
′(x)

ψ(x)
lim
n→∞

∫
Acn

εφ(ε)dε

=
{ θ
(
q + θ√

2π

ψ′(x)
ψ(x)

)
if ψ′(x) < 0

θ
(
q − θ√

2π

ψ′(x)
ψ(x)

)
if ψ′(x) > 0

= θ
(
q − θ√

2π

|ψ′(x)|
ψ(x)

)
.

3.5.3 an,1,1.

an,1,1(y, t) = nE
(

(Xn(
i+ 1

n
)−Xn(

i

n
)2)|Yn(

i

n
) = y

)
∀i = 0, 1, . . .

= θ2E(ξn(
i+ 1

n
)εn(

i+ 1

n
)2|Yn(

i

n
) = y)

= θ2
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)2IAn| Yn(

i

n
) = y)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)2IAcn| Yn(

i

n
) = y)

)
= θ2

(∫
An

ε2φ(ε)dε+

∫
Acn

ε2
ψ(x+ 1√

n
θε)

ψ(x)
φ(ε)dε

)
= θ2

(∫
An

ε2φ(ε)dε+

∫
Acn

ε2φ(ε)dε+O(
1√
n

)
)

= θ2 +O(
1√
n

).

⇒ lim
n→∞

an,1,1(t) = θ2.
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3.5.4 an,2,2.

an,2,2(y, t) = nE
(

(θn(
i+ 1

n
)− θn(

i

n
))2|Yn(

i

n
) = y

)
= nE

(
θn(

i

n
)2(e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1)2|Yn(
i

n
) = y

)
= nθ2E

({ 1√
n

(ξn(
i+ 1

n
)− qn(

i

n
)) +

1

2n
(ξn(

i+ 1

n
)

− qn(
i

n
))2 +O(

1

n3/2
)
}2

|Yn(
i

n
) = y

)
= θ2E

(
(ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y

)
+ O(

1√
n

)

⇒ lim
n→∞

an,2,2(y, t) = θ2 lim
n→∞

E
((
ξn(

i+ 1

n
)− qn(

i

n
)
)2

|Yn(
i

n
) = y

)
= 0,

from (3.5.4).

3.5.5 an,1,2 and an,2,1.

an,1,2(y, t) = nE
(
{Xn(

i+ 1

n
)−Xn(

i

n
)}{θn(

i+ 1

n
)− θn(

i

n
)}|Yn(

i

n
) = y

)
= nE

(
{ 1√

n
θn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
)}{θn(

i

n
)(e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1)}
)

=
√
nθ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)
{ 1√

n
(ξn(

i+ 1

n
)− qn(

i

n
))

+ O(
1

n
)
}
|Yn(

i

n
) = y

)
= θ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
+ O(

1√
n

).



Diffusion approximation of AMCMC 63

Since ξn = 0, or 1, ξ2
n = ξn. Hence ξnεn(ξn − qn) = ξ2

nεn − ξnεnqn = ξnεn(1 − qn).

Therefore,

E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
= (1− qn(

i

n
))E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)|Yn(

i

n
) = y

)
= (1− qn(

i

n
))O(1) −→ 0, as n→∞.

Thus, limn→∞ an,1,2 = limn→∞ an,2,1 = 0. �

Remark 11. Note that the form of the SDE in Theorem 3 is similar to the Langevin dif-

fusion equation (for univariate densities). This shows that this adaptive MCMC properly

Normalized behaves in the limit as the Langevin diffusion which has ψ(·) as the invariant

distribution. This bears a little resemblance to the Metropolis adjusted Langevin algo-

rithm (MALA) procedure, where the proposal emulates the discretization of the Langevin

algorithm. For more information regarding MALA and its convergence properties, see

Marshall and Roberts [42], Roberts and Rosenthal [58].

Remark 12. For a general target distribution ψ(·) we assume that the solutions satisfy

the non-explosive condition given by, see Skorohod ([62])

|b(y, t)|+ |σ(y, t)| ≤ C(1 + |y|), (3.5.5)

for some constant C > 0. We also assume that it also satisfies the local Lipschitz condition

for uniqueness given by

|b(y1, t)− b(y2, t)|+ ||σ(y1, t)− σ(y2, t)|| ≤ Dk(|y1 − y2|, (3.5.6)

where y1,y2 lies in some compact interval Sk ⊂ R×R+ and some constant Dk > 0. Here

||σ(y, t)|| =

√√√√ 2∑
i,j=1

σ2
i,j.

For constant θt the non-explosive condition boils down to

|ψ′(x)|
ψ(x)

≤ C(1 + |x|), (3.5.7)
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for some C ≥ 0.

Remark 13. If the target density ψ(·) satisfy the linear growth condition

|ψ′(x)|
ψ(x)

≤ a|x|+ b,

for some a, b > 0, then from the SDE (3.4.1) we have that

dθs = θs

(
q − 1√

2π

|ψ′(Xs)|
ψ(Xs)

)
ds ≤ qθsds

⇒ θs ≤ θ0e
qs and,

dXs =
θ2
s

2

ψ′(Xs)

ψ(Xs)
+ θsdWs.

Taking integrals from 0 to t we have

Xt = X0 +

t∫
0

θ2
s

2

ψ′(Xs)

ψ(Xs)
ds+

t∫
0

θsdWs

⇒ |Xt| ≤ |X0|+
t∫

0

θ2
s

2

|ψ′(Xs)|
ψ(Xs)

ds+ |
t∫

0

θsdWs|

≤ |X0|+
t∫

0

θ2
s

2

(
a|Xs|+ b

)
ds+ |

t∫
0

θsdWs|

≤ |X0|+
aθ2

0

2

t∫
0

e2qs|Xs|ds+
bθ2

0

4q
(e2qt − 1) + |

t∫
0

θsdWs|,

using the bound for θt. Taking expectations we have

⇒ E(|Xt|) ≤ E(|X0|) +
aE(θ2

0)

2

t∫
0

e2qsE(|Xs|)ds+
bE(θ2

0)

4q
(e2qt − 1) + E(|

t∫
0

θsdWs|).

By the Cauchy Schwarz inequality the last expectation is bounded by√√√√√E(

t∫
0

θsdWs)2 =

√√√√√ t∫
0

E(θ2
s)ds ≤

√
E(θ2

0)

√√√√√ t∫
0

e2qsds =

√
E(θ2

0)√
2q

√
e2qt − 1 ≤

√
E(θ2

0)√
2q

eqt.
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Hence by a rearrangement of terms we have

E|Xt| ≤ E(|X0|) +
bE(θ2

0)

4q
(e2qt − 1) +

√
E(θ2

0)√
2q

eqt︸ ︷︷ ︸
Ft

+

t∫
0

aE(θ2
0)

2
e2qs︸ ︷︷ ︸

As

E(|Xs|)ds

Writing Gt = E|Xt|, Ft = E(|X0|) +
bE(θ20)

4q
e2qt +

√
E(θ20)
√

2q
eqt, At =

aE(θ20)e2qt

2
we have

Gt ≤ Ft +

∫ t

0

AsGsds,

where Ft is non negative and At is increasing as a function of t ∈ [0,∞). Therefore from

Gronwall’s inequality, see, for example, [51], pp. 78, we have

Gt ≤ Fte
∫ t
0 Asds, t ≥ 0.

Now
t∫

0

Asds =
aE(θ2

0)

4q
(e2qt − 1) ≤ aE(θ2

0)

4q
e2qt,

and so

E|Xt| ≤
(
E(|X0|) +

bE(θ2
0)

4q
e2qt +

√
E(θ2

0)√
2q

eqt
)
e
aE(θ20)

4q
e2qt .

This proves that the solution to the SDE of (Xt, θt) given by Equation (3.4.1) is non-

explosive.

3.6 Comparison between Adaptive and non-adaptive

MCMC by simulations

In this section we compare both the discrete and continuous non-adaptive (also called

standard) MH sampler against its adaptive counterpart as proposed in Section 3.2. We

try to simulate samples from target distributions with heavier and lighter tails compared
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to the Normal distribution. In the standard MH the tuning parameter is kept fixed. Since

the tuning parameter that gives the best result is not known in general, we compare the

simulations for a multitude of θ values. (Note that results relating to optimal q for Normal

distribution is given in Gelman et al. [25] which have been extended further in Bedard

and Rosenthal [9]).

3.6.1 Comparison between the discrete time chains

We generate the discrete time version of the adaptive and non-adaptive sampler for dif-

ferent values of q and the starting value, θ0. All the proposal distributions are Normal

and the target density is Normal(0,1) in Table 3.1 and Cauchy(0,1) in Table 3.2 . After

generating a sample of size 10000 we discard the first 1000 samples as burn-in. To check

the efficiency of the sampler we perform the one sample Kolmogorov-Smirnov (KS) test

on the remaining sample and find the asymptotic q value of the KS test statistic D mea-

suring the distance between the empirical distribution of the generated sample and the

target distribution.

A measure of the amount of mixing is Expected Square Jumping Distance(ESJD)

defined as E(Xi − Xi−1)2. Based on the generated sample it can be estimated by

E := 1
n−B

n∑
i=B+1

(Xi − Xi−1)2, where B is the size of burn-in sample. In general, higher

value of ESJD implies greater mixing , (also see Gelman and Pasarica [26] for more de-

tails).

See Tables 3.1, 3.2 here.

From Table 3.1 we see that the starting value θ0 = 2.38 is the best choice with respect

to the non-Adaptive chain as well as the Adaptive chain. This value of θ0 was suggested

by Gelman et al. [25]. For adaptive chain the optimal value of q lies somewhere between

0.25 and 0.50. Again, by [25], the optimal value of acceptance probability was close to

0.238. Therefore our simulations corroborates their findings to some extent.

It is well known that the naive MH algorithm is not efficient enough in simulating from

a Heavy tailed distribution. This is what we see in Table 3.2). But we see that for the
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adaptive version with q lying in the same interval, i.e., in [0.25,0.50], its performance is

at least better than that of its non-adaptive counterpart, although by itself it is not quite

efficient.

In comparison we see that the continuous time version of the AMCMC performs much

better than its discrete counterpart as elucidated in the next section.

3.6.2 Comparison between the continuous time processes

To compare how fast the two diffusion processes which are solution to (3.4.1) and (3.4.2)

converge to stationarity we apply Euler discretization to each of them for various choices

of target density ψ and mesh size h. For the process (3.4.1) the Euler discretization is

given by Xih, i = 0, 1, 2 . . . , T
h

where:

X(i+1)h = Xih + h
ψ′(Xih)

ψ(Xih)

θ2
ih

2
+
√
hθihZ

(1)
ih

θ(i+1)h = θih + h
(
θih(q − θih

|Xih|√
2π

)
)
, i = 0, 1, . . . , T/h.

Similarly the Euler discretization for the process (3.4.2) is {Yih} where:

Y(i+1)h = Yih + h
ψ′(Xih)

ψ(Xih)

θ2

2
+
√
hθZ

(2)
ih , i = 0, 1, . . . , T/h, θ = θ0 ∈ R+

Where Z
(j)
ih , i = 0, 1, . . . , T/h, j = 1, 2 are independent N(0, 1) random variables.

For various values of the mesh size h we simulate 1000 parallel SDE using the Euler

discretization for the Adaptive and the Standard MCMC and obtain the value of XT at

time T = 1. Table 3.3, Table 3.4 and Table 3.5 give the result when the target distribution

are N(0, 1),Cauchy(0, 1) and Exponential(1) distribution, respectively. We also compute

the Kolmogorov Smirnov distance between the sample and the target distribution and

also find its asymptotic p value.

See Table 3.3, 3.4 here, 3.5.
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It should be noted that since the support of the Exponential density (Table 3.5) is only the

positive part of the real line, while simulating the SDE corresponding to the distribution

any move to the left of zero was modified accordingly.

The tables clearly indicate that for a proper choice of the parameter q, the Adaptive

version performs better than the non-Adaptive version. Almost always the asymptotic

p-value is small for smaller values of q it reaches its peak at an optimum q and then

decreases.The reason is that if q is small then the quantity −θih|Xih|/
√

2π dominates q

and θih decreases on the average. On the other hand if q is large then q dominates and

θih increases on the average. As a result the sample thus generated differs widely from

the target density.

Another table of interest is Table 3.4. Standard MCMC is not quite adept in sampling

from a density with heavy tails. AMCMC to some degree addresses this problem where

we see that the p-value is always higher for the Adaptive case for all values of mesh size

h.

In Figures 3.2 and 3.4 we give simulation of sample paths of discrete AMCMC and

SMCMC together with the plot of θt when the target is standard Normal and Cauchy

respectively.

3.7 Summary

Diffusion approximation is a well studied technique that has been applied to many fields

(e.g., [22], [48]). In AMCMC the tuning parameter changes as the iteration progresses

and therefore the transition kernel also changes. As a result the invariant properties of

the chain are not easily obtainable. In this chapter, we have applied the diffusion ap-

proximation procedure to the AMCMC chain and obtained the limiting SDE to arrive

at the target distribution. Diffusive limits for Metropolis Hastings algorithm were earlier
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Adpative non-Adaptive
θ0 q D p-value E D p-value E

0.10 0.0502 2.2e-12 0.2388
0.25 0.0278 1.729e-6 0.6064

0.10 0.50 0.0165 0.01472 0.7150 0.1369 2.2e-16 0.00934
0.75 0.025 2.702e-5 0.3709
0.10 0.0391 2.244e-12 0.2587
0.25 0.0258 1.199e-5 0.5926

0.25 0.50 0.024 6.507e-5 0.6971 0.0377 1.56e-11 0.05228
0.75 0.0273 3.006e-6 0.3618
0.10 0.0458 2.2e-16 0.2356
0.25 0.0186 0.003867 0.5835

1.0 0.50 0.0168 0.01270 0.7137 0.0251 2.29e-5 0.46209
0.75 0.0272 3.344e-6 0.3642
0.10 0.039 2.46e-16 0.2572
0.25 0.0138 0.06627 0.6050

2.38 0.50 0.0153 0.02883 0.7070 0.0223 2.69e-4 0.71047
0.75 0.0233 0.00010 0.3648
0.10 0.0467 1.066e-14 0.0427
0.25 0.0374 2.38e-11 0.5953

10 0.50 0.0221 3.012e-4 0.6988 0.0302 1.444e-7 0.26411
0.75 0.0208 0.00081 0.3613
0.10 0.0467 2.2e-16 0.2433
0.25 0.0272 3.42e-16 0.5894

20 0.50 0.030 1.361e-7 0.6992 0.0669 2.26e-15 0.14603
0.75 0.0225 0.002141 0.3709

Table 3.1: Table comparing the asymptotic p-values of sample generated using AM-
CMC and SMCMC for different values of q and θ0 where the target density is Nor-

mal(0,1)

obtained in [58, 63, 64]. Also, there are some recent work on diffusive limits of high-

dimensional non-adaptive MCMC that came to our attention (for example, see Mattingly

et al. [43]). However, to the best of our knowledge, application of diffusion approxima-

tion to Adaptive MCMC and subsequent comparison between AMCMC and Standard

MCMC using their respective diffusive limits have not been done earlier. Our technique

expands the scope of comparison between AMCMC and Standard MCMC, as embedding

in continuous time allows various discrete approximations through which one can com-

pare them in finer details.
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Adaptive non-Adaptive
θ0 q D p-value E D p-value E

0.10 0.0675 2.2e-16 34.8595
0.234 0.0246 3.65e-5 10.6793

0.10 0.50 0.0272 3.419e-6 2.9033 0.2023 2.2e-16 0.00942
0.75 0.0335 3.299e-9 0.7969
0.10 0.0582 2.2e-16 81.86962
0.234 0.0389 2.79e-12 10.3054

0.25 0.50 0.0186 0.00399 2.9030 0.1069 2.2e-16 0.5468
0.75 0.0385 5.29e-12 0.7305
0.10 0.0455 2.2e-16 34.8598
0.234 0.0332 4.601e-9 10.7424

1.0 0.50 0.0227 1.938e-4 2.9033 0.0418 4.47e-14 0.6453
0.75 0.0336 2.81e-9 0.7144
0.10 0.0675 2.2e-16 34.8598
0.234 0.024 6.175e-5 11.0824

2.38 0.50 0.0213 5.7137e-4 2.7663 0.0302 1.493e-7 1.01557
0.75 0.0353 3.646e-10 0.7490
0.10 0.0528 2.2e-16 34.8598
0.234 0.0383 6.56e-12 10.0612

10 0.50 0.0192 0.00258 2.8593 0.0334 4.028e-9 10.19617
0.75 0.0318 2.538e-8 0.7582
0.10 0.0529 2.2e-16 19.5438
0.234 0.034 1.836e-9 10.4076

20 0.50 0.0224 3.831e-5 2.8915 0.0415 6.40e-14 22.9938
0.75 0.0306 9.313e-8 0.7419

Table 3.2: Table comparing the asymptotic p values of sample generated using
AMCMC and SMCMC for different values of q and θ0 where the target density is

Cauchy(0,1)
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q p value θ(T ) D
Adaptive non-Adaptive Adaptive non-Adaptive

h=0.0001
1.0 0.0385 4.5900 0.0444
2.0 0.2035 0.5273 0.0338 0.0338 0.0256
2.5 0.1415 8.8963 0.0364
h=0.0005
4.5 0.4681 12.8575 0.0268
5.0 0.4774 0.28 14.4240 0.0266 0.0313
5.5 0.4186 15.9708 0.0279
6.0 0.2254 17.50510 0.033 0.0313
h=0.001
4 0.1999 15.7125 0.0305
5 0.3804 14.0184 0.02870
5.5 0.3409 20.9751 0.0297
6.0 0.4179 17.6700 0.0279
6.5 0.4393 0.628 18.9813 0.0274 0.0237
7.5 0.3369 21.6681 0.0298
8.0 0.2127 23.0411 0.0335
h=0.005
0.2 0.2900 2.4322 0.0310
0.5 0.2595 2.7888 0.0319
1.0 0.1761 3.5346 0.0348
1.5 0.4378 6.08e-10 4.5760 0.0275 0.096
2.0 0.3782 5.9303 0.0288
2.5 0.2489 7.3848 0.0323
3.0 0.08535 8.8085 0.0397
h=0.01
1.0 0.0033 3.6390 0.0565
1.5 0.0180 5.0818 0.0485
2.0 0.0977 0 6.4826 0.0388 0.4516.
3.0 0.0347 9.2409 0.0450

Table 3.3: Simulation of the SDE for Normal target density
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q p value θ(T ) D
Adaptive non-Adaptive Adaptive non-Adaptive

h=0.0001
5 0.2938 18.13893 0.0309
7 0.4407 0.7756 25.15494 0.0274 0.0209
8 0.3306 27.8692 0.03
h=0.0005
3.0 1.10e-11 14.5622 0.1139
4.0 0.07 22.2738 0.0409
4.5 0.1104 26.3661 0.0381
6.0 0.2259 0.4709 35.3313 0.033 0.0268
7.0 0.2022 41.4020 0.0338
h=0.001
0.5 0.1423 4.2115 0.0363
5 0.168 18.5107 0.0352
6 0.2353 0.4894 21.3778 0.0327 0.0264
7 0.1641 24.8888 0.0354
h=0.005
2 0.0356 10.0997 0.0457
2.5 0.0481 9.9744 0.0481
3 0.0824 18.6841 0.0399
3.5 0.1197 1.652e-6 24.7255 0.0375 0.0837
4.0 0.0627 31.845 0.0416
h=0.01
0.5 0.0762 3.8347 0.0404
1.0 0.0162 4.8314 0.0491
2.0 0.0277 8.1943 0.0462
2.5 0.0060 9.9910 0.0539
2.75 0.0129 0 10.7327 0.0502 0.1537
3.0 0.0079 11.2480 0.0526
3.5 0.0004 12.9623 0.06491

Table 3.4: Simulation of the SDE for Cauchy target density
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q p value θ(T ) D
Adaptive non-Adaptive Adaptive non-Adaptive

h=0.0001
1.5 0.1885 4.5917 0.0344
2.0 0.4301 5.5788 0.0276
2.5 0.4880 0.3641 6.6407 0.0264 0.0291
3.0 0.3783 7.7608 0.0288
20 0.0507 50.13257 0.0429
h=0.0005
2.0 0.02508 5.5782 0.0468
2.5 0.07267 6.6402 0.0407
3.0 0.1024 7.7604 0.0385
3.5 0.2379 8.9240 0.0326
4.0 0.7415 0.6055 10.1186 0.0216 0.0241
4.25 0.4527 10.7244 0.0271
4.5 0.04414 11.3345 0.0274
h=0.001
1.5 0.6933 4.5905 0.0225
2.0 0.9175 0.3688 5.5774 0.0176 0.029
2.5 0.5089 6.6394 0.026
h=0.005
5.5 0.328 13.80297 0.03
6.0 0.9579 0.893 15.0483 0.0161 0.0183
6.5 0.4649 16.2972 0.0269
h=0.01
6.0 0.6368 15.0477 0.0235
6.5 0.9041 0.4622 16.2969 0.0179 0.0269
7 0.05136 0.4622 17.548 0.0428

Table 3.5: Simulation of the SDE for exponential target density
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Figure 3.1: Discrete AMCMC and SMCMC plot for Normal(0,1) with q=0.50 and
θ0 = 1.
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Figure 3.2: Discrete AMCMC and SMCMC plot for Normal(0,1) with q=0.75 and
θ0 = 10.
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Figure 3.3: Discrete AMCMC and SMCMC plot for Cauchy(0,1) with q=0.50 and
θ0 = 1.
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Figure 3.4: Discrete AMCMC and SMCMC plot for Cauchy(0,1) with q=0.75 and
θ0 = 10.



Chapter 4

Diffusive limits when the target

distribution is Standard Normal

4.1 Introduction

In the last chapter, using the Diffusion Approximation technique we observed that the

limiting process of the AMCMC is governed by the following Theorem:

Proposition 14. (from Theorem 3 of Chapter 3) The limit of the process Yn(t) :=(
Xn(t), θn(t)

)′
, where Xn(t) and θn(t) is given by (3.3.6) and (3.3.7) respectively, is

governed by the SDE:

dYt = b(Yt)dt+ σ(Yt)dWt, with Yt = (Xt, θt)
′,

where,

b(Yt) =

(
θ2
t

2

ψ′(Xt)

ψ(Xt)
, θt

(
q − θt√

2π

|ψ′(Xt)|
ψ(Xt)

))′
,

σ(Yt) =

(
θt 0

0 0

)

78
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and Wt is a two dimensional Wiener process and ψ′(·)
ψ(·) satisfies the linear growth condition

given in Remark 13.

This chapter is arranged as follows. In Section 4.2.1 we show that the process is tight.

This combined with the hypoelliptic condition in Section 4.2.2 shows that the process

admits a smooth invariant distribution. After establishing moment conditions of the

variables under consideration in Section 4.2.1.1 and Section 4.2.1.4, identification of the

target distribution is proved in Section 4.2.3.

4.2 Main result

In this chapter we concentrate on the case where the target density is standard Normal

(i.e., ψ(x) = 1√
2π
e−

x2

2 ). Then the SDE takes the form:

dYt = b(Yt)dt+ σ(Yt)dWt, where,

b(Yt) =

(
−θ

2
t

2
Xt, θt

(
q − θt√

2π
|Xt|

))′
. (4.2.1)

and σ(Yt) remains the same. Throughout the chapter we assume Y0 = (X0, θ0)′ is

independent of {Wt : t ≥ 0}.

Remark 14. Equation (4.2.1) when written in a more explicit form becomes :

dXt = −Xt
θ2
t

2
+ θtdWt

dθt = θt

(
q − θt√

2π
|Xt|

)
dt

It resembles that of a coupled Ornstein Uhlenbeck (OU) process with the diffusion coef-

ficient itself following a logistic equation. One knows that for a standard OU process the

N(0,1) distribution is the invariant distribution. In the above case, it is slightly compli-

cated since the diffusion coefficient is not constant. We show that even then the limiting

distribution of the diffusion process is Normal.

Remark 15. It will be shown in Lemma 14 that E(X2
t ) <∞, ∀t > 0. This implies that

Xt < ∞ a.s ∀t. From the SDE of θt it is shown (see Equation (4.2.2)) that θt ≤ θ0e
qt.
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Consequently θt < ∞ almost surely. Therefore the solutions of Equation (4.2.1) is non-

explosive.

Here is the main Theorem of this chapter:

Theorem 4. The X-marginal of the invariant distribution of (4.2.1) is N(0, 1).

Proof: The proof of the above Theorem is spread over various subsections. In Section

4.2.1 we show that the process (Xt, ηt) where ηt = 1/θt is tight. This combined with the

hypoelliptic condition in Section 4.2.2 shows that the process admits a invariant distri-

bution. The marginal of the invariant distribution is identified as the target distribution

in Section 4.2.3.

4.2.1 Tightness of (Xt, ηt)
′

We first state and prove a lemma.

Lemma 11. Fix T > 0 and an integer k ≥ 1. Assume E(θ2k
0 ) < ∞.

∫ t
0
θksdWs is a

martingale with respect to
{
Ft = σ(Xs, θs; 0 ≤ s ≤ t), 0 ≤ t ≤ T

}
and hence for any

0 ≤ t ≤ T

E(

∫ t

0

θksdWs) = 0.

Proof: It is sufficient to show that the local martingale Zt :=
∫ t

0
θksdWs is L2-bounded

for all t ≤ T . So using Itô’s isometry it suffices to show that

E
(∫ T

0

θ2k
s ds

)
<∞.

Now,

dθt ≤ qθtdt⇒ θt ≤ θ0e
qt

⇒ θ2k
t ≤ θ2k

0 e
2kqt ⇒ E

t∫
0

θ2k
s ds ≤ E(θ2k

0 )
e2kqt − 1

2kq
<∞, (4.2.2)
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for every t ∈ [0, T ], T <∞. �

4.2.1.1 Uniform boundedness of moments of Xt

We first prove a lemma that will be required in this subsection and elsewhere. Define

Ft = e

t∫
0

θ2udu
and for any k ∈ N, Ck := k(1 − (2k − 1)a), where a > 0 is a constant such

that Ck > 0.

Lemma 12. If {Xt} and {θt} are solutions to (4.2.1). Fix any k ∈ N then

E
(
F−Ckt

t∫
0

FCk
u X2m−1

u θudWu

)
= 0, for any m ∈ {1, 2, . . . , k}, (4.2.3)

where X0 and θ0 is such that all its moments are finite.

Proof: Fix m ∈ {1, 2, . . . , k}. Define F t,k := F−Ckt . The LHS in (4.2.3) is the expectation

of Zt,k(= Z
(m)
t,k ) := F t,kYt,k where Yt,k(= Y

(m)
t,k ) :=

t∫
0

FCk
u X2m−1

u θudWu. We show E(Zt,k) =

0. Applying Itô’s lemma to Zt,k we have

dZt,k = Yt,kdF t,k + F t,kdYt,k

= −CkYt,kθ2
tF t,kdt+ F t,kX

2m−1
t θtF

Ck
t dWt

= −CkZt,kθ2
t dt+X2m−1

t θtdWt. (4.2.4)

Now, taking Z̃t,k = −Zt,k, yields

dZ̃t,k = CkZt,kθ
2
t dt−X2m−1

t θtdWt = −CkZ̃t,kθ2
t dt+X2m−1

t θtdW̃t (4.2.5)

where W̃t = −Wt
d
= Wt. From the definition Z̃0,k = −Z0,k = 0 = Z0,k. Comparing the

SDE for Zt,k and Z̃t,k in (4.2.4) and (4.2.5) we see that they have the same distribution.

Therefore Zt,k and −Zt,k have the same distribution, which implies that the distribution

of Zt,k is symmetric about 0. Now to conclude E(Zt,k) = 0, ∀t ≥ 0 we show Zt,k has
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finite expectation ∀t ≥ 0. It is sufficient to show that E(Z2
t,k) <∞, ∀t ≥ 0. Now,

Z2
t,k = F−2Ck

t

( t∫
0

FCk
s X2m−1

s θsdWs

)2

≤
( t∫

0

FCk
s X2m−1

s θsdWs

)2

a.s, since F−2Ck
t ≤ 1. Therefore,

E
(
Z2
t,k

)
≤ E

( t∫
0

FCk
s X2m−1

s θsdWs

)2

= E
( t∫

0

F 2Ck
s θs︸ ︷︷ ︸X4m−2

s θs︸ ︷︷ ︸ ds)

≤ E
(( t∫

0

F 4Ck
s θ2

sds
) 1

2
( t∫

0

X8m−4
s θ2

sds
) 1

2
)

≤

√√√√√E
( t∫

0

F 4Ck
s θ2

sds
)
E
( t∫

0

X8m−4
s θ2

sds
)
, (4.2.6)

where the second equality follows from Ito’s Isometry and the last two inequalities follow

from the Cauchy Schwartz inequality. Now for the first expectation in (4.2.6) we have

E
( t∫

0

F 4Ck
s θ2

sds
)

= E
(F 4Ck

t − 1

4Ck

)
=

1

4Ck
E
(
F 4Ck
t − 1

)
≤ 1

4Ck
E
(
e4Ckθ

2
0( e

2qt−1
2q

)
)
<∞, (4.2.7)

since from (4.2.2) θ2
t ≤ θ2

0e
2qt. For the second term in (4.2.6) first note that from (4.2.1)

and (4.2.2)
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Xt = X0 −
t∫

0

Xsθ
2
s

2
ds+

t∫
0

θsdWs

⇒ X8m−4
t θ2

t ≤ D2
mθ

2
0

(
X8m−4

0 +
( t∫

0

|Xs|θ2
s

2
ds
)8m−4

+
( t∫

0

θsdWs

)8m−4)
e2qt

⇒
t∫

0

X8m−4
s θ2

sds ≤ D2
mθ

2
0

(
X8m−4

0

s∫
0

e2qsds+

t∫
0

e2qs
( s∫

0

|Xu|θ2
u

2
du
)8m−4

ds

+

t∫
0

e2qs
( s∫

0

θudWu

)8m−4

ds,

for some Dm > 0. This implies that

⇒ E
( t∫

0

X8m−4
s θ2

sds
)
≤ Dmθ

2
0

(
E(X8m−4

0 )

t∫
0

e2qsds+ E

t∫
0

e2qs
(∫ s

0

|Xu|θ2
u

2
du
)8m−4

ds

+ E

t∫
0

e2qs
(∫ s

0

θudWu

)8m−4

ds
)

(4.2.8)

for some constant Dm > 0 that does not depend on Xt. Clearly the first expectation in

the RHS of (4.2.8) is finite ∀t ≥ 0.

For the second expectation in (4.2.8) we proceed as follows. From ( 4.2.1) we have the

SDE for θt as

dθt = θt

(
q − |Xt|√

2π
θt

)
dt = qθtdt−

|Xt|√
2π
θ2
t dt

⇒ e−qtdθt − qθte−qt = −e−qt |Xt|√
2π
θ2
t dt⇒ d

(
θte
−qt
)

= −e−qt |Xt|√
2π
θ2
t dt

⇒ θte
−qt = θ0 −

t∫
0

e−qs
|Xs|√

2π
θ2
sds

⇒
√
π

2

(
θ0e

qt − θt
)

=

t∫
0

eq(t−s)
|Xs|θ2

s

2
ds (4.2.9)
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Therefore

t∫
0

|Xs|θ2
s

2
ds ≤

t∫
0

eq(t−s)
|Xs|θ2

s

2
ds ≤

√
π

2

(
θ0e

qt + θt

)
,

from (4.2.9).

Plugging the value of θt from (4.2.2) in (4.2.9) we have,

t∫
0

|Xs|θ2
s

2
ds ≤

√
2πθ0e

qt

⇒
( t∫

0

|Xs|θ2
s

2
ds
)8m−4

≤
(√

2π
)8m−4(

θ0e
qt
)8m−4

⇒ E

t∫
0

e2qs
(∫ s

0

|Xu|θ2
u

2
du
)8m−4

ds ≤ (2π)4m−2(

t∫
0

e(8m−2)qsds)E(θ8m−4
0 )

< ∞, (4.2.10)

for every t ≥ 0. Hence the second expectation in the RHS of (4.2.8) is also finite ∀t ≥ 0.

For the third term in the RHS of (4.2.8) let us define Ms := |
∫ s

0
θudWu| and M∗

s =

sup
0<u<s

Mu. Denoting [M ]s as the quadratic variation process of Ms we have [M ]s =
s∫

0

θ2
udu.

Now,

E(Ms)
8m−4 ≤ E(M∗

s )8m−4 ≤ CmE([Ms]
4m−2)

= CmE
(∫ s

0

θ2
udu
)4m−2

≤
(
Cm

s∫
0

θ2
0e

2qudu
)4m−2

, (4.2.11)

where the second inequality follows from the Burkholder-Davis-Gundy (BDG) inequality

and Cm ∈ (0,∞) is a constant. Interchanging the expectation and integrals in the third
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term of the RHS of (4.2.8) we get

E
( t∫

0

e2qs
(∫ s

0

θudWu

)8m−4

ds
)

=

t∫
0

e2qsE
(∫ s

0

θudWs

)8m−4

ds

=

t∫
0

e2qsEM8m−4
s ds

≤ E(θ8m−4
0 )

t∫
0

e2qs
(
Cm

s∫
0

e2qudu
)4m−2

ds

< ∞, (4.2.12)

∀t > 0, where the last but one inequality follows from (4.2.11). Hence the third term of

the RHS of (4.2.8) is also finite ∀t ≥ 0. Hence combining (4.2.10) and (4.2.12) we have

E(Z2
t,k) < ∞.

This combined with the fact that Zt,k is symmetric about zero proves E(Zt,k) = 0 and

hence the lemma. �

The statement of the above lemma is true even for even powers of X, that is

Lemma 13. Under the hypothesis of Lemma 12 the following is true

E
(
F−Ckt

t∫
0

FCk
u X2m

u θudWu

)
= 0 for m ∈ {0, 1, 2, . . . , k}.

Proof: We have to prove that Zt,k = Ft,kYt,k := F−Ckt

t∫
0

FCk
u X2m

u θudWu has mean zero.

Now

dZt,k = −CkZt,kθ2
t dt+X2m

t θtdWt. (4.2.13)

Define Zt,k = −Zt,k and then we see that Zt,k and −Zt,k has the same distribution. We

need to show that Zt,k is square integrable. Following steps similar to Equation (4.2.6)
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of the previous lemma

E(Z2
t,k) ≤ E

( t∫
0

F 2Ck
s θs︸ ︷︷ ︸X2m

s θs︸ ︷︷ ︸ ds)

≤

√√√√√E
( t∫

0

F 4Ck
s θ2

sds
)
E
( t∫

0

X8m
s θ2

sds
)
.

The first expectation is finite by Equation (4.2.7) of Lemma 4.2.3. For the second expec-

tation we have

E
( t∫

0

X8m
s θ2

sds
)
≤ Dmθ

2
0

(
E(X8m

0 )

t∫
0

e2qsds+ E

t∫
0

e2qs
( t∫

0

|Xu|θ2
u

2

)8m)
ds

+ E

t∫
0

e2qs
( t∫

0

θudWu

)8m

ds (4.2.14)

By applying methods in the Lemma 4.2.3 the second and the third term can be shown

to be finite. This proves the lemma. �

Here is the main lemma of this subsection.

Lemma 14. For any k ∈ N, the 2kth ordered moment of Xt is uniformly bounded in t,

i.e.,

sup
t>0

E(X2k
t ) <∞,

if X0 and θ0 admit finite moments of all order.

Proof: Applying Itô’s lemma to Yt = X2k
t we get

dX2k
t = 2kX2k−1

t dXt + k(2k − 1)X2k−2
t θ2

t dt

=
(
−kX2k

t θ
2
t + k(2k − 1)X2k−2

t θ2
t

)
dt+ 2kX2k−1

t θtdWt

≤
(
−kX2k

t θ
2
t + k(2k − 1)(aX2k

t + b)θ2
t

)
dt+ 2kX2k−1

t θtdWt,

since for any fixed k ∈ N and small a > 0, there exists b(= bk) large enough such that,

x2k−2 < ax2k + b, ∀x ∈ R.
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Thus, for 0 < a < 1/(2k − 1) we have

dX2k
t ≤ −X2k

t θ
2
t

(
k − k(2k − 1)a

)
dt

+ k(2k − 1)bθ2
t dt+ 2kX2k−1

t θtdWt

⇒ dX2k
t + CkX

2k
t θ

2
t dt ≤ k(2k − 1)bθ2

t dt+ 2kX2k−1
t θtdWt, (4.2.15)

where Ck and FCk
t are defined earlier. Multiplying by the integrating factor FCk

t on both

sides of (4.2.15) we get

d
(
X2k
t F

Ck
t

)
≤ k(2k − 1)bθ2

tF
Ck
t dt+ 2kFCk

t X2k−1
t θtdWt

⇒ X2k
t F

Ck
t ≤ X2k

0 + k(2k − 1)b

t∫
0

θ2
uF

Ck
u du+ 2k

t∫
0

FCk
u X2k−1

u θudWu

⇒ X2k
t ≤ X2k

0 F−Ckt + k(2k − 1)bF−Ckt

t∫
0

θ2
uF

Ck
u du

+ 2kF−Ckt

t∫
0

FCk
u X2k−1

u θudWu.

Now,
t∫

0

θ2
uF

Ck
u du = (FCk

t − 1)/Ck

⇒ E
(
X2k
t

)
≤ E

(
F−Ckt X2k

0

)
+ k(2k − 1)bE

( 1

Ck
(1− F−Ckt )

)
+ 2kE

(
F−Ckt

t∫
0

FCk
u X2k−1

u θudWu

)
(4.2.16)

For the first term in (4.2.16) we have that,

E(F−Ckt X2k
0 ) ≤ E(X2k

0 ) < m <∞, ∀t ≥ 0,

since Ck
t∫

0

θ2
udu > 0. Similarly E

(
1
Ck

(1− F−Ckt )
)
≤ 1

Ck
. The third expectation is zero by

Lemma 12. This proves the lemma. �
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4.2.1.2 Uniform boundedness of moments of ηt = 1
θt

Lemma 15. For any k ∈ N, the 2kth order moment of ηt is uniformly bounded in t ≥ 0,

i.e.,

sup
t>0

E(η2k
t ) <∞,

if X0 and η0 admit finite moments of all orders.

Proof. Take ηt = 1
θt

. Then

dηt = − 1

θ2
t

dθt

= − 1

θ2
t

θt(q −
1√
2π
|Xt|θt)dt = −ηt(q −

|Xt|
ηt
√

2π
)dt = (−ηtq +

|Xt|√
2π

)dt

Multiplying by the integrating factor eqt on both sides of the above equation we get:

d(eqtηt) =
eqt|Xt|√

2π
dt

⇒ eqtηt − η0 =

∫ t

0

1√
2π
equ|Xu|du

⇒ ηt = η0e
−qt +

∫ t

0

e−q(t−u) |Xu|√
2π
du (4.2.17)

⇒ E(η2k
t ) = E

(
η0e
−qt +

∫ t

0

e−q(t−u) |Xu|√
2π
du
)2k

≤ 22k−1
[
E(η0e

−qt)2k + E
(∫ t

0

e−q(t−u) |Xu|√
2π
du
)2k]

. (4.2.18)

Now (∫ t

0

e−q(t−u) |Xu|√
2π
du
)2k

=
(
e−qt

∫ t

0

equ
|Xu|√

2π
du
)2k

=
(eqt − 1)2k

(qeqt
√

2π)2k

( q

eqt − 1

∫ t

0

equ|Xu|du
)2k

≤ (eqt − 1)2k

(q
√

2πeqt)2k

( q

eqt − 1

∫ t

0

equ|Xu|2kdu
)
,

where the last inequality follows from the fact that (EP (|X|))2k ≤ EP (|X|2k) where

k ∈ N and P is any probability measure. In the above we take P (dx) = q
eqt−1

eqxdx on
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[0, t]. Therefore interchanging the expectation and integrals on the last term of 4.2.17 we

have

E(η2k
t ) ≤ 22k−1

[
E(η2k

0 )e−2kqt +
(eqt − 1)2k

(q
√

2πeqt)2k

q

eqt − 1

∫ t

0

equE(|Xu|2k)du
]

≤ 22k−1
[
E(η2k

0 ) +
(eqt − 1)2k

(q
√

2πeqt)2k
M0

]
≤ M1 <∞ (4.2.19)

where the last but one inequality follows from Lemma 4.2.1.1 that even moments of Xt

are uniformly bounded in t ≥ 0. �

Remark 16. From (4.2.19) it is evident that for all t > 0, there is a null set, outside of

which θt = 1
nt
> 0 whenever θ0 > 0, as otherwise, sup

t>0
E(η2k

t ) would be infinity. Again,

from the proof above, it is clear that

ηt = η0e
−qt +

∫ t

0

e−q(t−u) |Xu|√
2π
du > 0, whenever η0 ≥ 0.

Combining the above two lemmas we have the following tightness result for the vector

(Xt, ηt)
′.

4.2.1.3 Tightness

Lemma 16. If X0 and θ0 admits moments of all orders and θ0 > 0 a.s.then, for the

coupled system (4.2.1) joint distribution of {(Xt, ηt)
′ : t ≥ 0} is tight.

Proof. Let R1 and R2 be two positive numbers. Then

P (|Xt| < R1, |ηt| < R2) = 1− P ((|Xt| > R1) ∪ (|ηt| > R2))

> 1− (P (|Xt| > R1) + P (|ηt| > R2))

> 1− E(|Xt|)/R1 − E(|ηt|)/R2.

Hence given any ε > 0 we can choose R1, R2 sufficiently large so that P (|Xt| < R1, |ηt| <
R2) > 1− ε. This proves the tightness of (Xt, ηt)

′. �
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4.2.1.4 Finiteness of Time average of moments of θt

In this section C will stand for a generic finite constant that might take different values

in different situations. We assume throughout that X0 and θ0 admit finite moments of

all orders. For non-random initial data this is trivially true.

Lemma 17. Let X0 and θ0 admit finite moments of all order. Then

sup
t>1

1

t

t∫
0

E(θ
k
2
u )du < C for every k ∈ N.

Proof: We proceed sequentially through the following steps.

Step 1: We first prove

sup
t>1

1

t

∫ t

0

E(|Xu|θu)du <∞.

This fact will be used in Step 2. To prove this note that

d(1 + θt) = dθt = θt(q − |Xt|θt/
√

2π)dt

= qθtdt−
(1 + θt)|Xt|θt√

2π
dt+

|Xt|θt√
2π

dt

⇒ d(1 + θt) +
(1 + θt)|Xt|θt√

2π
dt = qθtdt+

|Xt|θt√
2π

dt

⇒ d(1 + θt)

1 + θt
+

1√
2π
|Xt|θtdt =

θt
1 + θt

(
q +
|Xt|√

2π

)
dt

≤
(
q +
|Xt|√

2π

)
dt

⇒ log
1 + θt
1 + θ0

+
1√
2π

t∫
0

|Xu|θudu ≤ qt+
1√
2π

t∫
0

|Xu|du

⇒ 1

t

t∫
0

|Xu|θudu ≤
√

2πq +
1

t

t∫
0

|Xu|du

+
√

2π
log(1 + θ0)

t
. (4.2.20)
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Thus, 1
t

t∫
0

E(|Xu|θu)du ≤
√

2πq + 1
t

t∫
0

E(|Xu|)du +
√

2πE(log(1+θ0))
t

. Therefore, using the

moment bounds for Xt from Section 4.2.1.1,

sup
t>1

1

t

t∫
0

E(|Xu|θu)du < C. (4.2.21)

Step 2: We now prove by induction, that for any k ∈ N,

sup
t>1

1

t

t∫
0

E(θ
k
2
u )du < C. (4.2.22)

Let, as before, ηt = 1
θt

then dηt = (−qηt + |Xu|/
√

2π)dt.

Applying Itô’s lemma to Yt = X2
t η

2−k/2
t , with k ∈ N, we get

dYt = 2Xtη
2−k/2
t dXt + (2− k/2)X2

t η
1−k/2
t dηt +

1

2
2η

2−k/2
t (dXt)

2

= 2Xtη
2−k/2
t (− Xt

2η2
t

dt+
1

ηt
dWt) + (2− k/2)X2

t η
1−k/2
t (−qηtdt+

|Xt|√
2π
dt)

+ η
2−k/2
t η−2

t dt

=
(
−X2

t η
−k/2
t − q(2− k/2)X2

t η
2−k/2
t +

2− k/2√
2π
|Xt|3η1−k/2

t + η
−k/2
t

)
dt

+ 2Xtη
1−k/2
t dWt. (4.2.23)
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Thus, integrating both sides from 0 to t, rearranging and dividing by t and then taking

expectations we get

t∫
0

θ
k
2
s ds = X2

t η
4−k
2

t −X2
0η

4−k
2

0 +

t∫
0

X2
s θ

k
2
s ds

+
(4− k)q

2

t∫
0

X2
s η

4−k
2

s ds− 2− k/2√
2π

t∫
0

|Xs|3η
2−k
2

s ds

− 2

t∫
0

Xsη
2−k
2

s dWs

⇒ 1

t

t∫
0

θ
k
2
s ds =

1

t
(X2

t η
4−k
2

t −X2
0η

4−k
2

0 ) +
1

t

t∫
0

X2
s θ

k
2
s ds

+
(4− k)q

2t

t∫
0

X2
s η

4−k
2

s ds

−2− k/2
t
√

2π

t∫
0

|Xs|3η
2−k
2

s ds− 2

t

t∫
0

Xsη
2−k
2

s dWs

⇒ 1

t

t∫
0

E(θ
k
2
s )ds =

1

t
E(X2

t η
4−k
2

t −X2
0η

4−k
2

0 ) +
1

t

t∫
0

E(X2
s θ

k
2
s )ds

+
(4− k)q

2

1

t

t∫
0

E(X2
s η

4−k
2

s )ds

+
k − 4

2
√

2π

1

t

t∫
0

E(|Xs|3η
2−k
2

s )ds

+ 2
1

t
E
(
−

t∫
0

(Xsη
2−k
2

s )dWs

)
. (4.2.24)
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Now for any k ∈ N we have,

1

t

t∫
0

X2
s θ

k
2
s ds =

1

t

t∫
0

(|Xs|
k
k+1 θ

k
2
s )(|Xs|

k+2
k+1 )ds

≤
(1

t

t∫
0

|Xs|θ
k+1
2

s ds
) k
k+1
(1

t

t∫
0

|Xs|k+2ds
) 1
k+1
, (4.2.25)

which follows from the Holder’s inequality with p = k+1
k

and q = k + 1. Therefore,

E
(1

t

t∫
0

X2
s θ

k
2
s

)
≤ E

((1

t

t∫
0

|Xs|θ
k+1
2

s ds
) k
k+1
(1

t

t∫
0

|Xs|k+2ds
) 1
k+1
)

≤
(
E
(1

t

t∫
0

|Xs|θ
k+1
2

s ds
)) k

k+1 ×
(
E
(1

t

t∫
0

|Xs|k+2ds
)) 1

k+1

=
(1

t

t∫
0

E(|Xs|θ
k+1
2

s )ds
) k
k+1
(1

t

t∫
0

E(|Xs|k+2)ds
) 1
k+1
, (4.2.26)

where the last inequality follows from Holder’s inequality with p = k+1
k

and q = k + 1.

Therefore,

1

t

t∫
0

E(X2
s θ

k
2
s )ds ≤

(1

t

t∫
0

E(|Xs|θ
k+1
2

s )ds
) k
k+1

×
(1

t

t∫
0

E(|Xs|k+2)ds
) 1
k+1
. (4.2.27)

Again ∀k ≥ 2
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dθ
k−1
2

t =
k − 1

2
θ
k−1
2
−1

t dθt =
k − 1

2
θ
k−1
2

t (q − |Xt|θt√
2π

)dt

=
q(k − 1)

2
θ
k−1
2

t dt− k − 1

2

|Xt|θ
k+1
2

t√
2π

dt

⇒ 1√
2π

t∫
0

|Xs|θ
k+1
2

s ds = q

t∫
0

θ
k−1
2

s ds− 2

k − 1
(θ

k−1
2

t − θ
k−1
2

0 )

⇒ 1

t

t∫
0

E
(
|Xs|θ

k+1
2

s ds
)
≤
√

2πq
1

t

t∫
0

E
(
θ
k−1
2

s ds
)

+
2
√

2π

k − 1

1

t
E
(
θ
k−1
2

0

)
. (4.2.28)

Plugging (4.2.28) in (4.2.27)

1

t

t∫
0

E(X2
s θ

k
2
s )ds ≤

(√
2πq

1

t

t∫
0

E
(
θ
k−1
2

s

)
ds+

2
√

2π

k − 1

1

t
E
(
θ
k−1
2

0

)) k
k+1

×
(1

t

t∫
0

E(|Xs|k+2)ds
) 1
k+1
. (4.2.29)
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And finally plugging (4.2.29) in (4.2.24) we get for k ≥ 2

1

t

t∫
0

E(θ
k
2
s )ds ≤ 1

t
E(X2

t η
4−k
2

t −X2
0η

4−k
2

0 )

+
(√

2πq
1

t

t∫
0

E
(
θ
k−1
2

s

)
ds+

2
√

2π

k − 1

1

t
E(θ

k−1
2

0 )
) k
k+1

×
(1

t

t∫
0

E(|Xs|k+2)ds
) 1
k+1

+
(4− k)q

2

1

t

t∫
0

E(X2
s η

4−k
2

s )ds

+
k − 4

2
√

2π

1

t

t∫
0

E(|Xs|3η
2−k
2

s )ds

+ 2
1

t
E
(
−

t∫
0

(Xsη
2−k
2

s )dWs

)
. (4.2.30)

To prove sup
t>1

1
t

t∫
0

E(θ
k
2
s )ds is finite ∀ k ∈ N we proceed by induction:

Step 2a: For k=1 we consider Equation (4.2.24). By an application of the Young’s

inequality and the fact that all the moments of Xs and ηs are uniformly bounded (proved

earlier in Lemma 14 and 15) we have:

sup
t>1

1

t
E(X2

t η
4−1
2

t −X2
0η

4−1
2

0 ) < C,

sup
t>1

1

t

t∫
0

E(X2
s η

4−1
2

s )ds < C,

and

sup
t>1

1

t

t∫
0

E(|Xs|3η
2−1
2

s )ds < C.

This proves that the supremum over t > 1 of the first, third and fourth term in the RHS

of (4.2.24) is finite. The supremum of the second term of (4.2.24) is bounded by the RHS
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of (4.2.27), whose first term is finite by (4.2.21) of Step 1 and the second term is finite

by the uniform boundedness of moments of X. The fourth term in the RHS of (4.2.24)

is negative. Therefore we are left with only the Itô integral or the last term of (4.2.24).

Now,

E
( t∫

0

Xsη
1
2
s dWs

)2

= E

t∫
0

X2
s ηsds

is finite ∀t ≥ 0 by an application of Young’s inequality and the uniform boundedness of

all the moments of Xt and ηt. Therefore
t∫

0

Xsη
1
2
s dWs is a square integrable martingale

and hence

sup
t>1

1

t
E
(
−

t∫
0

Xsη
1
2
s dWs

)
= 0.

This completes the proof that sup
t>1

1
t

t∫
0

E(θ
1
2
s )ds is finite.

Step 2b: Assume that the hypothesis is true for k ≤ m− 1, for m ≥ 2 i.e.,

sup
t>1

1

t

t∫
0

E(θ
k
2
s )ds < C, k ≤ m− 1.

Step 2c: Consider k = m ≥ 2. In this case we consider Equation (4.2.30).

For m = 2 the fourth in RHS of (4.2.30) is negative. Supremum of the other terms is

finite by the moment bounds of Xs and ηs and by the proof that sup
t>1

t∫
0

E(θ
1
2
s )ds < ∞ in

Step 2a.

For m = 3, 4 the supremum of the first term in the RHS of (4.2.30) is finite (by the

arguments given in 2a). The supremum of the second (product) term is finite by the

induction hypothesis (in 2b) and by the finiteness of the moments of Xs. The supremum

of the third term is finite by the finiteness of the moments of Xt and ηt. The fourth term

is negative for m = 3 or zero for m = 4. Hence it is bounded by zero.
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For the fifth (Itô Integral) term in (4.2.30) we first apply the Itô’s lemma and then Cauchy

Schwartz inequality to get

t∫
0

E(X2
s θ

m−2
s )ds ≤

t∫
0

√
E(X4

s )E(θ
2(m−2)
s )ds ≤ C

t∫
0

√
E(θ

2(m−2)
s )ds

< ∞, (4.2.31)

since θt is bounded as in Equation (4.2.2). Thus,
t∫

0

Xsθ
m−2

2
s dWs is a square integrable

martingale with respect to the given filtration over any finite interval [0, T ] and therefore

the expectation is zero. Consequently,

sup
t>1

1

t
E
(
−

t∫
0

Xsη
2−k
2

s dWs

)
= sup

t>1

1

t
E
(
−

t∫
0

Xsθ
k−2
2

s dWs

)
= 0.

Next consider m > 4. Then third term in the RHS of (4.2.30) is negative. For the first

term in the RHS of (4.2.30) apply Young’s inequality with p = m− 3 and q = m−3
m−4

to get

X2
s θ

m−4
2

s ≤ 1

m− 3
X2(m−3)
s +

m− 4

m− 3
θ
m−3

2
s ⇒ E(X2

s θ
m−4

2
s ) ≤ 1

m− 3
E(X2(m−3)

s )

+
m− 4

m− 3
E(θ

m−3
2

s )

⇒ sup
t>1

1

t

t∫
0

E(X2
s θ

m−4
2

s )ds ≤ 1

m− 3
sup
t>1

1

t

t∫
0

E(X2(m−3)
s )ds

+
m− 4

m− 3
sup
t>1

1

t

t∫
0

E(θ
m−3

2
s )ds

< ∞,

which follows from the fact that moments of Xt are uniformly bounded and the second

term is finite by the induction hypothesis. Consequently, the supremum of the first term

in the RHS of (4.2.30) is finite.

The supremum of the second (product) term is finite by the induction hypothesis and by

the finiteness of the moments of Xs (as argued in the case m = 3, 4 above).
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The fourth term we apply the Young’s inequality with p = m− 1 and q = m−1
m−2

to get:

|Xs|3θ
m−2

2
s ≤ |Xs|3p

p
+
θ
q(m−2)

2
s

q
=

1

m− 1
|Xs|3(m−1) +

m− 2

m− 1
θ
m−1

2
s ,

⇒ sup
t>1

1

t

t∫
0

E
(
|Xs|3θ

m−2
2

s

)
ds ≤ 1

m− 1
sup
t>1

1

t

t∫
0

E
(
|Xs|3(m−1)

)
ds

+
m− 2

m− 1
sup
t>1

1

t

t∫
0

E
(
|θs|

m−1
2

)
ds

< ∞, (4.2.32)

which follows from the fact that the moments of Xt are uniformly bounded in t and by

the induction hypothesis.

For the fifth term we argue as in (4.2.31) to infer that it is a square integrable martingale

with respect to the given filtration over any finite interval [0, T ] and hence the expectation

is zero.

Therefore the supremum of the LHS of (4.2.30) is finite for all m ≥ 2. Thus the Steps 2a,

2b and 2c complete the proof of Step 2 (4.2.22) and therefore Lemma 17 is proved. �

4.2.2 Hypoelliptic condition

Here we show that the vector fields corresponding to (4.2.1) satisfies the Hörmander’s

hypoelliptic condition (see Proposition 15 below for the statement of the condition). Since

the condition requires smooth vector fields, we convert the drift and diffusion coefficients

in (3.4.1) into smooth vector fields.

For this purpose, define

bε(x, η) =

(
− x

2η2
, −qη +

gε(x)√
2π

)
, (4.2.33)

where gε(x), a smooth function → |x| as ε ↓ 0 in the point-wise limits and σ(x, η) =(
1/η 0

0 0

)
as the drift and the diffusion coefficient respectively of the equation with

the re-parametrisation η = 1
θ
. Such function gε(·) can be constructed by convolving the
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function |x| with a mollifier (for example 1√
2πε
e−

1
2ε2

x2).

Consider an SDE in the Stratonovich form:

dXt = A0(Xt)dt+
n∑

α=1

Aα(Xt) ◦ dWα
t . (4.2.34)

where A0, {Aα : α = 1, . . . , n} is a smooth vector fields on a differential manifold M and

◦ denotes Stratonovich integral. The SDE in the Itô form and the Stratonovich form are

interchangeable. For a multidimensional SDE, given in the Itô’s form,

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

can be readily converted into the Stratonovich form from the following equation:

b̃i(t,x) = bi(t,x)− 1

2

p∑
j=1

n∑
k=1

∂σi,j
∂xk

σk,j; 1 ≤ i ≤ n

where b̃(t, x) = (b̃i(t, x))′ is the drift term for the Stratonovich form. In our case, p =

n = 2 and from the form of σ in (4.2.1), we find that b̃ε and bε are the same and it equals

A0. We identify the diffusion coefficients A1(Xt) = (η, 0)′ and A2(Xt) = (0, 0)′ as vector

fields in M , here upper half plane of R2. Here is the condition due to Hörmander [34]:

Proposition 15. Let {A0, A1, . . . , An} be n+1 smooth vector fields on a smooth manifold

M . Define the Lie Bracket [V,W ] between two vector fields V and W as another vector

field on M defined in the following manner

[V,W ](f) = V (W (f))−W (V (f)) ∀f ∈ C∞(M).

The Hörmander’s hypoelliptic condition is satisfied if :

Aj0(y), [Aj0(y), Aj1(y)], [[Aj0(y), Aj1(y)], Aj2(y)],

. . . [[[[Aj0(y), Aj1(y)], Aj2(y)], Aj3(y)], . . . , Ajk(y)]

spans M for every y ∈M and any 1 ≤ j0 ≤ n and {j1, . . . , jk} ∈ {0, 1, . . . , n}, k ≥ 1.

Lemma 18. The vector fields Aε0(y) and A1(y) satisfy Hörmander’s hypoelliptic condition

of Proposition 15.
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Proof: Identifying (4.2.34) with (4.2.1) we have (writing y = (x, η)′):

Aε0(y) = − x

2η2

∂

∂x
+ (−qη +

gε(x)√
2π

)
∂

∂η
,

A1(y) =
1

η

∂

∂x
.

Therefore the vectors corresponding to A1(y) and [A1(y), Aε0(y)] will be
(

1
η
, 0
)T

and(
1
η2

(
− 1

2η
− qη + 1√

2π
gε(x)

)
, 1√

2π
1
η
g′ε(x)

)T
. Note, θt = 1/ηt > 0 almost surely, since by

Lemma 15 we have sup
t>0

E(η2
t ) < ∞. Thus, the zero set of {Xt} has Lebesgue measure

zero almost surely since the zero set of {Wt} has Lebesgue measure zero. Therefore these

two vector fields span the upper half plane of R2, for x 6= 0. Also, for x 6= 0, we can take

ε→ 0 and get the same result. Note that the convergence is uniform over each compacts

in the set {(x, η) : x 6= 0, η > 0}. �

Remark 17. In the case of the Normal mollifier i.e,

gε(y) =
1√
2πε

∫ ∞
−∞
|x|e−

1
2ε2

(y−x)2dx

=
1√
2πε

∫ ∞
0

xe−
1

2ε2
(y−x)2dx+

1√
2πε

∫ 0

−∞
(−x)e−

1
2ε2

(y−x)2dx.

For the first integral

1√
2πε

∞∫
0

xe−
1

2ε2
(y−x)2dx =

1√
2π

∞∫
− y
ε

(y + εz)e−
z2

2 dz, substituting z = x−y
ε

,

= y(1− Φ(−y
ε

)) +
1√
2π
ε

∞∫
y2

2ε2

e−tdt, substituting t = z2

2
,

= yΦ(
y

ε
) +

1√
2π
εe−

y2

2ε2 ,
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where Φ(·) is the distribution function of the standard Normal variable. Similarly for the

second integral we have

1√
2πε

0∫
−∞

(−x)e−
1

2ε2
(y−x)2dx =

1√
2π

− y
ε∫

−∞

−y + εze−
z2

2 dz, substituting z = x−y
ε

,

= −yΦ(−y
ε

)− 1√
2π
ε

∫ − y
ε

−∞
ze−

z2

2 dz

= −yΦ(−y
ε

)− ε 1√
2π

∫ y2

2ε2

∞
e−tdt

= −yΦ(−y
ε

) + ε
1√
2π
e−

y2

2ε2

⇒ gε(y) = y
(

Φ(
y

ε
)− Φ(−y

ε
)
)

+ 2εφ(
y

ε
)

⇒ d

dy
g′ε(y) = Φ(

y

ε
)− Φ(−y

ε
) + 2

y

ε
φ(
y

ε
)− 2

y

ε
φ(
y

ε
)

⇒ | d
dy
gε(y)| ≤ |Φ(

y

ε
)− Φ(−y

ε
)|,

where φ(·) is the density function of the standard Normal variable. Now for any ε > 0

and any y ∈ R we have

|Φ(
y

ε
)− Φ(−y

ε
)| ≤ 1

which implies that

| d
dy
gε(y)| ≤ 1 ∀ε > 0

⇒ sup
ε
| d
dy
gε(y)| < ∞, ∀ y ∈ R,

which implies that the family {gε(·)} is equicontinuous.

It is well known that if the vector fields A0(y) and A1(y) satisfy the above conditions

then the solution of the SDE (4.2.34) admits a smooth transition density (see, for example

Nualart [49]).

Hence, even though the original diffusion is singular its transition probability has density



Results for Standard Normal target density 102

(see Kliemann [38]). Again, since the coupled diffusion is tight, it admits unique invariant

probability by Kliemann [38] which admits a density.

Remark 18. Note that although we are interested in the distribution of {Xt} showing

tightness of the process {Xt} only it would not suffice since θt may be a function of

{Xs; 0 ≤ s ≤ t}, so marginally {Xt} may not be a Markov process. Hence sup
t>0

E|Xt| < M

would give the tightness of X but it would not be possible to say anything about the

existence of a unique invariant distribution of {Xt}.

Remark 19. Consider a 1 dimensional process {Xt} which satisfies the SDE

dXt = b(Xt)dt+ a(Xt)dWt.

The invariant distribution π(·) of Xt is given by solving

L∗π(x) = 0,

which gives

π(x) =
c

a(x)
exp(

∫ x

0

2b(u)

a(u)
du).

Here, L∗ is the adjoint of the infinitesimal operator given by

L∗π(x) = − ∂

∂x
(b(x)π(x)) +

1

2

∂2

∂x2
(a(x)π(x)).

Now suppose we have a sequence of processes {Xn,t} whose drift function is given by

{bn(x)} for suitable functions bn(·) then the respective invariant distributions will be

πn(x) =
c

a(x)
exp(

∫ x

0

2bn(u)

a(u)
du).

Now if bn(·) are equicontinuous and uniformly bounded in a compact support and a(·)
is bounded away from zero then π(·) will also be equicontinuous and uniformly bounded

in a compact support. We try to extend this for a two dimensional process (Xt, ηt) in

Remark 21.

Remark 20. Consider the drift term given in Equation (4.2.33). Take ε = 1
n

for some

n ∈ N and let (Xn,t, ηn,t) be the corresponding process. By the hypoelliptic condition the
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limiting distribution of (Xn,t, ηn,t) exists and has a density which we denote as πn(x, η).

Now we have already proved that the moments of |Xt| is uniformly bounded over all

t > 0. Therefore from weak convergence and uniform integrability we have that the

moments the limiting distribution of Xt is bounded. Further, since the standard Normal

density is of the form given in Equation (5.2.2) of Chapter 5, from Theorem 7 and

Remark 28 of the same chapter we can say that lim supt→∞E(esXt) < ∞,∀s ∈ R and

lim supt→∞E(esηt) <∞, ∀s ∈ R. Since moment bound of {Xn,t, ηn,t} are similar to that

of {Xt, ηt} uniformly in n, their m.g.fs would also have the same property uniformly in

n. Consequently, by Cauchy-Schwarz inequality, their joint m.g.f is also finite uniformly

in n for all s1, s2 ∈ R. Therefore, joint m.g.f of the limiting distribution of {Xn,t, ηn,t},
i.e. the m.g.f of πn(·, ·) is finite for all s1, s2 ∈ R uniformly in n.

Remark 21. Consider the SDE whose drift coefficient bn(·, ·) is defined as in Equation

4.2.33 with ε = 1
n

for some n ∈ N. Let Ln denote the infinitesimal generator of the process

(Xn,t, ηn,t), i.e.,

Lnf = (− x

2η2
)
∂

∂x
f + (−qη +

gn(x)√
2π

)
∂

∂η
f +

1

2η2

∂2

∂x2
f,

where gn(·) = g 1
n
(·) and f(·, ·) belongs to the domain of Ln. Then the adjoint of the

generator will be

L∗nh =
∂

∂x
(h

x

2η2
) +

∂

∂η
(h(qη − gn(x)√

2π
)) +

∂2

∂x2
(h

1

η2
),

for h(·, ·) belonging to the domain of L∗n.

Let πn(·, ·) denote the density corresponding to the invariant distribution of {(Xn,t, ηn,t)}.
Then it satisfies the equation∫

(L∗nπn(x, η))f(x, η)dxdη = 0, (4.2.35)

for f(·, ·) belonging to the domain of Ln which contains the class of infinitely differentiable

and compactly supported functions. Therefore the above equation is equivalent to

L∗nπn(x, η) = 0.
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Writing π
(i)
n (·, ·) as the first derivative w.r.t the ith component, i ∈ 1, 2 and π

(i,j)
n (·, ·) as

the second order derivatives we have the above equation as

1

2η2
πn(x, η) +

x

2η2
π(1)
n (x, η) + (qη − gn(x)√

2π
)π(2)

n (x, η) + qπn(x, η) +
1

2η2
π(2,0)
n (x, η) = 0.

Multiplying by 2η2 on both sides of the above and taking integrals w.r.t x from 0 to M

and η from 0 to N (which we do not write explicitly) we have∫ ∫
πn(x, η)dxdη +

∫ ∫
xπ(1)

n (x, η)dxdη +

∫ ∫
2η2(qη − gn(x)√

2π
)π(2)

n (x, η)dxdη +

q

∫ ∫
2η2πn(x, η)dxdη +

∫ ∫
π(2,0)
n (x, η)dxdη = 0.

(4.2.36)

For the second term we apply integration by parts to get∫ ∫
xπ(1)

n (x, η)dxdη =

∫ N

0

Mπn(M, η)dη −
∫ N

0

∫ M

0

πn(x, η)dxdη.

And similarly the other terms are∫ ∫
2η3qπ(2)

n (x, η)dxdη = 2q
(∫ M

0

N3πn(x,N)dx− 3

∫ M

0

∫ N

0

η2πn(x, η)dηdx
)

−
∫ ∫

2η2 gn(x)√
2π

π(2)
n (x, η)dxdη = −

√
2

π

(∫ M

0

N2πn(x,N)gn(x)dx

− 2

∫ M

0

gn(x)

∫ N

0

ηπn(x, η)dηdx
)

The fourth term
∫ ∫

2η2πn(x, η)dxdη is bounded. Assuming the interchange of integral

and differential sign and taking N →∞ we have the last term as∫ ∞
0

∫ ∞
0

π(2)
n (x, η)dxdη =

∫ ∞
0

π(1)
n (M, η)dη = π(1)

n (M)

since πn(x, η) is symmetric w.r.t. x around 0 for each fixed η and hence π
(1)
n (x, η) is an odd

function and hence π
(1)
n (0, η) = 0 for each fixed η. We further assume that π

(1)
n (x, 0) = 0



Results for Standard Normal target density 105

for each x. Thus, as N →∞ we have

π(1)
n (M) +

∫ ∞
0

Mπn(M, η)dη + 2q
(

lim
N→∞

∫ M

0

N3πn(x,N)dx− 3

∫ M

0

∫ ∞
0

η2πn(x, η)dxdη
)

−
√

2

π

(
lim
N→∞

∫ M

0

N2πn(x,N)gn(x)dx− 2

∫ M

0

gn(x)

∫ ∞
0

ηπn(x, η)dxdη
)

+ 2q

∫ M

0

∫ ∞
0

η2πn(x, η)dηdx = 0 (4.2.37)

In Remark 20 we have argued that the m.g.f of πn(x, η) is finite for all s1, s2 ∈ R are

uniformly bounded in n. This proves that the fourth, sixth and seventh term on the

LHS of Equation (4.2.37) are bounded uniformly in n. For the same reason the other

terms can also be assumed to be bounded uniformly in n except under those pathological

functions which are integrable but the lim sup is not finite. In view of of Remark 20 this

may be a reasonable assumption. We argue in a similar fashion for negative M . This is

sufficient for the X-marginal of πn(·, ·) to be equicontinuous over compact subsets of R.

In a similar manner uniform boundedness of πn(·) (over n) may also be assumed in view

of Remark 20.

Remark 22. It should be noted that in Section 4.2.3 we prove the convergence of the

marginal of the limiting distribution of(Xt, ηt) by the method of moments. Therefore it

is not necessary to assume that the density of (Xt, ηt) for each t exists and consequently

the joint density of the invariant distribution.

4.2.3 Identifying the limiting distribution

We first prove a lemma that will be required in this subsection. For any s > 0, define

Fs(t) = s
t∫

0

θ2
udu.

Lemma 19.

lim
t→∞

E(e−Fs(t)) = 0, ∀s > 0.
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Proof: We prove for s = 1. The proof can be carried out in a similar fashion for any

s > 0.

F1(t)

t
=

1

t

t∫
0

θ2
sds ≥

1

1
t

t∫
0

1
θ2s
ds

=
1

1
t

t∫
0

η2
sds

, (4.2.38)

where the last but one inequality follows from Jensen’s (by taking ψ(x) = 1
x
, x > 0 which

is convex). This implies

1
1
t
F1(t)

≤ 1

t

t∫
0

η2
sds⇒

1

F1(t)
≤ 1

t

1

t

t∫
0

η2
sds. (4.2.39)

Therefore,

e−F1(t) =
1

eF1(t)
≤ 1

F1(t)
(since ex ≥ x, ∀x > 0)

≤ 1

t

1

t

t∫
0

η2
sds (from (4.2.39))

⇒ E(e−F1(t)) ≤ 1

t
E
(1

t

t∫
0

η2
sds
)
≤ 1

t
C.

where C = sup
t>0

E(1
t

t∫
0

η2
sds) <∞, from Lemma 15. So

lim
t→∞

E(e−F1(t)) = 0.

�

Lemma 20. Assuming that all the moments of X0 and θ0 exists we have

lim
t→∞

E(Xr
t ) =

{
(2k)!
2kk!

when r = 2k

0 when r = 2k + 1.

Proof: We prove using induction for both even and odd moments:

Even moments
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1. We first show limt→∞E(X2
t ) = 1.

Applying Itô’s lemma to X2
t we have

dX2
t =

(
−X2

t θ
2
t + θ2

t

)
dt+ 2XtθtdWt.

Multiplying by the integrating factor eF1(t), where F1(t) =
t∫

0

θ2
sds, on both sides of

the above equation we have

d
(
X2
t e

F1(t)
)

= eF1(t)θ2
t dt+ eF1(t)XtθtdWt

⇒ X2
t = e−F1(t)[X2

0 +

t∫
0

eF1(s)θ2
sds+ 2

t∫
0

eF1(s)XsθsdWs]

= e−F1(t)[X2
0 +

t∫
0

d(eF1(s)) + 2

t∫
0

eF1(s)XsθsdWs]

= e−F1(t)[X2
0 + eF1(t) − 1 + 2

t∫
0

eF1(s)XsθsdWs]

= X2
0e
−F1(t) + 1− e−F1(t) + 2

t∫
0

eF1(s)−F1(t)XsθsdWs

⇒ E(X2
t ) = E(e−F1(t))E(X2

0 ) + 1− E(e−F1(t))

+ 2E
(
e−F1(t)

t∫
0

eF1(s)XsθsdWs

)
.

From the proof of Lemma 12 we have that the third expectation is zero (by substi-

tuting m = 1). Therefore

E(X2
t ) = E(e−F1(t))E(X2

0 ) + 1− E(e−F1(t))

⇒ lim
t→∞

E(X2
t ) = E(X2

0 ) lim
t→∞

E(e−F1(t)) (4.2.40)

+ 1− lim
t→∞

E(e−F1(t)) (4.2.41)

Now lim
t→∞

E(e−Fk(t)) = 0 by Lemma 19. Therefore,

lim
t→∞

E(X2
t ) = 1 from (4.2.41).
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2. Assume this holds for 1 ≤ m ≤ k − 1, i.e.,

lim
t→∞

E(X2m
t ) =

(2m)!

2mm!
for 1 ≤ m ≤ k − 1.

3. From Itô’s lemma applied to X2k
t

dX2k
t =

(
−kX2k

t θ
2
t + k(2k − 1)X2k−2

t θ2
t

)
dt+ 2kX2k−1

t θtdWt.

Multiplying with the integrating factor eFk(t) on both sides of the above equation

and rearranging we have that

d
(
X2k
t e

Fk(t)
)

= k(2k − 1)eFk(t)X2k−2
t θ2

t dt+ 2keFk(t)X2k−1
t θtdWt

⇒ X2k
t = e−Fk(t)[X2k

0 + (2k − 1)

t∫
0

keFk(s)X2k−2
s θ2

sds

+ 2k

t∫
0

eFk(s)X2k−1
s θsdWs

⇒ E(X2k
t ) = E(e−Fk(t))E(X2k

0 )

+ (2k − 1)E(

t∫
0

ke−Fk(t)eFk(s)X2k−2
s θ2

sds)

+ E
(

2e−Fk(t)

t∫
0

keFk(s)X2k−1
s θsdWs

)
. (4.2.42)

We have proved in Lemma 12 that the third expectation in the RHS of (4.2.42) is

zero (by substituting m = k). Writing

Ak,2m−2(t) := E(e−Fk(t)k

t∫
0

eFk(s)X2m−2
s θ2

sds)

= E(e−Fk(t)

t∫
0

X2m−2
s d(eFk(s))), for 1 ≤ m ≤ k (4.2.43)
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we have,

E(X2k
t ) = E(X2k

0 )E(e−Fk(t))

+ (2k − 1)Ak,2k−2(t). (4.2.44)

Now by the integration by parts we have,
t∫

0

X2m
s d(eFk(s)) = X2m

t eFk(t) −X2m
0 −

t∫
0

eFk(s)d(X2m
s )

= X2m
t eFk(t) −X2m

0 −
t∫

0

eFk(s)
(

(−mX2m
s θ2

s

+ m(2m− 1)X2m−2
s θ2

s)ds+

t∫
0

2mX2m−1
s θsdWs

)
,

using

dX2m
t = −mX2m

t θ2
t dt+m(2m− 1)X2m−2

t θ2
t dt+ 2mX2m−1

t θtdWt.

Therefore multiplying by e−Fk(t) on both sides of the above equation we have

e−Fk(t)

t∫
0

X2m
s d(eFk(s)) = e−Fk(t)

t∫
0

kθ2
se
Fk(s)X2m

s ds

= X2m
t −X2m

0 e−Fk(t)

+ e−Fk(t)

t∫
0

meFk(s)X2m
s θ2

sds

− e−Fk(t)

t∫
0

m(2m− 1)eFk(s)X2m−2
s θ2

sds

+ 2me−Fk(t)

t∫
0

X2m−1
s eFk(s)θsdWs.
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Taking expectations on both sides and recalling the definition of Ak,2m(t) from

(4.2.43) we have ,

Ak,2m(t) = E(X2m
t )− E(e−Fk(t))E(X2m

0 ) +
m

k
Ak,2m(t)

− m(2m− 1)

k
Ak,2m−2(t) + 0. (4.2.45)

That the last expectation is zero follows from Lemma 12. This implies that

(1− m

k
)Ak,2m(t) = E(X2m

t )− E(e−Fk(t))E(X2m
0 )

− m(2m− 1)

k
Ak,2m−2(t). (4.2.46)

Now,

Ak,0(t) = E(e−Fk(t)

t∫
0

kθ2
se
Fk(s)ds)

= E(e−Fk(t)

t∫
0

d(eFk(s))) = 1− e−Fk(t). (4.2.47)

Define Bk,2m = limt→∞Ak,2m(t) (when the limit exists). Taking limits as t→∞ on

both sides of (4.2.47) and applying Lemma 19 we get:

Bk,0 = 1− lim
t→∞

e−Fk(t) = 1. (4.2.48)

Hence lim
t→∞

Ak,2m(t) exists for m = 0.

Taking m = 1, 2, 3, . . . , k − 1 in (4.2.46) we get that lim
t→∞

Ak,2m(t) exists, since

(1− m

k
) lim
t→∞

Ak,2m(t) = lim
t→∞

E(X2m
t )− m(2m− 1)

k
lim
t→∞

Ak,2m−2(t)

⇒ Bk,2m =
k

k −m
lim
t→∞

E(X2m
t )− m(2m− 1)

k −m
Bk,2m−2.

(4.2.49)
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Substituting different values of m = 0, 1, 2, . . . , k − 1 in (4.2.49) and applying in-

duction hypothesis, that lim
t→∞

E(X2m
t ) = (2m)!

2mm!
, for 0 ≤ m ≤ k − 1, we get:

Bk,0 = 1

Bk,2 =
k

k − 1
1− 1

k − 1
1 = 1

Bk,4 =
k

k − 2
3− 2.3

k − 2
1 = 3

Bk,6 =
k

k − 3
5.3− 3.5

k − 3
3 = 5.3

Bk,8 =
k

k − 4
7.5.3− 4.7

k − 4
5.3 = 7.5.3

. . .

Bk,2k−2 = k(2k − 3)(2k − 5) . . . 3.1− (k − 1)(2k − 3)Bk,2k−4

= k(2k − 3)(2k − 5) . . . 3.1− (k − 1)(2k − 3) (2k − 5) . . . 3.1

= (2k − 3)(2k − 5) . . . 3.1(k − k + 1)

=
(2k − 2)!

2k−1(k − 1)!
.

Therefore applying Lemma 19 to Equation (4.2.44) :

lim
t→∞

E(X2k
t ) = (2k − 1)Bk,2k−2

= (2k − 1)
(2k − 2)!

2k−1(k − 1)!
=

2k(2k − 1)!

2kk!

=
(2k)!

2kk!
. (4.2.50)

Odd moments

1. To find the odd moments of Xt we perform similar procedure as above. We have

dXt = −Xt
θ2
t

2
dt+ θtdWt (4.2.51)
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Define Gk(t) = 2k+1
2

t∫
0

θ2
sds, k ∈ N ∪ {0}. Multiply by the integrating factor eG0(t)

on both sides of (4.2.51) and rearrange to get

d(eG0(t)Xt) = eG0(t)θtdWt

⇒ Xt = X0e
−G0(t) + e−G0(t)

t∫
0

eG0(s)θsdWs

⇒ E(Xt) = E(X0)E(e−G0(t)) + E
(
e−G0(t)

t∫
0

eG0(s)θsdWs

)
. (4.2.52)

From Lemma 19 we have

lim
t→∞

E(e−G0(t)) = 0.

Therefore from (4.2.52) we have

lim
t→∞

E(Xt) = 0.

2. Let k ≥ 1 be any positive integer. Assume that

lim
t→∞

E(X2m−1
t ) = 0 where m = 1, 2, . . . , k.

3. Applying Itô’s lemma to X2k+1
t we get

dX2k+1
t = (2k + 1)X2k

t dXt +
1

2
(2k + 1)2kX2k−1

t θ2
t dt

= (2k + 1)X2k
t

(
−Xt

θ2
t

2
dt+ θtdWt

)
+ (2k + 1)kθ2

tX
2k−1
t dt

=
(
−1

2
(2k + 1)X2k+1

t θ2
t

+ (2k + 1)kX2k−1
t θt

)
dt+ (2k + 1)θtX

2k
t dWt. (4.2.53)



Results for Standard Normal target density 113

Multiplying by the integrating factor eGk(t) on both sides of (4.2.53) and rearranging

we get:

d
(
X2k+1
t eGk(t)

)
= k(2k + 1)eGk(t)θ2

tX
2k−1
t dt+ (2k + 1)eGk(t)θtX

2k
t dWt

⇒ X2k+1
t = e−Gk(t)

[
X2k+1

0 + k(2k + 1)

t∫
0

eGk(s)θ2
sX

2k−1
s ds

+ (2k + 1)

t∫
0

eGk(s)θsX
2k
s dWs

]
.

Thus

E(X2k+1
t ) = E(e−Gk(t))E(X2k+1

0 )

+ E
(
k(2k + 1)e−Gk(t)

t∫
0

eGk(s)θ2
sX

2k−1
s ds

)

+ (2k + 1)E
(
e−Gk(t)

t∫
0

eGk(s)X2k
s θsdWs

)
. (4.2.54)

From Lemma 13 we have the third expectation is zero. That is

E
(
e−Gk(t)

t∫
0

eGk(s)X2k
s θsdWs

)
= 0.

Defining

Ck,2m−1(t) := E
(
k(2k + 1)e−Gk(t)

t∫
0

eGk(s)θ2
sX

2m−1
s ds

)

= E
(

2ke−Gk(t)

t∫
0

X2m−1
s d(eGk(s))

)
. (4.2.55)

We have from (4.2.54).

E(X2k+1
t ) = E(e−Gk(t))E(X2k+1

0 ) + Ck,2k−1(t). (4.2.56)
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Now by integration by parts

t∫
0

X2m−1
s d(eGk(s)) = X2m−1

t eGk(t) −X2m−1
0 −

t∫
0

eGk(s)d(X2m−1
s ).

Applying Itô’s lemma to X2m−1
t we have

dX2m−1
t = (2m− 1)X2m−2

t dXt + (2m− 1)(m− 1)X2m−3
t θ2

t dt

= −2m− 1

2
X2m−1
t θ2

t dt+ (m− 1)(2m− 1)X2m−3
t θ2

t dt+ (2m− 1)X2m−2
t θtdWt.

Substituting in the above equation we have

t∫
0

X2m−1
s d(eGk(s)) = X2m−1

t eGk(t) −X2m−1
0 +

t∫
0

(2m− 1)eGk(s)X2m−1
s

θ2
s

2
ds

− (2m− 1)(m− 1)

t∫
0

eGk(s)X2m−3
s θ2

sds−
t∫

0

(2m− 1)eGk(s)X2m−2
s θsdWs.

(4.2.57)

Multiplying both sides by e−Gk(t), taking expectations in (4.2.57) and recalling the

definition of Ck,2m−1 from (4.2.55) we have

Ck,2m−1(t) = E
(

2ke−Gk(t)

t∫
0

X2m−1
s d(eGk(s))

)
= 2kE(X2m−1

t )− 2kE(e−Gk(t))E(X2m−1
0 ) +

2m− 1

(2k + 1)
Ck,2m−1(t)

− (2m− 1)(2m− 2)

(2k + 1)
Ck,2m−3(t)− (2m− 1)E

(
e−Gk(t)

t∫
0

eGk(s)X2m−2
s θsdWs

)
.

(4.2.58)

Now by Lemma 13 where it is shown that

E
(
e−Gk(t)

t∫
0

θse
Gk(s)X2m

s dWs

)
= 0, for 0 ≤ m ≤ k − 1,
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we have that the third expectation is zero. Now

Ck,1(t) = 2kE
(
e−Gk(t)

t∫
0

Xsd(eGk(s))
)

= 2kE
(
e−Gk(t)

(
Xte

Gk(t) −X0e
Gk(0) −

t∫
0

eGk(s)dXs

))

= 2kE
(
Xt −X0e

−Gk(t) − e−Gk(t)

t∫
0

eGk(s)dXs

)
since Gk(0) = 0.

From the SDE of Xt we have

Ck,1(t) = 2kE
(
Xt −X0e

−Gk(t) − e−Gk(t)

t∫
0

eGk(s)
(
−Xs

θ2
s

2
ds+ θsdWs

))

= 2k
(
E(Xt)− E(X0e

−Gk(t)) +
1

2
E
(
e−Gk(t)

t∫
0

eGk(s)θ2
sXsds

)

− E
(
e−Gk(t)

t∫
0

eGk(s)θsdWs

))
= 2k

(
E(Xt)− E(X0e

−Gk(t))
)

+
1

2k + 1
Ck,1(t) + 0,

since E
(
e−Gk(t)

t∫
0

eGk(s)θsdWs

)
= 0 from Lemma 13 (by substituting m = 0). There-

fore

(1− 1

2k + 1
)Ck,1(t) = 2k

(
E(Xt)− E(X0e

−Gk(t))
)
. (4.2.59)

Now we have proved that lim
t→∞

E(Xt) = 0 = lim
t→∞

E(e−Gk(t)). Defining Dk,m =

lim
t→∞

Ck,m(t) for m = 1, 3, 5, . . . , 2k − 1, wherever it exists, we have from (4.2.59)

Dk,1 = 0.
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From (4.2.58) we have

(1− 2m− 1

2k + 1
)Ck,2m−1(t) = 2kE(X2m−1

t )− 2kE(e−Gk(t))E(X2m−1
0 )

− (2m− 1)(2m− 2)

(2k + 1)
Ck,2m−3(t). (4.2.60)

By induction hypothesis lim
t→∞

E(X2m−1
t ) = 0 for m = 1, 2, . . . , k. Since Dk,1 = 0

from (4.2.60) we have by iteration lim
t→∞

Ck,2m−1(t) exists and equals to 0 for m =

1, 2, . . . , k, i.e.

Dk,j = 0 for j = 1, 3, . . . , 2k − 1.

Therefore, from 4.2.54 we have that

lim
t→∞

E(X2k+1
t ) = 0. (4.2.61)

Thus combining (4.2.50) and (4.2.56) we see that the limiting moments of {Xs} matches

with that of a N(0, 1) distribution. Since the limiting distribution admits a smooth

density, invoking uniqueness of moment generating function we can infer that the limiting

distribution of {Xs} is N(0, 1). This completes the proof of Theorem 4. �

Remark 23. From (4.2.17) we have θt satisfying the equation

θt =
eqt

η0 + 1√
2π

t∫
0

eqs|Xs|ds

⇒ θ2
t =

e2qt(
η0 + 1√

2π

t∫
0

eqs|Xs|ds
)2

≥ e2qt

2
(
η2

0 + 1
2π

(
t∫

0

eqs|Xs|ds)2
)

=
e2qt

2η2
0 + (eqt−1)2

πq2
(
t∫

0

q
eqt−1

eqs|Xs|ds)2

≥ e2qt

2η2
0 + eqt−1

πq

t∫
0

eqs|Xs|2ds
, (4.2.62)
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where the last inequality follows from the fact that

(

t∫
0

q

eqt − 1
eqs|Xs|ds)2 ≤

t∫
0

q

eqt − 1
eqs|Xs|2ds.

This is true by the Jensen’s inequality

(E|Xs|)2 ≤ E(|Xs|2),

with the expectation computed with respect to the density f(x) = q
eqt−1

eqx, 0 < x < t,

for any t > 0. Therefore

E(θ2
t ) ≥

e2qt

2E(η2
0) + eqt−1

πq

t∫
0

eqsE(X2
s )ds

≥ e2qt

2E(η2
0) +

(eqt−1)2(1+E(X2
0 ))

πq2

,

where the last inequality follows from (4.2.40) that

E(X2
t ) ≤ 1 + E(X2

0 ) ∀t > 0.

Therefore

lim inf
t→∞

E(θ2
t ) ≥ lim inf

t→∞

e2qt

2E(η2
0) +

(eqt−1)2(1+E(X2
0 ))

πq2

=
πq2

1 + E(X2
0 )

⇒ lim inf
t→∞

1

t

t∫
0

E(θ2
u)du ≥

πq2

1 + E(X2
0 )
, by Fatou’s lemma.

In particular if X0 = 0 almost surely, then

lim inf
t→∞

1

t

t∫
0

E(θ2
u)du ≥ πq2.

This gives a lower bound to the growth of θt.
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Remark 24. Rates of convergence of Adaptive and Standard MCMC: Recalling

the SDE for AMCMC for Normal target density for Xt is given as:

dXt = −Xt
θ2
t

2
dt+ θtdWt.

Multiplying by the integrating factor and performing the usual operations we get:

E(Xt) = E(X0e
−Gt), where Gt =

t∫
0

θ2s
2
ds. (4.2.63)

Similar equation for the SMCMC Yt is:

dYt = −Yt
θ2

0

2
dt+ θ0dWt.

Applying similar computations we get

E(Yt) = E(Y0e
−G̃t), where G̃t =

t∫
0

θ20
2
ds =

θ20
2
t.

Similar computation with X2
t will give (see the proof of Lemma 20)

E(X2
t ) = E(X2

0e
−G(t)) + 1− E(e−G(t)). (4.2.64)

It is therefore clear from the Equations (4.2.63) and (4.2.64) that the quantity regulating

the speed to convergence is G(t) (or G̃(t)). The faster G(t) (or G̃(t)) goes to∞, the faster

the chain converges to its invariant distribution (which is standard Normal in this case).

For SMCMC the rate is exponential in t. For AMCMC it depends on the behaviour of
t∫

0

θ2
sds. We have shown in Lemma 17 that lim sup

t→∞

1
t

t∫
0

E(θ2
u)du < C < ∞ for any k ∈ N

when the target distribution is standard Normal. Combining this with Remark 23 we find

that the rate of convergence of the AMCMC will be exponentially going to zero at a rate

which is linear in t. Thus the comparison between the rate of convergence of AMCMC

and SMCMC will depend on the lower bound πq2 and the upper bound C (as in Lemma

17 for k = 4) and θ2
0. If the bound can be obtained in the almost sure sense, and not in

the L1 sense then it might be possible to directly compare SMCMC and AMCMC.

Remark 25. It is true that for the discrete time SMCMC, higher value of θ0 will delay

convergence to stationarity of the chain. However from the diffusion approximation to the
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discrete SMCMC we see that the rate of convergence is determined by θ0 - a higher value

of θ0 will imply a faster convergence to stationarity. For the AMCMC situations we have

a different situations. The simulations in Figures 3.1 and 3.2 show that the trajectories

of θt converge for large values of t. This is in tune to our theoretical findings that for a

standard Normal target with standard Normal proposals, the time average moments of

θt are bounded. Since this happens for any starting value of θ0, we recommend that this

limiting value should be used for selecting the optimal value of θ0. One should run the

AMCMC sufficiently long, till the point where θt changes no further. From that point

onwards one should keep the level of θt same and run a simple SMCMC.

4.3 Summary

Verifying the conditions of Roberts et al. (see Proposition 3, Chapter 3) for checking

the ergodicity of an AMCMC can sometimes prove to be difficult. In Chapter 3, we

considered an AMCMC with the proposal kernel dependent on the previously generated

sample and an arbitrary target distribution. There we performed a diffusion approxi-

mation technique to look at the continuous time version of the discrete chain. In this

chapter we narrowed down to the case where the target distribution is standard Normal.

We investigate whether the invariant distribution of the diffusion is indeed the target

distribution. It turns out that the resulting diffusion (which although singular) admits

a unique invariant distribution. Then computing the limiting moments (both even and

odd) of Xt we identify the limiting distribution to be N(0, 1).

The techniques applied here are specific only when the target distribution is Normal. We

hope that this can also be extended to other target distributions, where an identification

of the limiting moments is possible. Also more choices of the proposal distribution can be

made, where the kernel is dependent on a finite (or possibly infinite) past. Some issues

in the choice of the proposal and target are dealt in Chapter 5.



Chapter 5

Diffusion Approximation for general

target and proposal distribution

5.1 Introduction

In the earlier chapter we were concerned with the situation when the target and proposal

distribution are both standard univariate Normal. In many situations the standard Nor-

mal is the choice as a proposal, since generating samples from it is easy (for example,

using the Box Muller technique). Also in the proof of the diffusion approximation it

requires the existence of the first two moments of the proposal. A natural question is how

can the result in Chapter 4 be extended for general target and proposal distributions.

We try to address these issues in this chapter.

In the diffusion approximation with the Normal proposal (see Remark 12 of Theorem 3

of Chapter 3) we have the non-explosive condition involving the derivative of density of

the target distribution ψ(·) see, Equation (5.2.1). In Section 5.2.1 we consider sub-classes

of densities satisfying the condition, see Equation (5.2.2) to 5.2.4. We show that this

corresponds to the existence or non existence of the m.g.f of the target ψ(·) in the whole

of R or in a neighborhood of zero. In Section 5.2.2 we show that if the target ψ(·) satisfy

condition 5.2.2 and (5.2.3) with α ∈ [1, 2) then the limiting distribution of the diffusion

corresponding to the AMCMC also share the same property, see Theorem 6 and 7 for the

120
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precise statement. In Section 5.2.4 we look at the standard Cauchy as the target distribu-

tion in Theorem 9. We show that the diffusion approximation method cannot be used for

simulation when the standard Cauchy is the target. The multivariate scenario is dealt in

Section 5.3 where we obtain the diffusion of the multivariate AMCMC. In Section 5.6 we

obtain the diffusion approximation for light tailed proposals. We also explain why heavy

tail choices (such as the Cauchy distribution) of the proposal distribution will not work.

Specifically, we investigate what goes wrong when we look at the ε localized infinitesimal

drift and diffusion coefficient when the proposal distribution is Cauchy. We heuristically

relate the observation to a Theorem in Chapter 2.

Remark 26. In this chapter we are concerned only with stability in the sense of distri-

butions, i.e., whether the target distribution is same as the limiting distribution of the

SDE. For other concepts of stability of Markov process (topological and probabilistic) see

Meyn and Tweedie, [46].

5.2 General Target distribution

5.2.1 Types of target densities

First we recall the SDE of corresponding to a general target distribution ψ(·) given by

Equation (3.4.1) in Chapter 3.

dXt =
θ2
t

2

ψ′(Xt)

ψ(Xt)
dt+ θtdWt

dθt = θt

(
q − 1√

2π
θt
|ψ′(Xt)|
ψ(Xt)

)
dt.

We consider target distribution with linear growth condition as in Remark 12, i.e.,

|ψ′(x)|
ψ(x)

≤ a|x|+ b, a ≥ 0, b ≥ 0, x ∈ R. (5.2.1)

Such condition ensures that the solution of the SDE is non-explosive, see, Remark 13 of

Chapter 3 target density). Under this hypothesis we work with the following three classes
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of target distributions. They are

x
ψ′(x)

ψ(x)
≤ −a|x|2 + b, a > 0, b ≥ 0, (5.2.2)

x
ψ′(x)

ψ(x)
≤ −a2|x|α + b2, a2 > 0, b2 ≥ 0, α ∈ (0, 2), and, (5.2.3)

x
ψ′(x)

ψ(x)
≤ −a3, a3 > 0, (5.2.4)

Theorem 5. If the density ψ(·) satisfies the condition in Equation (5.2.2) then the m.g.f

of ψ(·) exists for all t ∈ R.

Proof: We first prove E(X2m) is finite , ∀m ∈ N, where X has the density ψ(·). This is

trivially true for m = 0. Assume this is true for m = k. Now for any N ∈ (0,∞),

∞∫
−∞

x2kψ(x)dx ≥
N∫

−N

x2kψ(x)dx

=
1

2k + 1
[ψ(x)x2k+1]N−N −

1

2k + 1

N∫
−N

ψ′(x)x2k+1dx

=
1

2k + 1
bk,N −

1

2k + 1

N∫
−N

(
x
ψ′(x)

ψ(x)

)
x2kψ(x)dx,

where bk,N = N2k+1(ψ(N) + ψ(−N)). This implies

(2k + 1)

∞∫
−∞

x2kψ(x)dx ≥ bk,N −
N∫

−N

(
−ax2 + b

)
x2kψ(x)dx

= bk,N + a

N∫
−N

x2k+2ψ(x)dx− b
∞∫

−∞

x2kψ(x)dx

⇒ (2k + 1 + b)

∞∫
−∞

x2kψ(x)dx ≥ bk,N + a

N∫
−N

x2k+2ψ(x)dx,
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since
∞∫
−∞

x2kψ(x)dx ≥
N∫
−N

x2kψ(x)dx, for any N > 0. Also, bk,N = N2k+1(ψ(N) +

ψ(−N)) ≥ 0, for any N . This implies that,

a

N∫
−N

x2k+2ψ(x)dx ≤ (2k + 1 + b)

∞∫
−∞

x2kψ(x)dx

⇒
∞∫

−∞

x2k+2ψ(x)dx ≤ 2k + 1 + b

a

∞∫
−∞

x2kψ(x)dx

⇒ E(X2k+2) ≤ 2k + 1 + b

a
E(X2k), (5.2.5)

where the RHS of (5.2.5) exists by virtue of the induction hypothesis. This implies that

all moments of X exist. Iterating (5.2.5) over k we have

E(X2k+2) ≤ (2k + 1 + b)(2k − 1 + b) . . . (1 + b)

ak+1

=
(2k + 1)(2k − 1) . . . 3.1(1 + b

2k+1
)(1 + b

2k−1
) . . . (1 + b)

ak+1

≤ (2k + 2)!

2k+1(k + 1)!
(
1 + b

a
)k+1

⇒ E(X2k) ≤ (2k)!

2kk!
(
1 + b

a
)k, (5.2.6)

for every k ∈ N.

Now we find a bound of the absolute odd moments. For any k ∈ N,

∞∫
−∞

|x|2k+1ψ(x)dx ≥
N∫

−N

|x|2k+1ψ(x)dx =

0∫
−N

|x|2k+1ψ(x)dx+

N∫
0

|x|2k+1ψ(x)dx.
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Consider
0∫
−N
|x|2k+1ψ(x)dx. This is equal to

0∫
−N

(−x)2k+1ψ(x)dx = −[
x2k+2

2k + 2
ψ(x)]0−N +

0∫
−N

(−x)2k+2

2k + 2
ψ′(x)dx,

= [
(−x)2k+1xψ(x)

2k + 2
]0−N −

∫ 0

−N
(−x)2k+1xψ

′(x)

ψ(x)
ψ(x)dx and,

N∫
0

x2k+1ψ(x)dx = [
x2k+2

2k + 2
ψ(x)]N0 −

N∫
0

x2k+2

2k + 2
ψ′(x)dx

=
x2k+2

2k + 2
ψ(x)|N0 −

∫ N

0

x2k+1

2k + 2

xψ′(x)

ψ(x)
ψ(x)dx. (5.2.7)

This implies

N∫
−N

|x|2k+1ψ(x)dx = [
1

2k + 2
|x|2k+1xψ(x)]N−N

− 1

2k + 2

N∫
−N

|x|2k+1x
ψ′(x)

ψ(x)
ψ(x)dx

⇒ (2k + 2)

N∫
−N

|x|2k+1ψ(x)dx ≥ ck,N + a

N∫
−N

|x|2k+3ψ(x)dx− b
N∫

−N

|x|2k+1ψ(x)dx,

where ck,N = N2k+1(Nψ(N) + Nψ(−N)) ≥ 0. Repeating arguments similar to the even

moments of X we have that

∞∫
−∞

|x|2k+3ψ(x)dx ≤ 2k + 2 + b

a

∞∫
−∞

|x|2k+1ψ(x)ds

⇒ E(|X|2k+3) ≤ 2k + 2 + b

a
E(|X|2k+1). (5.2.8)
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Iterating (5.2.8) over k we have

E(|X|2k+3) ≤ (2k + 2 + b)(2k + b) . . . (2 + b)

ak+1
E(|X|)

= (2k + 2)(2k) . . . 2
(1 + b

2k+2
)(1 + b

2k
) . . . (1 + b

2
)

ak+1
E(|X|)

≤ 2k+1(k + 1)!(
1 + b

a
)k+1E(|X|)

≤ (2k + 3)!

2k+1(k + 1)!
(
1 + b

a
)k+1E(|X|)

⇒ E(|X|2k+1) ≤ 2kk!(
1 + b

a
)kE(|X|)

≤ (2k + 1)!

2kk!
(
1 + b

a
)kE(|X|), (5.2.9)

for k ∈ N and the RHS of (5.2.9) since all moments of X exist. Therefore from (5.2.6)

and (5.2.9) we have the m.g.f of X as

MX(t) = E(etX) ≤ E(et|X|) =
∞∑
n=0

tnE(|X|n)

n!

≤
∞∑
n=0

1

n!

(t2(1 + b)

2a

)n(
tE(|X|) + 1

)
≤ e

t2

2
1+b
2a (etE(|X|))

= etE(|X|)+ t2

2
1+b
2a (5.2.10)

which exists for all t ∈ R. This proves the lemma. �

The next three lemmas deal with condition (5.2.3).

Lemma 21. If the density ψ(x) satisfies the condition (5.2.3), i.e.,

x
ψ′(x)

ψ(x)
≤ −a2|x|α + b2,

for some α ∈ (0, 2), a2 > 0, b2 ≥ 0, then all integer moments of |X|α is finite .
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Proof: From the hypothesis we have that

∞∫
−∞

|x|kαψ(x)dx ≥
N∫

−N

|x|kαψ(x)dx

=
1

kα + 1
[|x|kαxψ(x)]N−N −

1

kα + 1

N∫
−N

|x|kαxψ′(x)dx,

using the indefinite integral of |x|β. Therefore

∞∫
−∞

|x|kαψ(x)dx = ck,N −
1

kα + 1

N∫
−N

|x|kα
(
x
ψ′(x)

ψ(x)

)
ψ(x)dx

≥ ck,N −
a2

kα + 1

N∫
−N

|x|kαψ(x)dx− b2

kα + 1

N∫
−N

|x|kαψ(x)dx

⇒ a2

∞∫
−∞

|x|k+1αψ(x)ds ≤ (kα + 1 + b2)

∞∫
−∞

|x|kαψ(x)dx

⇒ E(|X|k+1α) ≤ kα + 1 + b2

a2

E(|X|kα), (5.2.11)

where ck,N = 1
kα+1

Nkα+1(ψ(N) +ψ(−N)) ≥ 0. Hence by iteration we get that all integer

moments of |X|α is finite. �

The next two lemmas gives the condition when the m.g.f of ψ(·) exists

Lemma 22. If the density ψ(x) satisfies Equation (5.2.3) for α ∈ [1, 2) then the m.g.f of

ψ(·) exists in a neighbourhood of zero.

Proof: From Equation (5.2.11) we have

E(|X|kα) ≤ (k − 1)α + 1 + b2

a2

E(|X|(k−1)α)

...

≤
(k − 1α + 1 + b2

a2

)(k − 2α + 1 + b2

a2

)
. . .
(1 + b2

a2

)
(5.2.12)
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Applying Jensen’s inequality to the above equation we get

E(|X|k) ≤ E(|X|kα)
1
α

≤ 1

a
k
α
2

(
(k − 1α + 1 + b2)(k − 2α + 1 + b2) . . . (1 + b2)

) 1
α

≤ 1

a
k
α
2

(k − 1α + 1 + b2)(k − 2α + 1 + b2) . . . (1 + b2),

since b2 ≥ 0, α ≥ 1. Therefore

E(|X|k) ≤ αk

a
k
α
2

(k − 1 +
1 + b2

α
)(k − 2 +

1 + b2

α
) . . . (

1 + b2

α
).

Since all the absolute moments exist we have MX(t) =

E(etX) ≤ E(et|X|)

=
∞∑
k=0

tk

k!

αk

a
k
α
2

(k − 1 +
1 + b2

α
)(k − 2 +

1 + b2

α
) . . . (

1 + b2

α
)

=
∞∑
k=0

(−1)k
( tα
a

1
α
2

)k (−1+b2
α
− k − 1)(−1+b2

α
− k − 2) . . . (−1+b2

α
)

k!
.

The infinite sum on the RHS of the above equation is finite for |t| < a
1
α
2

α
and the value is

(1− tα

a
1
α
2

)−
1+b2
α . This proves the lemma. �

The next lemma is for α ∈ (0, 1)

Lemma 23. If the density satisfies the condition in Equation (5.2.3) for α ∈ (0, 1) then

the m.g.f does not exist in any neighborhood of zero.
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Proof: We show that E(etX) is not finite for any t < 0. Now for x < 0, Equation (5.2.3)

is

ψ′(x)

ψ(x)
≥ −a2

(−x)α

x
+
b2

x

= a2(−x)α−1 +
b2

x

≤ −a2
−xα

x
+
b2

x
(5.2.13)

⇒ log(ψ(x)) ≥ a2

∫
(−x)α−1dx+ b2 log(|x|) + c

⇒ ψ(x) ≥ K|x|b2e−
a2
α
|x|α

⇒
∫ 0

−∞
etxψ(x)dx ≥ K

∫ 0

−∞
|x|b2etx−

a2
α
|x|αdx (5.2.14)

However the integral on the RHS of the above equation diverges to∞ for any t < 0, since

α < 1. Hence the m.g.f of X does not exist in a neighbourhood of zero. This proves the

lemma.

�

Remark 27. Although the m.g.f does not exist it is clear from Equation (5.2.12) that

all moments exist for α ∈ (0, 1) since ∀ n ≥ 1 ∃K such that n < Kα ⇒ E(|X|n) ≤
E(|X|kα)

n
kα <∞.

The next lemma deals with the condition in (5.2.4).

Lemma 24. If the density satisfy condition in Equation (5.2.4), i.e,

x
ψ′(x)

ψ(x)
≤ −a3,

for some a3 > 0, then E(X2k) =∞, ∀k ≥ k0, for some k0 ∈ N.

Proof: For x < 0

ψ′(x)

ψ(x)
≥ −a3

x

⇒ logψ(x) ≥ −a3 log |x|+ c

⇒ ψ(x) ≥ K0|x|−a3

⇒
∫ 0

−∞
|x|kψ(x)dx = ∞,
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for all a3 > 0 and k > a3 − 1. Consequently all moments of X does not exist. �

Combining the above lemmas we have the theorem:

Theorem 6. If the density ψ(·) satisfy condition (5.2.3) with α ∈ [1, 2) then the m.g.f

exists in a neighbourhood of zero. If it satisfies (5.2.3) with α ∈ (0, 1) then the m.g.f

does not exist in any neighbourhood of zero, but all the moments exists. If the density

satisfies (5.2.4) then all but finitely many moments are infinite.

5.2.2 Light tailed target distribution

In this section the proposal distribution is fixed to be standard Normal and the target

density ψ(·) satisfies condition in (5.2.2). Recall, the SDE of the limiting AMCMC is

given by (Equation 3.4.1),

dXt =
θ2
t

2

ψ′(Xt)

ψ(Xt)
dt+ θtdWt (5.2.15)

dθt = θt

(
q − θt√

2π

|ψ′(Xt)|
ψ(Xt)

)
dt (5.2.16)

where ψ(·) is the target distribution. We first prove two lemmas

Lemma 25. If the process {Xt, θt} satisfies Equation (5.2.15) and (5.2.16) and ηt = 1
θt

,

where ψ′(x)
ψ(x)

satisfies the growth condition given in Equation (5.2.1), i.e.,

|ψ′(x)|
ψ(x)

≤ a|x|+ b, a ≥ 0, b ≥ 0,

and the condition in Equation (5.2.2) and Equation (5.2.3) then the moments of η2k
t are

uniformly bounded in t > 0, for all k ∈ N, i.e.,

sup
t>1

E(η2k
t ) <∞,

if E(η2k
0 ) <∞ and E(X2k

0 ) <∞.

Proof: From Equation (5.2.16) the SDE corresponding to ηt is

dηt = −qηtdt+
1√
2π

|ψ′(Xt)|
ψ(Xt)

dt.
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From Equation (5.2.17) we have

⇒ dηt + qηtdt ≤
1√
2π

(a|Xt|+ b)

⇒ d(eqtηt) ≤ a
1√
2π
eqt|Xt|dt+ beqtdt

⇒ ηt ≤ η0e
−qt +

1√
2π

(a

t∫
0

e−q(t−s)|Xs|ds+ b

t∫
0

e−q(t−s)ds)

⇒ E(η2k
t ) ≤ C0

(
e−2kqtE(η2k

0 ) +
1

(2π)k

(
a2kE(

t∫
0

e−q(t−s)|Xs|ds)2k + (
b

q
)2k(1− e−qt)2k

))
,

(5.2.17)

for some constant C0 ∈ (0,∞). Now using the same techniques as in the proof of Lemma

15 we have

E
(
e−qt

t∫
0

eqs|Xs|
)2k

= E
(1− e−qt

q

q

eqt − 1

t∫
0

equ|Xu|du
)2k

=
(1− e−qt

q

)2k

E
( q

eqt − 1

t∫
0

equ|Xu|du
)2k

≤
(1− e−qt

q

)2k( q

eqt − 1

t∫
0

equE|Xu|2kdu
)

≤ M
(1− e−qt

q

)2k

, (5.2.18)

since it is proved in Theorem 7 and Theorem 8 that sup
t>0

E(X2k
t ) < M < ∞ for some M

depending on k under the condition of Equation (5.2.2) and Equation (5.2.3). Conse-

quently,

sup
t>0

E(η2k
t ) <∞.

�
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Remark 28. From the bounds of E(η2k
t ) given in Equation (5.2.17) and Equation (5.2.18)

we have that for all k ∈ N

sup
t>0

E(ηkt ) ≤ Mk
1 ,

for some constant M1(= M1(k)) which depends on E(ηk0) and E(Xk
0 ). Hence by the

hypothesis of Lemma 25 M1 < ∞ for all k ∈ N. In addition if we assume that the m.g.f

of X0 and η0 exist for each t ∈ R then

sup
t>0

E(esηt) < ∞,

for all s ∈ R.

Lemma 26. If θt satisfies the SDE given in Equation (5.2.16) then lim
t→∞

E(e
−r

t∫
0

θ2sds
) = 0

for every r > 0.

Proof: The proof is similar to the proof of Lemma 19. We prove for r = 1. The result

is true for any r > 0. Define F1(t) =
t∫

0

θ2
sds. Then

F1(t)

t
=

1

t

t∫
0

θ2
sds ≥

1

1
t

t∫
0

1
θ2s
ds

=
1

1
t

t∫
0

η2
sds

(5.2.19)

where the last but one inequality follows from Jensen’s (by taking f(x) = 1
x
, x > 0 which

is convex). This implies

1
1
t
F1(t)

≤ 1

t

t∫
0

η2
sds,⇒

1

F1(t)
≤ 1

t

1

t

t∫
0

η2
sds. (5.2.20)
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Therefore,

e−F1(t) =
1

eF1(t)
≤ 1

F1(t)
(since ex ≥ x, ∀x > 0)

≤ 1

t

1

t

t∫
0

η2
sds, from (5.2.20)

⇒ E(e−F1(t)) ≤ 1

t
E
(1

t

t∫
0

η2
sds
)
≤ 1

t
C.

where C = sup
t>0

E(1
t

t∫
0

η2
sds) <∞, from Lemma 25. So

lim
t→∞

E(e−F1(t)) = 0.

�

For densities of the form Equation (5.2.2) the m.g.f of the limiting distribution exists for

all t ∈ R.

Theorem 7. If the density of the target distribution satisfies the condition in Equation

(5.2.2), i.e.,

x
ψ′(x)

ψ(x)
≤ −a|x|2 + b,

for some a > 0, b ≥ 0 then the m.g.f. of the limiting distribution of Xt exists for all

s ∈ R if the m.g.f of X0 exists for all s ∈ R.

Proof: Fix any k ∈ N. Applying Itô’s lemma to X2k
t we get :

dX2k
t = 2kX2k−1

t dXt +
1

2
2k(2k − 1)X2k−2

t θ2
t dt

=
(

2kX2k−1
t

θ2
t

2

ψ′(Xt)

ψ(Xt)
+ k(2k − 1)X2k−2

t θ2
t

)
dt+ 2kX2k−1

t θtdWt

≤ kθ2
t

(
−aX2k

t + bX2k−2
t + (2k − 1)X2k−2

t

)
dt+ 2kX2k−1

t θtdWt

= −akθ2
tX

2k
t dt+ θ2

tX
2k−2
t

(
kb+ k(2k − 1)

)
dt

+ 2kθtX
2k−1
t dWt, (5.2.21)
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using the hypothesis (5.2.2). Also for any positive real ck there exists large enough dk so

that

x2k−2 < ckx
2k + dk ∀x ∈ R.

Applying this inequality to (5.2.21) we get

dX2k
t ≤ −akθ2

tX
2k
t dt+

(
kb+ k(2k − 1)

)
θ2
t (ckX

2k
t + dk)dt+ 2kX2k−1

t dWt

=
(
−ak + kbck + k(2k − 1)ck

)
θ2
tX

2k
t dt+ dk

(
kb+ k(2k − 1)

)
θ2
t dt

+ 2kX2k−1
t dWt. (5.2.22)

Define Ak := −
(
−ak + kbck + k(2k − 1)ck

)
where we choose ck small so that Ak > 0.

That is,

ak − kbck − k(2k − 1)ck > 0

⇒ ck <
a

2k − 1 + b
.

To find a bound for dk, define f(x) = ckx
2k − x2k−2 + dk. Then

f ′(x) = 2kckx
2k−1 − (2k − 2)x2k−3

= 2kx2k−3(ckx
2 − k − 1

k
).

Hence x = ±
√

k−1
kck

is local minima and x = 0 is the local maxima. Therefore

f(

√
k − 1

kck
) ≥ 0

⇒ ck(
k − 1

kck
)k − (

k − 1

kck
)k−1 + dk ≥ 0

⇒ (
k − 1

kck
)k−1(ck

k − 1

kck
− 1) + dk ≥ 0

⇒ dk ≥ (
k − 1

kck
)k−1 1

k
. (5.2.23)



General target and proposal distributions 134

Choose ck = a
2k+b

< a
2k+b−1

and dk = (2k+b
a

)k−1 1

k
. Then Ak = ak

2k+b
. Also define Gk :=

dk

(
kb+ k(2k − 1)

)
. We then have

dX2k
t + Akθ

2
tX

2k
t ≤ Gkθ

2
t dt+ 2kθtX

2k−1
t dWt.

Multiplying by the integrating factor e
ak

2k+b

t∫
0

θ2sds
= e

Ak
t∫
0

θ2sds
:= eMt on both sides we get

d
(
X2k
t e

Mt

)
≤ eMt

(
Gkθ

2
t dt+ 2kθtX

2k−1
t dWt

)
⇒ X2k

t e
Mt ≤ X2k

0 +Gk

t∫
0

eMsθ2
sds+ 2k

t∫
0

eMsX2k−1
s θsdWs (5.2.24)

⇒ E(X2k
t ) ≤ E(X2k

0 e−Mt) +GkE
(
e−Mt

t∫
0

eMsθ2
sds
)

+ 2kE
(
e−Mt

t∫
0

eMsX2k−1
s θsdWs

)

= E(X2k
0 e−Mt) +

Gk

Ak
E
(
e−Mt

( t∫
0

d(eMs)
))

= E(X2k
0 )E(e−Mt) +

Gk

Ak

(
1− E(e−Mt)

)
, (5.2.25)

arguing as in the proof of Lemma 12 in Chapter 4 that E(e−Mt

t∫
0

eMsX2k−1
s θsdWs) = 0(it

is a symmetric random variable whose second moment is finite.) Since Mt ≥ 0, E(X2k
t )

is uniformly bounded in t > 0 from Equation (5.2.25).

Now Gk
Ak

= kdk(2k−1+b)
Ak

= (2k+b
a

)k(2k+b−1
k

). By Lemma 26 lim
t→∞

E(e−Mt) = 0 which implies,

by DCT,

lim
t→∞

E(X2k
t ) ≤ Gk

Ak
= (

(2k + b)

a
)k(

2k + b− 1

k
) ≤ a

k
(
2k + b

a
)k+1

= a(
(2 + b

k
)

a
)k+1kk ≤ a(

2 + b

a
)k+1kk

= (2 + b)(

√
2 + b

a
)2kk

2k
2 . (5.2.26)
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Therefore

lim
t→∞

E|Xt|(2k−1) ≤ lim
t→∞

E(X2k
t )

2k−1
2k

≤ (a(
2 + b

a
)k+1kk)

2k−1
2k

= a
2k−1
2k (

2 + b

a
)
2k−1

2 (
2 + b

a
)
2k−1
2k k

2k−1
2

= (2 + b)
2k−1
2k (

2 + b

a
)
2k−1

2 k
2k−1

2

≤ (2 + b)(

√
2 + b

a
)2k−1k

2k−1
2 (5.2.27)

From (5.2.26) and (5.2.27) we have

tk

k!
E|X|k ≤ (2 + b)

(
t
√

2+b
a

)k
k!

k
k
2 ,

(5.2.28)

for k ≥ 1. Therefore

MX(t) ≤ E(et|X|) ≤ 1 + (2 + b)
∞∑
k=1

(t
√

2+b
a

)kk
k
2

k!
.

The kth term of the above power series on the right is given by akt
k, where ak is equal to

(2 + b)
(t
√

2+b
a

)k

k!
k
k
2 .

Using Stirling’s approximation we have

ak ≈
2 + b√

2π

(e
√

2+b
a

)k

k
k
2

+ 1
2

.

Therefore

⇒ lim sup
k→∞

|ak|
1
k = lim sup

k→∞
(
2 + b√

2π
)
1
k

e
√

2+b
a

k
1
2

+ 1
2k

= 0
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which implies the radius of convergence of this power series is

R =
1

lim sup
k→∞

|ak|
1
k

=∞.

Hence MX(t) <∞ for every t ∈ R. This proves the Theorem.

�

Remark 29. Since the second moments of (Xt, ηt)t>0 are uniformly bounded the process

is tight.

For densities satisfying condition (5.2.3) for α ∈ [1, 2) we first prove a lemma.

Lemma 27.

lim
t→∞

E(e
−k

t∫
0

θ2s
|Xs|+b

ds
) = 0,

for any k > 0.

Proof: The proof is similar to the proof of Lemma 26. We prove only for k = 1. The

result is true for any k > 0. Define, F1(t) =
t∫

0

θ2s
|Xs|+bds

F1(t)

t
=

1

t

t∫
0

θ2
s

|Xs|+ b
ds ≥ 1

1
t

t∫
0

|Xt|+b
θ2s

ds

=
1

1
t

t∫
0

(|Xs|+ b)η2
sds

(5.2.29)

where the last but one inequality follows from Jensen’s (by taking f(x) = 1
x
, x > 0 which

is convex). This implies

1
1
t
F1(t)

≤ 1

t

t∫
0

(|Xs|+ b)η2
sds⇒

1

F1(t)
≤ 1

t

1

t

t∫
0

(|Xs|+ b)η2
sds. (5.2.30)



General target and proposal distributions 137

Therefore,

e−F1(t) =
1

eF1(t)
≤ 1

F1(t)
(since ex ≥ x, ∀x > 0)

≤ 1

t

1

t

t∫
0

(|Xs|+ b)η2
sds

⇒ E(e−F1(t)) ≤ 1

t
E
(1

t

t∫
0

(|Xs|+ b)η2
sds
)

=
1

t

(1

t

t∫
0

E(|Xs|+ b)η2
sds
)

≤ 1

t

(1

t

t∫
0

√
E(|Xs|+ b)2E(η4

s)ds
)

From the next Theorem we have that the moments of Xt are uniformly bounded. From

Lemma 25 the moments of ηt are also uniformly bounded (under the hypothesis that

densities satisfy (5.2.3) with α ∈ [1, 2)). Consequently

lim
t→∞

E(e−F1(t)) = 0. (5.2.31)

�

Theorem 8. If the density ψ(·) satisfy condition (5.2.3) for α ∈ [1, 2), i.e.,

x
ψ′(x)

ψ(x)
≤ −a2|x|α + b2, a2 > 0, b2 ≥ 0,

then the m.g.f of the limiting distribution of Xt exists in a neighborhood of zero whenever

m.g.f of X0 exists

Proof: Applying Itô’s lemma to X2k
t and using Equation (5.2.3) we have

dX2k
t ≤ kθ2

tX
2k−2
t

(
−a2|Xt|α + b2 + 2k − 1

)
dt+ 2kX2k−1

t θtdWt. (5.2.32)

Now for any α ∈ (1, 2) we have that

|Xt| ≤ a2|Xt|α + ba,
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for some a2 > 0 and ba > 0 chosen sufficiently large depending on a2. This implies that

−a2|Xt|α ≤ −|Xt|+ ba

⇒ −a2|Xt|α + b2 + 2k − 1 ≤ −|Xt|+ b3,

where b3 = ba + b2 + 2k − 1. Substituting in Equation (5.2.32) we have

dX2k
t ≤ kθ2

tX
2k−2
t

(
−|Xt|+ b3

)
+ 2kX2k−1

t θtdWt (5.2.33)

= −kθ2
tX

2k−2
t

(
|Xt| − b3

)
+ 2kX2k−1

t θtdWt

= −kθ2
tX

2k−2
t

( X2
t − b2

3

|Xt|+ b3

)
+ 2kX2k−1

t θtdWt

⇒ dX2k
t + kθ2

t

X2k
t

|Xt|+ b3

= b2
3kθ

2
t

X2k−2
t

|Xt|+ b3

+ 2kX2k−1
t θtdWt

≤ b2
3kθ

2
t

aX2k
t + b

|Xt|+ b3

+ 2kX2k−1
t θtdWt.

Using the inequality

x2k−2 ≤ ax2k + b,

for small a > 0 and large b ≥ 0 (where both a and b depends on k), we have,

⇒ dX2k
t + k(1− ab2

3)X2k
t

θ2
t

|Xt|+ b3

≤ kbb2
3

θ2
t

|Xt|+ b3

+ 2kX2k−1
t θtdWt.

Using eMt as the integrating factor, integrating both sides and taking expectations we

have

E(X2k
t ) ≤ E(X2k

0 )E(e−Mt) +
Gk

Ak
(1− e−Mt),

where Ak = k(1− ab2
3) > 0,Mt = Ak

t∫
0

θ2s
|Xs|+b3ds and Gk = kbb3

3. Arguing as in Lemma 12

the expectation of the Itô Integral E(e−Mt

t∫
0

X2k−1
s θsdWs) is zero. This proves that the

moments of Xt are uniformly bounded in t > 0.
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From Lemma 27 and the definition of Mt we have that

lim
t→∞

E(e−Mt) = 0,

and so

E(X2k
t ) ≤ Gk

Ak
=

bb2
3

1− ab2
3

.

Choose a = 1
2b23

. Therefore

Gk

Ak
= 2bb2

3 =
b

a
.

Now from Equation (5.2.23) we have that for every k ∈ N, b > (k−1
ka

)k−1 1
k
. Choose

b = 1

ak−1
. Therefore

lim sup
t→∞

E(X2k
t ) ≤ Gk

Ak
=

1

ak
= 2k(b2 + ba + 2k − 1)2k

≤ 2
2k
2 (b2 + ba + 2k)2k.

Now,

lim sup
t→∞

E(|Xt|2k−1) ≤ lim sup
t→∞

E(X2k
t )

2k−1
2k

≤ 2
2k−1

2 (b2 + ba + 2k − 1)2k−1.

Therefore

lim sup
s→∞

∞∑
k=0

tk

k!
E(Xk

s ) ≤ lim
s→∞

∞∑
k=0

tk

k!
E(|Xs|k)

=
∞∑
k=0

(
√

2t)k
(b2 + ba + k)k

k!
.
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The coefficient of tk will be

ak = (
√

2)k
(b2 + ba + k)k

k!

⇒ lim sup
k→∞

|ak|
1
k =

√
2 lim sup

k→∞

b2 + ba + k

(
√

2π)
1
k e−1k1+ 1

2k

=
√

2e,

using Stirling’s approximation. Hence the radius of convergence in R = 1

lim sup |ak|
1
k

= 1√
2e
.

Therefore the m.g.f converges if t < 1√
2e
.

For α = 1 we have from Equation (5.2.32)

dX2k
t ≤ kθ2

tX
2k−2
t

(
−a2|Xt|+ b2 + 2k − 1

)
dt+ 2kX2k−1

t θtdWt.

which is same as Equation (5.2.33) with some change in constants. Therefore the theorem

is true for α = 1. This proves the theorem. �

Lemma 28. Hypoelliptic condition: Let the density ψ(·) have finitely many modes

and also satisfy the condition ψψ′′ − ψ′2 6= 0 for any x ∈ R. Then The vector fields

defined by the SDEs (5.2.1) where the target distribution ψ(·) satisfies Equation (5.2.2)

and (5.2.3) with α ∈ [1, 2) satisfies the Hörmander’s hypoelliptic conditions.

Proof: Let y = (x, η). Define,

bε(y) =
( 1

2η2
h(x),−qη +

1√
2π
gε(x)

)
,

where for a fixed target distribution ψ(·), h(x) = ψ′(x)
ψ(x)

and gε(x) is a differentiable function

in x such that lim
ε↓0

gε(x) = |h(x)| and σ(y) is as defined in Section 4.2.2 of Chapter 4.

Such a gε(x) can be constructed in the manner following Remark 17, viz.,

gε(y) =

∫ ∞
−∞
|h(x)| 1√

2πε
e−

1
2ε2

(y−x)2dx

=

∫ ∞
−∞
|ψ
′(x)

ψ(x)
| 1√

2πε
e−

1
2ε2

(y−x)2dx.

Lemma 29 shows that the family {gε(·)} is equicontinuous for all y ∈ R. Note that |h(x)|
may not be differentiable at modal points. This will be the drift and the diffusion vectors
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of the diffusion process (Xε
t , η

ε
t). Therefore the vector fields will be

Aε0(y) =
h(x)

2η2

∂

∂x
+ (−qη +

1√
2π
gε(x))

∂

∂η
,

A1(y) =
1

η

∂

∂x
.

Therefore the vectors corresponding to A1(y) and [A1(y), Aε0(y)] will be
(

1
η
, 0
)T

and(
1
η2

(
h′(x)

2η
− qη + 1√

2π
gε(x)

)
, 1√

2π
1
η
g′ε(x)

)T
respectively. Note that θt = 1/ηt > 0 almost

surely, since by Lemma 25 we have sup
t>0

E(η2
t ) <∞. Thus, zero set of {Xt}, has Lebesgue

measure zero almost surely since the zero set of {Wt}t≥0 has Lebesgue measure zero.

Under the hypothesis of the lemma, g′ε(x) 6= 0 for any x ∈ R and consequently the two

vector fields span upper half plane of R2, for x 6= 0. This proves the lemma. �

Lemma 29. If |ψ
′(·)|
ψ(·) satisfy the Holder’s continuity condition with index α > 0, i.e.,

| |ψ
′(y1)|
ψ(y1)

− ψ′(y2)

ψ(y2)
| ≤ |y1 − y2|α, y1, y2 ∈ R

then {gε(·)} is equicontinuous in ε > 0 for all y ∈ R.

Proof: From the definition of gε(·) we have

gε(y) =

∫ ∞
−∞

|ψ′(x)|
ψ(x)

1√
2πε

e−
1

2ε2
(y−x)2dx

=
1√
2π

∫ ∞
−∞

|ψ′(y + εz)|
ψ(y + εz)

e−
1
2
z2dx, writing z =

x− y
ε

,

⇒ |gε(y1)− gε(y2)| ≤ 1√
2π

t∫
0

|ψ
′(y1 + εz)

ψ(y1 + εz)
− ψ′(y2 + εz)

ψ(y2 + εz)
|e−

1
2
z2dz

= |y1 − y2|α
1√
2π

∫ ∞
−∞

e−
1
2
z2dz = |y1 − y2|α

⇒ sup
ε>0
|gε(y1)− gε(y2)| ≤ |y1 − y2|α

This proves the lemma. �

Remark 30. Under the hypothesis of the above lemma the vector fields corresponding to

the SDE of {Xt, ηt} spans the upper half of R2, except possible for a finitely many points,
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and therefore the transition probability of the SDE admits a smooth density. By the

finiteness of the moments of Xt and ηt the process is jointly tight and hence the invariant

probability exists which admits a density.

5.2.3 Finiteness of time average of moments of θt

In this section we show that the time averaged moments of θ is uniformly bounded in

t > 1, i.e.,

sup
t>1

1

t

t∫
0

E(θks )ds < C, ∀k ∈ N,

for some constant C > 0, for the general target density ψ(·) assuming condition Equation

(5.2.1). Here C will stand for a generic finite positive constant that might take different

values in different situations. This proof essentially emulates the proof in Section 4.2.1.4.

In this section we assume that X0 and θ0 admit finite moments of all orders. For non-

random initial data this is trivially true. We first prove a lemma that will be used in the

Theorem later.

Lemma 30. If Xt and θt are solutions to Equation (5.2.15) and (5.2.16), E(Xk
0 ) and E(θk0)

is finite ∀k ∈ N, the target distribution ψ(·) satisfy condition in Equation (5.2.1), viz.,

|ψ(x)|
ψ(x)

≤ a|x|+ b, a, b ≥ 0,∀x ∈ R,

and the condition in Equation (5.2.2) and Equation (5.2.3), then

sup
t>1

1

t

∫ t

0

E
( |ψ′(Xu)|
ψ(Xu)

θu

)
du <∞.
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d(1 + θt) = dθt = θt

(
q − 1√

2π

|ψ′(Xt)|
ψ(Xt)

θt

)
dt

= qθtdt−
1√
2π

(1 + θt)|ψ(Xt)|θt
ψ(Xt)

dt+
1√
2π

|ψ′(Xt)|
ψ(Xt)

θtdt

⇒ d(1 + θt) +
1√
2π

(1 + θt)|ψ′(Xt)|θt
ψ(Xt)

dt = qθtdt+
1√
2π

|ψ′(Xt)|
ψ(Xt)

θtdt

⇒ d(1 + θt)

1 + θt
+

1√
2π

|ψ′(Xt)|
ψ(Xt)

θtdt =
θt

1 + θt

(
q +

1√
2π

|ψ′(Xt)|
ψ(Xt)

)
dt

≤
(
q +

1√
2π

|ψ′(Xt)|
ψ(Xt)

)
dt

⇒ log
1 + θt
1 + θ0

+
1√
2π

t∫
0

|ψ′(Xu)|
ψ(Xu)

θudu ≤ qt+
1√
2π

t∫
0

|ψ′(Xu)|
ψ(Xu)

du

⇒ 1

t

t∫
0

|ψ′(Xu)|
ψ(Xu)

θudu ≤
√

2πq +
1

t

t∫
0

|ψ′(Xu)|
ψ(Xu)

du+
√

2π
log(1 + θ0)

t

≤
√

2πq +
1

t

t∫
0

(
a|Xu|+ b

)
du+

√
2π

log(1 + θ0)

t

⇒ 1

t

t∫
0

E
( |ψ′(Xu)|
ψ(Xu)

θu

)
du ≤

√
2πq +

1

t

t∫
0

E
(
a|Xu|+ b

)
du+

√
2π
E(log(1 + θ0))

t
,

using the growth condition in Equation (5.2.1). From Equation (5.2.25) in Theorem 7

the moments of |Xt| are uniformly bounded in t > 0. Therefore we have that

sup
t>1

1

t

t∫
0

E(
|ψ(Xu)|
ψ(Xu)

θu)du < C.

�

Now we prove the main theorem of this section.
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Theorem 9. Under the hypothesis of the above lemma we have that

sup
t>1

1

t

t∫
0

E(θ
k
2
u )du < C, for every k ∈ N. (5.2.34)

Proof: The proof is done by mathematical induction. We first prove that the hypothesis

is true for k = 1.

Recall that,

dηt = (−qηt +
1√
2π

|ψ′(Xt)|
ψ(Xt)

)dt

where ηt = 1
θt
.

Applying Itô’s lemma to Yt = X2
t η

2−k/2
t , with k ∈ N, we get

dYt = 2Xtη
2−k/2
t dXt + (2− k/2)X2

t η
1−k/2
t dηt +

1

2
2η

2−k/2
t (dXt)

2

= 2Xtη
2−k/2
t

( ψ′(Xt)

2ψ(Xt)η2
t

dt+
1

ηt
dWt

)
+ (2− k/2)X2

t η
1−k/2
t

(
−qηtdt+

1√
2π

|ψ′(Xt)|
ψ(Xt)

dt
)

+ η
2−k/2
t η−2

t dt

=
(
Xt
ψ′(Xt)

ψ(Xt)
η
−k/2
t − q(2− k/2)X2

t η
2−k/2
t +

2− k/2√
2π

X2
t

|ψ′(Xt)|
ψ(Xt)

η
1−k/2
t + η

−k/2
t

)
dt

+ 2Xtη
1−k/2
t dWt. (5.2.35)

Thus, integrating both side from 0 to t and rearranging

t∫
0

θ
k
2
s ds = X2

t η
4−k
2

t −X2
0η

4−k
2

0 −
t∫

0

Xs
ψ′(Xs)

ψ(Xs)
θ
k
2
s ds

+
(4− k)q

2

t∫
0

X2
s η

4−k
2

s ds− 4− k
2
√

2π

t∫
0

X2
s

|ψ′(Xs)|
ψ(Xs)

η
2−k
2

s ds

− 2

t∫
0

Xsη
2−k
2

s dWs.
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This implies

1

t

t∫
0

θ
k
2
s ds =

1

t
(X2

t η
4−k
2

t −X2
0η

4−k
2

0 )− 1

t

t∫
0

Xs
ψ′(Xs)

ψ(Xs)
θ
k
2
s ds

+
(4− k)q

2t

t∫
0

X2
s η

4−k
2

s ds

− 4− k
2t
√

2π

t∫
0

X2
s

|ψ′(Xs)|
ψ(Xs)

η
2−k
2

s ds− 2

t

t∫
0

Xsη
2−k
2

s dWs

Therefore,

1

t

t∫
0

E(θ
k
2
s )ds =

1

t
(E(X2

t η
4−k
2

t )− E(X2
0η

4−k
2

0 ))− 1

t

t∫
0

E(Xs
ψ′(Xs)

ψ(Xs)
θ
k
2
s )ds

+
(4− k)q

2t

t∫
0

E(X2
s η

4−k
2

s )ds

− 4− k
2t
√

2π

t∫
0

X2
s

|ψ′(Xs)|
ψ(Xs)

η
2−k
2

s ds− 2

t
E

t∫
0

Xsη
2−k
2

s dWs. (5.2.36)

The last expectation is zero since
t∫

0

Xsη
2−k
2

s dWs is a square integrable martingale for

k = 1, 2 (by the finiteness of moments of Xt and ηt). For k ≥ 3 we have

E
( t∫

0

Xsη
2−k
2

s dWs

)2

= E
( t∫

0

Xsθ
k−2
2

s dWs

)2

=

t∫
0

E(X2
s θ

k−2
s )ds ≤

t∫
0

√
E(X4

s )Eθ
2(k−2)
s ds

≤

√√√√√ t∫
0

E(X4
s )ds

√√√√√ t∫
0

E(θ
2(k−2)
s )ds,
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where the last two inequalities follow from Holder by taking p = q = 1
2
. The first term

E(X4
s ) is finite for any t > 0. For the second term note that from the SDE of θ

dθt = θt

(
q − 1√

2π

|ψ′(Xt)|
ψ(Xt)

θt

)
dt ≤ qθtdt

⇒ θ
2(k−2)
t ≤ θ

2(k−2)
0 e2qt(k−2), (5.2.37)

for any k ∈ N. Therefore
t∫

0

E(θ
2(k−2)
s )ds <∞ for any t ∈ [0, T ], T > 0. Therefore for any

t > 0,
t∫

0

Xsθ
k−2
2

s dWs is a square integrable martingale on [0, T ]and hence its expectation

is zero. Therefore removing that term we have for any k ∈ N,

1

t

t∫
0

E(θ
k
2
s )ds =

1

t
(E(X2

t η
4−k
2

t )− E(X2
0η

4−k
2

0 ))− 1

t

t∫
0

E(Xs
ψ′(Xs)

ψ(Xs)
θ
k
2
s )ds

+
(4− k)q

2t

t∫
0

E(X2
s η

4−k
2

s )ds

− 4− k
2t
√

2π

t∫
0

E
(
X2
s

|ψ′(Xs)|
ψ(Xs)

η
2−k
2

s

)
ds

︸ ︷︷ ︸
A1

. (5.2.38)

Now since A1 := 4−k
2t
√

2π
X2
s
|ψ′(Xs)|
ψ(Xs)

η
2−k
2

s ≥ 0, almost surely for 1 ≤ k ≤ 4 we have for these

values of k

sup
t>1

1

t

t∫
0

E(θ
k
2
s )ds ≤ sup

t>1

1

t
(E(X2

t η
4−k
2

t )− E(X2
0η

4−k
2

0 ))︸ ︷︷ ︸
B1

+ sup
t>1

1

t

t∫
0

E(|Xs
ψ′(Xs)

ψ(Xs)
θ
k
2
s |)ds︸ ︷︷ ︸

C1

+
(4− k)q

2
sup
t>1

1

t

t∫
0

E(X2
s η

4−k
2

s )ds

︸ ︷︷ ︸
D1

. (5.2.39)

For the term

C1 := sup
t>1

1

t

t∫
0

E(|Xs|Zsθ
k
2
s ds),
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where Zs = |ψ′(Xs)|
ψ(Xs)

, we have for any k ∈ N,

1

t

t∫
0

|Xs|Zsθ
k
2
s ds =

1

t

t∫
0

|Zs|
k
k+1 θ

k
2
s |Xs|Z

1
k+1
s ds

≤
(1

t

t∫
0

Zsθ
k+1
2

s ds
) k
k+1
(1

t

t∫
0

|Xs|k+1Zsds
) 1
k+1
, (5.2.40)

which follows from the Holder’s inequality with p = k+1
k

and q = k + 1. Therefore,

E
(1

t

t∫
0

|Xs|Zsθ
k
2
s

)
≤ E

((1

t

t∫
0

Zsθ
k+1
2

s ds
) k
k+1
(1

t

t∫
0

|Xs|k+1Zsds
) 1
k+1
)

≤
(
E
(1

t

t∫
0

Zsθ
k+1
2

s ds
)) k

k+1 ×
(
E
(1

t

t∫
0

|Xs|k+1Zsds
)) 1

k+1

=
(1

t

t∫
0

E(Zsθ
k+1
2

s )ds
) k
k+1
(1

t

t∫
0

E(|Xs|k+1)Zsds
) 1
k+1
,

where the last inequality follows from Holder’s inequality with p = k+1
k

and q = k + 1.

Therefore

C1 = sup
t>1

E
(1

t

t∫
0

|Xs|Zsθ
k
2
s

)
≤

(
sup
t>1

1

t

t∫
0

E(Zsθ
k+1
2

s )ds
) k
k+1

(
sup
t>1

1

t

t∫
0

E(|Xs|k+1)Zsds
) 1
k+1
, (5.2.41)

From the hypothesis of the Theorem we have

1

t

t∫
0

E(|Xs|k+1Zs)ds ≤
1

t

t∫
0

E(|Xs|k+1(a|Xs|+ b))ds,

=
1

t

( t∫
0

(
aE|Xs|k+2 + bE|Xs|k+1

)
ds
)
. (5.2.42)



General target and proposal distributions 148

This implies from Equation (5.2.41) that

C1 ≤ sup
t>1

(1

t

t∫
0

E(Zsθ
k+1
2

s )ds
) k
k+1

︸ ︷︷ ︸
E1

× sup
t>1

(1

t

t∫
0

(aE|Xs|k+2 + bE|Xs|k+1)ds
) k
k+1

(5.2.43)

Note that for k = 1, Lemma 30 implies that E1 is finite. This with the fact that the

moments of Xt are uniformly bounded (by Equation (5.2.25) of Theorem 7) implies that

C1 is finite for k = 1. Again the terms B1 and D1 in Equation (5.2.39) is finite by the

finiteness of moments of Xt and ηt and by a simple application of the Cauchy-Schwartz

inequality. Hence the Theorem is true for k = 1. This completes the first step of the

induction.

Assume that the hypothesis is true for m = k − 1, that is,

sup
t>1

1

t

t∫
0

E(θ
k−1
2

s )ds ≤ C <∞. (5.2.44)

We proceed to show that the hypothesis is true for m = k, that is

sup
t>1

1

t

t∫
0

E(θ
k
2
s )ds ≤ C <∞. (5.2.45)

For the term E1 in Equation (5.2.43) we have that for any k > 1,

dθ
k−1
2

t =
k − 1

2
θ
k−1
2
−1

t dθt =
k − 1

2
θ
k−1
2

t

(
q − 1√

2π

|ψ′(Xs)|
ψ(Xs)

θt

)
dt

=
q(k − 1)

2
θ
k−1
2

t dt− k − 1

2

1√
2π

|ψ′(Xs)|
ψ(Xs)

θ
k+1
2

t dt

(5.2.46)
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⇒ k − 1

2
√

2π

t∫
0

Zsθ
k+1
2

s ds =

t∫
0

q(k − 1)

2
θ
k−1
2

s ds− (θ
k−1
2

t − θ
k−1
2

0 ) (recall Zs = |ψ′(Xs)|
ψ(Xs)

)

⇒ 2
√

2π

k − 1
E(θ

k−1
2

t ) +

t∫
0

E(Zsθ
k+1
2

s )ds = q
√

2π

t∫
0

E(θ
k−1
2

s )ds

+
2
√

2π

k − 1
E(θ

k−1
2

0 )

⇒ E1 = sup
t>1

1

t

t∫
0

E
(
Zsθ

k+1
2

s ds
)
≤ q

√
2π sup

t>1

1

t

t∫
0

E
(
θ
k−1
2

s ds
)

+
2
√

2π

k − 1
sup
t>1

1

t
E
(
θ
k−1
2

0

)
. (5.2.47)

Plugging (5.2.47) and (5.2.42) in (5.2.41) we get

C1 = sup
t>1

1

t

t∫
0

E(|Xs|Zsθ
k
2
s )ds ≤ sup

t>1

(
q
√

2π sup
t>1

1

t

t∫
0

E(θ
k−1
2

s )ds

+
2
√

2π

k − 1

1

t
E(θ

k−1
2

0 )
) k
k+1

×
(

sup
t>1

1

t

t∫
0

(aE|Xs|k+2 + bE|Xs|k+1)ds
) 1
k+1
.

(5.2.48)



General target and proposal distributions 150

Therefore C1 is finite by assumption (5.2.44) and finiteness of moments of Xt.

And finally plugging (5.2.48) in (5.2.39) we get for 2 ≤ k ≤ 4

sup
t>1

1

t

t∫
0

E(θ
k
2
s )ds ≤ sup

t>1

1

t
E(X2

t η
4−k
2

t −X2
0η

4−k
2

0 )

+
(
q
√

2π sup
t>1

1

t

t∫
0

E(θ
k−1
2

s )ds

+
2

k − 1

√
2π sup

t>1

1

t
E(θ

k−1
2

0 )
) k
k+1

×
(

sup
t>1

1

t

t∫
0

(aE|Xs|k+2 + bE|Xs|k+1)ds
) 1
k+1

+
(4− k)q

2
sup
t>1

1

t

t∫
0

E(X2
s η

4−k
2

s )ds. (5.2.49)

By the assumption (5.2.44) and the uniform boundedness of moments of Xt and ηt all

terms in the R.H.S of the above equation is finite. However for k > 4 we have the negative

values of A1 in Equation (5.2.39) and the term D1 is negative. Therefore

sup
t>1

1

t

t∫
0

E(θ
k
2
s )ds ≤ sup

t>1

1

t
E(X2

t θ
k−4
2

t︸ ︷︷ ︸
G1

−X2
0θ

k−4
2

0 )

+
k − 1

2

(
q
√

2π sup
t>1

1

t

t∫
0

E(θ
k−1
2

s )ds

+
√

2π sup
t>1

1

t
E(θ

k−1
2

0 )
) k
k+1

×
(

sup
t>1

1

t

t∫
0

(aE|Xs|k+2 + bE|Xs|k+1)ds
) 1
k+1

+
k − 4

2
√

2π
sup
t>1

1

t

t∫
0

E(X2
s

|ψ′(Xs)|
ψ(Xs)

θ
k−2
2

s ds)

︸ ︷︷ ︸
F1

. (5.2.50)
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Now for the term

F1 :=
k − 4

2
√

2π
sup
t>1

1

t

t∫
0

E(X2
s

|ψ′(Xs)|
ψ(Xs)

θ
k−2
2

s ds)

note that

t∫
0

X2
s

|ψ′(Xs)|
ψ(Xs)

θ
k−2
2

s ds =

t∫
0

X2
sZsθ

k−2
2

s ds

=

t∫
0

Z
k−2
k+1
s θ

k−2
2

s︸ ︷︷ ︸ |Xs|2Z
3
k+1
s︸ ︷︷ ︸ ds

≤
( t∫

0

Zsθ
k+1
2

s ds
) k−2
k+1
( t∫

0

|Xs|
2(k+1)

3 Zsds
) 3
k+1
,

which follows from Holder’s inequality by taking p = k+1
k−2

and q = k+1
3

. This implies that

sup
t>1

1

t
E
( t∫

0

X2
sZsθ

k−2
2

s ds
)
≤ sup

t>1

(1

t

t∫
0

E(Zsθ
k+1
2

s )ds
) k−2
k+1

× sup
t>1

(1

t

t∫
0

E(|Xs|
2(k+1)

3 Zs)ds
) k−2
k+1
,

which follows by a similar application of Holder’s inequality with the same value of p and

q. Now it has been shown in Equation (5.2.47) that by induction hypothesis,

sup
t>1

(1

t

t∫
0

E(Zsθ
k+1
2

s )ds
)
≤ C <∞.

Applying condition in Equation (5.2.1) we have that

E(|Xs|
2(k+1)

3 Zs) ≤ E
(
|Xs|

2(k+1)
3 (a|Xs|+ b)

)
= E

(
|Xs|

2k+5
3 + b|Xs|

2(k+1)
3

)
⇒ sup

t>1

1

t

t∫
0

E(|Xs|
2(k+1)

3 Zs)ds < ∞, (5.2.51)
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which follows form the uniform boundedness of all moments of Xt. For the term G1 =

sup
t>1

1
t
E(X2

t θ
k−4
2

t ), an application of Young’s inequality with p = k−1
k−4

and q = k−1
3

gives

X2
t θ

k−4
2

t ≤ 3

k − 1
X

2(k−1)
3

t +
k − 4

k − 1
θ
k−1
2

t

⇒ sup
t>1

1

t
E(X2

t θ
k−4
2

t ) ≤ 3

k − 1
sup
t>1

1

t
E(X

2(k−1)
3

t ) +
k − 4

k − 1
sup
t>1

1

t
E(θ

k−1
2

t ). (5.2.52)

Now the first quantity on the right hand side of the above inequality is finite by the

finiteness of the moments of Xt. For the second term we have by (5.2.46)

dθ
k−1
2

t =
q(k − 1)

2
θ
k−1
2

t dt− k − 1

2

1√
2π

|ψ′(Xt)|
ψ(Xt)

θ
k+1
2

t dt

≤ q(k − 1)

2
θ
k−1
2

t dt

⇒ θ
k−1
2

t ≤ θ
k−1
2

0 +
q(k − 1)

2

t∫
0

θ
k−1
2

s ds

⇒ sup
t>1

1

t
E(θ

k−1
2

t ) ≤ sup
t>1

1

t
E(θ

k−1
2

0 ) +
q(k − 1)

2
sup
t>1

1

t

t∫
0

E(θ
k−1
2

s )ds <∞,

by the induction hypothesis (5.2.44) and the hypothesis of the theorem. This proves that

sup
t>1

1

t
E(X2

t θ
k−4
2

t ) < ∞

which in turn proves that all terms in the R.H.S of Equation (5.2.50) is finite. This

proves, for any k > 4 Equation (5.2.45) holds. This proves the theorem. �.

Remark 31. To find the almost sure bound to the growth of 1
t

t∫
0

θsds (instead of the

expected value) we need to find the almost sure growth of Xt, t > 0 or 1
t

t∫
0

Xsds. However,

this is available when the two dimensional diffusion has an unique invariant distribution,

say µ(·) and it is jointly ergodic i.e.,

1

t

t∫
0

f(Xs, θs)ds→
∫
fdµ,
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whenever
∫
|f |dµ <∞.

Remark 32. For the AMCMC with target density ψ(·) we have

θt =
eqt

η0 + 1√
2π

t∫
0

eqs |ψ
′(Xs)|
ψ(Xs)

ds

⇒ θ2
t ≥

e2qt

2η2
0 + eqt−1

πq2

t∫
0

eqsE(ψ
′(Xs)
ψ(Xs)

)2ds

Since |ψ
′(Xs)|
ψ(Xs)

< a|Xs|+ b, we have

E(θ2
t ) ≥

e2qt

2η2
0 + eqt−1

πq

t∫
0

eqsE(a|Xs|+ b)2ds

,

≥ e2qt

2η2
0 + eqt−1

πq

t∫
0

eqs
(
a2M2 + b2 + 2abM1

)
ds

,

where M2 and M1 are uniform bounds for sup
t>0

E(X2
t ) and sup

t>0
E(|Xt|). Therefore

lim inf
t→∞

E(θ2
t ) ≥

πq2

b2 + a2M2 + 2abM1

lim inf
t→∞

1

t

t∫
0

E(θ2
s)ds ≥

πq2

b2 + a2M2 + 2abM1

.

This gives a lower bound to the growth of θt.

Remark 33. The interval (−∞,∞) is a natural boundary for the SDE corresponding to

the SMCMC, i.e, Equation (3.4.2). For a one dimensional diffusion whose generator is

given by

b(x)
∂

∂x
+ a(x)

∂2

∂x2
,

an interval (ri, rj) is natural if it is not regular, exit or an entrance boundary, see the

definitions in pg.516 of [24]. Indeed, define W (x) = exp(−
∫ x
x0
b(s)a−1(s)ds), for some

x0 ∈ (−∞,∞). For the general target distribution ψ(·), W (x) = exp(−
x∫
x0

ψ′(s)
ψ(s)

ds). In the
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standard Normal case,

W (x) = exp(

∫ x

x0

sds) = exp(
1

2
(x2 − x2

0))

which is not integrable in (x0,∞). Again,

W (x)

∫ x

x0

a−1(s)W−1(s)ds =
1

θ0

exp(
x2

2
)

∫ x

x0

e−
s2

2 ds

=

√
2π

θ0

exp(
x2

2
)(Φ(x)− Φ(x0)).

The quantity on the RHS of the last equation is not integrable in R . Indeed, since for

large x, exp(x
2

2
)Φ(x) ≈ exp(x

2

2
)φ(x)

x
= 1

x
it is not integrable in (−∞,∞).

5.2.4 Heavy tailed target distribution

In this section we consider densities satisfying condition in (5.2.4). We showed that in

such cases the m.g.f does not exists. We give some examples.

Example 1: (Standard Cauchy density) For the standard Cauchy density ψ(x) =
1
π

1
1+x2

. Hence the LHS of (5.2.2) is

x
ψ′(x)

ψ(x)
= − 2x2

1 + x2

= −2
(

1− 1

1 + x2

)
→ −2 as |x| → ∞.

�

Example 2: (Pareto tails) Consider the Pareto distribution with tails following a power

law i.e., F (x) := 1 − F (x) ∼ 1
xα

where α > 0. This would imply that ψ(x) ∼ x−(1+α).

Then the LHS of (5.2.2) takes the value

x
ψ′(x)

ψ(x)
∼ −(1 + α),
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which tends to −(1 + α) as |x| → ∞. So the Pareto distribution satisfy condition

(5.2.4). �

If the target density is Standard Cauchy then ψ(x) = 1
π(1+x2)

⇒ ψ′(x)
ψ(x)

= − 2x
1+x2

. Therefore

the SDE of (Xt, θt) will be

dXt = −θ2
t

Xt

1 +X2
t

dt+ θtdWt, (5.2.53)

dθt = θt

(
q −

√
2

π

|Xt|
1 +X2

t

dt
)

(5.2.54)

Define Vt = 1 +X2
t and Ct =

t∫
0

θ2
sV
−1
s ds. Then we have the following lemma.

Lemma 31. Let Xt and θt be the solutions of the SDE (5.2.53) and (5.2.54). If X0 and

θ0 are independent and the m.g.f of θ2
0 exists for all t ∈ R then

E
(
e−Ct

t∫
0

eCsXsθsdWs

)
= 0,

where Vt = 1 +X2
t and Ct =

t∫
0

θ2
sV
−1
s ds.

Proof: Define Zt = e−CtYt where Yt =
t∫

0

eCsXsθsdWs. Then it can be proved using

methods from Lemma 12 that Zt is symmetric about zero. To claim that its expectation

is zero we need to prove that E(|Zt|) <∞, ∀t. Since E|Zt| <
√
E(e−2ct)E(Y 2

t ), thus, for

each T > 0, it is sufficient to show that

E(

t∫
0

e2Csθ2
sX

2
sds) <∞ for all t ∈ [0, T ]. (5.2.55)

From the SDE of θt (5.2.54) we have

dθ2
t = 2θtdθt = 2θ2

t

(
q −

√
2

π

|Xt|
1 +X2

t

dt
)
≤ 2qθ2

t

⇒ θ2
t ≤ θ2

0e
2qt (5.2.56)
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From the SDE of Xt (5.2.53) we have

Xt = X0 −
t∫

0

θ2
s

Xs

1 +X2
s

+

t∫
0

θsdWs

⇒ X2
t ≤ D2

(
X2

0 + (

t∫
0

θ2
s

2

2Xs

1 +X2
s

ds)2 + (

t∫
0

θsdWs)
2
)

≤ D2

(
X2

0 +
1

4
(

t∫
0

θ2
0e

2qsds)2 + (

t∫
0

θsdWs)
2
)

= D2

(
X2

0 +
θ4

0

4
(
e2qt − 1

2q
)2 + (

t∫
0

θsdWs)
2
)
, (5.2.57)

for some D2 > 0. Also

e2Cs ≤ e
2
s∫
0

θ2udu ≤ eθ
2
0e

(2qs−1)/q

.

Therefore

E(

t∫
0

e2Csθ2
sX

2
sds) ≤ E

( t∫
0

eθ
2
0e

(2qs−1)/q

θ2
0e

2qsX2
sds
)

≤ D2E
(
θ2

0

t∫
0

eθ
2
0e

(2qs−1)/q+2qs
(
X2

0 +
θ4

0

4
(
e2qs − 1

2q
)2

+(

s∫
0

θudWu)
2ds
))

≤ D2

(
E
(
θ2

0X
2
0

t∫
0

eθ
2
0e

(2qs−1)/q+2qsds
)

+
1

4
E
(
θ6

0

t∫
0

(
e2qs − 1

2q
)2eθ

2
0e

(2qs−1)/q+2qsds
)

+

t∫
0

E
(
eθ

2
0e

(2qs−1)/q+2qs
(
θ0

s∫
0

θudWu

)2

ds
))

(5.2.58)
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The expectation in the last integral of (5.2.58) can be written as

E
(
θ2

0e
θ20e

2qs−1
2 +2qs

(

s∫
0

θudWu)
2
)
≤

√√√√√E
(
θ4

0e
2θ20e

2qs−1
2 +2qs

)
E
( s∫

0

θudWu

)4

.

Since θ0 is a positive random variable and its m.g.f exists for all t ∈ R the m.g.f of any

power of θ0 also exist for any t ∈ R. Therefore by the Cauchy Schwarz inequality the first

expectation in the RHS of the last inequality is finite. For the second expectation note

that since Ms :=
s∫

0

θudWu is a square integrable martingale we apply the BDG inequality

to get

E(

s∫
0

θudWu)
4 ≤ D4E(

s∫
0

θ2
udu)2, for some D4 <∞,

≤ D4E(

s∫
0

θ2
0e

2qsds) = D4
e2qs − 1

2q
E(θ2

0), (5.2.59)

where D4 ∈ (0,∞) is a constant. Hence plugging the value obtained in (5.2.59) to (5.2.58)

and applying the hypothesis in the Lemma to (5.2.58) we see that E
t∫

0

e2Csθ2
sX

2
sds <∞,

for any t ∈ [0, T ], T <∞. This proves the lemma. �

The following theorem gives a sufficient condition for the limiting second moment to be

finite.

Theorem 10. If ψ(·) is the standard Cauchy density then lim sup
t→∞

E(X2
t ) < ∞ if the

hypothesis of Lemma 31 holds.
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Proof: Applying Itô’s lemma to Vt := 1 +X2
t we have

dVt = 2XtdXt + 2
1

2
(dXt)

2

= 2Xt

(θ2
t

2

ψ′(Xt)

ψ(Xt)
)dt+ θtdWt

)
+ θ2

t dt

= 2Xt

(
−θ2

t

Xt

1 +X2
t

dt+ θtdWt

)
+ θ2

t dt

= − 2X2
t θ

2
t

1 +X2
t

dt+ θ2
t dt+ 2XtθtdWt

= −2θ2
t (

1 +X2
t − 1

1 +X2
t

)dt+ θ2
t dt+ 2XtθtdWt

= −2θ2
t (1−

1

1 +X2
t

)dt+ θ2
t dt+ 2XtθtdWt

⇒ dVt = −2θ2
t dt+

2θ2
t

1 +X2
t

dt+ θ2
t dt+ 2XtθtdWt

⇒ dVt + θ2
t dt = 2θ2

tV
−1
t dt+ 2XtθtdWt

Multiplying by the integrating factor e

t∫
0

θ2sV
−1
s ds

:= eCt on both sides we get

d
(
Vte

Ct
)

= eCt
(

2θ2
tV
−1
t dt+ 2XtθtdWt

)
Integrating from 0 to t on both sides

Vt = V0e
−Ct + 2e−Ct

t∫
0

eCsθ2
sV
−1
s ds+ 2e−Ct

t∫
0

eCsXsθsdWs

= V0e
−Ct + 2e−Ct(eCt − 1) + 2e−Ct

t∫
0

eCsXsθsdWs (since d(eCt) = eCtθ2
tV
−1
t dt)

= V0e
−Ct + 2(1− e−Ct) + 2e−Ct

t∫
0

eCsXsθsdWs

⇒ E(Vt) = E(V0e
−Ct) + 2E(1− e−Ct) + 2E

(
e−Ct

t∫
0

eCsXsθsdWs

)
. (5.2.60)
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The third expectation is zero by Lemma 31. Therefore from (5.2.60)

E(Vt) ≤ K1 <∞ for all t > 0, and hence,

lim sup
t→∞

E(X2
t ) < K for some K <∞.

This proves the theorem. �

Lemma 32. Under the hypothesis of Lemma 31 if E(η2k
0 ) <∞ then

sup
t>0

E(η2k
t ) <∞.

Proof: Following the proof for the Normal distribution in Lemma 15 we can conclude

that the moments of ηt := 1
θt

are finite. Indeed,

dθt = θt

(
q − θt

√
2

π

|Xt|
1 +X2

t

)
dt

⇒ dηt = − 1

θ2
t

dθt =
(
−qηt +

√
2

π

|Xt|
1 +X2

t

)
dt

Multiplying by the integrating factor eqt on both sides of above we have

d
(
eqtηt

)
=

√
2

π
eqt
|Xt|

1 +X2
t

dt

⇒ ηt = η0e
−qt +

√
2

π

t∫
0

e−q(t−s)
|Xs|

1 +X2
s

ds

≤ η0e
−qt +

√
1

2π

t∫
0

e−q(t−s)ds, since 2|x|
1+x2

≤ 1,

⇒ η2k
t ≤ 22k−1

(
η2k

0 e
−2kqt +

( 1

2π

)k( t∫
0

e−q(t−s)ds
)2k)

≤ 22k−1
(
η2k

0 e
−2kqt +

1

(2π)k

(1− e−qt

q

)2k)
⇒ sup

t>0
E(η2k

t ) < Mk <∞. (5.2.61)

This completes the proof of the lemma. �
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Remark 34. Similar to the arguments given in Remark 28 one can conclude that if the

m.g.f of X0 and η0 exist for t ∈ R and under the hypothesis of Lemma 31 the m.g.f. of

supt>0E(esηt) <∞. for all s ∈ R.

Remark 35. From Theorem 10, Lemma 32 and applying the argument given in Lemma

16 of Chapter 4 we get that the process {(Xt, ηt)}t>0 is tight. Hence, if the limiting

distribution exists for this one, then its X-marginal cannot be standard Cauchy since the

latter do not have moments of order one or higher. Following Stramer and Tweedie [63],

SMCMC will have the same diffusion equation as in (3.4.2) and thus will have the same

invariant distribution as in [63]. Since the proof of the bounds of the second moments

of the diffusion {Xt} corresponding to SMCMC is exactly similar to that of Theorem 10

(proved for AMCMC), we can conclude that the limiting distribution in this case cannot

be standard Cauchy either. This means that if we simulate from the diffusions generated

by the SMCMC or the AMCMC algorithms, with a fixed starting point and using the

standard Cauchy as the target density, we end up in a different distribution which is not

standard Cauchy. Perhaps it is due to the assumption of finite second moment of X2
0 and

the existence of m.g.f of θ0.

Remark 36. The computations of Theorem 10 and Lemma 32 and their interpretation

given in Remark 45 can easily be extended to the case when the target distribution is

from a symmetric Pareto law, in particular as in α < 2. Thus, similar conclusions may

be drawn for the case when the target distribution is from a symmetric stable law.

Remark 37. From an examination of the proof of Theorem 10 it is easily seen that the

finiteness of the moments of Xt results from the fact that the moments of X0 are all finite

(this is true if the starting point is non random). However we believe that if the initial

data does not have a finite second ordered moment, in particular the Cauchy distribution,

then the limiting distribution may be standard Cauchy.

Remark 38. For densities ψ(·) which has support on only one side of R, say R+ one

has to apply the diffusion approximation technique on ψ̃(x) = ψ(x)+ψ(−x)
2

, which is the

symmetric version of ψ(·). Then use the result here on ψ̃ to get samples (X1, X2, . . . , Xn)

from ψ̃. Taking the absolute values (|X1|, |X2|, . . . , |Xn|) will give a sample from ψ(·).
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5.3 Multi-dimensional target distribution

In this section we consider the situation when the target distribution is a multivariate

distribution ψ(x), x ∈ Rp. Suppose the proposal distribution is multivariate Normal

Np(0,Σ). Then the adaptive algorithm will be given as:

Algorithm 3

1. Select arbitrary (X0, θ0, ξ0) ∈ Rp × (0,∞)× {0, 1}. Set n = 1;

2. Propose a new move, say Y ∼ Np(Xn−1,Σn−1) where Σn−1 = θn−1Ip, Ip being the

identity matrix of dimension p;

3. Accept the new point with probability α(Xn−1,Y) = min{1, ψ(Y)
ψ(Xn−1)

}, ξn = 1 if the

sample is accepted else ξn = 0;

4. θn = θn−1e
1√
n

(ξn−q), q > 0, ⇔ log(θn) = log(θn−1) + 1√
n
(ξn − q);

5. n← n+ 1 and go to step 2.

This algorithm is equivalent to the following:

Algorithm 3′:

1. Select {X0, θ0, ξ0} ∈ Rp × (0,∞)× {0, 1}, where Rp is the state space. Set n = 1;

2. Generate εn−1 ∼ Np(0,Σn−1) where Σn−1 = θn−1Ip. Given Xn−1, θn−1, εn−1 gener-

ate

ξn ∼ Bernoulli
(

min

{
1,
ψ(Xn−1 + θn−1εn−1)

ψ(Xn−1)

})
and then

Xn = Xn−1 + θn−1ξnεn−1;

3. θn = θn−1e
1√
n

(ξn−q), q > 0, ⇔ log(θn) = log(θn−1) + 1√
n
(ξn − q), q > 0;

4. n← n+ 1, and go to step 2.
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Remark 39. In Algorithm 3 all the co-ordinates Xin, i = 1, . . . , p, for a fixed n ≥ 1, are

scaled by the same factor θn−1. This can be generalised where different co-ordinates are

updated differently depending whether it is more mixing or not. We do not follow that

approach here. For more information see [8].

For the multivariate AMCMC, with the multivariate Normal proposal distribution, we

now state the diffusion approximation which is somewhat similar to the univariate AM-

CMC case as in Section 3.3 of Chapter 3. We also give the proof since it uses a slightly

different method when compared to that of the univariate case and requires the spherical

symmetry property of the multivariate Normal (0, Ip) distribution.

Theorem 11. Applying the diffusion approximation (see Section 3.3) to Algorithm 3

such that ||∇ψ(x)|| = 0 on at most finitely many points, the diffusion corresponding to

Yt = (Xt, θt) will be the solution of the following SDE:

dYt = b(Yt)dt+ σ(Yt)dWt, (5.3.62)

where b(Yt) =
(
θ2t
2
∇ logψ(Xt), θt(q − 1√

2π
θt||∇ logψ(Xt)||)

)T
, and

σ(Yt) =

(
θtIp 0p×1

01×p 0

)
.

Here ∇ logψ(Xt) = 1
ψ(Xt)

(
∂

∂x1t
ψ(Xt),

∂
∂x2t

ψ(Xt), . . . ,
∂

∂xpt
ψ(Xt)

)T
= ∇ψ(Xt)T

ψ(Xt)
is the vector

of partial derivatives of logψ(x), Xt =
(
X1t, X2t, . . . , Xpt

)T
is the state vector, θt is the

tuning parameter and Wt =
(
W1t,W2t, . . . ,W(p+1)t

)T
is the (p + 1)-dimensional Wiener

process.

Proof: Following the arguments and notations as in Section 3.3 of Chapter 3 we have to
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compute the ‘diffusion’ and the ‘drift’ coefficients which in this case are defined as:

bn,1(y, t) = nE
(
Xn(

i+ 1

n
)−Xn(

i

n
)|Yn(

i

n
) = y

)
,

bn,2(y, t) = nE
(
θn(

i+ 1

n
)− θn(

i

n
)|Yn(

i

n
) = y

)
,

An,1,1(y, t) = nE
(

(Xn(
i+ 1

n
)−Xn(

i

n
))(Xn(

i+ 1

n
)−Xn(

i

n
))T |Yn(

i

n
) = y

)
,

An,2,2(y, t) = nE
(

(θn(
i+ 1

n
)− θn(

i

n
))2|Yn(

i

n
) = y

)
, and

An,1,2(y, t) = nE
(

(θn(
i+ 1

n
)− θn(

i

n
))(Xn(

i+ 1

n
)−Xn(

i

n
))|Yn(

i

n
) = y

)
.

Now,

bn,1(y, t) =
√
nθ
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)IAn| Xn(

i

n
) = x, θn(

i

n
) = θ)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)IAcn| Xn(

i

n
) = x, θn(

i

n
) = θ)

)
where An(= An(x, θ)) is the set where ξn( i+1

n
) is one with probability 1, i.e,

An = {y :
ψ(x + 1√

n
θy)

ψ(x)
≥ 1}

= {y : (ψ(x) +
1√
n
θ∇ψ(x)Ty +O(

1

n
))/ψ(x) ≥ 1}

= {y :
1√
n
θ∇ψ(x)Ty +O(

1

n
) ≥ 0}.

This implies that,

lim
n→∞

An = {y : ∇ψ(x)Ty ≥ 0} := A (= A(x, θ)).
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Therefore,

bn,1(y, t) =
√
nθ
(∫
An
εφ(ε)dε+

∫
Acn

ψ(x + 1√
n
θε)

ψ(x)
εφ(ε)dε

)
=
√
nθ
(∫
An
εφ(ε)dε+

∫
Acn

(1 +
θ√

nψ(x)
∇ψ(x)T ε)εφ(ε) +O(

1

n
)
)

=
√
nθ

∫
Rp
εφ(ε)dε+ θ2 1

ψ(x)

∫
Acn

(∇ψ(x)T ε)εφ(ε)dε+O(
1√
n

)

= θ2 1

ψ(x)

∫
Acn

(∇ψ(x)T ε)εφ(ε)dε+O(
1√
n

)

⇒ lim
n→∞

bn,1(y, t) = θ2 1

ψ(x)
lim
n→∞

∫
Acn

(∇ψ(x)T ε)εφ(ε)dε

= θ2 1

ψ(x)

∫
Ac

(∇ψ(x)T ε) εφ(ε)dε. (5.3.63)

Consider the transformation

ε :→ PT ε = Z = (Z1, Z2, . . . , Zp)
T , (5.3.64)

where P is an orthogonal matrix whose first column is ∇ψ(x)
||∇ψ(x)|| := P1, whenever ||∇ψ(x)|| 6=

0. Therefore ∇ψ(x)T ε = (||∇ψ(x)||P1)T ε = ||∇ψ(x)||P T
1 ε = ||∇ψ(x)||Z1. Correspond-

ingly ε = PZ. The Jacobian of the transformation (5.3.64) is 1 and Zi, i = 1, 2, . . . , p are

i.i.d N(0, 1), since εi, i = 1, 2, . . . , p are also i.i.d standard Normal. The integral in the

RHS of Equation (5.3.63) is therefore∫
Ac

(∇ψ(x)T ε)εφ(ε)dε = ||∇ψ(x)||
∫
{Z1<0}

Z1PZφ(z)dz

= ||∇ψ(x)||
∫
{Z1<0}

Z1

p∑
i=1

PiZiφ(z)dz

= ||∇ψ(x)||
(
P1

∫
{Z1<0}

Z2
1φ(z)dz +

p∑
i=2

Pi

∫
{Z1<0}

Z1Ziφ(z)dz
)

= ||∇ψ(x)||P1

∫
{Z1<0}

Z2
1φ(z)dz (since Zi’s are independent and E(Zi) = 0)

= ||∇ψ(x)||P1

2

=
1

2
∇ψ(x), since P1 = ∇ψ(x)

||∇ψ(x)|| .
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Therefore

b1(y, t) =
θ2

2

∇ψ(x)

ψ(x)
=
θ2

2
∇ logψ(x). (5.3.65)

For bn,2(y, t) we have

bn,2(y, t) = nE(θn(
i+ 1

n
)− θn(

i

n
)|Yn(

i

n
) = y), ∀i = 0, 1, . . .

= nE
(
θn(

i

n
){e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1}|Yn(
i

n
) = y

)
= nθ

( 1√
n
E(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y)

+ E(
1

2n
(ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y) +O(

1

n3/2
)
)

= θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y)

+
θ

2
E((ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y) +O(

1√
n

).

Now for the first term ,

θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

= θ
√
n
(
E(ξn(

i+ 1

n
)|Yn(

i

n
) = y)− qn(

i

n
)
)

= θ
√
n
(∫

An

φ(ε)dε+

∫
Acn

ψ(x + 1√
n
θε)

ψ(x)
φ(ε)dε− qn(

i

n
)
)

= θ
√
n
(∫
An
φ(ε)dε+

∫
Acn
{1 +

θ√
n

∇ψ(x)T

ψ(x)
ε+O(

1

n
)}φ(ε)dε− qn(

i

n
)
)

= θ
√
n(1− qn(

i

n
)) +

θ2

ψ(x)

∫
Acn
∇ψ(x)T εφ(ε)dε+O(

1√
n

).
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And for the second term ,

E
(

(ξn(
i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y

)
= E

(
ξn(

i+ 1

n
)2|Yn(

i

n
) = y

)
− 2qn(

i

n
)E
(
ξn(

i+ 1

n
)|Yn(

i

n
) = y

)
+ qn(

i

n
)2

=

∫
An
φ(ε)dε+

∫
Acn

ψ(x + 1√
n
θε)

ψ(x)
φ(ε)dε

− 2qn(
i

n
)
(∫
An
φ(ε)dε+

∫
Acn

ψ(x + 1√
n
θε)

ψ(x)
φ(ε)dε

)
+ qn(

i

n
)2

= (1− qn(
i

n
))2 +

1√
n

(1− 2qn(
i

n
))θ

1

ψ(x)

∫
Acn

∇ψ(x)T εφ(ε)dε+O(
1

n
)

→ 0,

as n→∞, since as before we assume that 1− qn( i
n
) ≈ q√

n
. Therefore

1√
n

(1− 2qn(
i

n
)) ≈ 1√

n
(

2q√
n
− 1).

Thus, only the first term contributes and we have

lim
n→∞

bn,2(y, t) = θq +
θ2

ψ(x)
lim
n→∞

∫
Acn

(∇ψ(x)T ε)φ(ε)dε

= θq +
θ2

ψ(x)

∫
Ac

(∇ψ(x)T ε)φ(ε)dε. (5.3.66)

Using the transformation used in Equation (5.3.64) above we have∫
Ac

(∇ψ(x)T )εφ(ε)dε = ||∇ψ(x)||
∫
{Z1<0}

Z1φ(z)dz

= ||∇ψ(x)||E(Z1I(Z1 < 0))

= − 1√
2π
||∇ψ(x)||.

Therefore from (5.3.66) we have

b2(y, t) = θ
(
q − 1√

2π

||∇ψ(x)||
ψ(x)

θ
)

= θ
(
q − 1√

2π
θ||∇ logψ(x)||

)
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An,1,1(y, t) = nE
(

(Xn(
i+ 1

n
)−Xn(

i

n
))(Xn(

i+ 1

n
)−Xn(

i

n
))T |Yn(

i

n
) = y

)
∀i = 0, 1, . . .

= θ2E(ξn(
i+ 1

n
)εn(

i+ 1

n
)εn(

i+ 1

n
)T |Yn(

i

n
) = y)

= θ2
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)εn(

i+ 1

n
)T IAn| Yn(

i

n
) = y)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)εn(

i+ 1

n
)T IAcn| Yn(

i

n
) = y)

)
= θ2

(∫
An

εεTφ(ε)dε+

∫
Acn

εεT
ψ(x + 1√

n
θε)

ψ(x)
φ(ε)dε

)
= θ2

(∫
An

εεTφ(ε)dε+

∫
Acn

εεTφ(ε)dε+O(
1√
n

)
)

= θ2

∫
Rp
εεTφ(ε)dε+O(

1√
n

) = θ2Ip +O(
1√
n

).

⇒ lim
n→∞

An,1,1(y, t) = θ2Ip.

The computations for A2,2(y, t) is same as that of the univariate case and is not repeated

here.

An,1,2(y, t) = nE
(
{Xn(

i+ 1

n
)−Xn(

i

n
)}{θn(

i+ 1

n
)− θn(

i

n
)}|Yn(

i

n
) = y

)
= nE

(
{ 1√

n
θn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
)}{θn(

i

n
)(e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1)}|Yn(
1

n
) = y

)
=
√
nθ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)
{ 1√

n
(ξn(

i+ 1

n
)− qn(

i

n
)) +O(

1

n
)
}
|Yn(

i

n
) = y

)
= θ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
+ O(

1√
n

).

Since ξn = 0, or 1, ξ2
n = ξn. Hence ξnεn(ξn − qn) = ξ2

nεn − ξnεnqn = ξnεn(1 − qn).

Therefore,

E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
= (1− qn(

i

n
))E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)|Yn(

i

n
) = y

)
= (1− qn(

i

n
))O(1) −→ 0, as n→∞.
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Similar computation for An,2,1 yields that limn→∞An,2,1 = limn→∞An,1,2 = 0. The drift

and the diffusion coefficient gives the limiting diffusion of the multivariate AMCMC and

this proves the theorem. �

Remark 40. For the uniqueness and the non-explosion of the solutions of the above SDE

(5.3.62) we need the local Lipschitz and the linear growth conditions as in Remark 12

and 13 of Chapter 3. This in particular would mean that ∇ logψ(·) satisfies the linear

growth condition

||∇ logψ(x)|| ≤ a||x||+ b, ∀x ∈ Rp, (5.3.67)

for some a > 0 and b ≥ 0.

Remark 41. Following the arguments similar to the proof of Theorem 7 and Lemma

25 for proving the boundedness of the moments of Xt and ηt respectively, one can give

similar bounds for sup
t>0

E(||Xt||2k) and sup
t>0

E(η2k
t ) under the assumption

xT
∇ψ(x)

ψ(x)
≤ −c||x||2 + d,

for some c > 0 and d ≥ 0 and the linear growth condition (5.3.67). Thus we get the

tightness of the p+ 1 dimensional process {Xt, ηt}. Arguing similarly as in Section 4.2.2,

one can show that the hypoelliptic conditions are satisfied. Hence, the limiting density

of {Xt, ηt} exists. Using the argument as in Section 4.2.3 of Chapter 4 one can identify

the X-marginal of the process when the target distribution is Multivariate Normal.

5.4 Stein’s lemma for Standard MCMC

Consider the Stein’s identity for a density ψ(·) (not necessarily standard Normal.) Let

X be a random variable having density π and ψ(·) be any other density such that

Eπ

(
f ′(X)

ψ′(X)

ψ(X)

)
+ Eπ

(
f ′′(X)

)
= 0, (5.4.68)

where f belongs to the class of functions for which the second derivatives exist and the

expectations E(f ′(X)ψ
′(X)
ψ(X)

) and E(f ′′(X)) is finite, see, for example, [3, 16], then π(·) is
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the same as ψ(·).
Recall that the SDE corresponding to the standard MCMC (where the tuning parameter

θt is a constant θ0) with the target density ψ(·) is given by

dXt =
θ2

0

2

ψ′(Xt)

ψ(Xt)
dt+ θ0dWt,

where θ0 > 0. Let π(·) be the stationary density of {Xt}. Now applying the Itô’s lemma

to a bounded and twice continuously differentiable function f(·) we get

f(Xt)− f(X0) =
θ2

0

2

t∫
0

(
f ′(Xs)

ψ′(Xs)

ψ(Xs)
+ f ′′(Xs)

)
ds+

t∫
0

θ0f
′(Xs)dWs

⇒ E(f(Xt))− E(f(X0))

t
=

θ2
0

2

1

t

(
E

t∫
0

(
f ′(Xs)

ψ′(Xs)

ψ(Xs)
+ f ′′(Xs)

)
ds+ E

t∫
0

θ0f
′(Xs)dWs

)

=
θ2

0

2

1

t

t∫
0

E
(
f ′(Xs)

ψ′(Xs)

ψ(Xs)
+ f ′′(Xs)

)
ds

⇒ lim
t↑∞

E(f(Xt))− E(f(X0))

t
=

θ2
0

2
lim
t↑∞

1

t

t∫
0

E
(
f ′(Xs)

ψ′(Xs)

ψ(Xs)
+ f ′′(Xs)

)
ds. (5.4.69)

If the SMCMC is ergodic, see definition in Chapter 4.1, then the time average converges

to state average almost surely. This means that for a function f(·) belonging to a suitable

class

lim
t↑∞

1

t

t∫
0

(
f ′(Xs)

ψ′(Xs)

ψ(Xs)

)
= Eπ(f ′(X)

ψ′(X)

ψ(X)
). (5.4.70)

Now if moments of f(Xt) are uniformly bounded in t > 0 then using the fact that Xs

admits a limiting distribution π(·) and by applying Equation (5.4.70) and L1 convergence

for a suitable class of functions f to the RHS of the last equality we get,

0 = Eπ

(
f ′(X)

ψ′(X)

ψ(X)

)
+ Eπ

(
f ′′(X)

)
Therefore it satisfies the Stein’s identity in Equation (5.4.68) and therefore π = ψ. In

particular, when ψ(x) is the standard Normal density then ψ′(x)
ψ(x)

= −x and therefore the
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Stein’s identity is

E(f ′′(X))− E(Xf ′(X)) = 0.

Writing g = f ′ the above equation takes the more familiar form

E(g′(X))− E(Xg(X)) = 0.

Remark 42. For the AMCMC Equation (5.4.69) takes the form

0 = lim
t↑∞

1

t

t∫
0

E
(
f ′(Xs)θ

2
s

ψ′(Xs)

ψ(Xs)
+ f ′′(Xs)θ

2
s

)
ds.

If the moments of Xt are uniformly bounded in t > 0 then applying the ergodic theorem

and the L1 convergence for suitably chosen f we have

0 = E(f ′(X)
ψ′(X)

ψ(X)
θ2) + E(f ′′(X)θ2),

where the expectation is taken with respect to the joint limiting distribution of X and θ.

We believe that it can be shown that only the marginal of X will also satisfy the Stein’s

identity. We plan to take this up as a future research. Also see the Remark at the end of

Section 5.5.

5.5 Further heavy tailed target densities

In this section we consider an extension to Section 5.2.4 where the target density is of

the form

ψ(x) ∝ 1

1 + x2k
, x ∈ R, k ∈ N. (5.5.71)

This corresponds to a heavy tailed target distribution whose all moments smaller than

2k − 1 exists.
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Theorem 12. If ψ(·) is the density given by Equation (5.5.71) and E(X2k
0 ) < ∞ then

lim supt→∞E(X2k
t ) <∞ where k is as in Equation (5.5.71).

Proof: The proof will emulate the proof of Theorem 10. First note that the SDE

corresponding to Xt is:

dXt = −kX
2k−1
t θ2

t

1 +X2k
t

dt+ θtdWt.

Let Vt = 1 +X2k
t . Then the SDE corresponding to Vt will

dVt = 2kX2k−1
t dXt + k(2k − 1)X2k−2

t θ2
t dt

= 2kX2k−1
t

(
−kX

2k−1
t θ2

t

1 +X2k
t

dt+ θtdWt

)
+ k(2k − 1)X2k−2

t θ2
t dt

=
kθ2

t

(
−2kX4k−2

t + (2k − 1)X2k−2
t + (2k − 1)X4k−2

t

)
1 +X2k

t

dt+ 2kX2k−1
t θtdWt

=
kθ2

t (−X4k−2
t + (2k − 1)X2k−2

t )

1 +X2k
t

dt+ 2kX2k−1
t θtdWt

=
kθ2

t

(
−X2k−2

t (1 +X2k
t ) + 2kX2k−2

t

)
1 +X2k

t

dt+ 2kX2k−1
t θtdWt

= −kθ2
tX

2k−2
t dt+ 2k2 θ

2
tX

2k−2
t

1 +X2k
t

dt+ 2kX2k−1
t θtdWt

⇒ dVt + kθ2
tX

2k−2
t dt = 2k2θ2

tX
2k−2
t Vtdt+ 2kX2k−1

t θtdWt.

Multiplying by the integrating factor ek
∫ t
0 θ

2
sX

2k−2
s V −1

s ds := eCt on both sides we have

d
(
Vte

C
t

)
= 2keCtkθ2

tX
2k−2
t Vtdt+ 2keCtX2k−1

t θtdWt.

Integrating from 0 to t gives

Vte
Ct − V0 = 2k

∫ t

0

eCskθ2
sX

2k−2
s Vsds+ 2k

∫ t

0

eCsX2k−1
s θsdWs

= 2k(eCt − 1) + 2k

∫ t

0

eCsX2k−1
s θsdWs.
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By arguing similarly as in Lemma 31 we have that

E(e−Ct
∫ t

0

eCsX2k−1
s θsds) = 0.

Hence taking expectations on both sides we have

E(Vt) = E(V0e
−Ct) + 2k(1− E(e−Ct))

⇒ lim sup
t→∞

E(X2k
t ) < ∞,

since e−Ct ≤ 1 almost surely and E(V0) <∞ by the hypothesis of the theorem. �

Remark 43. Using the Echeverria’s theorem (see Theorem 9.17, Chapter 4 of [22]) it

might be possible to identify the invariant distribution for the diffusion corresponding to

SMCMC or AMCMC. However the problem lies not in identifying the invariant distri-

bution but the limiting distribution, since using SMCMC or AMCMC it is the limiting

distribution from which samples are generated. Theorem 10 and 12 proves that the limit-

ing distribution does not match with the target ψ(·). Hence AMCMC or SMCMC should

not be used in simulating from such Pareto type densities which admits only a finitely

many moments. We feel that only in those distributions where all the moments exist (or

in particular, the m.g.f exists in a neighborhood of zero) the limiting distribution of the

diffusion may coincide with the invariant distribution which is the target distribution.

Hence only in those cases should the SMCMC or AMCMC be applied for simulating the

target distribution.

5.6 Choice of the proposal distribution

There is nothing special about the Normal distribution as the choice of the proposal

distribution in the univariate case. In fact, any distribution whose support is R, symmetric

about its mean and has finite variance will also yield similar results.

Theorem 13. Consider a RW MH algorithm where the proposal density is given by

q(x, y) = f(y − x) where f(·) is a density with finite variance σ2. Then the SDE corre-

sponding to {Xt} is :
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dXt =
σ2θ2

t

2

ψ′(Xt)

ψ(Xt)
dt+ σθtdWt;

dθt = θt

(
q − cθt

|ψ′(Xt)|
ψ(Xt)

)
dt,

where c =
∫∞

0
εf(ε)dε ∈ (0,∞) is the one sided mean of the density f(·).

Proof: The diffusion approximation in this case is similar to the diffusion approximation

as in Section 3.3.1 except that now the proposal will be a general distribution f(·):

Xn(0) = x0 ∈ R;

Xn(
i+ 1

n
) = Xn(

i

n
) +

1√
n
θn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
), i = 0, 1, . . .

Xn(t) = Xn(
i

n
), if

i

n
≤ t <

i+ 1

n
for some integer i. (5.6.72)

Here, ξn( i
n
) conditionally follows the Bernoulli distribution with parameter p ∈ (0, 1)

given by

min{
ψ(Xn( i

n
) + 1√

n
θn( i

n
)εn( i

n
))

ψ(Xn( i
n
))

, 1},

where εn( i
n
) is a random variable having density f(·). Hence, the The proof will emulate

the proof when the proposal is standard Normal. Then as in Section 3.5 we compute the

constants a′s and b′s. Writing y = (x, θ) we have for every fixed n ≥ 1 we define

bn,1(y, t)

= nE(Xn(
i+ 1

n
)−Xn(

i

n
)| Yn(

i

n
) = y), ∀i = 0, 1, . . . ,

= E(
√
nθn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
)| Yn(

i

n
) = y)

=
√
nθ
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)IAn| Xn(

i

n
) = x, θn(

i

n
) = θ)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)IAcn| Xn(

i

n
) = x, θn(

i

n
) = θ)

)
.
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where An(= An(x, θ)) is the set where ξn( i+1
n

) is one with probability 1, i.e,

An(x, θ) = {y :
ψ(x+ 1√

n
θy)

ψ(x)
≥ 1}.

Thus, lim
n→∞

Acn(x, θ) =
{ (−∞, 0) if ψ′(x) > 0

(0,∞) if ψ′(x) < 0.

Therefore,

bn,1(y, t) =
√
nθ
(∫

An

εf(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
εf(ε)dε

)
=
√
nθ
(∫

An

εf(ε)dε+

∫
Acn

εf(ε)dε

+
θ√
n

ψ′(x)

ψ(x)

∫
Acn

ε2f(ε)dε+O(
1

n
)
)
, by Taylor’s expansion,

=
√
nθ
(∫

R
εf(ε)dε+

θ√
n

ψ′(x)

ψ(x)

∫
Acn

ε2f(ε)dε+O(
1

n
)
)

= θ2ψ
′(x)

ψ(x)

∫
Acn

ε2f(ε)dε+O(
1√
n

)

⇒ lim
n→∞

bn,1(y, t) = θ2ψ
′(x)

ψ(x)
lim
n→∞

∫
Acn

ε2f(ε)dε

=
{ θ2 ψ

′(x)
ψ(x)

∫ 0

−∞ ε
2f(ε)dε if ψ′(x) > 0

θ2 ψ
′(x)
ψ(x)

∫∞
0
ε2f(ε)dε if ψ′(x) < 0

=
σ2θ2

2

ψ′(x)

ψ(x)
,

since the distribution is symmetric about 0 and the variance is σ2 = 2
∫∞

0
ε2f(ε)dε.
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bn,2(y, t) = nE(θn(
i+ 1

n
)− θn(

i

n
)|Yn(

i

n
) = y), ∀i = 0, 1, . . .

= nE
(
θn(

i

n
){e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1}|Yn(
i

n
) = y

)
= nθ

( 1√
n
E(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

+ E(
1

2n
(ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y) +O(

1

n3/2
)
)

= θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

+
θ

2
E((ξn(

i+ 1

n
)− qn(

i

n
))2)|Yn(

i

n
) = y) +O(

1√
n

).

Now,

θ
√
nE(ξn(

i+ 1

n
)− qn(

i

n
)|Yn(

i

n
) = y)

= θ
√
n
(
E(ξn(

i+ 1

n
)|Yn(

i

n
) = y)− qn(

i

n
)
)

= θ
√
n
(∫

An

f(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
f(ε)dε− qn(

i

n
)
)

= θ
√
n
(∫

An

f(ε)dε

+

∫
Acn

{1 +
θ√
n

ψ′(x)

ψ(x)
ε+O(

1

n
)}f(ε)dε− qn(

i

n
)
)

= θ
√
n(1− qn(

i

n
))

+ θ2ψ
′(x)

ψ(x)

∫
Acn

εf(ε)dε+O(
1√
n

). (5.6.73)
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And,

E
(

(ξn(
i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y

)
= E

(
ξn(

i+ 1

n
)2|Yn(

i

n
) = y

)
− 2qn(

i

n
)E
(
ξn(

i+ 1

n
)|Yn(

i

n
) = y

)
+ qn(

i

n
)2

=

∫
An

f(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
f(ε)dε

− 2qn(
i

n
)
(∫

An

f(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
f(ε)dε

)
+ qn(

i

n
)2

= (1− qn(
i

n
))2 +

1√
n

(1− 2qn(
i

n
))θ

ψ′(x)

ψ(x)

∫
Acn

εf(ε)dε+O(
1

n
)

−→ 0, as n→∞, since 1− qn(
i

n
) ≈ q√

n
, and hence,

1√
n

(1− 2qn(
i

n
)) ≈ 1√

n
(

2q√
n
− 1). (5.6.74)

Thus, from (5.6.73) and (5.6.74) we have,

lim
n→∞

bn,2(y, t) = θq + θ2ψ
′(x)

ψ(x)
lim
n→∞

∫
Acn

εf(ε)dε

=
{ θ
(
q + cθψ

′(x)
ψ(x)

)
if ψ′(x) < 0

θ
(
q − cθψ

′(x)
ψ(x)

)
if ψ′(x) > 0

= θ
(
q − cθ |ψ

′(x)|
ψ(x)

)
,

where c is the one sided mean of f(·) given by c =
∫∞

0
εf(ε)dε = −

∫ 0

−∞ εf(ε)dε <∞.
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an,1,1(y, t) = nE
(

(Xn(
i+ 1

n
)−Xn(

i

n
)2)|Yn(

i

n
) = y

)
∀i = 0, 1, . . .

= θ2E(ξn(
i+ 1

n
)εn(

i+ 1

n
)2|Yn(

i

n
) = y)

= θ2
(
E(ξn(

i+ 1

n
)εn(

i+ 1

n
)2IAn| Yn(

i

n
) = y)

+ E(ξn(
i+ 1

n
)εn(

i+ 1

n
)2IAcn| Yn(

i

n
) = y)

)
= θ2

(∫
An

ε2f(ε)dε+

∫
Acn

ψ(x+ 1√
n
θε)

ψ(x)
ε2f(ε)dε

)
= θ2

(∫
An

ε2f(ε)dε+

∫
Acn

ε2f(ε)dε+O(
1√
n

)
)

= σ2θ2 +O(
1√
n

).

⇒ lim
n→∞

an,1,1(t) = σ2θ2.

an,2,2(y, t) = nE
(

(θn(
i+ 1

n
)− θn(

i

n
))2|Yn(

i

n
) = y

)
= nE

(
θn(

i

n
)2(e

1√
n

(ξn( i+1
n

)−qn( i
n

)) − 1)2|Yn(
i

n
) = y

)
= nθ2E

({ 1√
n

(ξn(
i+ 1

n
)− qn(

i

n
)) +

1

2n
(ξn(

i+ 1

n
)− qn(

i

n
))2

+ O(
1

n3/2
)
}2

|Yn(
i

n
) = y

)
= θ2E

(
(ξn(

i+ 1

n
)− qn(

i

n
))2|Yn(

i

n
) = y

)
+O(

1√
n

)

⇒ lim
n→∞

an,2,2(y, t) = θ2 lim
n→∞

E
((
ξn(

i+ 1

n
)− qn(

i

n
)
)2

|Yn(
i

n
) = y

)
= 0, from (5.6.74).
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an,1,2(y, t) = nE
(
{Xn(

i+ 1

n
)−Xn(

i

n
)}{θn(

i+ 1

n
)− θn(

i

n
)}|Yn(

i

n
) = y

)
= nE

(
{ 1√

n
θn(

i

n
)ξn(

i+ 1

n
)εn(

i+ 1

n
)}{θn(

i

n
)(e

1√
n

(ξn( i+1
n

)−qn( i
n

))
)}
)

=
√
nθ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)
{ 1√

n
(ξn(

i+ 1

n
)− qn(

i

n
)) +O(

1

n
)
}
|Yn(

i

n
) = y

)
= θ2E

(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
+O(

1√
n

).

Since ξn = 0, or 1, ξ2
n = ξn. Hence ξnεn(ξn − qn) = ξ2

nεn − ξnεnqn = ξnεn(1 − qn).

Therefore,

E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)(ξn(

i+ 1

n
)− qn(

i

n
))|Yn(

i

n
) = y

)
= (1− qn(

i

n
))E
(
ξn(

i+ 1

n
)εn(

i+ 1

n
)|Yn(

i

n
) = y

)
= (1− qn(

i

n
))O(1) −→ 0, as n→∞.

Thus, limn→∞ an,1,2 = limn→∞ an,2,1 = 0.

This proves the theorem. �

Example 3: The t distribution with ν degrees of freedom is symmetric about 0 and has

finite mean and variance equal to ν
ν−2

for ν > 2. So if we choose the t distribution with

3 degrees of freedom as the proposal distribution then :

c =

∞∫
0

xf(x)dx

=
Γ(2)√

3πΓ(3/2)

∞∫
0

x
(

1 +
x2

3

)−2

dx =
2√
3π

∞∫
0

x
(

1 +
x2

3

)−2

dx

=

√
3

π

∫ ∞
1

z−2dz =

√
3

π
.
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For the t distribution with ν = 3, σ2 = 3. Therefore the diffusion would satisfy the SDE:

dXt =
3θ2

t

2

ψ′(Xt)

ψ(Xt)
dt+

√
3θtdWt,

dθt = θt

(
q −
√

3

π
θt
|ψ′(Xt)|
ψ(Xt)

)
dt.

Remark 44. In fact it is not even necessary that the proposal distribution be symmetric

about the mean. Suppose that the mean is zero and c =
∫∞

0
εf(ε)dε. Since the mean is

zero, we have that, −c =
∫ 0

−∞ εf(ε)dε. Let the variance of the proposal distribution be

σ2. Let a =
∫∞

0
ε2f(ε)dε = σ2 − b = σ2 −

∫ 0

−∞ ε
2f(ε)dε > 0. Then following the proof of

the above theorem one finds that the limiting diffusion will be the solution of the SDE:

dXt =
1

σ2

(
aI(ψ′(Xt) < 0) + bI(ψ′(Xt) ≥ 0)

)
θ2
t

ψ′(Xt)

ψ(Xt)
dt+ σθtdWt,

dθt = θt

(
q − cθt

|ψ′(Xt)|
ψ(Xt)

)
dt.

5.6.1 Standard Cauchy as proposal

We show that if the Cauchy distribution is chosen as the proposal distribution then the

infinitesimal restricted drift (see definition below) explodes. We relate this observation

to a result in Chapter 2 in the remark that follows. The following definition, see Pg.

367 of Bhattacharya and Waymire [13], of the restricted infinitesimal drift and diffusion

coefficients does not require the existence of finite moments. Consequently there is no

diffusion limit in this case.

Definition: A stochastic process {Xs} is a diffusion process if the following holds for

every γ > 0

E
(

(Xs+t −Xs)I(|Xs+t −Xs| ≤ γ)|Xs = x
)

= tµ(x) + o(t); (5.6.75)

E
(

(Xs+t −Xs)
2I(|Xs+t −Xs| ≤ γ)|Xs = x

)
= tσ2(x) + o(t); (5.6.76)

P
(
|Xs+t −Xs| > γ|Xs = x

)
= o(t). (5.6.77)

Theorem 14. If the proposal follows a standard Cauchy distribution then the (restricted)

infinitesimal drift and diffusion coefficients do not exist.
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Proof: Following the earlier notation let us define for any fixed γ > 0,

bn,1(y, t) = nE
(
Xn(

i+ 1

n
)−Xn(

i

n
)I(|Xn(

i+ 1

n
)−Xn(

i

n
)| ≤ γ)|Yn(

i

n
) = y

)
Given the value of Xn( i

n
) = x and θn( i

n
) = θ, the set Bn,γ = {|Xn( i+1

n
)−Xn( i

n
)| < γ} =

{ε : |ε| <
√
nγ
θ
}.

Therefore, decomposing the expectation over the set An and Acn as in Section 3.5 we have

that

bn,1(y, t) =
√
nθ

∫
An∩Bn,γ

εf(ε)dε

+
√
nθ

∫
Acn∩Bn,γ

ψ(x+ 1√
n
θε)

ψ(x)
εf(ε)dε,

where f(·) is the density of Cauchy(0,1),

=
√
nθ

∫
An∩Bn,γ

εf(ε)dε+
√
nθ
( ∫
Acn∩Bn,γ

εf(ε)dε

+
θ√
n

ψ′(x)

ψ(x)

∫
Acn∩Bn,γ

ε2f(ε) +O(
1

n
)
)
, by Taylor’s expansion,

=
√
nθ

∫
Bn,γ

εf(ε)dε+ θ2ψ
′(x)

ψ(x)

( ∫
Acn∩Bn,γ

ε2f(ε)dε+O(
1√
n

)
)

= θ2ψ
′(x)

ψ(x)

( ∫
Acn∩Bn,γ

ε2f(ε)dε+O(
1√
n

)
)
,

since the standard Cauchy is symmetric about 0. Now if x < 0

lim
n→∞

bn,1(y, t) = θ2ψ
′(x)

ψ(x)

∫ ∞
0

ε2f(ε)dε =∞,

If x > 0 then the range of the last integral is (−∞, 0) and its value is also ∞ since the

second moment of standard Cauchy is infinity. Therefore the infinitesimal drift coefficient

does not exist. Similar things can be shown for the infinitesimal diffusion coefficient. This

proves the Theorem. �

Remark 45. This behaviour of the Cauchy random variable as the proposal has a heuris-

tic explanation with a result that we have proved in Chapter 2. In that chapter we looked
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at the Self-Normalized sums (SNS) defined as X1+X2+···Xn√
X2

1+X2
2+···X2

n

. The logic behind defining

in this fashion is that even if Xi possess moments which are not finite, the SNS will

always have finite variance. This follows from the normalization of the sum of the X ′is.

Therefore, in a sense, the SNS are the most conservative normalization of the sums that

can be expected from any random or non-random normalization. In Chapter 2 we looked

at the process version of the above sum and show that the same is true only when the

Xi comes from the domain of attraction of a Stable distribution with α = 2 (i.e from

DAN), see Theorem 1 of Chapter 2. Now if one looks at the diffusion approximation

as in Equation (3.3.6), then it is clear that the value of the process X is nothing but

the cumulative addition of random variables which has the proposal distribution as its

distribution which is normalized by another parameter θ, as given in (3.3.7). In the case

of Cauchy distribution α = 1. We have proved in Section 2.4.3 of Chapter 2 that if α < p

(where in the present case p = 2) then the process is not tight. This roughly corresponds

to the fact that if one looks at very small sub-interval of the process then the probability

that the maximum difference of the process in any sub-interval is greater than any small

quantity cannot be small. This is manifested by the fact that the infinitesimal expected

deviation and variance, even in the restricted form, as defined in Equations (5.6.75) and

(5.6.76) become unbounded as n→∞.

5.7 Summary

This chapter deals with general choices of target and proposal densities for which the

diffusion approximation procedure can be applied. In Section 5.2.1 we assume that the

target distribution satisfies the growth condition given in Equation (5.2.1). Under this

assumption we consider three possible scenarios for the target which satisfies Equations

(5.2.2) to Equation (5.2.4). Under the first condition the m.g.f exists for all t ∈ R.

We show that that under this condition the m.g.f of the limiting distribution of the

SDE defined in Equation (5.2.15) also exists for all t ∈ R. For the second condition

the m.g.f exists in a neighbourhood of zero. We show that the corresponding solution

has a m.g.f that exists in a neighbourhood of zero. For condition (5.2.4) the m.g.f does

not exist in any neighbourhood of zero. This condition is satisfied by the heavy tailed

target distribution like the Cauchy and the Pareto type which we deal in Section 5.2.4.
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We show that the second moment of Xt is uniformly bounded in t. Thus the limiting

distribution, if it exists, cannot be standard Cauchy. This holds because we start with

an initial distribution which has bounded second moments. However, we do not have a

clear understanding what happens to the limiting distribution of Xt if the target density

ψ(·) satisfy (5.2.3) with α ∈ (0, 1). However, we feel that the limiting distribution is ψ(·)
only when its m.g.f exists at least in a neighbourhood of zero. This result is yet to be

proved. We hope to study this in the future.

Next we consider what can be the proper choice of the proposal distribution for the

Random Walk Metropolis Hastings algorithm. We show that any distribution with the

whole real line as the support, symmetric and having finite second moment is a suitable

candidate for proposal . We obtain the diffusion approximation which resembles the SDE

in Equation (3.4.1) but the constants are different. We also show why a Heavy tailed

distribution like the Cauchy is not a suitable candidate for a proposal even if we consider

the (restricted) instantaneous drift and diffusion coefficients. We connect this observation

with a result that we derived in Chapter 2. We also obtain the diffusion approximation

for the multivariate normal proposal and a general multivariate target density.



Chapter 6

Concluding remarks and Future

directions

This thesis deals with some recursive equations that arises in theoretical and applied

probability. The AMCMC that was defined in Chapter 1 is the sum of random variables

from the proposal distribution (normalized by a scaling factor θn, which again is a ran-

dom variable that changes with each iteration). We also observe from Theorem 14 of

Chapter 5 that the Cauchy distribution cannot be chosen as the proposal distribution.

This leads us to investigate what are the random variables which when normalized by

itself (actually by an estimate of the variance computed from the sample) can have a

non-trivial distribution. Such objects are called Self-Normalized Sums (SNS). The SNS

are the most conservative when it comes to the existence of all finite moments for fixed

sample size. In fact the second moment of the SNS is finite even if the random variable

themselves do not have any finite moment.

In Chapter 2 we construct a functional form of the SNS called Self-Normalized Process

(SNP) and prove weak convergence of the process. We show in Theorem 1 of the same

chapter that the only case when we can have a non-trivial distribution is when the ran-

dom variables are from the domain of attraction of the Normal family and the order of

the normalization is two. Since the Cauchy random variables belong to a Stable family

with α = 1 we do not get convergence to any non-trivial distribution with any order

of normalization. This corroborates with the findings in Chapter 5 related to the fact

that diffusion approximation cannot be done with the Standard Cauchy as the proposal

183
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distribution (see Remark 45). The content of the second chapter is taken from Basak and

Biswas [7].

We can view the Adaptive MCMC, Xn as a recursive equation where the increments fol-

low a certain distribution called the proposal distribution. The increments are added with

a probability, called the acceptance probability, which again depends on the proposal and

the target distribution. This special choice of the acceptance probability ensures that Xn

is a Markov chain and has the limiting distribution same as the target distribution.

Sometimes to facilitate faster convergence, the increments are scaled by a factor that

changes with each iteration. A related enquiry is whether under this changed scenario

the convergence also holds true. Verifying that the convergence holds requires checking

some sufficient conditions due to Roberts and Rosenthal [57], see Proposition 3 in Chapter

1. However, verifying those sufficient conditions is not straightforward in all scenarios.

In Chapter 3 we apply the diffusion approximation mechanism to the discrete process.

This is actually a scaled down version of the discrete time process. We then focus on the

continuous version of the chain. In some of the specific cases the limiting diffusion are

investigated. One such case is dealt in Chapter 4 where the choice of the proposal and

the target distribution is Normal (0,1).

In Chapter 5 we consider general choices of the target and the proposal distribution for

which we can get a diffusion approximation. We consider three classes of density functions

that satisfies the growth condition of the solutions of the SDE. These classes correspond

to the rate of decay of xψ
′(x)
ψ(x)

. The rate of decay characterises the existence or the non

existence of the m.g.f of the distribution. We show that the condition which ensures the

existence of the m.g.f of the target density for all t ∈ R also ensures the existence of the

m.g.f of the invariant distribution of the SDE for all t ∈ R. The condition which ensures

the existence of the m.g.f of ψ(·) in a neighbourhood of 0 also ensures the same for the

m.g.f of the corresponding invariant density. We feel that future research should be able

to identify the limiting distribution of the SDE as ψ(·) in such cases. Since the conditions

are not true for distributions with heavy tails, such distributions cannot be recovered as

the limiting distribution of the diffusion.

We further show that choosing a heavy tailed distribution as the proposal is not ap-

propriate to generate samples from the same (heavy tailed) distribution. The diffusion

approximation procedure is also carried out in detail for multivariate target densities. In

the case of standard MCMC we can apply the Stein’s lemma to show that the limiting
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distribution of the corresponding diffusion is the same as the target distribution ψ(·).
Some tasks awaits future research. In Chapter 2 the rate of convergence of the SNP

should prove to be important. A non-uniform Berry Essen bound was given in Ben-

tkus and Gotzë [10], when the random variables are from DAN , and a bound using

Saddlepoint approximation was proved in Jing et al. [36]. Although the process con-

vergence is for p = α = 2, Logan et al. [40] have shown that the Self-Normalized sums

can converge for p > α ∈ (0, 2). Using their techniques we have shown in Chapter 2

what the possible limiting characteristic distribution of the finite dimensional distribu-

tion of the SNP would look like. From our personal communication with Qi-Man Shao

we came to know about an unpublished result on limiting finite-dimensional distribution

of ((S[nt1]/Vn,p, . . . , S[ntk]/Vn,p), p > α) where they have shown that the limiting joint

distribution is a mixture of Poisson-type distribution using technique of Csörgő and Hor-

vath [18]. The rate of convergence for this case has not been explored to our knowledge.

In Chapter 4 we have shown explicit convergence in the case of the Normal target den-

sities. However it will be important to know when light tailed distributions other than

the Normal distribution is appropriate as the target distribution. In this context, Stein’s

characterization of distribution other the Normal may be useful to find the limiting dis-

tribution of Xt. Although the diffusion approximations are obtained in the thesis, finding

the explicit convergence to the target density would be ideal.

In Chapter 5 we have been able to characterize the situation where this technique of

diffusion approximation cannot be applied. However, for special choices of the target

distribution further research is needed to identify the limiting distribution with the tar-

get density. This may not be possible using the method of moments since computing

the moments for general target densities is not straightforward. Further, if we want to

apply the Stein’s method to the AMCMC then one needs to compute the exact joint

expectation of f ′(Xs)θs for some suitable class of function f . We plan to do this this in

our future research.

Further, Normal proposal in case of a Heavy tailed distribution ψ or multi-modal den-

sities is not always very efficient. Algorithms must be designed to handle such cases.

It should be investigated whether combining the ideas of adaptability and heavy tailed

proposal increases the efficiency. There are some work in this area by Jarner et al. [35].

For theoretical comparison between two or more adaptive chains one needs to obtain

computable bounds on the time taken to reach stationarity; see Joulin and Ollivier [37]
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for bounding times for Standard MCMC. We have some ideas on these for the Normal

target density ( see Remark 24 of Chapter 4) which may be extended to other general

admissible target densities.
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