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Chapter 1

Introduction

Program testing can be used to show the presence of bugs, but nekientoheir

absence!

Edsger W. Dijkstra

1.1. Preamble

The Statistician John Wilder Tukey was the first to coin thentéSoftware”
(Tukey, 1958; Leonhardt, 2000) to describe programs rynoimelectronic calcu-
lators in the 1950’s. Four decades before the “dot-com” holukey recognized
the importance of computer programs for mankind and wraae ‘th is at least
as important” as the “hardware of tubes, transistors, wiagses and the like”.
Since Tukey’s assessment, the importance of software t@huwmilization and
the global economy has grown substantially. The size ofaftevare industry can
be judged from a Gartner report (Gartner Inc., 2014) whi¢hmeded the global
software market revenue to be $407.3 billion in 2013, a 10bidollars more
than the revenue of the global semi-conductor market (@attrc., 2013), repre-
senting the “transistors” Tukey alluded to in 1953.

The importance of software to mankind far exceeds the rexemd $407.3
billion it generates for the companies that create softywaoelucts and services.

It forms a critical part of almost all aspects of modern lyjifrom the monitoring
1
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programs running on ECG monitors in a hospital’s intensive cait, to the auto-

pilots flying an aircraft, to banking software recording fio&l transactions and to
applications running on mobile phones. The list of techg@s in which software

plays a critical role is endless and is only expected to gregr the next decade
due to the Internet of Things: a global network of human b&imgachines and
software programs.

The pervasiveness of software underscores the need faliryileliable soft-
ware products and solutions. For example, the “Y2K” bug ismdus software
defect caused by abbreviation of four digit years to two tdigiost the global
economy anywhere between $300 million to $ 600 million (BhHtBroadcasting
Corporation, 2000). Another dramatic software error lech® Ibss of the $327
million Mars Climate Orbiter launched by NASA in 1998 due tmé&ware bug in
the orbiter’s guidance system (Isbell, Hardin and Undedyd899). Software de-
fects related to security vulnerabilities can result in snaslosses for users of the
software; for example, the Code Red virus and Mellisa virugatinated to have
caused losses of $ 2.1 billion and $ 1.1 billion, respecgtiv@lelang and Wattal,
2007). Critical software defects not only affect the usertsdam also cause sub-
stantial loss of brand value for the software manufactunersubsequently their
market capitalization (Telang and Wattal, 2007). A Natidnstitute of Standards
(2002) report estimated the losses caused to the US econoenyoddefective
software to be $60 billion in 2002.

The consequences of software defects are not just limitetdoomic losses
but to loss of lives and productivity. The radiation overelggven by Therac-25

machines to cancer patients is another example of a cathgtreoftware fault
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TABLE 1.1
Sub-characterization of software reliability as per ISC281

Sub-characteristic Definition

Maturity Attributes of software that bear on the frequency of sofenfailure

Attributes of software that bear on its ability to maintairsgecified
Fault Tolerance  level of performance in case of software faults or of infengent of its
specified interface

Attributes of software that bear on the capability to reabksh its level
Recoverability of performance and recover the data directly affected ie o&a failure
and on the time and effort needed for it

(Jacky, 1989; Kapur et al., 2011). The power blackouts chimsthe United States
during August 2003 are attributed to an unanticipated raoelitions in a power-
grid control software (Fairley, 2004).

Creating a perfectly defect-free software is clearly theisoh for mitigating
the risks associated with defective software. The first sierds this objective
is to develop a method aheasuring how reliable a software. iShere are quite
a few definitions of software reliability. A commonality amgpthese definitions
is that the metric should correlate with the probability aifdre-free operation of
a software product over a specified duration of usage. Theeckhis probability
is to one over large durations of future usage, the less tiedabe software will
be and hence greater the reliability. Software reliabititgdels estimate such a
probability which provides (i) a critical input to deternmig whether the risk of
a software failure in the future is acceptable and (ii) a métfor comparing the
reliability of two or more software products with the samadtionality facilitat-
ing the selection of the most reliable product. Softwarebdity is one among
six software quality aspects laid down in ISO standards 4AP8an et al., 2003)

where it is divided into three sub-characteristics as diesdrin Table 1.1.
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Reliability metrics can be defined specifically for any one loése sub-
characteristics, or for all of them together. The abilitgteate a sub-characteristic
specific reliability measure would depend on whether saftvaefects can be ac-
curately classified into one of these sub-characterigtios example, behavioral
faults in a software can be attributed to a lack of maturityhie software. An
example of this would be the Y2K bug. Software defects duadk bf sufficient
safeguards against illegal user-inputs would correspotatk of fault-tolerance,
an example of which would be inadequate measures again&t ¢8€e-injection”
in database querying. It is possible that a software defeghthpoint to lack of
reliability across multiple sub-characteristics in whaase the same defect would

contribute to measuring the reliability across all thede cloaracteristics.

1.2. Objectives

Software testing in the past decade has been revolutiomigedo technology
developments, namely, (i) the world-wide adoption of thieinet as a communi-
cation medium resulting in software users around the gla@venly the capability
to report defects on a voluntary basis and (ii) distributeftivgare product devel-
opment involving 1000’s of software developers using platfs such aRational
Roseor Github. Under such coding platforms each developer is responfible
testing the code written by them resulting in white-boxitestechniques, as op-
posed to black-box testing prevalent in the 1980’s and X9®@coming the norm.
For software reliability modeling both these developmenéan that parametric
models based on assumptions regarding (i) nature of rifjaionprovement after

fixing a defect and (ii) the usage of the software during tlséng procedure may
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no longer be appropriate.

In this thesis, we propose two new models for software raiigtihat cater
to these developments. The first model is called the isotewiiovare reliability
model that generalizes popular software reliability med&he model makes very
little assumptions about the nature of reliability improent after the repair of
every additional defect and can also consider decreasdiabiti¢y after a de-
bugging effort. We believe that the generic nature of thisledavill make them
applicable to a wide range of testing frameworks includirgtesbox testing. We
provide novel and yet simple methods for estimating confiddmounds on the
reliability of the software under this generic model.

The second model is devoted to analysis of software defdet atésing out
of uncontrolled usage of the software with the defects begoigntarily reported
through the Internet and stored in bug-databases. Thetegpdefects are typi-
cally classified into multiple types. We formulate a semigoaetric software re-
liability model that makes no assumptions about the undeglgoftware usage
and can be estimated from data retrieved from bug-datab@kesclassification
of defects into multiple types is exploited to propose a h@aetial-likelihood
method for estimating the model parameters. We apply thaaedstdeveloped to
data retrieved from the Bug database of Python, a populatsgilanguage.

The models developed in the thesis have applications begaitdare reliabil-
ity. The methodologies described in Chapters 3 and 4 are sethan asymptotic
methods. This means that they can be used for analysis etdtg@orresponding
to catastrophic failures where the number of failures iseeigd to be small. For

example, they can be used to analyze data regarding failugical processes
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such as fraud prevention in internet banking or hardwater&s in nuclear power
plants. The methods presented in Chapter 5 could have afitisan epidemiol-
ogy and demand estimation in online retail markets. We dissuch possibilities

briefly in Chapters 5 and 6.

1.3. Literature Review

We begin our survey of the state of the art in statistical ningeand analysis
of software reliability by first discussing software testimhis is because soft-
ware testing provides the data for almost all software Ipdltg modeling. An

understanding of the different types of testing methodel®dpelps in choosing

the appropriate software reliability model for analyzimgteare failure data.

1.3.1. Software Testing

Testing of a software product before its release to custemepresents one of
the most common methods of detecting faults in a softwardymio Software

testing is a component aoftware verificatiorwhich deals with ensuring that a
software product adheres to all its customer requirem&uafware verification

has two parts; the first part deals with static verificatiod ansures that the soft-
ware product meets coding or algorithm quality standardakthe second part
deals with dynamic verification and ensures functioninghef software product
during run-time. Static verification deals with (i) inspegt the code to ensure
it meets coding conventions such as variable naming colvesjtcommenting

guidelines and readability requirements, (ii) adheregptxrgied software design

patterns such alodel-View-Controllerpattern or theService Locatiorpattern,
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(i) meets requirements on code complexity measured tifrauetrics such as
the cyclomatic measure (McCabe, 1976) or the Halstead comhplaetric (Yu
and Zhou, 2010) and (iv) the formal verification of the cotness of the under-
lying algorithm in the software (8ard et al., 2010). Formal verification has its
roots in theoretical computer science and uses algebnaietdods to prove that
an algorithm is correct. Formal verification of a softwarefien not done simply
because of its complexity.

Dynamic verification, also known as software testing, iSqgrened to detect
faults during the execution of a software. More specificalyftware testing is
defined as “A process of executing a program with the goal a@fifm errors”
(Abran et al., 2004). Testing involves identifying defeetbutputs of a software
program through test cases which are “a set of inputs, execpteconditions,
and expected outcomes developed for a particular objestich as to exercise
a particular program path or to verify compliance with a sjiecequirement”
(Radatz, Geraci and Katki, 1990). Software testing can,angle, detect run-
time errors due to improper use of computer threads and quede safeguards
against illegal user inputs. There are various softwarenggparadigms. These

are briefly discussed.

White-Box Testing: In this type of testing, software testers leverage their
knowledge of the internals of the software product to tesklhie source code of
the software product is required to be available to the softvesters. White-box
testing is highly dependent on the skill of the softwaredes skilled software
tester can detect defects at a much faster rate than a |diesl skster. If there

is a team of tester involved in white-box testing there magliastantial hetero-
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geneity in the rate at which different testers detect defédthite-box testing can
reveal major software errors in the initial stages of tegtih software reliability
model analyzing test-data from a white-box testing procecdheeds to consider
variations in the skill levels of different testers and maikiw for different defects
to have different severity. White-box testing is commonlgdig security testing

by high skilled computer security engineers (Janardhaamdwan Wyk, 2005).

Black-Box Testing: This is the exact opposite of white-box testing in that the
tester has no access to the source code and does not undénstarternals of the
software product. The tester can only control the sequehtestcases and de-
termine a fault if the program output of the test case doesnadth the expected
output. The testing procedure can be automated and eaehdastbe assumed to
have the same skill level. Many early software reliabilitpaels considered that
software testing was black-box testing. In black-box tegit might be reason-
able to assume that the severity of a defect has no dependerthe duration or

number of test-cases it took to detect the defect.

Gray-Box Testing: As the name suggests, this form of testing bridges black-
box and white-box testing. The tester is assumed to have knavdedge of how
the software works but may not have as much information asigevlox tester.
User-driven defect discovery which is becoming quite papur the form of beta-
testing is an example of gray-box testing. Software rdlitgbnodels for gray-box
testing are few in number as they need to make more genetimasiens regard-

ing the defect discovery process as compared to modelsdok4tdox testing.
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Equivalence-Partitioning Testing: This is a specific example of white-box
testing and depends on identifying partitions of the inpategsuch that two in-
puts from the same partition will be processed by the samiopsrof the code.
Once the partitions are identified, then a suite of test cizs#ssigned to ensure
a minimum number of test cases lie within each of the pan#id he advantage
of this testing methodology is that it can lead to econonst pédans. The method
requires identification of the input data partitions whickght be difficult for a

complex software program.

Unit Testing: Unit-testing is a commonly used form of white-box testing A
the name suggest, it tests a “unit” of source code, wheretasudefined as the
smallest part of the code that can be provided an input andevbatput can be
verified. Unit-tests are used to ensure that specific modilasoftware program
function as they are expected to. Unit testing is populart @am detect prob-
lems during coding itself and also be used in a distributed@mming environ-
ment where different teams code different modules. Thiméaork is supported
by many popular programming languages (gagt for unit-testing java code or

unittestfor unit-testing in Python).

Exploratory Testing: This is a specific form of gray-box testing where the test-
cases are determined dynamically based on the outputsveldsiistorically. In
this type of testing, the assumption that there is uniforrman@ of detecting a
defect may not be appropriate. Also, the expertise of thiertegould play an

important role in determining the rate of detection of defec
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User-Driven Testing: The reliability of a software is increasingly defined
through the eyes of its customers. Such a definition has econoenefits as a
significant number of tests may verify functionality not ionfant to a user. User
driven testing has been made possible in the last decadeodbe tnternet be-
coming a pervasive communication medium. Users of a softwan voluntarily
report a defect through the internet with the defect beirggéal in specialized
databases called bug-databases. User-driven testingsespis one of the major
innovations in software testing in the past decade andstati models and meth-
ods for analyzing data from this testing procedure are thezl ré the hour. A
software reliability model for such data would need to cdasinon-availability
of information regarding the usage of the software (sucthassumber of users

and how often the software being used) and the voluntaryingtof the report-

ing.

1.3.2. Software Reliability Modeling

Whatever be the software testing technique, their objedit@detect defects and
repair them with the expectation that the reliability of gwtware will improve.
The purpose of a software reliability model is to measure hawch improve-
ment in reliability can be attributed to every additionafests discovery and re-
pair. Software testing is an expensive process and the madived in testing a
software needs to be traded with the cost of releasing a tilefespftware prod-
uct. A software reliability model can extrapolate the reiligy of the software for
every additional unit of testing duration and for every diddial defect discov-

ered. An application of such a model would be the deternonadif the optimal
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duration of testing provided the cost of releasing a defecoftware product and
the cost of testing are both available. Sometimes the caslledising a defective
software product may not be known ahead of time, in which daselecision to
stop testing a software maybe made after the software aahie\certairtarget
reliability (Dewaniji, Sengupta and Chakraborty, 2011). It hardly neete imen-
tioned that any estimate of the reliability of the softwaeeds to be accompanied
by its corresponding uncertainty. Before we describe sontbese models and
discuss their relative merits we would like to discuss soomaraonly used defini-
tions of software reliability. Note that these definitiome aot specific to software
but can also be used to measure the reliability of a hardwateeaeliability of a

process.

Software Reliability: Let T be a non-negative valued random variable repre-
senting the time to failure of any system which includeswsafe products. The

reliability of a systenR(t) over a duration of usages defined as
R(t) =P(T > 1t). (1.1)
If f(t) is the probability density function df, then

R(t) = /tm f(s)ds (1.2)

At = 1Y (1.3)

The hazard can be used to approximate the instantaneoushgybof a defect

being observed at timethrough the approximatioR(T <t+&t|T >t) ~ A(t)dt.
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Also, R(t) can be computed in terms bft) as

R(t) = exp(—/ot)\(s)ds> : (1.4)

Any continuous functior\(t), s.t.,A(t) > 0 fort > 0 and [’ A(t)dt = w is a
hazard for a failure time distribution. Hence a softwaréat@lity model can be
specified either through the probability density functiantlorough the hazard
function of the inter-failure times. A popular measure difdaility is the expected
time of defect free operation of a softwater its latest debugging and is called

the Mean Time To Failure (MTTF) and is given by

MTTF:/OOOR(t)dt:/Owexp(—/ot)\(s)ds) dt. (1.5)

An accurate computation of the MTTF depends on an accuratafgation of the

underlying hazard. We shall discuss the importance of #asirement in Chap-
ter 5 when we discuss analysis of software defect data fremdrsven software
testing. Now that we have defined software reliability, wé prioceed to describe
some software reliability models.

Software reliability models, also known as software religbgrowth models
(SRGM) or software reliability improvement models (SRIM) @aommonly used
to determine the cumulative improvements in the religbditthe software due to
all the defects discovered and repaired so far and competeuttient reliability
of the software. A software reliability model needs to addrthe following chal-
lenges: (i) Uncertainty in the usage profile or testing pedadil the software prod-
uct. The usage profile determines the hazard of detectinff\aase defect, with
higher usage implying higher hazard. Hence, from (1.2)ptio®ability of defect-

free operation of a software depends on assumptions abauthgosoftware will
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be used or tested in the future. For example, if the testinthoadelogy were to
change from black-box to white-box testing, then the edtaf reliability will
no longer be valid. (ii) High costs of test generation rasglin few number of
failures for estimating the software reliability model.i3'ls particularly true for
security testing where the number of security defects tkdien a software can be
as small as ten. Small software failure data-sets make ciatigu of uncertainties
in the estimates of reliability even harder as asymptotat laootstrap techniques
will no longer be appropriate. (iii) Lack of an accurate neattatical model for the
testing process generating the test data leading to biatedages of reliability.
This is especially true for white-box testing or user-dnitesting where assump-
tions regarding the skill of the testers and users in distogelefects may be hard
to justify.

There are many different taxonomies of software religbiiitodels, see (See,
Musa, Laninio and Okumoto, 1987; Ramamoorthy and Bastani2;1885eva-
Popstojanova and Trivedi, 2001, for some examples). Tlaesmbmies are based
on the nature of the data used to estimate the models. Forpéxamter-failure
time durations vs cumulative defect counts. Recently thexe lbeen attempts
to classify the models based on Software Development LifdeSySee, Kapur
etal., 2011, for some examples). If we follow the classifaratised by Singpur-
walla and Wilson (1994) then software reliability models b& classified into two
broad categories: (i) Inter-failure time models and (ii) Gty process models.
Since the review by Singpurwalla and Wilson (1994) a newsctdsnodels using
machine learning techniques have been proposed. For teectaompleteness

we shall also discuss such models briefly.



Chapter 1: Introduction 14

A commonality among the different classes of software bditg models is
to assume an increasing reliability for the software witergvadditional defect
discovery, although some models do allow for the possybdit a decrease in
reliability with additional defect discoveries. A sofwardiability model assum-
ing the contrary would imply that discovering more softwdedects would ulti-
mately lead to decreased reliability of the software andld/guestion the very
need for software testing. Software reliability models ethhave an underlying
stochastic assumption that explain the defect discoverggss can lead to easily
interpretable software reliability metrics. For examptem the Jelinski-Moranda
model, one can estimate the number of remaining defecteisdftware. When
such an estimate has a tight confidence bound and has little bias, it can be
valuable to a product manager to determine if additionairtg@ss required or not.
A key weakness of stochastic software reliability modetba they can make as-
sumptions that are hard to validate. Incorrect assumptbosit the usage profile
of the software can lead to biased estimates of softwaraiigty. An example of
this problem has been studied through simulations and piesén Section 5.3.
An important weakness of stochastic software reliabilitydels is that most of
them do not prescribe goodness-of-fit tests that can be osgetérmine the va-
lidity of their assumptions using data from testing of th&ware. Another defi-
ciency of many software reliability models is their inatyilto estimate the model
when there are few failures. This is particularly importaien the objective is
to estimate the reliability of a software with respect toetgroccuring defects
such as security vulnerabilities. This problem is furthempounded by the lack

of small sample statistical inference methods for the exttichmodel parameters.
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Bayesian software reliability models can handle the avditylof few software
failures for model estimation. However, they may be crcl for their choice of

priors. The methods proposed in Chapters 3 and 4 can helpszdtiis issue.

Inter-Failure Time Models

A software testing procedure would note the calendar §msince the release of
the software, when thé" defect was detected, for= 1, ...,n. The inter-failure
time is defined a§i =S —S_1, fori = 2,...,n, with Ty = S;. The conditional
distribution ofT;|Ti_1, ..., T1 can be modeled to estimate the reliability of the soft-
ware after, sayn defect discoveries. There are two approaches to modelmg th
conditional distribution; the first approach would moded ttazard functior;(t)

of Ti|Ti—1, ..., T1 while the second approach would modg|.. ., T, as an AR pro-

cess. We present some important models from both theseagm®

The Model of Jelinski and Moranda: This was one of the very first models
of software reliability that assumed th@it ~ ExponentiafA(N — i + 1)) with
T1,..., T, being independent of each other amel N. The model implies that
Ai(t) =A(N—i+1). The parameteN is interpreted as the number of defects ini-
tially present in the software. We discuss this model in gnedetail in Chapter 2.
The reliability of the software overunits of usage after detecting and repairing
thent" defects is

R(t) = exp(—(N —n+1)At). (1.6)

The Jelinski and Moranda model pioneered the concept okdsirg hazard for

the inter-failure times as a function of the number of def@liscovered.
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Bayesian Reliability Growth Model: Littlewood and Verrall (1973) proposed
this model to extend the Jelinski-Moranda model by assuthiath; (t) = A; with
stochastically decreasing Gamma priors\pas a function of. The rate at which
the gamma priors would decrease was controlled by an asspanachetric func-
tion of i. Littlewood (1981) and Mazzuchi and Soyer (1988) presentespara-

metric forms for these Gamma priors as a function of

The De-Eutrophication Model of Moranda: The Jelinski-Moranda model im-
plicitly assumed that every defect has the same severity.deaeutrophication
model was proposed by Moranda (1975) to counter this @tticby assuming
thatT; ~ exp(a + Bi). The model estimation and inference are discussed in detail

in Chapter 2.

The Model of Schick and Wolverton: In this model Schick and Wolverton
(1978) assumed thai(t) = At(N —i+ 1), i.e. the hazard is time-dependent. This
model represents one of the first attempts at acknowledgimgconstant haz-
ards of detecting a software defect. This model is also ds®thin more detail in

Chapter 2.

Autoregressive Models of Software Reliability: Singpurwalla and Soyer (1985)
pioneered the use of auto-regressive models for softwhabiléy where they as-
sumed thafl; = 6iTE1 with &;'s being independent LogNormal random variables
and®;’s being modeled as an AR process. Extensions of similarstgbenodels

have been discussed by Singpurwalla and Soyer (1985, 1892nte a few.

Software Reliability Models for Recapture Debugging: Nayak (1991) con-

sidered an interesting variation of software testing arfwidging where a defect
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when discovered is not repaired immediately but remainsarsbftware system to
allow the number of re-discoveries of the defect to be datexcth Nayak (1991)
considered the problem of recapture debugging under tiesdend Moranda
model assumptions and demonstrated efficiency gains imaistig the software
reliability when compared to debugging without re-captiewaniji, Nayak and
Sen (1995) considered the discovery and subsequent redrges of each of the
N defects to be governed by a renewal process with common egléstribution

F(.|8) and discussed methods for estimatihgnd®. Dewanji, Kundu and Nayak
(2012) generalized the re-capture debugging model by astimthe renewal dis-

tribution non-parametrically.

Bayesian Software Reliability Models using Martingale Priors Basu and
Ebrahimi (2003) proposed priors fag(t) = A; using martingale processes, i.e.,
they assume&prior (Ai|Ai—1) = Ai—1. The justification being the discovery and re-
pair of theith defect is expected to maintain the same level of reliatéityefore.
Basu and Ebrahimi then proposed a series of prioifarthat satisfy the mar-
tingale property and discuss the estimation of their pastdrstributions through

Monte-Carlo computations.

Counting Process Models

An alternative approach to software reliability is to mode¢ cumulative de-
fect countsN(s) as a function of calendar time The non-homogenous Pois-
son process (NHPP) is the most commonly used counting doesnodel-
ing such data. A NHPP is defined through a positive and noredsing mean

value functiorm(s) and assumes thhit(s) ~ Poissorim(s)) andN(s+t) —N(s) ~
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Poissorim(s+t) —m(s)) with N(s+t) — N(s) being independent dfi(s) for all
t,s with t > 0. The functionm(s) represents the expected number of defects to

be discovered up to and including tinself m(s) were known we can compute

m(s)"
n!

P(N(s)=n) = exp(—m(s)).

The reliability of a software product which is released déewdar time 0 oves

units of future usage iB(s) = P(N(s) — N(0) = 0) and is given by
R(s) = exp(—(m(s))). (1.7)
The MTTF of the software under a counting process model wbald
MTTF = /omexp(—m(t))dt. (1.8)

Equation (1.7) implies the hazakds) of a defect at calendar tinsgs given by

A(s) = %m(s), (1.9)

when the derivative om(s) exists. Many counting process models speaify)
parametrically as a function of timg i.e.,m(s) = f(s,©) where® is the set of
model parameter(s). Alternatively, they would exprk&s as a parametric func-
tion of m(s) which due to (1.9) results im(s) being the solution to a differential
equation with the boundary condition(0) = 0. Such models would typically as-
sume a decreasing hazax(k) as a function ofn(s). Estimates of the reliability
of the software can be obtained through (1.7) and (1.8).dfrediability of the
software is expected to improve with increasing test domathenm(s) — c as

s — co. Some models do not assume that this will happen allowingviat is
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known as imperfect debugging where the repair of a defedtidatroduce addi-
tional defects. Once the parametric formh\@§, ©) involving the model parameter
© is available, estimates @ can be obtained through maximum likelihood pro-
cedures. The data from a testing procedure, governed by aPNHétess, can
be represented d3 = {n,sy,...,S,S} where,s represents the calendar time of
theit" defect discovery of thae defects discovered in a software test of total du-
rations. The likelihood of the dat® can be written as follows (V Basawa and

Prakasa Rao, 1980):
L(©|D) :exp(—m(s))ﬁ)\(s,e). (1.10)

The likelihood can be maximized to obtain maximum likelidd®IL) estimates
of ©. V Basawa and Prakasa Rao (1980) establish the consistenasgng-
totic normality of these ML estimates. We now present sonmeroonly assumed

parametric forms fom(s).

Goel and Okumoto Model: This was one of the first counting process models
proposed by Goel and Okumoto (1979) where they assumedth&diture inten-
sity of detecting a defect at calendar tisus a linearly decreasing function of the

expected number of defects to be discovered by sme.,

dism(s) =A(s) =b(a—m(s)).

The solution to this differential equation along with theuhdary condition
m(0) = 0 results in

m(s) = a(1—exp(—by)),
andA(s) = aexd—bs), for unknown constanta > 0 andb > 0 with a being in-

terpreted as the initial number of defects in the system.
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Logarithmic Poisson Model: An important criticism of the Goel and Okumoto
model was the linear decrease\g§) as a function om(s). This was rectified by

Musa and Okumoto (1984) by assuming that
A(s) = hoexp(—6m(s)),

for some unknown constankg > 0,0 > 0. This results in

m(s) = % log(1+Ags).

The justification for the model being that early defect resulgreater improve-

ment to the reliability as compared to defects discovertt [an.

Hyper Exponential Growth Model: The defects detected in a software prod-
uct occur in many different modules and all modules may natested equally

nor will they have the same reliability. To address this @nchba (1984b) pro-
posed what they called hyper exponential growth models irclwthe hazard of
discovering a defect in thi& module is governed by a module specific Goel and
Okumoto model, that igy(s) = a;(1—bym(s)) andA;(s) = a;(1—exp(—b;s)), for
i=1,...,n. The system-level mean value function, across all the neslig given

by m(s) = S mi(s). Ohba provided methods for estimating the model parameters
when the information about the module in which each defec eiacovered is

missing.

S-Shaped Software Reliability Models: Starting from Ohba (1984a), a series
of SRGM's were proposed in whick(s) was not a strictly decreasing function of
m(s), but assumed that(s) would initially increasewith m(s) up to a calendar

time point after which\(s) would decrease wit(s). The justification for such a
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non-decreasing relationship comes from the following Isicrargument: defects
discovered early in the test would trigger discovery of famdefects in other
parts of the software leading to an initial spike in defestdvery that eventually

decays. Ohba (1984a) first modeled this phenomenon by asgiait

A(s) =am(s)(b—m(s)).

This results in m(t) being the sigmoid function

o a
M) = T exg—by)

Since Ohba’s model, a number of S-Shaped SRGMS have beenspbpeoth
increasingly sophisticated forms fa(s). See Yamada, Ohba and Osaki (1983);

Yamada (1991); Yamada et al. (1994) for more details.

Some emerging trends in software reliability models

There are a couple of emerging trends in software religh(#R) modeling. A

popular trend, pioneered by Yamada et al. (1994), consttierase of stochastic
differential equations (SDE) for modeling the mean valuection of the stochas-
tic process that counts the cumulative number of observitda® defects. The
use of SDE’s is attractive, especially in white box testingser-driven testing, as
it provides more flexibility in the specification of the untj@mg stochastic process
that governs the defect discovery process when comparée tmore traditional

parametric counting process models. A brief descriptioBDE based models is
presented later in this section. One may view the emergeh&E& based SR
models as a response to criticism that SR models have beangmakd assump-

tions about the underlying defect discovery process. S¥edanodels provide
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additional flexibility in parametrically specifying the e value function of the
underlying counting process through the use of stochasferehtial equations.
However, they still suffer from making parametric assuimmsi about the under-
lying defect discovery process that may be hard to validate.

Another emerging trend relates to SR models becoming moratis8cal ”
as compared to “ Stochastic”. The goal of the statistical @h@églto empirically
estimate the distribution of time to discovery of the nextede using features
from the past failure history of the software. The stocltastodel, on the other
hand, tries to explain the underlying defect discovery pssausing probabilistic
models. This trend is partly motivated by a software produghager’s increasing
need for estimating the probability of defect free operatba released software
with the greatest accuracy at (possibly) the expense ofdbelting model not
being easily explainable. The emergence of numerous cauplegity metrics,
derived from the source code of the software, has openedotbeplity of using
these metrics as covariates in SR models. A “Statisticaliyf®idel can incorporate
such metrics to better estimate the failure time distrdoutf the software. Some

of the machine learning based SR models briefly describedfiaitow this trend.

Stochastic Differential Equation Based Models: Stochastic differential equa-
tions (SDE) present a natural way of generalizing countimgg@ss models. SDE
analogs for the model considered by Goel and Okumoto (1%i8pe derived by
replacing the mean value function of the NHRES) with N(s), whereN(s) is the

cumulative number of defects discovered till calendar taxiehis results in

d':(ss) _ (b(s) + de;/is)) (a—N(s)), (1.11)
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whereW(s) is the standard Wiener process. Yamada et al. (1994) pesbéms
first SDE based SRGM by assumib¢s) = bin (1.11) and showed that the solu-

tion to the SDE along with boundary conditidi{0) = O resulted in

N(s) = a(l—exp(—bs—aoW(s))) (1.12)
E(N(s)) = a(l—exp(—str%zS)) (1.13)

Yamada, Nishigaki and Kimura (2003) proposed another masiab (1.11) with

b(s) given by
b2
b(s) =
(s) 1+bs
which resulted in what they called as the Delayed S-Shaped\6FBBE based

software reliability models have been argued to model tbehststic nature of
software usage and testing effort common in open-sourde/acd development.

See Tamura and Yamada (2007) for an example.

Machine Learning based Software Reliability Models: The assumptions of
many of the software reliability models presented till noavé been criticized as
being too restrictive or hard to justify (Yang and Li, 200This has led to data-
driven approaches based on machine learning techniquessutificial Neural
Networks (ANN’s) and Support Vector Machines (SVM's). Tihebjective is to
model the cumulative defect cou$s) as a function of total execution tinsby
leveraging the ability of ANN’s and SVM’s to model compleamisfer functions.
Cai et al. (2001) presented examples where an ANN based seft@hability
model performed better than parametric software religbiiodels. Yang and
Li (2007) presented a software reliability growth modeldzh®en support vector

machine regression model that predictedithénter-failure timeT,; as a function
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of Ti_1,..., Ti_k for a pre-determined layensuring the model only used the most
recent failure data in the prediction. Methods for deteingruncertainty in the
predictions are typically lacking and model over-fittingynee a cause for concern

in these models.

1.4. Summary of Chapters

Parametric Models of Software Reliability (Chapter 2): Parametric models
of software reliability (SR) based on failure time betweemsmrutive failures
(inter-failure times) are widely used. We present in detarhe well-known mod-
els and discuss their shortcomings. We then propose two lemses of software
reliability models; the first class of models extends welblwn parametric SR
models by considering dependence between the interdaiiores. The second
class of models are a very generic class of SR models basesbtumic regres-
sion involving Exponential, Gamma and Weibull distributab families. These
models can also consider dependence between the intareféiines. We discuss
estimation methods for both classes of models, note thedidekge sample prop-
erties such as consistency and the difficulty in establgsttie distribution of the
estimators. Finally we compare the performance of maximietihood (ML) es-

timators of the proposed isotonic software reliability rasowith those obtained
through parametric models using simulations. We find thatisbtonic software
reliability models can outperform parametric models fdtware reliability when

the underlying parametric model is incorrect.

Independent Isotonic Software Reliability Models (Chapter3): For the iso-

tonic software reliability model involving scale-famsiesuch as Exponential,
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Weibull or Gamma distributions proposed in Chapter 2, thdétbAdjacent Vio-
lator Algorithm (PAVA) can be used to estimate the failuredidistribution of the
latest version of the software through a maximum likelihpodcedure. Obtain-
ing the distribution of the estimator and subsequently demfte intervals for the
reliability for the latest version of the software can beldring. In this chap-
ter, we propose a simple one-sided confidence bound, withanmm coverage
probability for the scale parameter based on the PAVA esémBhe proposed
method makes use of neither asymptotics nor bootstrap guoee and is based
on establishing the PAVA estimator as a function of a sub-mgatie process
The performance of this method has been investigated thrsgulation. Appli-
cations of the proposed confidence bounds are illustratedsoftware reliability
data sets including a dataset retrieved from the bug-ds¢edfaa popular scripting

language.

Dependent Isotonic Software Reliability Models (Chapter 4) The generic
nature of the dependent isotonic software reliability megeoposed in Chap-
ter 2 can be used to model failure data from a wide range ahtgptrocedures.
The methods developed in Chapter 3 make use of the independétite inter-
failure times and hence cannot be used when the inter-édilmes are dependent.
Also, they cannot considering right censoring of the faltimes. To solve these
problems, we propose a novel statistic, based upon the niaxiof the observed
inter-failure times, which is proved to be a confidence boiandhe reliability of
the latest version of the software with a minimum coveragbability. If needed,
a method for ensuring the monotonicity of the confidence Heur also pro-

posed. The methods developed are studied through simasagiod also applied
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to datasets relating to software debugging and a new dateseed from an au-

tomated error logger.

Semi-Parametric Models for Analysis of Post-Release Softwea Defect Data
(Chapter 5): Software bug-databases provide an important source offdata
assessing the reliability of a software product after itsage. Statistical analysis
of these databases can be challenging when software usagknewn, that is,
there is no information about the usage, either in the fora pdrametric model,
or in the form of actual measurements. Reliability metrickew defined on a
calender time scale, would depend on this unknown and tiepedent usage
of the software and hence cannot be estimated. This chapipoges a semi-
parametric analysis that makes use of defect classificatida multiple types to
enable estimation of a model without making strict assuomgtiabout the under-
lying usage of the software. New reliability metrics, basadchumber of failures
rather than the calendar time, are introduced. The compuntat these new reli-
ability metrics do not depend on the unknown usage of theveoft. A method
based on partial likelihood has been developed for estilgdkie model parame-
ters and subsequently the reliability metrics. The pertoroe of this method has
been investigated through simulation. The proposed metlsdeen illustrated
using data retrieved from the bug-database of a populgtsayilanguage, named
Python. This illustration compares reliability of two vienss of the software with-

out making assumptions about their unknown usage.

Future Work (Chapter 6): Future research directions based on the thesis are

presented. We discuss the joint analysis of post and peaselsoftware defect
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data under the semi-parametric model presented in Chapi#e flso discuss
non-parametric specification of the reliability improvarh&unction in the same
model. Finally we discuss applications of the methods iasother than software

reliability.

1.5. Summary of Relevant Statistical Techniques

Some of the key statistical concepts and techniques theb&vilsed in the thesis

are briefly discussed here.

1.5.1. The Bootstrap Method for Estimating Standard Errors

Efron and Tibshirani (1986) presented a novel numericata@gh for computing
the distribution of estimators which were sophisticateactions of the observed
data. They called this the bootstrap method. They propeget/pes of bootstrap;

the parametric and the non-parametric bootstrap.

The Non-parametric Bootstrap: Let Xi,...,Xn id F(;08) with X = (X1,...,Xn)
being a realization fron{Xy,...,X,). Let én(x) be a consistent estimator 6f
The standard deviation of the distribution @f(x), underF (;8), is of interest
for providing a confidence interval f@ and testing hypotheses regardigigin
general, the distribution d,(x) can be difficult to derive algebraically. Efron and
Tibshirani (1986) approximated this distribution by thstdbution ofén(x) under
the empirical distribution of the observag ..., x,, i.e.,Fn(X) = 1/n 311 (x < X).
This approximation is computed numerically using Montet@€aimmulations. The

algorithm involvingB bootstrap samples is presented in Algorithm 1.1. Efron and

Tibshirani (1986) state th& = 500 is sufficient for estimating the distribution of
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6. However, depending on the computing power available, anechoose higher

values ofB.
Algorithm 1.1. The Non-parametric Bootstrap

1. Generate thé™" bootstrap samples*(b) = (X3,-..,%), from the empiri-

cal distributionF, by a simple random sampling with replacement from

(X1, -vyXn)-
2. Computed;(b) = 8,(x*(b)).
3. Iterate through steps 1 and 2 oBtimes generatiné’,;(b) forb=1,...,B.
4. Computed* = 1/B26;(b).
5. Compute the standard error@fas
SE(By)* = % i (B:(b) — 6% (1.14)
b=1

The Parametric Bootstrap: In the non-parametric bootstrap, the distribution
of the dataXy,...,Xs is approximated by its empirical distributidf. Alterna-
tively, one can approximate the distribution By.;6,(x)) which will provide a
smooth estimate df (.;8) when compared t6,. Another advantage of this ap-
proximation is thalXy, ..., Xy need not be independent B§; 6) may specify the
joint-distribution of theX;’s with F(.;8n(x)) being its estimate. The Parametric

Bootstrap is described in Algorithm 1.2.

Algorithm 1.2. The Parametric Bootstrap
1. Generate the™ bootstrap sample*(b) = (x5, ...,x5), fromF (.; Bn(X)).
2. Computed;(b) = 8,(x*(b)).
3. Iterate through steps 1 and 2 otimes generatiné’,;(b) forb=1,...,B.
4. Computed* = 1/BY26;(b).
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5. Compute the standard error@fas

2

A B A~ A~
SE(Bn)* = bzl(e:;(b)—e*) . (1.15)

The parametric bootstrap is used in Chapters 3,4 and 5.

1.5.2. Inconsistency of the Bootstrap

Andrews (2000), in a seminal paper, presented a simple dreamiyere the distri-
bution of the MLE is not consistently estimated by the norapzetric bootstrap
of Efron and Tibshirani (1986). He made the following stagein

The bootstrap is not consistent if the parameter is on a keynof the parameter space
defined by linear or nonlinear inequality or mixed inequadit equality constraints.
Andrews provided the following example to substantiate s$tstement: Let
Xi,..., %Xy be independent and identically distributedNag1, 1) with p> 0. The
MLE of pdenoted byuy = max1/ny4X,0). Andrews showed that

V- 2z, ifp>0 (1.16)

V(e — 1) % maxz,0) if p=0, (1.17)
whereZ is the standard normal variate. The non-parametric bagtstray be
considered for estimating the distribution jf. Let X* g F, fori=1,...,n,
whereF, is the empirical cumulative distribution function of thesevations;
i.e., Fn(x) = 1/nyT1(x< X). Let X = 1/ny X", Let (it = maxX;,0) be the
random variable representing the ML estimateudfom the bootstrap sample.
The bootstrap probability distribution gf,"under,, can be used to approximate
the distribution ofii; only if the distribution of /A(f — {n), given Ry, and the

distribution of/n({, — ), for all p > 0, are the same, a&s— . Andrews showed
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that, forp = 0, the distribution of/n(f%;, — fin), given Fn and for largen, will be
stochastically smaller than that wfax Z,0), which is the asymptotic distribution
of v/n(filn — ). In other words, the result states that, even if the exactsb@p
probability distribution of,/n({i; — fin), givenX, ..., X, andF,, is computed (say,
by using a very large number of bootstrap sample or theailt)cit would be an
inconsistent estimator of the distribution of the MLE.

We reproduce the proof from Andrews (2000). Whes 0, by the law of iter-
ated logarithms, there exists> 0 s.t.

P(U ﬂ{ﬁ)?n<—c}> =1
m=1n=m

This implies that, for everyw in the sample space, there exists a subsequence
{Nk}k>1 S.t. \/n_kfnk(w) < —c for all k > 1. Note that the bootstrap distribution of

VT, — Pin,), givenw and hence Fy, (w) }1, satisfies the following:

VI (B, — P (00))
— max{ /i (%5, — X () + v/FicKey (60), 0} — max{ ik, (), 0}
< max{ V. (%, — %o, (69) — .0}
L\ maxZ —c,0) ask — o

st
<maxZ,0).

Note that the convergence in distribution is dueEpg%k ()?,;"k) = X (w) and the
triangular array central limit theorem. Since- 0, the last stochastic inequality is
strict with positive probability. Since this holds for alst@veryw in the sample
space with probability 1, we cannot hay@&({t, — fin) L\ maxZ,0), which implies

that the bootstrap based distribution@h(f}, — fn) is an inconsistent estimator
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for the distribution of,/n(fi, — p), whenp = 0. The same methodology can be
used to create counter-examples for other problems of pesr@stimation where
the unknown parameter could lie on the boundary of a paramptee defined
by non-strict inequality constraints. Andrews mentionbdw the existence of a
similar problem for the parametric bootstrap. This resuieiferred to in Chapters

3 and 4.

1.5.3. Partial Likelihood

We now present a summary of the theory of partial likelihosgesented in Cox
(1975). Lety be a vector of observations from a random variabhith density

fy (y; @) with o= (8,n). If we can transforny into (v,w), with the transformation
not depending on the parametgrsuch that, the likelihood of the observatign

can be written as
fy (Y, @) = fv (v, @) x Ty —v(W; @), (1.18)

with the transformation of in to (v,w) ensuring that the second product in (1.18)
depends only o8, thenfyy—(W; @) = fw—v(W; 0) is called a partial likelihood
of 6. If the information onB in the first part, i.e.,fy(v; @) is non-extractable in
the absence of any information oy and the sole objective is estimation &f
then, according to Cox (1975}yv—y(W;8) can be maximized to obtain what is
called maximum patrtial likelihood estimate 6f The method was proposed by
Cox to eliminate the estimation of a nuisance paramgtehich could possibly
be infinite dimensional. Cox (1972) proposed this method $bineating the re-
gression effects in his proportional hazards model foryaislof life-table data

without having to estimate the unknown and arbitrary basdhiazard. Note that,
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by maximizing only fyy_(w;8), we are ignoring the first part in (1.18) which
also depends ofl. Wong (1986) formally established that the partial likell
estimator had many of the desired large sample propertigsedflaximum like-
lihood estimators such as consistency g/ normality. We state these results
here. Another definition of partial likelihood as preseniedVong (1986) is as
follows: Lety = (wq, Xy, ..., Xn,Wp), the transformation chosen such that the full

likelihood of the observations can be written as

fo(y; @) = (kﬁl f<p(Wk|dk)> X (klj fe(XkICk)> : (1.19)

wheredy = (Wq, X, ..., Wk_1,X_1) andck = (W1,X1, ..., Wk_1,Xk_1,Wk). The sec-
ond part of the factorization in (1.19) depending solely ®ns the partial-
likelihood of 8. Wong assumed that the parameter sp&se, 6, is a compact

set.

Consistency of Partial Likelihood Estimator: The asymptotic consistency of
the maximum partial likelihood estimator is stated in Tle2E of Wong (1986)

as follows: Define

rk(0) = 1og ( fao(xklCk) / fo(Xk|Ck)) , Rn(0) = kzlfk(e) (1.20)
(8) = Egy (r(8) ). n®)= SO (2
i(8) =Var(r(8)lc0), o= 3O 022
m(8) = 1i(6) — ix(8), Mn(8) = élm((e) (129

Theorem 1.3. Assume that for an@ £ 8g there exists an open neighborhood of

0 whose closure, g does not contai®y and there exists constands> 0 and a
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sequence a— oo such that

a,23,(0) B 0,ve € Gy, (1.24)

P ( inf a;11,(0") > 5) — 1, (1.25)
0'eGy

P < supay || 7 Mn(0)]|| > K) — 0, forsome K> 0, (1.26)
0eGq

P(Ln(8) is strictly concave iff) = 1 for all n, (1.27)

wheresyM(0) is the Fretchet derivative of M0) and L,(0) is the log partial

likelihood. Then, the maximum partial-likelihood estimé{ Ly:}

Asymptotic Normality of Partial Likelihood Estimator of 6p: Define

k
14(6) = IogiTa(xJo); 11 (8) = <52 LY Z*k

and
vn(e):(:eco)v(l n(0)|cn); Va(6 Zvn
The asymptotic normality of the partial maximum likelihoedtimator is stated

as in Theorem 4A of Wong (1986) as follows:

Theorem 1.4. Supposeﬁn is consistent folBy € interior of © and there exists

constants g— o and a neighborhood ®g) with

aglvn 2o, (1.28)

—ay LY (80) B Q1. (1.29)

P(a;! sup [LY(8)] <M | — 1, for some M> 0, (1.30)
6€0(0p)

a0 S E(|Ik(8)|Pla) B o. (1.31)
k=1



Chapter 1: Introduction 34

Then,

an'%(Bn — 80) < N(0,Q1Q 1Qu). (1.32)

Note that in many situations,1@= Q resulting in
an*(6n— 80) 4 N(0,Q). (1.33)

Partial Likelihood based model estimation is used in Chapter

1.5.4. Copulas: A Brief Discussion

A continuous copula is a multivariate distribution of thendam variables
{U1,Uy,...,Un} such that eacb);, fori =1,...,n, has aJniform(0,1) marginal
distribution. Copulas are useful for modeling multivariasndom variables,
X = {X1,...,%n}, whose components are dependent and with each component
having a specified marginal distribution. For example, wald¢aise a Gaus-
sian copula to construct a dependent multivariate randaimabla X = (X1, X2)
with the X; ~ Exponentia{l) and X ~ LogNormal0,1) as follows: Gener-
ate Z,,Z, from a bivariate normal distribution with mean zero, staddee-
viations of one and correlation betwe@&a and Z, set top = 0.5. Compute
Ui = ®(Z1),Ux = ®(Z,), whered(.) is the CDF of the standard normal dis-
tribution. Note thatU;,U, both have uniform marginal distribution. Compute
X1 = —log(1—U;) and Xz = exp(dfl(Ug)). SinceU,U, are both marginally
distributed asUniform(0,1), we will have X; and Xy distributed marginally
asExponentia{l) andLogNormal0,1), respectively. The dependence between
U; andU induces dependence betweX¥nand X,. Any multivariate distribu-

tion with continuous marginals can be used to generate alaopus is due to
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Sklar’s theorem, a simplified version of which is presentestated in Embrechts,

Kluppelberg and Mikosch (1997)

Theorem 1.5.(Sklar’s Theorem):For any set of random variables X. ., X, with
continuous marginal cumulative distribution functions (€8, F,...,F, and a
joint cumulative distribution F, there exists a unique clap\C(...), which is a

cumulative distribution function o, 1]" such that for allx = (xq, ..., Xn),
F (XL, %) = C(F1(x0),.., Fn(¥n)) (1.34)

Conversely, given any marginal CDF’s; F. ., F,, and a copula C, the CDF E..)

defined througtf1.34)is a multivariate CDF with marginals+.. ., F,.

Sklar's Theorem enables the construction of a copula outofiléivariate dis-
tribution for which the dependence between the componemtde easily speci-
fied and interpreted. The multivariate normal distributrath zero mean and unit
variance for each component andrrelation matrix R is used to construct the
Gaussian copula. The T-copula, Archimedian copula andrbygtie copulas are
some of the other popularly used copulas. A particular foran@aussian copula,
which is important for time series applications, is a copldaved from a Gaus-
sian Auto-regression process (Manner and Reznikova, 2@dfulas are used

for defining new software reliability models in Chapter 2.

1.5.5. The Pooled Adjacent Violators Algorithm

LetYi,...,Y, be a sequence of independent random variables YvithF(.|6;)
for some real valued parametgr Denotef(.|6;) to be the PDF of-(.|6;)). Let

y; be a realization oY;. The problem of estimatinf;’s, subject to the constraint
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01 <... <6y, through the method of maximum likelihood has a variety qima-
tions and was first considered by Ayer et al. (1955). The mbatgacent violators
algorithm was proposed by Ayer et al. to solve this problemh igrdescribed as

follows:
Algorithm 1.6. The Pooled Adjacent Violators Algorithm

1. DenoteB(i,k) to be the block assigned to the observatjpduring thek!"
iteration of the algorithm. Initialize the algorithm by &gsing B(i,0) =1,
for,i=1,...,n. Initialize k = 0.

2. Determine

6" = argmax [T fovile), fori=1....n

6 j:B(j.K)=B(i.k)

3. If éi(k) 's are all non-decreasing inthenéi(k) 's are the ML estimates d’s.

4. If not, then incremenk = k+ 1. For eachj =n,n—1,...,2, determine if
Ak=1) _ A(k—1 . , : o .

9% ) < 65_1) and assigrB(j’,k) = B(j — 1,k), Vj’ > j with B(j’,k) =
B(j,k). This is the pooling of adjacent violators into the same kloc

5. Repeat Step 2.

A closed form expression for the PAVA estimate, useful falgtical purposes,

is given by Robertson, Wright and Dykstra[pp-23] and preseimtél.35).
|

- -
% =min max argmax] fe). (1.35)

The PAVA algorithm is used in Chapters 2,3 and 4.



Chapter 2

Parametric Models for Software Reliability

2.1. Introduction

Pay attention to zeros. If there is a zero, someone will divide by it.

Cem Kaner

Basu and Ebrahimi (2003) defined software reliability as tReobability of
Failure Free” operation of a software product. This prolighinay be over the
next use case of the software product or over a specifiedgefiome. A key dif-
ference between software and hardware reliability is trs=abe of the notion of
ageing. Once a software product fails, there is a possilafitletecting the cause
of the failure (popularly called as a software bug) and mepgithe bug (known
as debugging) with a resulting increase in the reliabilftthe software. Since the
software does not age, the increase in reliability shoutddepend on the age of
the software. One would expect an increasing time to famuth the detection
and debugging of every additional defect. A software rdiigtimodel quantifies
this intuitive expectation mathematically. The interidag times observed histor-
ically can be used to estimate the model. An objective of titnare reliability
model is to estimate the distribution of the time to nextueel of the software
and use it to compute the reliability of the software in tewhghe probability of
failure over a specified period of future usage.

37
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Consider a software product under controlled testing by éepstonal team of
software testers. Le§, fori = 1,2,..., denote the calendar times when defects
are discovered since the release of the softwarelletS, o, =$-S5,,...,Ti =
S — S_1, be the inter-failure time for th&" failure witht; denoting a realization
of T;. A generic software reliability model would compute the diional distri-
bution of thent" inter-failure time, Ty, givenn,Ty...,Th_1. From such a model,
one could compute the probability of failure-free openatiwer any specified du-
ration of usage. The model would need to incorporate theatapen that every
additional discovery increases the reliability of the w@fte. In the vast majority
of software reliability analysis, the number of failuredaherefore the number
of inter-failure time observations are limited necessitathe need for a model
that is parsimonious in model parameters. This is partibutaue for software
reliability analysis involving critical failures such dsase related to security vul-
nerabilities. Due to this practical constraint, it is commfor software reliability
models to assume the conditional distributionlgfgivenT;_1,..., Ty, to depend
only oni or even on just;_j.

At this juncture, it is important to discuss how softwardues times are mea-
sured. In the case of pre-release controlled softwarentgstne duration to the
next failure is measured in terms of the number of test-caisesessfully executed
by the software product before it fails. An alternative digéfam would involve the
number of days or hours of testing before the software fHilthere is a large
team of software testers testing the software, with the teiamvarying over the
testing duration, the number of man-hours of testing as asureanent unit may

be more accurate. In the case of post-release softwareefailith different cus-
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tomers beginning to use the software from different caletidaes, the number
of customer-hours, defined as the number of hours of use heltustomers
before a failure is reported, may be a natural measure ohtke-failure time. A

well-defined and accurate measurement of software opgrdtimation adjusted
for the number of users or testers is clearly important for software reliability

modeling and we assume that such a definition exists and sstently used for
all measurements of inter-failure time.

In this chapter, we describe in detail some key softwaralpdity models that
have motivated software reliability studies and discusgsrtthortcomings. The
generalization of some such parametric models to incotpatapendent inter-
discovery times using copulas induced by time series pseseis considered. In
particular, we will use the de-eutrophication model, whghne of the most pop-
ularly used model (Singpurwalla and Wilson, 1994; Derrenid Le Gall, 1995;
Farr, 1996), given by Moranda (1975), to illustrate the galiwation. Copulas
have been used in reliability modeling (for example, see§Vaphim and Pham;
2012) for modeling degradation process. The method prapbeee considers a
new approach that is specific to software reliability profde We also propose
a new family of software reliability models, which we termlastonic Software
Reliability (ISR) models, that offers generalizations of mavell-known soft-
ware reliability models. The ISR model may be consideredrasxample of a
“statistical” software reliability model, whereas theidksi-Moranda model may
be considered to be a ‘stochastic’ model since it has somarmeqmon of the pro-
cess by which the faults arise. We discuss maximum liketihaoalysis of the

proposed ISR models. A simulation study is then presentednpare the per-
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formance of the proposed ISR models with that of some of tistieg parametric
models.

A software reliability model needs to consider three madgkspects when
analyzing data corresponding to software failures: Thedspect, corresponding
to the Defect Reporting Rate (DRR), represents the efficienchefsbftware
testing and is defined as the intensity of discovering andrtegyy a defect at time
t under the assumption that no defect has been discoverdiniit (a kind of
baseline reporting rate); the second aspect corresponithe tmanner in which
the history of previously detected defects affects the aaterhich defects will
be detected in the future and finally, the third aspect cpmeds to stochastic
dependence between the inter-discovery times of the def€atrently, the most
popular software reliability models are parametric in matwwonsidering all the
three aspects discussed above in some limited manner. Bfadimd emphasize
this in our further modeling generalizations.

The earliest models of software reliability considered a Dich was con-
stant with time, assumed a parametric form for the rate athvhew defects
are detected as a function of the cumulative number of defdotady detected
and simply considered independence between the intenndisg times of the de-
fects. The first among these models is the one, proposedibgkiedlnd Moranda
(1972), which considers a linear improvement in the religbiThe imperfect
debugging model of Goel and Okumoto (1978) considered ttssipitity of a
detected defect not being perfectly debugged. The defghitration model of
Moranda (1975) is similar to the model of Jelinski and Momaibdt considered

a geometric improvement in reliability as opposed to a linegprovement. The
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model of Schick and Wolverton (1978) is specified in termseftiazardA(t), of

the distribution of the inter-discovery timig. One of the first Bayesian models of
software reliability was due to Littlewood and Verrall (I37where they assumed
thatT; ~ ExponentiafA;), with prior distributions or\; belonging to the Gamma
family. In particular, they assumed thit~ GammaW(i),a) with a variety of
parametric forms fokV(i). Mazzuchi and Soyer (1988) gave details of a model
which assume¥ (i) = Bo + Bi.

The assumption of independence between the observeddistavery times
has been a cause of concern for many software reliabilitgtpi@ers, and in
spite of this, software reliability models that can accdontdependence between
the time to discovery of the defects are few in number. Thélpra with assum-
ing independence between the inter-discovery times igfthia¢ discovery of an
important defect takes a long time (or more test cases)niheasten the discov-
ery of subsequent defects through learnings the testimg bes gained from this
discovery. For example, consider a software product witkluesMy, ... Mp; if
a security vulnerability, denoted by s&y, is discovered in modul®#; after a
very large number of test cases, there will be a tendencyedhestest case that
detected the defe&; in moduleM; on the other modules which may result in
a shorter time to detecting security defects in other madufesuch a situation,
the assumption of independence between the inter-disgawvees may not be
realistic.

The most notable software reliability model that does netiase dependence
between the inter-discovery time is the auto-regressiveainof

Singpurwalla and Soyer (1985), which assumes the conditidistributionT;,



Chapter 2: Parametric Models for Software Reliability 42

givenTy,- -, Ti_1, is log-normal withlog(T;) = 6jlog(Ti—1) +&j, fori =2,3,--- |
with log(T1) = 01 + €1 andgy, €2, . .. all being independent standard normals. The
parameter®;’s are assumed to have a distribution that is either assumée t
exchangeable or to be governed by an AR(1) process, withtiiee beeing studied

in depth by Singpurwalla and Soyer (1992) using an adaptalenén filter.

2.2. Some Existing Parametric Models of Software Reliability
2.2.1. Model of Jelinski and Moranda

The Jelinski and Moranda (JM) model, Jelinski and Morand¥ 2}, was one
of the first models for software reliability. The genesis bé tmodel lies in a
well-known stochastic process model for the following pdeath process: Let
N individuals be confined to a room witd being unknown. An individual can
be identified only when the individual “dies”, with the time death for any two
individuals being independent of each other and havingtid@irexponential dis-
tributions with scale parametar If we denote the calendar time to death of the
it individual asS, fori = 1,...,N, then the time to the first “death” and hence the
first discovery of an individual, denoted By = min(S;, ..., Sy). If we denoteT;

to be the time to th&" discovery of an individual since thg— 1)!" discovery of
an individual, therili = §j) — §;_p), fori =2,...,N, with §;) being theith order
statistic ofS, ..., Sy. SinceS, ..., Sy are independent and identically distributed
asExponentiafA), we will haveT; ~ Exponentia{(N — i+ 1)A) with T; andT;
being independent of each other io# j. This results is due to a well known
property of the exponential distribution. Jelinski and lsiada likened the defects

in a software product to thi individuals in the pure death process with their de-
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tection and debugging corresponding to the “death” of aividdal. If one were
to ignore the genesis of the model from a pure death prodess the JM model

simply states the following:

Model 2.1. (Jelinski and Moranda Model) Let N be the number of defects
in a software. LetT;, for i = 1,...,N, be the inter-failure times. Them ~

ExponentiaA(N —i+ 1)) with T being independent afj for i # j.

To help visualize the model the instantaneous hazard ofreibgea failure at
calendar time, a plot ofA(t) vs.tsfor the JM model is presented in Figure 2.1

with A =1 andN = 10. There are a couple of properties of interest in the JM

Model: The first property corresponds to the expected valtieso!" inter-failure

time E(T;), which keeps increasing with the number of detected defects, since
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E(Ti) = 1/A(N—i+1). This can be interpreted to mean that every defect discov-
ery increases the reliability of the software, justifyimgp tcost of finding defects
and repairing them. Note that this increase in expectat@sahvery specific para-
metric form. The second feature corresponds to the insestery timeT; not
depending on the total testing time of the software at the tihits discovery,
which represents the lack of ageing of the software. Bothetlpesperties have

been used in subsequent software reliability models.

Criticisms of the JM Model:  One of the key-assumptions of the model is that
all defects are equal in terms of their impact on reliabilityrovement after their
discovery and repair; an assumption that may not be realfstir example, soft-
ware defects could have different severities, with thealiscy and repair of more
severe defects increasing the reliability much more thardtbcovery and repair
of less severe defects. The model also assumes that evewst dah be fixed per-
fectly resulting in an immediate improvement in the religygian assumption that
has often been criticized (See Littlewood and Verrall ()9%el and Okumoto
(1978); Musa and Okumoto (1984) for some examples). Thigism has lead to
the developement of several software reliability modeladgBurwalla and Wil-
son, 1994). The assumption that the reliability of the safenmust improve after
every defect discovery has been challenged most recentBaby and Ebrahimi

(2003) leading them to propose a Bayesian model for softvediagility.

Model Estimation: There are two software test procedures through which soft-
ware defect data can be generated for estimating the JM prtbddirst procedure

corresponds to testing the software till a pre-determinedber of, sayn defects
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are discovered while the second procedure would test tiea@f for a fixed cal-
endar time duration irrespective of the number of defectsaliered. We discuss
first the likelihood and model estimation for the first tegtprocedure for which
a typical data set would comprise of the inter-failure tiroéshe n defects. Let
t={ty,...,tn} denote the observed inter-failure times of the n defectméfwere
to assume the JM model is appropriate for the software uraesideration, then

the likelihood of observing will be given by

L(t|)\,N)=_ﬁ)\(N—i+i)exp(—)\(N—i+1)ti). (2.1)

Jelinski and Moranda showed that if the likelihood in (2.&§ila unique maxi-
mum inN andA, then the solution to finding the ML estimate fdrwas iterative

and given by

N1 n
AN+ TN E5, -0
whereS, = I ti, N > n. Once the ML estimatél of N is obtained, the ML

(2.2)

estimate ofA can be obtained as

n

A=+ .
NS -3 (i— Dt

(2.3)

If the software is tested for a specified period of tieirrespective of the
number of defects discovered, then the likelihood of theeokeion(n,ty, .. .,t,)
will be

n

L(n,ty,...,th|A,N) = rl)\(N —i4i)e MNZHLE o g (N=MAS (D 4y
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The likelihood in (2.4) is maximized &* which satisfies
- 10 -
GIN )< =S ti<G(N*+1 25
() <763 ti< G +1), (2.5)

where

G(N) = {n(L— [1— (n/N)]¥")} 41— (N/n).

Then,A is estimated b§\* given by

2 n

*

- zpzl(ﬂ*—i—l—l)ti+((N*_n)s)' (2.6)

Properties of the ML estimateN and N* :  Blumenthal and Marcus (1975) have
studied the properties &, obtained from (2.3), in detail. They show théN(N —

N) ~ Normal(0,0) asN — o with o being a function of the proportion of defects
discovered = n/N andA. The likelihood in (2.1) can sometimes be unbounded
with N = 0. This has once again been studied by Blumenthal and Marcuswhe
they compute the probability of this happening as a funcgbiN andn. They
note thatProb(N = ) can sometimes be as high ag®@for N = 40 andn = 10.
Blumenthal and Marcus also note titan be highly biased, especially whin

is very small and for moderately large valuesNofBlumenthal and Marcus also
showed similar results fok* obtained through maximizing (2.4). In particular,
they showed that for largid, N* is consistent ang/N(N* —N) ~ Normal(0, o),

with o being a function ok andS.

2.2.2. The Imperfect Debugging Model of Goel and Okumoto

The Jelinski and Moranda (JM) model assumes that everyéadlorresponds to a
unique software defect which can be perfectly fixed and walult in an improve-

ment in the reliability. This assumption has been challerigeGoel and Okumoto
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(1978) and they proposed a modification to the JM model bypdhiction of a pa-
rameterp, with 0 < p < 1, which represents the probability that a defect has been
fixed. The parametep can be interpreted as the efficiency of debugging, with

higher values representing better and more efficient debggg

Model 2.2. (The Imperfect Debugging Model)Let N be the number of de-
fects in a software. Leflj, for i = 1,...,N, be the inter-failure times. Then

Ti ~ Exponentia{A(N — p(i — 1))) with T; being independent dfj for i # j.

The reason that we discuss this model is because it repsetbenfirst attempt
by researchers at recognizing that fixing a defect need ne#ssarily improve
the reliability of the software. In fact, the model suggektd, even after fixing\
defects, ifp # 1, then the software may still have a failure in the future.réfer
to Goel and Okumoto (1978) for details regarding the modahegion which are

very similar to that of the JM model.

2.2.3. The Model of Schlick and Wolverton

The JM model bestows a memory-less property to a softwatedgesrocedure
by assuming exponential inter-failure times. A testingrig¢hat is monetarily re-
warded for every software failure discovered can be expetdeancrease their
testing intensity if no failure is observed by them for a l@hgation. Such a ten-
dency would violate the memory-less assumption of the deliscovery process.
Alternatively, immediately after a software failure is ebged, there might be a
tendency for the testing team to spend time analyzing tHeré&ileading to a
temporary decrease in their testing intensity. Such piisigb require a model in

which the hazard\(s), of observing a software failure at calendar tigis not a
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constant. As a result, the inter-failure times are not egptally distributed. The
model of Schick and Wolverton (Schick and Wolverton, 19&resents the first
attempt at a software reliability model where the intelia time is assumed to

be non-exponentially distributed.

Model 2.3. (Schick and Wolverton Model)Let N be the number of defects
in a software. LefT;, fori =1,....N, be the inter-failure times. The hazard of
observing thei!" failure at timeT, =t since the(i — 1)!" failure is given by
Ai(t) =y(N—i+1)t.

The model implies thaf; ~ Rayleighty(N —i+ 1)), which is a Weibull distri-
bution with shape parameter 2. The model estimation praeddwery similar to

that of the JM model.

2.2.4. The De-Eutrophication Model of Moranda

One of the criticism’s of the JM model is that fixing every d#femproves the

reliability of the software by the same quantum, which cao &le interpreted as
stating that all defect are equal in terms of their sevefihe de-eutrophication
model of Moranda (Moranda, 1975) challenges such an assumgotd assumes
that improvements in reliability due to defects that areeditd early on are more
than improvement to reliability due to defects detectedrlan. The heuristic
reasoning being severe defects will be detected early dreastazard of causing
a failure will be more than those of less severe defects. Theéemis stated as

follows:
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Model 2.4. (De-Eutrophication model of Moranda)Let T;, fori =1,...,N, be
the inter-failure times. Thefl ~ Exponentia{exp(a + Bi)) with T; being inde-
pendent ofT; for i # j. The parameters of the model areand. If B < 0, then

the reliability of the software improves after every adutitl defect discovery.

Note that this model moves away from describing the relitgtolf the software
in terms of the number of defects in the software. Accordmghis model, the
hazard of observing a defect in the future can never be zerspective of the
number of defects already discovered. The paranfeteeasures the benefit of
discovering and fixing an additional defectfif< O, then there is a positive im-
provement in the reliability for every additional defectdik if 3 = 0O, there is no
effect of discovering and fixing defects in the software aastly if > 0, every
additional defect discovery decreases the reliabilitjhefdoftware. By testing for
the sign of the coefficient one may be able to judge whether software testialg

debugging are beneficial to improving the reliability of gwtware.

Method of Moments Estimation: Under this modell; ~ Exponentia{exp(a +
Bi)) which implies—log(T;) ~ Gumbe(a + Bi, 1), which corresponds to a Gum-
bel distribution with location parameter— 3i and scale parameter of 1. This
would in turn imply thate (—log(Ti)) = a + Bi+Y, wherey=0.5772 is the Euler-
Mascheroni constant and standard deviation (SD}laiy(T;) is 11/1/6. Lett; be

a realization ofT;, fori =1,...,n. A least squares regressionypf= —log(tj) —y
against, fori =1,...,n, would result in estimate®_s of a andfiLs of 3, respec-

tively. The estimates are given by
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n
GLS _Zlyi
=D 1x| = , (2.7)
n

Bs ; 1yi

n

n i
where,D = i; (2.8)

The estimate®i, s and fiLs are unbiased estimates afand 3. Also note that
the variance-covariance matrix ¢ s, BLS) is given byT?/6 x D1, with D as
defined in (2.8). Sincdj’s are independent and the minimum eigenvaluéof
tends to infinity as — oo, the regression satisfies the conditions of Eicker (1963).
Hence, the least square estimates are consistent/afd, s — o, BLs— B) fol-
lows asymptotically a bivariate normal distribution witleem zero and variance-

covariance matrix?/6 x (D/n)~2.

Maximum Likelihood Estimation:  The log-likelihood under the de-eutrophication

model of Moranda for the observations. .. ,t, can be written as

n

I(a,B) :_r!(a—Bi)—exp(a—Bi)ti. (2.9)

=
The score and the hessian matrix for the log-likelihood arerg respectively, by

DI(O(,B):_i(l—exp(a—[si)ti)(li)T, (2.10)
02l (a, B) = i—exp(a—si)ti (1i) x (1i)T. (2.11)
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From (2.11), it is clear that the hessian matrix will be negatlefinite due to
it being a sum of non-negative definite matrices. Hence, dgdikelihood will
have a unique maximum and a Newton-Raphson procedure caetéousumer-
ically maximize the log-likelihood to obtain maximum likebod estimatesiy.
andf&ML of a andp, respectively. For large, we have,/n(GyL — a, f&ML —B) to
be normally distributed with mean zero and a variance-camae matrix that is
estimated by 02l (G, [A3ML))*1. This asymptotic result can be used to compute
confidence intervals for the parameters from their ML esta®and to test for the

significance of thg3 coefficient.

2.3. Software Reliability Models with Dependence

The inter-discovery times for the defect, ..., T,, have a natural ordering in-
duced by the calendar time sequence of defect discoverfes.sliggests that
T1,..., T, can be modeled as a time series. The time series interpretatiad-
vantageous in allowing specification of dependence betweemter-discovery
times. The expectation that software reliability improveish every additional
defect discovery suggests that the marginal distributiom,; is stochastically
larger thanT,. A simple way of introducing dependence in a software rdligib
model, while still maintaining the requirement of softwasdiability improve-
ment, is to use copulas induced by a time series processewil\ese the de-
eutrophication model as an example to demonstrate our mgdgee Section
2.3.1).

The purpose of a dependent software reliability model wbeltb estimate the

conditional distribution off,+1|Ts, ..., Th. Such an interpretation has been consid-
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ered by Singpurwalla and Soyer (1985) for proposing an eegoessive model
for software reliability. While their model considers dedence, it is at odds with
software reliability models such as the Jelinski and Moeambdel sincd; is no
longer distributed aExponentia{A(N —i+1).

For a software test data-set consisting of the inter-disgotimesTy, ..., Ty, a
software reliability model usually specifies the distribatof T; as a function of
i. In order to preserve the specified marginal distributioih$;’e while allowing
dependence between them, we propose using copulas. Ioypartia Gaussian
copula, constructed using a stationary auto-regressiveeps of ordemp, may
seem well-suited for characterizing the nature of depeceldretween thd;’s.
Recall that an auto-regressive proce&R(p) of order p, is determined by the
parameterpy, ..., pp With pj representing th" order auto-regression coefficient.
A sequence of random variableg, ..., Vy, is said to followAR(pg, ..., pp) when
Vi’s denote random variables corresponding guccessive observations from an
AR(p) process. A dependent software reliability model that makesf arAR(p)

process is presented as follows:

Model 2.5. (Gaussian Copula based Software Reliabilityet Ty,. .., T, be the

inter-failure times oh successive failures of a software product. Then,

T ~F(.|0,i), fori=1,...,n,
with (¢~ HF~1(T10,1)),...,o 1 (F1(Ts|®,n))) ~ AR(p1, ..., Pp)-
Note thatd(.) is the standard normal CDF afkd®, i) represents the marginal

CDF of T; as a function of the model paramet&@sandi. By specifying the de-

pendence between tAgs through a copula induced by a Gaussian AR process,
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one can consider the possibility of dependence betweemntiediscovery times.
Under this modeling framework, one may also consider a igider AR process

to allow for long term dependence betweenTlie.

Maximum Likelihood Estimation = Assume thaff (t,0,i), the density function
corresponding t& (.|©, i), exists and is twice differentiable over the non-negative
part of the real line. Let be a realization of;. The log-likelihood of the observa-
tions,ty,...tn, can be expressed in termsbé {O(F 1(11]0©,1)),...,P(F1(ty|O,n))}
as follows:

©p.) = 3 log(F(t/0.0)+o0(Co(2)

l0g(Cp(2)) = —3log(|2]) - z's7'z,

with Z being the covariance matrix of@" order Gaussian auto-regressive process
andp = (p1,...,Pp). Numerical procedures need to be used for maximization of
1(©,p,Z) over®,p andX. The existence of a uniqgue maximum would depend on

the form of f(.|®,i) and the copula used.

2.3.1. De-Eutrophication Model with Dependence

A specific example of the Gaussian Copula based softwaréidlianodel would
specifyF (.|©,1) through the de-eutrophication model of Moranda. This itesta

as follows:
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Model 2.6. (De-Eutrophication Model with Dependence).et Ty,..., T, be the

inter-failure times oh successive failures of a software product. Then,

Ti ~ Exponentiafa + i), fori=1,...,n,

with (¢*1(1—ee°+B1Tl),...,qu(l—ee“*”BTn)) ~AR(p1, ..., Pp)-

The proposed model can be estimated through the method ofmaxlikeli-

hood or through the method of moments. We will discuss therlétst.

Method of Moments Estimation Under the de-eutrophication model with de-
pendencel; ~ Exponentialexp(a + Bi)) which implies—log(T;) ~ Gumbe(a +
Bi, 1), which corresponds to a Gumbel distribution with locati@angmeten + fi
and scale parameter of 1. This in turn implies tE&t-log(Ti)) = o + i+,
wherey~ 0.5772 is the Euler-Mascheroni constant and standard dewiefiT; is
1/+/6. A least squares regression¥t= —log(T;) — y against, fori =1,...,n,

would result in estimates, s of a andf?)Ls of 3, respectively. The estimates are as

follows:
1
n n
LS n _Zii _Zl)/i
= 1= x| = , (2.12)
R n n n
¢) (88e) (3o
wherey; = — log(t;) with t; being a realization oF.. The estimate&LS andp:Sare

unbiased estimates of andf3, respectively, even if there is dependence between
theT;’s. It is possible to estimate the coefficients of the copdilthe underlying

AR process governing the dependence betweeii;thas follows: Compute; =
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®~1(1— explexp(GL-S+BLS)t)), then thek!" order auto-correlation coeffecient of

the underlying AR process is estimated as

o 2k ViKY
= (2.13)
2 j=k+1Vi-kVj—k

The estimatedX’s, for k=1,...,p, can be used in the Yule-Walker equation to

obtain moment-estimates pf, ..., pp as given by

1 %W
p1 ¥
o1 %o
= x| |- (2.14)
Pp v
VS

Properties of Method of Moments Estimator We will now study the large
sample properties aikS andﬁhs. An alternative representation of the model, in
terms ofY; = —log(T;j) —0.5772, is

Y, =a+Bi+, (2.15)
where ¢; is such that(; + vy is a standard Gumbel random variable, where
y~ 0.5772 is the Euler-Massacheroni constant. The definitio§y ahplies that
E(Z) = 0 andE(Z?) = 1/6. Making use of the representation in (2.15) in con-

junction with (2.12), we have
1

n
aLS o no i _ZZi
i= = . (2.16)
n

Br® B Si oy 3 it

=
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Theorem 2.7.Under the de-eutrophication model with dependeﬁ{:‘,\%js acon-

sistent unbiased estimator Bf

Proof. Forn> 1, the matrix inverse in (2.12) can be explicitly computedyiting

in

6583 (s oins wnw) @40

SinceE(Z?) = 12/6 for alli, |E(ZiZ;)| < 12/6. Due to the Cauchy-Schwartz in-

equality, we havé ((3;a¢)?) < (i lai|)?m®/6. If we set

o 12 6
&= (n(n+1)(n—1) B n(n—l))’

we get

IA
|

- m (D 12x i d ’
E((Br>—B)?) 6(; D=1 " & An=1) )

= 0O(1/r?). (2.18)

When the number of defects in the software is expected to ge,l#ne asymp-
totic property of the estimator as— o maybe useful. Due to Equation (2.18),
E((BLS—B)2) — 0 whenn — « . This implies thaPLS is a consistent estimator

of B. The unbiasedness follows from (2.17) and noting B&}) = O. O

The magnitude of the paramefécan be used to compare the reliability of two
different software products. This is because the improverrereliability after
fixing theit" defect can be measuredBfog(Ti41/Ti)) = —B. Hence, larger the
value of —[3, greater the improvement in reliability. Note thaf3it> O, then the
reliability decreases for every additional defect diseedeand debugged. Theo-

rem 2.7 establishes that the moment estimafg gfven by (2.16), is a consistent
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unbiased estimator. The consistencya§P is not clear. The estimat&:S can be

represented as

ils = a+ry (BS-Bit:y (219)
B N+l 1 .
= G+T(Bn _B)+ﬁi;ZI (2.20)

To prove thafi-S is a consistent estimator of we would require, (iE(n(BLS —

B)) — 0, i.e a much faster rate of convergence fB{:ﬁ" than we have established
in Theorem 2.7, and (ii) the weak law of large numbers to hotdlie sequence
(1,(o,.... The second requirement on ths can be ensured by assuming that
the underlying copula based AR process follow the requirgeef the weak law
of large numbers of correlated random variables, namelythare stationary
and they 2, |y(s,t)| < o, wherey(s,t) is the covariance betwe&g and{;. The
problem with (i) arises from the fact that, unlike in clasgitinear regression,
where it is assumed that="1/nY ; X; 5 wasn — w, in the de-eutrophication
model of Morandax = (1+ ...+ n)/n = (n+1)/2 increases with n. To deal
with this problem, one could place more restrictive assimngton the relation-
ship betweer; andi in the underlying software reliability model, for example,
—E(log(Ti)) O exp(—i). Such assumptions could be hard to justify from a prac-
titioner’s perspective, motivating us to develop new saf®vreliability models
and estimation methodologies that do not require suchictgtr assumptions in
Section 2.4. To prove thats® is a consistent estimator of, we would require,
(i) E(n(BLS—B)) — 0, i.e a much faster rate of convergencefE? than we have
established in Theorem 2.7, and (ii) the weak law of large lmens to hold for

the sequencéy, (o, .... The second requirement on th's can be ensured by as-
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suming that the underlying copula based AR process foll@wd#gyuirements of
the weak law of large numbers of correlated random variabksely thel's are
stationary and thg >, |y(s,t)| < o, wherey(s,t) is the covariance betweég
and(;. The problem with (i) arises from the fact that, unlike insdecal linear
regression, where it is assumed that I/ny ; X; 5 wasn— o, in the de-
eutrophication model of Morand&a= (1+...4+n)/n= (n+1)/2 increases with
n. To deal with this problem, one could place more restrcéissumptions on the
relationship betweet® andi in the underlying software reliability model, for ex-
ample,—E(log(T;)) O exp(—i). Such assumptions could be hard to justify from a
practitioner’s perspective, motivating us to develop nettvgare reliability mod-
els and estimation methodologies that do not require sigthiggve assumptions

in Section 2.4.

Maximum Likelihood Estimation The log-likelihood for the de-eutrophication
model with dependence induced by a copula corresponding &R4{1) process

can be written as

n

I(a,B,p1,0) = Y (~(a—Bj)(tjexp(a—Bj)))

=1
n—1)

plzj 1
— [ 2.21
2 o0 (1 pl) 2 ZZ ’ ( )

wherez; = ® (1 —exp(—expla —Bj)tj)), j =1,...,n

Note that (2.21) is a product of two parts: the first part cgpoands to the marginal
log-likelihood of the de-eutrophication model and the setpart considers the

dependence between the observations, obtained by tremsfpithe observed
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inter-discovery times to the underlying AR(1) process. Tog-llkelihood for
a copula corresponding to a higher order AR process can h&djrderived.
Numerical maximization can be used to maximize the likedthoAll these nu-
merical algorithms will require a starting point for theraggon and this can be
obtained from the moment estimates described previousiMedton-Raphson
procedure may be used to maximize the log likelihood with rii@ment esti-
mates ofa, 3, p1,0, as described in the previous section, being used to iziial
the procedure. For an AR(1) Gaussian process copula, the &oastion of the

log-likelihood can be explicitly derived and is given addals. Define

uj = 1-—exp(—expla—pBj)t;)

vi = o7 (y)

0, = a—Bj

njz = exp(6;)(1+8;)

Nz = (Vj—pavj_1) ((1_Uiq))(i)jq)3(ejti) _ (1_Uiflq))(?l)j(i)(le)j—ltifl))

. (1-uj) exp(Bj; : U exn(® i

n-1  (vj—vj-1)?

Nia = ~%2 = 202
o p (Vi—p1vj-1)
r]]5 - _1_]‘52 — o ! )

whereq(.) is the standard normal density function. The score funatiche log-

likelihood can be expressed as

Nj1 Nj2

=

inj1 n | njs
[ ; o (2.22)
=2 Nja

0 Njs

j

|
=
o




Chapter 2: Parametric Models for Software Reliability 60

Note that the Hessian matrix of the log-likelihood, dendigd (a, B, p1,0?), can

be derived from the derivative of the score function and bedus a Newton-
Raphson procedure for computing the ML estim{a(ﬁefs, p1,6%) of the pa-
rameters(a, B, p1,0°). The ML estimate may be computed through a Newton-
Raphson recursion. Details of th& recursion, resulting in the computation of

(a®,p® o 5092) is given below,
(a® gk, p(lk) o2y — (gD pk-1) p(lk—l) Jlen2y (2.23)

+ H (a<k>, [3<'<>,p<k>,c<'<>2) - (O((k—l), pk-1). p<lkf1>70(k)2> ,

with the recursion being initialized by settiig©, (@ p{? 6(92) to their corre-

sponding moment estimates. The recursion would contifiueutnerical conver-
gence is observed. The inverse of the Hessian matrix eeal@the ML estimate
provides an estimate of the variance-covariance matrig B, p, d2) and may be
used for statistical inference about the parameters. Favdehwith higher order
AR terms, the score and Hessian matrix will be cumbersomerival As an alter-
native, one can use numerical maximization algorithms ssctihe Nedler-Mead
Algorithm to maximize the log-likelihood.

Itis evident that models with dependence can become inaggsumbersome
to estimate through ML methods. Consequently, derivatidvotii the small sam-
ple and asymptotic properties of the ML estimate can become more difficult.
In view of these issues, some dependent isotonic modelsrasemed in this
chapter which provide a generic model for software religbwith dependence.
Estimation of confidence bounds for software reliabilitylanthe dependent iso-
tonic software reliability model that is valid for small sphes is presented in

Chapter 4.
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2.4. Isotonic Software Reliability Models

We will now propose a series of generic software reliabititydels which we term
isotonic software reliability model3 he models we propose have applications be-
yond that of software reliability and can be used to estintiagereliability of a
product whose reliability is improved through a sequergislity improvement
plan, where a series of product versions are created with eaxsion address-
ing the failure mode of the previous product version. Theegenof these new
models lies in observing that the process of improving thieb#ity of a product
version, by fixing the failure mode of its previous versioingposes a constraint
that the reliability of successive versions must increasegmain the same. More
generally, software testing can be considered a specialafassequential quality
control plan, where the discovery of each defect and itsesponding debugging
creates a new software version which is more reliable tisgprédvious version.
Sequential quality improvement plans are used for incaigdrioduct develop-
ment where a major flaw in the product results in product fec@ihey are also
used for improving the reliability of critical proceduresch as air traffic control
(ATC) protocols, where an investigation is launched afteragomincident, to de-
termine if existing protocols can be improved to prevenilsinincidents in future,
leading to a revised and safer protocol. In an Internet benk&ontext, after a ma-
jor fraudulent credit card transaction, the bank usuallgoses stricter software
measures for fraud prevention intended to make future ttoedd transactions
safer. Software testing provides an example of sequentiality improvement
procedures where significant defects are fixed as and whgmatbaliscovered. It

is important to estimate the time to failure distributiontioé most recent version
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of the product, with such estimates being used to compusgikdly metrics. For
example, one might compute metrics such as the expecteddifadure, or the
probability that the next use case of the product/procedulfeesult in a failure.
The data for such analysis is the time to failure for each efffrevious versions
of the product. In the ATC context, one may consider the nunobsuccessful
take-offs achieved through the use of the protocol befora@mmncident. In the
Internet banking example, the available data could be timebeu of legitimate
credit card transactions that were processed before auienidtransaction was
erroneously processed. For making decisions based onlihieiliy of such crit-
ical products and services, a confidence bound on the rglyalbimore useful as
it enables the decision maker to evaluate the margin ofbiétiaavailable.

The failure distribution for a wide variety of hardware puatk is typically esti-
mated by observing multiple failures in a cohort of identmaducts of the same
variety. Such a strategy is only possible if the event of lufaiin any one of the
members of the cohort is not catastrophic in nature (froretgabperational as
well as financial perspectives). For example, in order torede the reliability
of an household appliance such as a light bulb, it is commdesba large co-
hort of identical light bulbs and record the failure timeswiltiple failures as the
cost of failure of any one light bulb is inconsequential. Héver, for a software
product, the defect responsible for the failure is fixed irdrately, creating a new
version of the software with improved reliability. From atalgerspective, there
is a single failure for every new version of software creaasdpposed to mul-
tiple failures. Sequential quality improvement plans ds® @ommonly used on

failures which are catastrophic in nature, in which caseetiea need to prevent
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a recurrence after each failure by immediately addressi@gause of the failure.
Due to the critical nature of these products and servicesnthmber of failures
observed in the past will naturally be small requiring theadmnalysis methodol-
ogy to be valid for small datasets. The method of analysirg ftam such plans
must also consider the possibility that for some conseew@rsions there might
be no improvement in reliability at all. An objective of trekapter concerns the
parametric estimation of reliability from data generatenhf such plans.

Examples of sequential quality improvement plans aboueh & they are not
explicitly called as such. The first example, as describedipusly, relates to air-
craft traffic control procedures and the second relatesteynet banking fraud
prevention procedures. In both examples, any substaatiaté in the procedure
would require immediate attention to prevent recurrende third example re-
lates to software reliability, in which a defect after ddit@e is immediately fixed
in all working copies of the software. Product recalls of samer durables, food
products and automobiles due to the discovery of a seridatysasue are other
important examples. A confidence bound on the reliability balp the manu-
facturer of the product or custodian of the procedure to tifyansk of a future
failure. Such a bound can help, for example, a bank engagiimgernet banking
to compute the minimum insurance premium required to inswezy financial
transaction being conducted. For a software manufactiliresin result in better
operational management by setting aside financial resptwam®ver a substantial
software defect being discovered in the future.

The assumption of reliability improvement over the seqeenicobservations

constraints the failure time model and consequently theessive failure times
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leading toisotonicityin the failure time distributions. Although we expect the re
liability of the product not to decrease with every subsequwersion, this might
not happen in some situations. To address this issue, we rdgrate how the
proposed method can be modified to consider a bounded dedreasliability
of the subsequent product versions. As mentioned befogeiesgial quality im-
provement procedures are used on products whose failutesceatastrophic and
hence the number of product failures will be small. Due todduastrophic nature
of the failure, it is more important to provide confidenceemvals for the relia-
bility than the corresponding point estimates as it alloarsain evaluation of the
margin of safety in the product. In particular, one-sidedrmts, which have at
least a certain coverage for the parameter of interest ofaihee time distribu-
tion, can be invaluable for decision makers. The failureetuirstribution of each
version can be modeled parametrically while the nature pfavement in relia-
bility is in general unknown. While computing confidence basinit is important
to note that asymptotic procedures may not be appropriate she size of the
data-set comprising of the failure times for all versiona ba small. Also, the
procedure would need to deal with there being a single fitume observation
for each version. Existing procedures for computing comio@ebounds may be
guestioned, as they usually incorporate some parametritelng of the nature
of improvement in reliability over successive versionsragar example, Jelinski
and Moranda (1972). Independence of the failure times éérdifit versions can
be assumed in many situations, but may be questioned in sthraeso

The distributional assumptions on the time to failure disition play a crit-

ical role in the proposed methodology. There are two waysrifiag at such
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assumptions. The first approach is based on the historiedyss of the failure
time data for the particular product type. For many engimgecomponents, the
time to failure is commonly assumed to follow a Weibull distition. Similarly,
for software reliability, the time to failure has been nobsdmany researchers as
being Exponential (Singpurwalla and Wilson, 1994). Theosecapproach would
be based on a simple probabilistic model for the failurerhigtion. For example,
the distribution of the number of legitimate internet bamkiransactions that oc-
curred before a fraudulent transaction was erroneouslygssed can be justified
as a Geometric distribution. This is because the statesydframprocessed trans-
actions (legitimate or fraudulent) can be modeled as indéget and identical
Bernoulli trials. We now introduce a series of new softwat@abdity models that
address some of the concerns raised in this chapter. We ialsgsd how to esti-
mate them and compare their performance with the parammtidels described

in the previous section.

2.4.1. Independent Exponential Isotonic Software Reliabyl(EISR) Model

Exponentially distributed failure times for a software ip@ular assumption for
software reliability; hence an isotonic software religpimodel that assumes ex-

ponentially distributed failure times is defined first.

Model 2.8. (Independent Exponential Isotonic Software Reliaility Model)
Let T, fori =1,...,n, be the inter-failure times fan observed software defects.
ThenT; ~ Exponentia(A;), fori = 1,...,n, with Ay > ... > Ay with Tj and T;

being independent of each other fo# j.

The parametric models of software reliability consideradier in this chap-
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ter are special cases of the Independent-EISR model. Indgaonsidering the
Independent-EISR model, we would be considering almostatlels of software
reliability growth that assume an exponentially distrémifailure time for each

software defect. It clearly is a very generic model for saftevreliability.

Model Estimation The log-likelihood of the observed failure tinés, for i =

1,...,n,is given by

I(A,..., A ZlogA, ZAt,,A1> > A, (2.24)

wheret; is a realization off;. The maximization of this likelihood can be done

using the pooled adjacent violators algorithm Ayer et @58).

Theorem 2.9. The ML estimate of,,, under the EISR model, is given by

2 1

)\n == t t .
max{tn, 0ot ...,t”+'r'{+t1}

(2.25)

Proof. Let; = 1/A;, fori=1,...,n. Then,B; <--- <6, and (1.35) can be used

to compute the ML estimate & as

Z
6 = Jn}|>r} e j—k+1 (2.26)

Settingi = nin (2.26) and noting thétn = 1/én proves the theorem. ]
The distribution oﬁn is clearly difficult to derive. Nevertheless, in Chapter 3,

we present a novel method of computing an upper-bounﬂ(ﬁw <x) and use it

to compute a confidence bound fqy.
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2.4.2. Dependent Exponential Isotonic Software Reliabil{igflSR) Model

The copula based software reliability model, proposediexamh Section 2.3,

presents a generalization to many a software reliabilitgl@hdhat assumes de-
pendence between the software failure times. Howevere thex two main con-
cerns regarding the model; the first concern relates to mestehation due to

the increasing complexity of the model likelihood functiand hence its maxi-
mization. The second concern relates to establishing lsageple properties of
the estimates of the model parameters. It is in the contettiede concerns, we
propose the dependent-EISR model. Due to Sklar’s theotrerdpendent-EISR

model is a very generic model for software reliability.

Model 2.10. (Dependent Exponential Isotonic Software Reliality Model)
Let Tj, fori = 1,...,n, be the inter-failure times. Theh ~ Exponentia(A;), for
i=1...,nwith A1 > ... > Ay. We assume thal’s have dependence induced

between them by an arbitrary cop@a - - ).

The estimation of\,, through maximum likelihood procedures would require
an exact specification of the copula governing the depemdbatween thf;’s.
In Chapter 4, we present one of the key contributions of theish&vhich is the
derivation of a novel confidence bound faf without making any assumptions

about the nature of the dependence.

2.4.3. Weibull Isotonic Software Reliability Models

A natural way to extend the EISR model is to consider the ffaitimesT; to be

distributed either as a Weibull or a Gamma distributionlufaitimes of a software
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are not always Exponentially distributed, as first noted bli&k and Wolverton
(1978) where they are assumed to be distributed as a Weiltrdibdition with a
shape parameter of 2 (i.e. a Rayleigh distribution). The Wedtstribution for
failure time is useful to counter criticism regarding a dansg hazard of failure as-
sumed by early software reliability models. Isotonic regren involving Weibull
distribution would be a very generic and useful model fotwafe reliability. As
in the case of the EISR model, there are two variations tleapassible, one that
assumes independence and another that assumes depereteremntihe failure

times governed by an arbitrary copula.

Model 2.11. (Independent Weibull Isotonic Software Reliadity (WISR)
Model) LetT;, fori =1,...,n, be the inter-failure times. Théih~ Weibull(A;, a),

fori=1,...,nwith A1 > ... > As. Assume thali’s are independent of each other.

An important assumption being made in the Independent-WISRefns that
all the failure times have the same shape parameter, thbegltan have arbitrary
scale parameters with isotonic constraints. In this thesspropose a method for
obtaining confidence upper-bounds &nunder the WISR model with unknown
shape parameter with the constraint. < a < U. The methodology is discussed
in Chapter 3. The model of Schick and Wolverton (1978) is aispease of the
Independent-WISR model whefe~ Weibull(A(N —i+ 1), 2) independently for

i=1,...,n

Model Estimation Note that ifa were known, the;* ~ Exponentia{A{'). Let
ti be a realization offj, then we can use the estimator in (2.25) applietf'tto

obtain the MLE ofAS from which the MLE ofA, can be computed. The estimator
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will be a function ofa and is given by

~ 1
An(0) = e TS TR (2.27)
max{tg,—” 2”*1,...,—” = 1}

The Independent-WISR model can be generalized to the DepeMd&R by
not requiring theTi’'s to be independent of each other. This model is stated as

follows;

Model 2.12. (Dependent Weibull Isotonic Software Reliabity (WISR) Model)
Let T, for i = 1,...,n, be the inter-failure times. Thef ~ Weibull(A;,a), for
i=1,...,nwith A1 > ... > An. Assumely,..., T, are dependent with their depen-

dence governed by an arbitrary cop@la- - ).

Estimation ofA,, without specification of the copulais a challenge. In Chapter
4 we come up with a method for computing a confidence uppenddar Ap,

without making any assumption on the nature of dependerteesba ther;’s.

2.4.4. Gamma Isotonic Software Reliability Model (GISR)

The next extension of the EISR model is to consifier Gammdh;,a), where
a is the shape parameter. The EISR model is a special case Gfl8fe model
with a = 1. As with EISR and WISR models, there are two variations td@@3HgeR
model; the first variations considers independence betwezobserved failure

timesT;'s and is stated as follows:

Model 2.13. (Independent Gamma Isotonic Software Reliabily (GISR)
Model) LetT;, fori=1,...,n, be the inter-failure times. Théih~ GammdA;,a),
fori=1,...,nwith Ay > ... > A\y. We assume thak’s are independent of each

other.
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If a were known, the MLE of; can once again be obtained by the PAV algo-
rithm and is given by

1

’
a x maX{tn, tn+;n—1 e, tn-i-.l;].-i-tl}

An(at) = (2.28)

wheret; is a realization off;. The problem of estimating botn andA,, simulta-
neously will be challenging. A key contribution of this tiegvolves a method
for obtaining confidence upper-bounds &nunder the GISR model withh un-
known under the constraint < U. The methodology is discussed in Chapter 3.
The dependent gamma isotonic regression model is an obgewnsralization.

The model is stated as follows:

Model 2.14. (Dependent Gamma Isotonic Software ReliabilityGISR) Model)
Let T;, fori = 1,...,n, be the inter-failure times. Thef ~ GammdA;,a), for
i=1...,nwith A1 > ... > An. Assume that the dependence betweenTilseis

governed by an arbitrary copuly- - ).

Estimation ofA,, will require specification of the copu&- - - ). As in the case of
the dependent-WISR model, a method of constructing a cord&epper-bound

onAp under the dependent-GISR model is derived in Chapter 4.

2.5. Simulation Study

We now proceed to a simulation study that compares the Mimastir ofA,, ob-

tained using the Exponential isotonic software reliapititodel with parametric
models of software reliability. In particular, for a dattsvith n failure times,
T1,..., Th, we will be interested in studying the bias and the root megased er-

ror (RMSE) of the ML estimate of,, obtained through (2.25) and comparing them
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with the ML estimates obtained from parametric softwargbglity models, such
as the Jelinski and Moranda model (Model 2.1) and the deghiication model
(Model 2.4). The robustness of the ML estimators, when taeg@leviations in the
underlying software reliability improvement model, is rhugesired not only in
the context of software reliability but for any statistieastimation method as noted
by Freedman (1991). The robustness of the estimatay «f particularly impor-
tant for estimating the reliability of a software producthvwespect to catastrophic
failures. We have designed the simulation study with theat)f charachterizing
the robustness of the estimators, by estimating their mdsr@ot mean squared
error (RMSE), when the underlying software reliability mbigancorrect.

The simulation study considers four different patterns aifvgare reliability
improvement. These patterns, foe= 10, are presented algebraically in Table 2.1
and presented graphically in Figure 2.2. The patterns avsezhso as to reflect
four different non-increasing patterns of thg's under the EISR model. Note
that, while the Jelinski and Moranda model representsilidearease in’s, the
de-eutrophication model of Moranda represents a convearexyial decrease in
AK’s, the convex graph in Figure 2.2 approximating it the bieailure timesT; are
simulated such thaf; ~ Exponentia{A;), fori =1,...,n, whereA;’s are obtained
from one of the models in Table 2.1.

The patterns of reliability improvement that we chose wasivated by 1) the
need to have one pattern to correspond exactly to a knownmediia software
reliability model and 2) have at least two patterns that arermmodeled by that
parametric model of software reliability. The first requirent would help in char-

acterizing the performance of the PAVA based estimator whercorresponding
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TABLE 2.1
Expressions foh, for k=1,...,n, corresponding to four patterns of improvement
Constant 6k=1/3
Linear Bk =1—2k/3n

Convex 1(2k<n)x (1—4k/3n)+1(2k>n)x1/3
Concave 1(2k<n)+I1(2k>n)x (1—(4k—2n)/3n)

FIG 2.2. Plot of A¢ vs. k for four different patterns of software reliabilitypmovement, with a= 10.
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parametric model is correctly specified. The second remérg would enable
us to study the effects of model mis-specification. With ttositext, we chose
the linear pattern of improvement which is modeled exacylyélinski-Moranda
model. The convex and concave patterns of improvement wessen as they
cannot be approximated by the Jelinski-Moranda model. Whédeconvex model
may be approximated by the de-eutrophication model of Miaathe concave
model cannot be modeled by either the Jelinski-Morandaed#ieutrophication
model of Moranda.

We define the relative bias of an estimafq% obtained using modeM as

E((fxﬁ‘[ —An)/An). The RMSE of the estimator is definedg[é((fxnﬂf —An)/An)2.

The expectations in the definitions of bias and RMSE are coedouging Monte-



73 2.5 Simulation Study

Carlo simulations as follows: Simulaie, ..., T, from one of the patterns of re-
liability improvement described in Table 2.1; estimaig by XnM obtained by
using the modet, compute the bias aé\nM — An)/An and squared error as
((5\24 — An)/An)? and store both values; repeat the procedure 1000 times and
compute the empirical mean of the bias values and squareofabe empiri-

cal mean of squared error values over the 1000 repetitidress8values, based on

the simulations will be estimates B (A — An)/An) and \/ E(AM = An)/An)2,
respectively. The results of the simulation study, for tifeecent modelsiv, are
provided in Table 2.2.

From Table 2.2 it is clear that for data simulated under thedr pattern of
improvement, the estimate af, from the Jelinski-Moranda model has the least
bias and RMSE, for n = 10, 25 and 100, as seen from the secondfreach
corresponding sub-table. Note that the second row of eduftadile in Table 2.2
corresponds to data simulated from the linear model an@septs the case when
the Jelinski-Moranda model is indeed the true model. Folitiear pattern of im-
provement, when n = 100, the estimateAgffrom the Jelinski-Moranda model
has negligible bias and the least RMSE. This leaves us to edad¢hat the lin-
ear pattern of improvement is similar to the Jelinski-Malarmodel. The de-
eutrophication model of Moranda assumes that exp(a — i), which corre-
sponds to an exponential improvement in software religbiNote that the con-
stant model of software reliability is a special case of therdvhda model with
B = 0. Table 2.2, shows that the Moranda model has the least hthRNSE
in estimating\, when used on data generated from the constant model, with the

bias becoming negligible whem= 100. When we exclude the constant model,
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TABLE 2.2

Bias and RMSE of the estimates\gf The values in () are the RMSE values while the

unbracketed values are the bias.

n=10
Model Jelinski Moranda  Moranda 5\n
constant -0.43 (0.5) 0.43(1.2) -0.17(0.4)
linear 0.68 (1.1) 1.23(2.2) 0.71(1.6)
concave 1.26 (1.8) 2.30(3.8) 1.08(2.2)
convex -0.21 (0.5) -0.23(0.7) -0.04 (0.6)
n=25
Model Jelinski Moranda  Moranda 3\n
constant -0.55 (0.6) 0.12 (0.5) -0.27 (0.4)
linear 0.19 (0.6) 0.89 (1.2) 0.27(0.9)
concave 0.73 (1.2) 2.07(2.6) 0.59(1.4)
convex -0.45 (0.5) -0.44 (0.5) -0.21(0.4)
n=100
Model Jelinski Moranda  Moranda 5\n
constant -0.59 (0.6) 0.03(0.2) -0.30(0.4)
linear -0.03 (0.3) 0.80(0.9) -0.06 (0.5)
concave 0.40 (0.6) 1.87(2.0) 0.08(0.6)
convex -0.56 (0.6) -0.49 (0.5) -0.28(0.4)
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the convex pattern of software reliability improvementhe ttlosest to the de-
eutrophication model of Moranda. This is evident from cotugof Table 2.2,
where the Moranda model has significantly lesser bias and RM®Etimating
An when the true model is indeed convex as compared to whenubertodel is
concave or linear. From this observation, we can infer thatdonvex model is
best approximated by the de-eutrophication model of Marand

The results in Table 2.2 reveal useful insights. The ML eatonof A, using
(2.25), presented in the fourth column of Table 2.2, outpent the ML esti-
mates of the parametric models, in terms of bias and RMSE, Wieeparametric
model is mis-specified. This indicates the ML estimator%2.2btained using the
independent-EISR model, is a more robust estimator of soéweliability com-
pared to estimators derived through parametric modelse Mwait, when the true
model is the Jelinski and Moranda model, (that is, the limeadel), the perfor-
mance of the estimator obtained by the independent EISR Insosienilar to that
of the true model. On the other hand, the performance of theaMta model is
much worse when the true model is the linear model. Similaeokations can
be made for the other models presented in Figure 2.2. Fonalihree size of
considered, the ML estimate obtained through the indepergkSR model ap-
pears to be superior to those obtained from both the parenmeddels when the
reliability improvement is convex or concave. This may be tluthe parametric
models considered being unable to approximate convex mavepatterns of re-
liability improvement. This result alone should warn usatitbe dangers of using
parametric models when there is little or no justificationtfte parametric form

of the underlying model.
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2.6. Concluding Remarks

In this chapter, in addition to discussing existing paraimoehodels for software
reliability, we have introduced copula based dependehiréatime models and
isotonic software reliability models. The latters geniees a very broad class of
software reliability models. Maximum likelihood estimati of the reliability of
the software are discussed. The isotonic software reililpilodels can be mod-
ified to consider bounded decrease in the reliability of hfénsare after a defect
is detected and fixed. For example, in the independent-El8&emone may as-
sume thah;; 1 < BA; with a knownf > 1. This assumption would allow fa; to
increase with which would allow the reliability of the software to someémde-
crease after a software defect is detected and fixed. Thépibg®f the software
reliability decreasing after a defect has been detectedasranonly studied con-
temporary issue in software reliability. A number of Bayesmodels have been
proposed for addressing such a possibility. The boundedase model provides
a simpler alternative to some of these sophisticated Bayesaels. The param-
eter A, can be estimated by (3.2) using the sequepicg't;, for 1=1,....n,
instead of using the original inter-failure time sequetce

The simulation study reveals that the isotonic regressiodehis preferable to
a parametric software reliability model when the justificatfor the parametric
model is not clear. The distribution of the PAVA based ML estior is needed
in order to compute confidence bounds gt The problem of determining this
distribution, even for the independent-EISR model, is leimgling because the
PAVA based estimator is a complex non-linear function offtikire times,T;’s,

and will depend on all tha parameterdy,...,An. In Chapter 3, we shall address
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all these challenges and derive an innovative confidencedlbased on the PAVA
estimate in (3.2). The problem of estimation of a confidenterval forA,,, under

the dependent-EISR model, is considered in Chapter-4.
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Chapter 3

Independent Isotonic Software Reliability

Models

Failure saves lives. In the airline industry, every time a plane crashesdhaljlity of

the next crash is lowered by that.

Nassim N. Taleb

3.1. Introduction

In this chapter we propose a method for estimating an uppamdéor scale pa-
rameter of the failure time distribution of a software protlunder the indepen-
dent EISR, WISR and GISR models introduced in Chapter 2. Theadeathn

be used to provide a lower bound for the reliabilRit) of the latest version of
the software product. To re-capitulate, the reliabilityacdoftware product is im-
proved through a process of discovering software defectdiaimg them as soon
as they are discovered. A software reliability model estawndhe distribution of

the time to discovery of the next defect by incorporatingeffect of the debug-

ging process. Such an estimate can be useful to customérs sbttware product
as well as the software quality control engineers. For exanyased on the esti-
mated distribution, a software testing team might choosstdp the test process

and release the software product (Singpurwalla and Wils8984).
79
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Let T; denote the time to failure of the software after the discpwdrthe ith
defect, fori = 1,...n. The assumption that the reliability of a software must in-
crease after every subsequent discovery and fixing of atdefeadely used. See
(Jelinski and Moranda, 1972; Moranda, 1975; Goel and Okani®78) for some
examples. A parametric model may assume that F(.|O,i), whereF (.|©,i) is
a CDF, © is the model parameter arkl is stochastically larger tham_;, for
i =2,...,n. For example, the Jelinski and Moranda Model (Jelinski amdavida,
1972) assumed that ~ ExponentialA(N—i+1)), for 1 <i < N, where N is
the number of defects in the software. Subsequent to thesBeland Moranda
model, increasingly sophisticated parametric forms ferithprovement in relia-
bility have been proposed.

A generic software reliability model assuming exponentalure time for
the Ti's would consider the EISR model introduced in Chapter 2 whigre
ExponentiafA;) with Ai11 < A;. The maximum likelihood estimate af, can be
obtained from the observations, ..., T, through the Pooled Adjacent Violator
Algorithm (PAVA) Ayer et al. (1955). Performing statisticaference using the
PAVA based ML estimator oA, can be challenging as the estimator is a com-
plex non-linear function of the observations and standagangtotic theory or
bootstrap procedures may not be used due to possibilityroésaf theA;'s being
equal. In particular, the parameter space comprisingy 6t ... > Ap, > 0 is not
an open set. See Andrews (2000) for a criticism on using bragtgprocedures or
asymptotic theory for obtaining SE of estimators when thaipeter space is not
an open set. The problem of computing confidence intervals fixed number of

proportions under isotonic constraints has been studig¢deirtontext of dosage
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studies using new bootstrap procedures (Bhattacharya and, K®07). These
procedures cannot be adapted for the problem at hand as thigenwf model
parameters, i.8\1,...,Ay’s can be equal to the number of observatidps. ., Tp.
One can further generalize the isotonic exponential regyrasased software
reliability model to non-exponential distributions asléels: LetT; ~ )\flEi with
M<...<A,E1,... . Eq = whereEg (XP) < o for P > 1. The objective would
be the estimation of,, along with confidence lower-bounds for it. In this article,
we derive a new statistic that can be used to obtain an upperebonA, with
atleast 10 (1— q)% confidence. For the EISR model, an upper boﬁﬁmhith

P(An < Xﬂ) > 1—qcan be used to compute a lower-boundRaft), the reliability

of the software aften failures ovett units of future usage through

A

Rn(D)% = exp(—A%). (3.1)

SinceAl is an upper-bound fak,, it is clear thatP(R(t)? < R(t)) > 1— q. Note
that the model being considered is quite generic; for exammould include the
WISR model wherd; ~ Weibull(Aj, o) with A1 > ... > A, and the Weibull shape
parametery, being constant. The model would also include the GISR medbl
Ti ~ GammdA,a), A1 > ... > Ay and the Gamma shape parameterbeing

constant during the entire testing period of the software.

3.2. The Main Result

Theorem 3.1.Let T ~ A XEi, A1 > ... > An, Eq,...,En 'S F with R (X < 0) =0

and B (XP) < oo for P > 1. Define

2 1
)\n - t th+th1 tht...+11 ’ (32)
maxs tp, IR h
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where tis a realization of T. Then, foranyd < gq<1land P> 1,
P
P )\n <¥) <A | <q (3.3)

Proof. DefineS = Th+-+-+T1, % =Ta+---+T2,...,S = ThandY; = §;/(n—
j+1) for j=1,...,n. We will show thatY,...,Y, is a sub-martingale and then
use the Doob’s maximal inequality (Doob, 1953) on the sultimgale to prove
the theorem. Foj <k < n, we haveE(Ty|Sj) = A *E(Ex|S}) = (\j/A)E(T]|S)).
Note thatE(T;|Sj) + ... + E(Ta|Sj) = Sj and hence,

ST = EISS

sinceAj/A¢ > 1, for j < k < n. By the definition ofYj’s, we have

y = E(Tj|§)) =

n
E(TIS)) Z

_ _(n—j+1)Yj—Tj . _ _(n—j+1)Yj E(T;lY;)
Yj+1 - n—j == E(Yj+1|YJ) - n—j n—j
USRS EU

becauseE(Tj|S;) < Yj. This provesE(Yj;+1]Yj) > Yj. In order to show that
Y1,...,Yn is @ sub-martingale, we only need to show ti¥t,1]Yj,...,Y1) d
(Yj+1]Yj). This can be proved as follows: note tisat1 = S; — T; with T; being in-
dependent ofy, ..., Tj_1. Hence the conditional distributidi$j+1|Sj, T1, ..., Tj—1)
d (Sj+1/Sj)- Note that conditioning 08y, .. .,Sj is equivalent to conditioning on
S, Tq,...,Tj—1. Hence(§j41]S;,...,S1) 4 (Sj+1/Sj). SinceY; = S§j/(n—j+1)
for j=1,...,n, we will have(Yj{1]Yj,...,Y1) 4 (Yj+1]Yj). The Doob’s maximal

inequality (Doob, 1953) on the non-negative submartiniale ., Y, states that

E(Yr)

G P=18>0 (3.4)

P(maxYy,...,Yn) >0) <
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By definition, we havet, = Tn, Ap = 1/max(¥a, ..., Yy) andE(Y?) = APE£ (XP).
Settingd = (1/An) (Er(XP)/q) YPin Equation (3.4) completes the proof.
L]

Theorem 3.1 gives a conservative upper-bound\fan the sense tha (A, <
Xn (%Xp)f) > 1—q; that is,)\An (%Xp))é is an upper confidence bound for
An with atleast 100« (1 — q)% confidence. One can create the sharpest upper-
bound by minimizing the scaling factar(P,q) = (EF(XP)/q)(l/P) overP > 1.
In general, the minimization would depend on the distriou. We proceed to

discussing application of Theorem 3.1 to specific distidnal families.

3.2.1. Exponential isotonic software reliability model

Consider the exponential isotonic software reliability rpaith T; ~ ExponentiafA ),
A1 > ... > Ap, i.e., the EISR model. The statistiqq is the ML estimate ofA,
through the PAV algorithm. Clearly the EISR model is a specide of the
model described in Theorem 3.1, with= Exponentia{l) and hences(P,q) =
(r(P+ 1)/q)(1/P). There is scope for minimizing(P,q) by optimally choosing

P as illustrated in the plots ofi(P,q) vs. P for various values ofy provided

in the left panel of Figure 3.1. It can be shown that the optistaling factor,

o*(q) = min("(P+ 1)/q9)Y/P), is attained whe# is the solution to the equation
log(F(P+1)) —PW(P+1) =log(q), (3.5)

where¥(.) is the digamma function. This is equivalent to stating tloatdf =
M(P+1)exp(—PW(P+1)), the optimal scaling factoo™(q) = exp(W(P +1)).

This result is stated as follows:
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FiG 3.1 Plot ofa(P,q) vs. P.
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Result 3.2. Let T ~ ExponentiafA;), withA1 > ... > A,. Define)\An as in(3.2),
then

P(ePHAn<hn) <T(P+1)e PP, p>1 (3.6)

Aplotof o*(q) =exp(W(P+1))vs.1-q=1-T(P+1)exp(—P¥(P+1)), for
P > 1 can visually present the optimal scaling factor as a fonabf the required
confidence. The right panel of Figure 3.1 presents such a fptom this plot,
we gather that for an EISR model,74 x 5\“ is an upper-bound fox,, with atleast
95% confidence. Table 3.1 presents the scaling factor redjtor some commonly

used confidence levels.

TABLE 3.1
Values ofo*(q) for some values df00x (1— q)%.

100x (1—q)% | 50% 90% 95% 99%
o*(q) 190 3.80 471 6.62
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3.2.2. Weibull isotonic software reliability model

The EISR model can be generalized to a Weibull isotonic sofweliability
model (WISR) by assuming th&t(.) in Theorem 3.1 is &Veibull(1,a), with
known shape parameter. The scaling factor would be a function of with
o(P,g,a) = (F(P/a+1)/q)Y’P). Just as in the EISR model, the optimum value

for the scaling factor™(g,a) = ijncr(P, g,a), is achieved wherR is solution to

gw (g + 1) = log (r (g - 1)) —log(q). (3.7)

This can be interpreted to mean that,det I' ((P/a) + 1) exp(—(P/a)W((P/a) +
1)), the optimal scaling factar*(qg,a) = exp(W(P/a+1)/a). Note thaf, as de-
fined through (3.2) is no longer the MLE bf. Nevertheless, Theorem 3.1 can still

be used to obtain a confidence upper-bound\pias stated in Result 2 below.

Result 3.3.Let T ~ Weibull(Aj,a), withAy > ... > Apanda > 1.

DefineA, as in(3.2), then

YL\ .
= (exp(—ﬂ> An < )\> <r (E +1) exp(—ELIJ (E +1>) , P>1.
a o} a a
(3.8)
Plots ofo*(q,a) vs. a are presented for some valuespin the left panel of
Figure 3.2. It can be shown that(q,a) is decreasing i > 1. This implies that
if a was unknown but had a constram®> L > 1, then the worst possible upper-
bound computed through (3.8) isat= L. Stated otherwisey*(q, L)fxn would be

an atleast 10@ (1—q)% confidence bound fax, with unknowna anda > L > 1.
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FiIG 3.2 Plot ofo*(qg,a) vs.q.
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3.2.3. Gamma isotonic software reliability model

Another extension of the EISR model is the Gamma isotonitwswé reliability
model (GISR) in which we havé ~ Gammah;,a) with A1 > ... > A,. The-
orem 3.1 can be used on the GISR model to obtain confidencer-bpped
for Ay by assumingrF to be the CDF ofGammdl,a). As in the case of the
WISR model, the scaling factor would be a functioncofjiven byo(P,g,a) =
(I’(P+a)/(ql’(a)))(1/P). The optimum value for the scaling factar;(q,a) =

ijnc(P,q,O(), is achieved wheR is the solution to
log("(P+a))—log(l(a)) —PW(P+a) =log(q), (3.9)

This can be interpreted to mean that, fpe ' (P + 1) exp(—PW(P+ 1)), the op-

timal scaling factoo™(qg,a) = exp(W(P+1)). This result is stated as follows:

Result 3.4.Let T ~ GammdA;,a), withAy > ... > Ay anda > 0.
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Define5\n asin(3.2), then

P (e”’<P+“>Xn < A) < %e—w“’”), P>1 (3.10)

Plots ofo™(qg,a) vs. a are presented for some valuesgoh the right panel of
Figure 3.2. It can be shown that (qg,a) is increasing i, which implies that,
if a < U, then the largest possible upper-bound computed throudl®)X3 at
a=U. Alternatively,o*(q,u)f\n would be an atleast 100 (1 — q)% confidence

bound forA, with a unknown and with the constraint< U.

3.3. Extension to Non-Isotonic Software Reliability Models

The assumption that reliability improves after the detsttand repair of every
failure in a software product has been criticized by manyfssiicated Bayesian
models have been proposed to address this problem (see Bdshbaahimi
(2003) for an example). We provide a simpler alternativeafigressing this issue.
Instead of assuming thd@t ~ ExponentiafA;) with Aj11 < A;, we shall assume
thatAj1 < BA;j, for some knowr3 > 1. The assumption considers the possibil-
ity of Aj+1 > A (i.e., the reliability of the software could have worsenédrahe
detection and fixing of th&" defect).

Information abouf3 may be derived from prior experience of a software test
engineer, much like the Bayesian prior distributions regrthe failure rate of a
software product in Bayesian software reliability modellse Boftware test engi-
neer could deriv@ from the failure rate of other software products that hawenbe
tested in the past. The parameeran be interpreted as the ratio of two subsequent
inter-failure times. Hence one possible estimat@ ohay be the mean observed

ratio of successive inter-failure times of a similar/rethsoftware product.
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Define§ = B~ (" T; and note tha§ ~ Exponentialy;), wherey, = A"
SinceAi1 < BAj, we haveyi 1 <V and hencé&y, ..., S, conforms to the require-
ments of Result 3.2. A confidence bound wnh= A, can now be obtained by

applying Result 3.2 o = B~ (") T;. This is stated as follows:

Result 3.5. Let T ~ ExponentiafA;) independently, with\j11 < BA;, for i =

1,...,n—1, B3 > 1known. Letjtbe the realization of T Define

1

X(B)n _ — — (3.11)
maX<B ﬂtﬁr“dﬂn? & +2r:2:g_m+tna o 7tn>
Then for P> 1,
P (e IA(B)n <hn) < T (P+1)e PP, (3.12)

The extension of this result to non-isotonic Gamma or Weiknftware relia-
bility models is very similar. In particulafx(B)n can be used in (3.8) and (3.10) in

place ofin, as given by (3.11).

3.4. Extension to Geometric Isotonic Software Reliability

Instead of considering@ ~ Exponential one may consideT; ~ Geometri¢p;),
with p1 > p2 > -+ > pn. Such a model is natural when the measured time to
failure has discrete measurement units. The PAV algoritambe used to obtain

the ML estimate ofp, and is given by.

. 1
Pn = (3.13)

tn+tn_ tht..+t |
max{tn,”z“,...,n - 1}

wheret; is a realization off;. A confidence upper-bound fq, in terms ofp,, is

of interest. Using arguments similar to those used in thefpgbTheorem 3.1, it
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TABLE 3.2
Expressions foh, for k=1,...,n, corresponding to four patterns of improvement
Constant 6k=1/3
Linear Bk =1—2k/3n

Convex 1(2k<n)x (1—4k/3n)+1(2k>n)x1/3
Concave 1(2k<n)+I1(2k>n)x (1—(4k—2n)/3n)

can be shownthat = (T1+---+Tn)/n,Yo = (To+---+Tp)/(n—=1),--- Yy =T,

is a martingale and the Doob’s maximal inequality can beiagpb p,. Theorem

3.1 however, can no longer be used to obtain a confidence Houmg because
E(TP) is no longer proportional t@?; for example,E(T2) = (2— pn)/p2. An
approximate confidence interval is possible by replaggevith p, in the corre-
sponding formula for th®™" moment. Such an approximation would compute an
upper-bound forp,. Result 3.6 states the result using the second moment of the

geometric distribution.

Result 3.6.Let T ~ Geometri¢p;) independently for+=1,... ,nwithp > ... >

pn. Definep, as in(3.13) Then,

. [2—P
P <pn qpn < pn> <gq. (3.14)
3.5. Simulation Study

We now investigate the performance of the upper-bound tireimulations. We
consider four different patterns of software reliabilitpprovement. These are
presented algebraically in Table 3.2 and presented gralphio Figure 3.3 for
n = 10. Failure timesT; are simulated such thd ~ ExponentialA;), for i =

1,...,n, whereA;’s are obtained from one of the models in Table 3.2.
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FIG 3.3. Plot of Ak vs. k for four different patterns of software reliabilitypnovement with a= 10.

1.0
0.8f
0.6f
0.4}
0.2}

concave
T T

linear
r :

1 1.0b
1 0.8f
1 o6}
1 0.4}
1 o0.2b

0.0

1.0p
0.8f
0.6
0.4f
0.2}

0.0

0

n L n
2 4 6
convex

T T

L
8 10

.
0'OO 2

.
4 6 8 10
constant
: T

1 10b
1 osf
1 o6l
1 o4l
4 o2t

0

0.0

The simulated data is analyzed using parametric model®ftware reliability,

namely the Jelinski and Moranda model (Jelinski and Morad@a?2) and the

Moranda model (Moranda, 1975), which correspond to linedra@anvex models,

respectively. The estimates »f, are obtained through the method of maximum

likelihood. The Jelinski and Moranda model assugs= A(N — k+ 1), while

the Moranda model assumes thgt= exp(a — k). Upper-bounds fol,, with a

required coverage probability of 160(1 — )% are obtained from these model

through parametric bootstrap. The simulated data is alstyzed through the

EISR model and ML estimate @, is obtained through (3.2). Also, 100(1 —

q)% upper-bound fol, is obtained through (3.6). The performance evaluation

studies the coverage probability and the relative size eubper-bounds fok,

using 1000 simulations, from each of the four patterns e&bdlty improvement

presented in Table 3.2. The evaluation is donenferl0, 25 and 100, respectively,

and the results are presented in Table 3.3. Coverage pribieghaiith substantial

shortfall in the expected 95% coverage are highlightedertable.

In the simulation study, the linear model was chosen as ittgxanodels the
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Jelinski and Moranda model, thus providing an example whereroperties of
the proposed confidence bound can be studied when the coroded is available.
The convex model was chosen as it can be approximated by tbetcgphication
model of Moranda, while the concave model was chosen as itatdoe approxi-
mated by either the Jelinski and Moranda model or the desphication model of
Moranda. The simulation study reveals astonishing resolserning the cover-
age probability of the parametric bootstrap based confelepper-bound fok,.
The Jelinski and Moranda model when applied to data sindifaten a model in
which there is no improvement in reliability (i.e., the ctare model of Table 3.2)
computes 95% confidence bounds that havé%bcoverage fon = 10, Q7% for
n= 25 and no coverage for= 100, respectively. This indicates the bias of the re-
sults when the model is not true. For the concave model, fimsBeand Moranda
model produces 95% confidence bounds that have%8247.1% and 0% cover-
age forn = 10,25 and 100, respectively. When the true model is linear, t8é 95
confidence upper-bound from the Jelinski and Moranda mamlaks close to at-
taining the required coverage probability only when n= Ilfese results alone
should warn against using parametric model when the exaetrgric nature
of the underlying reliability improvement is not clear. Thlwranda model fares
slightly better than the Jelinski and Moranda model, esgdior data simulated
from the constant reliability improvement model. This candtributed t3 = 0
in the Moranda model being equivalent to the constant riditiamodel. The per-
formance of the confidence bound from the moranda model isygben applied
to data simulated from the concave model; the 95% confideppertbound for

An has only 82%, 5@9% and 10% coverage for= 10,25 and 100, respectively.
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All these anomalous coverage values have been highlight&dile 3.3. Clearly,
parametric models should not be used when the nature of thexlying reliability
improvement is unknown. The confidence upper-bound\foobtained through
EISR model, on the other hand, has more than the requireddeoick across the
different models, as expected. The relative size of the denfie bounds obtained
through (3.6) are generally larger (exceptifice 10), as expected, since these are
upper-bounds. Since the parametric models have substahtefall of the re-
quired coverage in certain cases, we note that method bag@da) may be more
appropriate for obtaining a confidence upper-bound\fpwhen the underlying

model for software reliability is not known.

3.6. Applications

Failure times of a software sub-system for 136 iterationgl@bugging for a
commercial software was obtained from Musa (2012) (Dat@sdBased on this
dataset we consider the problem of estimating the failune alistribution of the
next software failure using data corresponding to the l@sterations. The data
is provided in Table 3.4.

We assume that every inter-failure tiligfori = 1,...,n, is exponentially dis-
tributed with rate parametes. However, unlike the parametric models, we make
a generic assumption af 1 < Aj which corresponds to non-decreasing reliability
of the software. The PAV algorithm based ML estimata gfand the correspond-
ing confidence intervals using (3.6) with a minimum conficeat50% 90% and
95% are provided in Table 3.5.

We now consider another example concerning user-repootfitgdage defects.
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TABLE 3.3
The relative size of the 95% upper confidence bouriq, efith the coverage probabilities in
parentheses
n=10
Model Jelinski Moranda Moranda An

Constant  0.9%35.6) 4.71(98.3) 3.87(99.1)

Linear 4.08 (100.0) 7.26 (100.0) 7.98(99.1)

Convex 5.53(100.0)  10.87 (100.0) 9.72(98.9)

Concave 1.87 (92.6) 2.582.0) 4.47(99.0)
n=25

Model Jelinski Moranda Moranda 3\n

Constant 0.570.7) 2.28 (97.4) 3.44 (99.1)

Linear 2.42 (100.0) 3.85(100.0) 5.92(99.0)

Convex 3.45 (100.0) 6.24 (100.0) 7.43(99.2)
Concave 1.0347.1) 1.14(50.4) 3.68(98.9)

n=100
Model Jelinski Moranda Moranda 5\n
Constant 0.3%0.0) 1.43(96.2)  3.29(99.6)
Linear 1.41 (96.0) 2.60 (100.0)  4.39(99.1)
Convex 2.02 (99.6) 4.21(100.0) 5.07 (99.4)

Concave 0.600.0) 0.75(10.1)  3.35(99.7)
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TABLE 3.4
The inter-failure times (CPU seconds) for the last 10 itemas.

Iteration 1 2 3 4 5 6 7 8 9 10
Failure Time 40 2 86 221 6 891 23 4 437 66

TABLE 3.5
ML estimate\ 1o and its corresponding confidence bouh@a, with at leastl00x q% coverage.

N 30.50 30.95  30.99
A10 )‘90 )‘10 >‘10

0.0035 0.0067 0.013 0.016

Bug-databases record defects discovered by the users diftheuse after its re-
lease. Software bug-database have become an importamesoludata for es-
timating the reliability of a software after its release. Agbdatabase can be
gueried to determine the number of days between successieetddiscov-
eries. Typically, bug-databases will classify the defanote a number of de-
fect classes with security defects being an important atdsdefects for the
software community. Table 3.6 presents data correspontirido most recent
security defects retrieved from the publicly available lolagabase of Python
2.6, a popular scientific scripting language. The bug-detabvas accessed at
http://bugs.python.org/issue? @template=search onadprdi, 2012 and the 15
most recent security defects that were confirmed as on Jaldar2012 were

retrieved.

TABLE 3.6
Number of inter-discovery days for the discovery of tialkfect; T corresponds to days since
release of the first version of the software.

k 1 2 3 4 5 6 7 8 9

tc 2150 83 137 S5 28 32 309 62 164 38
k 10 11 12 13 14 15

t« 70 170 251 16 285 24
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Typically after the discovery and reporting of a defect ia bug-database, the
defect is fixed and the reliability of the software is expddt@improve or remain
the same. After the defect is reported and fixed, the quanfumprovement in
reliability is typically not known. The isotonic geometriegression model is used,
for the sake of illustration, to estimate the reliabilityao$oftware, with respect to
a critical security defect, using (3.14). In particulag tiumber of inter-discovery
days for observing thi" security defect can be assumed to®eometri¢py),
fork=1,...,n,with p1 >,...,> pn. The PAV algorithm can be used to obtain the
MLE p,, of pn. One can use (3.14) to obtain a confidence upper-boungfaith
a minimum required coverage probability. The results aes@nted in Table 3.7
for minimum coverage probabilities of 50%, 90% and 95%. Thpau-bounds
on pn, with n= 15, can be converted to lower-bounds on the expected nuniber o
days till the discovery of the next security defect. In pautar, from Table 3.7,
we may conclude that the expected number of days for tHese8urity defect to
be discovered is P16 = 154 days, with a 95% lower bound beingffs® = 24
days.

TABLE 3.7

ML estimatef;s and its corresponding confidence bounds with minimum redquipverage of
50%, 90%, 95% and 99%.

A ~0.50 ~0.90 ~0.95
Oi6 Uis Uis Uie

0.0064 0.013 0.028 0.040

3.7. Concluding Remarks

To conclude, three generic models for software reliabilitprovement have been

proposed using Exponential, Gamma and Weibull distrilmatiéamilies. The pro-
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posed method for computing confidence bounds, based on W B#sed ML

estimate, presents a new approach of constructing conédetervals that cir-
cumvent the important concerns raised by Andrews (2000gimgubootstrap pro-
cedures in constrained parameter spaces. The approacivalds using asymp-
totic procedures as they suffer from concerns related ioleéng as many model
parameters as data-points. The proposed confidence borsdsrele to com-
pute and interpret as demonstrated in Section 3.6. The ation$ study indicates
that the proposed method is superior to a parametric modelbf@ining confi-

dence bounds for software reliability in the absence ofrmfation regarding the
nature of software reliability improvement. Extensionlod imethod for bounded
improvement in reliability has been discussed along witlesions to Geomet-
ric isotonic regression models. The proposed methodology be particularly

useful to estimate the reliability of software with rare aratastrophic failures,
where failures will be few and very few assumptions can beenwadarding the

improvement in reliability after each debugging effort.



Chapter 4

Dependent Isotonic Software Reliability

Models

The consequences of an act affect the probability of its occurring.aga

B. F. Skinner

4.1. Introduction

Estimation and statistical inference for the dependenbrgo software reliability
models, proposed earlier in Chapter 2, are developed in Hapter. In particu-
lar, we develop conservative bounds similar to those in Glrafit The bounds
proposed in Chapter 3 cannot be used for the dependent issoitware relia-
bility models because we make use of the independence aftiefailure times
to prove Theorem 3.1. Also, the bounds of Chapter 3 cannotidensght cen-
soring of the most recent failure time, i.e, it cannot coasidilure free operation
of the software since the last failure. Another problem with bounds proposed
in Chapter 3 is that even under the assumption of independbaceis no guar-
antee that they will be monotonic. In particular, the lowentidence limits for
reliability, after successive discovery of defects andrthepair, may not be in-
creasing even though we assume an increasing reliabibtyaFhon-statistician

this may be hard to interpret as these estimates will be & witl the assumption
97
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of increasing reliability after every defect discovery aegair. To address both
these problems we propose a novel and simple method forrogtiafy anexact
one-sided confidence bound, with a minimum coverage prétyabor the single
index parameter of the failure time distribution corresgliog to the isotonic soft-
ware reliability model. The method is based on the distiidubf max Ty, ..., Tn),
whereTy's denote the observed inter-failure times, of saguccessive failures.
The proposed bound is valid even for small data sizes, candukfied to con-
sider non-independence of tfigs and be used when there is no improvement in
reliability after fixing a defect. Additionally, the bouncic be used even when
the time to failureTl,, of the current version of the product is right censored. This
chapter is organized as follows. Section 4.2 formulateptbblem and presents
the main result in a general framework. Section 4.3 studiegtoperties of the
proposed upper-bound through simulation. Section 4.4epteshe application of
the proposed upper-bound to two publicly available sofenatiability datasets
and a new dataset retrieved from the automatic error-logiy@mworkstation. We
would like to highlight that the application of the methodhe dataset in section
4.4 reveals that two popular models for software reliabifitight underestimate
the reliability of the underlying software. Although we @qb the reliability of
the product not to decrease with every subsequent vers$isnnight not happen
in some situations. To address this issue, we demonstrai¢higomethod can be
modified to consider a bounded decrease in reliability ofstifesequent product
versions (See Section 4.2). Section 4.5 ends with someuding remarks.

The dependent isotonic reliability model is a very geneoiftveare reliability

growth model that can consider arbitrary dependence betseecessive failure
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times. Estimating the failure time distribution of the kttgersion of the software
and providing confidence intervals for metrics derived frilv@ estimated failure
time distribution is a challenge. This is because of (i) tHateary nature of the
dependence between the failures (ii) the possibility ofadigguin some or all of
the failure time distributions. Recently, there has beereiged interest in char-
acterizing the asymptotic distribution of PAV estimatortie context of dosage
studies (Jewell and Kalbfleisch, 2004; Tebbs and SwalloWw328hattacharya
and Kong, 2007). The inconsistency of bootstrap proceduhes the parameter
space has non-strict inequality constraints has been hgtédasdrews (2000). Li,
Taylor and Nan (2010) proposed a modified bootstrap estimfatcestimating
two binomial proportions in the presence of order reswitdiin small samples.
Similar bootstrap method seems difficult for the problemmgesonsidered here
since there is exactly one observed failure time for evergiga. Every additional
version introduces an additional unknown parameter, vésdrethe method of Li,
Taylor and Nan the number of parameters is fixed at two. Thaodetf construct-
ing a conservative one-sided confidence bound proposedsintthpter is a novel

solution that addresses both the problems.

4.2. The Main Result

Let Ty ~ F(.), fork=1,....,n, whereR(.) is the cumulative distribution function
for Tk. Since successive versions of the product have non-déocgeadiability,
we will impose the constraint th(t) < R 1(t) for all t. An estimate of,(t),
for anyt € R, along with an upper confidence bound is of interesklf .., F,

are assumed to be arbitrary CDF’s with the above stochasteriog, then estima-
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tion of Ry (1), for allt € R, may not be feasible, specifically for- max Ty, ..., Ty).
However, ifR’s belong to a family of distributions indexed by a real-\vadisingle
parameter, i.&y(t) = F(t; 0x), with F(t,0) increasing irB for all t in the support
of F, then under the assumption of mutual independence, maxihkeirhood
estimation of@y’s, and in particula®,, may be possible for certain families of
distribution. In order to ensure a margin of safety, it is emonportant to obtain
a confidence bound with a specified minimum coverage prabafol 6, rather
than just obtaining a point estimate 6. As in the context of software relia-
bility models (Jelinski and Moranda 1972), we assuine> ... > 6,, leading to
F(t;01) > --- > F(t;6;) for all t. For example, one may considé¢s to follow
a Pareto distribution with support df, ) and assume(t) = 1 — (1/x)%, for
k=1,..., with 81 > 02 > .... Alternatively we could assumé&’s to follow a
Rayleigh distribution with(t) = 1— ex;i—tz/ek) with 8, >0, > ... > 6.

The assumption thdl, may possibly be equal t8_1 implies that the num-
ber of unknown parameters is not specified. Such an obsemnvatdicates that
asymptotic methods for computing confidence bound§{@sn — « may not be
appropriate. The possibility df, ..., T, being a dependent sequence of observa-
tions, with the nature of the dependence also being unknompn complicates the
problem. It is in these contexts that we propose Theoremarfl#.2, which can
be used to obtain confidence bounds for the paranfgterth a minimum cov-
erage probability. Theorem 4.1 is formulated under theragsion of Ty, ..., Ty
being independent, while Theorem 4.2 is formulated withtbetassumption of
independence.

Define ¥ = {F(.,08),0 € R} to be a family of cumulative distribution func-
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tions with support in(—c, o) indexed by the paramet& c © C R, with the
property that-(t,0) > F(t,0'), if 6 > 6/, Vt € (—c, o). Let Ty ~ F(.,01), Tz ~
F(.,82),...,Tn~F(.,6n),...with8; > 062> ... > 6, > ..., be an independent se-
quence of observations. Defife(p,0) =inf {t : F(t,8) > p}. Letty,tp,....1t,

be realizations ofy, ..., T,. Based ony,to, .. .,t,, define the statistic

8P = min{e: maxty, ..., tn) > F—l(pl/“,e> 8¢ e}. (4.1)

Note that, sinceF~1(.;0) is a non-increasing function o, this minimum 6f

exists.

Theorem 4.1. The statistidf has the property E@ﬁ < 0n) < 1-—p. This implies
that8f is an at leastl00x p% upper-bound for the paramet@y, that is, R85} >
6n) > p. In other Words{e < ér'?} is an at leasfLO0x p% one-sided confidence

interval.

Proof. Note thatP [max(Ty, ..., Tn) <A] =[1{_1F(A,6j)

> [F(A,0n)]", sinceF (A, 8,) <F(A,6;),forj=1,....n.

DefineA, = {ma>(T1, T >F 1 (pl/“ﬁn— %) } fork=1,2,.... Then,

P(A) < 1—[F (Fl(pl/“,en—l/k),en)]n
1 () )]
< 1-p

sinceF1 (pl/”,en— %) >F-1 (pl/“,en> andF (F*l <p1/”,9n> ,en) > pb/n,
Now, P(8 < 6,) =
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P(Hs>03.t.ma>(T1,...,Tn) >F_1(p1/”,9n—6),vo<6§s) =
P(U‘;;ln;f:jAk) = P(Iimiank) < liminf P(A) <1—p.
k k
O

It is important to note that Whiléf is also a confidence bound féf since
6, < 81, the boundf, can be expected to be smaller as itis based on n observations
Ti,..., T, while 87 is only based offy.

DefineF = {F(.,0),0 € R} to be a family of cumulative distribution as before.
LetTy ~F(.,01), Ta~F(.,82),...,Tan~F(.,6p),...with81 > 62> ... >6,>....
be a possibly dependent sequence of observationg; beta realization off;.

Based ony, ..., t,, define the statistic

or = min{e: maxty,...,tn) > F 1 (1— 1_Tp,9) ,0¢€ G)}. (4.2)

Theorem 4.2. The statisticéﬁ has the property Eérﬁ’ <6y <1-p, for k=
1,...,n. This implies thaBh is an at leastL00 x p% upper-bound for the pa-

rameterf,, evenif T,..., T, are dependent.

Proof. Note thatP (max{T1,...,To} > A) = P(U; {Tj > A})
<37-11-F(A,6)) <n[1—F(A,8,)], sinceF (A,6n) <F(A,6j),forj=1,...,n.

The rest of the proof follows the arguments of Theorem 4.1. O

In situations whefy is right censored dg, the proposed bound$ and6P may
be computed by replacing, with tg. The statistics will still be a valid upper-bound
for the parameter with a minimum coverage probability, simax Ty, ..., Ty) >
maxTn,..., Tn—1,t0). This is particularly useful as the time to failure for theekt

version of the product may often be right censored. Note thi#t T, being right
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censored, the maximum likelihood estimateédptioes not exist. Howevebl can

still be obtained and used as an at least 2@0% upper-bound fof),.

Monotonicity of the Confidence Bounds

There is no guarantee that the bouréiisand 85 will monotonically decrease
with n. For example, an observatidp, 1 S.t. Thy1 < maxTy,..., Ty) will resultin
érﬁ’H > 6. Due to the nature of the sequential quality improvemeis,ititrease
is to be expected as one would intuitively require the timéatture of n+ 1"
version of the product to be more than the time to failure btlre preceding
versions. Hence a quicker time to failure of the product nhk- 11" iteration
would indicate that a decrease of thg@arameter over the preceding versions is
doubtful, requiring an increase éﬁﬂ. It is important to note that the problem of
non-monotonicity of bounds is also present in the MLE estimasing the Pooled
Adjacent Violator Algorithm. See Figure 4.3 for an examlee monotonicity of
the confidence bound or an any estimate@gmay however be desirable as it
is easily interpreted by practitioners who will otherwisedfia sudden increase in
the bound foB, hard to explain when the underlying model postulates thesfth

decreases with. To this end, we propose the statistics

6k = min{@:maxty,...,ty) > F(p/™ )} (4.3)
6k, = min{8:maxty,....t,) > F}(1—(p/m),0)}, (4.4)

wheremis chosen to be an upper-limit for the number of sequentiptavements

that will be conducted.
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Theorem 4.3.The statistic§}, , and8 m are at leastL00x p% confidence bound
for 6, under the assumption of Theorem 4.1 and 4.2, respectivisly, @, and

ér‘{m are both non-increasing in n forg m.

Proof. DefineAgnm = {max(Tl, T >F 1 (pl/m,en — %) } fork=1,2,...
By following the steps of the proof of Theorem 4.1, it is can beven that
P(Aknm) > pVM > p. With this result, the proof oP(éRm > 0n) > p follows
the same arguments as the rest of the proof of Theorem 4.1.

To proveéﬁm is decreasing im, for n < m, note thatmaxTy,...,T,) is in-
creasing inn and F~1(p%™, @) is decreasing ir®. Hence ifmaxTy,..., Ty) >
F-1(pY™ 8), we will havemaxTx,..., Thy1) > F~1(pY™,0), which proves that

Bn+1.m < Bnm. The proof forBk m follows similar arguments. O

It is easy to see thath and6f are less than or equal ﬁﬁ,m andérﬁ’,m, respec-
tively (See also Figure 4.3). For the purpose of analyzingieatial improvement
plans, with the requirement of monotonic confidence bounds, may choose
m = n+ ¢, wherec is the number of sequential improvements expected in the

future.

4.3. A Simulation study

In order to study the performance of the proposed conseevapiper-bounds nu-
merically, we consider a model in whidl ~ Exponentia{6y), fork=1,...,n.
Theorems 4.1 and 4.2 can be used to provide a conservative f@0confidence
bounds foB,,. We consider four patterns of reliability improvement, redyncon-
stant, linear, convex and concave, as algebraically destin Table 4.1 and pre-

sented visually in in Figure 4.3 for= 10.
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TABLE 4.1
Expressions foby, fork=1,...,n, corresponding to four patterns of reliability improveme
Constant 6k=1/3
Linear Bk=1—2k/3n
Convex 1(2k<n)x (1—4k/3n)+1(2k>n)x1/3

Concave 1(2k<n)+I1(2k>n)x (1—(4k—2n)/3n)

Constant

0.5
0000000000

0 5 10
Convex
1 @
)
®
0.5 [ ]
(XXX XX
0
0 5 10
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If we consider the case when= 10, the conservative upper-bouéﬁ) for B1,
under the assumption of independence, is obtained by dimyil&, ..., Tig in-
dependent of each other with's as per each of the four patterns presented in
Figure 4.3. To consider the possibility of dependence betwbeTy’s, we sim-
ulate the correlated;’s, for i = 1,...,10, using a multivariate Gaussian copula
with a copula correlation of 0.5 (Nelson 1999) as followsagiate{Z;, ..., Z10}
from a multivariate normal distribution with dimension Bch that eacl; has
mean 0, variance 1 and with a covariance betweenzZarandZ, set to 05, for
1< j <k<10. ComputdJy = ®(Z), fork=1,...,10, whered(.) is the stan-
dard normal CDF. Note that eatl isUniform(0, 1), and since& andZ; are not
independent), andU; are also not independent. Compilite= —log(1—Uy) /6,
for k=1,...,10. EachTy is marginally distributed as axponentia{6y); how-
ever, due to the dependence betwden .. U1, the variabledy, ..., Tig are also
dependent. The simulated, ..., Tig are used to obtai@fo. The actual cover-
age probabilities o}, and8}, are estimated from 1000 such simulations with
p=0.90, 095 and 099 and are presented in Table 4.2.

The results of the simulation study are in concordance with statements
of Theorems 4.1 and 4.2 as the upper-bounds achieve theirdet! minimum
coverage probabilities. Note that, when all #hés are equal, fok = 1,...,10,
and theTy’s are independent, the coverage probabilityéﬁg is close to p, for
p = 0.90,095 and 099, indicating that, in such a case, the bounds will be tight,
as is expected from the proof of Theorem 4.1. We will next gttiee average
size of the conservative upper-bound which we define as tiee shthe upper-

bound to the true parameter value, givené@yen and 6 /Bn, respectively. The
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results are presented in Table 4.3 fo= 90%,95% and 99%. From Figure 4.3,

it is clear that for anyk, 6y is on an average the largest for the concave model,
followed by the linear, convex and then the constant modethSan ordering
leads tomaxTs, ..., Ty) being the largest, on the average, for the constant model
and least for the concave model. This implies the reverseriomgl, on the average
size, for the proposed upper-bounds from Theorems 4.1 @&hd'liis is evident

in Table 4.3.

To illustrate the proposed confidence bounds visually, wesicler data simu-
lated from the convex model with n = 25 (see Table 4.1) and caenfhe upper-
bounds foB, namely8 = —log(1— p'/%)/max(Ty,..., Ti) and
él?,m = —log(1 — p¥™)/maxTy,...,T), with m = 25 and plot them fok =
1,...,25. Also, for comparison, the MLE o and the corresponding upper-
boundsé,f based only,..., Ty are shown on the same plot. Such a plot, for one
set of simulated data, is presented in Figure 4.3 \pith 0.95. As alluded to be-
fore, the ML estimateé'll"L of Bk and its upper-bounép, based oy,..., T, are
not monotonic witrk as shown in Theorem 4.3. Furtlﬁﬁm is monotonic withk
as required by Theorem 4.3. Note that the size of this momotoound is larger
than the non-monotonic bourﬁxﬁ. We leave it up to the practitioner to choose be-
tween the two bounds based upon the requirements of thegonditing solved.

In all subsequent analysis, we will present the resultsdasdhe bound®y.

We now proceed to comparing the confidence bo@ﬁdwith confidence
bounds estimated by two well known parametric models, nartted Jelinski
and Moranda model and the Moranda model. The Jelinski ancginiar model

assumes thaly = a — Bk for k = 1,...,n, while the Moranda model assumes



Chapter 4: Dependent Isotonic Software Reliability Models 108

45
40.95
O— 0125
it S ooooooo
------- .
§0-95
o <O
= 35 y
L oML
T |
S True 6
8
— 250
@
s
S 2
X
0 15F
o
1k
0.5F ‘ =
i —
o )

)
&
=
15}
[ A
3}
N
o
N
@

FIG 4.2. Comparison of the two confidence boué@ﬁ andéf along with the MLE foBy obtained
using the PAV Algorithm for a simulation of data from the enmodel

TABLE 4.2
Estimated coverage probability of the upper-bounds forfthe patterns of decrease of reliability
improvement.
Independent Dependent

8090 {095 {099  FO.90 {095  {§0.99
Pattern 075° 035> 855" 6i5° 65> 6%

Constant 0.90 0.95 099 094 0.97 0.99
Linear 099 099 099 098 0.99 1.00
Concave 094 097 099 096 099 0.99
Convex 098 099 100 099 0.99 1.00

TABLE 4.3
Average values d,/810 and8¥,/81o for the four patterns of reliability improvement.
Independent Dependent
A0.90 Q0.95 A0.99 70.90 00.95 00.99
Model 835" 635> O O 85> 8ip

Constant 1.82 214 290 360 3.84 513

Linear 555 6.50 832 9.67 10.37 1556
Convex 259 3.05 389 467 548 6.91

Concave 7.07 8.07 10.63 13.70 12.79 17.48
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Fic 4.3. Comparison of the two confidence bourﬁﬁ’% and 8 with 95% confidence bounds
obtained using parametric models

that By = exp(a — Bk) for k =1,...,n. The parameteBy can be estimated as
Bk =0a— |§k for the Jelinski and Moranda model, while for the Moranda gipd
it can be estimated & = exp(a — ﬁk), whered andp are the ML estimators
from the corresponding models. 18@% confidence intervals fd, can be ob-
tained through parametric bootstrap. For a typical sinmtafrom the convex
pattern withm = 25, a graph of the proposed confidence bOLﬁfdsiIs monotonic
counterparé,'zm, for p=0.95 and the 95% confidence bounds obtained from the
Jelinski and Moranda and the Moranda models through parenteiotstrap are
plotted againsk = 1,...,min Figure 4.3. Observe from the figure that the confi-
dence bounds obtained through the parametric models arearaitonic.

In order to evaluate the precision of the upper-boé.ﬁdNe compute the aver-

age size of the upper-bound, as defined before, over 1000etions. We present
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such a comparison for n = 10, 25 and 100 using the four modetsliability
improvement described in Table 4.1. The results are predeantTable 4.4 for p
= 0.95. Note that the average size and coverage probabibfiehe confidence
bounds computed through the two parametric models areaginalthose pre-
sented in Table 3.3 in Chapter 3. Observe that the consesvagiger-bound®
has the minimum required coverage probability of 95% acatisthe four types
of reliability improvement while the parametric model haaerage that is much
lesser than the intended coverage. This shortfall in theired coverage for the
confidence bounds obtained through the Jelinski and Moramat#el increases
dramatically withn for the convex and constant patterns. This may be due to the
Jelinski and Moranda model not being a good approximatiothi® constant and
concave reliability improvement models. The confidencenldgwbtained through
the Moranda model also suffers from a similar problem fordbecave reliabil-
ity improvement patterns. The simulation study clearly dastrates the dangers
of using an incorrect parametric model for estimating tHelpdity of the soft-
ware. While the proposed bounds are larger, they consigteatle the required

coverage both in small and large samples as expected froordinet. 1.

4.4. Applications

In this section, we consider three application areas foptbhgosed conservative

upper-bound and illustrate with an analysis of a dataset #ach area.
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TABLE 4.4
Comparison of average value ﬁ6§§5/9,1 to 95 % confidence bounds obtained by using parametric
bootstrap. The coverage probability percentages are gindmackets.

Method constant linear convex concave

n=10
on 2.16 (95.6) 6.11(99.5) 3.10(97.1) 8.11(99.8)
Jelinski and Moranda 0.96 (35.2) 4.09(99.8) 5.52(99.2) 7{92.1)
Moranda Model 4.71(98.9) 7.26(99.9) 10.87(99.4) 2.510pB2.
n=25
G 1.80(95.0) 4.93(99.6) 2.26(97.5) 6.49(99.8)
Jelinski and Moranda  0.57 (0.7)  2.38 (100.0) ~ 3.44 (100.0)03 {47.1)
Moranda Model 2.27(99.2) 5.92(99.0) 7.43(99.3) 3.68(p8.7
n =100
on 1.53(94.7) 3.62(99.9) 1.80(97.1) 4.83(99.9)
Jelinskiand Moranda  0.38 (0.0) 1.43(96.1) 2.02(99.4) (QU6D)
Moranda Model 1.46 (96.1) 2.62(100.0) 4.22(100.0) 0.734)L0

4.4.1. A Sequential quality improvement plan with non-deasing

exponential failure times

Consider a sequential quality improvement plan for a produitt n quality im-
provement iterations. First, a prototype of the producestdd till its first failure,

at timeT; following Exponentia{61) distribution withE(T;) = 1/64, is observed.
After the first failure, the production process goes throagjuality improvement
exercise resulting in the second prototype which is agaitetktill its failure, af-
ter time T, following Exponential6,) distribution, is observed. We assume that
due technical diligence is followed during the quality iropement exercise (i.e.,
product’s quality does not deteriorate) so tBat> 6, can be assumed. The
such successive improvement exercises give risdddure timesTy,. .., T,, with

Tk ~ Exponentia(6), fork=1,...,n, and6; > ... > 6,. Lett; be a realization
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of T;. A statistician is expected to estimdgand provide an at least 95% upper-
bound (one-sided confidence interval) fi. Such an upper-bound can be used
to obtain an at least 95% lower bound for the probability thatnth improved
version does not fail before a certain titggthat is, the reliability). Theorem 4.2
can be used to compute an at least £Q9% upper-bound fo8,, without making

any assumption about the nature of dependdrateveenl’s as

gp _ log(n) —log(1—p)
n maxty,...,tn)

(4.5)

wheret; is a realization off;.
Under the assumption of independencdgé, the MLE of6,, can be obtained

through the PAV algorithm (Ayers 1955) as given by

A 1

O = to-+t tht.. 4ty |
max{tn, n 2“*1,..., N 1}

(4.6)

However, since the asymptotic distribution@fis difficult to obtain (See Li,
Taylor and Nan 2010 for an example relating to binomial tstron), finding
a 100x p% confidence interval foB, can be difficult. On the other hand, the
proposed upper-bour&ﬁ as given by

—log (1— pl/”>

6p =
maxty, ..., tn)

(4.7)

provides a conservative one-sided confidence intervalnwheT,’s can be as-
sumed to be independent.
The Dataset of Musa (2012) consists of software failuregifoe 136 iterations

of debugging for a sub-system of a commercial software. dfitye failure times
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TABLE 4.5
The inter-failure times (CPU seconds) for the last 10 itenas

Iteration (k) 1 2 3 4 5 6 7 8 9 10
Failure Time(ty) 40 2 86 221 6 891 23 4 437 66

from this many iterations are hardly available and hence @resider the more
realistic problem of estimating the reliability of the seftre using only the ob-
served failure times in the last 10 iterations. The corradpw data is provided
in Table 4.5.

Two popular models for software failure data are the Jeliaski Moranda
(1972) model and Moranda (1975) model which assume therdéatlime Ty to
follow Exponentia(6y) distribution with8, = A(N — k) and 6y = expa — k),
respectively. Assuming independence of Tis, the parameterd\,N) and(a, 3)
can be estimated through the maximum likelihood princigmg the respective
models. The corresponding 95 % one-sided confidence igeimabig can be
obtained using parametric bootstrap. Alternatively, aleast 95% upper-bound
é8§5 for 819, without making any assumption about the nature of decrieadiés
can be obtained through Equation (4.7). Moreo®8rcan be obtained through
Equation (4.5) without assumirniy’s are independent. The corresponding conser-
vative lower bounds foBg are given in the third and fourth rows of Table 4.6.
Those against Jelinski and Moranda (first row) and Morandaofsd row) are
obtained through parametric bootstrap of the respectivieiso

The simulation study presented in Section 4.3 indicate98% confidence
bounds obtained through our method are, on an averager lgnge those ob-

tained through parametric models. However, the coveragieatility of the con-
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TABLE 4.6
Comparison of upper-bounds 6k
Confidence
Model 90% 95% 99%
Jelinski and Moranda  0.0072 0.0089 0.0123
Moranda 0.0065 0.0083 0.0141
C13 0.0051 0.0059 0.0077
G 0.0052 0.0060 0.0078

fidence bounds obtained through a parametric model may haxerage that is
substantially less than the required 95% coverage whenataetric model is
incorrect. Hence, a smaller size of the confidence bound &@arametric model
need not imply the confidence bound will have the requirecaye probability.
The upper-bounds @1 obtained through the two parametric models are smaller
thanéfo andéfo, casting doubts on the two parametric models. Inspite oftme
fidence bounds we propose being larger on an average basmaubateon results,
the confidence bound proposed by us is actually smaller th@setobtained by
the parametric methods. This indicates that the religtolithe software could be
increasing much faster than postulated by either the kelamsl Moranda or the
Moranda model. In the face of uncertainty regarding thepatec assumptions

and small sample size, the proposed conservative boundb@ragpre acceptable.

4.4.2. Sequential quality improvement plans with boundedidase in

reliability

Continuing with the model of the previous sub-section, theuagption of non-
decreasing reliability of subsequent product iteratioasnot be justified some-

times and hence the assumptidi, > ... > 6,, may not be valid. In such a
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situation, an assumption such @8¢ 1 > 6, for a knownf > 0 might be ap-
propriate. If > 1, then the parameter sequenbe,> ... > 6, would be al-
lowed to increase in a bounded manner. For example, if &ilumesTy,..., T,

are independently distributed as exponential variablesthe order restriction
of E(T1) < ... < E(Ty) is hard to justify, one may consider a restriction of the
form E(Tk-1) < BE(Tk), with a knownf > 1. Consider the parameter sequence
vi=01,Y2=02/B,...,Y¥n = 8n/B"L. Note that the parameter sequenge. ., yx

is non-increasing anf* 1T, ~ exfyk). Theorem 4.1 can be applied to the se-
quencely, BT, . ..,B" 1T, to obtain an at least 100 p% confidence upper-bound
Uf for yn. Lett; be a realization off;. The at least 108 p% upper-bound foB,
can be obtained ' 1{5. Also, the PAVA based ML can be used to compute the
MLE of 8, as

0, = pr (4.8)

n—1, n—2; n—1. I
e Ty P P

wheret; is a realization ofT;. Jelinski and Moranda (1972) present the time to
failures of a software subsequent to fixing the defect whaised the previous
failure. They provide the failure time data for 26 iteragsaf debugging and test-
ing. As with the previous analysis in Section 4.1, we consady the last 10
failure times. The data is presented in Table 4.7. Jelinski lMoranda assume
that thekth failure time Ty ~ exp(6x) with 8 = A(N —K). The linear decrease
model and the assumption that the paramegrsiust decrease witk has of-
ten been questioned. For this example, considering thadatimes in Table 4.7,
the assumption of successiVigs being stochastically larger does not seem to be

right and has been questioned recently by Basu and Ebrah@®8J2Therefore,
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TABLE 4.7
The inter-failure times (days) for the last 10 iterations

Iteration(K) 1 2 3 4 5 6 7 8 9 10
Failure Time(ty) 3 3 6 1 11 33 7 91 2 1

the assumption of bounded increase offikie seems more appropriate. Theorem
4.1 can be used to compute a conservative 95% upper-boug wanen we as-
sumeby < 6k_1. For the illustration, we considég < 26¢_,. The application of
Theorem 4.1 results in a conservative 95% upper-bounﬂltgrasécl’gf’ = 0.23,
which is surprisingly close to the value of 0.21 (obtainexhirthe graphically pre-
sented posterior mean and posterior standard deviatiody§preported in Basu

and Ebrahimi (2003).

4.4.3. Software Reliability from bug-databases and errogégers

Software bug-databases that record user-reported dgiestisie an increasingly
important source of data for software reliability asses#mA bug-database is
often used to track the set of known defects in the softwart @pcalender time
s. Error loggers perform a similar function but the errorsraseuser-reported, but
system-reported. We denote the set of known defects updadat timesby D(s),
with each defect identified by a unique defect ID. Softwargaips are often based
on fixing the set of known defects in the bug-database. Wheffegtde reported
at times, the defect is compared with the known set of deféxts-) to determine
whether it is already known and, if it is a new defect, tilEs) is updated with the
new defect. Defing(s) to be the probability that a defect reported at tigig not

contained in the known set of defe@$s—). In order to minimize the number of
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software updates, it is important to release an update bygfitkie defects iD(s)
only if the probabilityp(s) is less than a certain threshold (i.e., the probability of
recording an unknown defect is small). A simple and genendehfor p(s) is to
assume thap(s;) = p(s) if D(s1) = D(s2) andp(sz) < p(sy) if D(s1) € D(s2).
Letss,..., s, be the calender times when the finshew” defects are observed and
let My be the random variable denoting the number of defects tieablaserved
between calendar timeg_; ands, fork=1,--- /n, with Mg = 0. Letpx = p(%),
fork=1,...,n. Then, clearlyp; > p2 > ... > pn. It may be reasonable to assume
thatMy ~ Geometri¢py), fork=1,...,n, andM; is independent oM for i # j.
Denotem; to a be realization oM;. The PAV algorithm can be used to obtain
the MLE of p,, but as argued previously, finding a confidence intervalgois
difficult. Theorem 4.1 can be used to obtain an at least<dp% upper-bound for

pn as given by

. log(1— pl/”)
p_ 4
ph=1 exp( . m) 4.9

If the T's cannot be assumed to be independent, then Theorem 42 aivat

least 100x p % upper-bound fop, as

BP = 1—exp( log((1=p)/n) ) . (4.10)

maxmy,...,My)

Many operating systems provide software for monitoringeyserrors as and
when they arise using error loggers. After observing theréogs till n distinct er-
rors are reported, it may be necessary to compute the piip#iat a subsequent
error that is logged will be a new error that does not belonthéoobserved set

of errors. For an operating system observed by the authrsldta consisting of
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TABLE 4.8
Number of known defects reported from the operating systetarwse.

Iteration(k) 1 2 3 4 5 6 7 8 9 10
Number of defectgmy) 7 97 1 9 54 87 5 14 48 49

the number of additional errors observed beforektirenew error was observed,
fork=1,...,10, is presented in Table 4.8. Using (4.9), an at least 90%, &3d
99% upper-bounds fop1p are obtained as.047, Q054 and 071, respectively.
The bounds using (4.10), without assuming independenee).@48, Q055 and

0.072, respectively.

4.5. Concluding remarks

Computing confidence bounds for reliability, with a minimuverage proba-
bility, is important for assessing the risk of failure in aguct whose quality has
been improved sequentially. A non-parametric model forbeease in reliability
may provide a worst-case scenario for failure, which in tmay be used for risk
management. As demonstrated in Section 4.4, the propostdadogy can be
modified for applications which may allow the reliability decrease with a sub-
sequent version of the product. The proposed method careldeagsan alternative
to Bayesian procedures proposed by various authors forammsg possibilities
of a decrease in reliability after fixing a defect. The geligraf Theorems 4.1
and 4.2 can be used for computing one-sided confidence bdomaisy paramet-
ric family of failure time distributions indexed by a singlmknown parameter.
As mentioned in Section 4.1, the method makes few assungptegrading the

nature of the reliability improvement and does not make Gissymptotic theory;
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hence, it is ideal for analysis of data-sets with few faibuseich as in sequential
quality improvement plans for products/procedures wittasophic failures.

The upper reliability bound proposed in this chapter is didence interval. It
is conservative because the 12001 — p)% confidence interval obtained for the
reliability parameter through Theorem 4.1 or Theorem 4 @Quisranteed to have
atleast100x (1— p)% coverage and not exactly 1801 — p)% coverage. This
implies that the actual coverage can be much more thanx1Q0- p)% which
in turn means that the upper-reliability bound can be muoyelathan an exact
confidence bound. This is indeed indicated through restilésssimulation study
presented in Section 4.3.

Often the failure time distributiorf; (t;0), is continuous and monotonic in the
single index parametd. In caseF (t;0) is decreasing if® and successivBy’s
are non-decreasing, unlike the conditions in Theorem & can re-parametrize
F(t;08) to satisfy the conditions and apply Theorem 4.1. Also, whendistri-
bution involves more than one parameter, often there is anenpeter of interest
which keeps changing over different iterations while theeo$ remain unchanged.
Theorem 4.1 can be used to compute confidence bounds for the@er of in-
terest.

WhenTy’s are independent and identically distributed (i.i.d)eanay use like-
lihood methods to obtain asymptotic confidence bounds.ridiie/ely, Theorem
4.1 can be used to obtain a conservative upper-bound evemfdl sample sizes.
Moreover, Theorem 4.2 gives such a bound even wh&nare not independent
and can be used when successive software failures are sespebe dependent.

From the proofs of Theorems 4.1 and 4.2, the conservativadouthe 11D case
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is expected to be tighter with more accurate coverage piliiyadind relatively
smaller size, possibly because of sharing of more infolwnatDur simulation
study (see Tables 4.2 and 4.3), for positively correlatéerifailure times, also

indicates this.



Chapter 5

Semi-Parametric Software Reliability

Models for Post-Release Data

An approximate answer to the right problem is worth a good deal more thexaan

answer to an approximate problem.

John W. Tukey

5.1. Introduction

Controlled testing of a software product by a team of in-h@edawvare engineers
IS an expensive process which is limited by the number ofrtest. To improve
the reliability of the software product, after a limited hiouse testing procedure,
the software product is released to allow its users to vahilgtreport defects,
if any, using the Internet. These user-reported defectsemded in specialized
databases popularly known as bug-databases. Softwartespddix the reported
defects are released on a continuing basis. A number of aadtproducts allow
defects to be reported by any user on a continuing basis. tBstiaég provides
another distinct example of user-driven defect reportimgere the software is
released to a select user community for voluntary usageestithg) for a limited
period of time. Unlike a controlled testing environment.emnthe software usage

along with the discovery and reporting of a defect is styictlonitored, a user-
121
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driven defect reporting process is based on voluntary teygpof defects that
depends on an uncontrolled usage of the software.

Bug databases containing user-reported defects have bedoiogtous for
both commercial and open source software and they are viaseh impor-
tant data source for software reliability assessmentsadh after the release of
a software product, bug databases can be the only sourcdafataassessing
the reliability of a software in the field. Traditionally, fware reliability models,
such as those discussed in Chapter 2, have focused on esgritadireliability of
the software based upon data generated from in-housedgeshiare the testing
methodology and reporting of defects is strictly contrdll€hese reliability mod-
els cannot be directly applied to data retrieved from buglikdes as they contain
defects recorded due to uncontrolled software usage awndtigg of software de-
fects. The usage rate of a software is typically a functiotinoé and is in general
unknown. The reporting pattern also depends on the typeestEu$he distribu-
tion of the severity or type of defects reported by users maylote different
from those detected by a controlled testing procedure.€Tiseat tendency on the
part of an average user to discover behavior defects moea ak compared to,
say, critical security defects. Such a tendency can corglithe development of a
software reliability model. The usage of the software i®d®ined by the number
of users of the software, the type of users and the frequehuagage across all
the users. It is analogous to the notion of operating profildescribed in Musa
(2005)[pp. 93]. This paper addresses the problem of amajydata retrieved from
a bug-database, where information regarding the softwsageiacross its users is

uncontrolled and unavailable.
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This chapter addresses the lacuna in the statistical analyslata retrieved

from bug-databases using a novel approach that uses traficitson of user-

reported software defects into multiple types (based, xanmgle, on their sever
ity). The method formulates and estimates a software riétiaimodel that is non-
parametric with respect to the usage rate and takes intauatciifferences in
defect reporting rates (DRR'’s) of different types of defeétpartial likelihood
approach is used for model estimation. Based upon the prdpoedel, reliabil-
ity metrics are proposed that do not depend upon the usageAatadditional
advantage of the proposed model is that it can be estimaiad generalized
linear model procedures found in most statistics packages.

An analysis of data retrieved from a bug-database also rieedkiress another
problem: The distribution of the type of defects reportedthy users may be
different from those reported through a controlled tespngcedure. Such a dif-
ference may exist because software defects can be classifeethultiple types
and certain defect types are of significant importance tetfisvare community
and require specialized knowledge for their discovery, xamgle of which is
the type of defects related to security loopholes in thenso# (Musa, 2005)[pp.
198]. There may be a tendency on the part of an average usisctivdr behavior
defects more often as compared to, say, critical securfgctie Hence, a very low
rate of reporting of security defects in a user-reported datgbase does not nec-
essarily mean that the software product is reliable witheesto security defects.
Such tendencies can complicate the development of a seftwhability model.

Almost all existing models for software reliability makeeplictions on a cal-

endar time scale, for example, the mean time to failure (MTPedictions on a
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calendar time scale are only valid if the assumptions reggithe usage continue
to hold in the future. While such an assumption may be appatgin controlled
testing of a software product, this may be hard to justify dasoftware that is
subject to uncontrolled usage. For example, predictiordenging data retrieved
from the bug-database of a software product, freely availabthe public do-
main, will no longer be valid if the number of users of the a@ite increase (or
decrease) substantially in an unknown manner over the eexinfonths. Such
unknown changes in usage are common in markets which hageaseempeting
software products that offer similar functionality, exdeginclude scripting lan-
guages, web-browsers and operating systems. This unknuavtirae-dependent
usage of the software does not allow defining a reliabilityrioén the time scale.
To address this deficiency, we propose reliability metribgclv make predictions
on the scale of number of defects to be observed and, not ocateadar time
scale, thereby delinking the unknown usage from the priedigirocess. The pur-
pose of such metrics is to measure reliability of the sofemaith respect to a
particular defect type using the distribution of numberafures to be observed
before a failure of that particular type is observed.

Another equally important objective for a software rellpimodel is to pro-
vide metrics that can compare the reliability of two softevaersions. For exam-
ple, the software development manager or the customer neyto@lecide which
among two versions of a software product is more reliabledetions on a cal-
endar time scale do not delink the reliability of the softevéom its unknown
usage and hence cannot be used for comparison. For exafrgpie, version of a

software product is predicted to have an MTTF of 150 dayslendriother version
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has the prediction of 250 days, the conclusion of the latesion being more reli-
able may not be appropriate in the absence of informatiomemnisage of the two
versions. The two versions may be equally reliable and tfierdnces in MTTF
may only be due to differences in their usage.

The rate at which defects are reported in a bug-databaseesmdeed by two
components. The first component, termed as the Defect Regdtate (DRR), is
a function of the usage and is defined as the intensity of desany and reporting
a defect at tims under the assumption that no defect has been discoverguohéll
s (a kind of baseline reporting rate). Since the usage of thevace is unknown,
the DRR is assumed to be an arbitrary time varying functiom §écond compo-
nent represents the cumulative effects of previous defiscbderies on the rate
at which new defects will be discovered. This is modeled aarametric func-
tion which assigns a, possibly decreasing, propensitydnteng new defects as
a function of the number of distinct defects already rembriehe reliability of a
software must be a function of this second component, andheotfirst one, in
order to delink it from the unknown usage.

Almost all existing models for software reliability recage the need for in-
corporating the usage of the software through the DRR. For plaartine Jelinski
and Moranda (1972) model assumes the DRR to be constant mgghwhich may
be reasonable in a controlled testing procedure. The madpbped in this paper
considers, for the first time as a special case, a Jelinskaia model with a time
varying non-parametric specification of the DRR. The propasedeling can be
extended to other popular software reliability models. asel of software relia-

bility models starting with Jelinski and Moranda (1972) gndceeding through
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Schick and Wolverton (1978), Goel and Okumoto (1979), Oi8&84b), Singpur-
walla and Wilson (1994) have used a similar decompositiohabsumed increas-
ingly sophisticated parametric models for the DRR as a fonatif time. These
models may not be universally applicable as the assumednetnia forms may
not calibrate to the unknown usage of the software. Tamudayamada (2007)
considered the analysis of a bug-databases from an operessnftware by using
a parametric stochastic process to model the underlyingeusde. Wang, Wang
and Liang (2007) considered nonparametric estimationefritensity of the de-
fect reporting process using kernel regression. Their incoeld be more ap-
propriate for user-driven defect discovery when compaogobirametric models;
however, their model does not consider the effect of prevaefect discoveries
and hence they could not define appropriate reliability io&tiThe model pro-
posed in this paper extends these models by treating the DRRarametrically.
This extension is crucial for analyzing data from user regmbug-databases as
the defects are discovered during uncontrolled and unknosage of the soft-
ware.

The proposed method can also consider dependencies betiwesdiscovery
processes of different types of defects. The method, hawesguires that there
be at least two types of defects in the software so that thertiag rate of a
defect type of primary interest can be considered in ratabahat of other types
of defects as a measure of reliability. A partial likelihoadproach is used to
eliminate the arbitrary DRR component and estimate the patrasxcomponent
representing the effect of previous defect discoveriesvwMald like to note that

the proposed model can be estimated using generalized hmedel procedures
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found in most statistics packages.

Section 5.2 formulates the model and describes the methoartél likelihood
for estimating the parameters of interest along with edtoneof the reliability
metrics. Section 5.3 considers a simulation study to inyats the finite sample
properties of the estimators and Section 5.4 considers alysas of a publicly
available bug-databases to illustrate our methodologyti&e5.5 ends with some

concluding remarks.

5.2. The Modeling and the Method

Usually a bug-database provides information on each d#fatts discovered and
reported (See, for example,
http://ww. bugzil | a. org/docs/ 4. 2/ en/ ht M/ bug_page. ht m).
For each new defect, there is a record carrying informatio)dime of reporting
(typically the calendar time of when the defect was first regat), (i) the version
of the software in which the defect was found, (iii) prioray releasing a fix to
the defect (urgent, high, medium and low), (iv) software poments affected by
the defect and (v) classification of the defect in one of sEugpes. Most defect
classification schemes contain security and crash relatedts$. From now on we
will write reporting of a defect to mean “discovering and oejng” of the defect
by a user of the software.

Consider data related to all new defects reported up to aicedéendar time
S from the release date of a software. This may be represastdte sequence
of tuples(S1,21),..., (S,Zn), where§ is the calendar time of reporting thi&

new defect reported since the release of the softwareaisdhe type of the de-
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fect, fori = 1,...,n, wheren is the number of new defects reported till tirSe
Suppose there ama special types of defects, denoted by.1m, and all other
types are pooled into one “baseline” type denoted by 0. Thdakes values in
{0,---,m}. Alternatively, such a data set can be represented by theereq of
tuples(S;,N(S)) ..., (S, N(S)), where the vectoN(s) = [No(S), . .., Nm(s)] de-
notes the multivariate counting process wWiits) being the number of new de-
fects of typei reported upto and including tingfori =0,---,m.

The model proposed in this chapter considers the defeaivbsg and reporting
of a software product to be stochastic in nature through #featl reporting rates
(DRR’s) for the different defect types. While the model conssd@andomness
in the process of defects being discovered and reportedsitmaes that the bug-
database stores all defect reports received at any poimiefand faithfully stores
them. If there is any dropping of defect reports, or if defesgiorts are being
deliberately deleted, then there will be missing data inkihgzilla database, in

which case the model we propose may provide biased estimitekability.

5.2.1. The Model

Existing software reliability models for software failudata usually incorporate
the debugging process directly or indirectly into the fagluate. Since we con-
sider reporting of only the new defects, the debugging m®can be ignored for
the purpose of modeling such data. The modeling may be dooegh the multi-
variate counting proce$¢(s) = [No(S), . .., Nm(S)]. A natural model is to describe
eachN;(s) as a self-exciting point process (Snyder and Miller, 1991287) with

intensity function\;(s), the rate at which thgh type of defects are reported.
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The intensity of discovering a new software defect at tgrees explained in the
introduction, is a function of the number of defects alreeslyorted up to time
along with the type of defect and usage of the software. THeegeiting nature
of the procesd;(s) is due to possible dependenceMfs) on the history of the
multivariate proces§(s). Suppose that the DRR corresponding to ebidls),
denoted by (s), depends only on the usage of the software and reportingfate
theith type type of defect. The DRI (S) may be calibrated to model the effect
of the history of the procedd(s) on the intensity process(s), as discussed in

Section 5.1, through a proportional intensity model asmgive
)\i(s) = y|(S)f|(N(S—>), fori :07"'7m7 (51)

wherey;(s) is considered to be unknown and arbitrary d(¢gl > 0 with f;(0) = 1.

We intend to modef;(N(s)) parametrically leading to a semi-parametric model
for Ai(s). In particular, if fi(N(s)) depends orN(s) only throughNi(s), the
component processds(s)’s are independent. Note that the set of functions
{fi(N(s)),i =0,--- ,m} can be used to obtain reliability metrics that are agnostic
to the usage and reporting rates of the defects. For exathgleate at whichf;

or log(fi) decreases for every additional defect discovery, can leegrdted as a
measure of reliability of the software with respect to iffedefect type (See Sec-
tion 5.2.4). A further simplification can be achieved by asig that eacly;(s)

is proportional to a common rate paramegés) across all types of defects. This
assumption greatly simplifies the estimation of model patans apart from en-

abling inference on the reliability with respect to a givepd of defect. Therefore,
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with yp(s) = y(s), we may assume
Yi(s) =vy(s)e", fori=1,--- m. (5.2)

The parameters;scan be interpreted as the differences in reporting rates (BRR’
of different types of new defects. Noting thff{N(s)) represents multiplicative
changes in\j(s) due to reporting of different types of new defects, it may be
natural to assume thé&tN(s)) decreases with each componenhg§). However,
because of the user-reported nature of new defects, theenattuhis decrease
is not clear. There may be several choicesffoN(s)). In this context, one may
recall the Jelinski and Moranda (1972) model for softwastirtg data, which
postulated a linear decrease in the intensity of reportimgws defect with the

number of already detected defects, and consider a lineaease model as given

by

AN(S) = max0.1— 3 By (5) 53)
2

Alternatively, a non-linear decrease model in the spirithef logarithmic Pois-

son model Musa and Okumoto (1984) as given by

m
fi(N(s)) = exp(— > BiiN; (s)) (5.4)
=0
may also be considered. In the special case, when the comigmoeessek! (S)’s

are independent, it would be appropriate to consifieéd(s)) = expg(—BiNi(s))

with a scala, fori =0,---,m. The two choices in7?) and (5.4) result in
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N(S) = (exp(a.[ g)m. s—]

and

Ai = i~ 3 BjiNj(s—) |, (5.5)
(s) V(S)eXIO(O( J;J i(s ))

respectively, fori = 0,1,2...,m, with ap = 0. Write o = {dy,---,am}, B =
{Bo," - ,Bm} with B% = [Boi,---,Bmi] andy(.) as the infinite dimensional inten-
sity y(s) to determine the set of unknown parameters of the model. ddeeith-
mic Poisson model has been noted as an extensively applisdase reliability
model (Farr, 1996) and shown to provide accurate predistionlarge software
systems (Jones, 1991, Derrennic and Le Gall, 1995), leading use (5.5) as the

underlying model of choice for illustration of the methodrd®ped in this article.

5.2.2. Partial Likelihood Estimation

Let us writeS)) = (S;,Sj_1,...,S1) andzl) = (Z;,Zj_1,...,Z1). The likelihood

of the data sequend&;,Z;), ..., (S, Zn) is proportional to

I_l 5 (i1 z-0 ([0 B, V() X ]_l Pz, 15 z-v (-|o, B). (5.6)

The second product in (5.6), under the modeling assumpttofsand (5.2), does
not depend ory(s), and is the partial likelihood for estimating and 3 (Cox,

1975). Note that the conditional probabilit?éj‘S“-)’Z(,-,l)(.]a,[3) in the second
product can be derived as the following multinomial probgbunder assump-

tions (5.1) and (5.2):
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P(Zj = i|5<j),z(jfl)) = zﬂ"e:eglf?(((i:(;?)—))’ (5.7)

fori=0,1,...,m. In the special case given by (5.4), this partial likelihaoapli-

fies to the likelihood of the multinomial logistic regressimodel as given by,

m i—BIN(S;—) 1(Zj=i)
pZJ|S(J z(-1)) et ~ : (5.8)
Z e“k BN(S;—-)

Maximizing the partial likelihood to estimate and3 can now be performed

through a multinomial logistic regression betwegnand the vectoN(S;—). A
Newton-Raphson procedure can be used to maximize the |lagldé&lihood in
order to estimate the parameters. Alternatively, any stahdoftware package to
analyze a multinomial logistic regression model can be used example, one
may use thenultinomfunction innnetpackage of the R software package (Ven-
ables and Ripley, 2002). The estimated asymptotic variaogariance matrix of
the parameter estimates can be obtained from the obserf@dhation matrix
based on the partial likelihood. The asymptotic normalftthe partial likelihood
estimates (Wong, 1986) can be used to perform tests of signde and obtain

confidence intervals for the parameters of interest andifums thereof.

5.2.3. Goodness of Fit

The proposed modeling consists of the forms for the set aftfons

{fi(N(s)),i =0,...,m} as defined in (5.1) and the proportionality of the base-
line ratesy;(s)’s as defined in (5.2). Violations of these assumptions wiaadd to

P (Z,- |S<J'),ZJ'*1> being incorrectly specified. Hence, it suffices to check tedg

ness of fit for the form oP (Zj |S<J),Zj—1> for differentj. In the special case when
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the model is being fit with only two types of defects (i£&; takes binary values)
and the choice ofg(N(s)) and f1(N(s)) is the logarithmic Poisson form as given
in (5.4) leading to (5.8), the Hosmer and Lemeshow (198Q)das be used to
assess the goodness of fitR)(Zj |S<j),Zj‘1>. For data sets with more than two
types of defects, with the logarithmic Poisson form {dr(N(s)),i =0,...,m},
we would need to assess the goodness of fit of a multinomi@tiogegression
model. For this, we appeal to tests proposed by Begg and Ge&¢)1Pigeon and
Heyse (1999), or Fagerland, Hosmer and Bofin (2008).

For a graphical check, one may consider compagifig P (Zj =i|sh, Z(i*1)>
with the observed number of defects of tyipap to timeS;, given byNi(S). A
plot of 3¥_, P <Zj — i\S”),Z(j_D) (as predicted) andil(S¢) (as observed) over
k can be used to visually check the goodness of fit, wRére |- -- ) denotes the
estimate of the correspondiif---|---), evaluated at the parameter estimates
andfs.

The integrated intensity function(s) = [Jy(u)du (See Section 5.2.1) may be
estimated using a Breslow type estimator (Breslow, 1972) e dy, for the

logarithmic Poisson model,

o AN
r(s)_/o z{ioexp(di—ﬁiNi(u—))du’ 0<s<S (5.9)

whereN (s) = S Ni(s). This type of estimator may also be used for testing the
proportionality assumption (5.2). For example, the indiidl integrated intensity
Fi(s) = [yYi(u)dumay be estimated, without the assumption (5.2), by
R S
Fi S) = C“}k(u)
0 exp(—BiNi(u—))

fori =0,...,m. Plots oflog(i(s)) for differenti on the same graph should be

du 0<s<S§ (5.10)
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near parallel if (5.2) is true.

5.2.4. Reliability Metrics

As mentioned earlier, certain defect types are of more itapee to the software
community than others, an example being defects which daéecketo security
loopholes or crashes in the software. A traditional meticthe reliability of a
software with respect to, say, crash defects would be thiegtmibty of observing
no crash defects in the subsequent year, or alternativelypdan time to observing
a crash defect. These metrics depend upon the usage rate sbftivare. For
example, if the usage of the software were to increase mdnifioese metrics
would no longer be correct. Hence, there is a need for a m#tatdoes not
depend upon future usage rate of the software. An intuitie¢rimthat does not
depend upon the usage rate is the probability of discovexngash related defect
(corresponding to, say, typ®) in the nextN defects of any type. Let us denote
this by R(N). This metric, under the modeling of Section 5.2.1, woulddegend
upon the usage of the software. As a result, the time reqdimethe N defects
to be reported will not be known (since the usage is unkno®@ng may have a
rough guess of this time by assuming a particular patterednting. Similarly,
we can also think of the number of defects to be observed defoserving a new
crash related defect and call it Mean Number of Defects tufea(MNDF) as an
alternative to mean time to failur®(T TF).

Theoretical derivations of these reliability metrics imgeal can be a challenge
because of the stochastic nature of the model (5.1). For geaithe probability

of no crash related defect requires a huge sumMbfoint probability terms each
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corresponding to an ordered setfdefects of types other than crash related
defect. This may be calculated whihis small; however, even for moderdte
(say, 10 or 15) and witim= 2 or 3, this is computationally difficult. One option
is to pool all other defect types into one type resulting itydwo types (with
m= 1) so that there is only one joint probability term as given by
n+N
RN) = T] P(z,- :0|s<i>,z<i—1>;a,3). (5.11)
j=n+1
Note thatZ(i=1) in the conditioning event in each term of (5.11) is given by
(Z1,...,2Zn,Zny1=0,...,Zj_1 = 0). Also, each such term is independenﬁ)"ﬁ,
except througN(S;) as in (5.7). In this case, the other reliability measure MNDF
can be calculated as the infinite sum
o |

MNDF= S ] P(Zj:O|S<j),Z(j‘1);0(,B>. (5.12)
I=n+1j=n+1

For the independent model with(N(s)) = exp(ai — BiNi(s)), fori = 0,1, with
0p = 0, the individual probability term in (5.11) and (5.12) isgn by

ePBo(no+j—1)

=g z(-1 =
P(Z; 0|S< Z ,a,B) e—Bo(no+j—1) 4 go1—P1m’

(5.13)

for j=n+1n+2..., wheren, = Ni(S,), fori = 0,1. Since these probability
terms are decreasing i the MNDF in (5.12) has a finite value. In the special
case, wherfg(N(s)) = 1, or o = 0, meaning that there is no effect of history on
Mo(s), we haveMNDF = exp(—a1 + B1n1). In this special caséy(N) simplifies

to [1+exp(oy — Bny)]~N. The metrics in (5.11) and (5.12) are to be estimated by
evaluating them at the partial likelihood estimatesig8. The standard errors of

these estimates can be obtained by applying the delta method
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In general, botiR(N) andMNDF can be estimated by simulatify,;'s suc-
cessively using (5.7) and the estimates of the model pasameédtor example,
the reliability metric,R(N) can be estimated by the proportion of times none
of Zni1,...,ZneN €qualsm over, sayM = 1000 simulations o%y1, ..., ZnN-
Similarly, for the reliability metric MNDF, one needs to gihate Z,;’'s till
ZniL+1 = m, whereL is the minimum number of detected defects before observ-
ing a typem defect in the simulation. Then, MNDF is estimated by the mafan
the values ot over the M simulations. If a simulation approach were to bedus
for estimating the metrics, standard errors can be obtdnyeagsing a paramet-
ric bootstrap method (Efron and Tibshirani, 1986) as foosimulate thedth
bootstrap sample comprising of the defect typéj@),j =1,2,---,n) using the
estimates obr and3, and (5.7). Based on this bootstrap sample, obtain estimates
a® andp® of a andp, respectively, using the method of Section 5.2.2. Estimate
the reliability metrics using® andB® by the method of simulation as described
above and denote them IR(N)® andMNDF®), respectively. Repeat the boot-
strap process for, safg = 500 times. The standard deviations of the estimated
reliability metricsR(N)®) andMNDF®) over theB bootstrap samples estimate

their corresponding standard errors.

5.3. A Simulation Study

The simulation study presented here consists of three.partke first part, we
study the asymptotic properties of the estimator. In thesegart, we compare
the proposed model to software reliability models that assa parametric form

for the underlying DRR. In the third part of the study the eféeat model mis-
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specification is studied through a limited set of simulatiowhile planning a
simulation study, note that, for the purpose of estimatheyrmodel parameters,
information on only the defect types,--- ,Z, is needed and the same on the
reporting timesSy, - - - , S, may be ignored. Also, while estimating the reliability
metricsR(N) andMNDF by simulation, it is enough to simulate only the future
defect type<Zn.1,Zn12,.... Note that simulation oZ;'s can be successively car-
ried out using (5.7). In our simulation study, we consideo twpes of defects
(i.,e.,m=1) and type 1 is assumed to correspond to an important dgfeesuch
as a crash related defect. We consider the independenitlogar Poisson model
given by fi(N(s)) = exg(—BiNi(s)), fori =0, 1, with o = 0.03,31 = 0.01 and the
type-specific differential rate parameter= 3. For each simulatiorz;, ..., Z, are
generated using (5.7) with= 500 and 2000 to reflect moderate to large sample
sizes. We visually present five simulation histories witk- 500 in Figure 5.1,
where the cumulative count of type 1 defects is plotted agdime cumulative
count of type 0 defects for each simulation history.

The maximum partial likelihood estimates @f, 3o and3; are then obtained
by maximizing (5.8) along with the corresponding standardre and the asymp-
totic 95% confidence intervals of the parameters using a abapproximation
for the distributions of their estimates (See Wong 1986)igRéity metricsR(N)
(with N = 10) andMNDF are also estimated using the simplified forms in (5.11)
and (5.12), respectively, with each probability term givmn(5.13), along with
their standard errors and asymptotic 95% confidence ingerVais simulation is
repeated 1000 times and mean and standard deviation of tiheatss over the

1000 simulations are obtained. The coverage probabibifitise asymptotic 95%



Chapter 5: Post-Release Software Reliability 138
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confidence intervals are also estimated. Results of thislatran study, for five
sets of parameters, are presented in Table 5.1. In the fir&tysgetting the param-
etera = 0, we consider the case when there is no difference in thetregoate of
the two types of defects. In the next four parameter setsgives 3 anda = 10,
which correspond to the reporting rates of the first defque tyeingexp(3) ~ 20
times andexp10) ~ 22000 times the reporting rate of the second defect type.
Also, in the same simulations, we study the effect of smadl lange difference
in the B parameters of the two types of defects. As the average oftémelard
errors over 1000 simulations is close to the standard dewiaf the correspond-
ing estimates over the 1000 simulations, we report onlydtter quantity for the
measure of standard error. The true values correspondiRg\ipandMNDF are

computed from (5.11) and (5.12) with (5.13) evaluated atthe parameter val-
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ues, given the simulatefi” giving values ofg andn;. The corresponding values
in Table 5.1 are averages of those over the 1000 simulatitote. thatR(N) and
MNDF depend om, the number of defects discovered, and the history ohthe
defects discovered including the relative accumulatiomhef different types of
defects. This explains the difference in the true valuesRfd+) and MNDF for

n =500 andn = 2000. The results indicate consistency of the estimatesrand
standard errors (SE) decrease withas expected. Also, the estimated coverage
probability is closer to 95% for larger.

The second part of the simulation study compares the prdposslel with
software reliability models that assume a parametric foomthe underlying
DRR. For this purpose, we simulate data from four differentapaetric mod-
els for the underlying DRRY(s) by assumingy(s) = ¢ andy(s) 0 /s,s ands’.
These four models correspond to a constant, concave, lar@hconvex DRR’s
as functions of time. We once again use the logarithmic Baoiddodel with
fi(N(s)) = exg—BiNi(s)), fori = 0,1 corresponding to two types of defects. For
the purpose of the study, we consid®y= 0.3 , 31 = 0.1 anda = 3. n= 500
defects were simulated in each simulation. The coverageapibity and the av-
erage half-width of the 95% Confidence Interval (Cl) are prestmnsing 1000
simulations.

The first panel in Table 5.2 presents the comparisons of ttimaes of3g
obtained through parametric models for DRR to those obtdimexdigh the pro-
posed model. The second panel in Table 5.2 presents the safde Coverage
probability (%) for the estimated 95% CI @ is reported. The value if) rep-

resents 1000 times the average width of the Cl. The simulaéisults presented
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TABLE 5.1
Empirical evaluation of the asymptotic properties of theéreates
n=500 n=2000

Parameter True Estimate SHO Coverage True Estimate SHEO Coverage
o} 0.00 0.29 3.80 89.2% 0.00 0.14 253 93.2%
Bo 0.03 0.05 0.23 86.2% 0.03 0.03 0.08 92.1%
B1 0.01 0.02 0.10 86.4% 0.01 0.01 0.03 91.8%
R(N) 0.05 0.04 0.20  80.2% 0.05 0.05 0.16  95.6%
MNDF 286 2.64 4.59 88.0% 295 288 3.50 95.4%
a 3.00 3.56 7.40 91.4% 3.00 3.22 4.12 93.1%
Bo 0.03 0.06 0.37 88.2% 0.03 0.03 0.08 92.1%
B1 0.01 0.02 0.08 88.3% 0.01 0.01 0.02 92.2%
R(N) 0.61 0.82 0.38 95.0% 0.05 0.05 0.16 95.6%
MNDF 3.16 351 7.20 96.5% 291 295 3.50 95.4%
a 3.00 2.83 9.33 81.0% 3.00 292 3.47 90.2%
Bo 0.30 0.77 393 76.6% 0.30 0.40 131 88.2%
B1 0.01 0.02 0.14 77.7% 0.01 0.01 0.04 88.4%
R(N) 0.70 0.67 1.49 77.6% 0.05 0.05 0.97 94.1%
MNDF 2538 21.92 97.15 90.3% 291 295 80.84 89.5%
a 10.00 11.40 25.91 95.3% 10.00 10.28 10.06 96.1%
Bo 0.03 0.03 0.08 94.4% 0.03 0.03 0.03 95.4%
B1 0.01 0.01 0.11  93.5% 0.01 0.01 0.01  95.0%
R(N) 001 0.1 0.18  74.6% 0.05 0.05 0.13  93.2%
MNDF 193 1.85 5.65 87.60% 292 2.89 3.04 94.8%
o} 10.00 11.67 29.30 94.0% 10.00 10.77 18.6 95.0%
Bo 0.30 0.34 0.91 94.1% 0.30 0.32 0.05 94.3%
B1 0.01 0.01 0.1 93.5% 0.01 0.01 0.01 94.1%
R(N) 0.71 0.69 0.81 94.1% 071 0.71 0.08  95.0%
MNDF 26.26 23.20 60.08 87.10% 26.03 25.20 59.04 93.1%
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TABLE 5.2
Comparisons of estimates [&f and3; obtained using parametric models for DRR to those
obtained through the proposed model in terms of coverageepéaige and 1000 times the
average width of the Cls (in parentheses).

Fitted Model Proposed Model

True Model y(s)=c y(s) O+/s y(s)Os y(s) O & y(s) arbitrary
y(s)=c  944(0.62) 0.0 0.0 0.0 92.7 (43.4)
y(ssOy/s 0.0 95.7(0.62) 0.0 0.0 90.6 (44.2)
Po y(s)Os 0.0 0.0 95.7(0.62) 0.0 91.7 (43.8)
y(s) 0 & 0.0 0.0 0.0 94.1(0.62) 91.9 (43.6)
y(s)=c  95.8(0.31) 0.0 0.0 0.0 94.9 (15.6)
y(ssOvs 0.0 94.8(0.31) 0.0 0.0 93.5 (15.7)
b y(s)Os 0.0 0.0 949(0.31) 0.0 94.0 (15.6)
y(s) O 0.0 0.0 0.0 95.7 (0.31) 94.2 (15.6)

in the two panels of Table 5.2 indicate that the parametridehéor the DRR,
when correct, results in accurate estimation offhmarameters. However, when
the underlying model is incorrect, the estimates are inateuas seen in cov-
erage probability being equal to 0O in the estimated confidentervals. On the
other hand, the proposed model estimates confidence ifgevisech contain the
true parameter with nearly the required confidence. Howénan the first panel
of Table 5.2, the proposed model has a much higher (nearlym&x} standard
error for Bp when compared to the estimates from the correct parametritein
as expected.

The third part studies the effect of model mis-specificatmmf;(N(s)) on the
estimation of the reliability metrics, we consider simidatof Z(" from the in-
dependent linear decrease model with two types of defeivtsn dpy i (N(s)) =
1-BiNi(s), fori =0,1. We assum@p = 0.001,3; = 0.00005 anax; = 0.5 for the

purpose of simulation. This parameter setting implies thette are 1o = 1000
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defects of type 0 and/B;1 = 20000 defects of type 1 in the beginning. For each
simulation ofZ(™ with n = 1000, estimation of the model parametess o and

1 is carried out by fitting the incorrectly specified indepemdegarithmic Pois-
son model. Reliability metricR(N) with N = 10 andMNDF are estimated by
using (5.11) and (5.12), respectively, with each probgbiérm given by (5.13),

as before. For the purpose of comparison, we also comptitg)(&nd (5.12) but
with each probability term given by the correct model anchgghe true param-
eter values and simulategf”. The averages of these two sets of estimates of
R(N) andMNDF, over 1000 simulations, are compared to understand theteffe
of model mis-specification. To assess the severity of thespegification, the
Hosmer-Lemeshow goodness of fit test (described in SectiB)5vas used to
determine whether the logarithmic Poisson model being fstaggpropriate or not.

It was determined that the test, when used at 5% level, egjebe null hypothesis

of the logarithmic Poisson model being appropriate, 34.0%® 1000 realiza-
tions. This indicates that the deviation considered idyfdarge. The estimates
for R(IN) andMNDF obtained by using the correct model are 0.11 and 4.17, re-
spectively, the corresponding estimates obtained by ubmgcorrect model are
0.10 and 3.85, with standard errors 0.03 and 0.61, respéctivherefore, in this
limited study, the effect of model mis-specification on tiséraates olR(N) and

MNDF seems to be minimal.

5.4. Analysis of Python Software

Python is a general purpose scripting language that is sividyg used in a variety

of applications. It is an open source software which is naan@d and developed
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by its community. The Python project maintains a bug-datatibat records de-
fects in the software reported by the Python user commuwityen a defect is
reported by the user community, it is classified and taggdd avixiliary informa-
tion. Every defect reported by the user community is classifito one of several
types. Defects of type “crash” or “security” are of signifitamportance. We
shall analyze the corresponding bug-database to estimateeliability metrics
for these two types of defects.

Python’s bug-database provides a method for querying ittabdae
(http://bugs.python.org/issue? @template=search)y @wise defects whose res-
olution was “fixed” or “fixed and accepted” as on 31 January28te retrieved.
This is because defects with other resolutions compriseuphichtes of already
reported defects, or defects that have not been confirmedrasrgg. In addition
to the date of first reporting of each defect, information loe defect type is also
extracted. Python version 2.7 has 2273 reported defectke ®ython version 2.6
has 1975 defects reported until 31st January 2012, a sunmwhargich with de-
fect types is given in Table 5.3. We would like to mention tRgthon 2.6 is built
on Python 2.1 and hence shares much of its code base withrP¥thaevhich was
released in 2001. Hence, a defect in Python 2.1 will be taggdtaving occurred
in Python 2.6 if the defect occurred in a module which is stippart of Python
2.6. When we queried Python’s bug-database to retrieve fdtteof Python 2.6
since 31 January 2012, it also returned defects from Pythbthat occurred in
modules which are still a part of Python 2.6. Hence, the datBsoovery of the
first defect in Python 2.6 was in 2001. The same observati@slior Python 2.7.

We first analyze the data using all three types of defectsehawrash defects,
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TABLE 5.3
Summary of defects in the two versions of Python

Python 2.7 Python 2.6

Defect Type Count Percentage Count Percentage

Crash 130 57% 124 6.3 %
Security 19 0.8% 16 0.8%

Others 2124 93.5% 1835 92.9%
Total defects 2273 100% 1975 100 %

security defects and defects of other types. Let us denetethefect types as
type 2, type 1 and type 0, respectively. We use the indepé¢haigarithmic Pois-
son model given byfi(N(s)) = exp(ai — BiNi(s)), for i = 0,1,2, with ag = 0.
For the analysis of data from each version using the methdslection 5.2.2,
we only need the vect@™ = (Z1,...,Z,) with n= 2273 and 1975 for versions
2.7 and 2.6, respectively, where eaghtakes values 0,1 or 2. The parameters
01,02, B0,B1,B2 are estimated along with their variance-covariance makyx
performing a multinomial logistic regression betwegnandng;,nyj,nyj, where
nij = Ni(§—) = z,j;lll (Z, =) is the number of typé defects reported till prior
to timeSj, fori = 0,1,2. These parameter estimates are used to estimate reliabil-
ity metricsR(N) with N = 10 andMNDF using simulation, as described in the
end of Section 5.2.4. The corresponding standard errorstaaéned by using the
parametric bootstrap method, as described therein. Thraaget of the parame-
ters and the reliability metrics, for both crash and segugtated defects, along
with their standard errors are presented in the top panaiolie’s.4.

From the estimates &&(N) andMNDF, Python 2.6 seems more reliable with

respect to “crashes” when compared to Python 2.7. Howeyepdking at the
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TABLE 5.4
Estimates of the parameters and reliability metrics witkitlstandard errors.

Python 2.7 Python 2.6
Analysis Parameters Estimate = SE  Estimate  SE
o1 -5.60 0.49 -5.88 0.53
oy -3.87 0.32 -3.36 0.26
Bo(x10?) 0.56 015 0.25 0.11
Three-type 3, 0.64 0.18 0.22 0.15
B2 0.08 0.02 0.03 0.01
R(N = 15)(Crash) 0.43 0.10 0.49 0.13
MNDF(Crash) 12.02 2.67 15.06 5.50
R(N = 15)(Security) ~ 0.98 0.02 0.90 0.10
MNDF(Security) 55.91 17.67 55.15 20.28
o1 -3.85 0.37 -3.56 0.33
Bo(x10%) 0.55 0.18 0.35 0.15
Two-type B, 0.08 0.02 0.04 0.02
R(N) (Crash) 0.44 0.07 0.47 0.07
MNDF (Crash) 11.23 2.09 12.28 2.26

standard errors, we cannot conclude that the reliabildfethe two versions of
the software are significantly different. Note that the Goets[3o, 31,32 are all
statistically significant except fd8; in the analysis of Python 2.6 data. TRe
coefficients are positive, which implies that the propgnsitdiscovering a defect

of theit" type (\i(s)) decreases with the discovery of every additional defect of
thei'" type, since we assumeg(s) = y(s)exp(a;j — BiNi(s)). Also, in the analysis

of both versions of the software, the parameter@nda,, which correspond to
differences in the reporting rates of security and crasiedldefects, respectively,
when compared to other defect types, are significantly riffewith a, > aj.

This indicates that security related defects are lessylikelbe reported when
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compared to crash related defects and, surprisingly, terdyipes of defects as
well. Note that the parameteng anda- are not significantly different across the
two versions of the software, while they themselves areifsogmt.

The goodness of fit for a multinomial logistic regression elpds suggested by
Fagerland, Hosmer and Bofin (2008), is carried out to assed# tif the form of
P (Zj |S<J'),Z(i*1)> , as derived from the assumed independent logarithmic &oiss
model. The test is conducted by quantizing the estimatéﬂj = 2|S<J'),Z(j*1>>,
for j =1,2,...,n, into 10 levels using its deciles so that there are roughty th
same number of values assigned to each quantized level. Udized values
of P<Zj — 2|S<J'),Z(j*1)> are used as the grouping variable for performing the
goodness of fit test, as suggested by Fagerland, Hosmer and(B0@i8), of the
model with all the categories of the dependent variablertaégether. The corre-
sponding test statistic has an asymptotic chi-squareitalisivn with 16 degrees
of freedom. The corresponding p-value for Python 2.7.@80while the same for
Python 2.6 is 2. This indicates that the proposed three-type defect hitsle
reasonably well for Python 2.7 while the fit for Python 2.6 nh@yquestionable.

There is an apparent lack of fit of the three-type model to @ta ttom Python
2.6 due to the non-significance Pf corresponding to security related defects in
the three-type analysis. This lack of fit and the simplicifyactwo-type model
for the calculation of reliability metrics (see Section .B)2lead us to pool se-
curity related defects with other types, and consider atipe-model involving
just crash related defects= 1) and other defects & 0). The independent log-
arithmic Poisson model given biy(N(s)) = expa; — BiNi(s)), for i = 0,1, with

0o = 0, is once again used. As in the three-type analysis, we ey the vec-
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tor Z(" = (Z,...,Z,), where eacl¥; takes values 0 or 1. The parameterspo
and (31 are estimated along with their variance-covariance makyxperform-
ing a logistic regression betweéh andngj,n1j, wherenjj’s are similar to those
defined before but with the new labeling of type=(0,1). The estimates of the
parameters and the reliability metriB§N), with N = 10, andMNDF, along with
their standard errors, are presented in the bottom panelldé&™.4. In order to
assess the fit of the form cﬁ(Zj|§j),Z(j*1)>, the Hosmer-Lemeshow test for
logistic regression is performed. The test is conductedptijting the estimated
P (Zj = 1|S<J'),Z(J'*1)> into ten probability deciles, which leads to an asymptotic
chi-square distribution for the test statistic with 8 degref freedom. The cor-
responding p-values for Python 2.7 and 2.6 are 0.45 and e5pectively. This
indicates a good fit of the model to the data. To visually as#es fit, plots of
z'j‘zlls (Zj = 1|S<J'),Z(J'*1)) andny, overk are considered and shown in the bot-
tom most panel of Figure 5.3. The plots indicate a reasorgy fit of the model
for both the versions. Comparison of the reliability metifios crash related de-
fects across the two versions, along with their standatgrindicates that these
are not significantly different across the two versionss ihieresting to note that
the estimated reliability metrics for crash related defece quite similar to those
obtained from the three-type analysis presented earlner.phrameterBy and3;
turn out to be statistically significant and positive fortbwersions of the software,
as before. The estimate Bf is similar to the corresponding estimate (i.e.[3gf

in the three-type analysis. The estimategfis also similar to the corresponding
estimate (i.e., ofi,) in the three-type analysis.

To justify the fit of the model to the Python data, the plot of #stimates of
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FIG 5.2 Plot of log[i(s)) vs s.
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the log of the integrated intensity functioris,g(ﬁ (s)), obtained using (5.10),
for i =0,1,2, for the three-type analysis of Python software are ptesem
Figure 5.2 with time 0 being the date when the first defect vegonted. The
plots show thaﬂog(fi(s)) are nearly parallel to each other and give evidence
in favor of the proportionality assumption (5.2), except $ecurity related de-
fects in version 2.7. To visually assess the fit of the modehdurther, plots of
le(:ﬂs (Zj = i\SU),Z(J'*l)) andnj overk (See Section 5.2.3), for= 0, 1,2, are
considered. The top two panels of Figure 5.3 shows the pfaisash and security
related defects, respectively, for the three type modes. third panel shows the
plot for crash related defects for a two type model. Fromfiyisre one may con-
clude that fit of the three type model to security related cisfes not satisfactory,
especially for Version 2.6. However, one needs to be casitioumaking such a
conclusion since the data corresponding to security defesed for constructing

the plot is sparse ( less than 20 data points). Neverthelessnodel seems ap-
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propriate for crash related defects in both the three-typkthe two-type model.
This lack of fit of the three-type model for security defeatslld be the reason
why the goodness of fit test for the three type model appligéiytbon 2.6 has a

small p-value of 0.02.

FiG 5.3. Plots of predicted and actual numbers of crash and sectelgted defects.
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5.5. Concluding Remarks

Bug-databases, which record user reported defects, haseneeecnorm for com-

mercial software. Statistical models for analyzing thigr@asingly important data
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source will help end-users to objectively assess the iiétiabf a software. This
paper makes an attempt in that direction by consideringsiblysfor the first time,
an analysis of software defects classified into multiples/pJsage and reporting
rate of the software, which are modeled by an infinite dimamedi confounding
factory(s) in the analysis of such data, is considered non-paramkgyritae par-
tial likelihood approach facilitates estimation of impamt model parameters. An
added advantage of the proposed method is that it can beda&ui using stan-
dard statistical software packages for easy implememtdiyopractitioners. The
proposed reliability metrics are easily interpretable aad be used to compare
different software versions. For example, in the analysiBython software, we
gather from the estimate MNDF for Python 2.7 that, on average, about 12 non-
crash related defects will be discovered before the diggovka crash related
defect, which is about the same when compared to that of Ry2& This in-
dicates that there might not be any additional gain in réltghwith respect to
“crashes” in using Python 2.7 over Python 2.6. Such analysig help decision
makers to objectively choose between migrating from onsieerof a software
to another. It is interesting to note that, in the limited siation study, the esti-
mated reliability metrics seem to have better asymptotio/emence properties
than the model parameters themselves. Note that the diffdedect types need to
be well-defined for the application of the model. Also, thisrpossibility of a de-
fect being classified as more than one type. This can be déhlbwconsidering
an additional defect type.

A key application of the proposed model is to compare theldity of two

versions of a software product in a manner that does not depernthe usage of
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the software. We envisage the methodology to be used phinfiarisoftware that

has already been released. However, if the method is uspdsaelease software,
for example from data collected during beta-testing, tlegljation of the expected
time to discovery of next defect can be a metric used to dettiderelease of
the beta version of the software. Such a prediction wouldlu®sextrapolation

of the underlying baseline hazard for that defect type u&iggation 5.10. An

extrapolation method would have to be carefully designedadel the unknown

future usage of the software. This could be a direction farruresearch.

The method considered here may have applications in maiag atber than
software reliability. As an example, in the context of dse&pidemiology, dis-
eased individuals in a geographic location may have diffedesease types (for
example, drug-resistant and non drug-resistant Tubes@)lolhe voluntary re-
porting of a software defect by users corresponds to digeasiduals volun-
tarily reporting to a hospital to seek treatment, while @segfe may correspond
to unknown exposure of the individual. Using an indepentegdrithmic Poisson
model, one could determine whether a particular diseaseisyppreading or not
by checking the sign of the correspond[BgThe proposed reliability metrics may
also be relevant in this epidemiological context. For exiamihe metric MNDF,
could be interpreted as the expected number of patientglégthon drug-resistant
disease who will report to the hospital before a patient wWithdrug-resistant dis-

ease reports.
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Chapter 6

Future Work

The unavoidable price of reliability is simplicity.

C. A.R. Hoare

6.1. Introduction

In this chapter, we briefly discuss future research direstizased on the contri-
butions in this thesis. The first relates to the joint analgdipre- and post-release
software defect data using the method of Chapter 5, where memigrated how
the defect reporting rate DRR can be considered non-paraaigtrwhile con-
sidering the reliability improvement function paramedtlg. The second topic
concerns the possibility of the reliability improvemenndétion itself being con-
sidered semi-parametrically and non-parametrically. rte¢ghods developed in
Chapter 5 have applications beyond software reliability.divefly touch upon an
application concerning the analysis of data correspontbngroduct purchases

made by customers through an online retailer.

6.2. Joint Analysis of Pre- and Post-Release Software Defdgata

In Chapter 5, we considered the analysis of post-releaseaeftdefect data re-

trieved from a bug-database. Many software programs wilehme-release soft-

153
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ware defects, discovered during controlled testing befioeerelease of the soft-
ware, in addition to post-release defects recorded in adadigbase. It is natural to
ask whether a joint analysis of the two data sets will helprowp the estimation
of software reliability in the post-release phase. A joinalgsis method needs
to consider different defect reporting rates for the pred paost-release software
testing phases. However, one may argue that the improvemealiability due

to every additional defect discovery will be the same simcbath the pre- and

post-release phases as the software is still the same.

6.2.1. Some Existing Methods

A defect discovered during the post-release phase of a aatproduct may not

be immediately repaired leading to the defect being redageurrently for some
time after its first reporting. The imperfect debugging maafeGoel and Oku-
moto (1978) allowed for a defect not being repaired immetiyaby consider-

ing the probability, O< p < 1, of not repairing a reported defect immediately
after its detection. Le§ be the duration of pre-release testing. Jeske, Zhang and
Pham (2001) considered the following NHPP model with medunevéunctions
Mpre(S), Mpost(S) and hazarda pre(S), Apost(S) for defects discovered in pre- and
post-release software, respectively, based on the modébef and Okumoto.

This is given by

Mpre(S) = a(1—exp(—bs)), Apre(S) = abexp(—bs), (6.1)
Mpost(S) = a(1+ pb) (1 —exp(— %nubs)) , Apost(S) = abexp(— 1T nubs>’

(6.2)
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wherep = 1/(1+ nub) is interpreted as the probability of debugging a software
defect in the post-release phase immediately after itstiegaandn is the number

of users of the software product. Note that the teme (6.2) is the time since re-
lease of the software. The parametgis are estimated from pre-release software
defect data while the parametemay be obtained from the post-release data. This
model requires one to know the number of usersising the software system and
assumes that each of the users have the same usage and thesantieg prob-
ability. Both these requirements may not be satisfied in pacteske, Zhang
and Pham (2005) suggested another model where they coegitther logarithmic

Poisson model for both the pre- and post-release softwasendtn

Mpre(S) = a(1l—exp(—bs)), Apre(S) = abexp(—bs), (6.3)

Mpost(S) = C(1—exp(—ds)), Apre(S) = abexp(—bs). (6.4)

They assumed = a/K. andd = b/Ky, whereK; andKy were calibration factors
to be obtained by using data from previous software reled$ey also suggested
a likelihood ratio test for testingc = 1 vsK; # 1. The model of Jeske, Zhang
and Pham (2005) is the first in a series in a models that madefseorrection
or calibration factor for the parameters of post-releaseveoe reliability model

based on the pre-release model.

6.2.2. An Alternative Approach

If the defects are classified into+ 1 types fori = 0, ..., m, the model described
in Chapter 5 can be used for joint consideration of both prel post-release

software defect data. L&be the calendar time when the software was released.
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The DRRAi(s), of discovering a defect of tygeat times can be modeled as

exp(aP™®) x yP(s) x fi(N(s),8), s<Saj®=0
Ai(s) =

eXp(aiPOSt) x yPos{(s) x fi(N(s),8), yPoSY(s) arbitrary,s> S agost: 0.
(6.5)

Here, as in Chapter B(s) = (No(S), .., Nm(S)) denotes the multivariate process
counting the number of defects of various types up to andichief times. The
reliability improvement functionsfj(N(s),0), fori = 0,...,m, can be assumed to
be the same for both pre- and post-release data as we aregdedlh the same
software product. The reason we allaws andy(s) for pre- and post-release
phases to be different is to allow for differences in how tbitveare is being used
before and after its release. During the software testimat, is, the pre-release
phase, when the software is used by experts,oq-‘?{% may tend to be closer to
zero since all the defect types get presumably similar tierfior scrutiny. For
example, in the pre-release phase there may be more empmadiscovering
security defects due to Whicd]pre, corresponding to security defects, may have a
large value. Th&”*'s, on the other hand, may may be more varied depending
on the nature of the users. In particular, the baseline DRRdst release phase
yP'e(s) is expected to be larger thafi°sY(s), since the software is subjected to
more rigorous scrutiny during the pre-release phase théneipost-release phase.
Note that the model in (6.5) is a special case of the modelidered in (5.1)
and hence the methodology described in Section 5.2 of Chéptan be used
to estimate the model parameters. In particular, with omy tlefect types and

assumingfi(N(s)) = exp(—BiNi(s)), fori = 0,1, we have, from (5.7),
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P C-BIN (S)) S <s
i i1 al""~BN1(S])__o—BoNo(Sj)’ ] =
P(zj =181, zU"Y) = g et 0 A ve R (6.6)
o —B1N1 (Sj)
€ S >S5

PP BINI(S)) | o BoNo(S))
whereZ; indicates the type of th¢t" defect, amongst the two defect types, re-

ported at timeS;, for j = 1,...,n. The parametersy?®, a?*

,Bo, B1, can be es-
timated through maximum likelihood estimation involvindogistic regression
analysis betwee;j on No(Sj), N1(Sj) andI(S; < S). A test of hypothesis for

pre

post
a1

_ pre
= C(l

Vs a P post

>0y canreveal whether the reporting pattern of the type 1
defects with respect to type 0 defects has changed betweenu post-release
phases. Extensions to more than two types of defect can ls&deved similarly.
Applications of this model to a data-set that contains bo¢h and post-release
software defect data along with classification of defedis multiple types would
be insightful. Parametric specification of the DRR during pihe-release testing
phase and non-parametric specification in the post-reteaag phase would be
another possibility. Under such a model, the estimatiorhefrhodel parameters
would consider products of the likelihood for the obserwasi in the pre-release
phase and the partial likelihood in the post-release pliasgablishing the asymp-

totic distribution of the estimates when the number of prel jgost-release defects

are large would be a challenging research problem.

6.3. Non-Parametric Estimation

In the analysis of multi-type defects with+ 1 defect types considered in Chap-
ter 5, we assumed parametric forms for the reliability inweraent functions,

fi(N(s)), fori =1,...,m. In some situation, these parametric forms may be ques-
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tioned. Hence, a non-parametric consideration of thesgifurs would be useful.

Let us consider the case with= 1.

6.3.1. Non-Parametric Estimation With Kernel Regression

Let N(s) = (No(s),N1(s)) be the multivariate process that counts the cumulative
number of defects reported across the two types at caleimdastlLet S, ..., S,
be the calendar times when defects were reported anf] letpresent the defect

type of thejth defect, forj = 1,...,n. Under the model specified in (5.7),

1
P(Zj=1H(§)) = 57 =G(N(S)), say,  (6.7)
L exlan) )

0

whereH (S;) = {S1),Z(-Y1. For a generas, H(s) is the history upto time—
(consisting of all the defect discovery times and their §/pecurring prior to
time s) and the fact that a defect discovery takes place & ginthen, denot-
ing Z(s) to be the defect type discovered at ti;ave haveP(Z(s) = 1|H(s)) =
G(N(s)). Note thatN(s) is a function ofH (s). A non-parametric specification of
G(N(s)) would waive the requirement of a parametric specificatioripoN(s))
and f1(N(s)). Then,E(Z(s)|H(s)) can be modeled non-parametrically as an ar-
bitrary functionG(N(s)), depending o (s) only throughN(s), except that(.)

lies between 0 and 1. A Nadaraya-Watson regression Wat96d | betweerZ (s)
andN(s) would estimates(N(s)), for a givenN(s), using a bandwidth parameter

h and a specified bivariate kerr€( ., .), as given by
N(Sj)—N
SN — D (957
- N(S))—N
z?:1K< ( l)h (S)>

A choice for the kerneK(.,.) can be the independent bivariate Gaussian ker-

(6.8)

nel with K (xq,x2) O exp(—(x2 +x3)). The estimate(N(s)) maybe graphically



159 6.3 Non-Parametric Estimation

compared with the one estimated through parametric spaibific of fo(N(s)),
f1(N(s)) andaj using the method of Chapter 5. A good visual match between the
two estimates could justify the assumed parametric fornesidghing a goodness

of fit test for the assumed parametric form would be a challepgesearch prob-
lem while at the same time being valuable to a software ridilyalpractitioner.

The choice of an appropriate kernel is another challengeutéyé research topic
would involve determination of an optimal kernel for binaegression involving

variables derived from counting processes.

6.3.2. Constrained Non-parametric estimation using PAVA

Another approach to specifyinG(N(s)), with two types of defects, would in-
volve making an assumption thatN(s)) = L(No(s) — N1 (s)) for someL(x). The
quantity No(s) — N1(s) measures the difference in the number of type 0 defects
from the number of type 1 defects reported till calendar tsn®ne may argue
that, more this difference, the higher the chance that the defect after times
will be of type 1, implying that (X) is increasing irx. The pooled adjacent viola-
tors algorithm (PAVA) can be used to estimate) as a function of the difference
No(Sj) — Ni(Sj). Let Zj be an indicator of thg'" defect being a type 1 defect.
Let Xj = No(Sj) —Nu(§j), for j =1,...,n, andX(q) < ... < X be the ordered
Xj's with corresponding-values denoted b¥y),...,Z), respectively. For any
X, define

j(x) = Z' Xy £x). (6.9)

Then,

k 7.
H(x)= min max {z'_JZ(')} (6.10)

j<ksni<j<jx) | kK—j+1
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This estimated (x) can be used to compute reliability metrics suchRés) and
MNDF using the methods described in Section 5.3 of Chapter 5. Cangpatan-
dard errors foH (x) and the reliability metrics computed from the estimate aan b

another direction for future research.

6.4. Applications to Online Retail Analytics

In an online market there are thousands of products avaifablsale to millions
of customers. Online retailing is a fast growing multi-ioifi dollar industry. What
differentiates an online market from a traditional marketm a data analysis
perspective, is that every product and customer are unjgdentified and every
sale is electronically recorded. An online retailer woukhéfit from estimates
of future demand for different products. In particular,ntd®cation of products
which are not expected to sell over the next few months cap imeinventory
control and bring down costs. If we denddg(s) to be the cumulative demand of
a producti, upto calendar tims amongm-+ 1 products, estimates &f(D;(s+

t) — Di(s) = 0) for a future duratiort is the metric of importance. For example, if
P(Di(s+t) —Di(s) = 0) is close to 1, then the probability of tt product selling
over a future units of time is negligible and the retailer might consideducing
the inventory of this product. A NHPP model for the countimggesD; (s) seems
appropriate for computing this probability. For a varietpooducts, if a customer
has bought the product, then it can be assumed the same eustoiimot buy
the same product again in the near future resulting in a dseckdemand for the
product. Examples of such products include books wheretames will not buy

the same book title twice. Other examples include consuteetrenics such as
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television sets and software products such as mobile apiglics. The modeling
of Dj(s), in such situations, has parallels with the modeling of thenting process
representing the cumulative number of defects discoveradsbftware.

The intensity function\;(s) of the NHPP governind;(s) maybe modeled as
a function of Dj(s—). If we let T to be the duration between thi@ and (i —
1)'" purchase, we could assume a de-eutrophication model anthagbatT; ~
Exponentiaja — Bi). We would expecf3 > 0, but it is possible tha < 0 for
some products where the demand grows exponentially. A neaitestic model for

Ai(s) would be similar to the model introduced in Chapter 5 as giwen b
Ai(s) = Vi(s) fi(Ni(s—)) (6.11)

with fj(0) = 1. The functiony;(s), represents the baseline demand for the product
at calendar time assuming that no customer has purchased the product @l tim
s. The functiony;(s) cannot be assumed to be constant with calendar $iras
one would expect it to be influenced by a variety of marketdsrsuch as product
pricing, effectiveness of the product marketing and mamonomic conditions,

to name a few. A non-parametric specification of the baselemand function

along the lines of (5.5) would be appropriate. This is staietbllows,
Ai(s) = y(s) exp(ai) fi(Ni(s—)), (6.12)

fori=0,1,....m, withag=1.

Methods for estimating the proposed model using a parkielihood approach
as discussed in Chapter 5 along with estimation of future deinby extrapolat-
ing the Breslow estimate gfs) can be developed. Demand metrics similar to the

reliability metricsR(N) andMNDF can also be proposed. The number of prod-
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ucts,m, can be as large as 1000 resulting in a large number of modanaters
which increases the risk of over-fitting. Shrinkage or lassthods of estimation
may be used to solve this problem. Incorporation of covasiasuch as product
pricing and macro-economic variables such as bank intemgst, into the model
would make it more realistic and would provide another dicecfor research.
Such methods would provide a new way of analyzing data caiggonline re-
tail and provide crucial estimates of product demand fas thghly competitive

industry.
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