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Chapter 1

Introduction

Program testing can be used to show the presence of bugs, but never toshow their

absence!

Edsger W. Dijkstra

1.1. Preamble

The Statistician John Wilder Tukey was the first to coin the term “Software”

(Tukey, 1958; Leonhardt, 2000) to describe programs running on electronic calcu-

lators in the 1950’s. Four decades before the “dot-com” boom, Tukey recognized

the importance of computer programs for mankind and wrote that “It is at least

as important” as the “hardware of tubes, transistors, wires, tapes and the like”.

Since Tukey’s assessment, the importance of software to human civilization and

the global economy has grown substantially. The size of the software industry can

be judged from a Gartner report (Gartner Inc., 2014) which estimated the global

software market revenue to be $407.3 billion in 2013, a 100 billion dollars more

than the revenue of the global semi-conductor market (Gartner Inc., 2013), repre-

senting the “transistors” Tukey alluded to in 1953.

The importance of software to mankind far exceeds the revenues of $407.3

billion it generates for the companies that create softwareproducts and services.

It forms a critical part of almost all aspects of modern living, from the monitoring
1
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programs running on ECG monitors in a hospital’s intensive care unit, to the auto-

pilots flying an aircraft, to banking software recording financial transactions and to

applications running on mobile phones. The list of technologies in which software

plays a critical role is endless and is only expected to grow over the next decade

due to the Internet of Things: a global network of human beings, machines and

software programs.

The pervasiveness of software underscores the need for building reliable soft-

ware products and solutions. For example, the “Y2K” bug is a famous software

defect caused by abbreviation of four digit years to two digits cost the global

economy anywhere between $300 million to $ 600 million (British Broadcasting

Corporation, 2000). Another dramatic software error led to the loss of the $327

million Mars Climate Orbiter launched by NASA in 1998 due to a software bug in

the orbiter’s guidance system (Isbell, Hardin and Underwood, 1999). Software de-

fects related to security vulnerabilities can result in massive losses for users of the

software; for example, the Code Red virus and Mellisa virus areestimated to have

caused losses of $ 2.1 billion and $ 1.1 billion, respectively, (Telang and Wattal,

2007). Critical software defects not only affect the users but can also cause sub-

stantial loss of brand value for the software manufacturer and subsequently their

market capitalization (Telang and Wattal, 2007). A National Institute of Standards

(2002) report estimated the losses caused to the US economy due to defective

software to be $60 billion in 2002.

The consequences of software defects are not just limited toeconomic losses

but to loss of lives and productivity. The radiation overdose given by Therac-25

machines to cancer patients is another example of a catastrophic software fault
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TABLE 1.1
Sub-characterization of software reliability as per ISO 9126

Sub-characteristic Definition

Maturity Attributes of software that bear on the frequency of software failure

Fault Tolerance
Attributes of software that bear on its ability to maintain aspecified
level of performance in case of software faults or of infringement of its
specified interface

Recoverability
Attributes of software that bear on the capability to re-establish its level
of performance and recover the data directly affected in case of a failure
and on the time and effort needed for it

(Jacky, 1989; Kapur et al., 2011). The power blackouts caused in the United States

during August 2003 are attributed to an unanticipated race conditions in a power-

grid control software (Fairley, 2004).

Creating a perfectly defect-free software is clearly the solution for mitigating

the risks associated with defective software. The first steptowards this objective

is to develop a method ofmeasuring how reliable a software is. There are quite

a few definitions of software reliability. A commonality among these definitions

is that the metric should correlate with the probability of failure-free operation of

a software product over a specified duration of usage. The closer this probability

is to one over large durations of future usage, the less defective the software will

be and hence greater the reliability. Software reliabilitymodels estimate such a

probability which provides (i) a critical input to determining whether the risk of

a software failure in the future is acceptable and (ii) a method for comparing the

reliability of two or more software products with the same functionality facilitat-

ing the selection of the most reliable product. Software reliability is one among

six software quality aspects laid down in ISO standards 9126(Abran et al., 2003)

where it is divided into three sub-characteristics as described in Table 1.1.
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Reliability metrics can be defined specifically for any one of these sub-

characteristics, or for all of them together. The ability tocreate a sub-characteristic

specific reliability measure would depend on whether software defects can be ac-

curately classified into one of these sub-characteristics.For example, behavioral

faults in a software can be attributed to a lack of maturity inthe software. An

example of this would be the Y2K bug. Software defects due to lack of sufficient

safeguards against illegal user-inputs would correspond to lack of fault-tolerance,

an example of which would be inadequate measures against “SQL code-injection”

in database querying. It is possible that a software defect might point to lack of

reliability across multiple sub-characteristics in whichcase the same defect would

contribute to measuring the reliability across all these sub-characteristics.

1.2. Objectives

Software testing in the past decade has been revolutionizedby two technology

developments, namely, (i) the world-wide adoption of the Internet as a communi-

cation medium resulting in software users around the globe having the capability

to report defects on a voluntary basis and (ii) distributed software product devel-

opment involving 1000’s of software developers using platforms such asRational

Roseor Github. Under such coding platforms each developer is responsiblefor

testing the code written by them resulting in white-box testing techniques, as op-

posed to black-box testing prevalent in the 1980’s and 1990’s, becoming the norm.

For software reliability modeling both these developmentsmean that parametric

models based on assumptions regarding (i) nature of reliability improvement after

fixing a defect and (ii) the usage of the software during the testing procedure may
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no longer be appropriate.

In this thesis, we propose two new models for software reliability that cater

to these developments. The first model is called the isotonicsoftware reliability

model that generalizes popular software reliability models. The model makes very

little assumptions about the nature of reliability improvement after the repair of

every additional defect and can also consider decrease in reliability after a de-

bugging effort. We believe that the generic nature of this model will make them

applicable to a wide range of testing frameworks including white-box testing. We

provide novel and yet simple methods for estimating confidence bounds on the

reliability of the software under this generic model.

The second model is devoted to analysis of software defect data arising out

of uncontrolled usage of the software with the defects beingvoluntarily reported

through the Internet and stored in bug-databases. The reported defects are typi-

cally classified into multiple types. We formulate a semi-parametric software re-

liability model that makes no assumptions about the underlying software usage

and can be estimated from data retrieved from bug-databases. The classification

of defects into multiple types is exploited to propose a novel partial-likelihood

method for estimating the model parameters. We apply the methods developed to

data retrieved from the Bug database of Python, a popular scripting language.

The models developed in the thesis have applications beyondsoftware reliabil-

ity. The methodologies described in Chapters 3 and 4 are not based on asymptotic

methods. This means that they can be used for analysis of data-sets corresponding

to catastrophic failures where the number of failures is expected to be small. For

example, they can be used to analyze data regarding failuresin critical processes
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such as fraud prevention in internet banking or hardware failures in nuclear power

plants. The methods presented in Chapter 5 could have applications in epidemiol-

ogy and demand estimation in online retail markets. We discuss such possibilities

briefly in Chapters 5 and 6.

1.3. Literature Review

We begin our survey of the state of the art in statistical modeling and analysis

of software reliability by first discussing software testing. This is because soft-

ware testing provides the data for almost all software reliability modeling. An

understanding of the different types of testing methodologies helps in choosing

the appropriate software reliability model for analyzing software failure data.

1.3.1. Software Testing

Testing of a software product before its release to customers represents one of

the most common methods of detecting faults in a software product. Software

testing is a component ofsoftware verificationwhich deals with ensuring that a

software product adheres to all its customer requirements.Software verification

has two parts; the first part deals with static verification and ensures that the soft-

ware product meets coding or algorithm quality standards and the second part

deals with dynamic verification and ensures functioning of the software product

during run-time. Static verification deals with (i) inspecting the code to ensure

it meets coding conventions such as variable naming conventions, commenting

guidelines and readability requirements, (ii) adheres to specified software design

patterns such asModel-View-Controllerpattern or theService Locationpattern,
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(iii) meets requirements on code complexity measured through metrics such as

the cyclomatic measure (McCabe, 1976) or the Halstead complexity metric (Yu

and Zhou, 2010) and (iv) the formal verification of the correctness of the under-

lying algorithm in the software (B́erard et al., 2010). Formal verification has its

roots in theoretical computer science and uses algebraicalmethods to prove that

an algorithm is correct. Formal verification of a software isoften not done simply

because of its complexity.

Dynamic verification, also known as software testing, is performed to detect

faults during the execution of a software. More specifically, software testing is

defined as “A process of executing a program with the goal of finding errors”

(Abran et al., 2004). Testing involves identifying defective outputs of a software

program through test cases which are “a set of inputs, execution preconditions,

and expected outcomes developed for a particular objectivesuch as to exercise

a particular program path or to verify compliance with a specific requirement”

(Radatz, Geraci and Katki, 1990). Software testing can, for example, detect run-

time errors due to improper use of computer threads and inadequate safeguards

against illegal user inputs. There are various software testing paradigms. These

are briefly discussed.

White-Box Testing: In this type of testing, software testers leverage their

knowledge of the internals of the software product to test it. The source code of

the software product is required to be available to the software testers. White-box

testing is highly dependent on the skill of the software tester. A skilled software

tester can detect defects at a much faster rate than a less skilled tester. If there

is a team of tester involved in white-box testing there may besubstantial hetero-
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geneity in the rate at which different testers detect defects. White-box testing can

reveal major software errors in the initial stages of testing. A software reliability

model analyzing test-data from a white-box testing procedure needs to consider

variations in the skill levels of different testers and mustallow for different defects

to have different severity. White-box testing is commonly used in security testing

by high skilled computer security engineers (Janardhanuduand van Wyk, 2005).

Black-Box Testing: This is the exact opposite of white-box testing in that the

tester has no access to the source code and does not understand the internals of the

software product. The tester can only control the sequence of test-cases and de-

termine a fault if the program output of the test case does notmatch the expected

output. The testing procedure can be automated and each tester can be assumed to

have the same skill level. Many early software reliability models considered that

software testing was black-box testing. In black-box testing it might be reason-

able to assume that the severity of a defect has no dependenceon the duration or

number of test-cases it took to detect the defect.

Gray-Box Testing: As the name suggests, this form of testing bridges black-

box and white-box testing. The tester is assumed to have someknowledge of how

the software works but may not have as much information as a white-box tester.

User-driven defect discovery which is becoming quite popular in the form of beta-

testing is an example of gray-box testing. Software reliability models for gray-box

testing are few in number as they need to make more generic assumptions regard-

ing the defect discovery process as compared to models for black-box testing.
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Equivalence-Partitioning Testing: This is a specific example of white-box

testing and depends on identifying partitions of the input data, such that two in-

puts from the same partition will be processed by the same portions of the code.

Once the partitions are identified, then a suite of test casesis designed to ensure

a minimum number of test cases lie within each of the partitions. The advantage

of this testing methodology is that it can lead to economic test plans. The method

requires identification of the input data partitions which might be difficult for a

complex software program.

Unit Testing: Unit-testing is a commonly used form of white-box testing. As

the name suggest, it tests a “unit” of source code, where a unit is defined as the

smallest part of the code that can be provided an input and whose output can be

verified. Unit-tests are used to ensure that specific modulesof a software program

function as they are expected to. Unit testing is popular as it can detect prob-

lems during coding itself and also be used in a distributed programming environ-

ment where different teams code different modules. This framework is supported

by many popular programming languages (seejunit for unit-testing java code or

unittestfor unit-testing in Python).

Exploratory Testing: This is a specific form of gray-box testing where the test-

cases are determined dynamically based on the outputs observed historically. In

this type of testing, the assumption that there is uniform hazard of detecting a

defect may not be appropriate. Also, the expertise of the tester would play an

important role in determining the rate of detection of defects.
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User-Driven Testing: The reliability of a software is increasingly defined

through the eyes of its customers. Such a definition has economic benefits as a

significant number of tests may verify functionality not important to a user. User

driven testing has been made possible in the last decade due to the Internet be-

coming a pervasive communication medium. Users of a software can voluntarily

report a defect through the internet with the defect being logged in specialized

databases called bug-databases. User-driven testing represents one of the major

innovations in software testing in the past decade and statistical models and meth-

ods for analyzing data from this testing procedure are the need of the hour. A

software reliability model for such data would need to consider non-availability

of information regarding the usage of the software (such as the number of users

and how often the software being used) and the voluntary naturing of the report-

ing.

1.3.2. Software Reliability Modeling

Whatever be the software testing technique, their objectiveis to detect defects and

repair them with the expectation that the reliability of thesoftware will improve.

The purpose of a software reliability model is to measure howmuch improve-

ment in reliability can be attributed to every additional defect discovery and re-

pair. Software testing is an expensive process and the cost involved in testing a

software needs to be traded with the cost of releasing a defective software prod-

uct. A software reliability model can extrapolate the reliability of the software for

every additional unit of testing duration and for every additional defect discov-

ered. An application of such a model would be the determination of the optimal



11 1.3 Literature Review

duration of testing provided the cost of releasing a defective software product and

the cost of testing are both available. Sometimes the cost ofreleasing a defective

software product may not be known ahead of time, in which casethe decision to

stop testing a software maybe made after the software achieves a certaintarget

reliability (Dewanji, Sengupta and Chakraborty, 2011). It hardly needs to be men-

tioned that any estimate of the reliability of the software needs to be accompanied

by its corresponding uncertainty. Before we describe some ofthese models and

discuss their relative merits we would like to discuss some commonly used defini-

tions of software reliability. Note that these definitions are not specific to software

but can also be used to measure the reliability of a hardware or the reliability of a

process.

Software Reliability: Let T be a non-negative valued random variable repre-

senting the time to failure of any system which includes software products. The

reliability of a systemR(t) over a duration of usaget is defined as

R(t) = P(T > t). (1.1)

If f (t) is the probability density function ofT, then

R(t) =
∫ ∞

t
f (s)ds. (1.2)

The hazard of failure occurring at timet, if f (t) exists, is defined as

λ(t) =
f (t)
R(t)

. (1.3)

The hazard can be used to approximate the instantaneous probability of a defect

being observed at timet through the approximationP(T ≤ t+δt|T > t)≈ λ(t)δt.
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Also, R(t) can be computed in terms ofλ(t) as

R(t) = exp

(

−
∫ t

0
λ(s)ds

)

. (1.4)

Any continuous functionλ(t), s.t., λ(t) ≥ 0 for t ≥ 0 and
∫ ∞

0 λ(t)dt = ∞ is a

hazard for a failure time distribution. Hence a software reliability model can be

specified either through the probability density function or through the hazard

function of the inter-failure times. A popular measure of reliability is theexpected

time of defect free operation of a softwareafter its latest debugging and is called

the Mean Time To Failure (MTTF) and is given by

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
exp

(

−
∫ t

0
λ(s)ds

)

dt. (1.5)

An accurate computation of the MTTF depends on an accurate specification of the

underlying hazard. We shall discuss the importance of this requirement in Chap-

ter 5 when we discuss analysis of software defect data from user-driven software

testing. Now that we have defined software reliability, we will proceed to describe

some software reliability models.

Software reliability models, also known as software reliability growth models

(SRGM) or software reliability improvement models (SRIM), are commonly used

to determine the cumulative improvements in the reliability of the software due to

all the defects discovered and repaired so far and compute the current reliability

of the software. A software reliability model needs to address the following chal-

lenges: (i) Uncertainty in the usage profile or testing profile of the software prod-

uct. The usage profile determines the hazard of detecting a software defect, with

higher usage implying higher hazard. Hence, from (1.2), theprobability of defect-

free operation of a software depends on assumptions about how the software will
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be used or tested in the future. For example, if the testing methodology were to

change from black-box to white-box testing, then the estimates of reliability will

no longer be valid. (ii) High costs of test generation resulting in few number of

failures for estimating the software reliability model. This is particularly true for

security testing where the number of security defects detected in a software can be

as small as ten. Small software failure data-sets make computation of uncertainties

in the estimates of reliability even harder as asymptotic and bootstrap techniques

will no longer be appropriate. (iii) Lack of an accurate mathematical model for the

testing process generating the test data leading to biased estimates of reliability.

This is especially true for white-box testing or user-driven testing where assump-

tions regarding the skill of the testers and users in discovering defects may be hard

to justify.

There are many different taxonomies of software reliability models, see (See,

Musa, Laninio and Okumoto, 1987; Ramamoorthy and Bastani, 1982; Gǒseva-

Popstojanova and Trivedi, 2001, for some examples). These taxonomies are based

on the nature of the data used to estimate the models. For example, inter-failure

time durations vs cumulative defect counts. Recently there have been attempts

to classify the models based on Software Development Life Cycles (See, Kapur

et al., 2011, for some examples). If we follow the classification used by Singpur-

walla and Wilson (1994) then software reliability models can be classified into two

broad categories: (i) Inter-failure time models and (ii) Counting process models.

Since the review by Singpurwalla and Wilson (1994) a new class of models using

machine learning techniques have been proposed. For the sake of completeness

we shall also discuss such models briefly.
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A commonality among the different classes of software reliability models is

to assume an increasing reliability for the software with every additional defect

discovery, although some models do allow for the possibility of a decrease in

reliability with additional defect discoveries. A sofwarereliability model assum-

ing the contrary would imply that discovering more softwaredefects would ulti-

mately lead to decreased reliability of the software and would question the very

need for software testing. Software reliability models which have an underlying

stochastic assumption that explain the defect discovery process can lead to easily

interpretable software reliability metrics. For example,from the Jelinski-Moranda

model, one can estimate the number of remaining defects in the software. When

such an estimate has a tight confidence bound and has little orno bias, it can be

valuable to a product manager to determine if additional testing is required or not.

A key weakness of stochastic software reliability models isthat they can make as-

sumptions that are hard to validate. Incorrect assumptionsabout the usage profile

of the software can lead to biased estimates of software reliability. An example of

this problem has been studied through simulations and presented in Section 5.3.

An important weakness of stochastic software reliability models is that most of

them do not prescribe goodness-of-fit tests that can be used to determine the va-

lidity of their assumptions using data from testing of the software. Another defi-

ciency of many software reliability models is their inability to estimate the model

when there are few failures. This is particularly importantwhen the objective is

to estimate the reliability of a software with respect to rarely occuring defects

such as security vulnerabilities. This problem is further compounded by the lack

of small sample statistical inference methods for the estimated model parameters.



15 1.3 Literature Review

Bayesian software reliability models can handle the availability of few software

failures for model estimation. However, they may be criticized for their choice of

priors. The methods proposed in Chapters 3 and 4 can help address this issue.

Inter-Failure Time Models

A software testing procedure would note the calendar timeSi, since the release of

the software, when theith defect was detected, fori = 1, . . . ,n. The inter-failure

time is defined asTi = Si −Si−1, for i = 2, . . . ,n, with T1 = S1. The conditional

distribution ofTi |Ti−1, . . . ,T1 can be modeled to estimate the reliability of the soft-

ware after, say,n defect discoveries. There are two approaches to modeling the

conditional distribution; the first approach would model the hazard function,λi(t)

of Ti |Ti−1, . . . ,T1 while the second approach would modelT1, . . . ,Tn as an AR pro-

cess. We present some important models from both these approaches

The Model of Jelinski and Moranda: This was one of the very first models

of software reliability that assumed thatTi ∼ Exponential(λ(N − i + 1)) with

T1, . . . ,Tn being independent of each other andn ≤ N. The model implies that

λi(t) = λ(N− i+1). The parameterN is interpreted as the number of defects ini-

tially present in the software. We discuss this model in greater detail in Chapter 2.

The reliability of the software overt units of usage after detecting and repairing

thenth defects is

R(t) = exp(−(N−n+1)λt). (1.6)

The Jelinski and Moranda model pioneered the concept of decreasing hazard for

the inter-failure times as a function of the number of defects discovered.
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Bayesian Reliability Growth Model: Littlewood and Verrall (1973) proposed

this model to extend the Jelinski-Moranda model by assumingthatλi(t) = λi with

stochastically decreasing Gamma priors onλi as a function ofi. The rate at which

the gamma priors would decrease was controlled by an assumedparametric func-

tion of i. Littlewood (1981) and Mazzuchi and Soyer (1988) present some para-

metric forms for these Gamma priors as a function ofi.

The De-Eutrophication Model of Moranda: The Jelinski-Moranda model im-

plicitly assumed that every defect has the same severity. The de-eutrophication

model was proposed by Moranda (1975) to counter this criticism by assuming

thatTi ∼ exp(α+βi). The model estimation and inference are discussed in detail

in Chapter 2.

The Model of Schick and Wolverton: In this model Schick and Wolverton

(1978) assumed thatλi(t) = λt(N− i+1), i.e. the hazard is time-dependent. This

model represents one of the first attempts at acknowledging non-constant haz-

ards of detecting a software defect. This model is also discussed in more detail in

Chapter 2.

Autoregressive Models of Software Reliability: Singpurwalla and Soyer (1985)

pioneered the use of auto-regressive models for software reliability where they as-

sumed thatTi = δiT
θi
i−1 with δi ’s being independent LogNormal random variables

andθi ’s being modeled as an AR process. Extensions of similar types of models

have been discussed by Singpurwalla and Soyer (1985, 1992) to name a few.

Software Reliability Models for Recapture Debugging: Nayak (1991) con-

sidered an interesting variation of software testing and debugging where a defect
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when discovered is not repaired immediately but remains in the software system to

allow the number of re-discoveries of the defect to be determined. Nayak (1991)

considered the problem of recapture debugging under the Jelinski and Moranda

model assumptions and demonstrated efficiency gains in estimating the software

reliability when compared to debugging without re-capture. Dewanji, Nayak and

Sen (1995) considered the discovery and subsequent rediscoveries of each of the

N defects to be governed by a renewal process with common renewal distribution

F(.|θ) and discussed methods for estimatingN andθ. Dewanji, Kundu and Nayak

(2012) generalized the re-capture debugging model by estimating the renewal dis-

tribution non-parametrically.

Bayesian Software Reliability Models using Martingale Priors: Basu and

Ebrahimi (2003) proposed priors forλi(t) = λi using martingale processes, i.e.,

they assumeEprior(λi |λi−1) = λi−1. The justification being the discovery and re-

pair of theith defect is expected to maintain the same level of reliabilityas before.

Basu and Ebrahimi then proposed a series of prior forλi ’s that satisfy the mar-

tingale property and discuss the estimation of their posterior distributions through

Monte-Carlo computations.

Counting Process Models

An alternative approach to software reliability is to modelthe cumulative de-

fect countsN(s) as a function of calendar times. The non-homogenous Pois-

son process (NHPP) is the most commonly used counting process for model-

ing such data. A NHPP is defined through a positive and non-decreasing mean

value functionm(s) and assumes thatN(s)∼Poisson(m(s)) andN(s+t)−N(s)∼
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Poisson(m(s+ t)−m(s)) with N(s+ t)−N(s) being independent ofN(s) for all

t,s with t > 0. The functionm(s) represents the expected number of defects to

be discovered up to and including times. If m(s) were known we can compute

P(N(s) = n) as

P(N(s) = n) =
m(s)n

n!
exp(−m(s)).

The reliability of a software product which is released at calendar time 0 overs

units of future usage isR(s) = P(N(s)−N(0) = 0) and is given by

R(s) = exp(−(m(s))). (1.7)

The MTTF of the software under a counting process model wouldbe

MTTF =
∫ ∞

0
exp(−m(t))dt. (1.8)

Equation (1.7) implies the hazardλ(s) of a defect at calendar times is given by

λ(s) =
d
ds

m(s), (1.9)

when the derivative ofm(s) exists. Many counting process models specifym(s)

parametrically as a function of times, i.e., m(s) = f (s,Θ) whereΘ is the set of

model parameter(s). Alternatively, they would expressλ(s) as a parametric func-

tion of m(s) which due to (1.9) results inm(s) being the solution to a differential

equation with the boundary conditionm(0) = 0. Such models would typically as-

sume a decreasing hazardλ(s) as a function ofm(s). Estimates of the reliability

of the software can be obtained through (1.7) and (1.8). If the reliability of the

software is expected to improve with increasing test duration thenm(s) → c as

s→ ∞. Some models do not assume that this will happen allowing forwhat is
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known as imperfect debugging where the repair of a defect could introduce addi-

tional defects. Once the parametric form ofλ(s,Θ) involving the model parameter

Θ is available, estimates ofΘ can be obtained through maximum likelihood pro-

cedures. The data from a testing procedure, governed by a NHPP process, can

be represented asD = {n,s1, . . . ,sn,s} where,si represents the calendar time of

the ith defect discovery of then defects discovered in a software test of total du-

ration s. The likelihood of the dataD can be written as follows (V Basawa and

Prakasa Rao, 1980):

L(Θ|D) = exp(−m(s))
n

∏
i=1

λ(si ,Θ). (1.10)

The likelihood can be maximized to obtain maximum likelihood (ML) estimates

of Θ. V Basawa and Prakasa Rao (1980) establish the consistency andasymp-

totic normality of these ML estimates. We now present some commonly assumed

parametric forms form(s).

Goel and Okumoto Model: This was one of the first counting process models

proposed by Goel and Okumoto (1979) where they assumed that the failure inten-

sity of detecting a defect at calendar times is a linearly decreasing function of the

expected number of defects to be discovered by times, i.e.,

d
ds

m(s) = λ(s) = b(a−m(s)).

The solution to this differential equation along with the boundary condition

m(0) = 0 results in

m(s) = a(1−exp(−bs)),

andλ(s) = aexp(−bs), for unknown constantsa> 0 andb> 0 with a being in-

terpreted as the initial number of defects in the system.
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Logarithmic Poisson Model: An important criticism of the Goel and Okumoto

model was the linear decrease ofλ(s) as a function ofm(s). This was rectified by

Musa and Okumoto (1984) by assuming that

λ(s) = λ0exp(−θm(s)) ,

for some unknown constantsλ0 > 0,θ > 0. This results in

m(s) =
1
θ

log(1+λ0s).

The justification for the model being that early defect result in greater improve-

ment to the reliability as compared to defects discovered later on.

Hyper Exponential Growth Model: The defects detected in a software prod-

uct occur in many different modules and all modules may not betested equally

nor will they have the same reliability. To address this concern Ohba (1984b) pro-

posed what they called hyper exponential growth models in which the hazard of

discovering a defect in theith module is governed by a module specific Goel and

Okumoto model, that ismi(s) = ai(1−bimi(s)) andλi(s) = ai(1−exp(−bis)), for

i = 1, . . . ,n. The system-level mean value function, across all the modules, is given

by m(s) = ∑mi(s). Ohba provided methods for estimating the model parameters

when the information about the module in which each defect was discovered is

missing.

S-Shaped Software Reliability Models: Starting from Ohba (1984a), a series

of SRGM’s were proposed in whichλ(s) was not a strictly decreasing function of

m(s), but assumed thatλ(s) would initially increasewith m(s) up to a calendar

time point after whichλ(s) would decrease withm(s). The justification for such a
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non-decreasing relationship comes from the following heuristic argument: defects

discovered early in the test would trigger discovery of similar defects in other

parts of the software leading to an initial spike in defect discovery that eventually

decays. Ohba (1984a) first modeled this phenomenon by assuming that

λ(s) = am(s)(b−m(s)).

This results in m(t) being the sigmoid function

m(s) =
a

1+exp(−bs)
.

Since Ohba’s model, a number of S-Shaped SRGMS have been proposed with

increasingly sophisticated forms forλ(s). See Yamada, Ohba and Osaki (1983);

Yamada (1991); Yamada et al. (1994) for more details.

Some emerging trends in software reliability models

There are a couple of emerging trends in software reliability (SR) modeling. A

popular trend, pioneered by Yamada et al. (1994), considersthe use of stochastic

differential equations (SDE) for modeling the mean value function of the stochas-

tic process that counts the cumulative number of observed software defects. The

use of SDE’s is attractive, especially in white box testing or user-driven testing, as

it provides more flexibility in the specification of the underlying stochastic process

that governs the defect discovery process when compared to the more traditional

parametric counting process models. A brief description ofSDE based models is

presented later in this section. One may view the emergence of SDE based SR

models as a response to criticism that SR models have been making rigid assump-

tions about the underlying defect discovery process. SDE based models provide
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additional flexibility in parametrically specifying the mean value function of the

underlying counting process through the use of stochastic differential equations.

However, they still suffer from making parametric assumptions about the under-

lying defect discovery process that may be hard to validate.

Another emerging trend relates to SR models becoming more “ Statistical ”

as compared to “ Stochastic”. The goal of the statistical model is to empirically

estimate the distribution of time to discovery of the next defect using features

from the past failure history of the software. The stochastic model, on the other

hand, tries to explain the underlying defect discovery process using probabilistic

models. This trend is partly motivated by a software productmanager’s increasing

need for estimating the probability of defect free operation of a released software

with the greatest accuracy at (possibly) the expense of the resulting model not

being easily explainable. The emergence of numerous code complexity metrics,

derived from the source code of the software, has opened the possibility of using

these metrics as covariates in SR models. A “Statistical” SRmodel can incorporate

such metrics to better estimate the failure time distribution of the software. Some

of the machine learning based SR models briefly described later follow this trend.

Stochastic Differential Equation Based Models: Stochastic differential equa-

tions (SDE) present a natural way of generalizing counting process models. SDE

analogs for the model considered by Goel and Okumoto (1978) can be derived by

replacing the mean value function of the NHPPm(s) with N(s), whereN(s) is the

cumulative number of defects discovered till calendar times. This results in

dN(s)
ds

=

(

b(s)+σ
dW(s)

ds

)

(a−N(s)), (1.11)
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whereW(s) is the standard Wiener process. Yamada et al. (1994) presented the

first SDE based SRGM by assumingb(s) = b in (1.11) and showed that the solu-

tion to the SDE along with boundary conditionN(0) = 0 resulted in

N(s) = a(1−exp(−bs−σW(s))) (1.12)

E(N(s)) = a

(

1−exp(−bs+
σ2s
2

)

)

(1.13)

Yamada, Nishigaki and Kimura (2003) proposed another modelusing (1.11) with

b(s) given by

b(s) =
b2

1+bs

which resulted in what they called as the Delayed S-Shaped SRGM. SDE based

software reliability models have been argued to model the stochastic nature of

software usage and testing effort common in open-source software development.

See Tamura and Yamada (2007) for an example.

Machine Learning based Software Reliability Models: The assumptions of

many of the software reliability models presented till now have been criticized as

being too restrictive or hard to justify (Yang and Li, 2007).This has led to data-

driven approaches based on machine learning techniques such as Artificial Neural

Networks (ANN’s) and Support Vector Machines (SVM’s). Their objective is to

model the cumulative defect countsN(s) as a function of total execution timesby

leveraging the ability of ANN’s and SVM’s to model complex transfer functions.

Cai et al. (2001) presented examples where an ANN based software reliability

model performed better than parametric software reliability models. Yang and

Li (2007) presented a software reliability growth model based on support vector

machine regression model that predicted theith inter-failure timeTi as a function
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of Ti−1, . . . ,Ti−k for a pre-determined lagk ensuring the model only used the most

recent failure data in the prediction. Methods for determining uncertainty in the

predictions are typically lacking and model over-fitting may be a cause for concern

in these models.

1.4. Summary of Chapters

Parametric Models of Software Reliability (Chapter 2): Parametric models

of software reliability (SR) based on failure time between consecutive failures

(inter-failure times) are widely used. We present in detailsome well-known mod-

els and discuss their shortcomings. We then propose two new classes of software

reliability models; the first class of models extends well-known parametric SR

models by considering dependence between the inter-failure times. The second

class of models are a very generic class of SR models based on Isotonic regres-

sion involving Exponential, Gamma and Weibull distributional families. These

models can also consider dependence between the inter-failure times. We discuss

estimation methods for both classes of models, note the lackof large sample prop-

erties such as consistency and the difficulty in establishing the distribution of the

estimators. Finally we compare the performance of maximum likelihood (ML) es-

timators of the proposed isotonic software reliability models with those obtained

through parametric models using simulations. We find that the isotonic software

reliability models can outperform parametric models for software reliability when

the underlying parametric model is incorrect.

Independent Isotonic Software Reliability Models (Chapter3): For the iso-

tonic software reliability model involving scale-families such as Exponential,
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Weibull or Gamma distributions proposed in Chapter 2, the Pooled Adjacent Vio-

lator Algorithm (PAVA) can be used to estimate the failure time distribution of the

latest version of the software through a maximum likelihoodprocedure. Obtain-

ing the distribution of the estimator and subsequently confidence intervals for the

reliability for the latest version of the software can be challenging. In this chap-

ter, we propose a simple one-sided confidence bound, with a minimum coverage

probability for the scale parameter based on the PAVA estimate. The proposed

method makes use of neither asymptotics nor bootstrap procedures and is based

on establishing the PAVA estimator as a function of a sub-martingale process.

The performance of this method has been investigated through simulation. Appli-

cations of the proposed confidence bounds are illustrated ona software reliability

data sets including a dataset retrieved from the bug-database of a popular scripting

language.

Dependent Isotonic Software Reliability Models (Chapter 4): The generic

nature of the dependent isotonic software reliability models proposed in Chap-

ter 2 can be used to model failure data from a wide range of testing procedures.

The methods developed in Chapter 3 make use of the independence of the inter-

failure times and hence cannot be used when the inter-failure times are dependent.

Also, they cannot considering right censoring of the failure times. To solve these

problems, we propose a novel statistic, based upon the maximum of the observed

inter-failure times, which is proved to be a confidence boundfor the reliability of

the latest version of the software with a minimum coverage probability. If needed,

a method for ensuring the monotonicity of the confidence bounds is also pro-

posed. The methods developed are studied through simulations and also applied
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to datasets relating to software debugging and a new datasetderived from an au-

tomated error logger.

Semi-Parametric Models for Analysis of Post-Release Software Defect Data

(Chapter 5): Software bug-databases provide an important source of datafor

assessing the reliability of a software product after its release. Statistical analysis

of these databases can be challenging when software usage isunknown, that is,

there is no information about the usage, either in the form ofa parametric model,

or in the form of actual measurements. Reliability metrics, when defined on a

calender time scale, would depend on this unknown and time-dependent usage

of the software and hence cannot be estimated. This chapter proposes a semi-

parametric analysis that makes use of defect classifications into multiple types to

enable estimation of a model without making strict assumptions about the under-

lying usage of the software. New reliability metrics, basedon number of failures

rather than the calendar time, are introduced. The computation of these new reli-

ability metrics do not depend on the unknown usage of the software. A method

based on partial likelihood has been developed for estimating the model parame-

ters and subsequently the reliability metrics. The performance of this method has

been investigated through simulation. The proposed methodhas been illustrated

using data retrieved from the bug-database of a popular scripting language, named

Python. This illustration compares reliability of two versions of the software with-

out making assumptions about their unknown usage.

Future Work (Chapter 6): Future research directions based on the thesis are

presented. We discuss the joint analysis of post and pre-release software defect
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data under the semi-parametric model presented in Chapter 5.We also discuss

non-parametric specification of the reliability improvement function in the same

model. Finally we discuss applications of the methods in areas other than software

reliability.

1.5. Summary of Relevant Statistical Techniques

Some of the key statistical concepts and techniques that will be used in the thesis

are briefly discussed here.

1.5.1. The Bootstrap Method for Estimating Standard Errors

Efron and Tibshirani (1986) presented a novel numerical approach for computing

the distribution of estimators which were sophisticated functions of the observed

data. They called this the bootstrap method. They proposed two types of bootstrap;

the parametric and the non-parametric bootstrap.

The Non-parametric Bootstrap: Let X1, . . . ,Xn
iid∼ F(;θ) with x = (x1, . . . ,xn)

being a realization from(X1, . . . ,Xn). Let θ̂n(x) be a consistent estimator ofθ.

The standard deviation of the distribution ofθ̂n(x), underF(;θ), is of interest

for providing a confidence interval forθ and testing hypotheses regardingθ. In

general, the distribution of̂θn(x) can be difficult to derive algebraically. Efron and

Tibshirani (1986) approximated this distribution by the distribution ofθ̂n(x) under

the empirical distribution of the observedx1, . . . ,xn, i.e.,F̂n(x) = 1/n∑n
1 I(xi ≤ x).

This approximation is computed numerically using Monte-Carlo simulations. The

algorithm involvingB bootstrap samples is presented in Algorithm 1.1. Efron and

Tibshirani (1986) state thatB= 500 is sufficient for estimating the distribution of
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θ̂n. However, depending on the computing power available, one can choose higher

values ofB.

Algorithm 1.1. The Non-parametric Bootstrap

1. Generate thebth bootstrap sample,x∗(b) = (x∗1, . . . ,x
∗
n), from the empiri-

cal distributionF̂n by a simple random sampling with replacement from

(x1, . . . ,xn).

2. Computêθ∗n(b) = θ̂n(x∗(b)).

3. Iterate through steps 1 and 2 overB times generatinĝθ∗n(b) for b= 1, . . . ,B.

4. Computêθ∗ = 1/B∑B
1 θ̂∗n(b).

5. Compute the standard error ofθ̂n as

SE(θ̂n)
∗ =

1
B

B

∑
b=1

(

θ̂∗n(b)− θ̂∗
)2
. (1.14)

The Parametric Bootstrap: In the non-parametric bootstrap, the distribution

of the dataX1, . . . ,Xn is approximated by its empirical distribution̂Fn. Alterna-

tively, one can approximate the distribution byF(.; θ̂n(x)) which will provide a

smooth estimate ofF(.;θ) when compared tôFn. Another advantage of this ap-

proximation is thatX1, . . . ,Xn need not be independent asF(;θ) may specify the

joint-distribution of theXi ’s with F(.; θ̂n(x)) being its estimate. The Parametric

Bootstrap is described in Algorithm 1.2.

Algorithm 1.2. The Parametric Bootstrap

1. Generate thebth bootstrap sample,x∗(b) = (x∗1, . . . ,x
∗
n), from F(.; θ̂n(x)).

2. Computêθ∗n(b) = θ̂n(x∗(b)).

3. Iterate through steps 1 and 2 overB times generatinĝθ∗n(b) for b= 1, . . . ,B.

4. Computêθ∗ = 1/B∑B
1 θ̂∗n(b).
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5. Compute the standard error ofθ̂n as

SE(θ̂n)
∗ =

1
B

B

∑
b=1

(

θ̂∗n(b)− θ̂∗
)2
. (1.15)

The parametric bootstrap is used in Chapters 3,4 and 5.

1.5.2. Inconsistency of the Bootstrap

Andrews (2000), in a seminal paper, presented a simple example where the distri-

bution of the MLE is not consistently estimated by the non-parametric bootstrap

of Efron and Tibshirani (1986). He made the following statement.

The bootstrap is not consistent if the parameter is on a boundary of the parameter space

defined by linear or nonlinear inequality or mixed inequality or equality constraints.

Andrews provided the following example to substantiate hisstatement: Let

X1, . . . ,Xn be independent and identically distributed asN(µ,1) with µ≥ 0. The

MLE of µ denoted by ˆµn = max(1/n∑n
1Xi,0). Andrews showed that

√
n(µ̂n−µ)

d→ Z, if µ> 0 (1.16)

√
n(µ̂n−µ)

d→ max(Z,0) if µ= 0, (1.17)

whereZ is the standard normal variate. The non-parametric bootstrap may be

considered for estimating the distribution of ˆµn. Let X∗
i

iid∼ F̂n, for i = 1, . . . ,n,

where F̂n is the empirical cumulative distribution function of the observations;

i.e., F̂n(x) = 1/n∑n
1 I(x≤ Xi). Let X̄∗

n = 1/n∑n
1X∗

i . Let µ̂∗n = max(X̄∗
n ,0) be the

random variable representing the ML estimate ofµ from the bootstrap sample.

The bootstrap probability distribution of ˆµ∗n, underF̂n, can be used to approximate

the distribution ofµ̂n only if the distribution of
√

n(µ̂∗n− µ̂n), given F̂n, and the

distribution of
√

n(µ̂n−µ), for all µ≥ 0, are the same, asn→ ∞. Andrews showed
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that, forµ= 0, the distribution of
√

n(µ̂∗n− µ̂n), given F̂n and for largen, will be

stochastically smaller than that ofmax(Z,0), which is the asymptotic distribution

of
√

n(µ̂n−µ). In other words, the result states that, even if the exact bootstrap

probability distribution of
√

n(µ̂∗n− µ̂n), givenX1, . . . ,Xn andF̂n, is computed (say,

by using a very large number of bootstrap sample or theoretically), it would be an

inconsistent estimator of the distribution of the MLE.

We reproduce the proof from Andrews (2000). Whenµ= 0, by the law of iter-

ated logarithms, there existsc> 0 s.t.

P

(

∞⋃
m=1

∞⋂
n=m

{
√

nX̄n <−c}
)

= 1.

This implies that, for everyω in the sample space, there exists a subsequence

{nk}k≥1 s.t.
√

nkX̄nk(ω)<−c for all k≥ 1. Note that the bootstrap distribution of

√
nk(µ̂∗nk

− µ̂nk), givenω and hence{F̂nk(ω)}k≥1, satisfies the following:

√
nk
(

µ̂∗nk
− µ̂nk(ω)

)

= max
{√

nk
(

X̄∗
nk
− X̄nk(ω)

)

+
√

nkX̄nk(ω),0
}

−max{√nkX̄nk(ω),0}

≤ max
{√

nk
(

X̄∗
nk
− X̄nk(ω)

)

−c,0
}

d→ max(Z−c,0) ask→ ∞
st
≤ max(Z,0).

Note that the convergence in distribution is due toEF̂nk
(X̄∗

nk
) = X̄nk(ω) and the

triangular array central limit theorem. Sincec> 0, the last stochastic inequality is

strict with positive probability. Since this holds for almost everyω in the sample

space with probability 1, we cannot have
√

n(µ̂∗n− µ̂n)
d→max(Z,0), which implies

that the bootstrap based distribution of
√

n(µ̂∗n− µ̂n) is an inconsistent estimator
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for the distribution of
√

n(µ̂n− µ), whenµ = 0. The same methodology can be

used to create counter-examples for other problems of parameter estimation where

the unknown parameter could lie on the boundary of a parameter space defined

by non-strict inequality constraints. Andrews mentioned about the existence of a

similar problem for the parametric bootstrap. This result is referred to in Chapters

3 and 4.

1.5.3. Partial Likelihood

We now present a summary of the theory of partial likelihood as presented in Cox

(1975). Lety be a vector of observations from a random variableY with density

fY(y;φ) with φ = (θ,η). If we can transformy into (v,w), with the transformation

not depending on the parameterθ, such that, the likelihood of the observationy

can be written as

fY(y;φ) = fV(v;φ)× fW|V=v(w;φ), (1.18)

with the transformation ofy in to (v,w) ensuring that the second product in (1.18)

depends only onθ, then fW|V=v(w;φ) = fW|V=v(w;θ) is called a partial likelihood

of θ. If the information onθ in the first part, i.e.,fV(v;φ) is non-extractable in

the absence of any information onη, and the sole objective is estimation ofθ,

then, according to Cox (1975),fW|V=v(w;θ) can be maximized to obtain what is

called maximum partial likelihood estimate ofθ. The method was proposed by

Cox to eliminate the estimation of a nuisance parameterη which could possibly

be infinite dimensional. Cox (1972) proposed this method for estimating the re-

gression effects in his proportional hazards model for analysis of life-table data

without having to estimate the unknown and arbitrary baseline hazard. Note that,
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by maximizing only fW|V=v(w;θ), we are ignoring the first part in (1.18) which

also depends onθ. Wong (1986) formally established that the partial likelihood

estimator had many of the desired large sample properties ofthe Maximum like-

lihood estimators such as consistency and
√

n normality. We state these results

here. Another definition of partial likelihood as presentedin Wong (1986) is as

follows: Let y = (w1,x1, . . . ,xn,wn), the transformation chosen such that the full

likelihood of the observations can be written as

fφ(y;φ) =

(

n

∏
k=1

fφ(wk|dk)

)

×
(

n

∏
k=1

fθ(xk|ck)

)

, (1.19)

wheredk = (w1,x1, . . . ,wk−1,xk−1) andck = (w1,x1, . . . ,wk−1,xk−1,wk). The sec-

ond part of the factorization in (1.19) depending solely onθ is the partial-

likelihood of θ. Wong assumed that the parameter space,Θ ∋ θ, is a compact

set.

Consistency of Partial Likelihood Estimator: The asymptotic consistency of

the maximum partial likelihood estimator is stated in Theorem 2E of Wong (1986)

as follows: Define

rk(θ) = log( fθ0(xk|ck)/ fθ(xk|ck)) , Rn(θ) =
n

∑
k=1

rk(θ) (1.20)

ik(θ) = Eθ0 (rk(θ)|ck) , In(θ) =
n

∑
k=1

ik(θ) (1.21)

jk(θ) =Var
θ0

(rk(θ)|ck) , Jn(θ) =
n

∑
k=1

jk(θ) (1.22)

mk(θ) = rk(θ)− ik(θ), Mn(θ) =
n

∑
k=1

mk(θ) (1.23)

Theorem 1.3. Assume that for anyθ 6= θ0 there exists an open neighborhood of

θ whose closure, Gθ, does not containθ0 and there exists constantsδ > 0 and a



33 1.5 Summary of Relevant Statistical Techniques

sequence an → ∞ such that

a−2
n Jn(θ′)

p→ 0, ∀θ′ ∈ Gθ, (1.24)

P

(

in f
θ′∈Gθ

a−1
n In(θ′)> δ

)

→ 1, (1.25)

P

(

sup
θ′∈Gθ

a−1
n ||▽Mn(θ′)||> K

)

→ 0, for some K> 0, (1.26)

P(Ln(θ) is strictly concave inθ) = 1 for all n, (1.27)

where▽Mn(θ) is the Fretchet derivative of Mn(θ) and Ln(θ) is the log partial

likelihood. Then, the maximum partial-likelihood estimate θ̂n
p→ θ.

Asymptotic Normality of Partial Likelihood Estimator of θ0: Define

lk(θ) = log( fθ(xk|ck)); l (k)k (θ) =
dklk(θ)

dxk ; L(k)
n (θ) =

N

∑
n=1

l (k)n (θ)

and

vn(θ) =Cov
θ0

(ln(θ)|cn); Vn(θ) =
N

∑
n=1

vn(θ)

The asymptotic normality of the partial maximum likelihoodestimator is stated

as in Theorem 4A of Wong (1986) as follows:

Theorem 1.4. Supposêθn is consistent forθ0 ∈ interior of Θ and there exists

constants an → ∞ and a neighborhood O(θ0) with

a−1
N Vn

p→ Q, (1.28)

−a−1
N L(2)

n (θ0)
p→ Q1, (1.29)

P

(

a−1
n sup

θ∈O(θ0)
|L(3)

n (θ)|< M

)

→ 1, for some M> 0, (1.30)

a−3/2
n

n

∑
k=1

E(||lk(θ)||3|ck)
p→ 0. (1.31)
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Then,

a1/2
n (θ̂n−θ0)

d→ N(0,Q1Q−1Q1). (1.32)

Note that in many situations, Q1 = Q resulting in

a1/2
n (θ̂n−θ0)

d→ N(0,Q). (1.33)

Partial Likelihood based model estimation is used in Chapter5.

1.5.4. Copulas: A Brief Discussion

A continuous copula is a multivariate distribution of the random variables

{U1,U2, . . . ,Un} such that eachUi, for i = 1, . . . ,n, has aUni f orm(0,1) marginal

distribution. Copulas are useful for modeling multivariaterandom variables,

X = {X1, . . . ,Xn}, whose components are dependent and with each component

having a specified marginal distribution. For example, we could use a Gaus-

sian copula to construct a dependent multivariate random variable X = (X1,X2)

with the X1 ∼ Exponential(1) and X2 ∼ LogNormal(0,1) as follows: Gener-

ate Z1,Z2 from a bivariate normal distribution with mean zero, standard de-

viations of one and correlation betweenZ1 and Z2 set to ρ = 0.5. Compute

U1 = Φ(Z1),U2 = Φ(Z2), whereΦ(.) is the CDF of the standard normal dis-

tribution. Note thatU1,U2 both have uniform marginal distribution. Compute

X1 = −log(1−U1) and X2 = exp(Φ−1(U2)). SinceU1,U2 are both marginally

distributed asUni f orm(0,1), we will have X1 and X2 distributed marginally

asExponential(1) andLogNormal(0,1), respectively. The dependence between

U1 andU2 induces dependence betweenX1 and X2. Any multivariate distribu-

tion with continuous marginals can be used to generate a copula; this is due to
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Sklar’s theorem, a simplified version of which is presented as stated in Embrechts,

Kl üppelberg and Mikosch (1997)

Theorem 1.5.(Sklar’s Theorem):For any set of random variables X1, . . . ,Xn with

continuous marginal cumulative distribution functions (CDF’s), F1, . . . ,Fn, and a

joint cumulative distribution F, there exists a unique copula, C(...), which is a

cumulative distribution function on[0,1]n such that for allx = (x1, . . . ,xn),

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn)) (1.34)

Conversely, given any marginal CDF’s, F1, . . . ,Fn, and a copula C, the CDF F(...)

defined through(1.34)is a multivariate CDF with marginals F1, . . . ,Fn.

Sklar’s Theorem enables the construction of a copula out of amultivariate dis-

tribution for which the dependence between the components can be easily speci-

fied and interpreted. The multivariate normal distributionwith zero mean and unit

variance for each component andcorrelation matrix R is used to construct the

Gaussian copula. The T-copula, Archimedian copula and hyperbolic copulas are

some of the other popularly used copulas. A particular form of a Gaussian copula,

which is important for time series applications, is a copuladerived from a Gaus-

sian Auto-regression process (Manner and Reznikova, 2012).Copulas are used

for defining new software reliability models in Chapter 2.

1.5.5. The Pooled Adjacent Violators Algorithm

Let Y1, . . . ,Yn be a sequence of independent random variables withYi ∼ F(.|θi)

for some real valued parameterθi. Denotef (.|θi) to be the PDF ofF(.|θi)). Let

yi be a realization ofYi. The problem of estimatingθi ’s, subject to the constraint
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θ1≤ . . .≤ θn, through the method of maximum likelihood has a variety of applica-

tions and was first considered by Ayer et al. (1955). The pooled adjacent violators

algorithm was proposed by Ayer et al. to solve this problem and is described as

follows:

Algorithm 1.6. The Pooled Adjacent Violators Algorithm

1. DenoteB(i,k) to be the block assigned to the observationyi during thekth

iteration of the algorithm. Initialize the algorithm by assigning B(i,0) = i,

for, i = 1, . . . ,n. Initialize k= 0.

2. Determine

θ̂(k)i = argmax
θ

∏
j:B( j,k)=B(i,k)

f (y j |θ), for i = 1, . . . ,n.

3. If θ̂(k)i ’s are all non-decreasing ini, thenθ̂(k)i ’s are the ML estimates ofθi ’s.

4. If not, then incrementk = k+1. For eachj = n,n−1, . . . ,2, determine if

θ̂(k−1)
j < θ̂(k−1)

j−1 and assignB( j ′,k) = B( j − 1,k), ∀ j ′ ≥ j with B( j ′,k) =

B( j,k). This is the pooling of adjacent violators into the same block.

5. Repeat Step 2.

A closed form expression for the PAVA estimate, useful for analytical purposes,

is given by Robertson, Wright and Dykstra[pp-23] and presented in (1.35).

θ̂i = min
j: j≥i

max
k:k≤i

argmax
θ

l= j

∏
l=k

f (yl |θ). (1.35)

The PAVA algorithm is used in Chapters 2,3 and 4.



Chapter 2

Parametric Models for Software Reliability

2.1. Introduction

Pay attention to zeros. If there is a zero, someone will divide by it.

Cem Kaner

Basu and Ebrahimi (2003) defined software reliability as the “Probability of

Failure Free” operation of a software product. This probability may be over the

next use case of the software product or over a specified period of time. A key dif-

ference between software and hardware reliability is the absence of the notion of

ageing. Once a software product fails, there is a possibility of detecting the cause

of the failure (popularly called as a software bug) and repairing the bug (known

as debugging) with a resulting increase in the reliability of the software. Since the

software does not age, the increase in reliability should not depend on the age of

the software. One would expect an increasing time to failurewith the detection

and debugging of every additional defect. A software reliability model quantifies

this intuitive expectation mathematically. The inter-failure times observed histor-

ically can be used to estimate the model. An objective of the software reliability

model is to estimate the distribution of the time to next failure of the software

and use it to compute the reliability of the software in termsof the probability of

failure over a specified period of future usage.

37



Chapter 2: Parametric Models for Software Reliability 38

Consider a software product under controlled testing by a professional team of

software testers. LetSi , for i = 1,2, . . . , denote the calendar times when defects

are discovered since the release of the software. LetT1 =S1,T2 =S2−S1, . . . ,Ti =

Si −Si−1, be the inter-failure time for theith failure with ti denoting a realization

of Ti. A generic software reliability model would compute the conditional distri-

bution of thenth inter-failure time,Tn, givenn,T1 . . . ,Tn−1. From such a model,

one could compute the probability of failure-free operation over any specified du-

ration of usage. The model would need to incorporate the expectation that every

additional discovery increases the reliability of the software. In the vast majority

of software reliability analysis, the number of failures and therefore the number

of inter-failure time observations are limited necessitating the need for a model

that is parsimonious in model parameters. This is particularly true for software

reliability analysis involving critical failures such as those related to security vul-

nerabilities. Due to this practical constraint, it is common for software reliability

models to assume the conditional distribution ofTi, givenTi−1, . . . ,T1, to depend

only on i or even on justTi−1.

At this juncture, it is important to discuss how software failure times are mea-

sured. In the case of pre-release controlled software testing, the duration to the

next failure is measured in terms of the number of test-casessuccessfully executed

by the software product before it fails. An alternative definition would involve the

number of days or hours of testing before the software fails.If there is a large

team of software testers testing the software, with the teamsize varying over the

testing duration, the number of man-hours of testing as a measurement unit may

be more accurate. In the case of post-release software failure, with different cus-
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tomers beginning to use the software from different calendar times, the number

of customer-hours, defined as the number of hours of use by allthe customers

before a failure is reported, may be a natural measure of the inter-failure time. A

well-defined and accurate measurement of software operating duration adjusted

for the number of users or testers is clearly important for any software reliability

modeling and we assume that such a definition exists and is consistently used for

all measurements of inter-failure time.

In this chapter, we describe in detail some key software reliability models that

have motivated software reliability studies and discuss their shortcomings. The

generalization of some such parametric models to incorporate dependent inter-

discovery times using copulas induced by time series processes is considered. In

particular, we will use the de-eutrophication model, whichis one of the most pop-

ularly used model (Singpurwalla and Wilson, 1994; Derrenicand Le Gall, 1995;

Farr, 1996), given by Moranda (1975), to illustrate the generalization. Copulas

have been used in reliability modeling (for example, see Wang, Ephim and Pham;

2012) for modeling degradation process. The method proposed here considers a

new approach that is specific to software reliability problems. We also propose

a new family of software reliability models, which we term asIsotonic Software

Reliability (ISR) models, that offers generalizations of many well-known soft-

ware reliability models. The ISR model may be considered as an example of a

“statistical” software reliability model, whereas the Jelinksi-Moranda model may

be considered to be a ‘stochastic’ model since it has some explanation of the pro-

cess by which the faults arise. We discuss maximum likelihood analysis of the

proposed ISR models. A simulation study is then presented tocompare the per-
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formance of the proposed ISR models with that of some of the existing parametric

models.

A software reliability model needs to consider three modeling aspects when

analyzing data corresponding to software failures: The first aspect, corresponding

to the Defect Reporting Rate (DRR), represents the efficiency of the software

testing and is defined as the intensity of discovering and reporting a defect at time

t under the assumption that no defect has been discovered tilltime t (a kind of

baseline reporting rate); the second aspect corresponds tothe manner in which

the history of previously detected defects affects the rateat which defects will

be detected in the future and finally, the third aspect corresponds to stochastic

dependence between the inter-discovery times of the defects. Currently, the most

popular software reliability models are parametric in nature, considering all the

three aspects discussed above in some limited manner. We intend to emphasize

this in our further modeling generalizations.

The earliest models of software reliability considered a DRRwhich was con-

stant with time, assumed a parametric form for the rate at which new defects

are detected as a function of the cumulative number of defects already detected

and simply considered independence between the inter-discovery times of the de-

fects. The first among these models is the one, proposed by Jelinski and Moranda

(1972), which considers a linear improvement in the reliability. The imperfect

debugging model of Goel and Okumoto (1978) considered the possibility of a

detected defect not being perfectly debugged. The de-eutrophication model of

Moranda (1975) is similar to the model of Jelinski and Moranda but considered

a geometric improvement in reliability as opposed to a linear improvement. The
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model of Schick and Wolverton (1978) is specified in terms of the hazard,λ(t), of

the distribution of the inter-discovery timeTi. One of the first Bayesian models of

software reliability was due to Littlewood and Verrall (1973), where they assumed

thatTi ∼ Exponential(λi), with prior distributions onλi belonging to the Gamma

family. In particular, they assumed thatλi ∼ Gamma(Ψ(i),α) with a variety of

parametric forms forΨ(i). Mazzuchi and Soyer (1988) gave details of a model

which assumesΨ(i) = β0+β1i.

The assumption of independence between the observed inter-discovery times

has been a cause of concern for many software reliability practitioners, and in

spite of this, software reliability models that can accountfor dependence between

the time to discovery of the defects are few in number. The problem with assum-

ing independence between the inter-discovery times is thatif the discovery of an

important defect takes a long time (or more test cases), it can hasten the discov-

ery of subsequent defects through learnings the testing team has gained from this

discovery. For example, consider a software product with modulesM1, . . .Mn; if

a security vulnerability, denoted by sayS1, is discovered in moduleM1 after a

very large number of test cases, there will be a tendency to use the test case that

detected the defectS1 in moduleM1 on the other modules which may result in

a shorter time to detecting security defects in other modules. In such a situation,

the assumption of independence between the inter-discovery times may not be

realistic.

The most notable software reliability model that does not assume dependence

between the inter-discovery time is the auto-regressive model of

Singpurwalla and Soyer (1985), which assumes the conditional distributionTi,
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givenT1, · · · ,Ti−1, is log-normal withlog(Ti) = θi log(Ti−1)+ εi, for i = 2,3, · · · ,

with log(T1) = θ1+ ε1 andε1,ε2, . . . all being independent standard normals. The

parametersθi ’s are assumed to have a distribution that is either assumed to be

exchangeable or to be governed by an AR(1) process, with the latter being studied

in depth by Singpurwalla and Soyer (1992) using an adaptive Kalman filter.

2.2. Some Existing Parametric Models of Software Reliability

2.2.1. Model of Jelinski and Moranda

The Jelinski and Moranda (JM) model, Jelinski and Moranda (1972), was one

of the first models for software reliability. The genesis of the model lies in a

well-known stochastic process model for the following puredeath process: Let

N individuals be confined to a room withN being unknown. An individual can

be identified only when the individual “dies”, with the time to death for any two

individuals being independent of each other and having identical exponential dis-

tributions with scale parameterλ. If we denote the calendar time to death of the

ith individual asSi , for i = 1, . . . ,N, then the time to the first “death” and hence the

first discovery of an individual, denoted byT1 = min(S1, . . . ,SN). If we denoteTi

to be the time to theith discovery of an individual since the(i −1)th discovery of

an individual, thenTi = S(i)−S(i−1), for i = 2, . . . ,N, with S(i) being theith order

statistic ofS1, . . . ,SN. SinceS1, . . . ,SN are independent and identically distributed

asExponential(λ), we will haveTi ∼ Exponential((N− i +1)λ) with Ti andTj

being independent of each other fori 6= j. This results is due to a well known

property of the exponential distribution. Jelinski and Moranda likened the defects

in a software product to theN individuals in the pure death process with their de-
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FIG 2.1. Plot ofλ(t) vs calendar time t

tection and debugging corresponding to the “death” of an individual. If one were

to ignore the genesis of the model from a pure death process, then the JM model

simply states the following:

Model 2.1. (Jelinski and Moranda Model) Let N be the number of defects

in a software. LetTi, for i = 1, . . . ,N, be the inter-failure times. ThenTi ∼

Exponential(λ(N− i+1)) with Ti being independent ofTj for i 6= j.

To help visualize the model the instantaneous hazard of observing a failure at

calendar timet, a plot ofλ(t) vs. ts for the JM model is presented in Figure 2.1

with λ = 1 andN = 10. There are a couple of properties of interest in the JM

Model: The first property corresponds to the expected value of the ith inter-failure

time E(Ti), which keeps increasing withi, the number of detected defects, since
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E(Ti) = 1/λ(N− i+1). This can be interpreted to mean that every defect discov-

ery increases the reliability of the software, justifying the cost of finding defects

and repairing them. Note that this increase in expectation has a very specific para-

metric form. The second feature corresponds to the inter-discovery timeTi not

depending on the total testing time of the software at the time of its discovery,

which represents the lack of ageing of the software. Both these properties have

been used in subsequent software reliability models.

Criticisms of the JM Model: One of the key-assumptions of the model is that

all defects are equal in terms of their impact on reliabilityimprovement after their

discovery and repair; an assumption that may not be realistic. For example, soft-

ware defects could have different severities, with the discovery and repair of more

severe defects increasing the reliability much more than the discovery and repair

of less severe defects. The model also assumes that every defect can be fixed per-

fectly resulting in an immediate improvement in the reliability, an assumption that

has often been criticized (See Littlewood and Verrall (1973); Goel and Okumoto

(1978); Musa and Okumoto (1984) for some examples). This criticism has lead to

the developement of several software reliability models (Singpurwalla and Wil-

son, 1994). The assumption that the reliability of the software must improve after

every defect discovery has been challenged most recently byBasu and Ebrahimi

(2003) leading them to propose a Bayesian model for software reliability.

Model Estimation: There are two software test procedures through which soft-

ware defect data can be generated for estimating the JM model; the first procedure

corresponds to testing the software till a pre-determined number of, say,n defects
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are discovered while the second procedure would test the software for a fixed cal-

endar time duration irrespective of the number of defects discovered. We discuss

first the likelihood and model estimation for the first testing procedure for which

a typical data set would comprise of the inter-failure timesof the n defects. Let

t = {t1, . . . , tn} denote the observed inter-failure times of the n defects. Ifone were

to assume the JM model is appropriate for the software under consideration, then

the likelihood of observingt will be given by

L(t|λ,N) =
n

∏
i=1

λ(N− i+ i)exp(−λ(N− i+1)ti). (2.1)

Jelinski and Moranda showed that if the likelihood in (2.1) had a unique maxi-

mum inN andλ, then the solution to finding the ML estimate forN was iterative

and given by

N

∑
i=1

1
N− i+1

=
n

N− 1
Sn

∑n
i=1(i−1)ti

, (2.2)

whereSn = ∑n
i=1 ti , N ≥ n. Once the ML estimatêN of N is obtained, the ML

estimate ofλ can be obtained as

λ̂ =
n

N̂Sn−∑n
i=1(i−1)ti

. (2.3)

If the software is tested for a specified period of timeS, irrespective of the

number of defects discovered, then the likelihood of the observation(n, t1, . . . , tn)

will be

L(n, t1, . . . , tn|λ,N) =
n

∏
i=1

λ(N− i+ i)e−λ(N−i+1)ti ×e−(N−n)λS (2.4)
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The likelihood in (2.4) is maximized at̂N∗ which satisfies

G(N̂∗)≤ 1
nS

n

∑
i=1

ti < G(N̂∗+1), (2.5)

where

G(N) = {n(1− [1− (n/N)]1/n)}−1+1− (N/n).

Then,λ is estimated bŷλ∗ given by

λ̂∗ =
n

∑n
i=1(N̂

∗− i+1)ti +((N̂∗−n)S)
. (2.6)

Properties of the ML estimateN̂ and N̂∗ : Blumenthal and Marcus (1975) have

studied the properties of̂N, obtained from (2.3), in detail. They show that
√

N(N̂−

N)∼ Normal(0,σ) asN → ∞ with σ being a function of the proportion of defects

discoveredδ = n/N andλ. The likelihood in (2.1) can sometimes be unbounded

with N̂ = ∞. This has once again been studied by Blumenthal and Marcus where

they compute the probability of this happening as a functionof N andn. They

note thatProb(N̂ = ∞) can sometimes be as high as 0.40 for N = 40 andn= 10.

Blumenthal and Marcus also note thatN̂ can be highly biased, especially whenλ

is very small and for moderately large values ofN. Blumenthal and Marcus also

showed similar results for̂N∗ obtained through maximizing (2.4). In particular,

they showed that for largeN, N̂∗ is consistent and
√

N(N̂∗−N)∼ Normal(0,σ),

with σ being a function ofλ andS.

2.2.2. The Imperfect Debugging Model of Goel and Okumoto

The Jelinski and Moranda (JM) model assumes that every failure corresponds to a

unique software defect which can be perfectly fixed and will result in an improve-

ment in the reliability. This assumption has been challenged by Goel and Okumoto
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(1978) and they proposed a modification to the JM model by introduction of a pa-

rameterp, with 0< p≤ 1, which represents the probability that a defect has been

fixed. The parameterp can be interpreted as the efficiency of debugging, with

higher values representing better and more efficient debugging.

Model 2.2. (The Imperfect Debugging Model)Let N be the number of de-

fects in a software. LetTi , for i = 1, . . . ,N, be the inter-failure times. Then

Ti ∼ Exponential(λ(N− p(i−1))) with Ti being independent ofTj for i 6= j.

The reason that we discuss this model is because it represents the first attempt

by researchers at recognizing that fixing a defect need not necessarily improve

the reliability of the software. In fact, the model suggeststhat, even after fixingN

defects, ifp 6= 1, then the software may still have a failure in the future. Werefer

to Goel and Okumoto (1978) for details regarding the model estimation which are

very similar to that of the JM model.

2.2.3. The Model of Schlick and Wolverton

The JM model bestows a memory-less property to a software testing procedure

by assuming exponential inter-failure times. A testing team that is monetarily re-

warded for every software failure discovered can be expected to increase their

testing intensity if no failure is observed by them for a longduration. Such a ten-

dency would violate the memory-less assumption of the defect discovery process.

Alternatively, immediately after a software failure is observed, there might be a

tendency for the testing team to spend time analyzing the failure, leading to a

temporary decrease in their testing intensity. Such possibilities require a model in

which the hazard,λ(s), of observing a software failure at calendar times is not a
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constant. As a result, the inter-failure times are not exponentially distributed. The

model of Schick and Wolverton (Schick and Wolverton, 1978) represents the first

attempt at a software reliability model where the inter-failure time is assumed to

be non-exponentially distributed.

Model 2.3. (Schick and Wolverton Model)Let N be the number of defects

in a software. LetTi, for i = 1, . . . ,N, be the inter-failure times. The hazard of

observing theith failure at timeTi = t since the(i − 1)th failure is given by

λi(t) = γ(N− i+1)t.

The model implies thatTi ∼ Rayleigh(γ(N− i +1)), which is a Weibull distri-

bution with shape parameter 2. The model estimation procedure is very similar to

that of the JM model.

2.2.4. The De-Eutrophication Model of Moranda

One of the criticism’s of the JM model is that fixing every defect improves the

reliability of the software by the same quantum, which can also be interpreted as

stating that all defect are equal in terms of their severity.The de-eutrophication

model of Moranda (Moranda, 1975) challenges such an assumption and assumes

that improvements in reliability due to defects that are detected early on are more

than improvement to reliability due to defects detected later on. The heuristic

reasoning being severe defects will be detected early on as their hazard of causing

a failure will be more than those of less severe defects. The model is stated as

follows:
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Model 2.4. (De-Eutrophication model of Moranda)Let Ti, for i = 1, . . . ,N, be

the inter-failure times. ThenTi ∼ Exponential(exp(α+ βi)) with Ti being inde-

pendent ofTj for i 6= j. The parameters of the model areα andβ. If β < 0, then

the reliability of the software improves after every additional defect discovery.

Note that this model moves away from describing the reliability of the software

in terms of the number of defects in the software. According to this model, the

hazard of observing a defect in the future can never be zero irrespective of the

number of defects already discovered. The parameterβ measures the benefit of

discovering and fixing an additional defect; ifβ < 0, then there is a positive im-

provement in the reliability for every additional defect fixed, if β = 0, there is no

effect of discovering and fixing defects in the software and lastly if β > 0, every

additional defect discovery decreases the reliability of the software. By testing for

the sign of theβ coefficient one may be able to judge whether software testingand

debugging are beneficial to improving the reliability of thesoftware.

Method of Moments Estimation: Under this model,Ti ∼Exponential(exp(α+

βi)) which implies− log(Ti)∼ Gumbel(α+βi,1), which corresponds to a Gum-

bel distribution with location parameterα − βi and scale parameter of 1. This

would in turn imply thatE(− log(Ti)) = α+βi+γ, whereγ = 0.5772 is the Euler-

Mascheroni constant and standard deviation (SD) of−log(Ti) is π/
√

6. Let ti be

a realization ofTi , for i = 1, . . . ,n. A least squares regression ofyi =− log(ti)− γ

againsti, for i = 1, . . . ,n, would result in estimateŝαLS of α andβ̂LS of β, respec-

tively. The estimates are given by
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The estimateŝαLS and β̂LS are unbiased estimates ofα and β. Also note that

the variance-covariance matrix of(α̂LS, β̂LS) is given byπ2/6×D−1, with D as

defined in (2.8). SinceTi ’s are independent and the minimum eigenvalue ofD

tends to infinity asn→ ∞, the regression satisfies the conditions of Eicker (1963).

Hence, the least square estimates are consistent and
√

n(α̂LS−α, β̂LS− β) fol-

lows asymptotically a bivariate normal distribution with mean zero and variance-

covariance matrixπ2/6× (D/n)−1.

Maximum Likelihood Estimation: The log-likelihood under the de-eutrophication

model of Moranda for the observationst1, . . . , tn can be written as

l(α,β) =
n

∏
i=1

(α−βi)−exp(α−βi)ti . (2.9)

The score and the hessian matrix for the log-likelihood are given, respectively, by

∇l(α,β) =
n

∑
i=1

(1−exp(α−βi)ti)(1 i)T , (2.10)

∇2l(α,β) =
n

∑
i=1

−exp(α−βi)ti (1 i)× (1 i)T . (2.11)
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From (2.11), it is clear that the hessian matrix will be negative definite due to

it being a sum of non-negative definite matrices. Hence, the log-likelihood will

have a unique maximum and a Newton-Raphson procedure can be used to numer-

ically maximize the log-likelihood to obtain maximum likelihood estimateŝαML

andβ̂ML of α andβ, respectively. For largen, we have
√

n(α̂ML −α, β̂ML −β) to

be normally distributed with mean zero and a variance-covariance matrix that is

estimated by(∇2l(α̂ML, β̂ML))
−1. This asymptotic result can be used to compute

confidence intervals for the parameters from their ML estimates and to test for the

significance of theβ coefficient.

2.3. Software Reliability Models with Dependence

The inter-discovery times for the defects,T1, . . . ,Tn, have a natural ordering in-

duced by the calendar time sequence of defect discoveries. This suggests that

T1, . . . ,Tn can be modeled as a time series. The time series interpretation is ad-

vantageous in allowing specification of dependence betweenthe inter-discovery

times. The expectation that software reliability improveswith every additional

defect discovery suggests that the marginal distribution of Tn+1 is stochastically

larger thanTn. A simple way of introducing dependence in a software reliability

model, while still maintaining the requirement of softwarereliability improve-

ment, is to use copulas induced by a time series processes. Wewill use the de-

eutrophication model as an example to demonstrate our modeling (See Section

2.3.1).

The purpose of a dependent software reliability model wouldbe to estimate the

conditional distribution ofTn+1|T1, . . . ,Tn. Such an interpretation has been consid-
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ered by Singpurwalla and Soyer (1985) for proposing an auto-regressive model

for software reliability. While their model considers dependence, it is at odds with

software reliability models such as the Jelinski and Moranda model sinceTi is no

longer distributed asExponential(λ(N− i+1).

For a software test data-set consisting of the inter-discovery timesT1, . . . ,Tn, a

software reliability model usually specifies the distribution of Ti as a function of

i. In order to preserve the specified marginal distributions of Ti ’s while allowing

dependence between them, we propose using copulas. In particular, a Gaussian

copula, constructed using a stationary auto-regressive process of orderp, may

seem well-suited for characterizing the nature of dependence between theTi ’s.

Recall that an auto-regressive process,AR(p) of order p, is determined by the

parametersρ1, . . . ,ρp with ρi representing theith order auto-regression coefficient.

A sequence of random variables,V1, . . . ,Vn, is said to followAR(ρ1, . . . ,ρp) when

Vi ’s denote random variables corresponding ton successive observations from an

AR(p) process. A dependent software reliability model that makesuse of anAR(p)

process is presented as follows:

Model 2.5. (Gaussian Copula based Software Reliability)Let T1, . . . ,Tn be the

inter-failure times ofn successive failures of a software product. Then,

Ti ∼ F(.|Θ, i), for i = 1, . . . ,n,

with
(

Φ−1(F−1(T1|Θ,1)), . . . ,Φ−1(F−1(Tn|Θ,n))
)

∼ AR(ρ1, . . . ,ρp).

Note thatΦ(.) is the standard normal CDF andF(Θ, i) represents the marginal

CDF of Ti as a function of the model parametersΘ and i. By specifying the de-

pendence between theTi ’s through a copula induced by a Gaussian AR process,
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one can consider the possibility of dependence between the inter-discovery times.

Under this modeling framework, one may also consider a higher order AR process

to allow for long term dependence between theTi ’s.

Maximum Likelihood Estimation Assume thatf (t,Θ, i), the density function

corresponding toF(.|Θ, i), exists and is twice differentiable over the non-negative

part of the real line. Letti be a realization ofTi. The log-likelihood of the observa-

tions,t1,...,tn, can be expressed in terms ofZ = {Φ(F−1(t1|Θ,1)), . . . ,Φ(F−1(tn|Θ,n))}

as follows:

l(Θ,ρ,Σ) =
n

∑
i=1

log( f (ti |Θ, i))+ log(Cρ(Z)),

log(Cρ(Z)) = − p
2

log(|Σ|)−Z′Σ−1Z,

with Σ being the covariance matrix of apth order Gaussian auto-regressive process

andρ = (ρ1, ...,ρp). Numerical procedures need to be used for maximization of

l(Θ,ρ,Σ) overΘ,ρ andΣ. The existence of a unique maximum would depend on

the form of f (.|Θ, i) and the copula used.

2.3.1. De-Eutrophication Model with Dependence

A specific example of the Gaussian Copula based software reliability model would

specifyF(.|Θ, i) through the de-eutrophication model of Moranda. This is stated

as follows:
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Model 2.6. (De-Eutrophication Model with Dependence)Let T1, . . . ,Tn be the

inter-failure times ofn successive failures of a software product. Then,

Ti ∼ Exponential(α+βi), for i = 1, . . . ,n,

with
(

Φ−1(1−eeα+β1T1), . . . ,Φ−1(1−eeα+nβTn)
)

∼ AR(ρ1, . . . ,ρp).

The proposed model can be estimated through the method of maximum likeli-

hood or through the method of moments. We will discuss the latter first.

Method of Moments Estimation Under the de-eutrophication model with de-

pendence,Ti ∼Exponential(exp(α+βi)) which implies− log(Ti)∼Gumbel(α+

βi,1), which corresponds to a Gumbel distribution with location parameterα+βi

and scale parameter of 1. This in turn implies thatE(− log(Ti)) = α + βi + γ,

whereγ ≈ 0.5772 is the Euler-Mascheroni constant and standard deviation ofTi is

π/
√

6. A least squares regression ofYi = − log(Ti)− γ againsti, for i = 1, . . . ,n,

would result in estimateŝαLS of α andβ̂LS of β, respectively. The estimates are as

follows:
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whereyi =− log(ti) with ti being a realization ofTi. The estimateŝαLS
n andβ̂LS

n are

unbiased estimates ofα andβ, respectively, even if there is dependence between

theTi ’s. It is possible to estimate the coefficients of the copula of the underlying

AR process governing the dependence between theTi ’s as follows: Computevi =
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Φ−1(1−exp(exp(α̂LS
n + β̂LS

n )ti)), then thekth order auto-correlation coeffecient of

the underlying AR process is estimated as

γ̂k
n =

∑n
j=k+1v j−kv j

∑n
j=k+1v j−kv j−k

. (2.13)

The estimated̂γk
n’s, for k = 1, . . . , p, can be used in the Yule-Walker equation to

obtain moment-estimates ofρ1, . . . ,ρp as given by
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Properties of Method of Moments Estimator We will now study the large

sample properties of̂αLS
n andβ̂LS

n . An alternative representation of the model, in

terms ofYi =−log(Ti)−0.5772, is

Yi = α+βi+ζi , (2.15)

where ζi is such thatζi + γ is a standard Gumbel random variable, where

γ ≈ 0.5772 is the Euler-Massacheroni constant. The definition ofζi implies that

E(ζi) = 0 andE(ζ2
i ) = π2/6. Making use of the representation in (2.15) in con-

junction with (2.12), we have
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Theorem 2.7.Under the de-eutrophication model with dependence,β̂LS
n is a con-

sistent unbiased estimator ofβ.

Proof. Forn> 1, the matrix inverse in (2.12) can be explicitly computed, resulting

in

β̂n
LS−β =

n

∑
i=1

(

12× i
n(n+1)(n−1)

− 6
n(n−1)

)

ζi . (2.17)

SinceE(ζ2
i ) = π2/6 for all i, |E(ζiζ j)| ≤ π2/6. Due to the Cauchy-Schwartz in-

equality, we haveE((∑i aiζi)
2)≤ (∑i |ai |)2π2/6. If we set

ai =

(

12× i
n(n+1)(n−1)

− 6
n(n−1)

)

,

we get

E((β̂LS
n −β)2) ≤ π2

6

(

n

∑
i=1

12× i
n(n+1)(n−1)

+
n

∑
i=1

6
n(n−1)

)2

= O(1/n2). (2.18)

When the number of defects in the software is expected to be large, the asymp-

totic property of the estimator asn → ∞ maybe useful. Due to Equation (2.18),

E((β̂LS
n −β)2)→ 0 whenn→ ∞ . This implies that̂βLS

n is a consistent estimator

of β. The unbiasedness follows from (2.17) and noting thatE(ζi) = 0.

The magnitude of the parameterβ can be used to compare the reliability of two

different software products. This is because the improvement in reliability after

fixing the ith defect can be measured asE(log(Ti+1/Ti)) =−β. Hence, larger the

value of−β, greater the improvement in reliability. Note that ifβ > 0, then the

reliability decreases for every additional defect discovered and debugged. Theo-

rem 2.7 establishes that the moment estimate ofβ, given by (2.16), is a consistent
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unbiased estimator. The consistency ofα̂LS
n is not clear. The estimatêαLS

n can be

represented as

α̂n
LS = α+

1
n ∑

i≤n
(β̂LS

n −β) i +
1
n ∑

i≤n
ζi (2.19)

= α+
n+1

2
(β̂LS

n −β)+
1
n ∑

i≤n
ζi (2.20)

To prove thatα̂LS
n is a consistent estimator ofα, we would require, (i)E(n(β̂LS

n −

β)) → 0, i.e a much faster rate of convergence forβ̂LS
n than we have established

in Theorem 2.7, and (ii) the weak law of large numbers to hold for the sequence

ζ1,ζ2, . . .. The second requirement on theζ’s can be ensured by assuming that

the underlying copula based AR process follow the requirements of the weak law

of large numbers of correlated random variables, namely theζ’s are stationary

and the∑∞
t=−∞ |γ(s, t)|< ∞, whereγ(s, t) is the covariance betweenζs andζt . The

problem with (i) arises from the fact that, unlike in classical linear regression,

where it is assumed that ¯x= 1/n∑n
i=1Xi

p→ µ asn→ ∞, in the de-eutrophication

model of Moranda, ¯x = (1+ ...+ n)/n = (n+ 1)/2 increases with n. To deal

with this problem, one could place more restrictive assumptions on the relation-

ship betweenTi and i in the underlying software reliability model, for example,

−E(log(Ti)) ∝ exp(−i). Such assumptions could be hard to justify from a prac-

titioner’s perspective, motivating us to develop new software reliability models

and estimation methodologies that do not require such restrictive assumptions in

Section 2.4. To prove that̂αLS
n is a consistent estimator ofα, we would require,

(i) E(n(β̂LS
n −β))→ 0, i.e a much faster rate of convergence forβ̂LS

n than we have

established in Theorem 2.7, and (ii) the weak law of large numbers to hold for

the sequenceζ1,ζ2, . . .. The second requirement on theζ’s can be ensured by as-
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suming that the underlying copula based AR process follow the requirements of

the weak law of large numbers of correlated random variables, namely theζ’s are

stationary and the∑∞
t=−∞ |γ(s, t)| < ∞, whereγ(s, t) is the covariance betweenζs

andζt . The problem with (i) arises from the fact that, unlike in classical linear

regression, where it is assumed that ¯x = 1/n∑n
i=1Xi

p→ µ as n → ∞, in the de-

eutrophication model of Moranda, ¯x= (1+ ...+n)/n= (n+1)/2 increases with

n. To deal with this problem, one could place more restrictive assumptions on the

relationship betweenTi andi in the underlying software reliability model, for ex-

ample,−E(log(Ti)) ∝ exp(−i). Such assumptions could be hard to justify from a

practitioner’s perspective, motivating us to develop new software reliability mod-

els and estimation methodologies that do not require such restrictive assumptions

in Section 2.4.

Maximum Likelihood Estimation The log-likelihood for the de-eutrophication

model with dependence induced by a copula corresponding to an AR(1) process

can be written as

l(α,β,ρ1,σ) =
n

∑
j=1

(

−(α−β j)(t j exp(α−β j))
)

− (n−1)
2

log

(

σ2

1−ρ2
1

)

− 1
2

n

∑
j=2

(
zj −ρ1zj−1

σ
)2, (2.21)

wherezj = Φ−1(1−exp(−exp(α−β j)t j)), j = 1, . . . ,n.

Note that (2.21) is a product of two parts: the first part corresponds to the marginal

log-likelihood of the de-eutrophication model and the second part considers the

dependence between the observations, obtained by transforming the observed
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inter-discovery times to the underlying AR(1) process. The log-likelihood for

a copula corresponding to a higher order AR process can be similarly derived.

Numerical maximization can be used to maximize the likelihood. All these nu-

merical algorithms will require a starting point for the iteration and this can be

obtained from the moment estimates described previously. ANewton-Raphson

procedure may be used to maximize the log likelihood with themoment esti-

mates ofα,β,ρ1,σ, as described in the previous section, being used to initialize

the procedure. For an AR(1) Gaussian process copula, the score function of the

log-likelihood can be explicitly derived and is given as follows. Define

u j = 1−exp(−exp(α−β j)t j)

v j = Φ−1(u j)

θ j = α−β j

η j1 = exp(θ j)(1+θ j)

η j2 = (v j −ρ1v j−1)
(

(1−u j )exp(θ j t j )
φ(n j )

− (1−u j−1)exp(θ j−1t j−1)
φ(v j−1)

)

η j3 = (v j −ρ1v j−1)
(

j (1−u j )exp(θ j t j )
φ(v j )

− ( j −1)
(1−u j−1)exp(θ j−1t j−1)

φ(v j−1)

)

η j4 = −n−1
2σ2 −

(v j−v j−1)
2

2σ2

η j5 = − ρ1
1−ρ2 −

(v j−ρ1v j−1)
σ ,

whereφ(.) is the standard normal density function. The score functionof the log-

likelihood can be expressed as

Score(α,β,ρ1,σ2) =
n

∑
j=1
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n
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. (2.22)
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Note that the Hessian matrix of the log-likelihood, denotedby H(α,β,ρ1,σ2), can

be derived from the derivative of the score function and be used in a Newton-

Raphson procedure for computing the ML estimate(α̂, β̂, ρ̂1, σ̂2) of the pa-

rameters(α,β,ρ1,σ2). The ML estimate may be computed through a Newton-

Raphson recursion. Details of thekth recursion, resulting in the computation of

(α(k),β(k),ρ(k)
1 ,σ(k)2), is given below,

(α(k),β(k),ρ(k)
1 ,σ(k)2)′ = (α(k−1),β(k−1),ρ(k−1)

1 ,σ(k−1)2)′ (2.23)

+ H
(

α(k),β(k),ρ(k),σ(k)2
)−1

l
(

α(k−1),β(k−1),ρ(k−1)
1 ,σ(k)2

)

,

with the recursion being initialized by setting(α(0),β(0),ρ(0)
1 ,σ(0)2) to their corre-

sponding moment estimates. The recursion would continue till numerical conver-

gence is observed. The inverse of the Hessian matrix evaluated at the ML estimate

provides an estimate of the variance-covariance matrix of(α̂, β̂, ρ̂, σ̂2) and may be

used for statistical inference about the parameters. For a model with higher order

AR terms, the score and Hessian matrix will be cumbersome to derive. As an alter-

native, one can use numerical maximization algorithms suchas the Nedler-Mead

Algorithm to maximize the log-likelihood.

It is evident that models with dependence can become increasingly cumbersome

to estimate through ML methods. Consequently, derivation ofboth the small sam-

ple and asymptotic properties of the ML estimate can become even more difficult.

In view of these issues, some dependent isotonic models are presented in this

chapter which provide a generic model for software reliability with dependence.

Estimation of confidence bounds for software reliability under the dependent iso-

tonic software reliability model that is valid for small samples is presented in

Chapter 4.
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2.4. Isotonic Software Reliability Models

We will now propose a series of generic software reliabilitymodels which we term

isotonic software reliability models. The models we propose have applications be-

yond that of software reliability and can be used to estimatethe reliability of a

product whose reliability is improved through a sequentialquality improvement

plan, where a series of product versions are created with each version address-

ing the failure mode of the previous product version. The genesis of these new

models lies in observing that the process of improving the reliability of a product

version, by fixing the failure mode of its previous versions,imposes a constraint

that the reliability of successive versions must increase,or remain the same. More

generally, software testing can be considered a special case of a sequential quality

control plan, where the discovery of each defect and its corresponding debugging

creates a new software version which is more reliable than its previous version.

Sequential quality improvement plans are used for industrial product develop-

ment where a major flaw in the product results in product recalls. They are also

used for improving the reliability of critical procedures such as air traffic control

(ATC) protocols, where an investigation is launched after a major incident, to de-

termine if existing protocols can be improved to prevent similar incidents in future,

leading to a revised and safer protocol. In an Internet banking context, after a ma-

jor fraudulent credit card transaction, the bank usually imposes stricter software

measures for fraud prevention intended to make future credit card transactions

safer. Software testing provides an example of sequential quality improvement

procedures where significant defects are fixed as and when they are discovered. It

is important to estimate the time to failure distribution ofthe most recent version
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of the product, with such estimates being used to compute reliability metrics. For

example, one might compute metrics such as the expected timeto failure, or the

probability that the next use case of the product/procedurewill result in a failure.

The data for such analysis is the time to failure for each of the previous versions

of the product. In the ATC context, one may consider the number of successful

take-offs achieved through the use of the protocol before a major incident. In the

Internet banking example, the available data could be the number of legitimate

credit card transactions that were processed before a fraudulent transaction was

erroneously processed. For making decisions based on the reliability of such crit-

ical products and services, a confidence bound on the reliability is more useful as

it enables the decision maker to evaluate the margin of reliability available.

The failure distribution for a wide variety of hardware products is typically esti-

mated by observing multiple failures in a cohort of identical products of the same

variety. Such a strategy is only possible if the event of a failure in any one of the

members of the cohort is not catastrophic in nature (from safety, operational as

well as financial perspectives). For example, in order to estimate the reliability

of an household appliance such as a light bulb, it is common totest a large co-

hort of identical light bulbs and record the failure times ofmultiple failures as the

cost of failure of any one light bulb is inconsequential. However, for a software

product, the defect responsible for the failure is fixed immediately, creating a new

version of the software with improved reliability. From a data perspective, there

is a single failure for every new version of software createdas opposed to mul-

tiple failures. Sequential quality improvement plans are also commonly used on

failures which are catastrophic in nature, in which case there is a need to prevent
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a recurrence after each failure by immediately addressing the cause of the failure.

Due to the critical nature of these products and services, the number of failures

observed in the past will naturally be small requiring the data analysis methodol-

ogy to be valid for small datasets. The method of analysing data from such plans

must also consider the possibility that for some consecutive versions there might

be no improvement in reliability at all. An objective of thischapter concerns the

parametric estimation of reliability from data generated from such plans.

Examples of sequential quality improvement plans abound, even if they are not

explicitly called as such. The first example, as described previously, relates to air-

craft traffic control procedures and the second relates to internet banking fraud

prevention procedures. In both examples, any substantial failure in the procedure

would require immediate attention to prevent recurrence. The third example re-

lates to software reliability, in which a defect after detection is immediately fixed

in all working copies of the software. Product recalls of consumer durables, food

products and automobiles due to the discovery of a serious safety issue are other

important examples. A confidence bound on the reliability can help the manu-

facturer of the product or custodian of the procedure to quantify risk of a future

failure. Such a bound can help, for example, a bank engaging in internet banking

to compute the minimum insurance premium required to insureevery financial

transaction being conducted. For a software manufacturer,it can result in better

operational management by setting aside financial resources to cover a substantial

software defect being discovered in the future.

The assumption of reliability improvement over the sequence of observations

constraints the failure time model and consequently the successive failure times
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leading toisotonicityin the failure time distributions. Although we expect the re-

liability of the product not to decrease with every subsequent version, this might

not happen in some situations. To address this issue, we demonstrate how the

proposed method can be modified to consider a bounded decrease in reliability

of the subsequent product versions. As mentioned before, sequential quality im-

provement procedures are used on products whose failure canbe catastrophic and

hence the number of product failures will be small. Due to thecatastrophic nature

of the failure, it is more important to provide confidence intervals for the relia-

bility than the corresponding point estimates as it allows for an evaluation of the

margin of safety in the product. In particular, one-sided bounds, which have at

least a certain coverage for the parameter of interest of thefailure time distribu-

tion, can be invaluable for decision makers. The failure time distribution of each

version can be modeled parametrically while the nature of improvement in relia-

bility is in general unknown. While computing confidence bounds, it is important

to note that asymptotic procedures may not be appropriate since the size of the

data-set comprising of the failure times for all versions can be small. Also, the

procedure would need to deal with there being a single failure time observation

for each version. Existing procedures for computing confidence bounds may be

questioned, as they usually incorporate some parametric modeling of the nature

of improvement in reliability over successive versions as in, for example, Jelinski

and Moranda (1972). Independence of the failure times of different versions can

be assumed in many situations, but may be questioned in some others.

The distributional assumptions on the time to failure distribution play a crit-

ical role in the proposed methodology. There are two ways of arriving at such
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assumptions. The first approach is based on the historical analysis of the failure

time data for the particular product type. For many engineering components, the

time to failure is commonly assumed to follow a Weibull distribution. Similarly,

for software reliability, the time to failure has been notedby many researchers as

being Exponential (Singpurwalla and Wilson, 1994). The second approach would

be based on a simple probabilistic model for the failure distribution. For example,

the distribution of the number of legitimate internet banking transactions that oc-

curred before a fraudulent transaction was erroneously processed can be justified

as a Geometric distribution. This is because the states of any two processed trans-

actions (legitimate or fraudulent) can be modeled as independent and identical

Bernoulli trials. We now introduce a series of new software reliability models that

address some of the concerns raised in this chapter. We also discuss how to esti-

mate them and compare their performance with the parametricmodels described

in the previous section.

2.4.1. Independent Exponential Isotonic Software Reliability (EISR) Model

Exponentially distributed failure times for a software is apopular assumption for

software reliability; hence an isotonic software reliability model that assumes ex-

ponentially distributed failure times is defined first.

Model 2.8. (Independent Exponential Isotonic Software Reliability Model)

Let Ti , for i = 1, . . . ,n, be the inter-failure times forn observed software defects.

ThenTi ∼ Exponential(λi), for i = 1, . . . ,n, with λ1 ≥ . . . ≥ λn with Ti andTj

being independent of each other fori 6= j.

The parametric models of software reliability considered earlier in this chap-
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ter are special cases of the Independent-EISR model. In fact, by considering the

Independent-EISR model, we would be considering almost allmodels of software

reliability growth that assume an exponentially distributed failure time for each

software defect. It clearly is a very generic model for software reliability.

Model Estimation The log-likelihood of the observed failure timeti ’s, for i =

1, . . . ,n, is given by

l(λ1, . . . ,λn) =
n

∑
i=1

logλi −
n

∑
i=1

λiti , λ1 ≥ . . .≥ λn, (2.24)

whereti is a realization ofTi. The maximization of this likelihood can be done

using the pooled adjacent violators algorithm Ayer et al. (1955).

Theorem 2.9.The ML estimate ofλn, under the EISR model, is given by

λ̂n =
1

max
{

tn,
tn+tn−1

2 , . . . , tn+...+t1
n

} . (2.25)

Proof. Let θi = 1/λi , for i = 1, . . . ,n. Then,θ1 ≤ ·· · ≤ θn and (1.35) can be used

to compute the ML estimate ofθi as

θ̂i = min
j: j≥i

max
k:k≤i

∑l= j
l=k tl

j −k+1
. (2.26)

Settingi = n in (2.26) and noting that̂λn = 1/θ̂n proves the theorem.

The distribution of̂λn is clearly difficult to derive. Nevertheless, in Chapter 3,

we present a novel method of computing an upper-bound forP(λ̂n ≤ x) and use it

to compute a confidence bound forλn.
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2.4.2. Dependent Exponential Isotonic Software Reliability(EISR) Model

The copula based software reliability model, proposed earlier in Section 2.3,

presents a generalization to many a software reliability model that assumes de-

pendence between the software failure times. However, there are two main con-

cerns regarding the model; the first concern relates to modelestimation due to

the increasing complexity of the model likelihood functionand hence its maxi-

mization. The second concern relates to establishing largesample properties of

the estimates of the model parameters. It is in the context ofthese concerns, we

propose the dependent-EISR model. Due to Sklar’s theorem, the dependent-EISR

model is a very generic model for software reliability.

Model 2.10. (Dependent Exponential Isotonic Software Reliability Model)

Let Ti , for i = 1, . . . ,n, be the inter-failure times. ThenTi ∼ Exponential(λi), for

i = 1, . . . ,n with λ1 ≥ . . . ≥ λn. We assume thatTi ’s have dependence induced

between them by an arbitrary copulaC(· · ·).

The estimation ofλn through maximum likelihood procedures would require

an exact specification of the copula governing the dependence between theTi ’s.

In Chapter 4, we present one of the key contributions of the thesis, which is the

derivation of a novel confidence bound forλn without making any assumptions

about the nature of the dependence.

2.4.3. Weibull Isotonic Software Reliability Models

A natural way to extend the EISR model is to consider the failure timesTi to be

distributed either as a Weibull or a Gamma distribution. Failure times of a software
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are not always Exponentially distributed, as first noted by Schick and Wolverton

(1978) where they are assumed to be distributed as a Weibull distribution with a

shape parameter of 2 (i.e. a Rayleigh distribution). The Weibull distribution for

failure time is useful to counter criticism regarding a constant hazard of failure as-

sumed by early software reliability models. Isotonic regression involving Weibull

distribution would be a very generic and useful model for software reliability. As

in the case of the EISR model, there are two variations that are possible, one that

assumes independence and another that assumes dependence between the failure

times governed by an arbitrary copula.

Model 2.11. (Independent Weibull Isotonic Software Reliability (WISR)

Model) Let Ti, for i = 1, . . . ,n, be the inter-failure times. ThenTi ∼Weibull(λi ,α),

for i = 1, . . . ,n with λ1 ≥ . . .≥ λn. Assume thatTi ’s are independent of each other.

An important assumption being made in the Independent-WISR model is that

all the failure times have the same shape parameter, though they can have arbitrary

scale parameters with isotonic constraints. In this thesis, we propose a method for

obtaining confidence upper-bounds onλn under the WISR model with unknown

shape parameterα with the constraintL ≤ α ≤U . The methodology is discussed

in Chapter 3. The model of Schick and Wolverton (1978) is a special case of the

Independent-WISR model whereTi ∼Weibull(λ(N− i+1),2) independently for

i = 1, . . . ,n.

Model Estimation Note that ifα were known, thenTα
i ∼Exponential(λα

i ). Let

ti be a realization ofTi , then we can use the estimator in (2.25) applied totα
i to

obtain the MLE ofλα
n from which the MLE ofλn can be computed. The estimator
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will be a function ofα and is given by

λ̂n(α) =
1

max
{

tα
n ,

tα
n +tα

n−1
2 , . . . ,

tα
n +...+tα

1
n

}1/α . (2.27)

The Independent-WISR model can be generalized to the Dependent-WISR by

not requiring theTi ’s to be independent of each other. This model is stated as

follows;

Model 2.12. (Dependent Weibull Isotonic Software Reliability (WISR) Model)

Let Ti, for i = 1, . . . ,n, be the inter-failure times. ThenTi ∼ Weibull(λi ,α), for

i = 1, . . . ,n with λ1 ≥ . . .≥ λn. AssumeT1, . . . ,Tn are dependent with their depen-

dence governed by an arbitrary copulaC(· · ·).

Estimation ofλn without specification of the copulaC is a challenge. In Chapter

4 we come up with a method for computing a confidence upper-bound for λn

without making any assumption on the nature of dependence between theTi ’s.

2.4.4. Gamma Isotonic Software Reliability Model (GISR)

The next extension of the EISR model is to considerTi ∼ Gamma(λi ,α), where

α is the shape parameter. The EISR model is a special case of theGISR model

with α = 1. As with EISR and WISR models, there are two variations to theGISR

model; the first variations considers independence betweenthe observed failure

timesTi ’s and is stated as follows:

Model 2.13. (Independent Gamma Isotonic Software Reliability (GISR)

Model) Let Ti, for i = 1, . . . ,n, be the inter-failure times. ThenTi ∼Gamma(λi ,α),

for i = 1, . . . ,n with λ1 ≥ . . . ≥ λn. We assume thatTi ’s are independent of each

other.
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If α were known, the MLE ofλi can once again be obtained by the PAV algo-

rithm and is given by

λ̂n(α) =
1

α×max
{

tn,
tn+tn−1

2 , . . . , tn+...+t1
n

} , (2.28)

whereti is a realization ofTi. The problem of estimating bothα andλn simulta-

neously will be challenging. A key contribution of this thesis involves a method

for obtaining confidence upper-bounds onλn under the GISR model withα un-

known under the constraintα ≤ U . The methodology is discussed in Chapter 3.

The dependent gamma isotonic regression model is an obviousgeneralization.

The model is stated as follows:

Model 2.14. (Dependent Gamma Isotonic Software Reliability(GISR) Model)

Let Ti, for i = 1, . . . ,n, be the inter-failure times. ThenTi ∼ Gamma(λi ,α), for

i = 1, . . . ,n with λ1 ≥ . . . ≥ λn. Assume that the dependence between theTi ’s is

governed by an arbitrary copulaC(· · ·).

Estimation ofλn will require specification of the copulaC(· · ·). As in the case of

the dependent-WISR model, a method of constructing a confidence upper-bound

on λn under the dependent-GISR model is derived in Chapter 4.

2.5. Simulation Study

We now proceed to a simulation study that compares the ML estimator ofλn ob-

tained using the Exponential isotonic software reliability model with parametric

models of software reliability. In particular, for a data-set with n failure times,

T1, . . . ,Tn, we will be interested in studying the bias and the root mean squared er-

ror (RMSE) of the ML estimate ofλn obtained through (2.25) and comparing them
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with the ML estimates obtained from parametric software reliability models, such

as the Jelinski and Moranda model (Model 2.1) and the de-eutrophication model

(Model 2.4). The robustness of the ML estimators, when thereare deviations in the

underlying software reliability improvement model, is much desired not only in

the context of software reliability but for any statisticalestimation method as noted

by Freedman (1991). The robustness of the estimator ofλn is particularly impor-

tant for estimating the reliability of a software product with respect to catastrophic

failures. We have designed the simulation study with the object of charachterizing

the robustness of the estimators, by estimating their bias and root mean squared

error (RMSE), when the underlying software reliability model is incorrect.

The simulation study considers four different patterns of software reliability

improvement. These patterns, forn= 10, are presented algebraically in Table 2.1

and presented graphically in Figure 2.2. The patterns are chosen so as to reflect

four different non-increasing patterns of theλk’s under the EISR model. Note

that, while the Jelinski and Moranda model represents linear decrease inλk’s, the

de-eutrophication model of Moranda represents a convex exponential decrease in

λk’s, the convex graph in Figure 2.2 approximating it the best.Failure timesTi are

simulated such thatTi ∼ Exponential(λi), for i = 1, . . . ,n, whereλi ’s are obtained

from one of the models in Table 2.1.

The patterns of reliability improvement that we chose was motivated by 1) the

need to have one pattern to correspond exactly to a known parametric software

reliability model and 2) have at least two patterns that are not modeled by that

parametric model of software reliability. The first requirement would help in char-

acterizing the performance of the PAVA based estimator whenthe corresponding
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TABLE 2.1
Expressions forλk, for k= 1, . . . ,n, corresponding to four patterns of improvement

Constant θk = 1/3

Linear θk = 1−2k/3n

Convex I(2k≤ n)× (1−4k/3n)+ I(2k> n)×1/3

Concave I(2k≤ n)+ I(2k> n)× (1− (4k−2n)/3n)

FIG 2.2. Plot ofλk vs. k for four different patterns of software reliability improvement, with n= 10.
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parametric model is correctly specified. The second requirement would enable

us to study the effects of model mis-specification. With thiscontext, we chose

the linear pattern of improvement which is modeled exactly by Jelinski-Moranda

model. The convex and concave patterns of improvement were chosen as they

cannot be approximated by the Jelinski-Moranda model. Whilethe convex model

may be approximated by the de-eutrophication model of Moranda, the concave

model cannot be modeled by either the Jelinski-Moranda or the de-eutrophication

model of Moranda.

We define the relative bias of an estimatorλ̂M
n obtained using modelM as

E((λ̂M
n −λn)/λn). The RMSE of the estimator is defined as

√

E((λ̂M
n −λn)/λn)2.

The expectations in the definitions of bias and RMSE are computed using Monte-
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Carlo simulations as follows: SimulateT1, . . . ,Tn from one of the patterns of re-

liability improvement described in Table 2.1; estimateλn by λ̂M
n obtained by

using the modelM , compute the bias as(λ̂M
n − λn)/λn and squared error as

((λ̂M
n − λn)/λn)

2 and store both values; repeat the procedure 1000 times and

compute the empirical mean of the bias values and square rootof the empiri-

cal mean of squared error values over the 1000 repetitions. These values, based on

the simulations will be estimates ofE((λ̂M
n −λn)/λn) and

√

E((λ̂M
n −λn)/λn)2,

respectively. The results of the simulation study, for the different modelsM , are

provided in Table 2.2.

From Table 2.2 it is clear that for data simulated under the linear pattern of

improvement, the estimate ofλn from the Jelinski-Moranda model has the least

bias and RMSE, for n = 10, 25 and 100, as seen from the second row of each

corresponding sub-table. Note that the second row of each sub-table in Table 2.2

corresponds to data simulated from the linear model and represents the case when

the Jelinski-Moranda model is indeed the true model. For thelinear pattern of im-

provement, when n = 100, the estimate ofλn from the Jelinski-Moranda model

has negligible bias and the least RMSE. This leaves us to conclude that the lin-

ear pattern of improvement is similar to the Jelinski-Moranda model. The de-

eutrophication model of Moranda assumes thatλi = exp(α− βi), which corre-

sponds to an exponential improvement in software reliability. Note that the con-

stant model of software reliability is a special case of the Moranda model with

β = 0. Table 2.2, shows that the Moranda model has the least bias and RMSE

in estimatingλn when used on data generated from the constant model, with the

bias becoming negligible whenn = 100. When we exclude the constant model,
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TABLE 2.2
Bias and RMSE of the estimates ofλn. The values in () are the RMSE values while the

unbracketed values are the bias.

n= 10

Model Jelinski Moranda Moranda λ̂n

constant -0.43 (0.5) 0.43 (1.2) -0.17 (0.4)

linear 0.68 (1.1) 1.23 (2.2) 0.71 (1.6)

concave 1.26 (1.8) 2.30 (3.8) 1.08 (2.2)

convex -0.21 (0.5) -0.23 (0.7) -0.04 (0.6)

n= 25

Model Jelinski Moranda Moranda λ̂n

constant -0.55 (0.6) 0.12 (0.5) -0.27 (0.4)

linear 0.19 (0.6) 0.89 (1.2) 0.27 (0.9)

concave 0.73 (1.2) 2.07 (2.6) 0.59 (1.4)

convex -0.45 (0.5) -0.44 (0.5) -0.21 (0.4)

n= 100

Model Jelinski Moranda Moranda λ̂n

constant -0.59 (0.6) 0.03 (0.2) -0.30 (0.4)

linear -0.03 (0.3) 0.80 (0.9) -0.06 (0.5)

concave 0.40 (0.6) 1.87 (2.0) 0.08 (0.6)

convex -0.56 (0.6) -0.49 (0.5) -0.28 (0.4)
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the convex pattern of software reliability improvement is the closest to the de-

eutrophication model of Moranda. This is evident from column 3 of Table 2.2,

where the Moranda model has significantly lesser bias and RMSEin estimating

λn when the true model is indeed convex as compared to when the true model is

concave or linear. From this observation, we can infer that the convex model is

best approximated by the de-eutrophication model of Moranda.

The results in Table 2.2 reveal useful insights. The ML estimator of λn using

(2.25), presented in the fourth column of Table 2.2, outperforms the ML esti-

mates of the parametric models, in terms of bias and RMSE, whenthe parametric

model is mis-specified. This indicates the ML estimator (2.25), obtained using the

independent-EISR model, is a more robust estimator of software reliability com-

pared to estimators derived through parametric models. Note that, when the true

model is the Jelinski and Moranda model, (that is, the linearmodel), the perfor-

mance of the estimator obtained by the independent EISR model is similar to that

of the true model. On the other hand, the performance of the Moranda model is

much worse when the true model is the linear model. Similar observations can

be made for the other models presented in Figure 2.2. For all the three size ofn

considered, the ML estimate obtained through the independent-EISR model ap-

pears to be superior to those obtained from both the parametric models when the

reliability improvement is convex or concave. This may be due to the parametric

models considered being unable to approximate convex or concave patterns of re-

liability improvement. This result alone should warn us about the dangers of using

parametric models when there is little or no justification for the parametric form

of the underlying model.
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2.6. Concluding Remarks

In this chapter, in addition to discussing existing parametric models for software

reliability, we have introduced copula based dependent failure time models and

isotonic software reliability models. The latters generalizes a very broad class of

software reliability models. Maximum likelihood estimation of the reliability of

the software are discussed. The isotonic software reliability models can be mod-

ified to consider bounded decrease in the reliability of the software after a defect

is detected and fixed. For example, in the independent-EISR model, one may as-

sume thatλi+1 ≤ βλi with a knownβ > 1. This assumption would allow forλi to

increase withi which would allow the reliability of the software to sometimes de-

crease after a software defect is detected and fixed. The possibility of the software

reliability decreasing after a defect has been detected is acommonly studied con-

temporary issue in software reliability. A number of Bayesian models have been

proposed for addressing such a possibility. The bounded increase model provides

a simpler alternative to some of these sophisticated Bayesian models. The param-

eter λn can be estimated by (3.2) using the sequenceβ−n+iti, for 1 = 1, . . . ,n,

instead of using the original inter-failure time sequenceti.

The simulation study reveals that the isotonic regression model is preferable to

a parametric software reliability model when the justification for the parametric

model is not clear. The distribution of the PAVA based ML estimator is needed

in order to compute confidence bounds forλn. The problem of determining this

distribution, even for the independent-EISR model, is challenging because the

PAVA based estimator is a complex non-linear function of thefailure times,Ti ’s,

and will depend on all then parametersλ1, . . . ,λn. In Chapter 3, we shall address
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all these challenges and derive an innovative confidence bound based on the PAVA

estimate in (3.2). The problem of estimation of a confidence interval forλn, under

the dependent-EISR model, is considered in Chapter-4.
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Chapter 3

Independent Isotonic Software Reliability

Models

Failure saves lives. In the airline industry, every time a plane crashes the probability of

the next crash is lowered by that.

Nassim N. Taleb

3.1. Introduction

In this chapter we propose a method for estimating an upper bound for scale pa-

rameter of the failure time distribution of a software product under the indepen-

dent EISR, WISR and GISR models introduced in Chapter 2. The method can

be used to provide a lower bound for the reliabilityR(t) of the latest version of

the software product. To re-capitulate, the reliability ofa software product is im-

proved through a process of discovering software defects and fixing them as soon

as they are discovered. A software reliability model estimates the distribution of

the time to discovery of the next defect by incorporating theeffect of the debug-

ging process. Such an estimate can be useful to customers of the software product

as well as the software quality control engineers. For example, based on the esti-

mated distribution, a software testing team might choose tostop the test process

and release the software product (Singpurwalla and Wilson,1994).

79
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Let Ti denote the time to failure of the software after the discovery of the ith

defect, fori = 1, . . .n. The assumption that the reliability of a software must in-

crease after every subsequent discovery and fixing of a defect is widely used. See

(Jelinski and Moranda, 1972; Moranda, 1975; Goel and Okumoto, 1978) for some

examples. A parametric model may assume thatTi ∼ F(.|Θ, i), whereF(.|Θ, i) is

a CDF, Θ is the model parameter andTi is stochastically larger thanTi−1, for

i = 2, . . . ,n. For example, the Jelinski and Moranda Model (Jelinski and Moranda,

1972) assumed thatTi ∼ Exponential(λ(N− i + 1)), for 1≤ i ≤ N, where N is

the number of defects in the software. Subsequent to the Jelinski and Moranda

model, increasingly sophisticated parametric forms for the improvement in relia-

bility have been proposed.

A generic software reliability model assuming exponentialfailure time for

the Ti ’s would consider the EISR model introduced in Chapter 2 whereTi ∼

Exponential(λi) with λi+1 ≤ λi . The maximum likelihood estimate ofλn can be

obtained from the observationsT1, . . . ,Tn through the Pooled Adjacent Violator

Algorithm (PAVA) Ayer et al. (1955). Performing statistical inference using the

PAVA based ML estimator ofλn can be challenging as the estimator is a com-

plex non-linear function of the observations and standard asymptotic theory or

bootstrap procedures may not be used due to possibility of some of theλi ’s being

equal. In particular, the parameter space comprising ofλ1 ≥ . . . ≥ λn > 0 is not

an open set. See Andrews (2000) for a criticism on using bootstrap procedures or

asymptotic theory for obtaining SE of estimators when the parameter space is not

an open set. The problem of computing confidence intervals for a fixed number of

proportions under isotonic constraints has been studied inthe context of dosage
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studies using new bootstrap procedures (Bhattacharya and Kong, 2007). These

procedures cannot be adapted for the problem at hand as the number of model

parameters, i.e.λ1, . . . ,λn’s can be equal to the number of observationsT1, . . . ,Tn.

One can further generalize the isotonic exponential regression based software

reliability model to non-exponential distributions as follows: LetTi ∼ λ−1
i Ei with

λ1 ≤ . . .≤ λn, E1, . . . ,En
iid∼ F whereEF(XP)< ∞ for P≥ 1. The objective would

be the estimation ofλn along with confidence lower-bounds for it. In this article,

we derive a new statistic that can be used to obtain an upper-bound onλn with

atleast 100× (1−q)% confidence. For the EISR model, an upper boundλ̂q
n with

P(λn ≤ λ̂q
n)≥ 1−q can be used to compute a lower-bound onRn(t), the reliability

of the software aftern failures overt units of future usage through

R̂n(t)
q = exp(−λ̂q

nt). (3.1)

Sinceλ̂q
n is an upper-bound forλn, it is clear thatP(R̂(t)q < R(t)) ≥ 1−q. Note

that the model being considered is quite generic; for example it would include the

WISR model whereTi ∼Weibull(λi ,α) with λ1 ≥ . . .≥ λn and the Weibull shape

parameter,α, being constant. The model would also include the GISR modelwith

Ti ∼ Gamma(λi ,α), λ1 ≥ . . . ≥ λn and the Gamma shape parameter,α, being

constant during the entire testing period of the software.

3.2. The Main Result

Theorem 3.1.Let Ti ∼ λ−1
i Ei, λ1 ≥ . . .≥ λn, E1, . . . ,En

iid∼ F with PF(X < 0) = 0

and EF(XP)< ∞ for P≥ 1. Define

λ̂n =
1

max
{

tn,
tn+tn−1

2 , . . . , tn+...+t1
n

} , (3.2)



Chapter 3: Independent Isotonic Software Reliability Models 82

where ti is a realization of Ti. Then, for any0≤ q≤ 1 and P≥ 1,

P



λ̂n

(

EF(XP)

q

)
1
P

≤ λn



≤ q (3.3)

Proof. DefineS1 = Tn+ · · ·+T1,S2 = Tn+ · · ·+T2, . . . ,Sn = Tn andYj = Sj/(n−

j +1) for j = 1, . . . ,n. We will show thatY1, . . . ,Yn is a sub-martingale and then

use the Doob’s maximal inequality (Doob, 1953) on the sub-martingale to prove

the theorem. Forj ≤ k≤ n, we haveE(Tk|Sj) = λ−1
k E(Ek|Sj) = (λ j/λk)E(Tj |Sj).

Note thatE(Tj |Sj)+ . . .+E(Tn|Sj) = Sj and hence,

E(Tj |Sj)
n

∑
k= j

λ j

λk
=Sj =⇒ E(Tj |Sj)=

Sj

∑n
k= j λ j/λk

=⇒ E(Tj |Sj)≤
Sj

n− j +1
=Yj ,

sinceλ j/λk ≥ 1, for j ≤ k≤ n. By the definition ofYj ’s, we have

Yj+1 =
(n− j +1)Yj −Tj

n− j
=⇒ E(Yj+1|Yj) =

(n− j +1)Yj

n− j
− E(Tj |Yj)

n− j

≥ (n− j +1)Yj −Yj

n− j
=Yj ,

becauseE(Tj |Sj) ≤ Yj . This provesE(Yj+1|Yj) ≥ Yj . In order to show that

Y1, . . . ,Yn is a sub-martingale, we only need to show that(Yj+1|Yj , . . . ,Y1)
d
=

(Yj+1|Yj). This can be proved as follows: note thatSj+1 =Sj −Tj with Tj being in-

dependent ofT1, . . . ,Tj−1. Hence the conditional distribution(Sj+1|Sj ,T1, . . . ,Tj−1)

d
= (Sj+1|Sj). Note that conditioning onS1, . . . ,Sj is equivalent to conditioning on

Sj ,T1, . . . ,Tj−1. Hence(Sj+1|Sj , . . . ,S1)
d
= (Sj+1|Sj). SinceYj = Sj/(n− j + 1)

for j = 1, . . . ,n, we will have(Yj+1|Yj , . . . ,Y1)
d
= (Yj+1|Yj). The Doob’s maximal

inequality (Doob, 1953) on the non-negative submartingaleY1, . . . ,Yn states that

P(max(Y1, . . . ,Yn)> θ)≤ E(YP
n )

θP , P≥ 1,θ > 0. (3.4)
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By definition, we haveYn = Tn, λ̂n = 1/max(Y1, . . . ,Yn) andE(YP
n ) = λP

nEF(XP).

Settingθ = (1/λn)
(

EF(XP)/q
)1/P

in Equation (3.4) completes the proof.

Theorem 3.1 gives a conservative upper-bound forλn in the sense thatP(λn ≤

λ̂n

(

EF (XP)
q

) 1
P
) ≥ 1− q; that is, λ̂n

(

EF (XP)
q

) 1
P

is an upper confidence bound for

λn with atleast 100× (1− q)% confidence. One can create the sharpest upper-

bound by minimizing the scaling factorσ(P,q) =
(

EF(XP)/q
)(1/P)

over P ≥ 1.

In general, the minimization would depend on the distribution F . We proceed to

discussing application of Theorem 3.1 to specific distributional families.

3.2.1. Exponential isotonic software reliability model

Consider the exponential isotonic software reliability model, withTi ∼Exponential(λi),

λ1 ≥ . . . ≥ λn, i.e., the EISR model. The statisticλ̂n is the ML estimate ofλn

through the PAV algorithm. Clearly the EISR model is a specialcase of the

model described in Theorem 3.1, withF = Exponential(1) and henceσ(P,q) =

(Γ(P+1)/q)(1/P). There is scope for minimizingσ(P,q) by optimally choosing

P as illustrated in the plots ofσ(P,q) vs. P for various values ofq provided

in the left panel of Figure 3.1. It can be shown that the optimal scaling factor,

σ∗(q) = min
P

(Γ(P+1)/q)(1/P), is attained whenP is the solution to the equation

log(Γ(P+1))−PΨ(P+1) = log(q), (3.5)

whereΨ(.) is the digamma function. This is equivalent to stating that for q =

Γ(P+ 1)exp(−PΨ(P+ 1)), the optimal scaling factorσ∗(q) = exp(Ψ(P+ 1)).

This result is stated as follows:
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FIG 3.1. Plot ofσ(P,q) vs. P.
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Result 3.2. Let Ti ∼ Exponential(λi), with λ1 ≥ . . . ≥ λn. Defineλ̂n as in (3.2),

then

P
(

eΨ(P+1)λ̂n ≤ λn

)

≤ Γ(P+1)e−PΨ(P+1), P≥ 1. (3.6)

A plot of σ∗(q) = exp(Ψ(P+1)) vs. 1−q= 1−Γ(P+1)exp(−PΨ(P+1)), for

P≥ 1 can visually present the optimal scaling factor as a function of the required

confidence. The right panel of Figure 3.1 presents such a plot. From this plot,

we gather that for an EISR model, 4.71× λ̂n is an upper-bound forλn with atleast

95% confidence. Table 3.1 presents the scaling factor required for some commonly

used confidence levels.

TABLE 3.1
Values ofσ∗(q) for some values of100× (1−q)%.

100× (1−q)% 50% 90% 95% 99%

σ∗(q) 1.90 3.80 4.71 6.62
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3.2.2. Weibull isotonic software reliability model

The EISR model can be generalized to a Weibull isotonic software reliability

model (WISR) by assuming thatF(.) in Theorem 3.1 is aWeibull(1,α), with

known shape parameterα. The scaling factor would be a function ofα with

σ(P,q,α) = (Γ(P/α+1)/q)(1/P). Just as in the EISR model, the optimum value

for the scaling factor,σ∗(q,α) = min
P

σ(P,q,α), is achieved whenP is solution to

P
α

Ψ
(

P
α
+1

)

= log

(

Γ
(

P
α
+1

))

− log(q). (3.7)

This can be interpreted to mean that, forq=Γ((P/α)+1)exp(−(P/α)Ψ((P/α)+

1)), the optimal scaling factorσ∗(q,α) = exp(Ψ(P/α+1)/α). Note that̂λn as de-

fined through (3.2) is no longer the MLE ofλn. Nevertheless, Theorem 3.1 can still

be used to obtain a confidence upper-bound forλn, as stated in Result 2 below.

Result 3.3.Let Ti ∼Weibull(λi ,α), with λ1 ≥ . . .≥ λn andα ≥ 1.

Defineλ̂n as in(3.2), then

P

(

exp

(

−Ψ
(

P
α +1

)

α

)

λ̂n ≤ λ

)

≤Γ
(

P
α
+1

)

exp

(

−P
α

Ψ
(

P
α
+1

))

, P≥ 1.

(3.8)

Plots ofσ∗(q,α) vs. α are presented for some values ofq in the left panel of

Figure 3.2. It can be shown thatσ∗(q,α) is decreasing inα ≥ 1. This implies that

if α was unknown but had a constraintα ≥ L ≥ 1, then the worst possible upper-

bound computed through (3.8) is atα = L. Stated otherwise,σ∗(q,L)λ̂n would be

an atleast 100×(1−q)% confidence bound forλn with unknownα andα≥ L≥ 1.
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FIG 3.2. Plot ofσ∗(q,α) vs.α.
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3.2.3. Gamma isotonic software reliability model

Another extension of the EISR model is the Gamma isotonic software reliability

model (GISR) in which we haveTi ∼ Gamma(λi ,α) with λ1 ≥ . . . ≥ λn. The-

orem 3.1 can be used on the GISR model to obtain confidence upper-bound

for λn by assumingF to be the CDF ofGamma(1,α). As in the case of the

WISR model, the scaling factor would be a function ofα given byσ(P,q,α) =

(Γ(P+α)/(qΓ(α)))(1/P). The optimum value for the scaling factor,σ∗(q,α) =

min
P

σ(P,q,α), is achieved whenP is the solution to

log(Γ(P+α))− log(Γ(α))−PΨ(P+α) = log(q), (3.9)

This can be interpreted to mean that, forq= Γ(P+1)exp(−PΨ(P+1)), the op-

timal scaling factorσ∗(q,α) = exp(Ψ(P+1)). This result is stated as follows:

Result 3.4.Let Ti ∼ Gamma(λi ,α), with λ1 ≥ . . .≥ λn andα ≥ 0.
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Defineλ̂n as in(3.2), then

P
(

eΨ(P+α)λ̂n ≤ λ
)

≤ Γ(P+α)
Γ(α)

e−PΨ(P+α), P≥ 1. (3.10)

Plots ofσ∗(q,α) vs. α are presented for some values ofq in the right panel of

Figure 3.2. It can be shown thatσ∗(q,α) is increasing inα, which implies that,

if α ≤ U , then the largest possible upper-bound computed through (3.10) is at

α =U . Alternatively,σ∗(q,U)λ̂n would be an atleast 100× (1−q)% confidence

bound forλn with α unknown and with the constraintα ≤U .

3.3. Extension to Non-Isotonic Software Reliability Models

The assumption that reliability improves after the detection and repair of every

failure in a software product has been criticized by many. Sophisticated Bayesian

models have been proposed to address this problem (see Basu and Ebrahimi

(2003) for an example). We provide a simpler alternative foraddressing this issue.

Instead of assuming thatTi ∼ Exponential(λi) with λi+1 ≤ λi, we shall assume

that λi+1 ≤ βλi , for some knownβ ≥ 1. The assumption considers the possibil-

ity of λi+1 > λi (i.e., the reliability of the software could have worsened after the

detection and fixing of theith defect).

Information aboutβ may be derived from prior experience of a software test

engineer, much like the Bayesian prior distributions regarding the failure rate of a

software product in Bayesian software reliability models. The software test engi-

neer could deriveβ from the failure rate of other software products that have been

tested in the past. The parameterβ can be interpreted as the ratio of two subsequent

inter-failure times. Hence one possible estimate ofβ may be the mean observed

ratio of successive inter-failure times of a similar/related software product.
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DefineSi = β−(n−i)Ti and note thatSi ∼ Exponential(γi), whereγi = λiβn−i.

Sinceλi+1 ≤ βλi , we haveγi+1 ≤ γi and henceS1, . . . ,Sn conforms to the require-

ments of Result 3.2. A confidence bound onγn = λn can now be obtained by

applying Result 3.2 onSi = β−(n−i)Ti. This is stated as follows:

Result 3.5. Let Ti ∼ Exponential(λi) independently, withλi+1 ≤ βλi, for i =

1, . . . ,n−1, β ≥ 1 known. Let ti be the realization of Ti . Define

λ̂(β)n =
1

max
(

β−n+1t1+···+tn
n , β−n+2t2+···+tn

n−1 , · · · , tn
) (3.11)

Then for P≥ 1,

P
(

eΨ(P+1)λ̂(β)n ≤ λn

)

≤ Γ(P+1)e−PΨ(P+1). (3.12)

The extension of this result to non-isotonic Gamma or Weibull software relia-

bility models is very similar. In particular,λ̂(β)n can be used in (3.8) and (3.10) in

place ofλ̂n, as given by (3.11).

3.4. Extension to Geometric Isotonic Software Reliability

Instead of consideringTi ∼ Exponential, one may considerTi ∼ Geometric(pi),

with p1 ≥ p2 ≥ ·· · ≥ pn. Such a model is natural when the measured time to

failure has discrete measurement units. The PAV algorithm can be used to obtain

the ML estimate ofpn and is given by.

p̂n =
1

max
{

tn,
tn+tn−1

2 , . . . , tn+...+t1
n

} , (3.13)

whereti is a realization ofTi. A confidence upper-bound forpn in terms of p̂n is

of interest. Using arguments similar to those used in the proof of Theorem 3.1, it
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TABLE 3.2
Expressions forλk, for k= 1, . . . ,n, corresponding to four patterns of improvement

Constant θk = 1/3

Linear θk = 1−2k/3n

Convex I(2k≤ n)× (1−4k/3n)+ I(2k> n)×1/3

Concave I(2k≤ n)+ I(2k> n)× (1− (4k−2n)/3n)

can be shown thatY1 = (T1+ · · ·+Tn)/n,Y2 = (T2+ · · ·+Tn)/(n−1), · · · ,Yn = Tn

is a martingale and the Doob’s maximal inequality can be applied to p̂n. Theorem

3.1 however, can no longer be used to obtain a confidence boundfor pn because

E(TP
n ) is no longer proportional topP

n; for example,E(T2
n ) = (2− pn)/p2

n. An

approximate confidence interval is possible by replacingpn with p̂n in the corre-

sponding formula for thePth moment. Such an approximation would compute an

upper-bound forpn. Result 3.6 states the result using the second moment of the

geometric distribution.

Result 3.6.Let Ti ∼ Geometric(pi) independently for i= 1, . . . ,n with p1 ≥ . . .≥

pn. Definep̂n as in(3.13). Then,

P

(

p̂n

√

2− p̂n

q
≤ pn

)

≤ q. (3.14)

3.5. Simulation Study

We now investigate the performance of the upper-bound through simulations. We

consider four different patterns of software reliability improvement. These are

presented algebraically in Table 3.2 and presented graphically in Figure 3.3 for

n = 10. Failure timesTi are simulated such thatTi ∼ Exponential(λi), for i =

1, . . . ,n, whereλi ’s are obtained from one of the models in Table 3.2.
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FIG 3.3. Plot ofλk vs. k for four different patterns of software reliability improvement with n= 10.
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The simulated data is analyzed using parametric models for software reliability,

namely the Jelinski and Moranda model (Jelinski and Moranda, 1972) and the

Moranda model (Moranda, 1975), which correspond to linear and convex models,

respectively. The estimates ofλn are obtained through the method of maximum

likelihood. The Jelinski and Moranda model assumesλk = Λ(N− k+ 1), while

the Moranda model assumes thatλk = exp(α−βk). Upper-bounds forλn with a

required coverage probability of 100× (1−q)% are obtained from these model

through parametric bootstrap. The simulated data is also analyzed through the

EISR model and ML estimate ofλn is obtained through (3.2). Also, 100× (1−

q)% upper-bound forλn is obtained through (3.6). The performance evaluation

studies the coverage probability and the relative size of the upper-bounds forλn,

using 1000 simulations, from each of the four patterns of reliability improvement

presented in Table 3.2. The evaluation is done forn= 10,25 and 100, respectively,

and the results are presented in Table 3.3. Coverage probabilities with substantial

shortfall in the expected 95% coverage are highlighted in the table.

In the simulation study, the linear model was chosen as it exactly models the
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Jelinski and Moranda model, thus providing an example wherethe properties of

the proposed confidence bound can be studied when the correctmodel is available.

The convex model was chosen as it can be approximated by the de-eutrophication

model of Moranda, while the concave model was chosen as it cannot be approxi-

mated by either the Jelinski and Moranda model or the de-eutrophication model of

Moranda. The simulation study reveals astonishing resultsconcerning the cover-

age probability of the parametric bootstrap based confidence upper-bound forλn.

The Jelinski and Moranda model when applied to data simulated from a model in

which there is no improvement in reliability (i.e., the constant model of Table 3.2)

computes 95% confidence bounds that have 35.6% coverage forn= 10, 0.7% for

n= 25 and no coverage forn= 100, respectively. This indicates the bias of the re-

sults when the model is not true. For the concave model, the Jelinski and Moranda

model produces 95% confidence bounds that have 92.6%, 47.1% and 0% cover-

age forn= 10,25 and 100, respectively. When the true model is linear, the 95%

confidence upper-bound from the Jelinski and Moranda model comes close to at-

taining the required coverage probability only when n= 100.These results alone

should warn against using parametric model when the exact parametric nature

of the underlying reliability improvement is not clear. TheMoranda model fares

slightly better than the Jelinski and Moranda model, especially for data simulated

from the constant reliability improvement model. This can be attributed toβ = 0

in the Moranda model being equivalent to the constant reliability model. The per-

formance of the confidence bound from the moranda model is poor when applied

to data simulated from the concave model; the 95% confidence upper-bound for

λn has only 82%, 50.4% and 10% coverage forn= 10,25 and 100, respectively.
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All these anomalous coverage values have been highlighted in Table 3.3. Clearly,

parametric models should not be used when the nature of the underlying reliability

improvement is unknown. The confidence upper-bound forλn obtained through

EISR model, on the other hand, has more than the required confidence across the

different models, as expected. The relative size of the confidence bounds obtained

through (3.6) are generally larger (except forn= 10), as expected, since these are

upper-bounds. Since the parametric models have substantial shortfall of the re-

quired coverage in certain cases, we note that method based on (3.6) may be more

appropriate for obtaining a confidence upper-bound forλn when the underlying

model for software reliability is not known.

3.6. Applications

Failure times of a software sub-system for 136 iterations ofdebugging for a

commercial software was obtained from Musa (2012) (Dataset6). Based on this

dataset we consider the problem of estimating the failure time distribution of the

next software failure using data corresponding to the last 10 iterations. The data

is provided in Table 3.4.

We assume that every inter-failure timeTi, for i = 1, . . . ,n, is exponentially dis-

tributed with rate parameterλi . However, unlike the parametric models, we make

a generic assumption ofλi+1 ≤ λi which corresponds to non-decreasing reliability

of the software. The PAV algorithm based ML estimate ofλ10 and the correspond-

ing confidence intervals using (3.6) with a minimum confidence of 50%,90% and

95% are provided in Table 3.5.

We now consider another example concerning user-reported software defects.
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TABLE 3.3
The relative size of the 95% upper confidence bound ofλn with the coverage probabilities in

parentheses

n= 10

Model Jelinski Moranda Moranda λ̂n

Constant 0.95(35.6) 4.71 (98.3) 3.87 (99.1)

Linear 4.08 (100.0) 7.26 (100.0) 7.98 (99.1)

Convex 5.53 (100.0) 10.87 (100.0) 9.72 (98.9)

Concave 1.87 (92.6) 2.51(82.0) 4.47 (99.0)

n= 25

Model Jelinski Moranda Moranda λ̂n

Constant 0.57(0.7) 2.28 (97.4) 3.44 (99.1)

Linear 2.42 (100.0) 3.85 (100.0) 5.92 (99.0)

Convex 3.45 (100.0) 6.24 (100.0) 7.43 (99.2)

Concave 1.03(47.1) 1.14(50.4) 3.68 (98.9)

n= 100

Model Jelinski Moranda Moranda λ̂n

Constant 0.38(0.0) 1.43 (96.2) 3.29 (99.6)

Linear 1.41 (96.0) 2.60 (100.0) 4.39 (99.1)

Convex 2.02 (99.6) 4.21 (100.0) 5.07 (99.4)

Concave 0.60(0.0) 0.75(10.1) 3.35 (99.7)
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TABLE 3.4
The inter-failure times (CPU seconds) for the last 10 iterations.

Iteration 1 2 3 4 5 6 7 8 9 10

Failure Time 40 2 86 221 6 891 23 4 437 66

TABLE 3.5
ML estimatêλ10 and its corresponding confidence bound,λ̂q

10, with at least100×q% coverage.

λ̂10 λ̂0.50
90 λ̂0.95

10 λ̂0.99
10

0.0035 0.0067 0.013 0.016

Bug-databases record defects discovered by the users of the software after its re-

lease. Software bug-database have become an important source of data for es-

timating the reliability of a software after its release. A bug-database can be

queried to determine the number of days between successive defect discov-

eries. Typically, bug-databases will classify the defectsinto a number of de-

fect classes with security defects being an important classof defects for the

software community. Table 3.6 presents data correspondingto 15 most recent

security defects retrieved from the publicly available bug-database of Python

2.6, a popular scientific scripting language. The bug-database was accessed at

http://bugs.python.org/issue?@template=search on January 31, 2012 and the 15

most recent security defects that were confirmed as on January 31, 2012 were

retrieved.

TABLE 3.6
Number of inter-discovery days for the discovery of the kth defect; T1 corresponds to days since

release of the first version of the software.

k 1 2 3 4 5 6 7 8 9

tk 2150 83 137 5 28 32 309 62 164 38

k 10 11 12 13 14 15

tk 70 170 251 16 285 24
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Typically after the discovery and reporting of a defect in the bug-database, the

defect is fixed and the reliability of the software is expected to improve or remain

the same. After the defect is reported and fixed, the quantum of improvement in

reliability is typically not known. The isotonic geometricregression model is used,

for the sake of illustration, to estimate the reliability ofa software, with respect to

a critical security defect, using (3.14). In particular, the number of inter-discovery

days for observing thekth security defect can be assumed to beGeometric(pk),

for k= 1, . . . ,n, with p1 ≥, . . . ,≥ pn. The PAV algorithm can be used to obtain the

MLE p̂n of pn. One can use (3.14) to obtain a confidence upper-bound forpn with

a minimum required coverage probability. The results are presented in Table 3.7

for minimum coverage probabilities of 50%, 90% and 95%. The upper-bounds

on pn, with n= 15, can be converted to lower-bounds on the expected number of

days till the discovery of the next security defect. In particular, from Table 3.7,

we may conclude that the expected number of days for the 16th security defect to

be discovered is 1/p̂16 = 154 days, with a 95% lower bound being 1/p̂0.95
15 = 24

days.

TABLE 3.7
ML estimatep̂15 and its corresponding confidence bounds with minimum required coverage of

50%, 90%, 95% and 99%.

q̂16 q̂0.50
16 q̂0.90

16 q̂0.95
16

0.0064 0.013 0.028 0.040

3.7. Concluding Remarks

To conclude, three generic models for software reliabilityimprovement have been

proposed using Exponential, Gamma and Weibull distributional families. The pro-



Chapter 3: Independent Isotonic Software Reliability Models 96

posed method for computing confidence bounds, based on the PAVA based ML

estimate, presents a new approach of constructing confidence intervals that cir-

cumvent the important concerns raised by Andrews (2000) in using bootstrap pro-

cedures in constrained parameter spaces. The approach alsoavoids using asymp-

totic procedures as they suffer from concerns related to their being as many model

parameters as data-points. The proposed confidence bounds are simple to com-

pute and interpret as demonstrated in Section 3.6. The simulations study indicates

that the proposed method is superior to a parametric model for obtaining confi-

dence bounds for software reliability in the absence of information regarding the

nature of software reliability improvement. Extension of the method for bounded

improvement in reliability has been discussed along with extensions to Geomet-

ric isotonic regression models. The proposed methodology may be particularly

useful to estimate the reliability of software with rare andcatastrophic failures,

where failures will be few and very few assumptions can be made regarding the

improvement in reliability after each debugging effort.



Chapter 4

Dependent Isotonic Software Reliability

Models

The consequences of an act affect the probability of its occurring again.

B. F. Skinner

4.1. Introduction

Estimation and statistical inference for the dependent isotonic software reliability

models, proposed earlier in Chapter 2, are developed in this chapter. In particu-

lar, we develop conservative bounds similar to those in Chapter 3. The bounds

proposed in Chapter 3 cannot be used for the dependent isotonic software relia-

bility models because we make use of the independence of the inter-failure times

to prove Theorem 3.1. Also, the bounds of Chapter 3 cannot consider right cen-

soring of the most recent failure time, i.e, it cannot consider failure free operation

of the software since the last failure. Another problem withthe bounds proposed

in Chapter 3 is that even under the assumption of independencethere is no guar-

antee that they will be monotonic. In particular, the lower confidence limits for

reliability, after successive discovery of defects and their repair, may not be in-

creasing even though we assume an increasing reliability. For a non-statistician

this may be hard to interpret as these estimates will be at odds with the assumption
97
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of increasing reliability after every defect discovery andrepair. To address both

these problems we propose a novel and simple method for constructing anexact

one-sided confidence bound, with a minimum coverage probability, for the single

index parameter of the failure time distribution corresponding to the isotonic soft-

ware reliability model. The method is based on the distribution of max(T1, . . . ,Tn),

whereTk’s denote the observed inter-failure times, of say,n successive failures.

The proposed bound is valid even for small data sizes, can be modified to con-

sider non-independence of theTk’s and be used when there is no improvement in

reliability after fixing a defect. Additionally, the bound can be used even when

the time to failureTn of the current version of the product is right censored. This

chapter is organized as follows. Section 4.2 formulates theproblem and presents

the main result in a general framework. Section 4.3 studies the properties of the

proposed upper-bound through simulation. Section 4.4 presents the application of

the proposed upper-bound to two publicly available software reliability datasets

and a new dataset retrieved from the automatic error-loggerof a workstation. We

would like to highlight that the application of the method tothe dataset in section

4.4 reveals that two popular models for software reliability might underestimate

the reliability of the underlying software. Although we expect the reliability of

the product not to decrease with every subsequent version, this might not happen

in some situations. To address this issue, we demonstrate how the method can be

modified to consider a bounded decrease in reliability of thesubsequent product

versions (See Section 4.2). Section 4.5 ends with some concluding remarks.

The dependent isotonic reliability model is a very generic software reliability

growth model that can consider arbitrary dependence between successive failure



99 4.2 The Main Result

times. Estimating the failure time distribution of the latest version of the software

and providing confidence intervals for metrics derived fromthe estimated failure

time distribution is a challenge. This is because of (i) the arbitrary nature of the

dependence between the failures (ii) the possibility of equality in some or all of

the failure time distributions. Recently, there has been increased interest in char-

acterizing the asymptotic distribution of PAV estimator inthe context of dosage

studies (Jewell and Kalbfleisch, 2004; Tebbs and Swallow, 2003; Bhattacharya

and Kong, 2007). The inconsistency of bootstrap procedureswhen the parameter

space has non-strict inequality constraints has been notedby Andrews (2000). Li,

Taylor and Nan (2010) proposed a modified bootstrap estimator for estimating

two binomial proportions in the presence of order restrictions in small samples.

Similar bootstrap method seems difficult for the problem being considered here

since there is exactly one observed failure time for every version. Every additional

version introduces an additional unknown parameter, whereas in the method of Li,

Taylor and Nan the number of parameters is fixed at two. The method of construct-

ing a conservative one-sided confidence bound proposed in this chapter is a novel

solution that addresses both the problems.

4.2. The Main Result

Let Tk ∼ Fk(.), for k= 1, . . . ,n, whereFk(.) is the cumulative distribution function

for Tk. Since successive versions of the product have non-decreasing reliability,

we will impose the constraint thatFk(t) ≤ Fk−1(t) for all t. An estimate ofFn(t),

for any t ∈ R, along with an upper confidence bound is of interest. IfF1, . . . ,Fn

are assumed to be arbitrary CDF’s with the above stochastic ordering, then estima-
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tion of Fn(t), for all t ∈R, may not be feasible, specifically fort >max(T1, . . . ,Tn).

However, ifFk’s belong to a family of distributions indexed by a real-valued single

parameter, i.eFk(t) = F(t;θk), with F(t,θ) increasing inθ for all t in the support

of F , then under the assumption of mutual independence, maximumlikelihood

estimation ofθk’s, and in particularθn, may be possible for certain families of

distribution. In order to ensure a margin of safety, it is more important to obtain

a confidence bound with a specified minimum coverage probability for θn rather

than just obtaining a point estimate forθn. As in the context of software relia-

bility models (Jelinski and Moranda 1972), we assumeθ1 ≥ . . . ≥ θn, leading to

F(t;θ1) ≥ ·· · ≥ F(t;θn) for all t. For example, one may considerTk’s to follow

a Pareto distribution with support on(0,∞) and assumeFk(t) = 1− (1/x)θk, for

k = 1, . . . , with θ1 ≥ θ2 ≥ . . .. Alternatively we could assumeTk’s to follow a

Rayleigh distribution withFk(t) = 1−exp(−t2/θk) with θ1 ≥ θ2 ≥ . . .≥ θk.

The assumption thatθk may possibly be equal toθk−1 implies that the num-

ber of unknown parameters is not specified. Such an observation indicates that

asymptotic methods for computing confidence bounds forθn asn→ ∞ may not be

appropriate. The possibility ofT1, . . . ,Tn being a dependent sequence of observa-

tions, with the nature of the dependence also being unknown,only complicates the

problem. It is in these contexts that we propose Theorems 4.1and 4.2, which can

be used to obtain confidence bounds for the parameterθn with a minimum cov-

erage probability. Theorem 4.1 is formulated under the assumption of T1, . . . ,Tn

being independent, while Theorem 4.2 is formulated withoutthe assumption of

independence.

Define F = {F(.,θ),θ ∈ R} to be a family of cumulative distribution func-
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tions with support in(−∞,∞) indexed by the parameterθ ∈ Θ ⊆ R, with the

property thatF(t,θ) > F(t,θ′), if θ > θ′, ∀ t ∈ (−∞,∞). Let T1 ∼ F(.,θ1),T2 ∼

F(.,θ2), . . . ,Tn ∼ F(.,θn), . . . with θ1 ≥ θ2 ≥ . . .≥ θn ≥ . . ., be an independent se-

quence of observations. DefineF−1(p,θ) = in f {t : F(t,θ)≥ p}. Let t1, t2, . . . , tn

be realizations ofT1, . . . ,Tn. Based ont1, t2, . . . , tn, define the statistic

θ̂p
n = min

{

θ : max(t1, . . . , tn)> F−1
(

p1/n,θ
)

,θ ∈ Θ
}

. (4.1)

Note that, sinceF−1(.;θ) is a non-increasing function ofθ, this minimum θ̂p
n

exists.

Theorem 4.1. The statistiĉθp
n has the property P(θ̂p

n < θn)≤ 1− p. This implies

that θ̂p
n is an at least100× p% upper-bound for the parameterθn, that is, P(θ̂p

n ≥

θn)≥ p. In other words,
{

θ : θ ≤ θ̂p
n
}

is an at least100×p% one-sided confidence

interval.

Proof. Note thatP[max(T1, . . . ,Tn)≤ λ] = ∏n
j=1F(λ,θ j)

≥ [F(λ,θn)]
n, sinceF(λ,θn)≤ F(λ,θ j), for j = 1, . . . ,n.

DefineAk =
{

max(T1, . . . ,Tn)> F−1
(

p1/n,θn− 1
k

)}

, for k= 1,2, . . .. Then,

P(Ak) ≤ 1−
[

F
(

F−1
(

p1/n,θn−1/k
)

,θn

)]n

≤ 1−
[

F
(

F−1
(

p1/n,θn

)

,θn

)]n

≤ 1− p

sinceF−1
(

p1/n,θn− 1
k

)

≥ F−1
(

p1/n,θn

)

andF
(

F−1
(

p1/n,θn

)

,θn

)

≥ p1/n.

Now, P(θ̂p
n < θn) =
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P
(

∃ ε > 0s.t.max(T1, . . . ,Tn)> F−1
(

p1/n,θn−δ
)

, ∀0< δ ≤ ε
)

=

P
(⋃∞

j=1
⋂∞

k= j Ak

)

= P

(

limin f
k

Ak

)

≤ limin f
k

P(Ak) ≤ 1− p.

It is important to note that whilêθp
1 is also a confidence bound forθn since

θn≤ θ1, the bound̂θp
n can be expected to be smaller as it is based on n observations

T1, . . . ,Tn, while θ̂p
1 is only based onT1.

DefineF = {F(.,θ),θ ∈ R} to be a family of cumulative distribution as before.

Let T1∼F(.,θ1),T2∼F(.,θ2), . . . ,Tn∼F(.,θn), . . . with θ1 ≥ θ2 ≥ . . .≥ θn ≥ . . ..

be a possibly dependent sequence of observations. Letti be a realization ofTi.

Based ont1, . . . , tn, define the statistic

θ̃p
n = min

{

θ : max(t1, . . . , tn)> F−1
(

1− 1− p
n

,θ
)

,θ ∈ Θ
}

. (4.2)

Theorem 4.2. The statisticθ̃p
n has the property P(θ̃p

n < θn) ≤ 1− p, for k=

1, . . . ,n. This implies that̃θp
n is an at least100× p% upper-bound for the pa-

rameterθn, even if T1, . . . ,Tn are dependent.

Proof. Note thatP(max{T1, . . . ,Tn}> λ) = P
(⋃

j

{

Tj > λ
})

≤ ∑n
j=11−F(λ,θ j) ≤ n[1−F(λ,θn)], sinceF(λ,θn)≤ F(λ,θ j), for j = 1, . . . ,n.

The rest of the proof follows the arguments of Theorem 4.1.

In situations whenTn is right censored att0, the proposed boundsθ̂p
n andθ̃p

n may

be computed by replacingTn with t0. The statistics will still be a valid upper-bound

for the parameter with a minimum coverage probability, since max(Tn, . . . ,Tn) ≥

max(Tn, . . . ,Tn−1, t0). This is particularly useful as the time to failure for the latest

version of the product may often be right censored. Note that, with Tn being right
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censored, the maximum likelihood estimate ofθn does not exist. However,θ̂p
n can

still be obtained and used as an at least 100× p % upper-bound forθn.

Monotonicity of the Confidence Bounds

There is no guarantee that the boundsθ̂p
n and θ̃p

n will monotonically decrease

with n. For example, an observationTn+1 s.t.Tn+1 ≤ max(T1, . . . ,Tn) will result in

θ̂p
n+1 > θ̂p

n. Due to the nature of the sequential quality improvement, this increase

is to be expected as one would intuitively require the time tofailure of n+ 1th

version of the product to be more than the time to failure of all the preceding

versions. Hence a quicker time to failure of the product in the n+ 1th iteration

would indicate that a decrease of theθ parameter over the preceding versions is

doubtful, requiring an increase in̂θp
n+1. It is important to note that the problem of

non-monotonicity of bounds is also present in the MLE estimator using the Pooled

Adjacent Violator Algorithm. See Figure 4.3 for an example.The monotonicity of

the confidence bound or an any estimate forθn may however be desirable as it

is easily interpreted by practitioners who will otherwise find a sudden increase in

the bound forθn hard to explain when the underlying model postulates that theθn

decreases withn. To this end, we propose the statistics

θ̂p
n,m = min{θ : max(t1, . . . , tn)> F−1(p1/m,θ)} (4.3)

θ̃p
n,m = min{θ : max(t1, . . . , tn)> F−1(1− (p/m),θ)}, (4.4)

wherem is chosen to be an upper-limit for the number of sequential improvements

that will be conducted.
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Theorem 4.3.The statisticŝθp
n,m andθ̃p

n,m are at least100× p% confidence bound

for θn under the assumption of Theorem 4.1 and 4.2, respectively. Also, θ̂p
n,m and

θ̃p
n,m are both non-increasing in n for n≤ m.

Proof. DefineAk,n,m =
{

max(T1, . . . ,Tn)> F−1
(

p1/m,θn− 1
k

)}

, for k= 1,2, . . .

By following the steps of the proof of Theorem 4.1, it is can be shown that

P(Ak,n,m) ≥ pn/m ≥ p. With this result, the proof ofP(θ̂p
n,m > θn) ≥ p follows

the same arguments as the rest of the proof of Theorem 4.1.

To prove θ̂p
n,m is decreasing inn, for n ≤ m, note thatmax(T1, . . . ,Tn) is in-

creasing inn and F−1(p1/m,θ) is decreasing inθ. Hence ifmax(T1, . . . ,Tn) ≥

F−1(p1/m,θ), we will havemax(T1, . . . ,Tn+1)≥ F−1(p1/m,θ), which proves that

θ̂n+1,m ≤ θ̂n,m. The proof forθ̃p
n,m follows similar arguments.

It is easy to see that̂θp
n andθ̃p

n are less than or equal tôθp
n,m andθ̃p

n,m, respec-

tively (See also Figure 4.3). For the purpose of analyzing sequential improvement

plans, with the requirement of monotonic confidence bounds,one may choose

m= n+ c, wherec is the number of sequential improvements expected in the

future.

4.3. A Simulation study

In order to study the performance of the proposed conservative upper-bounds nu-

merically, we consider a model in whichTk ∼ Exponential(θk), for k = 1, . . . ,n.

Theorems 4.1 and 4.2 can be used to provide a conservative 100× p% confidence

bounds forθn. We consider four patterns of reliability improvement, namely, con-

stant, linear, convex and concave, as algebraically described in Table 4.1 and pre-

sented visually in in Figure 4.3 forn= 10.
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TABLE 4.1
Expressions forθk, for k= 1, . . . ,n, corresponding to four patterns of reliability improvement

Constant θk = 1/3

Linear θk = 1−2k/3n

Convex I(2k≤ n)× (1−4k/3n)+ I(2k> n)×1/3

Concave I(2k≤ n)+ I(2k> n)× (1− (4k−2n)/3n)

0 5 10
0

0.5

1

Constant

0 5 10
0

0.5

1

Linear

0 5 10
0

0.5

1

Convex

0 5 10
0

0.5

1

Concave

FIG 4.1. Plots ofθk vs k for k= 1, . . . ,10corresponding to four patterns of reliability improvement.
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If we consider the case whenn= 10, the conservative upper-boundθ̂p
10 for θ10,

under the assumption of independence, is obtained by simulating T1, . . . ,T10 in-

dependent of each other withθk’s as per each of the four patterns presented in

Figure 4.3. To consider the possibility of dependence between theTk’s, we sim-

ulate the correlatedTi ’s, for i = 1, . . . ,10, using a multivariate Gaussian copula

with a copula correlation of 0.5 (Nelson 1999) as follows: simulate{Z1, . . . ,Z10}

from a multivariate normal distribution with dimension 10,such that eachZ j has

mean 0, variance 1 and with a covariance between anyZ j andZk set to 0.5, for

1≤ j < k ≤ 10. ComputeUk = Φ(Zk), for k = 1, . . . ,10, whereΦ(.) is the stan-

dard normal CDF. Note that eachUk isUni f orm(0,1), and sinceZk andZ j are not

independent,Uk andU j are also not independent. ComputeTk =−log(1−Uk)/θk,

for k = 1, . . . ,10. EachTk is marginally distributed as anExponential(θk); how-

ever, due to the dependence betweenU1, . . . ,U10, the variablesT1, . . . ,T10 are also

dependent. The simulatedT1, . . . ,T10 are used to obtaiñθp
10. The actual cover-

age probabilities for̂θp
10 and θ̃p

10 are estimated from 1000 such simulations with

p= 0.90, 0.95 and 0.99 and are presented in Table 4.2.

The results of the simulation study are in concordance with the statements

of Theorems 4.1 and 4.2 as the upper-bounds achieve their intended minimum

coverage probabilities. Note that, when all theθk’s are equal, fork = 1, . . . ,10,

and theTk’s are independent, the coverage probability ofθ̂p
10 is close to p, for

p= 0.90,0.95 and 0.99, indicating that, in such a case, the bounds will be tight,

as is expected from the proof of Theorem 4.1. We will next study the average

size of the conservative upper-bound which we define as the ratio of the upper-

bound to the true parameter value, given byθ̂p
n/θn and θ̃p

n/θn, respectively. The
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results are presented in Table 4.3 forp = 90%,95% and 99%. From Figure 4.3,

it is clear that for anyk, θk is on an average the largest for the concave model,

followed by the linear, convex and then the constant model. Such an ordering

leads tomax(T1, ...,Tn) being the largest, on the average, for the constant model

and least for the concave model. This implies the reverse ordering, on the average

size, for the proposed upper-bounds from Theorems 4.1 and 4.2. This is evident

in Table 4.3.

To illustrate the proposed confidence bounds visually, we consider data simu-

lated from the convex model with n = 25 (see Table 4.1) and compute the upper-

bounds forθk, namelyθ̂p
k =−log(1− p1/k)/max(T1, . . . ,Tk) and

θ̂p
k,m = −log(1− p1/m)/max(T1, . . . ,Tk), with m = 25 and plot them fork =

1, . . . ,25. Also, for comparison, the MLE ofθk and the corresponding upper-

boundsθ̂p
k based onT1, . . . ,Tk are shown on the same plot. Such a plot, for one

set of simulated data, is presented in Figure 4.3 withp= 0.95. As alluded to be-

fore, the ML estimatêθML
k of θk and its upper-bound̂θp

k , based onT1, . . . ,Tk, are

not monotonic withk as shown in Theorem 4.3. Furtherθ̂p
k,m is monotonic withk

as required by Theorem 4.3. Note that the size of this monotonic bound is larger

than the non-monotonic boundθ̂p
k . We leave it up to the practitioner to choose be-

tween the two bounds based upon the requirements of the problem being solved.

In all subsequent analysis, we will present the results based on the bound̂θp
n.

We now proceed to comparing the confidence boundθ̂p
k with confidence

bounds estimated by two well known parametric models, namely the Jelinski

and Moranda model and the Moranda model. The Jelinski and Moranda model

assumes thatθk = α − βk for k = 1, . . . ,n, while the Moranda model assumes
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FIG 4.2. Comparison of the two confidence boundsθ̂p
k,m andθ̂p

k along with the MLE forθk obtained
using the PAV Algorithm for a simulation of data from the convex model

TABLE 4.2
Estimated coverage probability of the upper-bounds for thefour patterns of decrease of reliability

improvement.

Independent Dependent

Pattern θ̂0.90
10 θ̂0.95

10 θ̂0.99
10 θ̃0.90

10 θ̃0.95
10 θ̃0.99

10

Constant 0.90 0.95 0.99 0.94 0.97 0.99

Linear 0.99 0.99 0.99 0.98 0.99 1.00

Concave 0.94 0.97 0.99 0.96 0.99 0.99

Convex 0.98 0.99 1.00 0.99 0.99 1.00

TABLE 4.3
Average values of̂θp

10/θ10 and θ̃p
10/θ10 for the four patterns of reliability improvement.

Independent Dependent

Model θ̂0.90
10 θ̂0.95

10 θ̂0.99
10 θ̃0.90

10 θ̃0.95
10 θ̃0.99

10

Constant 1.82 2.14 2.90 3.60 3.84 5.13

Linear 5.55 6.50 8.32 9.67 10.37 15.56

Convex 2.59 3.05 3.89 4.67 5.48 6.91

Concave 7.07 8.07 10.63 13.70 12.79 17.48
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FIG 4.3. Comparison of the two confidence boundsθ̂p
k,m and θ̂p

k with 95% confidence bounds
obtained using parametric models

that θk = exp(α − βk) for k = 1, . . . ,n. The parameterθk can be estimated as

θk = α̂− β̂k for the Jelinski and Moranda model, while for the Moranda model,

it can be estimated asθk = exp(α̂− β̂k), whereα̂ and β̂ are the ML estimators

from the corresponding models. 100× p% confidence intervals forθn can be ob-

tained through parametric bootstrap. For a typical simulation from the convex

pattern withm= 25, a graph of the proposed confidence boundsθ̂p
k , its monotonic

counterpart̂θp
k,m, for p= 0.95 and the 95% confidence bounds obtained from the

Jelinski and Moranda and the Moranda models through parametric bootstrap are

plotted againstk = 1, . . . ,m in Figure 4.3. Observe from the figure that the confi-

dence bounds obtained through the parametric models are notmonotonic.

In order to evaluate the precision of the upper-boundθ̂p
n, we compute the aver-

age size of the upper-bound, as defined before, over 1000 simulations. We present
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such a comparison for n = 10, 25 and 100 using the four models ofreliability

improvement described in Table 4.1. The results are presented in Table 4.4 for p

= 0.95. Note that the average size and coverage probabilities of the confidence

bounds computed through the two parametric models are similar to those pre-

sented in Table 3.3 in Chapter 3. Observe that the conservative upper-bound̂θp
n

has the minimum required coverage probability of 95% acrossall the four types

of reliability improvement while the parametric model has acoverage that is much

lesser than the intended coverage. This shortfall in the required coverage for the

confidence bounds obtained through the Jelinski and Morandamodel increases

dramatically withn for the convex and constant patterns. This may be due to the

Jelinski and Moranda model not being a good approximation for the constant and

concave reliability improvement models. The confidence bounds obtained through

the Moranda model also suffers from a similar problem for theconcave reliabil-

ity improvement patterns. The simulation study clearly demonstrates the dangers

of using an incorrect parametric model for estimating the reliability of the soft-

ware. While the proposed bounds are larger, they consistently have the required

coverage both in small and large samples as expected from Theorem 4.1.

4.4. Applications

In this section, we consider three application areas for theproposed conservative

upper-bound and illustrate with an analysis of a dataset from each area.
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TABLE 4.4
Comparison of average value ofθ̂95

n /θn to 95 % confidence bounds obtained by using parametric
bootstrap. The coverage probability percentages are givenin brackets.

Method constant linear convex concave

n = 10

θ̂p
n 2.16 (95.6) 6.11 (99.5) 3.10 (97.1) 8.11 (99.8)

Jelinski and Moranda 0.96 (35.2) 4.09 (99.8) 5.52 (99.2) 1.87 (92.1)

Moranda Model 4.71 (98.9) 7.26 (99.9) 10.87 (99.4) 2.51 (82.0)

n = 25

θ̂p
n 1.80 (95.0) 4.93 (99.6) 2.26 (97.5) 6.49 (99.8)

Jelinski and Moranda 0.57 (0.7) 2.38 (100.0) 3.44 (100.0) 1.03 (47.1)

Moranda Model 2.27 (99.2) 5.92 (99.0) 7.43 (99.3) 3.68 (98.7)

n = 100

θ̂p
n 1.53 (94.7) 3.62 (99.9) 1.80 (97.1) 4.83 (99.9)

Jelinski and Moranda 0.38 (0.0) 1.43 (96.1) 2.02 (99.4) 0.60(0.0)

Moranda Model 1.46 (96.1) 2.62 (100.0) 4.22 (100.0) 0.73 (10.6)

4.4.1. A Sequential quality improvement plan with non-decreasing

exponential failure times

Consider a sequential quality improvement plan for a productwith n quality im-

provement iterations. First, a prototype of the product is tested till its first failure,

at timeT1 following Exponential(θ1) distribution withE(T1) = 1/θ1, is observed.

After the first failure, the production process goes througha quality improvement

exercise resulting in the second prototype which is again tested till its failure, af-

ter timeT2 following Exponential(θ2) distribution, is observed. We assume that

due technical diligence is followed during the quality improvement exercise (i.e.,

product’s quality does not deteriorate) so thatθ1 ≥ θ2 can be assumed. Then

such successive improvement exercises give rise ton failure timesT1, . . . ,Tn, with

Tk ∼ Exponential(θk), for k = 1, . . . ,n, andθ1 ≥ . . . ≥ θn. Let ti be a realization
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of Ti. A statistician is expected to estimateθn and provide an at least 95% upper-

bound (one-sided confidence interval) forθn. Such an upper-bound can be used

to obtain an at least 95% lower bound for the probability thatthe nth improved

version does not fail before a certain timet0 (that is, the reliability). Theorem 4.2

can be used to compute an at least 100× p % upper-bound forθn without making

any assumption about the nature of dependencebetweenTk’s as

θ̃p
n =

log(n)− log(1− p)
max(t1, . . . , tn)

, (4.5)

whereti is a realization ofTi.

Under the assumption of independence ofTk’s, the MLE ofθn can be obtained

through the PAV algorithm (Ayers 1955) as given by

θ̂n =
1

max
{

tn,
tn+tn−1

2 , . . . , tn+...+t1
n

} . (4.6)

However, since the asymptotic distribution ofθ̂n is difficult to obtain (See Li,

Taylor and Nan 2010 for an example relating to binomial distribution), finding

a 100× p% confidence interval forθn can be difficult. On the other hand, the

proposed upper-bound̂θp
n as given by

θ̂p
n =

−log
(

1− p1/n
)

max(t1, . . . , tn)
(4.7)

provides a conservative one-sided confidence interval, when theTk’s can be as-

sumed to be independent.

The Dataset of Musa (2012) consists of software failure times for 136 iterations

of debugging for a sub-system of a commercial software. In reality, failure times
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TABLE 4.5
The inter-failure times (CPU seconds) for the last 10 iterations

Iteration(k) 1 2 3 4 5 6 7 8 9 10

Failure Time(tk) 40 2 86 221 6 891 23 4 437 66

from this many iterations are hardly available and hence we consider the more

realistic problem of estimating the reliability of the software using only the ob-

served failure times in the last 10 iterations. The corresponding data is provided

in Table 4.5.

Two popular models for software failure data are the Jelinski and Moranda

(1972) model and Moranda (1975) model which assume the failure time Tk to

follow Exponential(θk) distribution withθk = λ(N− k) andθk = exp(α− βk),

respectively. Assuming independence of theTk’s, the parameters(λ,N) and(α,β)

can be estimated through the maximum likelihood principle using the respective

models. The corresponding 95 % one-sided confidence intervals for θ10 can be

obtained using parametric bootstrap. Alternatively, an atleast 95% upper-bound

θ̂0.95
10 for θ10, without making any assumption about the nature of decreasein θk’s

can be obtained through Equation (4.7). Moreover,θ̃p
n can be obtained through

Equation (4.5) without assumingTk’s are independent. The corresponding conser-

vative lower bounds forθ10 are given in the third and fourth rows of Table 4.6.

Those against Jelinski and Moranda (first row) and Moranda (second row) are

obtained through parametric bootstrap of the respective models.

The simulation study presented in Section 4.3 indicates the95% confidence

bounds obtained through our method are, on an average, larger than those ob-

tained through parametric models. However, the coverage probability of the con-
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TABLE 4.6
Comparison of upper-bounds forθ10

Confidence

Model 90% 95% 99%

Jelinski and Moranda 0.0072 0.0089 0.0123

Moranda 0.0065 0.0083 0.0141

θ̂p
n 0.0051 0.0059 0.0077

θ̃p
n 0.0052 0.0060 0.0078

fidence bounds obtained through a parametric model may have coverage that is

substantially less than the required 95% coverage when the parametric model is

incorrect. Hence, a smaller size of the confidence bound froma parametric model

need not imply the confidence bound will have the required coverage probability.

The upper-bounds ofθ10 obtained through the two parametric models are smaller

thanθ̂p
10 andθ̃p

10, casting doubts on the two parametric models. Inspite of thecon-

fidence bounds we propose being larger on an average based on simulation results,

the confidence bound proposed by us is actually smaller than those obtained by

the parametric methods. This indicates that the reliability of the software could be

increasing much faster than postulated by either the Jelinski and Moranda or the

Moranda model. In the face of uncertainty regarding the parametric assumptions

and small sample size, the proposed conservative bounds maybe more acceptable.

4.4.2. Sequential quality improvement plans with bounded decrease in

reliability

Continuing with the model of the previous sub-section, the assumption of non-

decreasing reliability of subsequent product iterations cannot be justified some-

times and hence the assumption,θ1 ≥ . . . ≥ θn, may not be valid. In such a
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situation, an assumption such asβθk−1 ≥ θk, for a knownβ > 0 might be ap-

propriate. If β > 1, then the parameter sequence,θ1 ≥ . . . ≥ θn, would be al-

lowed to increase in a bounded manner. For example, if failure timesT1, . . . ,Tn

are independently distributed as exponential variables, but the order restriction

of E(T1) ≤ . . . ≤ E(Tn) is hard to justify, one may consider a restriction of the

form E(Tk−1) ≤ βE(Tk), with a knownβ > 1. Consider the parameter sequence

γ1 = θ1,γ2 = θ2/β, . . . ,γn = θn/βn−1. Note that the parameter sequenceγ1, . . . ,γn

is non-increasing andβk−1Tk ∼ exp(γk). Theorem 4.1 can be applied to the se-

quenceT1,βT2, . . . ,βn−1Tn to obtain an at least 100× p% confidence upper-bound

γ̂p
n for γn. Let ti be a realization ofTi. The at least 100× p% upper-bound forθn

can be obtained asβn−1γ̂p
n. Also, the PAVA based ML can be used to compute the

MLE of θn as

θ̂n =
βn−1

max
{

βn−1tn,
βn−1tn+βn−2tn−1

2 , . . . , βn−1tn+...+t1
n

} , (4.8)

whereti is a realization ofTi . Jelinski and Moranda (1972) present the time to

failures of a software subsequent to fixing the defect which caused the previous

failure. They provide the failure time data for 26 iterations of debugging and test-

ing. As with the previous analysis in Section 4.1, we consider only the last 10

failure times. The data is presented in Table 4.7. Jelinski and Moranda assume

that thekth failure timeTk ∼ exp(θk) with θk = λ(N− k). The linear decrease

model and the assumption that the parametersθk must decrease withk has of-

ten been questioned. For this example, considering the failure times in Table 4.7,

the assumption of successiveTk’s being stochastically larger does not seem to be

right and has been questioned recently by Basu and Ebrahimi (2003). Therefore,
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TABLE 4.7
The inter-failure times (days) for the last 10 iterations

Iteration(k) 1 2 3 4 5 6 7 8 9 10

Failure Time(tk) 3 3 6 1 11 33 7 91 2 1

the assumption of bounded increase of theθk’s seems more appropriate. Theorem

4.1 can be used to compute a conservative 95% upper-bound forθn when we as-

sumeθk ≤ βθk−1. For the illustration, we considerθk ≤ 2θk−1. The application of

Theorem 4.1 results in a conservative 95% upper-bound forθ10, asθ̂0.95
10 = 0.23,

which is surprisingly close to the value of 0.21 (obtained from the graphically pre-

sented posterior mean and posterior standard deviation forθ10) reported in Basu

and Ebrahimi (2003).

4.4.3. Software Reliability from bug-databases and error loggers

Software bug-databases that record user-reported defectsprovide an increasingly

important source of data for software reliability assessment. A bug-database is

often used to track the set of known defects in the software upto a calender time

s. Error loggers perform a similar function but the errors arenot user-reported, but

system-reported. We denote the set of known defects up to calendar timesbyD(s),

with each defect identified by a unique defect ID. Software updates are often based

on fixing the set of known defects in the bug-database. When a defect is reported

at times, the defect is compared with the known set of defectsD(s−) to determine

whether it is already known and, if it is a new defect, thenD(s) is updated with the

new defect. Definep(s) to be the probability that a defect reported at times is not

contained in the known set of defectsD(s−). In order to minimize the number of
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software updates, it is important to release an update by fixing the defects inD(s)

only if the probabilityp(s) is less than a certain threshold (i.e., the probability of

recording an unknown defect is small). A simple and generic model for p(s) is to

assume thatp(s1) = p(s2) if D(s1) = D(s2) andp(s2) ≤ p(s1) if D(s1) ⊆ D(s2).

Let s1, . . . ,sn be the calender times when the firstn “new” defects are observed and

let Mk be the random variable denoting the number of defects that are observed

between calendar timessk−1 andsk, for k= 1, · · · ,n, with M0 = 0. Let pk = p(sk),

for k= 1, . . . ,n. Then, clearly,p1 ≥ p2 ≥ . . .≥ pn. It may be reasonable to assume

thatMk ∼ Geometric(pk), for k= 1, . . . ,n, andMi is independent ofM j for i 6= j.

Denotemi to a be realization ofMi. The PAV algorithm can be used to obtain

the MLE of pn, but as argued previously, finding a confidence interval forpn is

difficult. Theorem 4.1 can be used to obtain an at least 100× p% upper-bound for

pn as given by

p̂p
n = 1−exp

(

log(1− p1/n)

max(m1, . . . ,mn)

)

. (4.9)

If the Tk’s cannot be assumed to be independent, then Theorem 4.2 gives an at

least 100× p % upper-bound forpn as

p̃p
n = 1−exp

(

log((1− p)/n)
max(m1, . . . ,mn)

)

. (4.10)

Many operating systems provide software for monitoring system errors as and

when they arise using error loggers. After observing the error logs till n distinct er-

rors are reported, it may be necessary to compute the probability that a subsequent

error that is logged will be a new error that does not belong tothe observed set

of errors. For an operating system observed by the authors, the data consisting of
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TABLE 4.8
Number of known defects reported from the operating system under use.

Iteration(k) 1 2 3 4 5 6 7 8 9 10

Number of defects(mk) 7 97 1 9 54 87 5 14 48 49

the number of additional errors observed before thekth new error was observed,

for k= 1, . . . ,10, is presented in Table 4.8. Using (4.9), an at least 90%, 95% and

99% upper-bounds forp10 are obtained as 0.047, 0.054 and 0.071, respectively.

The bounds using (4.10), without assuming independence, are 0.048, 0.055 and

0.072, respectively.

4.5. Concluding remarks

Computing confidence bounds for reliability, with a minimum coverage proba-

bility, is important for assessing the risk of failure in a product whose quality has

been improved sequentially. A non-parametric model for theincrease in reliability

may provide a worst-case scenario for failure, which in turnmay be used for risk

management. As demonstrated in Section 4.4, the proposed methodology can be

modified for applications which may allow the reliability todecrease with a sub-

sequent version of the product. The proposed method can be used as an alternative

to Bayesian procedures proposed by various authors for considering possibilities

of a decrease in reliability after fixing a defect. The generality of Theorems 4.1

and 4.2 can be used for computing one-sided confidence boundsfor any paramet-

ric family of failure time distributions indexed by a singleunknown parameter.

As mentioned in Section 4.1, the method makes few assumptions regrading the

nature of the reliability improvement and does not make use of asymptotic theory;
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hence, it is ideal for analysis of data-sets with few failures such as in sequential

quality improvement plans for products/procedures with catastrophic failures.

The upper reliability bound proposed in this chapter is a confidence interval. It

is conservative because the 100× (1− p)% confidence interval obtained for the

reliability parameter through Theorem 4.1 or Theorem 4.2 isguaranteed to have

atleast100× (1− p)% coverage and not exactly 100× (1− p)% coverage. This

implies that the actual coverage can be much more than 100× (1− p)% which

in turn means that the upper-reliability bound can be much larger than an exact

confidence bound. This is indeed indicated through results of a simulation study

presented in Section 4.3.

Often the failure time distribution,F(t;θ), is continuous and monotonic in the

single index parameterθ. In caseF(t;θ) is decreasing inθ and successiveθk’s

are non-decreasing, unlike the conditions in Theorem 4.1, one can re-parametrize

F(t;θ) to satisfy the conditions and apply Theorem 4.1. Also, when the distri-

bution involves more than one parameter, often there is one parameter of interest

which keeps changing over different iterations while the others remain unchanged.

Theorem 4.1 can be used to compute confidence bounds for the parameter of in-

terest.

WhenTk’s are independent and identically distributed (i.i.d), one may use like-

lihood methods to obtain asymptotic confidence bounds. Alternatively, Theorem

4.1 can be used to obtain a conservative upper-bound even forsmall sample sizes.

Moreover, Theorem 4.2 gives such a bound even whenTk’s are not independent

and can be used when successive software failures are suspected to be dependent.

From the proofs of Theorems 4.1 and 4.2, the conservative bound in the IID case
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is expected to be tighter with more accurate coverage probability and relatively

smaller size, possibly because of sharing of more information. Our simulation

study (see Tables 4.2 and 4.3), for positively correlated inter-failure times, also

indicates this.



Chapter 5

Semi-Parametric Software Reliability

Models for Post-Release Data

An approximate answer to the right problem is worth a good deal more than anexact

answer to an approximate problem.

John W. Tukey

5.1. Introduction

Controlled testing of a software product by a team of in-housesoftware engineers

is an expensive process which is limited by the number of testruns. To improve

the reliability of the software product, after a limited in-house testing procedure,

the software product is released to allow its users to voluntarily report defects,

if any, using the Internet. These user-reported defects arerecorded in specialized

databases popularly known as bug-databases. Software updates to fix the reported

defects are released on a continuing basis. A number of software products allow

defects to be reported by any user on a continuing basis. Beta-testing provides

another distinct example of user-driven defect reporting,where the software is

released to a select user community for voluntary usage and testing for a limited

period of time. Unlike a controlled testing environment, where the software usage

along with the discovery and reporting of a defect is strictly monitored, a user-
121
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driven defect reporting process is based on voluntary reporting of defects that

depends on an uncontrolled usage of the software.

Bug databases containing user-reported defects have becomeubiquitous for

both commercial and open source software and they are viewedas an impor-

tant data source for software reliability assessments. In fact, after the release of

a software product, bug databases can be the only source of data for assessing

the reliability of a software in the field. Traditionally, software reliability models,

such as those discussed in Chapter 2, have focused on estimating the reliability of

the software based upon data generated from in-house testing where the testing

methodology and reporting of defects is strictly controlled. These reliability mod-

els cannot be directly applied to data retrieved from bug databases as they contain

defects recorded due to uncontrolled software usage and reporting of software de-

fects. The usage rate of a software is typically a function oftime and is in general

unknown. The reporting pattern also depends on the type of users. The distribu-

tion of the severity or type of defects reported by users may be quite different

from those detected by a controlled testing procedure. There is a tendency on the

part of an average user to discover behavior defects more often as compared to,

say, critical security defects. Such a tendency can complicate the development of a

software reliability model. The usage of the software is determined by the number

of users of the software, the type of users and the frequency of usage across all

the users. It is analogous to the notion of operating profile as described in Musa

(2005)[pp. 93]. This paper addresses the problem of analyzing data retrieved from

a bug-database, where information regarding the software usage across its users is

uncontrolled and unavailable.
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This chapter addresses the lacuna in the statistical analysis of data retrieved

from bug-databases using a novel approach that uses the classification of user-

reported software defects into multiple types (based, for example, on their sever-

ity). The method formulates and estimates a software reliability model that is non-

parametric with respect to the usage rate and takes into account differences in

defect reporting rates (DRR’s) of different types of defects.A partial likelihood

approach is used for model estimation. Based upon the proposed model, reliabil-

ity metrics are proposed that do not depend upon the usage rate. An additional

advantage of the proposed model is that it can be estimated using generalized

linear model procedures found in most statistics packages.

An analysis of data retrieved from a bug-database also needsto address another

problem: The distribution of the type of defects reported bythe users may be

different from those reported through a controlled testingprocedure. Such a dif-

ference may exist because software defects can be classifiedinto multiple types

and certain defect types are of significant importance to thesoftware community

and require specialized knowledge for their discovery, an example of which is

the type of defects related to security loopholes in the software (Musa, 2005)[pp.

198]. There may be a tendency on the part of an average user to discover behavior

defects more often as compared to, say, critical security defects. Hence, a very low

rate of reporting of security defects in a user-reported bug-database does not nec-

essarily mean that the software product is reliable with respect to security defects.

Such tendencies can complicate the development of a software reliability model.

Almost all existing models for software reliability make predictions on a cal-

endar time scale, for example, the mean time to failure (MTTF). Predictions on a
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calendar time scale are only valid if the assumptions regarding the usage continue

to hold in the future. While such an assumption may be appropriate in controlled

testing of a software product, this may be hard to justify fora software that is

subject to uncontrolled usage. For example, predictions made using data retrieved

from the bug-database of a software product, freely available in the public do-

main, will no longer be valid if the number of users of the software increase (or

decrease) substantially in an unknown manner over the next few months. Such

unknown changes in usage are common in markets which have several competing

software products that offer similar functionality, examples include scripting lan-

guages, web-browsers and operating systems. This unknown and time-dependent

usage of the software does not allow defining a reliability metric in the time scale.

To address this deficiency, we propose reliability metrics which make predictions

on the scale of number of defects to be observed and, not on thecalendar time

scale, thereby delinking the unknown usage from the prediction process. The pur-

pose of such metrics is to measure reliability of the software with respect to a

particular defect type using the distribution of number of failures to be observed

before a failure of that particular type is observed.

Another equally important objective for a software reliability model is to pro-

vide metrics that can compare the reliability of two software versions. For exam-

ple, the software development manager or the customer may need to decide which

among two versions of a software product is more reliable. Predictions on a cal-

endar time scale do not delink the reliability of the software from its unknown

usage and hence cannot be used for comparison. For example, if one version of a

software product is predicted to have an MTTF of 150 days, while another version
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has the prediction of 250 days, the conclusion of the latter version being more reli-

able may not be appropriate in the absence of information on the usage of the two

versions. The two versions may be equally reliable and the differences in MTTF

may only be due to differences in their usage.

The rate at which defects are reported in a bug-database is determined by two

components. The first component, termed as the Defect Reporting Rate (DRR), is

a function of the usage and is defined as the intensity of discovering and reporting

a defect at timesunder the assumption that no defect has been discovered tilltime

s (a kind of baseline reporting rate). Since the usage of the software is unknown,

the DRR is assumed to be an arbitrary time varying function. The second compo-

nent represents the cumulative effects of previous defect discoveries on the rate

at which new defects will be discovered. This is modeled as a parametric func-

tion which assigns a, possibly decreasing, propensity of reporting new defects as

a function of the number of distinct defects already reported. The reliability of a

software must be a function of this second component, and notthe first one, in

order to delink it from the unknown usage.

Almost all existing models for software reliability recognize the need for in-

corporating the usage of the software through the DRR. For example, the Jelinski

and Moranda (1972) model assumes the DRR to be constant with time, which may

be reasonable in a controlled testing procedure. The model proposed in this paper

considers, for the first time as a special case, a Jelinski-Moranda model with a time

varying non-parametric specification of the DRR. The proposedmodeling can be

extended to other popular software reliability models. A class of software relia-

bility models starting with Jelinski and Moranda (1972) andproceeding through
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Schick and Wolverton (1978), Goel and Okumoto (1979), Ohba (1984b), Singpur-

walla and Wilson (1994) have used a similar decomposition, but assumed increas-

ingly sophisticated parametric models for the DRR as a function of time. These

models may not be universally applicable as the assumed parametric forms may

not calibrate to the unknown usage of the software. Tamura and Yamada (2007)

considered the analysis of a bug-databases from an open source software by using

a parametric stochastic process to model the underlying usage rate. Wang, Wang

and Liang (2007) considered nonparametric estimation of the intensity of the de-

fect reporting process using kernel regression. Their model could be more ap-

propriate for user-driven defect discovery when compared to parametric models;

however, their model does not consider the effect of previous defect discoveries

and hence they could not define appropriate reliability metrics. The model pro-

posed in this paper extends these models by treating the DRR non-parametrically.

This extension is crucial for analyzing data from user reported bug-databases as

the defects are discovered during uncontrolled and unknownusage of the soft-

ware.

The proposed method can also consider dependencies betweenthe discovery

processes of different types of defects. The method, however, requires that there

be at least two types of defects in the software so that the reporting rate of a

defect type of primary interest can be considered in relation to that of other types

of defects as a measure of reliability. A partial likelihoodapproach is used to

eliminate the arbitrary DRR component and estimate the parametric component

representing the effect of previous defect discoveries. Wewould like to note that

the proposed model can be estimated using generalized linear model procedures
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found in most statistics packages.

Section 5.2 formulates the model and describes the method ofpartial likelihood

for estimating the parameters of interest along with estimation of the reliability

metrics. Section 5.3 considers a simulation study to investigate the finite sample

properties of the estimators and Section 5.4 considers an analysis of a publicly

available bug-databases to illustrate our methodology. Section 5.5 ends with some

concluding remarks.

5.2. The Modeling and the Method

Usually a bug-database provides information on each defectthat is discovered and

reported (See, for example,

http://www.bugzilla.org/docs/4.2/en/html/bug_page.html).

For each new defect, there is a record carrying information on (i) time of reporting

(typically the calendar time of when the defect was first reported), (ii) the version

of the software in which the defect was found, (iii) priorityof releasing a fix to

the defect (urgent, high, medium and low), (iv) software components affected by

the defect and (v) classification of the defect in one of several types. Most defect

classification schemes contain security and crash related defects. From now on we

will write reporting of a defect to mean “discovering and reporting” of the defect

by a user of the software.

Consider data related to all new defects reported up to a certain calendar time

S from the release date of a software. This may be representedas the sequence

of tuples(S1,Z1), . . . , (Sn,Zn), whereSi is the calendar time of reporting theith

new defect reported since the release of the software andZi is the type of the de-
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fect, for i = 1, ...,n, wheren is the number of new defects reported till timeS.

Suppose there arem special types of defects, denoted by 1, ...,m, and all other

types are pooled into one “baseline” type denoted by 0. ThenZi takes values in

{0, · · · ,m}. Alternatively, such a data set can be represented by the sequence of

tuples(S1,N(S1)) . . . ,(Sn,N(Sn)), where the vectorN(s) = [N0(s), . . . ,Nm(s)] de-

notes the multivariate counting process withNi(s) being the number of new de-

fects of typei reported upto and including times, for i = 0, · · · ,m.

The model proposed in this chapter considers the defect discovery and reporting

of a software product to be stochastic in nature through the defect reporting rates

(DRR’s) for the different defect types. While the model considers randomness

in the process of defects being discovered and reported, it assumes that the bug-

database stores all defect reports received at any point of time and faithfully stores

them. If there is any dropping of defect reports, or if defectreports are being

deliberately deleted, then there will be missing data in thebugzilla database, in

which case the model we propose may provide biased estimatesof reliability.

5.2.1. The Model

Existing software reliability models for software failuredata usually incorporate

the debugging process directly or indirectly into the failure rate. Since we con-

sider reporting of only the new defects, the debugging process can be ignored for

the purpose of modeling such data. The modeling may be done through the multi-

variate counting processN(s) = [N0(s), . . . ,Nm(s)]. A natural model is to describe

eachNi(s) as a self-exciting point process (Snyder and Miller, 1991, pp-287) with

intensity functionλi(s), the rate at which theith type of defects are reported.
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The intensity of discovering a new software defect at times, as explained in the

introduction, is a function of the number of defects alreadyreported up to times

along with the type of defect and usage of the software. The self-exciting nature

of the processNi(s) is due to possible dependence ofλi(s) on the history of the

multivariate processN(s). Suppose that the DRR corresponding to eachNi(s),

denoted byγi(s), depends only on the usage of the software and reporting rateof

the ith type type of defect. The DRRγi(s) may be calibrated to model the effect

of the history of the processN(s) on the intensity processλi(s), as discussed in

Section 5.1, through a proportional intensity model as given by

λi(s) = γi(s) fi(N(s−)), for i = 0, · · · ,m, (5.1)

whereγi(s) is considered to be unknown and arbitrary andfi()≥ 0 with fi(0) = 1.

We intend to modelfi(N(s)) parametrically leading to a semi-parametric model

for λi(s). In particular, if fi(N(s)) depends onN(s) only throughNi(s), the

component processesNi(s)’s are independent. Note that the set of functions

{ fi(N(s)), i = 0, · · · ,m} can be used to obtain reliability metrics that are agnostic

to the usage and reporting rates of the defects. For example,the rate at whichfi

or log( fi) decreases for every additional defect discovery, can be interpreted as a

measure of reliability of the software with respect to theith defect type (See Sec-

tion 5.2.4). A further simplification can be achieved by assuming that eachγi(s)

is proportional to a common rate parameterγ(s) across all types of defects. This

assumption greatly simplifies the estimation of model parameters apart from en-

abling inference on the reliability with respect to a given type of defect. Therefore,
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with γ0(s) = γ(s), we may assume

γi(s) = γ(s)eαi , for i = 1, · · · ,m. (5.2)

The parametersα′
iscan be interpreted as the differences in reporting rates (DRR’s)

of different types of new defects. Noting thatfi(N(s)) represents multiplicative

changes inλi(s) due to reporting of different types of new defects, it may be

natural to assume thatfi(N(s)) decreases with each component ofN(s). However,

because of the user-reported nature of new defects, the nature of this decrease

is not clear. There may be several choices forfi(N(s)). In this context, one may

recall the Jelinski and Moranda (1972) model for software testing data, which

postulated a linear decrease in the intensity of reporting anew defect with the

number of already detected defects, and consider a linear decrease model as given

by

fi(N(s)) = max(0,1−
m

∑
j=0

β ji Nj(s)) (5.3)

.

Alternatively, a non-linear decrease model in the spirit ofthe logarithmic Pois-

son model Musa and Okumoto (1984) as given by

fi(N(s)) = exp

(

−
m

∑
j=0

β ji Nj(s)

)

(5.4)

may also be considered. In the special case, when the component processesNi(S)’s

are independent, it would be appropriate to considerfi(N(s)) = exp(−βiNi(s))

with a scalarβi , for i = 0, · · · ,m. The two choices in (??) and (5.4) result in
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λi(s) = γ(s)exp(αi)

[

1−
m

∑
j=0

β ji Nj(s−)

]

and

λi(s) = γ(s)exp

(

αi −
m

∑
j=0

β ji Nj(s−)

)

, (5.5)

respectively, fori = 0,1,2. . . ,m, with α0 = 0. Write α = {α1, · · · ,αm}, β =

{β0, · · · ,βm} with βs
i = [β0i , · · · ,βmi] and γ(.) as the infinite dimensional inten-

sity γ(s) to determine the set of unknown parameters of the model. The logarith-

mic Poisson model has been noted as an extensively applied software reliability

model (Farr, 1996) and shown to provide accurate predictions for large software

systems (Jones, 1991; Derrennic and Le Gall, 1995), leadingus to use (5.5) as the

underlying model of choice for illustration of the method developed in this article.

5.2.2. Partial Likelihood Estimation

Let us writeS( j) = (Sj ,Sj−1, . . . ,S1) andZ( j) = (Z j ,Z j−1, . . . ,Z1). The likelihood

of the data sequence(S1,Z1), . . . ,(Sn,Zn) is proportional to

n

∏
j=1

PSj |S( j−1),Z( j−1)(.|α,β,γ(.))×
n

∏
j=1

PZ j |S( j),Z( j−1)(.|α,β). (5.6)

The second product in (5.6), under the modeling assumptions(5.1) and (5.2), does

not depend onγ(s), and is the partial likelihood for estimatingα and β (Cox,

1975). Note that the conditional probabilityPZ j |S( j),Z( j−1)(.|α,β) in the second

product can be derived as the following multinomial probability under assump-

tions (5.1) and (5.2):
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P(Z j = i|S( j),Z( j−1)) =
eαi fi(N(Sj−))

∑m
k=0eαk fk(N(Sj−))

, (5.7)

for i = 0,1, . . . ,m. In the special case given by (5.4), this partial likelihoodsimpli-

fies to the likelihood of the multinomial logistic regression model as given by,

n

∏
j=1

P(Z j |S( j),Z( j−1)) =
n

∏
j=1

m

∏
i=0

(

eαi−β′
iN(Sj−)

∑m
k=0eαk−β′

kN(Sj−)

)I(Z j=i)

. (5.8)

Maximizing the partial likelihood to estimateα andβ can now be performed

through a multinomial logistic regression betweenZ j and the vectorN(Sj−). A

Newton-Raphson procedure can be used to maximize the log partial-likelihood in

order to estimate the parameters. Alternatively, any standard software package to

analyze a multinomial logistic regression model can be used. For example, one

may use themultinomfunction innnetpackage of the R software package (Ven-

ables and Ripley, 2002). The estimated asymptotic variance-covariance matrix of

the parameter estimates can be obtained from the observed information matrix

based on the partial likelihood. The asymptotic normality of the partial likelihood

estimates (Wong, 1986) can be used to perform tests of significance and obtain

confidence intervals for the parameters of interest and functions thereof.

5.2.3. Goodness of Fit

The proposed modeling consists of the forms for the set of functions

{ fi(N(s)), i = 0, . . . ,m} as defined in (5.1) and the proportionality of the base-

line ratesγi(s)’s as defined in (5.2). Violations of these assumptions wouldlead to

P
(

Z j |S( j),Z j−1
)

being incorrectly specified. Hence, it suffices to check the good-

ness of fit for the form ofP
(

Z j |S( j),Z j−1
)

for different j. In the special case when
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the model is being fit with only two types of defects (i.e.,Z j takes binary values)

and the choice off0(N(s)) and f1(N(s)) is the logarithmic Poisson form as given

in (5.4) leading to (5.8), the Hosmer and Lemeshow (1980) test can be used to

assess the goodness of fit ofP
(

Z j |S( j),Z j−1
)

. For data sets with more than two

types of defects, with the logarithmic Poisson form for{ fi(N(s)), i = 0, . . . ,m},

we would need to assess the goodness of fit of a multinomial logistic regression

model. For this, we appeal to tests proposed by Begg and Gray (1984), Pigeon and

Heyse (1999), or Fagerland, Hosmer and Bofin (2008).

For a graphical check, one may consider comparing∑k
j=1P

(

Z j = i|S( j),Z( j−1)
)

with the observed number of defects of typei up to timeSk, given byNi(Sk). A

plot of ∑k
j=1 P̂

(

Z j = i|S( j),Z( j−1)
)

(as predicted) andNi(Sk) (as observed) over

k can be used to visually check the goodness of fit, whereP̂(· · · | · · ·) denotes the

estimate of the correspondinĝP(· · · | · · ·), evaluated at the parameter estimatesα̂

andβ̂.

The integrated intensity functionΓ(s) =
∫ s

0 γ(u)du (See Section 5.2.1) may be

estimated using a Breslow type estimator (Breslow, 1972), as given by, for the

logarithmic Poisson model,

Γ̂(s) =
∫ s

0

dN.(u)

∑m
i=0exp(α̂i − β̂iNi(u−))

du, 0< s≤ S, (5.9)

whereN.(s) = ∑m
i=0Ni(s). This type of estimator may also be used for testing the

proportionality assumption (5.2). For example, the individual integrated intensity

Γi(s) =
∫ s

0 γi(u)du may be estimated, without the assumption (5.2), by

Γ̂i(s) =
∫ s

0

dNi(u)

exp(−β̂iNi(u−))
du, 0< s≤ S, (5.10)

for i = 0, . . . ,m. Plots of log(Γ̂i(s)) for different i on the same graph should be



Chapter 5: Post-Release Software Reliability 134

near parallel if (5.2) is true.

5.2.4. Reliability Metrics

As mentioned earlier, certain defect types are of more importance to the software

community than others, an example being defects which are related to security

loopholes or crashes in the software. A traditional metric for the reliability of a

software with respect to, say, crash defects would be the probability of observing

no crash defects in the subsequent year, or alternatively the mean time to observing

a crash defect. These metrics depend upon the usage rate of the software. For

example, if the usage of the software were to increase manifold, these metrics

would no longer be correct. Hence, there is a need for a metricthat does not

depend upon future usage rate of the software. An intuitive metric that does not

depend upon the usage rate is the probability of discoveringno crash related defect

(corresponding to, say, typem) in the nextN defects of any type. Let us denote

this byR(N). This metric, under the modeling of Section 5.2.1, would notdepend

upon the usage of the software. As a result, the time requiredfor the N defects

to be reported will not be known (since the usage is unknown).One may have a

rough guess of this time by assuming a particular pattern of reporting. Similarly,

we can also think of the number of defects to be observed before observing a new

crash related defect and call it Mean Number of Defects to Failure (MNDF) as an

alternative to mean time to failure (MTTF).

Theoretical derivations of these reliability metrics in general can be a challenge

because of the stochastic nature of the model (5.1). For example, the probability

of no crash related defect requires a huge sum ofmN joint probability terms each
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corresponding to an ordered set ofN defects of types other than crash related

defect. This may be calculated whenN is small; however, even for moderateN

(say, 10 or 15) and withm= 2 or 3, this is computationally difficult. One option

is to pool all other defect types into one type resulting in only two types (with

m= 1) so that there is only one joint probability term as given by

R(N) =
n+N

∏
j=n+1

P
(

Z j = 0|S( j),Z( j−1);α,β
)

. (5.11)

Note thatZ( j−1) in the conditioning event in each term of (5.11) is given by

(Z1, . . . ,Zn,Zn+1 = 0, . . . ,Z j−1 = 0). Also, each such term is independent ofS( j),

except throughN(Sj) as in (5.7). In this case, the other reliability measure MNDF

can be calculated as the infinite sum

MNDF =
∞

∑
l=n+1

l

∏
j=n+1

P
(

Z j = 0|S( j),Z( j−1);α,β
)

. (5.12)

For the independent model withfi(N(s)) = exp(αi − βiNi(s)), for i = 0,1, with

α0 = 0, the individual probability term in (5.11) and (5.12) is given by

P(Z j = 0|S( j),Z( j−1),α,β) =
e−β0(n0+ j−1)

e−β0(n0+ j−1)+eα1−β1n1
, (5.13)

for j = n+ 1,n+ 2, . . . , whereni = Ni(Sn), for i = 0,1. Since these probability

terms are decreasing inj, the MNDF in (5.12) has a finite value. In the special

case, whenf0(N(s)) = 1, or β0 = 0, meaning that there is no effect of history on

λ0(s), we haveMNDF = exp(−α1+β1n1). In this special case,R(N) simplifies

to [1+exp(α1−βn1)]
−N. The metrics in (5.11) and (5.12) are to be estimated by

evaluating them at the partial likelihood estimates ofα,β. The standard errors of

these estimates can be obtained by applying the delta method.
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In general, bothR(N) andMNDF can be estimated by simulatingZn+i ’s suc-

cessively using (5.7) and the estimates of the model parameters. For example,

the reliability metric,R(N) can be estimated by the proportion of times none

of Zn+1, . . . ,Zn+N equalsm over, say,M = 1000 simulations ofZn+1, . . . ,Zn+N.

Similarly, for the reliability metric MNDF, one needs to simulate Zn+i ’s till

Zn+L+1 = m, whereL is the minimum number of detected defects before observ-

ing a typem defect in the simulation. Then, MNDF is estimated by the meanof

the values ofL over the M simulations. If a simulation approach were to be used

for estimating the metrics, standard errors can be obtainedby using a paramet-

ric bootstrap method (Efron and Tibshirani, 1986) as follows: simulate thebth

bootstrap sample comprising of the defect types(Z(b)
j , j = 1,2, · · · ,n) using the

estimates ofα andβ, and (5.7). Based on this bootstrap sample, obtain estimates

α̂(b) andβ̂(b) of α andβ, respectively, using the method of Section 5.2.2. Estimate

the reliability metrics usinĝα(b) andβ̂(b) by the method of simulation as described

above and denote them byR(N)(b) andMNDF(b), respectively. Repeat the boot-

strap process for, say,B = 500 times. The standard deviations of the estimated

reliability metricsR(N)(b) andMNDF(b) over theB bootstrap samples estimate

their corresponding standard errors.

5.3. A Simulation Study

The simulation study presented here consists of three parts. In the first part, we

study the asymptotic properties of the estimator. In the second part, we compare

the proposed model to software reliability models that assume a parametric form

for the underlying DRR. In the third part of the study the effects of model mis-



137 5.3 A Simulation Study

specification is studied through a limited set of simulations. While planning a

simulation study, note that, for the purpose of estimating the model parameters,

information on only the defect typesZ1, · · · ,Zn is needed and the same on the

reporting timesS1, · · · ,Sn may be ignored. Also, while estimating the reliability

metricsR(N) andMNDF by simulation, it is enough to simulate only the future

defect typesZn+1,Zn+2, . . .. Note that simulation ofZi ’s can be successively car-

ried out using (5.7). In our simulation study, we consider two types of defects

(i.e.,m= 1) and type 1 is assumed to correspond to an important defect type such

as a crash related defect. We consider the independent logarithmic Poisson model

given by fi(N(s)) = exp(−βiNi(s)), for i = 0,1, with β0 = 0.03,β1 = 0.01 and the

type-specific differential rate parameterα1= 3. For each simulation,Z1, . . . ,Zn are

generated using (5.7) withn= 500 and 2000 to reflect moderate to large sample

sizes. We visually present five simulation histories withn = 500 in Figure 5.1,

where the cumulative count of type 1 defects is plotted against the cumulative

count of type 0 defects for each simulation history.

The maximum partial likelihood estimates ofα1,β0 andβ1 are then obtained

by maximizing (5.8) along with the corresponding standard errors and the asymp-

totic 95% confidence intervals of the parameters using a normal approximation

for the distributions of their estimates (See Wong 1986). Reliability metricsR(N)

(with N = 10) andMNDF are also estimated using the simplified forms in (5.11)

and (5.12), respectively, with each probability term givenby (5.13), along with

their standard errors and asymptotic 95% confidence intervals. This simulation is

repeated 1000 times and mean and standard deviation of the estimates over the

1000 simulations are obtained. The coverage probabilitiesof the asymptotic 95%
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FIG 5.1. Sample simulations
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confidence intervals are also estimated. Results of this simulation study, for five

sets of parameters, are presented in Table 5.1. In the first set, by setting the param-

eterα= 0, we consider the case when there is no difference in the reporting rate of

the two types of defects. In the next four parameter sets, we setα = 3 andα = 10,

which correspond to the reporting rates of the first defect type beingexp(3)≈ 20

times andexp(10) ≈ 22000 times the reporting rate of the second defect type.

Also, in the same simulations, we study the effect of small and large difference

in the β parameters of the two types of defects. As the average of the standard

errors over 1000 simulations is close to the standard deviation of the correspond-

ing estimates over the 1000 simulations, we report only the latter quantity for the

measure of standard error. The true values corresponding toR(N) andMNDF are

computed from (5.11) and (5.12) with (5.13) evaluated at thetrue parameter val-
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ues, given the simulatedZ(n) giving values ofn0 andn1. The corresponding values

in Table 5.1 are averages of those over the 1000 simulations.Note thatR(N) and

MNDF depend onn, the number of defects discovered, and the history of then

defects discovered including the relative accumulation ofthe different types of

defects. This explains the difference in the true values forR(N) andMNDF for

n= 500 andn = 2000. The results indicate consistency of the estimates andthe

standard errors (SE) decrease withn, as expected. Also, the estimated coverage

probability is closer to 95% for largern.

The second part of the simulation study compares the proposed model with

software reliability models that assume a parametric form for the underlying

DRR. For this purpose, we simulate data from four different parametric mod-

els for the underlying DRRγ(s) by assumingγ(s) = c andγ(s) ∝
√

s,s ands2.

These four models correspond to a constant, concave, linearand convex DRR’s

as functions of time. We once again use the logarithmic Poisson Model with

fi(N(s)) = exp(−βiNi(s)), for i = 0,1 corresponding to two types of defects. For

the purpose of the study, we considerβ0 = 0.3 , β1 = 0.1 andα = 3. n = 500

defects were simulated in each simulation. The coverage probability and the av-

erage half-width of the 95% Confidence Interval (CI) are presented using 1000

simulations.

The first panel in Table 5.2 presents the comparisons of the estimates ofβ0

obtained through parametric models for DRR to those obtainedthrough the pro-

posed model. The second panel in Table 5.2 presents the same for β1. Coverage

probability (%) for the estimated 95% CI forβ0 is reported. The value in() rep-

resents 1000 times the average width of the CI. The simulationresults presented
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TABLE 5.1
Empirical evaluation of the asymptotic properties of the estimates

n=500 n=2000

Parameter True Estimate SE×10 Coverage True Estimate SE×10 Coverage

α 0.00 0.29 3.80 89.2% 0.00 0.14 2.53 93.2%

β0 0.03 0.05 0.23 86.2% 0.03 0.03 0.08 92.1%

β1 0.01 0.02 0.10 86.4% 0.01 0.01 0.03 91.8%

R(N) 0.05 0.04 0.20 80.2% 0.05 0.05 0.16 95.6%

MNDF 2.86 2.64 4.59 88.0% 2.95 2.88 3.50 95.4%

α 3.00 3.56 7.40 91.4% 3.00 3.22 4.12 93.1%

β0 0.03 0.06 0.37 88.2% 0.03 0.03 0.08 92.1%

β1 0.01 0.02 0.08 88.3% 0.01 0.01 0.02 92.2%

R(N) 0.61 0.82 0.38 95.0% 0.05 0.05 0.16 95.6%

MNDF 3.16 3.51 7.20 96.5% 2.91 2.95 3.50 95.4%

α 3.00 2.83 9.33 81.0% 3.00 2.92 3.47 90.2%

β0 0.30 0.77 3.93 76.6% 0.30 0.40 1.31 88.2%

β1 0.01 0.02 0.14 77.7% 0.01 0.01 0.04 88.4%

R(N) 0.70 0.67 1.49 77.6% 0.05 0.05 0.97 94.1%

MNDF 25.38 21.92 97.15 90.3% 2.91 2.95 80.84 89.5%

α 10.00 11.40 25.91 95.3% 10.00 10.28 10.06 96.1%

β0 0.03 0.03 0.08 94.4% 0.03 0.03 0.03 95.4%

β1 0.01 0.01 0.11 93.5% 0.01 0.01 0.01 95.0%

R(N) 0.01 0.01 0.18 74.6% 0.05 0.05 0.13 93.2%

MNDF 1.93 1.85 5.65 87.60% 2.92 2.89 3.04 94.8%

α 10.00 11.67 29.30 94.0% 10.00 10.77 18.6 95.0%

β0 0.30 0.34 0.91 94.1% 0.30 0.32 0.05 94.3%

β1 0.01 0.01 0.1 93.5% 0.01 0.01 0.01 94.1%

R(N) 0.71 0.69 0.81 94.1% 0.71 0.71 0.08 95.0%

MNDF 26.26 23.20 60.08 87.10% 26.03 25.20 59.04 93.1%
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TABLE 5.2
Comparisons of estimates ofβ0 andβ1 obtained using parametric models for DRR to those
obtained through the proposed model in terms of coverage percentage and 1000 times the

average width of the CIs (in parentheses).

Fitted Model Proposed Model

True Model γ(s) = c γ(s) ∝
√

s γ(s) ∝ s γ(s) ∝ s2 γ(s) arbitrary

β0

γ(s) = c 94.4 (0.62) 0.0 0.0 0.0 92.7 (43.4)

γ(s) ∝
√

s 0.0 95.7 (0.62) 0.0 0.0 90.6 (44.2)

γ(s) ∝ s 0.0 0.0 95.7 (0.62) 0.0 91.7 (43.8)

γ(s) ∝ s2 0.0 0.0 0.0 94.1 (0.62) 91.9 (43.6)

β1

γ(s) = c 95.8 (0.31) 0.0 0.0 0.0 94.9 (15.6)

γ(s) ∝
√

s 0.0 94.8 (0.31) 0.0 0.0 93.5 (15.7)

γ(s) ∝ s 0.0 0.0 94.9 (0.31) 0.0 94.0 (15.6)

γ(s) ∝ s2 0.0 0.0 0.0 95.7 (0.31) 94.2 (15.6)

in the two panels of Table 5.2 indicate that the parametric model for the DRR,

when correct, results in accurate estimation of theβ parameters. However, when

the underlying model is incorrect, the estimates are inaccurate, as seen in cov-

erage probability being equal to 0 in the estimated confidence intervals. On the

other hand, the proposed model estimates confidence intervals which contain the

true parameter with nearly the required confidence. However, from the first panel

of Table 5.2, the proposed model has a much higher (nearly 70 times) standard

error for β0 when compared to the estimates from the correct parametric model,

as expected.

The third part studies the effect of model mis-specificationfor fi(N(s)) on the

estimation of the reliability metrics, we consider simulation of Z(n) from the in-

dependent linear decrease model with two types of defects, given by fi(N(s)) =

1−βiNi(s), for i = 0,1. We assumeβ0 = 0.001,β1 = 0.00005 andα1 = 0.5 for the

purpose of simulation. This parameter setting implies thatthere are 1/β0 = 1000
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defects of type 0 and 1/β1 = 20000 defects of type 1 in the beginning. For each

simulation ofZ(n) with n= 1000, estimation of the model parametersα1, β0 and

β1 is carried out by fitting the incorrectly specified independent logarithmic Pois-

son model. Reliability metricsR(N) with N = 10 andMNDF are estimated by

using (5.11) and (5.12), respectively, with each probability term given by (5.13),

as before. For the purpose of comparison, we also compute (5.11) and (5.12) but

with each probability term given by the correct model and using the true param-

eter values and simulatedZ(n). The averages of these two sets of estimates of

R(N) andMNDF, over 1000 simulations, are compared to understand the effect

of model mis-specification. To assess the severity of the mis-specification, the

Hosmer-Lemeshow goodness of fit test (described in Section 5.2.3) was used to

determine whether the logarithmic Poisson model being fit was appropriate or not.

It was determined that the test, when used at 5% level, rejected the null hypothesis

of the logarithmic Poisson model being appropriate, 34.0% of the 1000 realiza-

tions. This indicates that the deviation considered is fairly large. The estimates

for R(N) andMNDF obtained by using the correct model are 0.11 and 4.17, re-

spectively, the corresponding estimates obtained by usingthe incorrect model are

0.10 and 3.85, with standard errors 0.03 and 0.61, respectively. Therefore, in this

limited study, the effect of model mis-specification on the estimates ofR(N) and

MNDF seems to be minimal.

5.4. Analysis of Python Software

Python is a general purpose scripting language that is extensively used in a variety

of applications. It is an open source software which is maintained and developed
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by its community. The Python project maintains a bug-database that records de-

fects in the software reported by the Python user community.When a defect is

reported by the user community, it is classified and tagged with auxiliary informa-

tion. Every defect reported by the user community is classified into one of several

types. Defects of type “crash” or “security” are of significant importance. We

shall analyze the corresponding bug-database to estimate the reliability metrics

for these two types of defects.

Python’s bug-database provides a method for querying its database

(http://bugs.python.org/issue?@template=search). Only those defects whose res-

olution was “fixed” or “fixed and accepted” as on 31 January 2012 are retrieved.

This is because defects with other resolutions comprise of duplicates of already

reported defects, or defects that have not been confirmed as genuine. In addition

to the date of first reporting of each defect, information on the defect type is also

extracted. Python version 2.7 has 2273 reported defects, while Python version 2.6

has 1975 defects reported until 31st January 2012, a summaryof which with de-

fect types is given in Table 5.3. We would like to mention thatPython 2.6 is built

on Python 2.1 and hence shares much of its code base with Python 2.1 which was

released in 2001. Hence, a defect in Python 2.1 will be taggedas having occurred

in Python 2.6 if the defect occurred in a module which is stilla part of Python

2.6. When we queried Python’s bug-database to retrieve all defects of Python 2.6

since 31 January 2012, it also returned defects from Python 2.1 that occurred in

modules which are still a part of Python 2.6. Hence, the date of discovery of the

first defect in Python 2.6 was in 2001. The same observation holds for Python 2.7.

We first analyze the data using all three types of defects, namely, crash defects,



Chapter 5: Post-Release Software Reliability 144

TABLE 5.3
Summary of defects in the two versions of Python

Python 2.7 Python 2.6

Defect Type Count Percentage Count Percentage

Crash 130 5.7 % 124 6.3 %

Security 19 0.8% 16 0.8%

Others 2124 93.5 % 1835 92.9%

Total defects 2273 100% 1975 100 %

security defects and defects of other types. Let us denote these defect types as

type 2, type 1 and type 0, respectively. We use the independent logarithmic Pois-

son model given byfi(N(s)) = exp(αi − βiNi(s)), for i = 0,1,2, with α0 = 0.

For the analysis of data from each version using the method ofSection 5.2.2,

we only need the vectorZ(n) = (Z1, . . . ,Zn) with n= 2273 and 1975 for versions

2.7 and 2.6, respectively, where eachZi takes values 0,1 or 2. The parameters

α1,α2,β0,β1,β2 are estimated along with their variance-covariance matrix, by

performing a multinomial logistic regression betweenZ j andn0 j ,n1 j ,n2 j , where

ni j = Ni(Sj−) = ∑ j−1
l=1 I(Zl = i) is the number of typei defects reported till prior

to timeSj , for i = 0,1,2. These parameter estimates are used to estimate reliabil-

ity metricsR(N) with N = 10 andMNDF using simulation, as described in the

end of Section 5.2.4. The corresponding standard errors areobtained by using the

parametric bootstrap method, as described therein. The estimates of the parame-

ters and the reliability metrics, for both crash and security related defects, along

with their standard errors are presented in the top panel of Table 5.4.

From the estimates ofR(N) andMNDF, Python 2.6 seems more reliable with

respect to “crashes” when compared to Python 2.7. However, by looking at the
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TABLE 5.4
Estimates of the parameters and reliability metrics with their standard errors.

Python 2.7 Python 2.6

Analysis Parameters Estimate SE Estimate SE

Three-type

α1 -5.60 0.49 -5.88 0.53

α2 -3.87 0.32 -3.36 0.26

β0(×102) 0.56 0.15 0.25 0.11

β1 0.64 0.18 0.22 0.15

β2 0.08 0.02 0.03 0.01

R(N = 15)(Crash) 0.43 0.10 0.49 0.13

MNDF(Crash) 12.02 2.67 15.06 5.50

R(N = 15)(Security) 0.98 0.02 0.90 0.10

MNDF(Security) 55.91 17.67 55.15 20.28

Two-type

α1 -3.85 0.37 -3.56 0.33

β0(×102) 0.55 0.18 0.35 0.15

β1 0.08 0.02 0.04 0.02

R(N) (Crash) 0.44 0.07 0.47 0.07

MNDF (Crash) 11.23 2.09 12.28 2.26

standard errors, we cannot conclude that the reliabilitiesof the two versions of

the software are significantly different. Note that the coefficientsβ0,β1,β2 are all

statistically significant except forβ1 in the analysis of Python 2.6 data. Theβ

coefficients are positive, which implies that the propensity of discovering a defect

of the ith type (λi(s)) decreases with the discovery of every additional defect of

the ith type, since we assumedλi(s) = γ(s)exp(αi −βiNi(s)). Also, in the analysis

of both versions of the software, the parametersα1 andα2, which correspond to

differences in the reporting rates of security and crash related defects, respectively,

when compared to other defect types, are significantly different with α2 > α1.

This indicates that security related defects are less likely to be reported when
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compared to crash related defects and, surprisingly, to other types of defects as

well. Note that the parametersα1 andα2 are not significantly different across the

two versions of the software, while they themselves are significant.

The goodness of fit for a multinomial logistic regression model, as suggested by

Fagerland, Hosmer and Bofin (2008), is carried out to assess the fit of the form of

P
(

Z j |S( j),Z( j−1)
)

, as derived from the assumed independent logarithmic Poisson

model. The test is conducted by quantizing the estimatedP
(

Z j = 2|S( j),Z( j−1)
)

,

for j = 1,2, . . . ,n, into 10 levels using its deciles so that there are roughly the

same number of values assigned to each quantized level. The quantized values

of P
(

Z j = 2|S( j),Z( j−1)
)

are used as the grouping variable for performing the

goodness of fit test, as suggested by Fagerland, Hosmer and Bofin (2008), of the

model with all the categories of the dependent variable taken together. The corre-

sponding test statistic has an asymptotic chi-square distribution with 16 degrees

of freedom. The corresponding p-value for Python 2.7 is 0.08, while the same for

Python 2.6 is 0.02. This indicates that the proposed three-type defect model fits

reasonably well for Python 2.7 while the fit for Python 2.6 maybe questionable.

There is an apparent lack of fit of the three-type model to the data from Python

2.6 due to the non-significance ofβ1 corresponding to security related defects in

the three-type analysis. This lack of fit and the simplicity of a two-type model

for the calculation of reliability metrics (see Section 5.2.4) lead us to pool se-

curity related defects with other types, and consider a two-type model involving

just crash related defects (i = 1) and other defects (i = 0). The independent log-

arithmic Poisson model given byfi(N(s)) = exp(αi −βiNi(s)), for i = 0,1, with

α0 = 0, is once again used. As in the three-type analysis, we only need the vec-
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tor Z(n) = (Z1, . . . ,Zn), where eachZi takes values 0 or 1. The parametersα1,β0

and β1 are estimated along with their variance-covariance matrix, by perform-

ing a logistic regression betweenZ j andn0 j ,n1 j , whereni j ’s are similar to those

defined before but with the new labeling of type (i = 0,1). The estimates of the

parameters and the reliability metricsR(N), with N = 10, andMNDF, along with

their standard errors, are presented in the bottom panel of Table 5.4. In order to

assess the fit of the form ofP
(

Z j |S( j),Z( j−1)
)

, the Hosmer-Lemeshow test for

logistic regression is performed. The test is conducted by splitting the estimated

P
(

Z j = 1|S( j),Z( j−1)
)

into ten probability deciles, which leads to an asymptotic

chi-square distribution for the test statistic with 8 degrees of freedom. The cor-

responding p-values for Python 2.7 and 2.6 are 0.45 and 0.55,respectively. This

indicates a good fit of the model to the data. To visually assess the fit, plots of

∑k
j=1 P̂

(

Z j = 1|S( j),Z( j−1)
)

andn1k overk are considered and shown in the bot-

tom most panel of Figure 5.3. The plots indicate a reasonablygood fit of the model

for both the versions. Comparison of the reliability metricsfor crash related de-

fects across the two versions, along with their standard errors, indicates that these

are not significantly different across the two versions. It is interesting to note that

the estimated reliability metrics for crash related defects are quite similar to those

obtained from the three-type analysis presented earlier. The parametersβ0 andβ1

turn out to be statistically significant and positive for both versions of the software,

as before. The estimate ofβ1 is similar to the corresponding estimate (i.e., ofβ2)

in the three-type analysis. The estimate ofα1 is also similar to the corresponding

estimate (i.e., ofα2) in the three-type analysis.

To justify the fit of the model to the Python data, the plot of the estimates of
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FIG 5.2. Plot of log(Γ̂i(s)) vs s.
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the log of the integrated intensity functions,log(Γ̂i(s)), obtained using (5.10),

for i = 0,1,2, for the three-type analysis of Python software are presented in

Figure 5.2 with time 0 being the date when the first defect was reported. The

plots show thatlog(Γ̂i(s)) are nearly parallel to each other and give evidence

in favor of the proportionality assumption (5.2), except for security related de-

fects in version 2.7. To visually assess the fit of the model even further, plots of

∑k
j=1 P̂

(

Z j = i|S( j),Z( j−1)
)

andnik overk (See Section 5.2.3), fori = 0,1,2, are

considered. The top two panels of Figure 5.3 shows the plots of crash and security

related defects, respectively, for the three type model. The third panel shows the

plot for crash related defects for a two type model. From thisfigure one may con-

clude that fit of the three type model to security related defects is not satisfactory,

especially for Version 2.6. However, one needs to be cautious in making such a

conclusion since the data corresponding to security defects used for constructing

the plot is sparse ( less than 20 data points). Nevertheless,the model seems ap-
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propriate for crash related defects in both the three-type and the two-type model.

This lack of fit of the three-type model for security defects could be the reason

why the goodness of fit test for the three type model applied toPython 2.6 has a

small p-value of 0.02.

FIG 5.3. Plots of predicted and actual numbers of crash and securityrelated defects.
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5.5. Concluding Remarks

Bug-databases, which record user reported defects, have become a norm for com-

mercial software. Statistical models for analyzing this increasingly important data
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source will help end-users to objectively assess the reliability of a software. This

paper makes an attempt in that direction by considering, possibly for the first time,

an analysis of software defects classified into multiple types. Usage and reporting

rate of the software, which are modeled by an infinite dimensional confounding

factorγ(s) in the analysis of such data, is considered non-parametrically. The par-

tial likelihood approach facilitates estimation of important model parameters. An

added advantage of the proposed method is that it can be carried out using stan-

dard statistical software packages for easy implementation by practitioners. The

proposed reliability metrics are easily interpretable andcan be used to compare

different software versions. For example, in the analysis of Python software, we

gather from the estimate ofMNDF for Python 2.7 that, on average, about 12 non-

crash related defects will be discovered before the discovery of a crash related

defect, which is about the same when compared to that of Python 2.6. This in-

dicates that there might not be any additional gain in reliability with respect to

“crashes” in using Python 2.7 over Python 2.6. Such analysismay help decision

makers to objectively choose between migrating from one version of a software

to another. It is interesting to note that, in the limited simulation study, the esti-

mated reliability metrics seem to have better asymptotic convergence properties

than the model parameters themselves. Note that the different defect types need to

be well-defined for the application of the model. Also, thereis possibility of a de-

fect being classified as more than one type. This can be dealt with by considering

an additional defect type.

A key application of the proposed model is to compare the reliability of two

versions of a software product in a manner that does not depend on the usage of
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the software. We envisage the methodology to be used primarily for software that

has already been released. However, if the method is used forpre-release software,

for example from data collected during beta-testing, the prediction of the expected

time to discovery of next defect can be a metric used to decidethe release of

the beta version of the software. Such a prediction would involve extrapolation

of the underlying baseline hazard for that defect type usingEquation 5.10. An

extrapolation method would have to be carefully designed tomodel the unknown

future usage of the software. This could be a direction for future research.

The method considered here may have applications in many areas other than

software reliability. As an example, in the context of disease epidemiology, dis-

eased individuals in a geographic location may have different disease types (for

example, drug-resistant and non drug-resistant Tuberculosis). The voluntary re-

porting of a software defect by users corresponds to diseased individuals volun-

tarily reporting to a hospital to seek treatment, while usage rate may correspond

to unknown exposure of the individual. Using an independentlogarithmic Poisson

model, one could determine whether a particular disease type is spreading or not

by checking the sign of the correspondingβi. The proposed reliability metrics may

also be relevant in this epidemiological context. For example, the metric MNDF,

could be interpreted as the expected number of patients withthe non drug-resistant

disease who will report to the hospital before a patient withthe drug-resistant dis-

ease reports.
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Chapter 6

Future Work

The unavoidable price of reliability is simplicity.

C. A. R. Hoare

6.1. Introduction

In this chapter, we briefly discuss future research directions based on the contri-

butions in this thesis. The first relates to the joint analysis of pre- and post-release

software defect data using the method of Chapter 5, where we demonstrated how

the defect reporting rate DRR can be considered non-parametrically while con-

sidering the reliability improvement function parametrically. The second topic

concerns the possibility of the reliability improvement function itself being con-

sidered semi-parametrically and non-parametrically. Themethods developed in

Chapter 5 have applications beyond software reliability. Webriefly touch upon an

application concerning the analysis of data correspondingto product purchases

made by customers through an online retailer.

6.2. Joint Analysis of Pre- and Post-Release Software Defect Data

In Chapter 5, we considered the analysis of post-release software defect data re-

trieved from a bug-database. Many software programs will have pre-release soft-

153
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ware defects, discovered during controlled testing beforethe release of the soft-

ware, in addition to post-release defects recorded in a bug-database. It is natural to

ask whether a joint analysis of the two data sets will help improve the estimation

of software reliability in the post-release phase. A joint analysis method needs

to consider different defect reporting rates for the pre- and post-release software

testing phases. However, one may argue that the improvementin reliability due

to every additional defect discovery will be the same since in both the pre- and

post-release phases as the software is still the same.

6.2.1. Some Existing Methods

A defect discovered during the post-release phase of a software product may not

be immediately repaired leading to the defect being reported recurrently for some

time after its first reporting. The imperfect debugging model of Goel and Oku-

moto (1978) allowed for a defect not being repaired immediately by consider-

ing the probability, 0< p < 1, of not repairing a reported defect immediately

after its detection. LetS be the duration of pre-release testing. Jeske, Zhang and

Pham (2001) considered the following NHPP model with mean value functions

mpre(s),mpost(s) and hazardsλpre(s),λpost(s) for defects discovered in pre- and

post-release software, respectively, based on the model ofGoel and Okumoto.

This is given by

mpre(s) = a(1−exp(−bs)), λpre(s) = abexp(−bs), (6.1)

mpost(s) = a(1+µb)(1−exp(− b
1+nµb

s)), λpost(s) = abexp(− b
1+nµb

s),

(6.2)
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wherep= 1/(1+nµb) is interpreted as the probability of debugging a software

defect in the post-release phase immediately after its reporting andn is the number

of users of the software product. Note that the times in (6.2) is the time since re-

lease of the software. The parametersa,b are estimated from pre-release software

defect data while the parameterµmay be obtained from the post-release data. This

model requires one to know the number of users,n, using the software system and

assumes that each of the users have the same usage and the samereporting prob-

ability. Both these requirements may not be satisfied in practice. Jeske, Zhang

and Pham (2005) suggested another model where they considered the logarithmic

Poisson model for both the pre- and post-release software data with

mpre(s) = a(1−exp(−bs)), λpre(s) = abexp(−bs), (6.3)

mpost(s) = c(1−exp(−ds)), λpre(s) = abexp(−bs). (6.4)

They assumedc= a/Kc andd = b/Kd, whereKc andKd were calibration factors

to be obtained by using data from previous software releases. They also suggested

a likelihood ratio test for testingKc = 1 vs Kc 6= 1. The model of Jeske, Zhang

and Pham (2005) is the first in a series in a models that made useof a correction

or calibration factor for the parameters of post-release software reliability model

based on the pre-release model.

6.2.2. An Alternative Approach

If the defects are classified intom+1 types fori = 0, . . . ,m, the model described

in Chapter 5 can be used for joint consideration of both pre- and post-release

software defect data. LetSbe the calendar time when the software was released.
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The DRR,λi(s), of discovering a defect of typei at times can be modeled as

λi(s)=















exp(αpre
i )× γpre(s)× fi(N(s);θ), s≤ S,αpre

0 = 0

exp(αpost
i )× γpost(s)× fi(N(s),θ), γpost(s) arbitrary,s> S,αpost

0 = 0.

(6.5)

Here, as in Chapter 5,N(s)= (N0(s), . . . ,Nm(s)) denotes the multivariate process

counting the number of defects of various types up to and including times. The

reliability improvement functions,fi(N(s),θ), for i = 0, . . . ,m, can be assumed to

be the same for both pre- and post-release data as we are dealing with the same

software product. The reason we allowαi ’s and γ(s) for pre- and post-release

phases to be different is to allow for differences in how the software is being used

before and after its release. During the software testing, that is, the pre-release

phase, when the software is used by experts, theαpre
i may tend to be closer to

zero since all the defect types get presumably similar attention for scrutiny. For

example, in the pre-release phase there may be more emphasison discovering

security defects due to whichαpre
i , corresponding to security defects, may have a

large value. Theαpost
i ’s, on the other hand, may may be more varied depending

on the nature of the users. In particular, the baseline DRR forpost release phase

γpre(s) is expected to be larger thanγpost(s), since the software is subjected to

more rigorous scrutiny during the pre-release phase than inthe post-release phase.

Note that the model in (6.5) is a special case of the model considered in (5.1)

and hence the methodology described in Section 5.2 of Chapter5 can be used

to estimate the model parameters. In particular, with only two defect types and

assumingfi(N(s)) = exp(−βiNi(s)), for i = 0,1, we have, from (5.7),
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P(Z j = 1|S( j),Z( j−1)) =















eαpre
i −β1N1(Sj )

eαpre
i −β1N1(Sj )+e−β0N0(Sj )

, Sj ≤ S

eαpost
i −β1N1(Sj )

eαpost
i −β1N1(Sj )+e−β0N0(Sj )

, Sj > S,

(6.6)

whereZ j indicates the type of thejth defect, amongst the two defect types, re-

ported at timeSj , for j = 1, . . . ,n. The parameters,αpre
1 ,αpost

1 ,β0,β1, can be es-

timated through maximum likelihood estimation involving alogistic regression

analysis betweenZ j on N0(Sj), N1(Sj) and I(Sj ≤ S). A test of hypothesis for

αpre
1 = αpost

1 vsαpre
1 > αpost

1 can reveal whether the reporting pattern of the type 1

defects with respect to type 0 defects has changed between pre- and post-release

phases. Extensions to more than two types of defect can be considered similarly.

Applications of this model to a data-set that contains both pre- and post-release

software defect data along with classification of defects into multiple types would

be insightful. Parametric specification of the DRR during thepre-release testing

phase and non-parametric specification in the post-releasetesting phase would be

another possibility. Under such a model, the estimation of the model parameters

would consider products of the likelihood for the observations in the pre-release

phase and the partial likelihood in the post-release phase.Establishing the asymp-

totic distribution of the estimates when the number of pre- and post-release defects

are large would be a challenging research problem.

6.3. Non-Parametric Estimation

In the analysis of multi-type defects withm+1 defect types considered in Chap-

ter 5, we assumed parametric forms for the reliability improvement functions,

fi(N(s)), for i = 1, . . . ,m. In some situation, these parametric forms may be ques-
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tioned. Hence, a non-parametric consideration of these functions would be useful.

Let us consider the case withm= 1.

6.3.1. Non-Parametric Estimation With Kernel Regression

Let N(s) = (N0(s),N1(s)) be the multivariate process that counts the cumulative

number of defects reported across the two types at calendar time s. Let S1, . . . ,Sn

be the calendar times when defects were reported and letZ j represent the defect

type of thejth defect, for j = 1, . . . ,n. Under the model specified in (5.7),

P(Z j = 1|H(Sj)) =
1

1+exp(α1)
f1(N(Sj ))
f0(N(Sj ))

= G(N(Sj)), say, (6.7)

whereH(Sj) = {S( j),Z( j−1)}. For a generals, H(s) is the history upto times−

(consisting of all the defect discovery times and their types occurring prior to

time s) and the fact that a defect discovery takes place at time s. Then, denot-

ing Z(s) to be the defect type discovered at times, we haveP(Z(s) = 1|H(s)) =

G(N(s)). Note thatN(s) is a function ofH(s). A non-parametric specification of

G(N(s)) would waive the requirement of a parametric specification off0(N(s))

and f1(N(s)). Then,E(Z(s)|H(s)) can be modeled non-parametrically as an ar-

bitrary functionG(N(s)), depending onH(s) only throughN(s), except thatG(.)

lies between 0 and 1. A Nadaraya-Watson regression Watson (1964) betweenZ(s)

andN(s) would estimateG(N(s)), for a givenN(s), using a bandwidth parameter

h and a specified bivariate kernelK(., .), as given by

Ĝ(N(s)) =
∑n

j=1K
(

N(Sj )−N(s)
h

)

Z j

∑n
j=1K

(

N(Sj )−N(s)
h

) (6.8)

A choice for the kernelK(., .) can be the independent bivariate Gaussian ker-

nel with K(x1,x2) ∝ exp(−(x2
1+ x2

2)). The estimatedG(N(s)) maybe graphically
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compared with the one estimated through parametric specification of f0(N(s)),

f1(N(s)) andα1 using the method of Chapter 5. A good visual match between the

two estimates could justify the assumed parametric forms. Designing a goodness

of fit test for the assumed parametric form would be a challenging research prob-

lem while at the same time being valuable to a software reliability practitioner.

The choice of an appropriate kernel is another challenge . A future research topic

would involve determination of an optimal kernel for binaryregression involving

variables derived from counting processes.

6.3.2. Constrained Non-parametric estimation using PAVA

Another approach to specifyingG(N(s)), with two types of defects, would in-

volve making an assumption thatG(N(s)) = L(N0(s)−N1(s)) for someL(x). The

quantityN0(s)−N1(s) measures the difference in the number of type 0 defects

from the number of type 1 defects reported till calendar times. One may argue

that, more this difference, the higher the chance that the next defect after times

will be of type 1, implying thatL(x) is increasing inx. The pooled adjacent viola-

tors algorithm (PAVA) can be used to estimateL(·) as a function of the difference

N0(Sj)−N1(Sj). Let Z j be an indicator of thejth defect being a type 1 defect.

Let Xj = N0(Sj)−N1(Sj), for j = 1, . . . ,n, andX(1) ≤ . . . ≤ X(n) be the ordered

Xj ’s with correspondingZ-values denoted byZ(1), . . . ,Z(n), respectively. For any

x, define

j(x) =
n

∑
i=1

I(X(i) ≤ x). (6.9)

Then,

Ĥ(x) = min
j(x)≤k≤n

max
1≤ j≤ j(x)

{

∑k
i= j Z(i)

k− j +1

}

(6.10)
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This estimatedĤ(x) can be used to compute reliability metrics such asR(N) and

MNDF using the methods described in Section 5.3 of Chapter 5. Computing stan-

dard errors forĤ(x) and the reliability metrics computed from the estimate can be

another direction for future research.

6.4. Applications to Online Retail Analytics

In an online market there are thousands of products available for sale to millions

of customers. Online retailing is a fast growing multi-billion dollar industry. What

differentiates an online market from a traditional market,from a data analysis

perspective, is that every product and customer are uniquely identified and every

sale is electronically recorded. An online retailer would benefit from estimates

of future demand for different products. In particular, identification of products

which are not expected to sell over the next few months can help in inventory

control and bring down costs. If we denoteDi(s) to be the cumulative demand of

a producti, upto calendar times amongm+ 1 products, estimates ofP(Di(s+

t)−Di(s) = 0) for a future durationt is the metric of importance. For example, if

P(Di(s+t)−Di(s) = 0) is close to 1, then the probability of theith product selling

over a futuret units of time is negligible and the retailer might consider reducing

the inventory of this product. A NHPP model for the counting processDi(s) seems

appropriate for computing this probability. For a variety of products, if a customer

has bought the product, then it can be assumed the same customer will not buy

the same product again in the near future resulting in a decreased demand for the

product. Examples of such products include books where a customer will not buy

the same book title twice. Other examples include consumer electronics such as
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television sets and software products such as mobile applications. The modeling

of Di(s), in such situations, has parallels with the modeling of the counting process

representing the cumulative number of defects discovered in a software.

The intensity functionλi(s) of the NHPP governingDi(s) maybe modeled as

a function ofDi(s−). If we let Ti to be the duration between theith and (i −

1)th purchase, we could assume a de-eutrophication model and assume thatTi ∼

Exponential(α− βi). We would expectβ > 0, but it is possible thatβ < 0 for

some products where the demand grows exponentially. A more realistic model for

λi(s) would be similar to the model introduced in Chapter 5 as given by

λi(s) = γi(s) fi(Ni(s−)) (6.11)

with fi(0) = 1. The functionγi(s), represents the baseline demand for the product

at calendar times assuming that no customer has purchased the product till time

s. The functionγi(s) cannot be assumed to be constant with calendar times, as

one would expect it to be influenced by a variety of market forces such as product

pricing, effectiveness of the product marketing and macro-economic conditions,

to name a few. A non-parametric specification of the baselinedemand function

along the lines of (5.5) would be appropriate. This is statedas follows,

λi(s) = γ(s)exp(αi) fi(Ni(s−)), (6.12)

for i = 0,1, . . . ,m, with α0 = 1.

Methods for estimating the proposed model using a partial likelihood approach

as discussed in Chapter 5 along with estimation of future demand by extrapolat-

ing the Breslow estimate ofγ(s) can be developed. Demand metrics similar to the

reliability metricsR(N) andMNDF can also be proposed. The number of prod-



Chapter 6: Future Work 162

ucts,m, can be as large as 1000 resulting in a large number of model parameters

which increases the risk of over-fitting. Shrinkage or lassomethods of estimation

may be used to solve this problem. Incorporation of covariates, such as product

pricing and macro-economic variables such as bank interestrates, into the model

would make it more realistic and would provide another direction for research.

Such methods would provide a new way of analyzing data concerning online re-

tail and provide crucial estimates of product demand for this highly competitive

industry.
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BÉRARD, B., BIDOIT, M., FINKEL , A., LAROUSSINIE, F., PETIT, A.,

PETRUCCI, L. and SCHNOEBELEN, P. (2010).Systems and software verifica-

tion: model-checking techniques and tools. Springer-Verlag, Heidelberg.

BHATTACHARYA , R. and KONG, M. (2007). Consistency and asymptotic normal-

ity of the estimated effective doses in bioassay.Journal of Statistical planning

163



BIBLIOGRAPHY 164

and Inference137643–658.

BLUMENTHAL , S. and MARCUS, R. (1975). Estimating population size with ex-

ponential failure.Journal of the American Statistical Association70913–922.

BRESLOW, N. (1972). Comment on D. R. Cox (1972) paper.Journal of the Royal

Sta- tistical Society: Series B34216-217.

BRITISH BROADCASTING CORPORATION, (2000). News Article. Retrieved

on 14/07/2014 from http://news.bbc.co.uk/2/hi/science/

nature/585013.stm.

CAI , K. Y., CAI , L., WANG, W. D., YU, Z. Y. and ZHANG, D. (2001). On the

neural network approach in software reliability modeling.Journal of Systems

and Software5847–62.

COX, D. R. (1972). Regression Models and Life-Tables.Journal of the Royal

Statistical Society. Series B (Methodological)34pp. 187-220.

COX, D. R. (1975). Partial Likelihood.Biometrika62269-276.

DERRENNIC, H. and LE GALL , G. (1995). Use of Failure-Intensity Models in

the Software- Validation Phase for Telecommunications.IEEE Transactions on

Reliability44658-665.

DEWANJI, A., KUNDU, S. and NAYAK , T. K. (2012). Nonparametric estimation

of the number of components of a superposition of renewal processes.Journal

of Statistical Planning and Inference1422710–2718.

DEWANJI, A., NAYAK , T. K. and SEN, P. K. (1995). Estimating the number

of components of a system of superimposed renewal processes. Sankhȳa: The
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