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Introduction

The study of stochastic differential equations (SDEs) and the semimartingales that arise
as the solutions of these equations is central in the subject of stochastic analysis. The last
80 years have seen the birth and the subsequent growth of this subject. Topics such as
stochastic flows ([70]), evolution equations ([20,65]), stochastic filtering theory ([24,37,58,
68, 83]), stochastic control theory ([4, 17]) have given tremendous impetus to understand
SDEs.

The development of SDEs in Euclidean spaces primarily centered on the properties
of the diffusion coefficients and the drift terms. Classical results on the existence and
uniqueness of the solutions of these equations are based on coefficients which are Lipschitz
continuous. It is well-known that locally Lipschitz coefficients lead to solutions with possi-
ble explosions. Notions of weak and strong solutions, related semigroups and corresponding
infinitesimal generators have yielded rich results. Most of these results are well-understood
and the following texts give an idea of these basic results ([21, 46, 50, 54–56, 60, 74, 82, 87,
93, 107]). Extensions of these results dealt with processes which have jumps, like Lévy
processes ([3, 71, 100]) and with processes which have more general state spaces. Such ex-
tensions include the notion of semimartingales ([27, 56, 74]) and general Markov processes
([14,94,95,102,105,106]) and these have also been topics of research in their own right.

These developments in the theory of SDEs have taken place with a finite dimensional
(Euclidean) state space. But the development of stochastic partial differential equations
(SPDEs) has required an extension of this theory to infinite dimensions and in particular to
suitable Hilbert spaces. The following books and monographs give some idea of the different
directions that have been studied ([20, 22, 23, 26, 40, 59, 63, 64, 74, 117, 120]). This thesis is
concerned with some mathematical problems that arise when an Itô type SDE is formulated
as an SPDE driven by the same Brownian motion. In the rest of the introduction, we give
an overview of results leading to such a formulation.
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Chapter 1. Introduction

1.1 Stochastic partial differential equations

The subject of SPDEs is a relatively recent development. This subject was already present
in the theory of stochastic flows in an ‘embryo’ form (see [70, Chapter 6]). While the
classical theory of SDEs dealt with the time evolution of a single particle in a diffusive
medium and its variants thereof in filtering and control theory, several applications involv-
ing deterministic systems perturbed by noise, as described for example in [117], required
the incorporation of a spatial parameter into the SDE model to describe the effects of the
spatial dependence of the noise as well as to model the evolution of a system of particles.
SPDEs have emerged as a variant of the classical SDE model, incorporating features like
the spatial dependence of the noise mentioned above. One of the distinctive features is an
extension of the classical PDE results and techniques to situations where the physical sys-
tem described by a PDE is now subject to random disturbances, modelled by the addition
of a noise term analogous to the manner in which an Itô SDE is the perturbation of an
ODE by a diffusion term involving Brownian motion or other types of noise like Lévy pro-
cesses. A typical example is the stochastic heat equation [23, pp. 27-40]. Another recent
application to Navier-Stokes equations was considered in [103]. While the SPDE model
has drawn attention to the possibilities of a rigorous mathematical formulation of hitherto
intractable physical models, like the KPZ equation ([43]), the connections of these models
with the ‘classical’ diffusion models of Itô ([52]) or Stroock and Varadhan ([107]) have
been less well researched. On the other hand a class of stochastic processes called Super
processes ([15, 25, 29, 35, 72, 118]) that describe the evolution of a system of (interacting)
particles are more explicitly modelled on the classical diffusion model (or more generally
motion in a Markovian set up) and are at the same time less well described by SPDE
models (see however [62, 120]).

One way of bridging the gap between the SPDE models and classical diffusion theory
is to recast the equations of classical diffusive motion in the framework of SPDEs. This
was done using the Itô formula as the principle tool, first in a series of papers [111–115]
and later from a somewhat different perspective in another set of papers [88–92]. Both
approaches used the framework of distributions to formulate the problem. The differences
in the two approaches arose in the techniques used. To proceed further we have to consider
the framework of distribution theory in which many of the results of SPDEs are formulated.

2



1.2. Random processes taking values in the space of Distributions

1.2 Random processes taking values in the space of
Distributions

The development of the stochastic Calculus of variations (Malliavin Calculus, [81]) and
White noise theory ([47]) had already made the theory of distributions due to L. Schwartz
([101]) an important tool in the study of stochastic processes. Further, given the fact that
SPDEs involved both techniques from PDE and those dealing with spatially dependent
noise, it is perhaps natural that the theory of distributions is of import in this subject.
Two strands of the theory of distribution valued processes directly feed into the topic of this
thesis, viz. the theory of S ′(Rd) - the space of tempered distributions (or more generally
countably Hilbertian) - valued processes as developed in ([53, 59]) and certain analytic
techniques like the ‘Monotonicity inequality’ ([65]) whose antecedents lie in the study of a
class of SPDEs with solutions in certain Hilbert spaces that are Sobolev spaces ([65, 83]).
In [53], Itô developed a theory of random processes taking values in S ′(Rd) or D′ ([41]).
This was further developed in [59]. The main advantage in this framework is that we
are able to use the well developed theory of stochastic integration in Hilbert spaces ([74])
and at the same time deal with general S ′(Rd) or D′ valued processes. Yet the techniques
developed in [22] or [74] for solving SDEs or SPDEs in a single Hilbert space are insufficient
for dealing with equations where the solutions take values in a single Hilbert space whereas
the equations hold in a different space. As mentioned above, one needs here certain analytic
techniques like the Monotonicity inequality to prove existence and uniqueness results. The
Monotonicity inequality is a close relative of the so called coercivity inequality developed
in [83] to prove existence and uniqueness results for stochastic evolution equations in the
framework of a triple of Hilbert spaces (see [96]). It is used in [65] to prove uniqueness
results for SPDEs. If the operators (A,L) respectively corresponding to the diffusion and
drift terms in an SPDE viz.

dYt = A(Yt). dBt + L(Yt) dt (1.1)

satisfy this inequality in a suitable Hilbert space, then pathwise uniqueness holds for this
equation. It is to be noted that such techniques for proving existence and uniqueness are
not available if one is dealing with equations as above in S ′(Rd) directly as in [112] without
using its countable Hilbertian structure.

The problem of developing an SPDE framework for the classical diffusion models of
Itô-Stroock-Varadhan can now be reformulated in the countable Hilbertian framework of
S ′(Rd). Given the fact that for a finite dimensional diffusion {Xt} its law is in some sense
determined by Itô’s formula via a martingale formulation, an important first step is to
identify {Xt} with the S ′(Rd) valued process {δXt} via Itô’s formula. This was done in

3



Chapter 1. Introduction

[89, 112]. It was shown in [89] that this can actually be done in the countable Hilbertian
framework of S ′(Rd), arriving at an equation for Yt = δXt in the above form. As noted
earlier the special feature of such equations is that the process {Yt} takes values in one of
the Hermite-Sobolev spaces that constitute S ′(Rd), viz. Sp(Rd) for some p ∈ R whereas the
equation holds in a different (larger) space Sp−1(Rd) ⊃ Sp(Rd). These are real separable
Hilbert spaces (see [53]). It was also noted in [89] that δXt = τXt(δ0) (where τx, x ∈ Rd

denotes the translation operators, see Example 2.11.6) and in this form the results could
be stated for a general tempered distribution φ ∈ S ′(Rd) in the form τXt(φ) (see also [112]
for an expression for τXt(φ) in the equivalent form given by the convolution φ ∗ δXt). The
SPDE (1.1) was solved in the special (linear) case when A and L were constant coefficient
differential operators in [38] using the fact that the pair (A,L) satisfied the Monotonicity
inequality, which was shown separately in [39]. The formulation of the problem in terms
of the translation operators τx, x ∈ Rd opened the way for applying analytic techniques
based on the boundedness of these operators on the Hilbert spaces Sp(Rd) ([91]) and for
interpreting the expected value E(τXtφ) as the convolution with the heat kernel, viz. φ ∗ pt
when {Xt} is a d-dimensional Brownian motion. In particular, these provide a stochastic
representation of the well-known solutions of the heat equation (also see [5, Chapter II,
(4.14) Theorem]).

These results were extended in [92] to the case of variable coefficients with heat equation
for the Laplacian being replaced with the forward equation for the diffusion {Xt}. The
results of [92] also provided an SPDE for stochastic flows generated by an Itô type SDE,
where a solution of the SPDE was built up using the ‘fundamental solutions’ {δXx

t
}, {Xx

t }
being the solution of the SDE generating the flow. More recently, it was shown in [90]
that solutions of SPDE (1.1), with L - a non-linear second order elliptic operator arising
in the diffusion theory and A - a suitable ‘square root of −L’, arise as the translations of
the initial value Y0(= y, say ∈ S ′(Rd)) by a process {Zt(y)} satisfying a finite dimensional
SDE, i.e. Yt = τZt(y)(y). Here the Monotonicity inequality plays an important role. The
results of [90] also provide a notion of non-linear convolution needed to make sense of
the non-linear evolution equation that arises on taking expectations in (1.1) analogous to
the manner in which the usual notion of convolution appears in the solution of the heat
equation for the Laplacian.

1.3 Some salient features of our methods

In this section, we describe certain technical aspects of the ideas mentioned in the previous
sections. This thesis focuses on processes which take values in the countably Hilbertian
Nuclear space S(Rd) (the space of real valued rapidly decreasing smooth functions on Rd)
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1.3. Some salient features of our methods

or its dual S ′(Rd) and we use a ‘Hilbert space approximation’ to S ′(Rd), viz. we work with
processes taking values in the Hermite Sobolev spaces Sp(Rd), which are completions of
S(Rd) in the Hilbertian norms ‖·‖p. We can describe the countably Hilbertian topology on
S(Rd) via these norms, which allows us to use the machinery from the theory of stochastic
integration on Hilbert spaces to SPDEs in S ′(Rd).

Note that differentiation and multiplication by polynomials (more generally, multipli-
cation by smooth functions) are standard operations on S ′(Rd) and these are basic con-
stituents in the differential operators that one uses. A technical difficulty then arises due
to the fact that these differential operators are unbounded operators on a Hermite Sobolev
space Sp(Rd). One usually has to take larger spaces as the range of these operators, which
will typically be another Hermite Sobolev space. As a consequence and as observed earlier,
the following situation repeats in multiple scenario: an Sp(Rd) valued process satisfying a
SPDE in Sp−1(Rd) - which is a larger space (e.g. see [90,92]).

One approach in constructing S ′(Rd) valued processes as well as studying SPDEs in
S ′(Rd) is via a ‘lifting’ of finite dimensional processes to processes taking values in some
Sp(Rd). This ‘lifting’ procedure is used in this thesis and we describe two methods below.

(I) The first method uses the duality of function spaces with its dual (e.g. S(Rd) with
S ′(Rd), C∞(Rd) - the space of real valued smooth functions on Rd - with E ′(Rd) -
the space of compactly supported distributions on Rd) and can be thought of as a
‘linear’ method. If the flow {Xx

t } generated by Itô’s SDE

dXt = σ(Xt) dBt + b(Xt) dt, (1.2)

is smooth enough in the initial condition x, then we can evaluate smooth functions on
this flow. For ‘nice’ functions φ, observe that the evaluation can be written in terms
of a duality φ(Xx

t ) =
〈
δXx

t
, φ
〉

and this is where the identification of {Xx
t } with

{δXx
t
} becomes paramount. In [92], the composition yielded a continuous linear map

Xt(ω) : C∞(Rd)→ C∞(Rd). Then using the dual map X∗t (ω) : E ′(Rd)→ E ′(Rd), one
generates distribution valued processes from the range of X∗t . Since E ′(Rd) ⊂ S ′(Rd),
the processes generated via this method are also S ′(Rd) valued. We use this method
in Chapter 4 to obtain results similar to [92].

(II) The second method involves translation operators τx, x ∈ Rd on S ′(Rd) (Exam-
ple 2.11.6) and can be thought of as a ‘non-linear’ method. The process {τXtφ} is an
Sp(Rd) valued process, where {Xt} is an Rd valued process and φ ∈ Sp(Rd). In an Itô
formula [89, Theorem 2.3], it was shown that {τXtφ} is a continuous semimartingale,
if {Xt} is so. As noted in the previous section, this method led to a correspondence
([90]) between a class of finite dimensional SDEs and a class of SPDEs in S ′(Rd) with
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Chapter 1. Introduction

deterministic initial condition in some Sp(Rd). We use this method in Chapter 5 to
extend the results in [90] to random initial conditions. In Chapter 6, we extend the
Itô formula [89, Theorem 2.3] where {Xt} is a semimartingale with jumps.

Another approach in the construction (and also to understand the properties) of S ′(Rd)
valued random variables and processes - more generally processes taking values in the dual
of Nuclear spaces - uses the technique of ‘regularization’ of random linear functionals on
Nuclear spaces ([53,57,59,77–80,85]). We do not use this technique in this thesis; however
some comments regarding this technique and our work have been made in Remark 6.3.4.

1.4 A chapter-wise summary

Unless stated otherwise, (Ω,F , (Ft), P ) will be a filtered complete probability space satis-
fying the usual conditions and {Bt} a d dimensional (Ft) standard Brownian motion.

In Chapter 2, we recall basic results from analysis and the theory of stochastic pro-
cesses. First we cover functions of bounded variation and Bochner integration in Sections
2 and 3 and then go on to list definitions and basic results related to real and Hilbert
valued processes in Sections 4,5,6 and 7. In Section 9, the Schwartz topology on S(Rd)
([110, Chapter 25], [98, Chapter 7, Section 3], [36, Chapter 8]) is described. In Section 10
we describe a countably Hilbertian Nuclear topology on S(Rd) ([41, Chapter 1 Appendix],
[53, Chapter 1.3]), which coincides with the Schwartz topology ([89, Proposition 1.1]. We
also define the Hermite Sobolev spaces, denoted by Sp(Rd), indexed by real numbers p
([53, Chapter 1.3]). Using the properties of the Hermite functions described in Section 8,
we list examples of tempered distributions and operators on S ′(Rd) (and in particular, on
Sp(Rd)) in Section 11. Section 12 covers results on stochastic integration tailored to Sp(Rd)
valued predictable integrands. Sections 13 and 14 contain some inequalities and results
from semigroup theory, respectively.

In Chapter 3, we prove the Monotonicity inequality for (A = (A1, · · · , Ar), L) in ‖ · ‖p
in two different settings.

(i) In Section 3, we prove the inequality for constant coefficient differential operators
(Theorem 3.3.1) given by

Ai = −
d∑
j=1

σji∂j, L = 1
2

d∑
i,j=1

(σσt)ij∂2
ij −

d∑
i=1

bi∂i.

This result was already proved in [39, Theorem 2.1]. We give a new proof, which
involves a simplified computation via an identification of the adjoint of the operators
∂i, i = 1, · · · , d on Sp(Rd) as a sum −∂i + Ti where Ti is a bounded linear operator
on Sp(Rd) (see Theorem 3.2.2).

6



1.4. A chapter-wise summary

(ii) In Section 4, we consider the inequality when the operators A,L contain variable
coefficients, i.e. for

Aiψ := −
d∑

k=1
∂k (σkiψ) , ∀ψ ∈ S ′(Rd)

and

Lψ := 1
2

d∑
i,j=1

∂2
ij

(
(σσt)ijψ

)
−

d∑
i=1

∂i (biψ) , ∀ψ ∈ S ′(Rd)

where σij, bi, 1 ≤ i, j ≤ d are smooth functions with bounded derivatives. This
inequality was used in [92] to prove the uniqueness of the solution of the Cauchy
problem for L as above. We prove the inequality when σ is a real d × d matrix
and b(x) := α + Cx, ∀x ∈ Rd with α ∈ Rd and C = (cij) is a real d × d matrix
(see Theorem 3.4.2). The proof is similar to that of Theorem 3.3.1 and uses the
identification of the adjoint of a multiplication operator on the Hermite Sobolev
spaces (see Theorem 3.4.1).

An important step in the proof shows the existence of some bilinear forms on Sp(Rd).
For example, we prove that the map (φ, ψ) 7→ 〈∂iφ , Tjψ〉p is a bounded bilinear form on
(S(Rd), ‖ · ‖p)× (S(Rd), ‖ · ‖p) and hence extends to a bounded bilinear form on Sp(Rd)×
Sp(Rd) (see Lemma 3.2.5, Theorem 3.4.1).

In Chapter 4 Section 2, we introduce and characterize a class of diffusions - that
depend deterministicically on the initial condition - given by Itô’s SDE (1.2) with Lipschitz
coefficients, such that the general solution is the sum of the solution starting at 0 and the
value of a deterministic function at the initial condition (see Definition 4.2.1). We show,
under ‘nice’ conditions (Proposition 4.2.5, Theorem 4.2.4) that these diffusions correspond
to the coefficients given as follows.

(i) σ is a real d× d matrix.
(ii) b(x) := α + Cx, ∀x ∈ Rd where α ∈ Rd and C = (cij) is a real d× d matrix.

These coefficients generate Gaussian flows and hence the above correspondence can be
taken as characterization results on Gaussian flows in the class of flows that arise as the
strong solutions of an Itô stochastic differential equation with smooth or Lipschitz coeffi-
cients and driven by a Brownian motion {Bt}.

In Section 3, continuing with these coefficients σ and b, we define continuous linear
maps Xt(ω) : S(Rd) → S(Rd) (Lemma 4.3.4) and the corresponding adjoints X∗t (ω) :
S ′(Rd) → S ′(Rd). For any ψ ∈ L1(Rd) ⊂ S ′(Rd), we define an S−p(Rd) valued (for an
appropriate p) continuous adapted process {Yt(ψ)} with two properties, viz

(i) Yt(ψ) = X∗t (ψ) (see equation (4.17)).

7



Chapter 1. Introduction

(ii) {Yt(ψ)} solves the following equation in S−p−1(Rd), a.s. (see Theorem 4.3.8)

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)) .dBs +

∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0.

Taking expectation on both sides of the previous equation, we show that ψ(t) := EYt(ψ)
solves the Cauchy problem for L∗ with the initial condition ψ ∈ L1(Rd). Using Monotonic-
ity inequality for (A∗, L∗) (Theorem 3.4.2), we show that both these solutions are unique.
These results are motivated by the results in [92].

In Chapter 5 Section 2, we extend the correspondence obtained in [90] to allow ran-
dom initial conditions for Y in SPDE (1.1). Let ξ be an Sp(Rd) valued, F0 measurable,
square integrable (independent of {Bt}) random variable. Let (F ξt ) denote the right con-
tinuous, complete filtration generated by ξ and {Bt}. Then under ‘nice’ conditions, the
SPDE

dYt = A(Yt). dBt + L(Yt) dt; Y0 = ξ (1.3)

has a unique Sp(Rd) valued (F ξt ) adapted strong solution given by Yt = τZt(ξ), t ≥ 0 (see
Theorem 5.2.15) where {Zt} solves the SDE

dZt = σ̄(Zt; ξ). dBt + b̄(Zt; ξ) dt; Z0 = 0.

Note that A,L, σ̄, b̄ are defined in terms of σ, b ∈ S−p(Rd). The hypothesis requires a certain
‘globally Lipschitz’ nature of the coefficients, which depends on ξ. This ‘globally Lipschitz’
condition can be further relaxed to a ‘locally Lipschitz’ condition (Theorem 5.2.20).

In Chapter 5 Section 3, we construct stationary solutions of the infinite dimen-
sional SPDE (1.3). Given a stationary solution, say {Zt}, of some finite dimensional SDE,
we identify a subset C (see equation (5.33)) of Sp(Rd), which allows the ‘lifting’ of {Zt}
(Theorem 5.3.4). This technique has been applied to Example 5.3.5 and Example 5.3.8.

In Chapter 6, we prove the following Itô formula: Let p ∈ R. Given φ ∈ S−p(Rd) and
an Rd valued semimartingale Xt = (X1

t , · · · , Xd
t ), we have the equality in S−p−1(Rd), a.s.

τXtφ = τX0φ−
d∑
i=1

∫ t

0
∂iτXs−φ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXs−φ d[X i, Xj]cs

+
∑
s≤t

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]
, t ≥ 0,

where 4X denotes the jump of X (Theorem 6.2.3). If X is continuous, then the result
follows from [89, Theorem 2.3]. We apply the Itô formula to a one-dimensional process
X, which solves an SDE driven by a Lévy process and show the existence of a solution
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1.4. A chapter-wise summary

of a stochastic ‘partial’ integro-differential equation in the Hermite-Sobolev spaces (The-
orem 6.3.1). This is similar to the solution obtained in [90] for continuous processes X.
An identification of the local time process of a real valued semimartingale as an S ′ valued
process is presented in Proposition 6.3.3.

We provide a list of publications (including preprints) which constitute the material
of this thesis and a bibliography of books, monographs and research articles which have
been referenced. A list of commonly used symbols, an index of terms and topics have been
added at the end. We refer to a result due to Burkholder, Davis, Gundy (Theorem 2.5.28)
as ‘BDG inequalities’.
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Preliminaries

2.1 Introduction

In this chapter, we recall basic results from analysis and the theory of stochastic processes
- which we use in this thesis. Our requirement in the context of stochastic integration
with Hilbert valued (specifically those taking values in a Hermite-Sobolev space) processes
amounts to integrating Hilbert valued predictable processes with respect to real semi-
martingales. While the stochastic integration of Hilbert valued predictable processes with
respect to Hilbert valued Wiener processes and cylindrical Wiener processes ([22, 40]) or
the stochastic integration of Hilbert valued predictable processes with respect to Hilbert
valued semimartingales ([74]) are well-known, we have been unable to locate any reference
in the literature that precisely deals with our requirement. We do not require the full gen-
erality (as in [74]) in which the results in the theory of Hilbert valued stochastic integration
are proved. We prove well-known results of stochastic integration in this context, starting
from the basic principles and this topic covers a major portion of this chapter.
Definitions and necessary results on real valued functions of bounded variation and Bochner
integration are covered in Sections 2 (we refer to [2]) and 3 (we refer to [105, pp. 267-271])
respectively. In Section 4, we recall of filtrations and stochastic processes. Section 5 and
Section 6 contain results on real valued stochastic processes and Section 7 is about Hilbert
valued processes. For these sections, we refer to [27,55,56,60,74,82,87,93].
In this thesis, we deal with processes taking values in the space of tempered distributions
(denoted by S ′(Rd)), in particular in an Hermite Sobolev space. In Section 8 we recall prop-
erties of the Hermite functions ([47,51,108,109]). Two sections, viz. Section 9 and Section
10 are devoted to study the Schwartz topology ([110, Chapter 25], [98, Chapter 7, Section 3],
[36, Chapter 8]) and a countably Hilbertian Nuclear topology ([53, Chapter 1.3], [41, Chap-
ter 1 Appendix]) on the space of rapidly decreasing smooth functions on Rd, denoted by
S(Rd). The fact that these two topologies coincide is well-known ([89, Proposition 1.1]).
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Examples of tempered distributions and some operators on the Hermite Sobolev spaces
are covered in Section 11. Some of the computations viz. Lemma 2.11.16, Lemma 2.11.20,
Example 2.11.22 and Example 2.11.25 might be new. In Section 12, we restate some re-
sults from Section 7 for integrands taking values in the Hermite Sobolev spaces. Section
13 contains two basic inequalities including the Gronwall’s inequality (Lemma 2.13.1). In
Section 14 we cover two examples of semigroups of bounded linear operators, using the
terminology and notations from [84, Chapter 1].

2.2 Functions of bounded variation

Let a, b ∈ R with a < b.

Definition 2.2.1 ([2, Definition 6.4]). A set of points P = {x0, x1, · · · , xn} satisfying the
inequalities

a = x0 < x1 < · · · < xn−1 < xn = b,

is called a partition of [a, b]. The collection of all possible partitions of [a, b] will be denoted
by P [a, b].

We may write P = {a = x0 < x1 < · · · < xn−1 < xn = b} to denote a partition of [a, b].

Definition 2.2.2. (i) ([2, Definition 6.4]) Let f be a real valued function on [a, b]. If
P = {a = x0 < x1 < · · · < xn−1 < xn = b} is a partition of [a, b], write 4fk =
f(xk) − f(xk−1) for k = 1, 2, · · · , n. If there exists a positive real number M such
that ∑n

k=1 | 4 fk| ≤ M for all partitions of [a, b], then f is said to be of bounded
variation on [a, b]. We denote the sum ∑n

k=1 | 4 fk| by V ar(P, f).
(ii) ([2, Definition 6.8]) Let f be of bounded variation on [a, b]. The real number

sup{V ar(P, f) : P ∈ P [a, b]} is called the total variation of f on the interval [a, b].
We denote this supremum by V ar[a,b](f).

Theorem 2.2.3. Let f be of bounded variation on [a, b].

(i) ([2, Theorem 6.11]) Let c ∈ [a, b]. Then f is of bounded variation on [a, c] and on
[c, b] and we have

V ar[a,b](f) = V ar[a,c](f) + V ar[c,b](f).
(ii) ([2, Theorem 6.12]) Let V be defined on [a, b] as follows:

V (x) :=

V ar[a,x](f) if a < x ≤ b

0 ifx = a.

Then V and V −f are non-decreasing functions on [a, b]. Of course f is the difference
of V and V − f .

12



2.3. Bochner integration

(iii) ([2, Theorem 6.14]) Let V be as in (ii). Then
a) If f is right continuous on [a, b), then so is V . The converse is also true.
b) If f is left continuous on (a, b], then so is V . The converse is also true.
c) Every point of continuity of f is also a point of continuity of V . The converse

is also true.

Theorem 2.2.4 (([2, Theorem 6.13])). Let f : [a, b]→ R be a function. Then f is bounded
variation on [a, b] if and only if f can be expressed as the difference of two increasing
functions.

The next result is well-known and we state it without proof.

Proposition 2.2.5. Let f : [0,∞) → R be a function such that for any t > 0, f is of
bounded variation on [0, t]. Assume that f is right continuous. Then

V ar[0,t](f) = sup
m≥1

2m∑
k=1

∣∣∣∣∣f
(
tk

2m

)
− f

(
t(k − 1)

2m

)∣∣∣∣∣ , ∀t ∈ [0,∞).

2.3 Bochner integration

In this subsection, we recall basic results on Bochner integration. Our main reference for
this subsection is [105, pp. 267-271].
Let µ be an arbitrary non-negative measure on a measurable space (Ω,F). Let (B, ‖ · ‖)
be a real separable Banach space with dual B′.

Definition 2.3.1. (i) A function X : Ω→ E is said to be µ-simple if X is F measurable,
µ(X 6= 0) <∞ and X takes on only a finite number of distinct values.

(ii) Given a µ-simple function f , its integral with respect to µ is the element of B given
by

Eµ[X] =
∫

Ω
X(ω)µ(dω) :=

∑
x∈B\{0}

µ(X = x)x.

Another description of Eµ[X] is as the unique element of B with the property that

〈Eµ[X] , λ〉 = Eµ[〈X , λ〉], ∀λ ∈ B′.

(iii) If X : Ω → B is F measurable, then so is ω ∈ Ω 7→ ‖X(ω)‖ ∈ R. We say X is µ-
integrable if Eµ[‖X‖] <∞ and we say X is µ-locally integrable if 1AX is µ-integrable
for every A ∈ F with µ(A) < ∞. The space of B valued µ-integrable functions will
be denoted by L1(µ;B).

13
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Theorem 2.3.2 ([105, Lemma 5.1.20]). For each µ-integrable X : Ω→ B there is a unique
element Eµ[X] ∈ B such that

〈Eµ[X] , λ〉 = Eµ[〈X , λ〉], ∀λ ∈ B′.

The mapping X ∈ L1(µ;B) 7→ Eµ[X] ∈ B is linear and satisfies

‖Eµ[X]‖ ≤ Eµ[‖X‖].

Finally there exists a sequence {Xn} of B valued µ-simple functions with the property that
Eµ[‖Xn −X‖] n→∞−−−→ 0.

Theorem 2.3.3 ([105, Theorem 5.1.22]). Let (Ω,F , µ) be a σ finite measure space and
X : Ω→ B a µ-locally integrable function. Then

µ(X 6= 0) = 0 ⇐⇒ Eµ[1AX] = 0, ∀A ∈ F , µ(A) <∞.

Assume that B is a sub σ field such that µ restricted to B is σ finite. Then for each µ-
locally integrable X : Ω→ B there is a µ almost everywhere unique µ-locally integrable, B
measurable function XB : Ω→ B such that

Eµ[1AXB] = Eµ[1AX], ∀A ∈ B, µ(A) <∞.

In particular, if Y : Ω→ B is another µ-locally integrable function, then for all α, β ∈ R,

(αX + βY )B = αXB + βYB, (µ− a.e.)

Finally, ‖XB‖ ≤ (‖X‖)B µ-a.e. and hence the mapping X ∈ L1(µ;B) 7→ XB ∈ L1(µ;B) is
a linear contraction.

We call the µ equivalence class of XB’s (obtained in the previous theorem) the µ con-
ditional expectation of X given B. In general, we ignore the distinction between the
equivalence class and a representative of the class. The µ equivalence class may also be
denoted by Eµ[X|B]. If X : Ω→ B is µ-locally integrable and C is a sub σ-field of B, then
we have

Eµ[X|C] = Eµ[Eµ[X|B]|C], (µ− a.e.)

Also given any bounded real valued B measurable function Y on (Ω,F , µ) we have

Eµ[Y X|B] = Y Eµ[X|B], (µ− a.e.)

14
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2.4 Filtrations, Stopping times and Stochastic processes

We recall some definitions from basic probability theory.

Definition 2.4.1. (i) Let (Ω,F , P ) be a probability space. The P completion of F is
defined to be the σ-field generated by F and N , where N denotes the class of all
subsets of P -null sets in F .

(ii) The probability space (Ω,F , P ) is said to be complete if the P completion of F is F
itself.

We take [0,∞) to be our time set. Note that we write ∀t ≥ 0 to mean ∀t ∈ [0,∞).

Definition 2.4.2. (i) Given a probability space (Ω,F , P ), a filtration on [0,∞) is de-
fined as a non-decreasing family of σ-fields Ft ⊂ F , t ≥ 0. We denote the family by
(Ft).

(ii) We say (Ω,F , (Ft), P ) is a filtered probability space if (Ft) is a filtration of (Ω,F , P ).
(iii) We say a filtration (Ft) is right continuous if

Ft+ :=
⋂
s>t

Fs = Ft, ∀t ≥ 0.

(iv) For any t ∈ (0,∞), Ft− will denote the σ field generated by ⋃s<tFs. We also take
F0− := F0. F∞ will denote the σ-field generated by the collection ⋃t≥0Ft.

Definition 2.4.3. A filtered complete probability space (Ω,F , (Ft), P ) is said to satisfy
the usual conditions if

(i) F0 contains all P -null sets of F .
(ii) The filtration (Ft) is right continuous.

Let (Ω,F , (Ft), P ) be a filtered probability space. Let F̄ denote the P completion of
F and put N := {A ∈ F̄ : P (A) = 0}. Define F̄t := σ{Ft,N}, t ≥ 0, i.e. the σ field
generated by Ft and N .

Lemma 2.4.4 ([56, Lemma 6.8]). Let (Ω,F , (Ft), P ) be a filtered probability space.

(i) F̄t+ = Ft+ for all t ≥ 0.
(ii) The filtration (F̄t+) is the smallest right continuous and complete extension of (Ft).

Let B be a real separable Banach space with norm ‖ · ‖. Let B(B) denote the Borel σ
field on B. Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual
conditions.
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Definition 2.4.5. (i) We say X = {Xt : t ∈ [0,∞)} is a B valued stochastic process if
Xt is a B valued F/B(B) measurable random variable for each t ∈ [0,∞).

(ii) We say a stochastic process {Xt} is (Ft) adapted if Xt is Ft/B(B) measurable for all
t ∈ [0,∞).

(iii) The stochastic process {Xt} is called measurable, if the mapping

(t, ω) 7→ Xt(ω) : ([0,∞)× Ω,B([0,∞))⊗F)→ (B,B(B))

is measurable, where B([0,∞)) denotes the Borel σ-field on [0,∞).
(iv) Let {Xt} be a stochastic process. A stochastic process {Yt} is said to be a modification

of {Xt} if
P (Xt = Yt) = 1, ∀t ∈ [0,∞).

(v) We say {Xt} has continuous (respectively rcll) paths if a.s. the paths t 7→ Xt(ω) are
continuous functions (respectively right continuous function with left limits). We say
{Xt} is a continuous (respectively rcll) process if it has continuous (respectively rcll)
paths.

(vi) A stochastic process {Xt} is said to have a continuous (respectively rcll) modification
if there exists a stochastic process {Yt} with continuous (respectively rcll) paths and

P (Xt = Yt) = 1, ∀t ∈ [0,∞).

(vii) Two stochastic processes {Xt} and {Yt} are said to be indistinguishable if

P (Xt = Yt, t ∈ [0,∞)) = 1.

(viii) A stochastic process {Xt} is progressively measurable if its restriction to Ω× [0, t] is
Ft ⊗B([0, t]) measurable for every t ≥ 0, where B([0, t]) denotes the Borel σ field on
[0, t]. Such a process is (Ft) adapted.

Convention: Unless otherwise specified, we will assume the following:

(i) F = F∞.
(ii) The filtered probability space (Ω,F , (Ft), P ) is complete and satisfies the usual con-

ditions.
(iii) Adapted processes will be with respect to the underlying filtration (Ft).

Definition 2.4.6. A [0,∞] valued random variable τ is said to be an (Ft) stopping time
(or simply a stopping time if the filtration is understood from the context) if

(τ ≤ t) ∈ Ft, ∀t ∈ [0,∞).
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Proposition 2.4.7. (i) Let τ and σ be two (Ft) stopping times. Then max{τ, σ} = τ∨σ
and min{τ, σ} = τ ∧ σ are also (Ft) stopping times.

(ii) Let {τn} be a sequence of (Ft) stopping times. Then supn τn = ∨nτn and infn τn =
∧nτn are also (Ft) stopping times.

Definition 2.4.8. Let {Xt} be an (Ft) adapted process and let τ be an (Ft) stopping
time. Define the stopped process {Xτ

t } by

Xτ
t (ω) := Xt∧τ(ω)(ω), ∀t ≥ 0, ω ∈ Ω.

Definition 2.4.9. Let {Xt} be an (Ft) adapted process.

(i) We say {Xt} has the property Π locally if there exists a sequence of stopping times
{τn} with τn ↑ ∞ and {Xτn

t } has the property Π for each n.
(ii) If {Xt} has property Π locally corresponding to a sequence of stopping times {τn}

with τn ↑ ∞, then we say {τn} is a localizing sequence of stopping times or simply a
localizing sequence.

2.5 Real valued stochastic processes

In this section, we recall some basic results involving real valued stochastic processes.

2.5.1 Predictable processes

Definition 2.5.1. In the product space Ω× [0,∞), we define the predictable σ-field to be
the σ-field generated by all real valued continuous (Ft) adapted processes. Elements of this
σ-field are called predictable sets and any real valued measurable function on Ω × [0,∞)
(with respect to this σ-field) is called a predictable process.

Lemma 2.5.2 ([56, Lemma 22.1]). The predictable σ-field is generated by each of the
following classes of sets or processes:

(i) F0 × [0,∞) and the sets A× (t,∞) with A ∈ Ft, t ≥ 0.
(ii) the real valued left-continuous (Ft) adapted processes.

Proposition 2.5.3 ([55, Chapter I, 2.4 Proposition]). If {Xt} is a real valued predictable
process and if τ is a stopping time, then {Xτ

t } is also a predictable process.

Let {Xt} be an (Ft) adapted process such that its paths have left limits. Then define
an (Ft) adapted process {Xt−} as follows:

Xt− :=

X0, if t = 0.
lims↑tXs, if t > 0.

.
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Proposition 2.5.4 ([55, Chapter I, 2.6 Proposition]). If {Xt} is a real valued (Ft) adapted
process with rcll paths then {Xt−} is a predictable process.

2.5.2 Processes of finite variation

Definition 2.5.5. Let {At} be a real valued (Ft) adapted process with rcll paths.

(i) {At} is an increasing process if the paths of the process, viz. t 7→ At(ω) are non-
decreasing for almost all ω and A0 = 0.

(ii) {At} is called a finite variation process (or a process of finite variation or simply
an FV process) if almost all paths of the process are of bounded variation on each
compact interval of [0,∞). For any t > 0 the total variation of {At} will be denoted
by V ar[0,t](A·).

Remark 2.5.6 (Regularity of paths of the total variation process). Let {At} be an FV
process. Then the paths of the total variation process {V ar[0,t](A·)} are a.s. non-decreasing
and in particular has left limits a.s. The paths are also a.s. right continuous (see Theorem
2.2.3(iii)). By Proposition 2.2.5, a.s.

V ar[0,t](A·) = sup
m≥1

2m∑
k=1

∣∣∣∣A tk
2m
− A t(k−1)

2m

∣∣∣∣ , ∀t ∈ [0,∞).

Note that the random variables A tk
2m
, 1 ≤ k ≤ 2m are Ft measurable and hence so is

{V ar[0,t](A·)}. Therefore {V ar[0,t](A·)} is an (Ft) adapted increasing process.

Theorem 2.5.7. ([27, Chapter VI, 52 Theorem]) Let A be an increasing process. There
exist a continuous increasing process Ac, a sequence {Tn} of stopping times (with graphs
in general not disjoint) and a sequence {λn} of constants > 0, such that

At = Act +
∑
n

λn1(Tn≤t).

If A is predictable, the Tn can be chosen predictable.

2.5.3 Martingales

Let | · | denote the Euclidean norm on Rd. The dimension will be understood from the
context.

Definition 2.5.8 ([74, 8.1 Definition]). An Rd valued (Ft) adapted stochastic process is
called an (Ft) martingale (or simply a martingale, if the filtration is clear) if

(i) E|Xt| <∞ for all t ≥ 0.
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(ii) For every s, t ≥ 0 with s < t and every A ∈ Fs,

E(1AXs) = E(1AXt).

Proposition 2.5.9 ([74, 10.9 Theorem]). Let {Xt} be a real valued (Ft) martingale. Then
it has an rcll modification.

Remark 2.5.10. In the definition of a martingale the regularity of paths, viz. rcll paths is
not a requirement. But for theoretical development regularity of paths plays an important
role. Unless otherwise specified we work with continuous or rcll processes.

Definition 2.5.11. Let {Xt} be an (Ft) martingale.

(i) We say {Xt} is an L2 martingale (or a square integrable martingale), if E|Xt|2 <∞
for all t ≥ 0.

(ii) We say {Xt} is an L2-bounded martingale, if supt≥0 E|Xt|2 <∞.

Definition 2.5.12. Let {Xt} be a real valued (Ft) adapted process. Then {Xt} is called
a submartingale (respectively a supermartingale) if

(i) E|Xt| <∞ for all t ≥ 0.
(ii) For every s, t ≥ 0 with s < t and every A ∈ Fs,

E(1AXs) ≤ E(1AXt)

(respectively E(1AXs) ≥ E(1AXt)).

Remark 2.5.13. Condition (ii) in Definition 2.5.8 is often stated in terms of the condi-
tional expectation as E[Xt|Fs] = Xs almost surely.

Definition 2.5.14. Let {Xt} be a real valued (Ft) adapted process. It is called a local
martingale (respectively local L2 martingale, locally square integrable martingale, local
submartingale) if there exists a localizing sequence {τn} such that for each n, the stopped
process {Xτn

t } is a martingale (respectively L2 martingale, square integrable martingale,
submartingale).

Proposition 2.5.15 ([56, Lemma 6.11]). Let {Mt} be an Rd valued martingale and con-
sider a convex function f : Rd → R such that {Xt} defined by Xt = f(Mt) is integrable
for all t. Then {Xt} is a real valued submartingale. The statement remains true for real
submartingales {Mt}, provided that f is also non-decreasing.

Note that x 7→ x2 and x 7→ |x| are convex functions on R and hence we get the next
result.
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Corollary 2.5.16. Let {Mt} be a real valued square integrable martingale. Then {M2
t }

and {|Mt|} are submartingales.

The following result is a version of the Doob-Meyer decomposition theorem due to
Meyer and Doléans.

Theorem 2.5.17 (Doob-Meyer decomposition, [56, Theorem 22.5]). A process X is a
local submartingale if and only if it has a decomposition X = M + A where M is a local
martingale and A is a locally integrable, increasing, predictable process. In that case M

and A are a.s. unique.

Lemma 2.5.18 (([74, 13.7 Corollary 1])). Every predictable right continuous martingale
is continuous.

Proposition 2.5.19. ([87, Chapter III, Theorem 12]) A predictable local martingale M of
finite variation is a.s. constant i.e. a.s. Mt = M0, t ≥ 0.

Let M 2 (respectively M 2,c) denote the vector space of real valued rcll L2 martingales
(respectively continuous L2 martingales) with the locally convex structure defined by the
seminorms M 7→ E|Mt|2, t ∈ [0,∞). Let M 2

∞ (respectively M 2,c
∞ ) denote the vector space

of real valued rcll L2-bounded martingales (respectively continuous L2-bounded martin-
gales). Note that an L2-bounded martingale {Mt} is closable, i.e. there exists an F∞
measurable random variable M∞ such that

Mt = E[M∞|Ft], a.s.

The spaces M 2
∞ can be endowed with a Hilbert space structure by considering the scalar

product 〈M , N〉M 2
∞

:= E[M∞N∞]. Then M 2,c
∞ is a Hilbert subspace of M 2

∞ (see [74, 16.4
Proposition]).

Proposition 2.5.20 (([74, 17.2 Proposition])). Let {Mt} and {Nt} be two real valued L2

martingales. There exists (up to indistinguishability) a unique predictable FV process {Vt}
with the property that {MtNt − Vt} is a martingale and V0 = 0.

Definition 2.5.21 (([74, 17.3 Definition])). If {Mt} and {Nt} are two real valued L2 mar-
tingales, the process {Vt} (obtained in the previous proposition) will denoted by {〈M,N〉t}.
We write {〈M〉t} instead of {〈M,M〉t} and this process is called the Meyer process of {Mt}.

Given a martingale or a local martingale {Mt} we now assume M0 = 0.
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Theorem 2.5.22 (Decomposition of local martingales). ([56, Lemma 23.5] or [87, Chapter
III, Theorem 25]) Given any real valued local martingale {Mt}, there exist two real valued
local martingales {M ′

t}, {M ′′
t } one of which has bounded jumps and the other is of locally

integrable variation and a.s.
Mt = M ′

t +M ′′
t , t ≥ 0.

Lemma 2.5.23. Any real valued local martingale with bounded jumps is locally L2-bounded.

Proof. The arguments are taken from the discussion following [87, Chapter III, Theorem
25]. Let {Mt} be a local martingale with bounded jumps. Let Tn := inf{t ≥ 0 : |Mt| ≥ n}.
Suppose the jumps of {Mt} are bounded by a constant β > 0. Then |Mt∧Tn| ≤ n + β.
Hence {Mt} is locally bounded and in particular, supt≥0 E(Mt∧Tn)2 ≤ (n + β)2. Hence
{Mt} is locally L2-bounded.

By the structure theorem for L2 martingales ([74, 17.7 Theorem]), for any M ∈ M 2

(respectively M 2
∞) there exist a continuous martingale M c ∈M 2 (respectively M 2

∞) such
that M c,M −M c are orthogonal in the following sense: M c(M −M c) is a martingale, or
equivalently 〈M c,M −M c〉 = 0 ([74, 17.4 Proposition]). The process M c will be called
the continuous part of M and M −M c will be called the purely discontinuous part of M
([74, 17.8 Definition], also see [27, Chapter VIII, Section 2, 43 Theorem]).

Theorem 2.5.24 (Quadratic variation of a martingale). ([74, 18.6 Theorem and 18.9
Corollary 2]) Let M,N ∈M 2. Then there exists (up to indistinguishability) a unique FV
process with rcll paths, denoted by {[M,N ]t} with the following properties.

(i) For every increasing sequence {Πn} of increasing subsequences of [0,∞) viz. Πn :=
{0 < t0 < t1 < · · · } such that

lim
k↑∞

tk =∞, lim
n→∞

δ(Πn) = 0,

where δ(Πn) := supti∈Πn(ti+1 − ti), one has

[M,N ]t
L1
= lim

n→∞

∑
ti∈Πn

(Mti+1∧t −Mti∧t)(Nti+1∧t −Nti∧t).

(ii) MN − [M,N ] is a martingale.
(iii) Let M c, N c denote the continuous part of M,N respectively. Then for every t

[M,N ]t = 〈M c, N c〉t +
∑
s≤t
4Ms4Ns a.s.

with the series on the the right hand side being a.s. summable.
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(iv) If M is continuous, then [M,M ] = 〈M,M〉.

Definition 2.5.25. Let M ∈M 2. Then [M,M ] is called the quadratic variation process
of the martingale M . For brevity we write [M ] instead of [M,M ].

2.5.4 Martingale inequalities

Theorem 2.5.26 ([87, Chapter I, Theorem 20]). Let {Xt} be a non-negative submartingale.
For all p > 1, we have

E
(

sup
t≥0
|Xt|

)p
≤
(

p

p− 1

)p
sup
t≥0

E|Xt|p

Recall that if {Mt} is a real valued square integrable martingale with rcll paths, then
{|Mt|} is a non-negative submartingale (see Corollary 2.5.16). Then taking p = 2 in the
previous theorem we get the next result.

Proposition 2.5.27 (Doob’s maximal quadratic inequality). ([87, p.11]) Let {Mt} be a
real valued L2-bounded martingale with rcll paths. Then

E
(

sup
t≥0
|Mt|

)2

≤ 4 sup
t≥0

E|Mt|2.

Next norm inequalities involving quadratic variation of a martingale are known as BDG
inequalities.

Theorem 2.5.28 (Burkholder, Davis, Gundy). (i) ([56, Proposition 15.7]) There exist
some constants cp ∈ (0,∞), p > 0, such that for any continuous local martingale M
with M0 = 0

c−1
p E [M ]

p
2
∞ ≤ E

(
sup
t≥0
|Mt|

)p
≤ cpE [M ]

p
2
∞ , p > 0.

(ii) ([56, Theorem 23.12]) There exist some constants cp ∈ (0,∞), p ≥ 1, such that for
any local martingale M with M0 = 0

c−1
p E [M ]

p
2
∞ ≤ E

(
sup
t≥0
|Mt|

)p
≤ cpE [M ]

p
2
∞ , p ≥ 1.

Remark 2.5.29. In the BDG inequalities, the constant cp can be chosen independent of
the martingale M (see [87, Chapter IV, Theorem 48]).
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2.5.5. Semimartingales

2.5.5 Semimartingales

Definition 2.5.30. A real valued (Ft) adapted process {Xt} with rcll paths is called a
semimartingale if there exist a local martingale {Mt} with M0 = 0 and an FV process {At}
with A0 = 0 such that a.s.

Xt = X0 +Mt + At, t ≥ 0. (2.1)

Proposition 2.5.31. The decomposition (2.1) is unique if the FV process {At} is pre-
dictable, i.e. if there exist a local martingale {Nt} and a predictable FV process {Vt} such
that a.s.

Xt = X0 +Nt + Vt, t ≥ 0,

then a.s. Mt = Nt, At = Vt, t ≥ 0.

Definition 2.5.32. A semimartingale {Xt} with a decomposition a.s.

Xt = X0 +Mt + At, t ≥ 0

where {Mt} is a local martingale with M0 = 0 and {At} a predictable FV process with
A0 = 0, is called a special semimartingale. We shall refer to the decomposition above as
the canonical decomposition of X.

Example 2.5.33 (Examples of special semimartingales). Any of the following two condi-
tions imply the existence of a canonical decomposition of {Xt}.

(i) {Xt} has bounded jumps ([87, Chapter III, Theorem 31]).
(ii) {Xt} is a continuous semimartingale ([87, Chapter III, Corollary to Theorem 31]),

Lemma 2.5.34. Let {Xt} be a real semimartingale. Then {Xt} has a decomposition, a.s.

Xt = X0 +Mt + At, t ≥ 0

where {Mt} is a local L2-bounded martingale with M0 = 0 and {At} is a process of finite
variation with A0 = 0.

Proof. This result is an observation pointed out during the course of the proof of [56,
Theorem 23.4].
By definition there exists a local martingale {Mt} with M0 = 0 and a FV process {At}
with A0 = 0 such that a.s. Xt = X0 +Mt +At, t ≥ 0. By Theorem 2.5.22 there exist local
martingales {M ′

t}, {M ′′
t } such that a.s. Mt = M ′

t + M ′′
t , t ≥ 0, {M ′

t} has bounded jumps
with M ′

0 = 0 and {M ′′
t } is of locally integrable variation with M ′′

0 = 0. Then
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(i) {M ′
t} is a local L2-bounded martingale (see Lemma 2.5.23).

(ii) {M ′′
t } is an FV process.

Hence a.s. Xt = X0 +M ′
t + (M ′′

t + At) gives the required decomposition.

Remark 2.5.35. The decomposition of a real semimartingale observed in the previous
lemma is not necessarily unique.

Definition 2.5.36 ([56, pp.437-8]). Given two real valued semimartingales {Xt} and {Yt},
{Xt−} and {Yt−} denote the left-continuous versions of the processes, respectively. Define
the quadratic variation [X] and the covariation [X, Y ] be the ‘integration-by-parts’ formulas

[X]t : = X2
t −X2

0 − 2Xt−.Xt,

[X, Y ]t : = XtYt −X0Y0 −Xt−Yt −XtYt− = 1
4([X + Y ]t − [X − Y ]t)

We list some properties of the covariation process {[X, Y ]t} when

Theorem 2.5.37 ([56, Theorem 23.6]). Let X, Y be two real valued semimartingales. Then

(i) [X, Y ] = [X −X0, Y − Y0] a.s.;
(ii) {[X]} is a.s. non-decreasing, and {[X, Y ]} is a.s. symmetric and bilinear;

(iii) | [X, Y ] | ≤
∫
|d [X, Y ] | ≤ [X]

1
2 [Y ]

1
2 a.s.;

(iv) 4 [X] = (4X)2 and 4 [X, Y ] = 4X 4Y a.s.;
(v) [

∫ ·
0 Vs dXs, Y ] =

∫ ·
0 Vs d [X, Y ]s a.s. for any locally bounded, predictable process {Vt};

(vi) [Xτ , Y ] = [Xτ , Y τ ] = [X, Y ]τ a.s. for any stopping time τ ;
(vii) if M,N are locally L2-bounded martingales, then [M,N ] has a compensator 〈M,N〉,

i.e. [M,N ]− 〈M,N〉 is a local martingale;
(viii) if A has locally finite variation, then [X,A]t = ∑

s≤t4Xs4As a.s.

Definition 2.5.38 ([56, p. 445]). A semimartingale X = M + A is said to be purely
discontinuous if there exist some local martingales M1,M2, · · · of locally finite variation
such that E(sups≤t |M−Mn|s)2 → 0 for every t > 0. Note that this property is independent
of the choice of the decomposition X = M + A.

Theorem 2.5.39 (Decomposition of semimartingales, Yoeurp, Meyer). ([56, p. 445]) Any
semimartingale X has an a.s. unique decomposition X = X0 + Xc + Xd, where Xc is a
continuous local martingale with Xc

0 = 0 and Xd is a purely discontinuous semimartingale.
Furthermore, [Xc] = [X]c and

[
Xd
]

= [X]d a.s.

Proposition 2.5.40 ([74, 25.5 Corollary 3]). Let {Xt} be a real semimartingale. Then for
any t ≥ 0, we have

P (
∑
s≤t

(4Xs)2 <∞) = 1
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2.5.5. Semimartingales

where 4Xs denotes the jump of {Xt} at time s.

Let X = (X1, · · · , Xd) be an Rd valued semimartingale, i.e. each of {X i}, i = 1, · · · , d
is a real semimartingale. Let 4Xs denote the jump of {Xt} at time s. Then | 4 Xs|2 =∑d
i=1(4X i

s)2 and we have a corollary to the previous result.

Corollary 2.5.41. Let X = (X1, · · · , Xd) be an Rd valued semimartingale. Then for each
t > 0 a.s.

P

∑
s≤t
| 4Xs|2 <∞

 = 1.

Let X = (X1, · · · , Xd) be an Rd valued semimartingale and consider the set Ωt = {ω :∑
s≤t | 4Xs(ω)|2 <∞}, t ≥ 0. Define Ω̃ := ⋂∞

n=1 Ωn. Then P (Ω̃) = 1 and on the set Ω̃ we
have ∑

s≤t
| 4Xs|2 <∞, ∀t > 0.

Lemma 2.5.42. Fix ω ∈ Ω̃.

(i) Fix t > 0. Let {tn} be a strictly increasing sequence converging to t. Then

lim
n→∞

∑
s≤tn
| 4Xs(ω)|2 =

∑
s<t

| 4Xs(ω)|2.

(ii) Fix t ≥ 0. Let {tn} be a strictly decreasing sequence converging to t. Then

lim
n→∞

∑
tm<s≤t1

| 4Xs(ω)|2 =
∑

t<s≤t1
| 4Xs(ω)|2.

Proof. We only prove part (i). Proof of part (ii) is similar.
Note that 1(tn<s<t)| 4Xs(ω)|2 ≤ | 4Xs(ω)|2 and (tn, t) ↓ ∅. Since ∑s<t | 4Xs(ω)|2 <∞,
by the Dominated Convergence theorem, we get∑

tn<s<t

| 4Xs(ω)|2 ↓ 0.

Since ∑s<t | 4Xs(ω)|2 −∑s≤tn | 4Xs(ω)|2 = ∑
tn<s<t | 4Xs(ω)|2, part (i) follows.

Alternative proof of Lemma 2.5.42(i). On Ω̃, ∑s<t |4Xs|2 <∞ and hence for any positive
integer n the set

{s : | 4Xs(ω)| ≥ 1
n
, s < t}

is finite. Then for each n, there exists a positive integer m = m(n) such that

sup{s : | 4Xs(ω)| ≥ 1
n
, s < t} ≤ tm(n).
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Hence ∑
s<t,

|4Xs(ω)|≥ 1
n

| 4Xs(ω)|2 ≤
∑

s≤tm(n)

| 4Xs(ω)|2 ≤
∑
s<t

| 4Xs(ω)|2, ∀n ∈ N.

Since ∑
s<t

| 4Xs(ω)|2 = sup
n
{

∑
s<t,

|4Xs(ω)|≥ 1
n

| 4Xs(ω)|2}

and {∑s≤tn | 4Xs(ω)|2} is non-decreasing, we have part (i).

2.6 Stochastic integration

Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual conditions.
Unless stated otherwise stopping times or adapted processes will be with respect to the
filtration (Ft).

2.6.1 Stieltjes integration

Our main reference for this subsection is [87, Chapter I, Section 7]. Let {At} be a real valued
(Ft) adapted increasing process. Now fix an ω such that t 7→ At(ω) is right continuous
and non-decreasing. This function induces a measure µA(ω, ds) on [0,∞) (with the Borel
σ field).
If f is a real valued bounded Borel function on [0,∞), then

∫ t
0 f(s)µA(ω, ds) is well-defined

for each t > 0. We denote this integral by
∫ t
0 f(s) dAs(ω).

If F : [0,∞)× Ω→ R is bounded and jointly measurable, then we can define the integral∫ t
0 F (s, ω) dAs(ω). The map (t, ω) 7→

∫ t
0 F (s, ω) dAs(ω) is jointly measurable and a.s. for

fixed ω, t, (t, ω) 7→
∫ t

0 F (s, ω) dAs(ω) is right continuous.
If {At} is a real valued (Ft) adapted process of finite variation, then it can be expressed as
the difference of two increasing processes, viz. {V ar[0,t](A·)} and {V ar[0,t](A·)−At}. Then
for F as above we define∫ t

0
F (s) dAs :=

∫ t

0
F (s) dV ar[0,s](A·)−

∫ t

0
F (s) d(V ar[0,s](A·)− As),

which is a jointly measurable integral. We may use F ·A to denote the process {
∫ t
0 F (s) dAs}.

Definition 2.6.1 ([87, Chapter III, Section 3]). Let {At} be a real valued (Ft) adapted
process of finite variation with A0 = 0.

(i) {At} is of integrable variation if E
∫∞

0 |dAs| < ∞. We denote the random variable∫∞
0 |dAs| by V ar[0,∞)(A·). Note that a.s. V ar[0,∞)(A·) = limt→∞ V ar[0,t](A·).
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2.6.2. Stochastic integration with respect to a real L2-bounded martingale

(ii) {At} is of locally integrable variation if there exists a localizing sequence {Tn} such
that E

∫ Tn
0 |dAs| <∞, for each n.

We now recall a result from [27, Chapter VI]. Note that in this reference ‘integrable’
means ‘of integrable variation’.

Proposition 2.6.2 ([27, Chapter VI, Theorem 80(a)]). Any real valued predictable process
of finite variation is of locally integrable variation.

As an application of Theorem 2.5.7 we get the next result.

Proposition 2.6.3 ([27, Chapter VI, 53 Remarks (d)]). Let {At} be a predictable process of
finite variation. Let {Vt} be a bounded predictable process. Then {

∫ t
0 Vs dAs} is a predictable

process.

Remark 2.6.4. If the FV process {At} is continuous, then one can define the integral∫ t
0 Vs dAs for progressively measurable integrands {Vt}.

2.6.2 Stochastic integration with respect to a real L2-bounded martingale

Let M 2
∞,loc denote the space of local L2-bounded martingales and let M 2,c

∞,loc denote the
subspace of M 2

∞,loc, consisting of continuous martingales. Let M 2
∞,0,loc denote the subspace

of M 2
∞,loc with initial value 0. Let M ∈M 2

loc. Let {〈M〉t} denote the predictable process
such that {M2

t − 〈M〉t} is a local martingale.
Let E denote the class of bounded predictable step processes V with jumps at finitely many
fixed times, viz

Vt =
n∑
k=1

ηk1(τk,τk+1](t),

where τk are stopping times and ηk are Fτk measurable random variables. For such processes
define the elementary predictable integral as∫ t

0
Vs dMs :=

n∑
k=1

ηk(Mt∧τk+1 −Mt∧τk).

We may use V · M to denote the process {
∫ t
0 Vs dMs}. Let L2(M) denote the class of

real valued predictable processes {Vt} such that a.s.
∫ t

0 V
2
s d 〈M〉s < ∞ for every t > 0.

Given any (Ft) adapted rcll process {Xt}, we define the (Ft) adapted process {X∗t } by
X∗t := sups≤t |Xs|.

Theorem 2.6.5 ([56, Theorem 23.2]). The elementary predictable integral extends a.s.
uniquely to a bilinear map of any M ∈M 2

∞,loc and V ∈ L2(M) into V ·M ∈M 2
∞,0,loc, such
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that if (V 2
n · 〈Mn〉)t P−→ 0 for some Vn ∈ L2(Mn) and t > 0, then (Vn ·Mn)∗t

P−→ 0. It has the
following additional properties, the first of which characterizes the integral:

(i) 〈V ·M,N〉 = V · 〈M,N〉 a.s. for all N ∈M 2
∞,loc.

(ii) U · (V ·M) = (UV ) ·M a.s.
(iii) 4(V ·M) = V 4M a.s.
(iv) (V ·M)τ = V ·M τ = (V 1[0,τ ]) ·M a.s. for any stopping time τ .

Remark 2.6.6. If the martingale {Mt} is continuous, then one can define the integral∫ t
0 Vs dMs for progressively measurable integrands {Vt}.

Remark 2.6.7 ([60, Chapter 3, 2.11 Remark]). Let {Mt} be a real valued continuous
square integrable martingale such that the sample paths t 7→ 〈M〉t (ω) of the quadratic
variation process {〈M〉t} are absolutely continuous functions of t for P a.e. ω. Let L (M)
denote the set of equivalence classes of all real valued measurable (Ft) adapted processes
{Xt} such that

E
∫ T

0
X2
t d 〈M〉t <∞, ∀T > 0.

In what follows, we refer to the processes {Xt} themselves as elements of L (M). Then we
can define the process {

∫ t
0 Xs dMs} for all X ∈ L (M). Note that {

∫ t
0 Xs dMs} is in M 2,c

loc

and for a standard Brownian Motion {Bt} we have 〈B〉t = t. Hence {
∫ t

0 Xs dBs} can be
defined for all X ∈ L (B).

Proposition 2.6.8. Let L (B) be as in previous remark. Let X ∈ L (B).

(i) ([82, Theorem 3.2.5]) Let T > 0. Then there exists a continuous (Ft) adapted stochas-
tic process {It} such that

P
(
It =

∫ t

0
Xs dBs

)
= 1, ∀t ∈ [0, T ].

(ii) There exists a continuous (Ft) adapted stochastic process {It} such that

P
(
It =

∫ t

0
Xs dBs

)
= 1, ∀t ∈ [0,∞).

Proof. Part (ii) follows from part (i) by consistency of the continuous modifications. Let
{It} and {Jt} be some modifications on [0, n] and [0,m] respectively, when n,m are positive
integers with n < m. Then a.s. It = Jt for each t ∈ [0, n]. By continuity of these processes
we conclude a.s. It = Jt, ∀t ∈ [0, n]. Using this consistency we can define a continuous
modification on [0,∞).
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2.6.3 Stochastic integration with respect to a real semimartingale

Let {At} be an (Ft) adapted FV process with rcll paths and A0 = 0. Let L(A) denote
the space of predictable processes {Vt} such that a.s. the integral

∫ t
0 Vs dAs exists in the

Stieltjes sense, for all t ≥ 0.

Lemma 2.6.9 ([56, Lemma 23.3]). Let V be a predictable process with |V |p ∈ L(A), where
A is increasing and p ≥ 1. Then there exist some V1, V2, · · · ∈ E with (|Vn − V |p ·A)∗ → 0
a.s. for all t > 0.

Lemma 2.6.10. Let {Vt} be a real valued bounded predictable process. Let {Mt} be an
L2-bounded martingale and {At} is a process of finite variation such that a.s.

Mt = At, ∀t ∈ [0, T ].

Then a.s. ∫ t

0
Vs dMs =

∫ t

0
Vs dAs, ∀t ∈ [0, T ].

Proof. This result is included in the proof of Theorem 23.4 in [56]. We present the argument
for completeness sake.
The two integrals agree when V ∈ E . For bounded and predictable V , there exists a
sequence {V (n)} in E such that ((V (n) − V )2 · 〈M〉)∗ → 0 and (|V (n) − V | · A)∗ → 0 a.s.
Then (V (n) ·M)t P−→ (V ·M)t and (V (n) · A)t → (V · A)t for every t > 0. This proves the
required equality.

Theorem 2.6.11 ([56, Theorem 23.4]). The L2 integral V ·M and the ordinary Lebesgue-
Stieltjes integral extend a.s. uniquely to a bilinear mapping of any semimartingale X and
locally bounded predictable process V into a semimartingale V ·X. This mapping has the
following properties.

(i) U · (V ·X) = (UV ) ·X a.s.
(ii) 4(V ·X) = V 4X a.s.

(iii) (V ·X)τ = V ·Xτ = (V 1[0,τ ]) ·X a.s. for any stopping time τ .
(iv) For any locally bounded predictable processes V, V1, V2, · · · with V ≥ |Vn| → 0 point-

wise, we have (Vn ·X)∗t
P−→ 0 for all t > 0.

(v) If X is a local martingale, then so is V ·X.

Remark 2.6.12. If the (Ft) semimartingale {Xt} is continuous, then one can define the
integral

∫ t
0 Vs dXs for progressively measurable integrands {Vt}.
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2.7 Hilbert valued processes

We have already mentioned in the introduction that we do not require results on Hilbert val-
ued stochastic integration in their full generality. Our requirement in this context amounts
to integrating Hilbert valued predictable processes with respect to real semimartingales.
Unless stated otherwise H will be a real separable Hilbert space. Let ‖ · ‖, 〈· , ·〉 denote the
norm and inner product respectively and let {en : n = 1, 2, · · · } denote an orthonormal
basis for H. We also assume that our filtered complete probability space (Ω,F , (Ft), P )
satisfies the usual conditions. Unless stated otherwise, adapted processes will be with re-
spect to this filtration.
In [74], spaces of martingales were defined with only right continuous paths and processes
with rcll paths are called R. R. C (regular right continuous) processes. Some of the results
there (e.g. [74, 20.5 Theorem]) are stated for martingales with right continuous paths;
however we will only need these results for martingales with rcll paths.

2.7.1 Basic definitions

Definition 2.7.1. (i) An H valued (Ft) adapted stochastic process {Xt} is called an
(Ft) martingale (or simply a martingale, if the filtration is clear) if

a) E‖Xt‖ <∞ for all t ≥ 0.
b) For every s, t ≥ 0 with s < t and every A ∈ Fs,

E(1AXs) = E(1AXt).

(ii) Let {Xt} be an (Ft) martingale.
a) We say {Xt} is an L2 martingale (or a square integrable martingale), if E‖Xt‖2 <

∞ for all t ≥ 0.
b) We say {Xt} is an L2-bounded martingale, if supt≥0 E‖Xt‖2 <∞.

(iii) Let {Xt} be an H valued (Ft) adapted process. It is called a local martingale (respec-
tively local L2 martingale, locally L2-bounded martingale) if there exists a localizing
sequence {τn} such that for each n, the stopped process {Xτn

t } is a martingale (re-
spectively L2 martingale, L2-bounded martingale).

Remark 2.7.2. In Section 2.3, we have pointed out the existence of conditional expectation
for integrable B valued random variables (where B is a real separable Banach space).
Therefore condition b) in the definition of an H valued martingale, can be stated in terms
of conditional expectation (see [74, 8.3 Remarks]) as follows: for all 0 ≤ s < t,

Xs = E[Xt|Fs] a.s.

30



2.7.2. Stieltjes integration

Remark 2.7.3. In [74], most of the results have been stated for martingales which have
right continuous paths. Unless stated otherwise, in this thesis we work with martingales
which have rcll paths.

Lemma 2.7.4. Let {Mt} be an L2 martingale. Then {‖Mt‖2} is a submartingale.

Proof. Let {en : n = 1, 2, · · · } denote an orthonormal normal basis for H. Then {〈Mt , en〉}
is a real valued L2 martingale for each n and hence the process {〈Mt , en〉2} is a real valued
submartingale.
Writing ‖Mt(ω)‖2 = ∑∞

n=1 〈Mt(ω) , en〉2 we get the result.

Definition 2.7.5. An (Ft) adapted H valued process {At} with rcll paths is said to be a
process of finite variation (simply an FV process) if a.s. for all t > 0

sup
Π

n∑
i=1
‖Ati − Ati−1‖ <∞

where the supremum is taken over all partitions Π = {0 = t0 < t1 < · · · < tn = t} of [0, t].

Definition 2.7.6 ([74, 23.7 Definition]). An H valued process X with rcll paths is called
an (Ft) semimartingale if X can be decomposed a.s. Xt = X0 + Mt + At, t ≥ 0 where M
is a locally L2-bounded martingale with M0 = 0 and A is an FV process with A0 = 0.

Definition 2.7.7. A function X : Ω× [0,∞)→ H is said to be a predictable process, if it
is measurable with respect to the predictable σ field.

2.7.2 Stieltjes integration

We can proceed as in Subsection 2.6.1. Let {At} be a real valued FV process with A0 = 0.
We denote the total variation process of {At} by {V[0,t](A·)} (see Definition 2.5.5). Let
{Gt} be an H valued predictable process such that a.s. for all t > 0,

∫ t

0
‖Gs‖ |dAs| <∞. (2.2)

We denote the space of such predictable processes by L(A). For any G ∈ L(A), a.s. for all
t > 0, the Stieltjes integral

∫ t
0 Gs dAs is defined as a Bochner Integral on [0, t] with respect

to the measure |dA| (see Subsection 2.3).
For predictable step processes {Gt}, we can write down the explicit form of the inte-
gral

∫ t
0 Gs dAs as follows. Let {Gt} be a predictable step process of the form Gt =

31



Chapter 2. Preliminaries

∑n
k=1 1(tk,tk+1](t) ak where 0 ≤ t1 < t2 < · · · tn and ak’s are H valued Ftk measurable

random variables. Then ∫ t

0
Gs dAs =

n∑
k=1

(At∧tk+1 − At∧tk)ak.

Note that for any G ∈ L(A), ∥∥∥∥∫ t

0
Gs dAs

∥∥∥∥ ≤ ∫ t

0
‖Gs‖ |dAs|. (2.3)

Proposition 2.7.8. (i) Let G ∈ L(A). Let K be a real separable Hilbert space and
T : H→ K be a bounded linear operator. Then a.s. t ≥ 0, T

∫ t
0 Gs dAs =

∫ t
0 TGs dAs.

In particular, for any h ∈ H, a.s. for all t ≥ 0〈∫ t

0
Gs dAs , h

〉
=
∫ t

0
〈Gs , h〉 dAs.

(ii) Let {Gt} be a locally norm-bounded H valued predictable process. Let K, T be as in
part (i). Then the same conclusions are true.

Proof. Part (i) follows from the theory of Bochner integration. Fix an ω such that∫ t
0 ‖Gs‖ |dAs| < ∞. The result is easily verified when s 7→ Gs(ω) is simple and then ex-

tended by continuity of T when G(n)
s (ω) converges to Gs(ω) pointwise, where s 7→ G(n)

s (ω)
are simple functions.
To prove part (ii), observe that there exists a localizing sequence {τn} such that the process
{
∫ t∧τn

0 T (Gs) dAs} is an H valued FV process, for each n. By part (i), we have a.s. for all
t ≥ 0

T
(∫ t∧τn

0
Gs dAs

)
=
∫ t∧τn

0
T (Gs) dAs.

But a.s. τk ↑ ∞ as k → ∞. We get the result by letting n go to infinity in the previous
equality. For the last part of the result, we need to use the bounded linear functional
h′ 7→ 〈h′ , h〉 and the argument is similar to that in part (i).

We now prove a technical lemma.

Lemma 2.7.9. Let y1, y2, · · · be H valued rcll functions on [0,∞). Suppose that the se-
quence {yn} is Cauchy in the following sense: for any fixed ε > 0 and for any T > 0 there
exists a positive integer N such that

sup
t≤T
‖yn(t)− ym(t)‖ ≤ ε, ∀n,m ≥ N. (2.4)

Then the following statements hold true.
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(i) The function y(t) := limn→∞ yn(t), t ≥ 0 is well-defined and hence the sequence {yn}
has a pointwise limit y.

(ii) For any T > 0
sup
t≤T
‖y(t)− yn(t)‖ n→∞−−−→ 0.

(iii) y is rcll.

Proof. For any fixed t > 0, the Cauchy condition (2.4) implies that {yn(t)} is an H valued
Cauchy sequence and hence the existence of the point-wise limit y follows from the com-
pleteness of H.
By our hypothesis for any fixed ε > 0 and for any T > 0 there exists a positive integer N
such that

‖yn(t)− ym(t)‖ ≤ ε, ∀n,m ≥ N, t ∈ [0, T ].

Letting m go to infinity in the previous relation, we get

‖yn(t)− y(t)‖ ≤ ε, ∀n ≥ N, t ∈ [0, T ],

which proves (ii).
Now we prove the right continuity of y. Let s, t ≥ 0 with t < s ≤ t + 1 and let ε > 0 be
arbitrarily chosen.
By our hypothesis, there exists a positive integer N such that

sup
s≤t+1

‖y(s)− yn(s)‖ ≤ ε, ∀n ≥ N.

Fix an n ≥ N . Observe that

‖y(t)− y(s)‖ ≤ ‖y(t)− yn(t)‖+ ‖yn(t)− yn(s)‖+ ‖yn(s)− y(s)‖
≤ 2ε+ ‖yn(t)− yn(s)‖.

Since yn is right continuous, right continuity of y follows.
An argument similar to above shows the existence of left limits of the function t 7→ y(t):
fix any t > 0 and let {tn} be a monotonically increasing sequence converging to t. Then
for positive integers k, l, n,

‖y(tk)− y(tl)‖ ≤ ‖y(tk)− yn(tk)‖+ ‖yn(tk)− yn(tl)‖+ ‖yn(tl)− y(tl)‖.

For any fixed n, the function t 7→ yn(t) has left limits and hence existence of left limits of
the function t 7→ y(t) follows.

Let G ∈ L(A). Properties of the process {
∫ t
0 Gs dAs} are pointed out in the next result.
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Proposition 2.7.10. Let G ∈ L(A).

(i) {
∫ t
0 Gs dAs} is (Ft) adapted.

(ii) {
∫ t
0 Gs dAs} has rcll paths.

(iii) If {At} is predictable, then so is {
∫ t

0 Gs dAs}.
(iv) {

∫ t
0 Gs dAs} is an FV process.

Proof. Let {en : n = 1, 2, · · · } be an orthonormal basis. By Proposition 2.7.8 a.s.∫ t

0
Gs dAs =

∞∑
n=1

〈∫ t

0
Gs dAs , en

〉
en =

∞∑
n=1

(∫ t

0
〈Gs , en〉 dAs

)
en.

Note that | 〈Gs , en〉 | ≤ ‖Gs‖ and hence a.s. for all t ≥ 0 we have∫ t

0
|〈Gs , en〉| |dAs| <∞.

Then for each n we have the real valued process {
∫ t
0 〈Gs , en〉 dAs} is (Ft) adapted. Hence

{
∫ t
0 Gs dAs} is also (Ft) adapted.

For part (ii), let ω ∈ Ω be such that
∫ t
0 ‖Gs(ω)‖ |dAs(ω)| <∞ for all t > 0. We show that

t 7→
∫ t

0 Gs(ω) dAs(ω) is rcll.
Fix a positive real number T > 0. By Theorem 2.3.2, there exists a sequence of simple
functions {t 7→ gn(t) : n = 1, 2, · · · } such that∫ T

0
‖Gs(ω)− gn(s)‖ |dAs(ω)| n→∞−−−→ 0.

Fix ε > 0 and choose a positive integer N , sufficiently large, such that
∫ T

0 ‖Gs(ω) −
gn(s)‖ |dAs(ω)| ≤ ε

2 for all n ≥ N .
Let gN(t) = ∑l

k=1 1Ekhk where E1, · · · , El are disjoint Borel subsets of [0, T ] and h1, · · · , hl
are elements of H. Let R = 1 + max{‖hk‖ : 1 ≤ k ≤ l}. For each k ∈ {1, · · · , l}, we can
find sets Uk, which are finite unions of intervals of the form (α, β], 0 ≤ α < β ≤ T such
that ∫ T

0
|1Ek − 1Uk | |dAs(ω)| ≤ ε

2Rl .

Then ∫ T

0
‖Gs(ω)−

l∑
k=1

1Ukhk‖ |dAs(ω)| ≤
∫ T

0
‖Gs(ω)− gN(s)‖ |dAs(ω)|

+
∫ T

0
‖gN(s)−

l∑
k=1

1Ukhk‖ |dAs(ω)|

≤ ε

2 +
∫ T

0

l∑
k=1
‖hk‖‖1Ek − 1Uk | |dAs(ω)|
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2.7.2. Stieltjes integration

≤ ε

2 +R
∫ T

0

l∑
k=1
‖1Ek − 1Uk | |dAs(ω)|

≤ ε.

Continuing from the above estimate, using (2.3) we have

sup
t≤T

∥∥∥∥∥
∫ t

0

(
Gs(ω)−

l∑
k=1

1Ukhk

)
dAs(ω)

∥∥∥∥∥ ≤
∫ T

0
‖Gs(ω)−

l∑
k=1

1Ukhk‖ |dAs(ω)| ≤ ε.

Since t ∈ [0, T ] 7→
∫ t

0
∑l
k=1 1Ukhk dAs(ω) is rcll, above estimate implies gives an uni-

form approximation of t ∈ [0, T ] 7→
∫ t

0 Gs(ω) dAs(ω) in terms of rcll functions. Then
by Lemma 2.7.9 {

∫ t
0 Gs dAs} has rcll paths.

Proof of part (iii) is similar to [27, Chapter VI, 53 Remarks (d)]. First assume {At} is an
increasing predictable process. By Theorem 2.5.7

At = Act +
∑
n

λn1(Tn≤t),

where {Act} is a continuous increasing process, λn are constants and Tn are predictable
times. Then ∫ t

0
Gs dAs =

∫ t

0
Gs dA

c
s +

∑
n

λnGTn1(Tn≤t).

The sum ∑
n λnGTn1(Tn≤t) is predictable since GTn is FTn = FTn− measurable. We now

show {
∫ t

0 Gs dA
c
s} is predictable. The proof is similar to part (i). We have a.s.∫ t

0
Gs dA

c
s =

∞∑
n=1

〈∫ t

0
Gs dA

c
s , en

〉
en =

∞∑
n=1

(∫ t

0
〈Gs , en〉 dAcs

)
en.

By Proposition 2.6.3 {
∫ t

0 〈Gs , en〉 dAcs} is predictable for each n and hence so is {
∫ t
0 Gs dAs}.

If {At} is a predictable FV process, then we can express it as a difference of two predictable
increasing processes and hence {

∫ t
0 Gs dAs} is also predictable.

We now prove part (iv). Let t be a positive real number and let {0 = t0 < t1 < · · · < tn = t}
be a partition of [0, t]. Observe that∫ ti+1

0
Gs dAs −

∫ ti

0
Gs dAs =

∫ t

0
1(ti,ti+1]Gs dAs, i = 0, 1, · · · , n− 1.

Then using (2.3), we have
n−1∑
i=0

∥∥∥∥∫ ti+1

0
Gs dAs −

∫ ti

0
Gs dAs

∥∥∥∥ =
n−1∑
i=0

∥∥∥∥∫ t

0
1(ti,ti+1]Gs dAs

∥∥∥∥
≤

n−1∑
i=0

∫ t

0
1(ti,ti+1]‖Gs‖ |dAs|
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=
∫ t

0
‖Gs‖ |dAs|.

Since the upper bound
∫ t

0 ‖Gs‖ |dAs| is independent of the partition {0 = t0 < t1 < · · · <
tn = t}, the previous inequality proves that {

∫ t
0 Gs dAs} is an FV process.

2.7.3 Stochastic integration with respect to a real L2-bounded martingale

Let {Mt} be a real valued (Ft) adapted L2-bounded martingale with rcll paths and M0 = 0.
Let {〈M〉t} denote the predictable increasing process such that {M2

t − 〈M〉t} is an (Ft)
martingale.
Let {Gt} be an H valued predictable process such that for all t > 0,

E
∫ t

0
‖Gs‖2 d 〈M〉s <∞. (2.5)

We denote the space of such predictable processes by L2(M ;H).

Proposition 2.7.11. Let G ∈ L2(M ;H). Then there exists a sequence of predictable step
processes G(n) such that

E
∫ t

0
‖Gs −G(n)

s ‖2 d 〈M〉s
n→∞−−−→ 0, ∀t ≥ 0.

Proof. First we write Gt(ω) = ∑∞
k=1 g

k
t (ω)ek in the orthonormal basis. The convergence is

pointwise. Since {Gt} is predictable, so are {gkt } for all k, since gkt = 〈Gt , ek〉. Now Define

Gn(t, ω) :=
n∑
k=1

gkt (ω)ek

and
Gn(t, ω) :=

∞∑
k=n+1

gkt (ω)ek.

For each fixed k, we have gkt (ω)2 ≤ ‖Gn(t, ω)‖2 and hence

E
∫ t

0

(
gkt
)2
d 〈M〉s ≤ E

∫ t

0
‖Gs‖2 d 〈M〉s <∞.

Then there exists a sequence of predictable step processes {gk,lt (ω) : l = 1, 2, · · · } such that

E
∫ t

0

(
gk,lt (ω)− gkt (ω)

)2
d 〈M〉s

l→∞−−−→ 0, ∀t ≥ 0.

Define Gn,l(t, ω) := ∑n
k=1 g

k,l
t (ω)ek. Note that {Gn,l(t)} is also a predictable step process.

Then for each fixed n

E
∫ t

0
‖Gn(s, ω)−Gn,l(s, ω)‖2 d 〈M〉s

l→∞−−−→ 0, ∀t ≥ 0. (2.6)
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Now ‖Gn(s, ω)‖ ≤ ‖Gs(ω)‖, ‖Gn(s, ω)‖ n→∞−−−→ 0 for fixed s, ω and G ∈ L2(M ;H). Hence

E
∫ t

0
‖Gs(ω)−Gn(s, ω)‖2 d 〈M〉s = E

∫ t

0
‖Gn(s, ω)‖2 d 〈M〉s

n→∞−−−→ 0, ∀t ≥ 0.

For any ε > 0, for each t > 0 there exists a positive integer n = n(t) such that

E
∫ t

0
‖Gs(ω)−Gn(s, ω)‖2 d 〈M〉s ≤

ε

4 .

By (2.6), for any t and n = n(t), there exists a positive integer l = l(n) such that

E
∫ t

0
‖Gn(s, ω)−Gn,l(s, ω)‖2 d 〈M〉s ≤

ε

4 .

Hence

E
∫ t

0
‖Gs(ω)−Gn,l(s, ω)‖2 d 〈M〉s ≤ 2E

∫ t

0
‖Gs(ω)−Gn(s, ω)‖2 d 〈M〉s

+ 2E
∫ t

0
‖Gn(s, ω)−Gn,l(s, ω)‖2 d 〈M〉s

≤ ε,

which proves the result.

Definition 2.7.12. We define the stochastic integral for predictable simple processes by∫ t

0
Gs dMs :=

n∑
i=1

(Mt∧ti −Mt∧ti−1)gi

where n is a positive integer, t0, t1, · · · , tn are real numbers satisfying 0 ≤ t0 < t1 < · · · tn,
G := ∑n

i=1 1(ti−1,ti] gi, gi is an H valued, Fti−1 measurable random variable.

Proposition 2.7.13. Let {Gt}, {Mt} be as in the previous definition. The following are
properties of the stochastic integral defined above.

(i) {
∫ t

0 Gs dMs} is an (Ft) adapted L2 martingale with the isometry

E
∥∥∥∥∫ t

0
Gs dMs

∥∥∥∥2
= E

∫ t

0
‖Gs‖2 d 〈M〉s . (2.7)

(ii) {
∫ t

0 Gs dMs} has rcll paths.

Proof. Since each gi is Fti−1 measurable and {Mt} is an (Ft) martingale, by definition
{
∫ t

0 Gs dMs} is (Ft) adapted. We prove that the stochastic integral is a martingale. Let
s, t ≥ 0 with s < t. Fix any i = 1, · · · , n. We claim that, a.s.

E
[
(Mt∧ti −Mt∧ti−1)gi|Fs

]
= (Ms∧ti −Ms∧ti−1)gi.
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We prove the result for the case ti < s. Proof of the result for the cases s ≤ ti−1 and
ti−1 < s ≤ ti are similar.
If ti < s, then Fti−1 ⊆ Fti ⊆ Fs. Since gi is Fti−1 measurable and {Mt} is a martingale, we
have (see the notion of conditional expectation on separable Banach spaces in Subsection
2.3)

E
[
(Mt∧ti −Mt∧ti−1)gi|Fs

]
= E

[
(Mt∧ti −Mt∧ti−1)|Fs

]
gi

= (Ms∧ti −Ms∧ti−1)gi.

Since a.s. E
[∫ t

0 Gu dMu

∣∣∣Fs] = ∑n
i=1 E [(Mti∧t −Msi∧t)gi|Fs], above relation implies that

the process {
∫ t
0 Gu dMu} is a martingale. Now we show that it is square integrable. Let

t > 0. Then

E
∥∥∥∥∫ t

0
Gs dMs

∥∥∥∥2
= E

〈
n∑
i=1

(Mt∧ti −Mt∧ti−1)gi ,
n∑
j=1

(Mt∧tj −Mt∧tj−1)gj
〉

= E
n∑

i,j=1
〈gi , gj〉 (Mt∧ti −Mt∧ti−1)(Mt∧tj −Mt∧tj−1).

We show that the terms in the above sum are 0, if i 6= j. We show this for the case i < j

and the proof for i > j is similar.
If i < j, then ti ≤ tj−1. Then

E 〈gi , gj〉 (Mt∧ti −Mt∧ti−1)(Mt∧tj −Mt∧tj−1)

= E
(
E[〈gi , gj〉 (Mt∧ti −Mt∧ti−1)(Mt∧tj −Mt∧tj−1)|Fti ]

)
= E

(
〈gi , gj〉 (Mt∧ti −Mt∧ti−1)E[(Mt∧tj −Mt∧tj−1)|Fti ]

)
= 0,

since a.s. E[(Mt∧tj −Mt∧tj−1)|Fti ] = Mt∧ti −Mt∧ti = 0.
From the above computation, we have

E
∥∥∥∥∫ t

0
Gs dMs

∥∥∥∥2
= E

n∑
i=1
‖gi‖2(Mt∧ti −Mt∧ti−1)2

= E
n∑
i=1
‖gi‖2(〈M〉t∧ti − 〈M〉t∧ti−1

)

= E
∫ t

0
‖Gs‖2 d 〈M〉s

<∞.

This completes the proof of part (i). Part (ii) follows from the rcll paths of {Mt}.
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Let {Mt}, {Gt}, {G(n)
t } be as in Proposition 2.7.11. Consider the measure µM on the

product σ-field of Ω× [0, t] (for any fixed t ≥ 0) defined by

µM(A× (u1, u2]) := E
∫ t

0
1A×(u1,u2] d 〈M〉s = E

∫ u2

u1
1A d 〈M〉s ,

for any A ∈ Ft, 0 ≤ u1 < u2 ≤ t. From now onwards, we denote dµM by dP × d 〈M〉.
By the isometry (2.7), the sequence {

∫ t
0 G

(n)
s dMs : n = 1, 2, · · · } is Cauchy in L2(Ω ×

[0, t], dP × d 〈M〉 ;H). By [28, Theorem III.6.6] this space is complete. Now define∫ t

0
Gs dMs := lim

n

∫ t

0
G(n)
s dMs.

Proposition 2.7.14. Let G ∈ L2(M ;H). The following are the properties of the process
{
∫ t

0 Gs dMs}.

(i) The definition of {
∫ t

0 Gs dMs} does not depend on the sequence {G(n)}.
(ii) {

∫ t
0 Gs dMs} is an (Ft) adapted L2 martingale.

(iii) We have the isometry: E
∥∥∥∫ t0 Gs dMs

∥∥∥2
= E

∫ t
0 ‖Gs‖2 d 〈M〉s.

(iv) {
∫ t

0 Gs dMs} has an rcll modification.

Proof. To prove (i), let {G(n) : n = 1, 2, · · · } and {Ḡ(n) : n = 1, 2, · · · } be two sequences
such that both {

∫ t
0 G

(n)
s dMs : n = 1, 2, · · · } and {

∫ t
0 Ḡ

(n)
s dMs : n = 1, 2, · · · } converge

to
∫ t

0 Gs dMs. Define a new sequence of random variables where the odd-numbered and
the even-numbered terms are from {

∫ t
0 G

(n)
s dMs : n = 1, 2, · · · } and {

∫ t
0 Ḡ

(n)
s dMs : n =

1, 2, · · · } respectively. This new sequence is again Cauchy in L2(Ω × [0, t], dP × d 〈M〉).
Hence it has a limit and which in turn shows that

lim
n

∫ t

0
G(n)
s dMs = lim

n

∫ t

0
Ḡ(n)
s dMs.

This shows the uniqueness of the limits of {
∫ t

0 G
(n)
s dMs : n = 1, 2, · · · } and {

∫ t
0 Ḡ

(n)
s dMs :

n = 1, 2, · · · }.
By the construction of G(n) in Proposition 2.7.11, all the terms

∫ t
0 G

(n)
s dMs are (Ft) mea-

surable and hence so is
∫ t

0 Gs dMs. To prove {
∫ t

0 Gu dMu} is a martingale, let 0 ≤ s < t

and A ∈ Fs. Since convergence in L2(Ω× [0, t], dP × d 〈M〉) also imply the convergence in
L1(Ω× [0, t], dP × d 〈M〉), we have

E
[
1A

∫ t

0
Gu dMu

]
= lim

n
E
[
1A

∫ t

0
G(n)
u dMu

]
= lim

n
E
[
1A

∫ s

0
G(n)
u dMu

]
= E

[
1A

∫ s

0
Gu dMu

]
.
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Proof of the isometry in (iii) is similar to the proof of the martingale property. We use
the same approximation along with the joint continuity of the inner product.
We now prove {

∫ t
0 Gs dMs} has an rcll modification. Note that

∫ t
0 Gs dMs is defined as a

limit of a Cauchy sequence {
∫ t
0 G

(n)
s dMs : n = 1, 2 · · · } in L2(Ω× [0, t], dP ×d 〈M〉 ;H). For

each n, the process {
∫ t
0 G

(n)
s dMs} is an L2 martingale with rcll paths. By Doob’s maximal

quadratic inequality ([74, 20.6 Theorem]), we have

P

(
sup
t≤T
‖
∫ t

0
G(n)
s dMs −

∫ t

0
G(m)
s dMs‖ > ε

)

≤ 1
ε2
E sup
t≤T
‖
∫ t

0
G(n)
s dMs −

∫ t

0
G(m)
s dMs‖2

≤ 4
ε2
E
∫ T

0
‖G(n)

s −G(m)
s ‖2 d 〈M〉s

for any T, ε > 0. Hence P
(
supt≤T ‖

∫ t
0 G

(n)
s dMs −

∫ t
0 G

(m)
s dMs‖ > ε

)
is small for sufficiently

large n,m. This implies {
∫ t

0 G
(n)
s dMs : n = 1, 2, · · · } converges in probability uniformly in

[0, T ]. In particular, we have a.s. convergence along some subsequence. By Lemma 2.7.9,
this limit, say {It}t∈[0,T ] has rcll paths. But for each t ∈ [0, T ], It =

∫ t
0 Gs dMs a.s., since∫ t

0 Gs dMs is the limit in L2(Ω× [0, t], dP ×d 〈M〉 ;H) of {
∫ t

0 G
(n)
s dMs : n = 1, 2 · · · }. Hence

{
∫ t

0 Gs dMs} has an rcll modification.

Let {Mt} be a real valued local L2-bounded martingale with rcll paths and M0 = 0.
Let {Gt} be an H valued predictable process such that there exists a localizing sequence
{τn} with the following property: for all t > 0 and all positive integers n,

E
∫ t∧τn

0
‖Gs‖2 d 〈M〉s <∞.

Without loss of generality, we assume that for the same localizing sequence {τn}, {M τn
t }

are L2-bounded martingales. Then for each n, we can define the (Ft) adapted process
{
∫ t

0 1(0,τn](s)Gs dMs}, which is an L2 martingale. Note that∫ t

0
1(0,τn](s)Gs dMs =

∫ t

0
Gs dM

τn
s . (2.8)

Using this observation we now prove a property of the processes {
∫ t

0 Gs dM
τn
s }.

Proposition 2.7.15. Let {Gt}, {Mt}, {τn : n = 1, 2, · · · } be as above. Fix a positive
integer m. Let K be a real separable Hilbert space and T : H → K be a bounded linear
operator. Then a.s. t ≥ 0,

T
∫ t

0
Gs dM

τm
s =

∫ t

0
TGs dM

τm
s .
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In particular, for any h ∈ H, a.s. for all t ≥ 0〈∫ t

0
Gs dM

τm
s , h

〉
=
∫ t

0
〈Gs , h〉 dM τm

s .

Proof. Note that E
∫ t

0 ‖Gs‖2 d 〈M τm〉s < ∞ for all t ≥ 0. By Proposition 2.7.11, there
exists a sequence of predictable step processes {G(l)

t : l = 1, 2, · · · } such that

E
∫ t

0
‖Gs −G(l)

s ‖2 d 〈M τm〉s
l→∞−−−→ 0, ∀t ≥ 0

and
∫ t

0 Gs dM
τm
s is the limit of the sequence

∫ t
0 G

(l)
s dM τm

s : l = 1, 2, · · · in L2(Ω× [0, t], dP ×
d 〈M τm〉 ;H). Then we can show a.s. for all t ≥ 0,

T
∫ t

0
G(l)
s dM τm

s =
∫ t

0
TG(l)

s dM τm
s ,∀l = 1, 2, · · · .

Since T : H → K is a bounded linear operator, letting l go to infinity in the previous
relation, we have a.s. t ≥ 0,

T
∫ t

0
Gs dM

τm
s =

∫ t

0
TGs dM

τm
s .

For any fixed h ∈ H, consider the bounded linear functional Th′ := 〈h′ , h〉. Hence a.s. for
all t ≥ 0 〈∫ t

0
Gs dM

τm
s , h

〉
=
∫ t

0
〈Gs , h〉 dM τm

s .

This completes the proof.

Remark 2.7.16. Proposition 2.7.15 was also observed in [89, Proposition 1.3] when {Mt}
is continuous.

As a corollary of the Proposition 2.7.15, we get the next result.

Corollary 2.7.17. Let {Gt}, {Mt}, {τn : n = 1, 2, · · · } be as in Proposition 2.7.18. Then
for any positive integer n, a.s. for all t ≥ 0 we have∫ t

0
1(0,τn](s)Gs dM

τn+1
s =

∫ t

0
Gs dM

τn
s .

Proof. For any h ∈ H. we claim that a.s. for all t ≥ 0〈∫ t

0
1(0,τn](s)Gs dM

τn+1
s , h

〉
=
〈∫ t

0
Gs dM

τn
s , h

〉
.

First we assume the claim and complete the proof. Let {em : m = 1, 2, · · · } be an orthonor-
mal basis for H. Since the processes {

∫ t
0 1(0,τn](s)Gs dM

τn+1
s }, {

∫ t
0 Gs dM

τn
s } are determined
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by the functionals 〈· , em〉 ,m = 1, 2, · · · the proof follows from the claim.
We now prove the claim. By Proposition 2.7.15, we have a.s. for all t ≥ 0,〈∫ t

0
1(0,τn](s)Gs dM

τn+1
s , h

〉
=
∫ t

0
1(0,τn](s) 〈Gs , h〉 dM τn+1

s

=
∫ t∧τn+1

0
1(0,τn](s) 〈Gs , h〉 dM τn+1

s

=
∫ t∧τn

0
〈Gs , h〉 dM τn+1

s

=
∫ t∧τn

0
〈Gs , h〉 dM τn

s

=
〈∫ t

0
Gs dM

τn
s , h

〉
.

This completes the proof of the claim.

Using the consistency relations obtained in the previous result, we define∫ t

0
Gs dMs :=

∫ t

0
Gs dM

τn
s , t ≤ τn.

Since τn ↑ ∞, {
∫ t

0 Gs dMs} is a local L2 martingale with rcll paths. The next relation
follows readily from the definition.∫ t∧τn

0
Gs dMs :=

∫ t

0
Gs dM

τn
s , t ≥ 0.

Proposition 2.7.15 now can be extended to the next result.

Proposition 2.7.18. Let {Mt} be a real valued (Ft) adapted local L2 martingale with rcll
paths and M0 = 0. Let {Gt} be an H valued predictable process such that there exists a
localizing sequence {τn} with the following property: for all t > 0 and all positive integers
n,

E
∫ t∧τn

0
‖Gs‖2 d 〈M〉s <∞.

Let K be a real separable Hilbert space and T : H→ K be a bounded linear operator. Then
a.s. t ≥ 0,

T
∫ t

0
Gs dMs =

∫ t

0
TGs dMs.

In particular, for any h ∈ H, a.s. for all t ≥ 0〈∫ t

0
Gs dMs , h

〉
=
∫ t

0
〈Gs , h〉 dMs.
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Proof. The proof uses Proposition 2.7.15. For any positive integer n, we have a.s. for all
t ≥ 0

T
∫ t∧τn

0
Gs dMs = T

∫ t

0
Gs dM

τn
s

=
∫ t

0
TGs dM

τn
s

=
∫ t∧τn

0
TGs dMs

Since τn ↑ ∞, we have a.s. for all t ≥ 0

T
∫ t

0
Gs dMs =

∫ t

0
TGs dMs.

For any fixed h ∈ H, consider the bounded linear functional Th′ := 〈h′ , h〉. Hence a.s. for
all t ≥ 0 〈∫ t

0
Gs dMs , h

〉
=
∫ t

0
〈Gs , h〉 dMs.

This completes the proof.

2.7.4 Stochastic integration with respect to a real semimartingale

Let {Xt} be a real valued (Ft) semimartingale. Without loss of generality we assume
X0 = 0. By Lemma 2.5.34, there exists a local L2-bounded martingale {Mt} with M0 = 0
and a process of finite variation {At} with A0 = 0 such that a.s.

Xt = Mt + At, t ≥ 0.

Let {Gt} be an H valued norm-bounded (i.e. there exists a constant R > 0 such that a.s.
‖Gt‖−p ≤ R for all t) predictable process.
Define the stochastic integral of {Gt} with respect to {Xt} as∫ t

0
Gs dXs :=

∫ t

0
Gs dMs +

∫ t

0
Gs dAs, t ≥ 0.

Proposition 2.7.19. Let X,M,A,G be as above. Then {
∫ t

0 Gs dXs} is well-defined, i.e.
it does not depend on the decomposition X = M + A.

Proof. For any h ∈ H, we have | 〈Gt , h〉 | ≤ ‖Gt‖‖h‖ ≤ R‖h‖. Hence {〈Gt , h〉} is a
bounded predictable process. Using Lemma 2.6.10, we conclude that for each h ∈ H, the
process {∫ t

0
〈Gs , h〉 dMs +

∫ t

0
〈Gs , h〉 dAs

}
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does not depend on the decomposition X = M + A. Now varying h in the orthonormal
basis {en : n = 1, 2, · · · }, we get a common null set Ω̃ such that for all ω ∈ Ω \ Ω̃, for all
n = 1, 2, · · · and for all t ≥ 0, we have by Proposition 2.7.8 and Proposition 2.7.18,〈∫ t

0
Gs dMs +

∫ t

0
Gs dAs , en

〉
=
∫ t

0
〈Gs , en〉 dMs +

∫ t

0
〈Gs , en〉 dAs.

If any element h ∈ H satisfies 〈h , en〉 = 0, ∀n, then h = 0. Hence the above relation
identifies the H valued process {

∫ t
0 Gs dMs +

∫ t
0 Gs dAs} independent of the decomposition

X = M + A.

The next result is an application of Itô formula ([56, Theorem 15.19]) to Hilbert valued
continuous semimartingales.

Proposition 2.7.20. Let {Xt} be an H valued continuous semimartingale with a decom-
position: a.s.

Xt = X0 +
∫ t

0
Gs dMs +

∫ t

0
Vs dAs, t ≥ 0,

where {Gt} and {Vt} are locally norm-bounded H valued predictable processes, {Mt} a real
valued continuous L2 martingale with M0 = 0 and {At} a real valued continuous FV process
with A0 = 0. Then a.s. t ≥ 0

‖Xt‖2 = ‖X0‖2 + 2
∫ t

0
〈Xs , Gs〉 dMs + 2

∫ t

0
〈Xs , Vs〉 dAs +

∫ t

0
‖Gs‖2d [M ]s .

Proof. First we assume {Gt} and {Vt} are norm-bounded and {Mt} is an L2-bounded
martingale. Let {en : n = 1, 2, · · · } denote an orthonormal basis for H. Then the real
valued processes {〈Gt , en〉}, {〈Vt , en〉} are bounded and predictable for all n. Now a.s.
for all n = 1, 2, · · · and for all t ≥ 0 we have

〈Xt , en〉 = 〈X0 , en〉 +
∫ t

0
〈Gs , en〉 dMs +

∫ t

0
〈Vs , en〉 dAs.

Since {Xt} is continuous, {〈Xt , en〉} is locally bounded and predictable for each n. Using
Itô formula ([56, Theorem 15.19]) to the map x ∈ R 7→ x2 we have a.s. for all n = 1, 2, · · ·
and for all t ≥ 0

〈Xt , en〉2 = 〈X0 , en〉2 + 2
∫ t

0
〈Xs , en〉 d 〈Xt , en〉 + 1

2

∫ t

0
2d [〈Xt , en〉]s

= 〈X0 , en〉2 + 2
∫ t

0
〈Xs , en〉 〈Gs , en〉 dMs

+ 2
∫ t

0
〈Xs , en〉 〈Vs , en〉 dAs +

∫ t

0
〈Gs , en〉2 d [M ]s .
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2.8. Hermite functions

Since {Gt}, {Vt} are bounded predictable processes and {Xt} is continuous, the processes
{〈Xt , Gt〉}, {〈Xt , Vt〉} are locally bounded and predictable. Then

‖Xt‖2 = lim
m→∞

m∑
n=1
〈Xt , en〉2

= lim
m→∞

m∑
n=1
〈X0 , en〉2 + lim

m→∞
2
∫ t

0

m∑
n=1
〈Xs , en〉 〈Gs , en〉 dMs

+ lim
m→∞

2
∫ t

0

m∑
n=1
〈Xs , en〉 〈Vs , en〉 dAs + lim

m→∞

∫ t

0

m∑
n=1
〈Gs , en〉2 d [M ]s

=
∞∑
n=1
〈X0 , en〉2 + 2

∫ t

0

∞∑
n=1
〈Xs , en〉 〈Gs , en〉 dMs

+ 2
∫ t

0

∞∑
n=1
〈Xs , en〉 〈Vs , en〉 dAs +

∫ t

0

∞∑
n=1
〈Gs , en〉2 d [M ]s

= ‖X0‖2 + 2
∫ t

0
〈Xs , Gs〉 dMs + 2

∫ t

0
〈Xs , Vs〉 dAs

+
∫ t

0
‖Gs‖2d [M ]s .

Now we work with G, V,M as in the statement. Let {τn} be a localizing sequence such that
for each n, {Gτn

t } and {V τn
t } are norm-bounded and {M τn

t } is an L2-bounded martingale.
Then {

∫ t∧τn
0 Gs dMs} is an H valued L2 martingale and {

∫ t∧τn
0 Vs dAs} is an H valued FV

process. Computation similar to above now yields a.s. t ≥ 0

‖Xτn
t ‖2 = ‖X0‖2 + 2

∫ t∧τn

0
〈Xs , Gs〉 dMs + 2

∫ t∧τn

0
〈Xs , Vs〉 dAs

+
∫ t∧τn

0
‖Gs‖2d [M ]s .

Since τn ↑ ∞, letting n→∞ we get the result.

2.8 Hermite functions

Let {Hn(x) : n = 0, 1, · · · } be the Hermite polynomials on R, which are the generating
functions of exp(2xt− t2), i.e.

exp(2xt− t2) =
∞∑
n=0

Hn(x) t
n

n! .

Define the Hermite functions hn on R as follows:

hn(x) := (2nn!
√
π)− 1

2 exp
(
−x

2

2

)
Hn(x), x ∈ R, n = 0, 1, · · · .

45



Chapter 2. Preliminaries

Let Zd+ := {n = (n1, · · · , nd) : ni are non-negative integers}. We refer to the elements of Zd+
as multi-indices. If n is a multi-index, we define |n| := n1 + · · ·+nd where n = (n1, · · · , nd).
For multi-indices n, define the Hermite functions hn on Rd as follows:

hn(x1, · · · , xd) := hn1(x1)× hn2(x2)× · · · × hnd(xd), ∀(x1, x2, · · · , xd) ∈ Rd

where the functions hni on the right hand side are Hermite functions on R.
Convention: This convention will be used throughout the thesis. We take hn ≡ 0, if
n = (n1, · · · , nd) with some ni < 0.

Proposition 2.8.1. We list some well-known properties of the Hermite functions.

(i) ([51], [108]) Hermite functions on R are uniformly bounded, i.e. there exists a con-
stant C > 0 such that

|hn(x)| ≤ C, ∀x ∈ R, n = 0, 1, · · · .

(ii) Hermite functions on Rd are uniformly bounded.
(iii) hn(−x) = (−1)nhn(x), x ∈ R. In particular, hn is an odd function if n is odd and is

an even function otherwise.
(iv) {hn : n ∈ Zd+} is an orthonormal basis for L2(Rd) (see [109, Chapter 1]).
(v) ([47, Appendix A.5, equation (A.26)]) Hermite functions on R satisfy the following

recurrences.

∂hn(x) =
√
n

2hn−1(x)−
√
n+ 1

2 hn+1(x), x ∈ R

and

xhn(x) =
√
n

2hn−1(x) +
√
n+ 1

2 hn+1(x), x ∈ R.

The d dimensional version of the recurrences is stated as follows: Let {ei : i =
1, · · · , d} be the standard basis vectors in Rd. Let n = (n1, · · · , nd) ∈ Zd+ be a multi-
index. Then

∂ihn(x) =
√
ni
2 hn−ei(x)−

√
ni + 1

2 hn+ei(x), x ∈ Rd

and

xihn(x) =
√
ni
2 hn−ei(x) +

√
ni + 1

2 hn+ei(x), x ∈ Rd.

(vi) Consider the Hermite functions hn on R. Then

hn(0) =

0, if n is odd,
(−1)n2 1

4√π
(n−1)!!√

n! , if n is even,
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2.8. Hermite functions

where (2m− 1)!! is the double factorial given by

(2m− 1)!! =

1× 3× · · · × (2m− 1), if m = 1, 2, · · ·
1, if m = 0.

Proof. Proof of part (ii) follows from part (i) as follows. By definition,

hn(x1, · · · , xd) := hn1(x1)× hn2(x2)× · · · × hnd(xd), ∀(x1, x2, · · · , xd) ∈ Rd

where the functions hni on the right hand side are Hermite functions on R. Then by part
(i), we have

|hn(x)| ≤ Cd, ∀x ∈ Rd, n ∈ Zd+.

This completes the proof of part (ii).
For part (iii), observe that for any t, x ∈ R

∞∑
n=0

Hn(−x) t
n

n! = exp(2(−x)t− t2)

= exp(2x(−t)− (−t)2)

=
∞∑
n=0

Hn(x)(−t)n
n!

=
∞∑
n=0

(−1)nHn(x) t
n

n!

Comparing coefficients of tn on both sides we get Hn(−x) = (−1)nHn(x), ∀x ∈ R. Since
x 7→ exp(−x2

2 ) is an even function of x, the above relation implies part (iii).
We now prove part (vi). By [47, Appendix A.5, equation (A.20)] we have a recurrence
relation of the Hermite polynomials

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n = 1, 2, · · · , x ∈ R.

Putting x = 0 in above relation we get

Hn+1(0) = −2nHn−1(0), n = 1, 2, · · · . (2.9)

Note that H0(x) = 1 and H1(x) = 2x for x ∈ R. Then H0(0) = 1 and H1(0) = 0. Then
using the principle of Mathematical induction we get

Hn(0) =

0, ifn is odd
(−1)n2 2n

2 (1× 3× · · · × (n− 1)), ifn is even.
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Note that the empty product 1 × 3 × · · · × (n − 1) for the case n = 0 is interpreted as 1.
Now by definition of the Hermite functions we have hn(0) = (2nn!

√
π)− 1

2Hn(0) and hence

hn(0) =

0, if n is odd,
(−1)n2 1

4√π
(n−1)!!√

n! , if n is even.

Convention: Any φ ∈ L2(Rd) can be written as φ = ∑∞
k=0

∑
|n|=k φnhn where φn ∈ R. We

use the following convention throughout the thesis. We take φn = 0, if n = (n1, · · · , nd)
with some ni < 0.

2.9 Schwartz topology on the space of rapidly decreasing
smooth functions

Let S(Rd) be the space of smooth rapidly decreasing real valued functions on Rd with
the topology given by L. Schwartz (see [110, Chapter 25], [98, Chapter 7, Section 3],
[36, Chapter 8]). The space is also called the Schwartz space. This is defined by

S(Rd) = {φ ∈ C∞(Rd) : ∀k ≥ 1,max
|α|≤k

sup
x∈Rd

(1 + |x|2)k|∂αφ(x)| <∞},

where

(i) |x| stands for the Euclidean norm of x ∈ Rd,
(ii) α = (α1, · · · , αd) are elements of Zd+ where

Zd+ = {α = (α1, · · · , αd) : αi are non-negative integers}

with |α| = α1 + · · ·+ αd
(iii) ∂αφ = ∂α1

1 · · · ∂αdd φ.

The space S(Rd) is a real vector space. The family of seminorms

max
|α|≤k

sup
x∈Rd

(1 + |x|2)k|∂αφ(x)|, k ≥ 1 (2.10)

on S(Rd) defines a locally convex topology and under this topology S(Rd) is a Fréchet
space. From now onwards, this topology on S(Rd) will be called Schwartz topology. We
state the following result without proof.

Lemma 2.9.1. Let L1(Rd)(respectively L2(Rd)) denote the space of real valued functions
on Rd, which are integrable (respectively square integrable) with respect to the Lebesgue
measure. Then S(Rd) ⊂ L1(Rd) and S(Rd) ⊂ L2(Rd).
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Usually we consider the following collection of complex valued functions

S(Rd;C) = {φ ∈ C∞(Rd;C) : ∀k ≥ 1,max
|α|≤k

sup
x∈Rd

(1 + |x|2)k|∂αφ(x)| <∞},

where |∂αφ(x)| stands for the absolute value of a complex number.
Let S ′(Rd) denote the dual of S(Rd) (as a real vector space). The space S ′(Rd) is also
called the space of tempered distributions. In an analogous manner S ′(Rd;C) is defined as
the dual of S(Rd;C) (as a C vector space).

2.10 Hilbertian topology on S(Rd)

Let 〈· , ·〉 represent the L2(Rd) inner product. For any fixed p ∈ R, consider the following
formal sums 〈φ , ψ〉p := ∑∞

k=0
∑
|n|=k(2k + d)2p 〈φ , hn〉 〈ψ , hn〉 ,

‖φ‖2
p := ∑∞

k=0
∑
|n|=k(2k + d)2p 〈φ , hn〉2

(2.11)

Then (S(Rd), ‖ · ‖p) are pre-Hilbert spaces and completing them one obtains the separable
Hilbert spaces (Sp(Rd), ‖ · ‖p), known as the Hermite-Sobolev spaces (see [53, Chapter
1.3]). The collection {hpn : n ∈ Zd+} is an orthonormal basis for (Sp(Rd), ‖ · ‖p), where
hpn := (2k + d)−phn with k = |n|.
In [53], it was shown that (S−p(Rd), ‖ · ‖−p) are dual to (Sp(Rd), ‖ · ‖p) for any p ≥ 0.
Furthermore, the following are also known:

L2(Rd) = (S0(Rd), ‖ · ‖0),
for p < q, (Sq(Rd), ‖ · ‖q) ⊂ (Sp(Rd), ‖ · ‖p),
S(Rd) = ⋂

p∈R(Sp(Rd), ‖ · ‖p),
S ′(Rd) = ⋃

p∈R(Sp(Rd), ‖ · ‖p)

The following notations will be used throughout:

(i) S,S ′,Sp will stand for S(R),S ′(R),Sp(R) respectively.
(ii) Given ψ ∈ S(Rd) (or Sp(Rd)) and φ ∈ S ′(Rd) (or S−p(Rd)), the action of φ on ψ will

be denoted by 〈φ , ψ〉.

Since ‖ · ‖−p is the norm dual to ‖ · ‖p (for p ≥ 0) we have

‖φ‖−p := sup{|〈φ , ψ〉| : ‖ψ‖p ≤ 1, ψ ∈ Sp(Rd)}, φ ∈ S−p(Rd).

and
|〈φ , ψ〉| ≤ ‖φ‖−p‖ψ‖p, ∀φ ∈ S−p(Rd), ψ ∈ Sp(Rd).

The next result provides an explicit expression for the norm ‖ · ‖p.
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Lemma 2.10.1. Fix p ∈ R and ψ, φ ∈ Sp(Rd) ⊂ S ′(Rd). Then

(i) ‖ψ‖2
p = ∑∞

k=0
∑
|n|=k(2k + d)2p 〈ψ , hn〉2.

(ii) 〈ψ , φ〉p = ∑∞
k=0

∑
|n|=k(2k + d)2p 〈ψ , hn〉 〈φ , hn〉.

Proof. Suppose {ψm} be a sequence in S converging to ψ in Sp.
We first consider the case p < 0. Recall that h−pn ∈ S−p(Rd), ∀n ∈ Zd+. Then

|
〈
ψm , h

−p
n

〉
−
〈
ψ , h−pn

〉
| ≤ ‖ψm − ψ‖p‖h−pn ‖−p

m→∞−−−→ 0 ...(∗)

Again
| 〈ψm , hpn〉p − 〈ψ , h

p
n〉p | ≤ ‖ψm − ψ‖p‖h

p
n‖p

m→∞−−−→ 0.

But
〈ψm , hpn〉p = (2k + d)p 〈ψm , hn〉0 =

〈
ψm , h

−p
n

〉
0

=
〈
ψm , h

−p
n

〉
.

Hence 〈ψ , hpn〉p = 〈ψ , h−pn 〉 = (2k + d)p 〈ψ , hn〉 and

‖ψ‖2
p =

∞∑
k=0

∑
|n|=k
〈ψ , hpn〉

2
p =

∞∑
k=0

∑
|n|=k

(2k + d)2p 〈ψ , hn〉2 .

If p ≥ 0, observe that ψm, ψ ∈ S0(Rd) = L2(Rd) and

‖ψ − ψm‖0 ≤ ‖ψ − ψm‖p
m→∞−−−→ 0.

Now the statement (∗) can be proved as follows.

|
〈
ψm , h

−p
n

〉
−
〈
ψ , h−pn

〉
| ≤ ‖ψm − ψ‖0‖h−pn ‖0

m→∞−−−→ 0.

Hence 〈ψ , hpn〉p = 〈ψ , h−pn 〉 = (2k + d)p 〈ψ , hn〉 and

‖ψ‖2
p =

∞∑
k=0

∑
|n|=k
〈ψ , hpn〉

2
p =

∞∑
k=0

∑
|n|=k

(2k + d)2p 〈ψ , hn〉2 .

To prove (ii), let ψ, φ ∈ Sp(Rd). Then

〈ψ , φ〉p = 1
4(‖ψ + φ‖2

p − ‖ψ − φ‖2
p)

=
∞∑
k=0

∑
|n|=k

(2k + d)2p1
4(〈ψ + φ , hn〉2 − 〈ψ − φ , hn〉2)

=
∞∑
k=0

∑
|n|=k

(2k + d)2p 〈ψ , hn〉 〈φ , hn〉

This completes the proof.
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2.10. Hilbertian topology on S(Rd)

Proposition 2.10.2. Let φ ∈ S ′(Rd). Then φ is determined by the values {〈φ , hn〉 : n ∈
Zd+}. In particular, any element φ ∈ Sp(Rd) ⊂ S ′(Rd) (for some p ∈ R) is determined by
the same collection.

Proof. Since S−q(Rd) ↑ S ′(Rd) as q → ∞, there exists a positive real number p such that
φ ∈ S−p(Rd). Since {h−pn : n ∈ Zd+} forms an orthonormal basis for S−p(Rd), we have

φ
S−p(Rd)=

∞∑
k=0

∑
|n|=k

〈
φ , h−pn

〉
−p
h−pn .

Then for any ψ ∈ S(Rd), 〈φ , ψ〉 = ∑∞
k=0

∑
|n|=k 〈φ , h−pn 〉−p 〈h−pn , ψ〉. Therefore the tem-

pered distribution φ : ψ 7→ 〈φ , ψ〉 is determined by the values {〈φ , h−pn 〉−p : n ∈ Zd+}.
Now for any m ∈ Zd+, using Lemma 2.10.1

〈
φ , h−pm

〉
−p

=
∞∑
k=0

∑
|n|=k

(2k + d)−2p 〈φ , hn〉
〈
h−pm , hn

〉
= (2|m|+ d)−2p 〈φ , hm〉

〈
h−pm , hm

〉
= (2|m|+ d)−p 〈φ , hm〉 .

Hence the values {〈φ , h−pn 〉−p : n ∈ Zd+} are determined by {〈φ , hn〉 : n ∈ Zd+} and so is
φ.

Proposition 2.10.3 ([89, Proposition 1.1]). The topology on S(Rd) induced by the collec-
tion {‖ · ‖p : p = 1, 2, · · · } is the Schwartz topology.

Definition 2.10.4. [53, Definitions 1.1.1 and 1.1.2] Let p, q be two real numbers. Let
{en : n = 1, 2, · · · } be an orthonormal basis for (Sq(Rd), ‖ · ‖q). Then define

(p : q)HS :=
( ∞∑
n=1
‖en‖2

p

) 1
2

.

Then ‖ · ‖p is said to be Hilbert-Schmidt bounded by ‖ · ‖q if (p : q)HS < ∞. We denote
this by ‖ · ‖p ≺HS ‖ · ‖q.

Remark 2.10.5. [53, Remark 1.1.1] (p : q)HS is well defined independently of the choice
of the orthonormal normal basis {en}.

Proposition 2.10.6. Let p ∈ R and q > p+ d
2 . Then ‖ · ‖p ≺HS ‖ · ‖q.

Proof. The collection {hqn : n ∈ Zd+} forms an orthonormal basis for Sq(Rd) and we have
∞∑
k=0

∑
|n|=k
‖hqn‖2

p ≤
∞∑
k=0

(2k + d)2(p−q)#{n ∈ Zd+ : |n| = k}.
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By [34, Chapter II, section 5], #{n ∈ Zd+ : |n| = k} =
(
k+d−1
d−1

)
. Now there exists a constant

C > 0 such that(
k + d− 1
d− 1

)
= (k + d− 1)(k + d− 2) · · · (k + 1)

(d− 1)! ≤ C.(2k + d)d−1. (2.12)

Hence ∞∑
k=0

∑
|n|=k
‖hqn‖2

p ≤ C
∞∑
k=0

(2k + d)2(p−q)+d−1.

In particular for q > p + d
2 the series on the right hand side is finite, which proves the

statement.

2.11 Computations with Hilbertian Norms ‖ · ‖p

2.11.1 Operators on Hermite Sobolev spaces

First we study some well-known operators on the space of tempered distributions.

Example 2.11.1 (Shift operators). Let {ei : 1 ≤ i ≤ d} denote the standard basis for
Rd. Define linear operators U−ei , U+ei on Sp(Rd) by the formal expressions: for φ Sp(Rd)=∑∞
k=0

∑
|n|=k φnhn ∈ Sp(Rd),

U+eiφ :=
∞∑
k=0

∑
|n|=k

φn+eihn, U−eiφ :=
∞∑
k=0

∑
|n|=k

φn−eihn. (2.13)

Lemma 2.11.2. Fix any 1 ≤ i ≤ d and p ∈ R. The linear operators U+ei , U−ei defined as
above are bounded linear operators on Sp(Rd).

Proof. Given any φ ∈ Sp(Rd), we can write φ Sp(Rd)= ∑∞
k=0

∑
|n|=k φnhn. Then observe that

‖U+eiφ‖2
p =

∞∑
k=0

∑
|n|=k

(2k + d)2pφ2
n+ei

=
∞∑
k=0

(2k + d)2p

(2k + d+ 2)2p

∑
|m|=k+1,m=n+ei

(2k + d+ 2)2p|φm|2

≤
(

sup
k≥0

(2k + d)2p

(2k + d+ 2)2p

) ∞∑
k=1

∑
|m|=k

(2k + d)2p|φm|2

≤

sup
k≥0

(
2k + d

2k + d+ 2

)2p
 ‖φ‖2

p

which implies U+ei is a bounded operator on Sp(Rd). Similarly U−ei is also a bounded
operator on Sp(Rd).
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2.11.1. Operators on Hermite Sobolev spaces

Example 2.11.3 (Derivative operators). Consider the derivative maps denoted by ∂i :
S(Rd) → S(Rd) for i = 1, · · · , d. By duality we can extend these to ∂i : S ′(Rd) → S ′(Rd)
as follows: for ψ ∈ S ′(Rd),

〈∂iψ , φ〉 := −〈ψ , ∂iφ〉 , ∀φ ∈ S(Rd).

Lemma 2.11.4. Fix 1 ≤ i ≤ d and p ∈ R. Then ∂i : Sp+ 1
2
(Rd) → Sp(Rd) is a bounded

linear operator.

Proof. Since S(Rd) ⊂ L2(Rd) (see Lemma 2.9.1), any element φ ∈ S(Rd) can be written
as φ = ∑∞

k=0
∑
|n|=k φnhn where φn ∈ R. Then using Proposition 2.8.1(v) we get

∂iφ =
∞∑
k=0

∑
|n|=k

φn(∂ihn)

=
∞∑
k=0

∑
|n|=k

φn

√ni
2 hn−ei −

√
ni + 1

2 hn+ei


=
∞∑
k=0

∑
|m|=k−1,
m=n−ei

φm+ei

√
mi + 1

2 hm −
∞∑
k=0

∑
|m|=k+1,
m=n+ei

φm−ei

√
mi

2 hm

=
∞∑

l=−1,
l=k−1

∑
|m|=l

φm+ei

√
mi + 1

2 hm −
∞∑
l=1,
l=k+1

∑
|m|=l

φm−ei

√
mi

2 hm

=
∞∑
l=0

∑
|m|=l

φm+ei

√
mi + 1

2 hm −
∞∑
l=0

∑
|m|=l

φm−ei

√
mi

2 hm.

In the last step we have made use of convention that hm = 0, φm = 0 if |m| = l = −1.
From the above computation we get

∂iφ =
∞∑
k=0

∑
|n|=k

φn+ei

√
ni + 1

2 − φn−ei
√
ni
2

hn. (2.14)

Then

‖∂iφ‖2
p =

∞∑
k=0

∑
|n|=k

(2k + d)2p

φn+ei

√
ni + 1

2 − φn−ei
√
ni
2

2

≤
∞∑
k=0

∑
|n|=k

(2k + d)2p 2


φn+ei

√
ni + 1

2

2

+
(
φn−ei

√
ni
2

)2


≤
∞∑
k=0

∑
|n|=k

(2k + d)2p
[
φ2
n+ei(ni + 1) + φ2

n−eini
]
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Since ni ≤ |n| = k we have ni ≤ k < 2k + d. Also ni ≤ k ≤ 2k implies ni + 1 ≤ 2k + 1 ≤
2k + d. Hence using the shift operators (see Lemma 2.11.2)

‖∂iφ‖2
p ≤

∞∑
k=0

∑
|n|=k

(2k + d)2p+1 [φ2
n+ei + φ2

n−ei ]

≤
[
‖U+ei‖2

S
p+ 1

2
→S

p+ 1
2

+ ‖U−ei‖2
S
p+ 1

2
→S

p+ 1
2

]
‖φ‖2

p+ 1
2
.

Since S(Rd) is dense in Sp+ 1
2
(Rd) in ‖ · ‖p+ 1

2
, above bound extends to all φ in Sp+ 1

2
(Rd).

This completes the proof.

For any 1 ≤ i ≤ d and p ∈ R, observe that {ψ ∈ Sp(Rd) : ∂iψ ∈ Sp(Rd)} ⊇ Sp+ 1
2
(Rd).

Let us denote the set {ψ ∈ Sp(Rd) : ∂iψ ∈ Sp(Rd)} by D(∂i, p). Then ∂i : D(∂i, p) ⊆
Sp(Rd)→ Sp(Rd) is a linear operator.

Lemma 2.11.5. The linear operator ∂i : Sp(Rd)→ Sp(Rd) with domain D(∂i, p) is a closed
unbounded linear operator on Sp(Rd).

Proof. Let {φm} be a sequence in D(∂i, p) converging to φ ∈ D(∂i, p) in the norm ‖ · ‖p.
Let the sequence {∂iφm} converge to ψ in ‖ · ‖p. To prove ∂i is closed, we need to show
∂iφ = ψ. Since

(i) ∂iφ, ψ are elements of Sp(Rd),
(ii) S−p(Rd) is dual to Sp(Rd),

(iii) {h−pn } is an orthonormal basis for the space S−p(Rd),

to complete the proof it is enough to show (see Proposition 2.10.2)〈
∂iφ , h

−p
n

〉
=
〈
ψ , h−pn

〉
, ∀n ∈ Zd+.

Fix n ∈ Zd+ and observe that

|
〈
ψ , h−pn

〉
−
〈
∂iφm , h

−p
n

〉
| ≤ ‖ψ − ∂iφm‖p‖h−pn ‖−p

m→∞−−−→ 0.

Therefore 〈ψ , h−pn 〉 = limm 〈∂iφm , h−pn 〉 = − limm 〈φm , ∂ih−pn 〉.
Now ∂ih

−p
n ∈ S(Rd) ⊂ S−p(Rd). Hence

|
〈
φm , ∂ih

−p
n

〉
−
〈
φ , ∂ih

−p
n

〉
≤ ‖φm − φ‖p‖h−pn ‖−p

m→∞−−−→ 0.

Continuing from above,〈
ψ , h−pn

〉
= − lim

m

〈
φm , ∂ih

−p
n

〉
= −

〈
φ , ∂ih

−p
n

〉
=
〈
∂iφ , h

−p
n

〉
.
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2.11.1. Operators on Hermite Sobolev spaces

This shows ∂i is closed.
Using Proposition 2.8.1(v), we have for any n ∈ Zd+ with |n| = k,

∂ih
p
n = (2k + d)−p

√ni
2 hn−ei −

√
ni + 1

2 hn+ei

 .
Suppose p ≥ 0. Note that for k ≥ 0

‖∂ihpn‖2
p = (2k + d)−2p

∥∥∥∥∥∥
√
ni
2 hn−ei −

√
ni + 1

2 hn+ei

∥∥∥∥∥∥
2

p

= (2k + d)−2p
∥∥∥∥√ni2 hn−ei

∥∥∥∥2

p
+ (2k + d)−2p

∥∥∥∥∥∥
√
ni + 1

2 hn+ei

∥∥∥∥∥∥
2

p

≥ (2k + d)−2p

∥∥∥∥∥∥
√
ni + 1

2 hn+ei

∥∥∥∥∥∥
2

p

= ni + 1
2

(
2(k + 1) + d

2k + d

)2p

≥ ni + 1
2 .

In particular, ‖∂ihpkei‖
2
p ≥ k+1

2 with hpkei ∈ D(∂i, p). Hence ∂i : Sp(Rd) → Sp(Rd) is an
unbounded operator if p ≥ 0.
If p < 0 then observe that for k ≥ 1

‖∂ihpn‖2
p = (2k + d)−2p

∥∥∥∥√ni2 hn−ei
∥∥∥∥2

p
+ (2k + d)−2p

∥∥∥∥∥∥
√
ni + 1

2 hn+ei

∥∥∥∥∥∥
2

p

≥ (2k + d)−2p
∥∥∥∥√ni2 hn−ei

∥∥∥∥2

p

= ni
2

(
2(k − 1) + d

2k + d

)2p

≥ ni
2 .

Using arguments as in the case p ≥ 0, we can prove ∂i : Sp(Rd)→ Sp(Rd) is an unbounded
operator if p < 0.

Example 2.11.6 (Translation operators). For x ∈ Rd, define translation operators on
Schwartz class functions by

(τxf)(y) := f(y − x), ∀y ∈ Rd.

We can extend this operator to τx : S ′(Rd)→ S ′(Rd) by

〈τxφ , ψ〉 := 〈φ , τ−xψ〉 , ∀φ ∈ S ′(Rd), ψ ∈ S(Rd).
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Lemma 2.11.7. The translation operators have the following properties:

(i) ([91, Theorem 2.1]) For x ∈ Rd and any p ∈ R, τx : Sp(Rd) → Sp(Rd) is a bounded
linear map. In particular, there exists a real polynomial Pk of degree k = 2([|p|] + 1)
such that

‖τxφ‖p ≤ Pk(|x|)‖φ‖p, ∀φ ∈ Sp(Rd),

where |x| denotes the standard Euclidean norm of x.
(ii) Fix φ ∈ Sp(Rd). Then x 7→ τxφ is continuous.

(iii) For x ∈ Rd and any i = 1, · · · , d we have τx∂i = ∂iτx.

Proof. Proof of part (ii) is contained in the proof of [92, Proposition 3.1].
We only prove part (iii). Fix an element ψ ∈ S(Rd). Then for y ∈ Rd,

(τ−x∂iψ)(y) = (∂iψ)(y + x) = ∂i(ψ(y + x)) = (∂iτ−xψ)(y)

i.e. τ−x∂iψ = ∂iτ−xψ. Now for φ ∈ S ′(Rd) and any ψ ∈ S(Rd),

〈∂iτxφ , ψ〉 = −〈τxφ , ∂iψ〉 = −〈φ , τ−x∂iψ〉
= −〈φ , ∂iτ−xψ〉 = 〈∂iφ , τ−xψ〉 = 〈τx∂iφ , ψ〉 .

This completes the proof.

The Hermite-Sobolev spaces Sp(Rd;C) can also be defined for Schwartz space S(Rd;C)
where the functions are complex valued. For any fixed p ∈ R, the inner product and the
norm become 〈f , g〉Sp(Rd;C) := ∑∞

k=0
∑
|n|=k(2k + d)2p 〈f , hn〉 〈g , hn〉 ,

‖f‖2
Sp(Rd;C) := ∑∞

k=0
∑
|n|=k(2k + d)2p |〈f , hn〉|2

(2.15)

where | · | is the absolute value in the complex plane. If T ∈ S ′(Rd;C) is such that
〈T , φ〉 ∈ R, ∀φ ∈ S(Rd) then we have

‖T‖Sp(Rd;C) = ‖T
∣∣∣
Sp(Rd)

‖p, (2.16)

since 〈T , hn〉 , n ∈ Z+
d are real.

Example 2.11.8 (Fourier transform). Consider the Fourier transform of φ ∈ S(Rd;C)
defined by

φ̂(x) :=
( 1

2π

) d
2
∫
Rd
e−ix.yφ(y) dy.

We list some well-known properties of the Fourier transform.
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(i) ·̂ : S(Rd;C)→ S(Rd;C) is a continuous linear onto map. By duality, we can define the
Fourier transform of tempered distributions: let ψ ∈ S ′(Rd), then define ψ̂ ∈ S ′(Rd)
by 〈

ψ̂ , φ
〉

:=
〈
ψ , φ̂

〉
, ∀φ ∈ S(Rd).

(ii) For φ, ψ ∈ S(Rd;C), φ̂ ? ψ = φ̂ψ̂ where φ ? ψ denotes the convolution given by
φ ? ψ(x) =

∫
Rd φ(y)ψ(x− y) dy.

(iii) Note that (see [47, Appendix A.5, equation (A.27)])

1√
2π

∫
R
e−ix.yhn(y) dy = (−i)nhn(x), ∀x ∈ R.

Then for any n = (n1, · · · , nd) ∈ Zd+ and x = (x1, · · · , xd) ∈ Rd

ĥn(x)

=
( 1

2π

) d
2
∫
Rd
e−ix.yhn(y) dy

=
(

1√
2π

∫
R
e−ix1.y1hn1(y1) dy1

)
× · · · ×

(
1√
2π

∫
R
e−ixd.ydhnd(yd) dyd

)
= (−in1)hn1(x1) · · · (−ind)hnd(xd)
= (−i)|n|hn(x).

This implies ·̂ : Sp(Rd;C)→ Sp(Rd;C) is an onto isometry, i.e.

‖T̂‖Sp(Rd;C) = ‖T‖Sp(Rd;C). (2.17)

Example 2.11.9 (Multiplication operators). Consider the multiplication operators Mi, i =
1, · · · , d defined by

(Miφ)(x) := xiφ(x), φ ∈ S(Rd), x = (x1, · · · , xd) ∈ Rd.

By duality these operators can be extended to Mi : S ′(Rd) → S ′(Rd). Using arguments
as in Lemma 2.11.4 and the recurrence formula in Proposition 2.8.1(v) we can show Mi :
Sp+ 1

2
(Rd) → Sp(Rd) are bounded linear operators, for any p ∈ R. Using arguments as in

Lemma 2.11.5, we can show Mi : Sp(Rd)→ Sp(Rd) are closed unbounded linear operators
on Sp(Rd).

Example 2.11.10 (Hermite operator). For φ ∈ S(Rd) define H : S(Rd)→ S(Rd) by (see
[109, Chapter 1, page 2] and [91, section 3])

Hφ :=
d∑
i=1

(M 2
i − ∂2

i )φ,
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which can also be written as (|x|2 −4)φ. It is well-known that

Hhn = (2k + d)hn (2.18)

where |n| = k for any multi-index n = (n1, · · · , nd). In particular, H is a positive operator
on L2(Rd).
For p ∈ R, define

Hpφ :=
∞∑
k=0

∑
|n|=k

(2k + d)p 〈φ , hn〉 hn.

Example 2.11.11 (Creation and Annihilation operators). For 1 ≤ i ≤ d, define the
Creation operators by

A+
i φ := (Mi − ∂i)φ, φ ∈ S(Rd)

and the Annihilation operators by

A−i φ := (Mi + ∂i)φ, φ ∈ S(Rd).

Proposition 2.11.12 ([91, Proposition 3.1]). Some properties of the operators H, A+
i , A

−
i

are listed below.

(i) For any p, q ∈ R, ‖Hpφ‖q−p = ‖φ‖q, ∀φ ∈ S(Rd). Consequently, Hp : Sq(Rd) →
Sq−p(Rd) extends as a linear isometry. Moreover this linear map is onto.

(ii) H = ∑d
i=1(A−i A+

i + A+
i A
−
i ).

2.11.2 Some tempered distributions

Example 2.11.13 (Dirac distributions). Fix x ∈ Rd and define the Dirac distribution δx
by

〈δx , φ〉 := φ(x), ∀φ ∈ S(Rd).

δx ∈ S ′(Rd) since | 〈δx , φ〉 | ≤ supy∈Rd |φ(y)|.

The following result is an important property of the Dirac distributions.

Proposition 2.11.14 ([92, Theorem 4.1]). (i) Let x ∈ Rd. Then δx ∈ S−p(Rd) for any
p > d

4 . Further if p > d
4 , then lim|x|→∞ ‖δx‖−p = 0.

(ii) Let γ ∈ Zd+. Let p > d
4 + |γ|

2 . Then

sup
x∈Rd
‖∂γδx‖−p <∞.

In particular, for any p > d
4 , there exists a constant C = C(p) > 0 such that ‖δx‖−p ≤

C, ∀x ∈ Rd.
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2.11.2. Some tempered distributions

We point out a well-known property of Dirac distributions. This property will be used
in Chapter 6.

Lemma 2.11.15. For any x ∈ Rd, τxδ0 = δx.

Proof. For any φ ∈ S(Rd),

〈τxδ0 , φ〉 = 〈δ0 , τ−xφ〉 = 〈δ0 , φ(·+ x)〉 = φ(x) = 〈δx , φ〉 .

Hence the required equality follows.

We explicitly compute the norm of a Dirac distribution.

Lemma 2.11.16. ‖δ0‖2
− 1

2
= 1

4
√

2πΓ
(

1
4

)2
.

Proof. Using Lemma 2.10.1, we have

‖δ0‖2
− 1

2
=
∞∑
n=0

(2n+ 1)−1 〈δ0 , hn〉2

=
∞∑
n=0

(2n+ 1)−1hn(0)2

= 1√
π

∞∑
m=0,
n=2m

1
4m+ 1

((2m− 1)!!)2

2m! , (see Proposition 2.8.1(vi))

(2.19)

Call am := 1
4m+1

((2m−1)!!)2

2m! , m = 0, 1, · · · . Then a0 = 1 and

am+1

am
= 4m+ 1

4m+ 5

(
(2m+ 1)!!
(2m− 1)!!

)2 2m!
(2m+ 2)!

= 4m+ 1
4m+ 5

2m+ 1
2m+ 2 =

(m+ 1
2)(m+ 1

4)
(m+ 5

4)(m+ 1)

and hence using Pochhammer’s symbol (see [1, 6.1.22, p. 256])

am = am
am−1

× · · · × a1

a0
× a0 =

m−1∏
k=0

(k + 1
2)(k + 1

4)
(k + 5

4)(k + 1) =
(1

2)m(1
4)m

(5
4)m

1
m! .

Then the sum of the series ∑∞m=0 am in (2.19) is the evaluation of the Gauss Hypergeometric
series 2F1(1

2 ,
1
4 ; 5

4 ; z) (see [1, 15.1.1, p. 558]) at z = 1. Note that 5
4 −

1
2 −

1
4 = 1

2 > 0 and
hence using [1, 15.1.20, p. 558] we have

‖δ0‖2
− 1

2
= 1√

π
2F1

(1
2 ,

1
4; 5

4; 1
)

= 1√
π

Γ(5
4)Γ(1

2)
Γ(3

4)Γ(1) .

We recall some properties of the Gamma function (see [97, pp. 192-194]).

59



Chapter 2. Preliminaries

(i) Γ(1) = 1.
(ii) Γ(1

2) =
√
π (see [97, equation (99), p. 194]).

(iii) By [97, Theorem 8.18] Γ(5
4) = 1

4Γ(1
4).

(iv) For 0 < x <∞ we have the identity (see [97, equation (102), p. 194])

Γ(x) = 2x−1
√
π

Γ
(
x

2

)
Γ
(
x+ 1

2

)
.

Putting x = 1
2 in the above identity, we have

Γ
(1

4

)
Γ
(3

4

)
=
√

2πΓ
(1

2

)
= π
√

2.

Then

‖δ0‖2
− 1

2
= 1√

π

Γ(5
4)Γ(1

2)
Γ(3

4)Γ(1) =
1
4Γ(1

4)
Γ(3

4) = 1
4

(
Γ(1

4)
)2

Γ(1
4)Γ(3

4) = 1
4
√

2π
Γ
(1

4

)2
.

Example 2.11.17 (Distributions given by constant functions). For any φ ∈ S(Rd;C) we
have (see Example 2.11.8)

〈
δ̂0 , φ

〉
=
〈
δ0 , φ̂

〉
= φ̂(0) =

( 1
2π

) d
2
∫
Rd
φ(y) dy =

( 1
2π

) d
2
〈1 , φ〉 ,

where 1 represents the tempered distribution given by the constant function 1. Now for
p > d

4 ,

‖1‖−p = ‖1
∣∣∣
S−p(Rd)

‖−p = ‖1‖S−p(Rd;C), (by (2.16))

= (2π) d2‖δ̂0‖S−p(Rd;C), (by (2.17))

= (2π) d2‖δ0‖S−p(Rd;C)

= (2π) d2‖δ0‖−p, (by (2.16)).

Hence 1 ∈ S−p(Rd) for p > d
4 .

Example 2.11.18 (Distributions given by multiplication). On Rd look at the mapping
x 7→ xi. Since this map has linear growth, we get a tempered distribution, which we denote
by xi. Observe that for any φ ∈ S(Rd) and p > d

4

| 〈xi , φ〉 | = | 〈1 , Miφ〉 | ≤ ‖1‖−p‖Miφ‖p
≤ ‖1‖−p‖Mi‖S

p+ 1
2

(Rd)→Sp(Rd). ‖φ‖p+ 1
2
.

Since 1 ∈ S−p(Rd) for p > d
4 (see Example 2.11.17), we have xi ∈ S−p(Rd) for p > d

4 + 1
2 =

d+2
4 .
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Example 2.11.19 (Distributions given by integrable functions). Given f ∈ L1(Rd), i.e.
an integrable function, observe that∣∣∣∣∫

Rd
f(x)φ(x) dx

∣∣∣∣ ≤ sup
x∈Rd
|φ(x)|

∫
Rd
|f(x)| dx, ∀φ ∈ S(Rd).

Therefore any integrable function acts as a tempered distribution. Abusing standard no-
tations, we denote by L1(Rd) the space of tempered distributions which are given by inte-
grable functions. If ψ is such a distribution, then we denote the corresponding integrable
function again by ψ. Note that S(Rd) ⊂ L1(Rd) (see Lemma 2.9.1).

Next result will be used in Chapter 4.

Lemma 2.11.20. Let p > d
4 . Then L1(Rd) ⊂ S−p(Rd).

Proof. By Proposition 2.11.14(ii), there exists a constant C = C(p) > 0 such that ‖δx‖−p ≤
C, ∀x ∈ Rd. Observe that for ψ ∈ L1(Rd),∫

Rd
|ψ(x)|.‖δx‖−p dx ≤ C

∫
Rd
|ψ(x)| dx <∞.

Hence
∫
Rd ψ(x)δx dx exists as a Bochner integral and is a well-defined element of S−p(Rd).

But for any φ ∈ S(Rd),

〈ψ , φ〉 =
∫
Rd
ψ(x)φ(x) dx =

∫
Rd
ψ(x) 〈δx , φ〉 dx =

〈∫
Rd
ψ(x)δx dx , φ

〉
.

Therefore as a tempered distribution ψ =
∫
Rd ψ(x)δx dx and hence ψ ∈ S−p(Rd), which

proves (ii).

The next result is an well-known application of Stirling’s approximation and we use it
in Example 2.11.22.

Lemma 2.11.21. We have

lim
n→∞

√
πn
(

2n
n

)
4n = 1.

Proof. By Stirling’s approximation (see [97, p. 194, equation (103)]),

lim
n→∞

n!√
2πn e−nnn

= 1.

Writing
(

2n
n

)
= 2n!

(n!)2 and using the above limit, we get the result.
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Example 2.11.22 (Distribution given by the Heaviside function). Let H = 1(0,∞). Now
the distributional derivative of H is given by δ0, since for any φ ∈ S,

〈∂H , φ〉 = −〈H , ∂φ〉 = −
∫ ∞

0
∂φ(y) dy = φ(0) = 〈δ0 , φ〉 .

Note that ∂hn =
√

n
2hn−1 −

√
n+1

2 hn+1, n ≥ 0 (see Proposition 2.8.1(v)). Set an =
〈H , hn〉 , n ≥ 0. Then

‖H‖2
p =

∞∑
n=0

(2n+ 1)2pa2
n.

We want to identify a p ∈ R such that this series is finite (i.e. H ∈ Sp) and with this goal
in mind, we first obtain a growth estimate of |an|.
We also take a−1 = 0. Then from the previous relations we get

−
√
n

2an−1 +
√
n+ 1

2 an+1 = hn(0), n ≥ 0.

A direct computation gives a0 =
∫∞

0 h0(y) dy = 4√π√
2 . From this recurrence relations, for

n = 0 we get a1 =
√

2h0(0) = 1√
2 4√π . Recall that (see Proposition 2.8.1(vi))

hn(0) =

0, if n is odd,
(−1)n2 1

4√π
(n−1)!!√

n! , if n is even
.

Simplifying the recurrence relation, we get for any integer n ≥ 1,

a2n = a0

√
(2n)!

2n.n! ,
√

2n+ 1
2n a2n+1 = a2n−1 + 1√

n
h2n(0). (2.20)

Now multiplying the recurrence of the odd-numbered terms by
√

(2n−1)!!
2n−1(n−1)! we get

√
(2n+ 1)!!

2nn! a2n+1 =

√√√√ (2n− 1)!!
2n−1(n− 1)!a2n−1 +

√
(2n− 1)!!

2n−1n! h2n(0)

=

√√√√ (2n− 1)!!
2n−1(n− 1)!a2n−1 + (−1)n

√
2

4
√
π

(2n)!
4n(n!)2

A telescopic sum gives,√
(2n+ 1)!!

2nn! a2n+1 = a1 +
k∑

n=1
(−1)n

√
2

4
√
π

(2n)!
4n(n!)2 = a1 +

k∑
n=1

(−1)nbn (2.21)
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where bn =
√

2
4
√
π

(2n)!
4n(n!)2 , n ≥ 1. By Lemma 2.11.21, π

3
4
√

2
√
nbn → 1 as n → ∞. Hence

bn → 0 as n→∞.
But bn+1

bn
= 2n+1

2(n+1) < 1, i.e. {bn} is a monotonically decreasing sequence. Hence∑∞n=1(−1)nbn
converges and hence the partial sum sequence is bounded. From the telescopic sum relation
(2.21), we now conclude the existence of a constant C > 0 such that |a2n+1| ≤ C

4√n , n ≥ 1.
Using the recurrence of the even-numbered terms (see equation (2.20)), by Lemma 2.11.21
we have 4

√
πna2n → 1 as n→∞.

Then, we can choose the constant C large enough so that a2n ≤ C
4√n , n ≥ 1.

For H to belong to some S−p we need the convergence of ∑∞n=1(2n+1)−2p 1√
n
, which happens

if p > 1
4 . So H ∈ S−p for p > 1

4 .

Remark 2.11.23. Computation of the coefficients (with respect to the basis of {hn :
n = 0, 1, · · · }) of some tempered distributions are available in some texts. For Heaviside
function see [19, Section 2, equation (8)], [99, p. 162].

Example 2.11.24 (Distribution given by the sign function). Consider the sign function
f on R given by

f(x) =

1, ifx > 0
−1, ifx ≤ 0

.

Observe that f = 2H − 1 and hence the distribution given by f is in S−p for p > 1
4 .

Example 2.11.25 (Distributions given by the Sine and Cosine functions). Using the
Fourier transform on the Hermite functions we have

1√
2π

∫ ∞
−∞

e−ixyhn(y) dy = (−i)nhn(x). (2.22)

Evaluating the previous relation at x = ±1 and adding we have∫ ∞
−∞

cos(y)hn(y) dy = (−i)n
√
π

2 (hn(1) + hn(−1)) = (−i)n
√
π

2 〈δ1 + δ−1 , hn〉 .

Observe that the leftmost term in the above equality is real. There is no inconsistency in
the previous relation since hn(1) + hn(−1) = 0 for odd values of n (if n is odd then so is
hn, see Proposition 2.8.1(iii)).
Evaluation of (2.22) at x = ±1 and subtraction gives∫ ∞

−∞
sin(y)hn(y) dy = (i)n−1

√
π

2 〈δ1 − δ−1 , hn〉 .

Since δ1, δ−1 ∈ S−p for p > 1
4 (see Proposition 2.11.14), the tempered distributions given

by the Sine and Cosine functions are also in the same space.
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Fix p > d + 1
2 and y ∈ Sp(Rd). Note that δx ∈ S−p(Rd), ∀x ∈ Rd (see Proposi-

tion 2.11.14). Hence x 7→ 〈δx , y〉 : Rd → R is well-defined. Abusing notation, we denote
this function by y. Next result is about the continuity and differentiability of the function
y.

Proposition 2.11.26. Let p, y be as above. Then the first order partial derivatives of
function y exist and the distribution y is given by the differentiable function y. Furthermore,
the first order distributional derivatives of y are given by the first order partial derivatives
of y, which are continuous functions.

Proof. We can write y in terms of the orthonormal basis {hpn : n ∈ Zd+}, where hpn =
(2k + d)−phn with |n| = k. Then y

Sp(Rd)= ∑∞
k=0

∑
|n|=k ynhn for some yn ∈ R. Note that

(i) The Hermite functions hn are uniformly bounded. Let C > 0 be a bound. For
any 1 ≤ i ≤ d, ∂ihn =

√
ni
2 hn−ei −

√
ni+1

2 hn+ei where {e1, · · · , ed} is the standard
orthonormal basis for Rd (see Proposition 2.8.1).

(ii) From Lemma 2.10.1, ‖y‖2
p = ∑∞

k=0
∑
|n|=k(2k + d)2py2

n. In particular, (2k + d)2py2
n ≤

‖y‖2
p and hence |yn| ≤ ‖y‖p(2k + d)−p for any multi-index n with |n| = k.

(iii) There exists a constant C ′ > 0 such that the cardinality #{n ∈ Zd+ : |n| = k} ≤
C ′.(2k + d)d−1 (see equation (2.12) in Proposition 2.10.6).

Then ∣∣∣∣∣∣
∞∑
k=0

∑
|n|=k

ynhn(x)

∣∣∣∣∣∣ ≤
∞∑
k=0

∑
|n|=k
|yn||hn(x)|

≤ C‖y‖p
∞∑
k=0

∑
|n|=k

(2k + d)−p

≤ CC ′‖y‖p
∞∑
k=0

(2k + d)−p+d−1

<∞, (∵ p > d+ 1
2).

In particular the convergence of ∑∞k=0
∑
|n|=k ynhn(x) is uniform in x. Similarly we can

show the convergence of ∑∞k=0
∑
|n|=k yn∂ihn(x) is uniform in x. Then partial derivatives

of y(x) = ∑∞
k=0

∑
|n|=k ynhn(x) exist, since term by term differentiability is allowed by

the uniform convergence. The partial derivatives are given by ∑∞k=0
∑
|n|=k yn∂ihn(x), i =

1, · · · , d and are continuous again due to the uniform convergence of the above series.
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2.12 Stochastic integration with Sp(Rd) valued integrands

In this subsection we consider Sp(Rd) valued integrands and state results of stochastic
integration with Hilbert valued integrands as considered in Section 2.7. Let (Ω,F , (Ft), P )
be a filtered complete probability space satisfying the usual conditions. Let {Vt} be an
Sp(Rd) valued norm bounded predictable process. Let {Mt} be a real valued (Ft) adapted
L2-bounded martingale with M0 = 0 and {At} be a real valued FV process with A0 = 0.

(i) We have a.s.
∫ t

0 ‖Vs‖2
p d 〈M〉s < ∞ for any t > 0, where 〈M〉 is the predictable

process such that M2 − 〈M〉 is a martingale. So we have the Sp(Rd) valued process
{
∫ t

0 Vs dMs}.
(ii) Fix 1 ≤ i ≤ d. Now ∂i : Sp(Rd) → Sp− 1

2
(Rd) is a bounded operator (Lemma 2.11.4)

and hence {∂iVt} is an Sp− 1
2
(Rd) valued norm bounded predictable process. As in

(i), we can define {
∫ t

0 ∂iVs dMs}, which is an Sp− 1
2
(Rd) valued process.

(iii) We have a.s.
∫ t

0 ‖Vs‖p |dAs| < ∞ for any t > 0 and hence {
∫ t

0 Vs dAs} is an Sp(Rd)
valued (Ft) adapted process. If {At} is predictable, then so is {

∫ t
0 Vs dAs}.

(iv) Let φ ∈ Sp(Rd) and {Xt} be an Rd valued (Ft) adapted continuous process. Then by
Lemma 2.11.7(ii), {τXtφ} is an Sp(Rd) valued (Ft) adapted continuous process and
in particular it is locally bounded. Hence we can define the processes {

∫ t
0 τXsφ dMs}

and {
∫ t

0 τXsφ dAs}. If {Xt} is a continuous semimartingale, then we can also define
the process {

∫ t
0 τXsφ dXs}.

(v) As an application of [89, Theorem 2.3], we get the following Itô formula: Let φ ∈
Sp(Rd) and X = (X1, · · · , Xd) be an Rd valued continuous (Ft) adapted semimartin-
gale. Then we have the following equality in Sp−1(Rd), a.s. for all t ≥ 0

τXtφ = τX0φ−
d∑
i=1

∫ t

0
∂iτXsφ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXsφ d[X i, Xj]s.

(vi) We compute certain norms of Hermite Sobolev valued processes under ‘nice’ condi-
tions. We show this as a proof of concept and to simplify the computations further,
we assume d = 1. Similar expressions on the norm of Hermite Sobolev valued pro-
cesses will be used at various points in this thesis (see Theorem 4.3.8, Lemma 5.2.16,
Proposition 5.2.18).
Suppose that {Xt} is given by the stochastic differential equation

dXt = σ(Xt) dBt + b(Xt) dt, t ≥ 0

where σ : R → R, b : R → R are bounded smooth functions and {Bt} is a standard
(Ft) Brownian motion. Then the following equality holds in Sp−1 a.s. for all t ≥ 0

τXtφ = τX0φ−
∫ t

0
σ(Xs)∂τXsφ dBs −

∫ t

0
b(Xs)∂τXsφ ds
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+ 1
2

∫ t

0
σ(Xs)2 ∂2τXsφ ds.

Using Proposition 2.7.20, we have

‖τXtφ‖2
p−1 = ‖τX0φ‖2

p−1 − 2
∫ t

0
σ(Xs) 〈τXsφ , ∂τXsφ〉p−1 dBs

− 2
∫ t

0
b(Xs) 〈τXsφ , ∂τXsφ〉p−1 ds

+
∫ t

0
σ(Xs)2

〈
τXsφ , ∂

2τXsφ
〉
p−1

ds

+
∫ t

0
σ(Xs)2‖∂τXsφ‖2

p−1 ds

2.13 Some basic inequalities

The following result is usually called the Gronwall’s inequality.

Lemma 2.13.1 ([56, Lemma 18.4], [87, Chapter V, Theorem 68]). Let f be a continuous
function on [0,∞) such that

f(t) ≤ a+ b
∫ t

0
f(s) ds, t ≥ 0

for some a, b ≥ 0. Then f(t) ≤ aebt for all t ≥ 0.
Moreover if f is non-negative and a = 0, then f vanishes identically.

The next result is a well-known inequality. For the sake of completeness, we include a
proof.

Lemma 2.13.2. Let k be a natural number. Then for positive real numbers a1, · · · , an we
have

ak1 + · · ·+ akn
n

≥
(
a1 + · · ·+ an

n

)k
.

Proof. The inequality follows from the observation that the map x 7→ xk : (0,∞)→ (0,∞)
is convex.

2.14 Semigroups of bounded linear operators

We recall some basic results for semigroups of bounded linear operators on a real Banach
space. In what follows, X will be a real Banach space and ‖ · ‖ will stand for both the
norm on X and also for the operator norm. The terminology used are standard and can be
found in [84, Chapter 1]. For any bounded linear operator A, etA will denote the bounded
linear operator defined by ∑∞n=0

tn

n!A
n.

The following result is well-known and we state it without proof.
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Theorem 2.14.1. Fix x ∈ X and let A be a bounded linear operator on X. Define
Tt := etA, t ≥ 0. Then

(i) ([84, Chapter 1, Corollary 1.4 d) and Theorem 2.4 d)]) The map t 7→ Tt(x) is con-
tinuous on [0,∞) and we have

Tt(x) = x+
∫ t

0
ATs(x) ds, t ≥ 0.

(ii) t 7→ Tt(x) is the unique continuous map on [0,∞) satisfying above property.

Proof. Note that Corollary 1.4 d) and Theorem 2.4 d) in [84, Chapter 1] are proved for C0

semigroups. In statement (i) since A is a bounded linear operator, the domain D(A) = X

and the semigroup {Tt : 0 ≤ t < ∞} is a uniformly continuous semigroup, which in
particular is a C0 semigroup.
For the sake of completeness, we give a proof of statement (ii). If f, g : [0,∞) → X are
continuous maps satisfying

f(t) = x+
∫ t

0
Af(s) ds, g(t) = x+

∫ t

0
Ag(s) ds, ∀t ≥ 0,

then for all t ≥ 0

‖f(t)− g(t)‖ ≤
∥∥∥∥∫ t

0
A[f(s)− g(s)] ds

∥∥∥∥ ≤ ‖A‖ ∫ t

0
‖f(s)− g(s)‖ ds.

By Lemma 2.13.1, ‖f(t)− g(t)‖ = 0, t ≥ 0 which implies the required uniqueness.

We mention two examples of semigroups of bounded linear operators which will be used
in this thesis.

Example 2.14.2. Let C be a real square matrix of order d. Then C is a bounded linear
operator on Rd. Let x ∈ Rd. By Theorem 2.14.1 t 7→ etCx is the unique continuous map
on [0,∞) satisfying

etCx = x+
∫ t

0
esCx ds, t ≥ 0.

Example 2.14.3. Fix p ∈ R. Then τt is a bounded linear operator on Sp for any t ∈ R
(see Lemma 2.11.7(i)). Again for t, s ∈ R and φ ∈ S, we have τsφ(·) = φ(· − s) and hence

(τt(τsφ))(·) = (τsφ)(· − t) = φ(· − t− s) = τt+sφ(·).

Since S is dense in Sp, from the previous equality we have τtτs = τt+s. Of course τ0 = I, the
identity operator on Sp. Therefore the family {τt : −∞ < t < ∞} is a group of bounded
linear operators on Sp. Using Lemma 2.11.7(ii), we conclude that the above family is a C0
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group. Since this C0 group has the same infinitesimal generator as that of the C0 semigroup
{τt : 0 ≤ t <∞}, by [84, Corollary 2.5], we conclude the infinitesimal generator is a closed
linear operator on Sp with dense domain.

The following result is well-known in the case of L2(R) (i.e. S0). We include a proof
for completeness.

Lemma 2.14.4. The infinitesimal generator of the C0 group {τt : −∞ < t < ∞} is the
operator −∂ on Sp with domain

D := {ψ ∈ S : lim
t→0

τt − I
t

ψ exists and is an element of Sp}.

Proof. We claim

(i) S ⊂ D.
(ii) For any ψ ∈ S,

lim
t→0

τt − I
t

ψ
S= −∂ψ. (2.23)

In particular, the equality above also holds in Sp.

First we assume the claim and prove the statement of the result.
Let ψ ∈ D and call ψ̃ := limt→0

τt−I
t
ψ. Then for any φ ∈ S(⊂ S−p), we have∣∣∣∣〈ψ̃ − τt − I

t
ψ , φ

〉∣∣∣∣ ≤ ‖ψ̃ − τt − I
t

ψ‖p‖φ‖−p
t→0−−→ 0.

Then 〈
ψ̃ , φ

〉
= lim

t→0

〈
τt − I
t

ψ , φ
〉

= lim
t→0

〈
ψ ,

τ−t − I
t

φ
〉

=
〈
ψ , lim

t→0

τ−t − I
t

φ
〉

= 〈ψ , ∂φ〉
= 〈−∂ψ , φ〉 .

Hence ψ̃ = −∂ψ for any ψ ∈ D.
To complete the proof, we need to establish our claim. Let φ ∈ S and fix t ∈ R\{0}. Since
φ is a C2 function, by Taylor’s formula for any x ∈ R there exists θx ∈ (0, 1) such that

φ(x+ t) = φ(x) + t∂φ(x) + t2

2 ∂
2φ(x+ θxt).
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Then for any positive integer n, putting y = x+ θxt we have

(1 + x2)n
∣∣∣∣∣φ(x+ t)− φ(x)

t
− ∂φ(x)

∣∣∣∣∣ = (1 + x2)n |t|2
∣∣∣∂2φ(x+ θxt)

∣∣∣
= (1 + (y − θxt)2)n |t|2

∣∣∣∂2φ(y)
∣∣∣ .

Since θx ∈ (0, 1), for any t with |t| ≤ 1√
2 we have 2θ2

xt
2 ≤ 1 and hence

1 + (y − θxt)2 ≤ 1 + 2(y2 + θ2
xt

2) ≤ 2(1 + y2).

Therefore for |t| ≤ 1√
2 with y = x+ θxt

(1 + x2)n
∣∣∣∣∣φ(x+ t)− φ(x)

t
− ∂φ(x)

∣∣∣∣∣ ≤ |t|2n−1(1 + y2)n
∣∣∣∂2φ(y)

∣∣∣
which implies

sup
x∈R

(1 + x2)n
∣∣∣∣∣φ(x+ t)− φ(x)

t
− ∂φ(x)

∣∣∣∣∣ ≤ |t|2n−1 sup
y∈R

(1 + y2)n
∣∣∣∂2φ(y)

∣∣∣ .
Since φ ∈ S, supy∈R(1 + y2)n |∂2φ(y)| <∞ and hence

sup
x∈R

(1 + x2)n
∣∣∣∣∣φ(x+ t)− φ(x)

t
− ∂φ(x)

∣∣∣∣∣ t→0−−→ 0,

i.e.
sup
x∈R

(1 + x2)n
∣∣∣∣τ−t − It

φ(x)− ∂φ(x)
∣∣∣∣ t→0−−→ 0.

Any derivative of φ is again an element of S and hence above limit is true when φ is replaced
by any derivative of φ. Since the seminorms given by the supremums (see equation (2.10))
defines the topology on S we have

lim
t→0

τ−t − I
t

φ
S= ∂φ.

Since the convergence in S is equivalent to the convergence in all ‖·‖p norms for p = 1, 2, · · ·
(see Proposition 2.10.3) we have

lim
t→0

τ−t − I
t

φ
Sp= ∂φ, ∀p = 1, 2, · · · .

Now for any real number p, we can choose a positive integer n such that p ≤ n. Then
‖ τ−t−I

t
φ− ∂φ‖p ≤ ‖ τ−t−It

φ− ∂φ‖n and hence

lim
t→0

τ−t − I
t

φ
Sp= ∂φ, ∀p ∈ R.

This proves φ ∈ D. This shows S ⊂ D and the proof of the claim is complete.
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Monotonicity inequality for stochastic partial

differential equations in S ′(Rd)

3.1 Introduction

Consider the existence and uniqueness problem for stochastic partial differential equations
of the form

dYt = L(Yt) dt+ A(Yt).dBt,

where (Bt) is a r-dimensional Brownian motion and (Yt) an S ′(Rd) valued process, with
Y0 a given S ′(Rd)-valued random variable and the operators L and A = (A1, · · · , Ar)
are certain differential operators. A sufficient condition for existence and uniqueness, the
Monotonicity inequality for the pair of operators (A,L) has been studied by many authors
(see [38,39,59,65,90,92]). Let ‖·‖ be a Hilbertian semi-norm on S ′(Rd) with corresponding
inner product 〈· , ·〉. Say that the pair of operators (A,L) satisfies the ‘Monotonicity
inequality’ for the semi-norm ‖ · ‖ if

2 〈φ , Lφ〉 +
r∑
i=1
‖Aiφ‖2 ≤ C‖φ‖2, ∀φ ∈ S(Rd). (3.1)

Here the semi-norm should be such that the space contains the range of A,L and the space
S(Rd). In practice, the norm ‖·‖ is taken as one of the Hermite-Sobolev norms ‖·‖p, p ∈ R.
A related inequality, called the coercivity inequality is also considered in the context of
stochastic partial differential equations, but in the setting of a Gelfand triple of Hilbert
spaces (see [65,83]). We prove the Monotonicity inequality in two different settings.

(i) In Section 3, we prove the inequality for constant coefficient differential operators
given by

L = 1
2

d∑
i,j=1

(σσt)ij∂2
ij −

d∑
i=1

bi∂i
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and
Ai = −

d∑
j=1

σji∂j.

This result was already proved in [39, Theorem 2.1]. We give a new proof, the crux
of which is outlined below.

(ii) In Section 4, we consider the inequality when the operators L,A contain variable
coefficients, i.e. for

Lψ := 1
2

d∑
i,j=1

∂2
ij

(
(σσt)ijψ

)
−

d∑
i=1

∂i (biψ) , ∀ψ ∈ S ′(Rd)

and
Aiψ := −

d∑
k=1

∂k (σkiψ) , ∀ψ ∈ S ′(Rd)

where σij, bi, 1 ≤ i, j ≤ d are smooth functions with bounded derivatives. This
inequality was used in [92] to prove the uniqueness of the solution of the Cauchy
problem for L as above. We prove the inequality when σ is a real d× d matrix and
b(x) := α + Cx, ∀x ∈ Rd with α ∈ Rd and C = (cij) is a real d× d matrix.

The problem of characterizing coefficients σ, b for which the Monotonicity inequality holds
in the second case, remains unresolved, to our knowledge. For the first case, the proof
given in [39] was essentially computational. It involved expanding φ along an orthonormal
basis {hpn} in Sp(Rd), where hpn := (2k + d)−phn and k = |n|. The left hand side in the
inequality above can then be computed using linearity, in terms of the action of L and Ai
on the hpn, which in turn can be computed, using the recurrence relation for the action of
the derivatives ∂i on the Hermite functions, viz. ∂ihn (Proposition 2.8.1). It was shown
that the resulting series was essentially the same as that for ‖φ‖2, by showing that certain
sequences appearing in successive terms of the series were bounded ([39, Lemma 2.2]).

The method used in our proof can be described in the following steps.

(i) We identify the adjoints ∂∗i ,M ∗
i , i = 1, · · · , d of the operators ∂i,Mi, i = 1, · · · , d

on Sp(Rd). We show that ∂∗i = −∂i + Ti and M ∗
i = Mi + T̃i on (S(Rd), ‖ · ‖p)

where Ti, T̃i are bounded linear operators on Sp(Rd), expressible in terms of certain
shift and multiplication operators - both of which are bounded linear operators on
Sp(Rd) (see Theorem 3.2.2 and Theorem 3.4.1). We crucially use the recurrence
relations for ∂ihn,Mihn in terms of other hn’s. The proof that Ti, T̃i are bounded
operators involves a ‘first-order’ version of the inequalities proved in [39, Lemma 2.2]
(see Lemma 3.2.4).

(ii) This step can be broadly identified as an ‘integration by parts’ argument. We observe
that the term in 2 〈φ , Lφ〉p corresponding to the second order term in L cancels with
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r∑
i=1
‖Aiφ‖2

p, leaving only terms of the form 〈Tiφ , ∂jφ〉p. We estimate these terms using
certain bounded bilinear forms on Sp(Rd) (see Lemma 3.2.5 and Theorem 3.4.1). Our
proof is a generalization of the proof in the case p = 0 (i.e. L2(Rd)), for which it
follows trivially by ‘integration by parts’.

(iii) The rest of the proof boils down to estimating the term coming from the first order
term in L, which again follows from the identification of the adjoints.

In Remark 3.3.3, an interpretation of the Monotonicity inequality for the constant
coefficient differential operators (A,L) is presented in terms of the C0-group of translation
operators.

In Chapter 4, we use the Monotonicity inequality for (A,L) involving variable coeffi-
cients (Theorem 3.4.2) to show the uniqueness of solutions of the Cauchy problem for L
when the initial condition ψ is a tempered distribution given by an integrable function.

Most of the results in this chapter are from [10].

3.2 The Adjoint of the Derivative on the Hermite-Sobolev
spaces

Since S(Rd) ⊂ L2(Rd) (see Lemma 2.9.1) and {hn : n ∈ Zd+} is an orthonormal basis for
L2(Rd) (see Proposition 2.8.1(iv)), any φ ∈ S(Rd) can be written as

φ =
∞∑
k=0

∑
|n|=k

φnhn.

Recall that we are using the convention: φn = 0, hn = 0 whenever ni < 0, for some i.
For i = 1, · · · , d the derivative operators (see Example 2.11.3) ∂i : Sp+ 1

2
(Rd)→ Sp(Rd) are

bounded linear operators. Note that ∂i, 1 ≤ i ≤ d are densely defined unbounded closed
linear operators on Sp(Rd) (see Lemma 2.11.5).
Let ∂∗i denote the Hilbert space adjoint of ∂i on Sp(Rd). For convenience of notation, we
do not include p in ∂∗i , though it should be understood that we are working for a fixed
p ∈ R. Now ∂∗i : Domain(∂∗i ) ⊂ Sp(Rd)→ Sp(Rd) with

Domain(∂∗i ) = {φ ∈ Sp(Rd) : Domain(∂i) �ψ 7→ 〈∂iψ , φ〉p ,
is a bounded linear functional}.

Note that ∂∗i satisfies

〈∂iψ , φ〉p = 〈ψ , ∂∗i φ〉p , ψ ∈ Domain(∂i), φ ∈ Domain(∂∗i ).

Lemma 3.2.1. Domain(∂∗i ) contains S(Rd).
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Proof. Let φ ∈ S(Rd). Then for any ψ ∈ Domain(∂i), by Proposition 2.8.1(v) we have

〈∂iψ , hn〉 = −〈ψ , ∂ihn〉

= −
√
ni
2 〈ψ , hn−ei〉 +

√
ni + 1

2 〈ψ , hn+ei〉 .

Then (see Lemma 2.10.1)

〈∂iψ , φ〉p =
∞∑
k=0

∑
|n|=k

(2k + d)2p 〈∂iψ , hn〉 〈φ , hn〉

= −
∞∑
k=0

∑
|n|=k

(2k + d)2p
√
ni
2 〈ψ , hn−ei〉 〈φ , hn〉

+
∞∑
k=0

∑
|n|=k

(2k + d)2p

√
ni + 1

2 〈ψ , hn+ei〉 〈φ , hn〉

=
∞∑
k=0

∑
|m|=k+1
m=n+ei

(2k + d)2p 〈ψ , hm〉 〈φ , hm−ei〉
√
mi

2

−
∞∑
k=0

∑
|m|=k−1
m=n−ei

(2k + d)2p 〈ψ , hm〉 〈φ , hm+ei〉
√
mi + 1

2

=
∞∑
k=1

∑
|m|=k

(2k + d− 2)2p 〈ψ , hm〉 〈φ , hm−ei〉
√
mi

2

−
∞∑

k=−1

∑
|m|=k

(2k + d+ 2)2p 〈ψ , hm〉 〈φ , hm+ei〉
√
mi + 1

2 .

Observe that the term for k = 0 in the first sum evaluates to 0 because of hm−ei = 0.
Again the term for k = −1 in the second sum is 0 because of hm = 0. Hence

〈∂iψ , φ〉p

=
∞∑
k=1

∑
|m|=k

(2k + d)2p 〈ψ , hm〉

〈φ , hm−ei〉√mi

2

(
2k + d− 2

2k + d

)2p


−
∞∑
k=0

∑
|m|=k

(2k + d)2p 〈ψ , hm〉

〈φ , hm+ei〉
√
mi + 1

2

(
2k + d+ 2

2k + d

)2p


(3.2)

We now prove an estimate of the first sum in terms of ‖ψ‖p. Note that limk→∞
(

2k+d−2
2k+d

)2p
=

1 and hence sup{
(

2k+d−2
2k+d

)2p
: k ≥ 1} <∞. Also for a multi-index m = (m1, · · · ,md) with

|m| = k we have mi ≤ |m| = k ≤ 2k < (2k + d). Then∣∣∣∣∣∣
∞∑
k=1

∑
|m|=k

(2k + d)2p 〈ψ , hm〉

〈φ , hm−ei〉√mi

2

(
2k + d− 2

2k + d

)2p
∣∣∣∣∣∣
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≤ sup
k≥1

(
2k + d− 2

2k + d

)2p ∞∑
k=1

∑
|m|=k

(2k + d)2p|〈ψ , hm〉||〈φ , hm−ei〉|
√
mi

2

≤ 1√
2

sup
k≥1

(
2k + d− 2

2k + d

)2p ∞∑
k=1

∑
|m|=k

(2k + d)2p+ 1
2 |〈ψ , hm〉||〈φ , hm−ei〉|

≤ 1√
2

sup
k≥1

(
2k + d− 2

2k + d

)2p
 ∞∑
k=1

∑
|m|=k

(2k + d)2p 〈ψ , hm〉2
 1

2

×

 ∞∑
k=1

∑
|m|=k

(2k + d)2p+1 〈φ , hm−ei〉
2

 1
2

, (by Cauchy-Schwarz inequality)

= 1√
2

sup
k≥1

(
2k + d− 2

2k + d

)2p

‖ψ‖p

 ∞∑
k=1

∑
|m|=k

(2k + d)2p+1 〈φ , hm−ei〉
2

 1
2

Now
∞∑
k=1

∑
|m|=k

(2k + d)2p+1 〈φ , hm−ei〉
2

=
∞∑
k=1

∑
n=m−ei,
|m|=k

(2k + d)2p+1 〈φ , hn〉2

=
∞∑
k=1

∑
|n|=k−1

(2k + d)2p+1 〈φ , hn〉2

=
∞∑
k=0

∑
|n|=k

(2k + 2 + d)2p+1 〈φ , hn〉2

≤ sup
k≥0

(
2k + d+ 2

2k + d

)2p+1 ∞∑
k=0

∑
|n|=k

(2k + 2)2p+1 〈φ , hn〉2

= sup
k≥0

(
2k + d+ 2

2k + d

)2p+1

‖φ‖2
p+ 1

2
.

Last two estimates gives us an estimate of the first sum on the right hand side of (3.2)∣∣∣∣∣∣
∞∑
k=1

∑
|m|=k

(2k + d)2p 〈ψ , hm〉

〈φ , hm−ei〉√mi

2

(
2k + d− 2

2k + d

)2p
∣∣∣∣∣∣

≤ 1√
2

sup
k≥1

(
2k + d− 2

2k + d

)2p

‖ψ‖p sup
k≥0

(
2k + d+ 2

2k + d

)p+ 1
2

‖φ‖p+ 1
2

Since φ ∈ S(Rd) ⊂ Sp+ 1
2
(Rd), we have ‖φ‖p+ 1

2
< ∞. We can obtain a similar estimate of

the second sum on the right hand side of (3.2) in terms of ‖ψ‖p. Then from (3.2), there
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exists a constant C = C(φ) such that

| 〈∂iψ , φ〉p | ≤ C‖ψ‖p, ∀ψ ∈ Domain(∂i).

This shows ψ 7→ 〈∂iψ , φ〉p is a bounded linear functional on Domain(∂i) when φ ∈ S(Rd).
Hence S(Rd) ⊂ Domain(∂∗i ).

Using integration by parts, we have ∂∗i = −∂i on (S(Rd), ‖ · ‖0). In the next Theorem,
we compute ∂∗i in (S(Rd), ‖ · ‖p) explicitly and the resulting formula generalizes the above
relation to the case p 6= 0.

For each i = 1, · · · , d we define two sequences:

an,i :=
√
ni
2

[
(2k + d− 2)2p − (2k + d)2p

(2k + d)2p

]
,

bn,i :=
√
ni + 1

2

[
(2k + d)2p − (2k + d+ 2)2p

(2k + d)2p

] (3.3)

where n = (n1, · · · , nd) is a multi-index with |n| = k ≥ 0.
Let {ei : 1 ≤ i ≤ d} denote the standard basis for Rd. Define linear operators Ãi, B̃i on

S(Rd) by the formal expressions: for ψ =
∞∑
k=0

∑
|n|=k

ψnhn ∈ S(Rd),

Ãiψ :=
∞∑
k=0

∑
|n|=k

an,iψnhn, B̃iψ :=
∞∑
k=0

∑
|n|=k

bn,iψnhn. (3.4)

Theorem 3.2.2. For any 1 ≤ i ≤ d, each of Ãi, B̃i is a bounded operator on (S(Rd), ‖ ·‖p)
and hence extends to (Sp(Rd), ‖ · ‖p) as bounded linear operators. Furthermore, for any
1 ≤ i ≤ d and for any φ, ψ ∈ S(Rd),

〈∂iφ , ψ〉p + 〈φ , ∂iψ〉p =
〈
φ , (ÃiU−ei + B̃iU+ei)ψ

〉
p

(3.5)

where U−ei , U+ei are the shift operators defined in Example 2.11.1. Hence we have

∂∗i = −∂i + Ti on (S(Rd), ‖ · ‖p)

where Ti = ÃiU−ei + B̃iU+ei is a bounded linear operator on Sp(Rd). By density arguments,
(3.5) can be extended to any φ, ψ ∈ Sp+ 1

2
(Rd).

Before proving this Theorem, we first prove some necessary results.
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Lemma 3.2.3. For any 1 ≤ i ≤ d and φ, ψ ∈ S(Rd),

〈∂iφ , ψ〉p + 〈φ , ∂iψ〉p

=
∞∑
k=0

∑
|n|=k

(2k + d)2pφnan,iψn−ei +
∞∑
k=0

∑
|n|=k

(2k + d)2pφnbn,iψn+ei
(3.6)

Lemma 3.2.4. Fix i = 1, · · · , d. Then there exists a constant Mp > 0, (independent of i)
such that

sup
{n:|n|=k}

|an,i| ≤
Mp√
k
, sup

{n:|n|=k}
|bn,i| ≤

Mp√
k

(3.7)

for any k ≥ 1. In particular, the sequences {an,i} and {bn,i} are bounded.

Proof of Lemma 3.2.3. Since φ, ψ ∈ S(Rd), we can write

φ =
∞∑
k=0

∑
|n|=k

φnhn, ψ =
∞∑
k=0

∑
|n|=k

ψnhn.

By equation (2.14), we have

∂iφ =
∞∑
k=0

∑
|n|=k

φn+ei

√
ni + 1

2 − φn−ei
√
ni
2

hn.
Similar expression is true for ∂iψ.
Therefore, 〈φ , ∂iψ〉p =

∞∑
k=0

(2k + d)2p ∑
|n|=k

φn
[√

ni+1
2 ψn+ei −

√
ni
2 ψn−ei

]
and

〈∂iφ , ψ〉p =
∞∑
k=0

(2k + d)2p ∑
|n|=k

ψn

√ni + 1
2 φn+ei −

√
ni
2 φn−ei


=
∞∑
k=0

∑
|m|=k+1
m=n+ei

(2k + d)2pφmψm−ei

√
mi

2

−
∞∑
k=0

∑
|m|=k−1
m=n−ei

(2k + d)2pφmψm+ei

√
mi + 1

2

=
∞∑
k=1

∑
|m|=k

(2k + d− 2)2pφmψm−ei

√
mi

2

−
∞∑

k=−1

∑
|m|=k

(2k + d+ 2)2pφmψm+ei

√
mi + 1

2
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the corresponding term for k = 0 in the first sum evaluates to 0 because of ψm−ei
√

mi
2 , also

the term for k = −1 in the second sum is 0 because of φm

=
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm−ei√mi

2

(
2k + d− 2

2k + d

)2p


−
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm+ei

√
mi + 1

2

(
2k + d+ 2

2k + d

)2p


Then

〈∂iφ , ψ〉p + 〈φ , ∂iψ〉p

=
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm−ei√mi

2


(

2k + d− 2
2k + d

)2p

− 1




+
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm+ei

√
mi + 1

2

1−
(

2k + d+ 2
2k + d

)2p



=
∞∑
k=0

∑
|m|=k

(2k + d)2pφmam,iψm−ei +
∞∑
k=0

∑
|m|=k

(2k + d)2pφmbm,iψm+ei

This completes the proof.

Proof of Lemma 3.2.4. We prove for an,i’s. Proof for bn,i’s are similar.
We can safely ignore the term for |n| = k = 0.
Now for |n| = k ∈ N,

|an,i| =
√

ni
2|n|

√
|n|
[

(2k + d− 2)2p − (2k + d)2p

(2k + d)2p

]

≤
√
k

[
(2k + d− 2)2p − (2k + d)2p

(2k + d)2p

]

To find an upper bound of an,i’s, we follow the method in Lemma (2.2) of [39].
Choose an analytic branch of z 7→ z2p in a domain containing the positive real axis and
then we can define

f(z) :=
(

1− 2z
2 + dz

)2p
− 1

in a sufficiently small neighbourhood of 0, say in a ball of radius δ > 0, i.e. B(0, δ).

Since f(0) = 0, ∃ an analytic function g defined on B(0, δ) such that f(z) = zg(z), ∀z ∈
B(0, δ). But on the compact set B(0, δ2) the function g is bounded, say by some constant
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R > 0.
Fix a positive integer N such that 1

N
< δ

2 . Then ∀k ≥ N and n with |n| = k,

|an,i| ≤
√
k

∣∣∣∣f (1
k

)∣∣∣∣ ≤ 1√
k

∣∣∣∣g (1
k

)∣∣∣∣ ≤ R√
k
.

Then taking M := max{max{(n,i):1≤|n|<N,1≤i≤d}{
√
|n| |an,i|}, R}, we have

|an,i| ≤
M√
k
, ∀n, with |n| = k ≥ 1.

From this inequality required bound can be obtained.
Proof for bn,i’s are similar. Finally we choose Mp as the larger of the two constants which
were obtained for an,i’s and bn,i’s separately and we have

|an,i| ≤
Mp√
k
, |bn,i| ≤

Mp√
k
, ∀n, with |n| = k ≥ 1.

Taking M ′
p = max{Mp,max{a0,i, b0,i : 1 ≤ i ≤ d}}, we get

|an,i| ≤M ′
p, |bn,i| ≤M ′

p, ∀n.

This completes the proof.

Alternative proof of Lemma 3.2.4. This approach was suggested by an anonymous
referee. We use mean value theorems to establish the bounds.
We present the proof for the case d = 1. The sequences become

an =
√
n

2

[
(2n− 1)2p − (2n+ 1)2p

(2n+ 1)2p

]
, bn =

√
n+ 1

2

[
(2n+ 1)2p − (2n+ 3)2p

(2n+ 1)2p

]

We show an upper bound for {an}. Proof for {bn} is similar.
Consider the following continuously differentiable function

f(x) :=
(2− x

2 + x

)2p
, x ∈ [−1, 1].

Observe that

(a) an =
√

n
2 [f( 1

n
)− f(0)]

(b) f ′(x) =
(

2−x
2+x

)2p−1 −4
(2+x)2 , x ∈ (−1, 1).

(c) x 7→
(

2−x
2+x

)2p−1
is a real valued continuous function on [0, 1] and hence there exists a

constant R > 0 such that 0 <
(

2−x
2+x

)2p−1
≤ R, x ∈ [0, 1].
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Now using mean value theorem for any n ∈ N

|f( 1
n
)− f(0)| ≤

∫ 1
n

0
|f ′(t)| dt

=
∫ 1

n

0

(2− t
2 + t

)2p−1 4
(2 + t)2 dt

≤ 4R
∫ 1

n

0

dt

(2 + t)2 = 4R
[

1
2 −

1
2 + 1

n

]

= 2R
2n+ 1 ≤

R

n

and hence |an| ≤ R√
n

for all n ∈ N.

Proof of Theorem 3.2.2. Linearity of Ãi, B̃i, U+ei , U−ei is clear from definition. Given
φ ∈ S(Rd),

‖Ãiφ‖2
p =

∞∑
k=0

∑
|n|=k

(2k + d)2p|an,i|2φ2
n

≤
(

sup
n
|an,i|2

) ∞∑
k=0

∑
|n|=k

(2k + d)2pφ2
n

≤ (M ′
p)2‖φ‖2

p (by Lemma (3.2.4))

Therefore ‖Ãiφ‖p ≤M ′
p‖φ‖p for all φ ∈ S(Rd) and hence ‖Ãi‖Sp(Rd)→Sp(Rd) ≤M ′

p. Similarly,
‖B̃i‖Sp(Rd)→Sp(Rd) ≤M ′

p. Hence Ãi, B̃i are bounded linear operators on Sp(Rd).
Using Lemma (3.2.3), we now have

〈∂iφ , ψ〉p + 〈φ , ∂iψ〉p =
〈
φ , (ÃiU−ei + B̃iU+ei)ψ

〉
p
.

By Lemma 2.11.2, U+ei , U−ei are bounded linear operators on Sp(Rd). Hence Ti = (ÃiU−ei+
B̃iU+ei) is also a bounded linear operator on Sp(Rd).

The operators Ti have the following important property that will be needed in the next
section.

Lemma 3.2.5. For any 1 ≤ i, j ≤ d, the map 〈∂i(·) , Tj(·)〉p : S(Rd)×S(Rd)→ R defined
by

(φ, ψ) 7→ 〈∂iφ , Tjψ〉p , ∀φ, ψ ∈ S(Rd)

is a bounded bilinear form in ‖ · ‖p and hence extends to a bounded bilinear form on
(Sp(Rd), ‖ · ‖p)× (Sp(Rd), ‖ · ‖p).
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Proof. For φ, ψ ∈ S(Rd),

〈∂iφ , Tjψ〉p

=
∞∑
k=0

∑
|n|=k

(2k + d)2p 〈∂iφ , hn〉 〈Tjψ , hn〉

= −
∞∑
k=0

∑
|n=k|

(2k + d)2p 〈φ , ∂ihn〉
〈
(ÃjU−ej + B̃jU+ej)ψ , hn

〉

= −
∞∑
k=0

∑
|n|=k

(2k + d)2p
〈
φ ,

√
ni
2 hn−ei −

√
ni + 1

2 hn+ei

〉

×
〈
(ÃjU−ej + B̃jU+ej)ψ , hn

〉
= −

∞∑
k=0

∑
|n|=k

(2k + d)2p

√ni
2 φn−ei −

√
ni + 1

2 φn+ei


×
(
an,jψn−ej + bn,jψn+ej

)
From Lemma (3.2.4), we have an,j ∼ O( 1√

|n|
), bn,j ∼ O( 1√

|n|
).

Now using the Cauchy-Schwarz inequality, we get a constant C > 0, such that

| 〈∂iφ , Tjψ〉p | ≤ C‖φ‖q‖ψ‖q.

This completes the proof.

3.3 The Monotonicity inequality

Let {fi : 1 ≤ i ≤ r} denote the standard orthonormal basis for Rr. Let σ = (σij) be a
constant d× r matrix with (aij) = (σσt)ij and b = (b1, ..., bd) ∈ Rd. For φ ∈ S, we define

Lφ := 1
2
∑d
i,j=1 aij∂

2
ijφ−

∑d
i=1 bi∂iφ,

Aiφ := −∑d
j=1 σji(∂jφ), i = 1, · · · , r

Aφ = (A1φ, . . . , Arφ)


So that for l ∈ Rr,

Aφ(l) := −
r∑
i=1

d∑
j=1

σji(∂jφ)li =
r∑
i=1

Aφ(fi)li.

The following result has already been established in [39] and we present another proof
using the results obtained in the previous section.

Theorem 3.3.1. For every p ∈ R,∃ a constant C = C(p, d, (σij), (bj)) > 0, such that

2 〈φ , Lφ〉p + ‖Aφ‖2
HS(p) ≤ C.‖φ‖2

p (3.8)
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for all φ ∈ S(Rd), where ‖Aφ‖2
HS(p) := ∑r

i=1 ‖Aiφ‖2
p. Furthermore, by density arguments

the above inequality can be extended to all φ ∈ Sp+1(Rd).

Proof. Let φ ∈ S(Rd). For convenience, we introduce two notations

L1φ := −
d∑
i=1

bi∂iφ, L2φ := 1
2

d∑
i,j=1

aij∂
2
ijφ.

Observe that for any φ, ψ ∈ S(Rd), by Theorem 3.2.2 we have

〈φ , ∂iψ〉p + 〈∂iφ , ψ〉p = 〈Tiφ , ψ〉p ≤ ‖Ti‖Sp(Rd)→Sp(Rd)‖φ‖p‖ψ‖p.

Therefore,

〈φ , L1ψ〉p + 〈L1φ , ψ〉p = −
d∑
i=1

bi
[
〈φ , ∂iψ〉p + 〈∂iφ , ψ〉p

]
≤
(∑

i

|bi|‖Ti‖Sp(Rd)→Sp(Rd)

)
‖φ‖q‖ψ‖q.

Taking φ = ψ, we obtain

2 〈φ , L1φ〉p ≤
(∑

i

|bi|‖Ti‖Sp(Rd)→Sp(Rd)

)
‖φ‖2

p (3.9)

Now using Theorem 3.2.2,

2 〈φ , L2φ〉p =
d∑

i,j=1
(σσt)ij〈φ, ∂2

ijφ〉p =
d∑

i,j=1
(σσt)ij〈∂∗i φ, ∂jφ〉p

= −
d∑

i,j=1
(σσt)ij 〈∂iφ , ∂jφ〉p +

d∑
i,j=1

(σσt)ij 〈Tiφ , ∂jφ〉p (3.10)

Note that (σσt)ij = ∑r
k=1 σikσjk. Then

−
d∑

i,j=1
(σσt)ij 〈∂iφ , ∂jφ〉p = −

r∑
k=1

〈
d∑
i=1

σik∂iφ ,
d∑
j=1

σjk∂jφ

〉
p

= −
r∑

k=1
〈Aφ(fk) , Aφ(fk)〉p

= −‖Aφ‖2
HS(q)

Hence from (3.10) we have

2 〈φ , L2φ〉p + ‖Aφ‖2
HS(q) =

d∑
i,j=1

(σσt)ij 〈Tiφ , ∂jφ〉p . (3.11)
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Using Lemma 3.2.5 we get

2 〈φ , L2φ〉p + ‖Aφ‖2
HS(q) ≤ C ′‖φ‖2

p

for some constant C ′ > 0. Combining with (3.9) we get the result.

Remark 3.3.2. From the proof it is clear that the constant C in the Monotonicity in-
equality actually depends on the upper bound of |σij| and |bi|. In [39, Remark 3.1]), it
was observed that the Monotonicity inequality can be extended to the case where the
coefficients are bounded random processes.

Remark 3.3.3 (An interpretation using the C0 group of translation operators). We con-
sider the simple case when d = 1 and A = −∂. Fix p ∈ R. Note that the translation
operators (see Example 2.14.3) {τt : t ∈ R} forms a C0-group of bounded linear operators
on Sp with A as the infinitesimal generator (see Lemma 2.14.4) and A is a densely defined
closed linear operator on Sp with the domain of A containing S. Then for any ψ ∈ S,

Aψ
Sp= lim

t→0

τt − I
t

ψ.

Now given φ, ψ ∈ S we have

〈φ , Aψ〉p = lim
t→0

〈
φ ,

τt − I
t

ψ
〉
p
, (I being the identity operator)

= lim
t→0

1
t
〈φ , (τt − I)ψ〉p

= lim
t→0

1
t
〈Hpφ , Hp(τt − I)ψ〉0 , (H as in Example 2.11.11)

= lim
t→0

1
t

〈
H2pφ , (τt − I)ψ

〉
0
, (∵ H is a positive operator onL2)

= lim
t→0

1
t

〈
(τ−t − I)H2pφ , ψ

〉
0

= lim
t→0

1
t

〈
H2pH−2p(τ−t − I)H2pφ , ψ

〉
0

= lim
t→0

1
t

〈
HpH−2p(τ−t − I)H2pφ , Hpψ

〉
0

= lim
t→0

1
t

〈
H−2p(τ−t − I)H2pφ , ψ

〉
p

=
〈
H−2p(−A)H2pφ , ψ

〉
p

Hence A∗ = −H−2pAH2p on (S, ‖ · ‖p). Now〈
φ , A2φ

〉
p

+ ‖Aφ‖2
p = −

〈
H−2pAH2pφ , Aφ

〉
p

+ 〈Aφ , Aφ〉p
=
〈
(A−H−2pAH2p)φ , Aφ

〉
p

=
〈
H−2p(H2pA− AH2p)φ , Aφ

〉
p

(3.12)

83



Chapter 3. Monotonicity inequality for stochastic partial differential equations in S ′(Rd)

We show H−2p(H2pA − AH2p) is the bounded operator obtained in Theorem 3.2.2. By
Proposition 2.8.1(v)

Ahn = −
√
n

2hn−1 +
√
n+ 1

2 hn+1.

For φ ∈ S with φ = ∑∞
n=0 φnhn, using (2.18) we have

(H2pA− AH2p)φ = −
∞∑
n=0

φnH2p

√n
2hn−1 −

√
n+ 1

2 hn+1


−
∞∑
n=0

φn(2n+ 1)2pAhn

= −
∞∑
n=0

φn

√n
2 (2n− 1)2phn−1 −

√
n+ 1

2 (2n+ 3)2phn+1


+
∞∑
n=0

φn(2n+ 1)2p

√n
2hn−1 −

√
n+ 1

2 hn+1


= −

∞∑
n=0

φn

[√
n

2
{

(2n− 1)2p − (2n+ 1)2p
}
hn−1

+
√
n+ 1

2
{

(2n+ 1)2p − (2n+ 3)2p
}
hn+1


Then

H−2p(H2pA− AH2p)φ = −
∞∑
n=0

φn

[√
n

2
(2n− 1)2p − (2n+ 1)2p

(2n− 1)2p hn−1

+
√
n+ 1

2
(2n+ 1)2p − (2n+ 3)2p

(2n+ 3)2p hn+1


= −

∞∑
n=0

φn+1

√
n+ 1

2
(2n+ 1)2p − (2n+ 3)2p

(2n+ 1)2p

+ φn−1

√
n

2
(2n− 1)2p − (2n+ 1)2p

(2n+ 1)2p

]
hn

= −
∞∑
n=0

(bnφn+1 + anφn−1)hn

Here we have used the notations {an} and {bn} instead of {an,1} and {bn,1} (see equa-
tion (3.3)). Now write T instead of T1 (see Theorem 3.2.2). Then we have

H−2p(H2pA− AH2p) = −T

and hence by (3.12) and Lemma 3.2.5 there exists a constant C > 0 such that〈
φ , A2φ

〉
p

+ ‖Aφ‖2
p = 〈Tφ , ∂φ〉p ≤ C ‖φ‖2

p
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for any φ ∈ S.

3.4 The Monotonicity inequality for (A∗, L∗)

In the introduction to this chapter, we have used the notations A,L for the differential
operators with variable coefficients. This was done for the sake of brevity. The inequality
used in [92] is denoted in terms of (A∗, L∗), because there a duality formulation transformed
certain flows and the stochastic partial differential equation solved by the dual flow involved
the adjoint operators of the original pair (A,L). To bear this in mind, we continue to use
the notation (A∗, L∗).

Suppose that σ = (σij), i = 1, · · · , d; j = 1, · · · , r and b = (b1, · · · , bd) where σij, bi
are C∞ functions on Rd with bounded derivatives. Consider the differential operators
A∗ = (A∗1, · · · , A∗r), L∗ on S ′(Rd) given as follows: for ψ ∈ S ′(Rd)A

∗
iψ := −∑d

k=1 ∂k (σkiψ) ,
L∗ψ := 1

2
∑d
i,j=1 ∂

2
ij ((σσt)ijψ)−∑d

i=1 ∂i (biψ)
(3.13)

From now onwards we consider the case r = d. If σij, bi, 1 ≤ i, j ≤ d are real constants,
i.e. σ is a real square matrix of order d and b ∈ Rd, then the Monotonicity inequality for
(A∗, L∗) follows from [39, Theorem 2.1] (also see Theorem 3.3.1), since A∗i , i = 1, · · · , d and
L∗ are now constant coefficient differential operators (see [92, Remark after Theorem 4.4]).
In this section, we prove the inequality for a slightly more general class of examples, viz. σ
is a real square matrix of order d and b(x) := α+Cx, ∀x ∈ Rd where α = (α1, · · · , αd) ∈ Rd

and C = (cij) is a real square matrix of order d. Unless otherwise specified, p will be an
arbitrary but fixed real number.
First we identify the adjoint of the multiplication operators Mi, i = 1, · · · , d (see Exam-
ple 2.11.9) on (S(Rd), ‖ · ‖p).

Theorem 3.4.1. The following are some properties of the operators Mi.

(i) For any 1 ≤ i ≤ d and φ, ψ ∈ S(Rd),

〈Miφ , ψ〉p − 〈φ , Miψ〉p

=
∞∑
k=0

∑
|n|=k

(2k + d)2pφnan,iψn−ei −
∞∑
k=0

∑
|n|=k

(2k + d)2pφnbn,iψn+ei
(3.14)

and hence
M ∗

i = Mi + T̃i on (S(Rd), ‖ · ‖p)
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with T̃i is a bounded linear operator on (Sp(Rd), ‖ · ‖p) given by

T̃i = ÃiU−ei − B̃iU+ei

where Ãi, U−ei , B̃i, U+ei , an,i, bn,i are as in Theorem 3.2.2.
(ii) For any 1 ≤ i, j ≤ d, the map

〈
∂i(·) , T̃j(·)

〉
p

: S(Rd)× S(Rd)→ R defined by

(φ, ψ) 7→
〈
∂iφ , T̃jψ

〉
p
, ∀φ, ψ ∈ S(Rd)

is a bounded bilinear form in ‖ · ‖p and hence extends to a bounded bilinear form on
(Sp(Rd), ‖ · ‖p)× (Sp(Rd), ‖ · ‖p).

(iii) For any 1 ≤ i ≤ d, let Ti be as in Theorem 3.2.2. Then for any 1 ≤ i, j ≤ d, the
map 〈Mi(·) , Tj(·)〉p : S(Rd)× S(Rd)→ R defined by

(φ, ψ) 7→ 〈Miφ , Tjψ〉p , ∀φ, ψ ∈ S(Rd)

is a bounded bilinear form in ‖ · ‖p and hence extends to a bounded bilinear form on
(Sp(Rd), ‖ · ‖p)× (Sp(Rd), ‖ · ‖p).

Proof. Since φ, ψ ∈ S(Rd), we can write

φ =
∞∑
k=0

∑
|n|=k

φnhn, ψ =
∞∑
k=0

∑
|n|=k

ψnhn.

Now Miφ =
∞∑
k=0

∑
|n|=k

φn(Mihn), where Mihn =
√

ni
2 hn−ei+

√
ni+1

2 hn+ei for all n = (n1, .., nd)

(see Proposition 2.8.1). Therefore,

Miφ =
∞∑
k=0

∑
|n|=k

φn

√ni
2 hn−ei +

√
ni + 1

2 hn+ei


=
∞∑
k=0

∑
|m|=k−1,
m=n−ei

φm+ei

√
mi + 1

2 hm +
∞∑
k=0

∑
|m|=k+1,
m=n+ei

φm−ei

√
mi

2 hm

=
∞∑

l=−1,
l=k−1

∑
|m|=l

φm+ei

√
mi + 1

2 hm +
∞∑
l=1,
l=k+1

∑
|m|=l

φm−ei

√
mi

2 hm

=
∞∑
l=0

∑
|m|=l

φm+ei

√
mi + 1

2 hm +
∞∑
l=0

∑
|m|=l

φm−ei

√
mi

2 hm

Similar expression is true for Miψ. Therefore,

〈φ , Miψ〉p =
∞∑
k=0

(2k + d)2p ∑
|n|=k

φn

√ni + 1
2 ψn+ei +

√
ni
2 ψn−ei
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and

〈Miφ , ψ〉p =
∞∑
k=0

(2k + d)2p ∑
|n|=k

ψn

√ni + 1
2 φn+ei +

√
ni
2 φn−ei


=
∞∑
k=0

∑
|m|=k+1
m=n+ei

(2k + d)2pφmψm−ei

√
mi

2

+
∞∑
k=0

∑
|m|=k−1
m=n−ei

(2k + d)2pφmψm+ei

√
mi + 1

2

=
∞∑
k=1

∑
|m|=k

(2k + d− 2)2pφmψm−ei

√
mi

2

+
∞∑

k=−1

∑
|m|=k

(2k + d+ 2)2pφmψm+ei

√
mi + 1

2

the term for k = 0 in the first sum evaluates to 0 because of ψm−ei
√

mi
2 , also the term for

k = −1 in the second sum is 0 because of φm

=
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm−ei√mi

2

(
2k + d− 2

2k + d

)2p


+
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm+ei

√
mi + 1

2

(
2k + d+ 2

2k + d

)2p


Combining expressions for 〈Miφ , ψ〉p and 〈φ , Miψ〉p we get

〈Miφ , ψ〉p − 〈φ , Miψ〉p

=
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm−ei√mi

2


(

2k + d− 2
2k + d

)2p

− 1




−
∞∑
k=0

∑
|m|=k

(2k + d)2pφm

ψm+ei

√
mi + 1

2

1−
(

2k + d+ 2
2k + d

)2p



=
∞∑
k=0

∑
|m|=k

(2k + d)2pφmam,iψm−ei −
∞∑
k=0

∑
|m|=k

(2k + d)2pφmbm,iψm+ei

Proof of part (ii) and (iii) are similar to Lemma 3.2.5. We give the details for part (ii).
For φ, ψ ∈ S(Rd),〈

∂iφ , T̃jψ
〉
p

=
∞∑
k=0

∑
|n|=k

(2k + d)2p 〈∂iφ , hn〉
〈
T̃jψ , hn

〉
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= −
∞∑
k=0

∑
|n=k|

(2k + d)2p 〈φ , ∂ihn〉
〈
(ÃjU−ej − B̃jU+ej)ψ , hn

〉

= −
∞∑
k=0

∑
|n|=k

(2k + d)2p
〈
φ ,

√
ni
2 hn−ei −

√
ni + 1

2 hn+ei

〉

×
〈
(ÃjU−ej − B̃jU+ej)ψ , hn

〉
= −

∞∑
k=0

∑
|n|=k

(2k + d)2p

√ni
2 φn−ei −

√
ni + 1

2 φn+ei


×
(
an,jψn−ej − bn,jψn+ej

)
From Lemma (3.2.4), we have an,j ∼ O( 1√

|n|
), bn,j ∼ O( 1√

|n|
).

Now using the Cauchy-Schwarz inequality, we get a constant C > 0, such that

|
〈
∂iφ , T̃jψ

〉
p
| ≤ C‖φ‖q‖ψ‖q.

This completes the proof.

The following is the main result of the section.

Theorem 3.4.2. Let α = (α1, · · · , αd) ∈ Rd and C = (cij) be a real square matrix of order
d. Let σ be a constant function, i.e. σ(x) ≡ (σij), ∀x ∈ Rd where σij ∈ R, i, j = 1, · · · , d.
Let b = (b1, · · · , bd) with b(x) := α + Cx, ∀x ∈ Rd. Fix p ∈ R. Then

(i) The maps A∗i are bounded linear operators from Sp+ 1
2
(Rd) to Sp(Rd) and L∗ is a

bounded linear operator from Sp+1(Rd) to Sp(Rd).
(ii) Monotonicity inequality for A∗, L∗ holds, i.e. there exists a positive constant R =

R(p, d, (σij), (bj)), such that

2 〈φ , L∗φ〉p + ‖A∗φ‖2
HS(p) ≤ R ‖φ‖2

p (3.15)

for all φ ∈ Sp+1(Rd).

Proof. Let φ ∈ S ′(Rd). Then, A∗iφ = −∑d
k=1 ∂k (σkiφ) = −∑d

k=1 σki∂k (φ), for 1 ≤ i ≤ d.
Also

L∗φ = 1
2

d∑
i,j=1

∂2
ij

(
(σσt)ijφ

)
−

d∑
i=1

∂i (biφ)

= 1
2

d∑
i,j=1

(σσt)ij∂2
ij(φ)−

d∑
i=1

αi∂i(φ)−
d∑

i,j=1
cij∂i (Mjφ) .
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For any q ∈ R, ∂i : Sq+ 1
2
(Rd) → Sq(Rd) and Mi : Sq+ 1

2
(Rd) → Sq(Rd) are bounded linear

operators (see Example 2.11.3 and Example 2.11.9). Hence we get the boundedness of A∗i
and L∗ as mentioned in part (i).
To prove (ii), we first introduce the notations: for φ ∈ S ′(Rd),

L∗1(φ) := 1
2

d∑
i,j=1

(σσt)ij∂2
ij(φ)−

d∑
i=1

αi∂i(φ), L∗2(φ) := −
d∑

i,j=1
cij∂i (Mjφ)

By Theorem 3.3.1, there exists a constant C̃ = C̃(p, d, (σij), (bj)) > 0,

2 〈φ , L∗1φ〉p + ‖A∗φ‖2
HS(p) ≤ C̃ ‖φ‖2

p, ∀φ ∈ Sp+1(Rd).

To complete the proof, it is enough to show that

2 〈φ , L∗2φ〉p ≤ C ′ ‖φ‖2
p, ∀φ ∈ S(Rd)

for some constant C ′ = C ′(p, d, (σij), (bj)) > 0 and then the same inequality extends to
φ ∈ Sp+1(Rd) via density arguments.
For φ ∈ S(Rd), for i = j, ∂i (Mjφ) = φ+Mi(∂iφ)

for i 6= j, ∂i (Mjφ) = Mj(∂iφ)
.

Then for any i, using Theorem 3.2.2 and Theorem 3.4.1

〈φ , ∂i (Miφ)〉p = ‖φ‖2
p + 〈φ , Mi(∂iφ)〉p

= ‖φ‖2
p + 〈Miφ , ∂iφ〉p +

〈
T̃iφ , ∂iφ

〉
p

= ‖φ‖2
p + 〈Miφ , (−∂∗i + Ti)φ〉p +

〈
T̃iφ , ∂iφ

〉
p

= ‖φ‖2
p − 〈∂i (Miφ) , φ〉p + 〈Miφ , Tiφ〉p +

〈
T̃iφ , ∂iφ

〉
p

and hence 2 〈φ , ∂i (Miφ)〉p = ‖φ‖2
p + 〈Miφ , Tiφ〉p +

〈
T̃iφ , ∂iφ

〉
p
.

For i 6= j, a similar computation yields 2 〈φ , ∂i (Mjφ)〉p = 〈Mjφ , Tiφ〉p +
〈
T̃jφ , ∂iφ

〉
p
.

Hence

2 〈φ , L∗2φ〉p = −2
d∑

i,j=1
cij 〈φ , ∂i (Mjφ)〉p

= −2
∑
i 6=j

cij 〈φ , ∂i (Mjφ)〉p − 2
d∑
i=1

cii 〈φ , ∂i (Miφ)〉p

= −
d∑

i,j=1
cij

[
〈Mjφ , Tiφ〉p +

〈
T̃jφ , ∂iφ

〉
p

]
− ‖φ‖2

p

d∑
i=1

cii.
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Chapter 3. Monotonicity inequality for stochastic partial differential equations in S ′(Rd)

Bilinearity of (φ, ψ) 7→ 〈Mjφ , Tiφ〉p +
〈
T̃jφ , ∂iφ

〉
p

(see Theorem 3.4.1) gives the required
estimate on 2 〈φ , L∗2φ〉p and this completes the proof.

Remark 3.4.3. Theorem 3.4.2 covers a class of examples where the Monotonicity in-
equality for the pair (A∗, L∗) holds. The problem of characterizing all (σ, b) such that the
inequality holds is a problem for the future. This question remains unresolved to date, to
our knowledge.
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Gaussian flows and probabilistic representation of

solutions of the Forward equations

4.1 Introduction

Itô’s stochastic differential equations provide a concrete model for stochastic flows, on which
topic there is a considerable literature (see [6,13,16,18,31,32,49,66,69,70,73,76,104,119]
and the references therein). In this chapter, we study three interrelated properties (which
we call property I, II and III) of stochastic flows arising as solutions of finite dimensional
stochastic differential equations, viz.

dXt = σ(Xt) dBt + b(Xt) dt, t ≥ 0. (4.1)

In Section 2 we explore property I and in Section 3 we consider properties II, III.
Property I: We want to identify the pairs (σ, b) (assumed to be Lipschitz continuous)
such that the general solutions {Xx

t } (x denotes the deterministic initial conditions) of the
corresponding diffusions are the sum of the solution starting at 0, i.e. {X0

t } and the value of
a deterministic function at the initial condition, viz. f(t, x). We call this class of diffusions
as diffusions depending deterministically on the initial condition (see Definition 4.2.1). A
consequence of this notion is that the map t 7→ f(t, x) is C1 for each fixed x ∈ Rd (see
Lemma 4.2.3).
Property II: We want to identify the pairs (σ, b) (assumed to be sufficiently smooth) such
that the map x 7→ ψ(Xx

t ) is in S(Rd) whenever ψ ∈ S(Rd). In [92], a similar composition
of maps led to the existence of a solution of (see [92, Theorem 3.3])

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)) .dBs +

∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0, (4.2)

in some Hermite Sobolev space Sp(Rd), where ψ ∈ E ′(Rd) - the space of compactly sup-
ported distributions on Rd, {Bt} - a r dimensional standard Brownian motion and the
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

operators A∗ = (A∗1, · · · , A∗r), L are as in equation (3.13).
Property III: We want to identify the pairs (σ, b) such that the solution to the SPDE (4.2)
is unique. This question remains unresolved to date, to our knowledge. The Monotonicity
inequality for the pair (A∗, L∗) is a sufficient condition for the uniqueness.

We consider the case r = d and show that all three properties hold if

(i) σ is a real d× d matrix.
(ii) b(x) := α + Cx, ∀x ∈ Rd where α ∈ Rd and C = (cij) is a real d× d matrix.

Under ‘nice’ conditions we show that property I holds if and only if the pair σ, b is
given by (i) and (ii) (Proposition 4.2.5, Theorem 4.2.4). Since the flows generated by these
coefficients are Gaussian, these results can be considered as characterization results on
Gaussian flows. In Proposition 4.2.10 and Theorem 4.2.12, we discuss some generalizations
of Definition 4.2.1.

For σ, b in our class, we observe that {X0
t + etCx} solves equation (4.1) (Lemma 4.3.1).

In particular this result implies property II. Using this result, we define continuous linear
maps Xt(ω) : S(Rd) → S(Rd) (Lemma 4.3.4) and the corresponding adjoints X∗t (ω) :
S ′(Rd) → S ′(Rd). Recall that the space of tempered distributions given by integrable
functions, viz. L1(Rd) is a subset of S−p(Rd) whenever p > d

4 (Lemma 2.11.20). For any
ψ ∈ L1(Rd), we construct an S−p(Rd) valued continuous adapted process {Yt(ψ)} with the
property X∗t (ψ) = Yt(ψ) (see equation (4.17)). We then show that the process {Yt(ψ)}
satisfies the stochastic partial differential equation (4.2) in S−p−1(Rd) with Y0 = ψ ∈ L1(Rd)
(Theorem 4.3.8).

Note that the Monotonicity inequality for (A∗, L∗), mentioned in property III, was
proved in Chapter 3 for σ, b as given by (i) and (ii) (Theorem 3.4.2).

Taking expectation on both sides of equation (4.2), we show in Theorem 4.3.9 that
ψ(t) := EYt(ψ) solves the Cauchy problem for L∗, viz.

dψ(t)
dt

= L∗ψ(t); ψ(0) = ψ, (4.3)

where ψ ∈ L1(Rd). Furthermore, the uniqueness of solutions of (4.3) follows from the
Monotonicity inequality for (A∗, L∗). This result was motivated by [92, Theorem 4.4],
where the uniqueness of (4.3) was obtained for ψ ∈ E ′(Rd). Note that we have explicitly
proved the Monotonicity inequality for the pair (A∗, L∗) (corresponding to σ, b in our class),
whereas in [92] it was stated as an assumption.

It was shown in [90] that the solutions of certain stochastic partial differential equa-
tions can be represented as translates of the initial condition by the solution of a finite
dimensional diffusion. In Proposition 4.3.10, we prove a similar result, viz. the tempered
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4.2. Diffusions with the solution depending deterministically on the initial condition

distribution Yt(ψ) is given by the integrable function e−t tr(C) τX(t,0)ψ(e−tC ·) where tr(C) is
the trace of the matrix C.

Most of the results in this chapter are from [8].

4.2 Characterizing diffusions with the general solution
depending deterministically on the initial condition

Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual conditions.
Let {Bt} be a standard d-dimensional (Ft) Brownian motion. Now consider the diffusion:

dXt = σ(Xt) dBt + b(Xt) dt, ∀t ≥ 0, (4.4)

where the coefficients σ : Rd → Rd×d, b : Rd → Rd are Lipschitz continuous. Note that σ, b
satisfy a linear growth condition, i.e. there exists a constant K > 0 such that

|σ(x)|+ |b(x)| ≤ K(1 + |x|), ∀x ∈ Rd,

where | · | denotes the Euclidean norm in the appropriate spaces. For any x ∈ Rd, let {Xx
t }

denote the solution of (4.4) with X0 = x.

Definition 4.2.1. We say the general solution to the diffusion (4.4) depends determinis-
tically on the initial condition, if there exists a function f : [0,∞) × Rd → Rd such that
for any x ∈ Rd, we have a.s.

Xx
t (ω) = f(t, x) +X0

t (ω), t ≥ 0. (4.5)

Remark 4.2.2. A motivation to look for this type of diffusions is to have ‘nice’ solution
{Xx

t } so that the composition x 7→ φ(Xx
t ) has ‘smoothness’ for φ in a suitable function

class. A special case of this type of diffusions and subsequent composition will be used in
Section 3.

If equation (4.5) is satisfied, then the function f has ‘nice’ properties. This is our next
result. The component functions of f are denoted by f1, · · · , fd.

Lemma 4.2.3. If the general solution of the diffusion (4.4) depends deterministically on
the initial condition, then for all (t, x) ∈ [0,∞) × Rd, the partial derivative ∂f

∂t
(t, x) ex-

ists and for every fixed x ∈ Rd, the map t 7→ ∂f
∂t

(t, x) is continuous, where ∂f
∂t

(t, x) =
(∂f1
∂t

(t, x), · · · , ∂fd
∂t

(t, x)).
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Proof. Due to the linear growth of the coefficients σ, b, the first and second moments of
Xx
t exist for all x, t. If equation (4.5) is satisfied, then for all x, t we have

f(t, x) = EXx
t − EX0

t = x+
∫ t

0

[
Eb(Xx

s )− Eb(X0
s )
]
ds.

This implies the differentiability of f and the continuity of t 7→ ∂f
∂t

(t, x) for every x ∈
Rd.

In Theorem 4.2.4 and Proposition 4.2.5 we characterize diffusions depending determin-
istically on the initial condition. In the first result we obtain a characterization under a
non-degeneracy condition on σ and smoothness assumptions on certain derivatives of b, f .
In the second result we consider the case when f is in a product form.

For any d × d matrix C, the bounded linear operator on Rd given by the matrix∑∞
n=0

tn

n!C
n will be denoted by etC .

Theorem 4.2.4. Let σ, b be Lipschitz continuous functions. Suppose the following happen:

(i) there exists an x ∈ Rd such that the determinant of (σij(x)) is not zero,
(ii) bi ∈ C2(Rd,R), i = 1, · · · , d where b = (b1, · · · , bd),

(iii) for every fixed x ∈ Rd, the map t 7→ ∂f
∂t

(t, x) is of bounded variation.

Then the general solution of the diffusion (4.4) depends deterministically on the initial
condition through (4.5) if and only if σ is a real non-singular matrix of order d and b is of
the form b(x) = α+Cx and f(t, x) = etCx where α ∈ Rd and C is a real square matrix of
order d.

Proof. Suppose that the solution of the diffusion depends deterministically on the initial
condition through (4.5). Then for any x ∈ Rd, a.s. t ≥ 0

f(t, x) = Xx
t −X0

t

= f(0, x) +
∫ t

0

[
σ(Xx

s )− σ(X0
s )
]
. dBs +

∫ t

0

[
b(Xx

s )− b(X0
s )
]
ds.

Note that necessarily we must have f(0, x) = x. Now rewriting above relation

∫ t

0

[
σ(Xx

s )− σ(X0
s )
]
. dBs +

∫ t

0

[
b(Xx

s )− b(X0
s )− ∂f

∂t
(s, x)

]
ds = 0.

But the first integral is a continuous martingale and the second is a continuous process of
finite variation. Hence the martingale is almost surely constant (see Proposition 2.5.19).
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4.2. Diffusions with the solution depending deterministically on the initial condition

Since it starts at 0, the martingale term is 0 a.s. and hence so is the finite variation term,
i.e. a.s. t ≥ 0 ∫ t

0

[
σ(Xx

s )− σ(X0
s )
]
. dBs = 0, (4.6a)

∫ t

0

[
b(Xx

s )− b(X0
s )− ∂f

∂t
(s, x)

]
ds = 0. (4.6b)

The quadratic variation of the martingale in (4.6a) is also 0 and hence for any fixed x ∈ Rd

and for any i, j = 1, · · · , d a.s.∫ t

0

[
σij(Xx

s )− σij(X0
s )
]2
ds = 0, t ≥ 0.

But for fixed x and a.s. ω the map t 7→ [σij(Xx
t )− σij(X0

t )]2 is continuous and hence for
all x ∈ Rd, i, j = 1, · · · , d a.s. [σij(Xx

t )− σij(X0
t )]2 = 0, ∀t ≥ 0. Putting t = 0 we have

σij(x) = σij(0), x ∈ Rd i.e. σ is a constant d× d matrix. The fact that the determinant of
σ is non-zero, follows from our hypothesis.
On the other hand, from equation (4.6b), for each x ∈ Rd, a.s. t ≥ 0,

b(Xx
t )− b(X0

t )− ∂f

∂t
(t, x) = 0. (4.7)

Evaluating at t = 0 yields

bi(x) = bi(0) + ∂fi
∂t

(0, x), i = 1, · · · , d.

Let {B(i)
t } denote the ith component of {Bt}. Since bi ∈ C2(Rd,R), by Itô formula we

have for x ∈ Rd, a.s. t ≥ 0,

bi(Xx
t ) = bi(x) +

d∑
j=1

∫ t

0
∂jbi(Xx

s ) d(Xx)(j)
s

+ 1
2

d∑
j,k=1

∫ t

0
∂j∂kbi(Xx

s ) d
[
(Xx)(j), (Xx)(k)

]
s

Using (4.7) and the Itô formula above, we have a.s. t ≥ 0,

∂fi
∂t

(t, x) = bi(Xx
t )− bi(X0

t )

= [bi(x)− bi(0)] +
d∑

j,k=1

∫ t

0

(
∂jbi(Xx

s )− ∂jbi(X0
s )
)
σjkdB

(k)
s
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+
d∑
j=1

∫ t

0

[
∂jbi(Xx

s )bi(Xx
s )− ∂jbi(X0

s )bi(X0
s )
]
ds

+ 1
2

d∑
j,k=1

∫ t

0
(σσt)jk

[
∂j∂kbi(Xx

s )− ∂j∂kbi(X0
s )
]
ds

= ∂fi
∂t

(0, x) +
d∑

j,k=1

∫ t

0

(
∂jbi(Xx

s )− ∂jbi(X0
s )
)
σjkdB

(k)
s

+
d∑
j=1

∫ t

0

[
∂jbi(Xx

s )bi(Xx
s )− ∂jbi(X0

s )bi(X0
s )
]
ds

+ 1
2

d∑
j,k=1

∫ t

0
(σσt)jk

[
∂j∂kbi(Xx

s )− ∂j∂kbi(X0
s )
]
ds.

Then a.s. t ≥ 0,

∂fi
∂t

(t, x)− ∂fi
∂t

(0, x) =
d∑

j,k=1

∫ t

0

(
∂jbi(Xx

s )− ∂jbi(X0
s )
)
σjkdB

(k)
s

+
d∑
j=1

∫ t

0

[
∂jbi(Xx

s )bj(Xx
s )− ∂jbi(X0

s )bj(X0
s )
]
ds

+ 1
2

d∑
j,k=1

∫ t

0
(σσt)jk

[
∂j∂kbi(Xx

s )− ∂j∂kbi(X0
s )
]
ds.

Again, the martingale term must be zero. Then for any i, k = 1, · · · , d we have a.s.∑d
j=1 σ

2
jk

(
∂jbi(Xx

t ) − ∂jbi(X0
t )
)2

= 0, t ≥ 0. Evaluating at t = 0 and simplifying we have∑d
j=1 σjk(∂jbi(x)− ∂jbi(0)) = 0. The last equation we can write as

σt


∂1bi(x)− ∂1bi(0)

· · ·
∂dbi(x)− ∂dbi(0)

 = 0.

Since σ is non-singular, we have for each i, j = 1, · · · , d the function x 7→ ∂jbi(x) is a
constant function. Define cij := ∂jbi(0) and write C = (cij). Then

bi(x)− bi(0) =
(
bi(x1, x2, · · · , xd)− bi(0, x2, · · · , xd)

)
+
(
bi(0, x2, · · · , xd)− bi(0, 0, x3, · · · , xd)

)
+ · · ·+

(
bi(0, · · · , 0, xd)− bi(0, · · · , 0)

)
=
∫ x1

0
∂1bi(y, x2, · · · , xd) dy + · · ·+

∫ xd

0
∂dbi(0, · · · , 0, y) dy

=
d∑
j=1

cijxj
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Now for any fixed x ∈ Rd, we have f(0, x) = x and

f(t, x)− x =
∫ t

0

[
b(Xx

s )− b(X0
s )
]
ds =

∫ t

0
C
[
Xx
s −X0

s

]
ds =

∫ t

0
Cf(s, x) ds.

Hence f(t, x) = etCx (see Example 2.14.2). This completes the proof of necessity.
To prove the converse, observe that there exists a P null set N such that for all ω ∈
Ω \ N , t ≥ 0

X0
t =

∫ t

0
σ dBs + αt+

∫ t

0
CX0

s ds.

Again for any t ≥ 0, x ∈ Rd we have (see Example 2.14.2)

etCx = x+
∫ t

0
CesCx ds.

Hence on Ω \ N for all t ≥ 0, x ∈ Rd we have

X0
t + etCx = x+

∫ t

0
σ dBs + αt+

∫ t

0
C(X0

s + esCx) ds (4.8)

so that the sum {X0
t + etCx} solves equation (4.4).

In Definition 4.2.1, if the function f is in a product form , then a similar characterization
can be obtained without additional smoothness assumptions on b, f .

Proposition 4.2.5. Let σ, b be Lipschitz continuous functions.

(i) Suppose the general solution of the diffusion (4.4) depends deterministically on the
initial condition, where the function f has the decomposition f(t, x) = g(t)h(x) with
g ∈ C1([0,∞),R), h ∈ C(Rd,Rd). Then f(t, x) = g̃(t)x for some g̃ ∈ D where

D := {g ∈ C1([0,∞),R) : g(0) = 1}.

(ii) The solution to (4.4) is linear in the initial condition in the following sense

Xt = g(t)X0 +X0
t ; t ≥ 0 (4.9)

for some g ∈ D if and only if σ is a constant d × d matrix and b is of the form
b(x) = α + βx where α ∈ Rd, β ∈ R. In this case, the solution has the form

Xt =

e
βtX0 + σ

∫ t
0 e

β(t−s) dBs + eβt−1
β
α, if β 6= 0

X0 + tα + σBt, if β = 0
.

and g(t) = eβt, t ≥ 0.
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Proof. Since a.s. Xx
0 = f(0, x) + X0

0 , we have x = g(0)h(x), ∀x ∈ Rd. So g(0) 6= 0.
Without loss of generality, we may assume g(0) = 1. Then h(x) = x, f(t, x) = g(t)x. This
proves part (i).
If (4.9) holds for some g ∈ D , then as in Theorem 4.2.4, we can show σ is a constant d× d
matrix. Using equation (4.6b), we have for all x ∈ Rd, a.s. t ≥ 0∫ t

0

[
b(Xx

s )− b(X0
s )− g′(s)x

]
ds = 0. (4.10)

For fixed x and a.s. ω the map t 7→ b(Xx
t )− b(X0

t )− g′(t)x is continuous and hence from
(4.10) we have, for all x ∈ Rd

a.s. b(Xx
t )− b(X0

t )− g′(t)x = 0, ∀t ≥ 0. (4.11)

Putting t = 0 we have for all x ∈ Rd, b(x) = b(0) + g′(0)x. Now for all x ∈ Rd, a.s. for
t ≥ 0,

b(Xx
t )− b(X0

t )− g′(t)x = b(X0
t + g(t)x)− b(X0

t )− g′(t)x
= {b(0) + g′(0)X0

t + g′(0)g(t)x} − {b(0) + g′(0)X0
t } − g′(t)x = {g′(0)g(t)− g′(t)}x

Then using (4.11), we have

g′(0)g(t) = g′(t); t ≥ 0; g(0) = 1.

Solution to the previous differential equation is given by g(t) = eg
′(0)t, t ≥ 0. Then b(x) =

b(0) + g′(0)x and is determined by the values b(0), g′(0).
The converse part can be verified through direct computation.

Remark 4.2.6. If σ is a d × d real matrix and b is of the form b(x) = α + Cx, x ∈ Rd,
then the flow generated by equation (4.4) is Gaussian. Consequently, Theorem 4.2.4 and
Proposition 4.2.5 can be considered as characterization results on Gaussian flows in the
class of flows that arise as the strong solutions of an Itô stochastic differential equation
with smooth or Lipschitz coefficients and driven by a Brownian motion {Bt}.

In dimension d = 1, for convex functions we can apply the following generalization of
Itô formula.

Theorem 4.2.7 ([93, Chapter VI, (1.1) Theorem]). If {Xt} is a continuous real valued
semimartingale and f : R → R is a convex function, then there exists a continuous in-
creasing process {Aft } such that a.s. t ≥ 0

f(Xt) = f(X0) +
∫ t

0
f ′−(Xs) dXs + 1

2A
f
t

where f ′− is the left-hand derivative of f .
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Using the previous theorem, we get the following version of Theorem 4.2.4.

Proposition 4.2.8. Let σ, b be Lipschitz continuous functions on R. Suppose the following
happen:

(i) there exists an x ∈ R such that σ(x) is not zero,
(ii) b is continuously differentiable and is a finite linear combination of convex functions,

(iii) for every fixed x ∈ Rd, the map t 7→ ∂f
∂t

(t, x) is of bounded variation.

Then the general solution of the diffusion (4.4) depends deterministically on the initial
condition through (4.5) if and only if σ is a non-zero constant function and b is of the form
b(x) = α + Cx and f(t, x) = etCx where α,C ∈ R.

Proof. The proof remain the same as in Theorem 4.2.4, except the following minor change
in the proof of necessity.

First observe that if h : R → R is convex, then so is βh for any scalar β > 0. Again
the sum of two convex functions is convex. If b = ∑k

i=1 βihi for scalars βi ∈ R and convex
functions hi, then without loss of generality we may assume |βi| = 1, i.e. b will be a
difference of convex functions b = h̄1 − h̄2.

Note that b′(·) = b′−(·) = (h̄1)′−(·) − (h̄2)′−(·). Now use Theorem 4.2.7 instead of the
Itô formula for C2 functions for the computations involving b(Xx

t ) in the necessity part of
Theorem 4.2.4.

Remark 4.2.9. (i) One may formulate and prove similar results for the following type
of condition

Xs,x
t (ω) = f(t, s, x) +Xs,0

t (ω), t ≥ s;Xs,x
s = x

for s ≥ 0, x ∈ Rd.
(ii) If equation (4.5) is satisfied then we have f(t, x) = E[Xx

t −X0
t ]. As such the conditions

on f (in Theorem 4.2.4, Proposition 4.2.5) can be stated in terms of the means
EXx

t , x ∈ Rd.
(iii) Diffusions satisfying (4.5) also satisfy the following condition: for any x, y ∈ Rd, a.s.

t ≥ 0
Xx
t −X

y
t = f(t, x)− f(t, y).

In certain situations such differences were shown to be diffusions (see [116, Proposi-
tion 2.2]).

(iv) Semimartingales with independent increments have been considered in [55, Chapter
II]. In particular, it was shown that any rcll process with independent increments
must be a sum of a semimartingale with independent increments and a deterministic
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

part ([55, Chapter II, 5.1 Theorem]). This is similar to (4.5), but we are interested in
the dependence of a possible deterministic part of the flows (generated by stochastic
differential equations) on the initial condition.

In the next proposition, we present an example where Definition 4.2.1 appears. Given
a random field (Xx

t , x ∈ Rd, t ≥ 0) in many situations it is reasonable to assume that the
field can be decomposed as Xx

t = Y x
t + Zt, where {Y x

t } is a ‘local’ component and {Zt} is
a ‘global’ component. We show that under certain conditions the ‘local’ component has to
be deterministic.

Proposition 4.2.10. Suppose that Zt = X0
t and that for all x ∈ Rd, the field Y x

t = Xx
t −X0

t

is independent of Z. In addition assume that {Xx
t } solves

dXt = σ(Xt) dBt + b(Xt) dt, t ≥ 0; X0 = x

and the sigma-fields generated by the processes {X0
t } and {Bt} are the same. Then {Y x

t }
is deterministic.

Proof. Under our hypothesis, {Y x
t } is both adapted to the said sigma-field and is indepen-

dent of it. Hence {Y x
t } is deterministic.

Example 4.2.11. We note that not all Gaussian flows are of the form (4.5). Consider the
stochastic differential equations in dimension one:

dXt = x dBt + (α−Xt) dt; X0 = x2

2 ,

where α is some fixed real number. The solution is given by

Xx
t = e−t

x2

2 + x
∫ t

0
e−(t−s) dBs − α(e−t − 1),

which is not of the form (4.5), but the flow is Gaussian.

In Proposition 4.2.10, we can allow σ, b to be random, but independent of {Bt} and
then the conclusion still holds, conditional on the σ-fields of σ, b. We take this to be in a
product form in the next theorem.

Theorem 4.2.12. Let (Ω′,F ′, P ′) be a complete probability space and (Ω′′,F ′′, (F ′′t ), P ′′)
a filtered complete probability space satisfying the usual conditions. Define Ω := Ω′ × Ω′′.
Consider the filtered probability space (Ω,F ′ ⊗ F ′′, (F ′ ⊗ F ′′t ), P ′ × P ′′). Let {Bt} be an
(F ′′t ) Brownian motion. Assume that F ′′t = σ{Bs : 0 ≤ s ≤ t} and F ′′ = σ{Bt : t ≥ 0}.
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Let b : Rd × Ω → Rd be B(Rd) ⊗ F ′ ⊗ F ′′0 /B(Rd) measurable and σ : Rd × Ω → Rd×d be
B(Rd) ⊗ F ′ ⊗ F ′′0 /B(Rd×d) measurable, where B(Rd) denotes the Borel sigma field on Rd.
Suppose that a unique strong solution to the following stochastic differential equation

dXt = σ(Xt) dBt + b(Xt) dt, t ≥ 0; X0 = x

exists for each x ∈ Rd. Denote the solution by {Xx
t }. Suppose that

(i) σ{Bt : t ≥ 0} = σ{X0
t : t ≥ 0},

(ii) {Xx
t −X0

t : x ∈ Rd, t ≥ 0} and {Bt : t ≥ 0} are independent.

Then a.s. ω′ (P ′), a.s. ω′′ (P ′′) the process {Xx
t −X0

t } depends on ω′ alone.

Proof. By condition (ii), a.s. ω′ (P ′), {Bt : t ≥ 0} and {Xx
t (ω′, ·)−X0

t (ω′, ·) : t ≥ 0, x ∈ Rd}
are independent.
Since {Xx

t } is the strong solution of a stochastic differential equation, there exists a P ′-null
set N ′ ⊂ Ω′ such that for every ω ∈ Ω′ \ N ′, a.s. ω′′ (P ′′),

Xx
t (ω′, ω′′) = x+

(∫ t

0
σ(Xs) dBs

)
(ω′, ω′′) +

∫ t

0
b(Xs(ω′, ω′′), ω′, ω′′) ds, t ≥ 0.

Hence a.s. ω′ (P ′), the random variables Xx
t (ω′, ·), t ≥ 0, x ∈ Rd are measurable with

respect to σ{Bt : t ≥ 0} and by condition (i), so are Xx
t (ω′, ·)−X0

t (ω′, ·), t ≥ 0, x ∈ Rd.
Hence a.s. ω′ (P ′), Xx

t (ω′, ω′′) − X0
t (ω′, ω′′), t ≥ 0, x ∈ Rd is deterministic in ω′′, i.e. the

random variables depend on ω′ alone.

4.3 A probabilistic representation of the solutions of the
Forward equations

Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual conditions
and let {Bt} denote a standard (Ft) r-dimensional Brownian motion. We obtain the
existence and uniqueness of solutions of equations (4.2) and (4.3) where

(i) r = d and the coefficients of the stochastic differential equation (4.1) are as follows:
σ is a real square matrix of order d and b(x) := α + Cx, ∀x ∈ Rd where α =
(α1, · · · , αd) ∈ Rd and C = (cij) is a real square matrix of order d.

(ii) ψ is a tempered distribution on Rd given by an integrable function (see Exam-
ple 2.11.19). Recall that L1(Rd) denotes the space of all such distributions and
L1(Rd) ⊂ S−p(Rd) for any p > d

4 (see Lemma 2.11.20).

Since σ, b are C∞ functions with bounded derivatives, a diffeomorphic modification
of the solution of (4.1) exists (see [70], [92, Theorem 2.1]). We first observe that such
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

a modification can be written in an explicit form. The proof actually follows from the
converse part of Theorem 4.2.4. We observe that the proof there actually produces a null
set independent of the initial conditions x ∈ Rd, even though as per Definition 4.2.1 the
null set may well vary over x.

Lemma 4.3.1. Let σ, b be as above. Let {X(t, 0)} denote the solution of

dXt = σ(Xt).dBt + b(Xt)dt; X0 = 0.

Then a.s. for all t ≥ 0, x ∈ Rd

X(t, 0) + etCx = x+
∫ t

0
σ dBs + αt+

∫ t

0
C(X(s, 0) + esCx) ds (4.12)

so that the sum {X(t, 0) + etCx} solves the stochastic differential equation

dXt = σ(Xt).dBt + b(Xt)dt; X0 = x.

Example 4.3.2. For the case σ = Id (Id denotes the d× d identity matrix), b(x) = −x,
we get the well-known Ornstein-Uhlenbeck diffusion, whose solution is given by

X(t, x) = e−tx+
∫ t

0
e−(t−s) dBs, 0 ≤ t <∞. (4.13)

In what follows, {X(t, x)} and N will denote the solution and the null set mentioned
in Lemma 4.3.1 respectively.

As in [92, equation (3.3)]), for any ψ ∈ L1(Rd) we define

Yt(ω)(ψ) :=
∫
Rd
ψ(x)δX(t,x,ω) dx, ω ∈ Ω \ N (4.14)

and set Yt(ω)(ψ) := 0, if ω ∈ N .

Proposition 4.3.3. Let ψ, {Xt}, {Yt(ψ}) be as above. Let p > d
4 . Then {Yt(ψ)} is an (Ft)

adapted S−p(Rd) valued continuous process. Furthermore, {Yt(ψ)} is norm-bounded.

Proof. By Proposition 2.11.14(ii), for any p > d
4 there exists a positive constant γ = γ(p)

such that ‖δx‖−p ≤ γ, ∀x ∈ Rd. Then∫
Rd
|ψ(x)|.‖δX(t,x,ω)‖−p dx ≤ γ

∫
Rd
|ψ(x)| dx <∞.

Therefore the right hand side of equation (4.14) is Bochner integrable for any ω ∈ Ω \ N
and Yt(ψ) is a well-defined element of S−p(Rd) for any p > d

4 . Similar arguments were used
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4.3. A probabilistic representation of solutions of the Forward Equations

to show L1(Rd) ⊂ S−p(Rd) (see Lemma 2.11.20). The following equation gives an upper
bound of the norm of {Yt(ψ)}, viz.∥∥∥∥∫

Rd
ψ(x)δX(t,x,ω) dx

∥∥∥∥
−p
≤ γ

∫
Rd
|ψ(x)| dx. (4.15)

Since {X(t, x)} is (Ft) adapted for each x, so is {Yt(ψ)}. We now prove {Yt(ψ)} has
continuous paths.
Note that τz, z ∈ Rd denote the translation operators on S−p(Rd) (see Example 2.11.6)
and δ0 ∈ S−p (Proposition 2.11.14(i)) and τzδ0 = δz. Since {X(t, x)} has continuous paths
for each x ∈ Rd, by Lemma 2.11.7(ii), {δX(t,x)} also has continuous paths in S−p(Rd) for
each x ∈ Rd. The upper bound in (4.15) allows us to apply the Dominated Convergence
theorem and continuity of {Yt(ψ)} follows.

Since {Yt(ψ)} is norm-bounded (equation (4.15)), it is also square integrable, i.e.

E ‖Yt(ψ)‖2
−p ≤ γ2

(∫
Rd
|ψ(x)| dx

)2
<∞. (4.16)

For any t ≥ 0, ω ∈ Ω \ N , the map x 7→ X(t, x, ω) is an affine map and hence it is a
C∞ map with bounded derivatives. Then the map x 7→ φ(X(t, x, ω)) is in S(Rd) whenever
φ ∈ S(Rd). This allows us to define a linear map, denoted by Xt(ω) : S(Rd)→ S(Rd) and
given by (Xt(ω)φ)(x) := φ(X(t, x, ω)), x ∈ Rd.

Lemma 4.3.4. Fix any t ≥ 0, ω ∈ Ω \ N . The linear map Xt(ω) : S(Rd) → S(Rd) is
continuous.

Proof. Let φ ∈ S(Rd). To simplify the notations, we write β = X(t, 0, ω) and Γ = (γij) for
the matrix etC . Then Γ is invertible and

(Xt(ω)φ)(x) = φ(β + Γx), x ∈ Rd.

Let N be a non-negative integer. For any d × d matrix D, ‖D‖ and |D| will denote the
operator norm and Euclidean norm respectively. Then

sup
x∈Rd

(1 + |x|2)N |(Xt(ω)φ)(x)|

= sup
x∈Rd

(1 + |x|2)N |φ(β + Γx)|

= sup
y∈Rd

(
1 + |Γ−1(y − β)|2

)N
|φ(y)|, (putting y = β + Γx)

≤ sup
y∈Rd

(
1 + ‖Γ−1‖2|(y − β)|2

)N
|φ(y)|
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≤ sup
y∈Rd

(
1 + ‖Γ−1‖2.2(|y|2 + |β|2)

)N
|φ(y)|

≤MN sup
y∈Rd

(
1 + |y|2

)N
|φ(y)|

where M = max{2‖Γ−1‖2, (1 + 2|β|2‖Γ−1‖2)}. Now let 1 ≤ i ≤ d. Then ∂i(Xt(ω)φ)(x) =∑d
k=1 γki ∂kφ(β + Γx) and hence

|∂i(Xt(ω)φ)(x)| ≤
d∑

k=1
|γki| |∂kφ(β + Γx)| ≤ |Γ|

d∑
k=1
|∂kφ(β + Γx)|.

We now combine the two estimates above to obtain

sup
x∈Rd

(1 + |x|2)N |∂i(Xt(ω)φ)(x)| ≤ |Γ|MN
d∑

k=1
sup
y∈Rd

(
1 + |y|2

)N
|∂kφ(y)|.

Hence

max
1≤i≤d

sup
x∈Rd

(1 + |x|2)N |∂i(Xt(ω)φ)(x)| ≤ α max
1≤k≤d

sup
y∈Rd

(
1 + |y|2

)N
|∂kφ(y)|,

for some constant α > 0. Similar estimates can be obtained for higher derivatives of
Xt(ω)φ. Since the seminorms in equation (2.10) determine the topology on S(Rd), the
above estimate proves the continuity of the linear map Xt(ω).

Remark 4.3.5. We point out an observation regarding the constants obtained in the
previous proof. For fixed ω ∈ Ω \ N , the map s 7→ X(s, 0, ω) is continuous. So is the map
s 7→ esC . This implies that the terms |esC | and max{2‖e−sC‖2, (1 + 2|X(s, 0, ω)|2‖e−sC‖2)}
can be dominated uniformly in s when s ∈ [0, t], for any fixed t > 0. This fact will be used
in the proof of Theorem 4.3.8.

Let X∗t (ω) : S ′(Rd) → S ′(Rd) denote the transpose of the map Xt(ω). Then for any
θ ∈ S ′(Rd),

〈X∗t (θ) , φ〉 = 〈θ , Xt(φ)〉 , ∀φ ∈ S(Rd).

Using (4.14), for any φ ∈ S(Rd), ψ ∈ L1(Rd) we have

〈Yt(ψ) , φ〉 =
∫
Rd
ψ(x)φ(X(t, x)) dx =

∫
Rd
ψ(x) (Xt(φ))(x) dx = 〈ψ , Xt(φ)〉 .

This implies

Yt(ψ) = X∗t (ψ), ∀ψ ∈ L1(Rd). (4.17)
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4.3. A probabilistic representation of solutions of the Forward Equations

The operators A,L are given as follows: for φ ∈ S(Rd) and x ∈ Rd,
Aφ := (A1φ, · · · , Adφ),
Aiφ(x) := ∑d

k=1 σki(x)∂kφ(x),
Lφ(x) := 1

2
∑d
i,j=1(σσt)ij(x)∂2

ijφ(x) +∑d
i=1 bi(x)∂iφ(x),

(4.18)

where σt denotes the transpose of σ. For ψ ∈ S ′(Rd) consider the adjoint operators A∗, L∗

as follows. 
A∗ψ := (A∗1ψ, · · · , A∗dψ),
A∗iψ := −∑d

k=1 ∂k (σkiψ) ,
L∗ψ := 1

2
∑d
i,j=1 ∂

2
ij ((σσt)ijψ)−∑d

i=1 ∂i (biψ) .

(4.19)

We now look at A∗, L∗ as operators on Sp(Rd).

Proposition 4.3.6. Fix p ∈ R. There exist constants C1 = C1(p), C2 = C2(p) > 0 such
that

‖A∗i θ‖p− 1
2
≤ C1‖θ‖p, ‖L∗θ‖p−1 ≤ C2‖θ‖p, ∀θ ∈ Sp.

Furthermore, we have the Monotonicity inequality for (A∗, L∗), i.e. there exist a constant
Cp > 0 such that

2 〈θ , L∗θ〉p + ‖A∗θ‖2
HS(p) ≤ Cp‖θ‖2

p, ∀θ ∈ Sp+1,

where ‖A∗θ‖2
HS(p) := ∑d

i=1 ‖A∗i θ‖2
p.

Proof. For any q ∈ R, ∂i,Mi : Sq(Rd) → Sq− 1
2
(Rd) are bounded linear operators (see

Example 2.11.3 and Example 2.11.9). Using the definitions of A∗, L∗ estimates on the
norms follows.
Proof of the Monotonicity inequality for (A∗, L∗) follows from Theorem 3.4.2.

Proposition 4.3.7. Let p > d
4 . Then {

∫ t
0 A
∗(Ys(ψ)) .dBs} is an (Ft) adapted S−p− 1

2
(Rd)

valued continuous martingale.

Proof. Since {Yt(ψ)} is an S−p(Rd) valued continuous adapted process, to complete the
proof it is enough to show that

E
∫ t

0
‖A∗i (Ys(ψ))‖2

−p− 1
2
ds <∞, ∀i = 1, · · · , d, t > 0.

But A∗i is a bounded linear operator from S−p(Rd) to S−p− 1
2
(Rd) for each i = 1, · · · , d and

the process {Yt(ψ)} is norm-bounded (see (4.15)). Hence the required estimate follows.
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Theorem 4.3.8. Let p > d
4 and ψ ∈ L1(Rd). Then the S−p(Rd) valued continuous adapted

process {Yt(ψ)} satisfies the following equation in S−p−1(Rd), a.s.

Yt(ψ) = ψ +
∫ t

0
A∗(Ys(ψ)) .dBs +

∫ t

0
L∗(Ys(ψ)) ds, ∀t ≥ 0. (4.20)

This solution is also unique.

Proof. By Itô’s formula for any φ ∈ S(Rd), and any x ∈ Rd

(Xt(φ))(x) = φ(X(t, x))

= φ(x) +
∫ t

0
Aφ(X(s, x)). dBs +

∫ t

0
Lφ(X(s, x)) ds

= φ(x) +
∫ t

0
(Xs(Aφ))(x). dBs +

∫ t

0
(Xs(Lφ))(x) ds

Note that Lφ ∈ S(Rd) since φ ∈ S(Rd) and hence {x 7→ (Xt(Lφ))(x)} is an S(Rd) valued
process. Using differentiation under the sign of integration we can establish the existence
of all derivatives of x 7→

∫ t
0(Xs(Lφ))(x) ds for any t ≥ 0. Given non-negative integers

N,α1, · · · , αd, the terms

sup
x∈Rd

(1 + |x|2)N |∂α1
1 · · · ∂

αd
d (Xs(Lφ))(x)|, s ∈ [0, t]

can be dominated uniformly in s (see Remark 4.3.5, the upper bound may depend on ω)
and hence

sup
x∈Rd

(1 + |x|2)N
∣∣∣∣∫ t

0
∂α1

1 · · · ∂
αd
d (Xs(Lφ))(x) ds

∣∣∣∣
≤
∫ t

0

∣∣∣∣∣ sup
x∈Rd

(1 + |x|2)N∂α1
1 · · · ∂

αd
d (Xs(Lφ))(x)

∣∣∣∣∣ ds
<∞.

Hence {x 7→
∫ t

0 Lφ(X(s, x)) ds} is an S(Rd) valued process. So are {x 7→ φ(X(t, x))}, {x 7→
φ(x)}. Hence from the equality obtained via the Itô formula, we conclude that the process
{x 7→

∫ t
0(Xs(Aφ))(x). dBs} is also an S(Rd) valued process.

Then for φ ∈ S(Rd), by (4.17), a.s. t ≥ 0

〈Yt(ψ) , φ〉 = 〈ψ , Xt(φ)〉

=
〈
ψ , φ+

∫ t

0
Xs(Aφ). dBs +

∫ t

0
Xs(Lφ) ds

〉
using Proposition 2.7.18,

= 〈ψ , φ〉 +
∫ t

0
〈ψ , Xs(Aφ)〉 . dBs +

∫ t

0
〈ψ , Xs(Lφ)〉 ds
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= 〈ψ , φ〉 +
∫ t

0
〈A∗Ys(ψ) , φ〉 . dBs +

∫ t

0
〈L∗Ys(ψ) , φ〉 ds

again using Proposition 2.7.18,

=
〈
ψ +

∫ t

0
A∗Ys(ψ). dBs +

∫ t

0
L∗Ys(ψ) ds , φ

〉

Since {hn : n ∈ Zd+} is countable, a common P -null set can be obtained outside with the
previous relation holds for all φ ∈ {hn : n ∈ Zd+}. But this set is total in Sp+1(Rd) and
A∗i : S−p(Rd) → S−p− 1

2
(Rd), L∗ : S−p(Rd) → S−p−1(Rd) are bounded linear operators (by

Proposition 4.3.6). This proves Yt(ψ) solves (4.20) in S−p−1(Rd).
Now we are going to show that the solution of the equation

dYt = A∗Yt dBt + L∗Yt dt; Y0 = ψ

with ψ ∈ L1(Rd) must be unique.
Let {Y 1

t }, {Y 2
t } be two continuous solutions of the previous equation. Define Zt := Y 1

t −
Y 2
t , t ≥ 0. Then in S−p−1(Rd) a.s.

Zt =
∫ t

0
A∗Zs dBs +

∫ t

0
L∗Zs ds, ∀t ≥ 0.

Note that {Zt} is S−p(Rd) valued and we want the uniqueness in S−p−1(Rd). Using Itô
formula for ‖ · ‖2

−p−1, (see Proposition 2.7.20, also see Section 2.12 Item (vi)) we obtain a.s.
t ≥ 0

‖Zt‖2
−p−1 =

∫ t

0

[
2 〈Zs , L∗Zs〉−p−1 +

d∑
i=1
‖A∗iZs‖2

−p−1

]
ds+Mt,

where {Mt} is some continuous local martingale with M0 = 0. Let {ηn} be a localizing
sequence such that for each n, {Mηn

t } is a continuous martingale and ‖Zηn
t ‖−p−1 is bounded.

Then

‖Zηn
t ‖2
−p−1 =

∫ t∧ηn

0

[
2 〈Zs , L∗Zs〉−p−1 +

d∑
i=1
‖A∗iZs‖2

−p−1

]
ds+Mηn

t

≤ R−p−1

∫ t∧ηn

0
‖Zs‖2

−p−1 ds+Mηn
t

≤ R−p−1

∫ t

0
‖Zηn

s ‖2
−p−1 ds+M τn

t

where R−p−1 > 0 is a constant obtained from the Monotonicity inequality (Proposi-
tion 4.3.6). Taking expectation in the above inequality, we have

E‖Zηn
t ‖2
−p−1 ≤ R−p−1

∫ t

0
E‖Zηn

s ‖2
−p−1 ds.
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Then using Gronwall’s inequality (Lemma 2.13.1), we have E‖Zηn
t ‖2
−p−1 = 0, which shows

a.s. Y 1
t = Y 2

t , t ≤ ηn. Since ηn ↑ ∞, we have a.s. Y 1
t = Y 2

t , t ≥ 0. This completes the proof
of uniqueness.

The next result is about the existence and uniqueness of solution to equation (4.3) with
initial condition ψ ∈ L1(Rd). By a solution to equation (4.3) we mean an Sp(Rd) valued
continuous function ψ(·) : [0,∞)→ Sp(Rd) for some p such that

ψ(t) = ψ(0) +
∫ t

0
L∗ψ(s) ds

holds in Sp−1(Rd).

Theorem 4.3.9. Let p > d
4 and ψ ∈ L1(Rd). Then ψ(t) := EYt(ψ) solves the initial value

problem (4.3), i.e.
EYt(ψ) = ψ +

∫ t

0
L∗ EYs(ψ) ds

holds in S−p−1(Rd). Furthermore this is the unique solution.

Proof. We first observe some properties of the terms appearing on both sides of the stochas-
tic partial differential equation (4.20).

(i) Since the random variables Yt(ψ) are bounded in the norm ‖ · ‖−p, independent
of t ≥ 0 (equation (4.15)), ψ(t) := EYt(ψ) are well-defined elements of S−p(Rd).
Furthermore, the continuity of t 7→ ψ(t) follows from the Dominated Convergence
Theorem, using the continuity of the process {Yt(ψ)}.

(ii) {
∫ t
0 A
∗Ys(ψ). dBs} is a continuous martingale and in particular, E

∫ t
0 A
∗Ys(ψ). dBs = 0

(see Proposition 4.3.7).
(iii) Another consequence of the existence of a bound of ‖Yt(ψ)‖−p, t ≥ 0 independent of t

(equation (4.15)) is that the random variables
∫ t
0 L
∗ Ys(ψ) ds are bounded in ‖ · ‖−p−1

for each t. Here we have used the fact that L∗ : S−p(Rd)→ S−p−1(Rd) is a bounded
linear operator (Proposition 4.3.6). The same boundedness and linearity of L∗ also
imply L∗EYs(ψ) = EL∗ Ys(ψ) and hence for each t ≥ 0,

E
∫ t

0
L∗ Ys(ψ) ds =

∫ t

0
EL∗ Ys(ψ) ds =

∫ t

0
L∗EYs(ψ) ds.

In view of the above observations, taking term by term expectation on both sides of (4.20)
we obtain

EYt(ψ) = ψ +
∫ t

0
L∗EYs(ψ) ds

in S−p−1(Rd).
The proof of uniqueness of the solution is same as in [92, Theorem 4.4]. We use the
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Monotonicity inequality in Proposition 4.3.6 and the Gronwall’s inequality (Lemma 2.13.1).
Let ψ̃(t) be another S−p(Rd) valued continuous solution. Define φ(t) := ψ(t)− ψ̃(t), t ≥ 0.
Then φ(t) is continuous in t and it satisfies

φ(t) =
∫ t

0
L∗φ(s) ds, t ≥ 0

in S−p−1(Rd) and

‖φ(t)‖2
−p−1 = 2

∫ t

0
〈φ(s) , L∗φ(s)〉−p−1 ds

≤
∫ t

0

[
2 〈φ(s) , L∗φ(s)〉−p−1 +

d∑
i=1
‖A∗iφ(s)‖2

−p−1

]
ds

≤ R−p−1

∫ t

0
‖φ(s)‖2

−p−1 ds,

where R−p−1 > 0 is a constant obtained in the Monotonicity inequality. Then the Gron-
wall’s inequality imply φ(t) ≡ 0, t ≥ 0, which proves the required uniqueness.

The process {Yt(ψ)} can also be described in terms of {X(t, 0)} without using the
integral representation in (4.14). We show that the tempered distribution Yt(ψ)(ω) is
given by an integrable function. This representation of Yt(ψ) is similar to the representation
obtained in [90, Lemma 3.6], where the author looked at the solution of stochastic partial
differential equations governed by certain non-linear operators. Given a d × d matrix D,
det(D), tr(D) will denote the determinant and trace of the matrix respectively.

Proposition 4.3.10. Let ψ ∈ L1(Rd) and ω ∈ N . Then

Yt(ψ) = e−t tr(C) τZtψt(·),

where Zt := X(t, 0), ψt(x) := ψ(e−tCx) for t ≥ 0, x ∈ Rd.

Proof. For φ ∈ S(Rd), we have

〈Yt(ψ) , φ〉 =
∫
Rd
ψ(x)φ(X(t, x)) dx =

∫
Rd
ψ(x)φ(etCx+ Zt) dx

= |det(e−tC)|
∫
Rd
ψ(e−tC(z − Zt))φ(z) dz, (putting z = etCx+ Zt)

= e−t tr(C)
∫
Rd
ψt(z − Zt)φ(z) dz,

= e−t tr(C)
∫
Rd

(τZtψt)(z)φ(z) dz

=
〈
e−t tr(C)(τZtψt) , φ

〉
.

Here we have used the equality det(e−tC) = e−t tr(C) ([48, Problem 5.6.P43]). Using Propo-
sition 2.10.2 we conclude Yt(ψ) = e−t tr(C) τZtψt(·).
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Remark 4.3.11. In this section, we obtained the probabilistic representation of solutions
of (4.3), when the initial condition ψ ∈ L1(Rd) and the coefficients σ, b of the stochastic
differential equation (4.1) are in a specific form. Possible extensions of these results to the
case - when the initial condition ψ is an Lq(Rd) function for some q > 1 or more generally
a finite linear combination of the distributional derivatives of Lq(Rd) functions (q ≥ 1) -
will be taken up in future.

Remark 4.3.12. It may be possible to obtain more examples of coefficients σ, b by relaxing
the conditions of Theorem 4.2.4. These coefficients may be the ‘right’ candidates for which
we can define the necessary compositions and continuous linear maps as in Lemma 4.3.4,
leading to existence of solutions of the stochastic partial differential equation (4.20).
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Stationary solutions of stochastic partial differential

equations in S ′

5.1 Introduction

In [90], a correspondence was shown between finite dimensional stochastic differential equa-
tions and stochastic partial differential equations in S ′(Rd) via an Itô formula. The results
there involves deterministic initial conditions in some Hermite Sobolev space Sp(Rd). In
this chapter we extend this correspondence to random initial conditions. Assuming the
existence of stationary solutions of finite dimensional stochastic differential equations, we
then show the existence of stationary solutions of infinite dimensional stochastic partial
differential equations, via an Itô formula which is used in proving the said correspondence.

Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual condi-
tions. In Section 2, we consider the problem of existence and uniqueness of solutions of
the stochastic partial differential equation

dYt = A(Yt). dBt + L(Yt) dt; Y0 = ξ, (5.1)

where

(i) {Bt} is a d dimensional standard (Ft) Brownian motion.
(ii) ξ is an Sp(Rd) valued F0 measurable random variable, independent of {Bt}.
(iii) the operators A := (A1, · · · , Ad), L on Sp(Rd) are given as follows: for φ ∈ Sp(Rd)

Aiφ := −
d∑
j=1
〈σ , φ〉ji ∂jφ, i = 1, · · · , d (5.2)

and

Lφ := 1
2

d∑
i,j=1

(〈σ , φ〉 〈σ , φ〉t)ij ∂2
ijφ−

d∑
i=1
〈b , φ〉i ∂iφ, (5.3)
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Chapter 5. Stationary solutions of stochastic partial differential equations in S ′

where 〈σ , φ〉t stands for the transpose of the matrix 〈σ , φ〉,
(iv) σ = (σij)d×d, b = (b1, b2, · · · , bd) with σij, bi ∈ S−p(Rd) for i, j = 1, 2, · · · , d. For any

φ ∈ Sp(Rd), by 〈σ , φ〉 we denote the d× d matrix with entries 〈σ , φ〉ij := 〈σij , φ〉.
Similarly 〈b , φ〉 is a vector in Rd with 〈b , φ〉i := 〈bi , φ〉.

We show that the above problem is related to the problem of existence and uniqueness
of solutions of the finite dimensional stochastic differential equation:

dZt = σ̄(Zt; ξ). dBt + b̄(Zt; ξ) dt; Z0 = 0, (5.4)

where the functions σ̄(· ;ψ) : Rd → Rd2 and b̄(· ;ψ) : Rd → Rd are given by σ̄(x;ψ) :=
(〈σij , τxψ〉) and b̄(x;ψ) := (〈bi , τxψ〉), with the parameter ψ ∈ Sp(Rd) and τx, x ∈ Rd

denoting the translation operators (see Example 2.11.6). In particular if {Zt} solves equa-
tion (5.4), then Yt = τZt(ξ) solves equation (5.1), .

We first prove an Itô formula (Theorem 5.2.2) which is an extension of Proposition 5.2.1
(an implication of [89, Theorem 2.3]). Next we prove Theorem 5.2.4 which gives an ex-
istence and uniqueness of the solutions of the finite dimensional stochastic differential
equation

dZt = σ̄(Zt; ξ). dBt + b̄(Zt; ξ) dt; Z0 = ζ (5.5)

where ξ is square integrable and ζ = c ∈ Rd. Note that the hypothesis requires a certain
‘globally Lipschitz’ nature of the coefficients, which depends on ξ - the initial condition for
Y . We need control on the norm of ξ to make the usual proof via Picard iteration work.
We also note that the same proof works if the random variable ζ is square integrable.

The ‘globally Lipschitz’ condition can be further relaxed to ‘locally Lipschitz’ condi-
tions. We prove this in Theorem 5.2.9 and show that the solution involves a possible
explosion. We also provide a criterion on ξ, which imply the ‘locally Lipschitz’ condition
(Proposition 5.2.11). Using this result, we prove Theorem 5.2.12, which is a version of
Theorem 5.2.9.

We continue with ‘globally Lipschitz’ coefficients and obtain a characterization result
of solutions of equation (5.1) viz. Lemma 5.2.16 (an extension of [90, Lemma 3.6]) which
allows us to prove the pathwise uniqueness of the solutions of equation (5.1) in Theo-
rem 5.2.15. The existence of solutions of equation (5.1) follows from the Itô formula
(Theorem 5.2.2) and the existence of solutions of the finite dimensional stochastic differen-
tial equation (5.4). A version of this result for the ‘locally Lipschitz’ coefficients is proved
in Theorem 5.2.20. Note that the equation (5.4) for Z involves the initial condition for Y
i.e. ξ, but with Z0 = 0. These results extend results in [90, Section 3], where ξ was taken
to be deterministic.
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5.2. Stochastic partial differential equations involving random initial conditions

For ‘globally Lipschitz’ coefficients we prove L2 estimates on the supremum of the norms
of the solutions of equation (5.1), in terms of the initial condition (see Proposition 5.2.17,
Proposition 5.2.18).

A motivation for studying the existence and uniqueness problem for the stochastic par-
tial differential equation (5.1) is to study stationary solutions of these equations. In Section
3, we construct stationary solutions of equation (5.1) by a ‘lifting’ of stationary solutions
of the finite dimensional stochastic differential equation (5.5). We define a subset C of the
Hermite Sobolev space with the following property: if the initial random variable ξ is de-
terministic and takes values in the set C, then the associated finite dimensional stochastic
differential equations (5.4) remain the same, i.e. the coefficients σ̄, b̄ are ‘constant’ on C.
This property is observed in Lemma 5.3.3 and using which we show the existence of sta-
tionary solutions of stochastic partial differential equations in our class (Theorem 5.3.4).
To guarantee non-explosion for finite dimensional stochastic differential equations with
locally Lipschitz coefficients, we use a ‘Liapunov’ type criteria ([105, 7.3.14 Corollary]).
Two examples of stationary solutions are given in Example 5.3.5 and Example 5.3.8. In
Proposition 5.3.9, we obtain L1 estimates on the supremum of the norms of the stationary
solutions of equation (5.1), in terms of the initial condition.

Most of the results in this chapter are from [9].

5.2 Stochastic partial differential equations involving random
initial conditions

An outline of the approach taken in this section was set out in Section 1. Let ξ be an
Sp(Rd) valued F0 measurable random variable. We need an Itô formula (Theorem 5.2.2),
a ‘deterministic’ version (Proposition 5.2.1) of which follows from [89, Theorem 2.3].

Proposition 5.2.1. Let p ∈ R and φ ∈ S−p(Rd). Let X = (X1, · · · , Xd) be an Rd valued
continuous (Ft) adapted semimartingale. Then we have the following equality in S−p−1(Rd),
a.s.

τXtφ = τX0φ−
d∑
i=1

∫ t

0
∂iτXsφ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXsφ d[X i, Xj]s, ∀t ≥ 0. (5.6)

We need to extend above result to allow random φ.

Theorem 5.2.2. Let p ∈ R. Let ξ be an Sp(Rd) valued F0 measurable random variable
with E‖ξ‖2

p < ∞. Let X = (X1, · · · , Xd) be an Rd valued continuous semimartingale.
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Chapter 5. Stationary solutions of stochastic partial differential equations in S ′

Then we have the following equality in Sp−1(Rd), a.s.

τXtξ = τX0ξ −
d∑
i=1

∫ t

0
∂iτXsξ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXsξ d[X i, Xj]s, ∀t ≥ 0. (5.7)

Proof. First we show the existence of ∑d
i=1

∫ t
0 ∂iτXsξ dX

i
s as an Sp− 1

2
(Rd) valued integral.

Let X i
t = X i

0 + M i
t + V i

t be the decomposition of X i, where M i, V i are the continuous
local martingale part and the continuous finite variation part of X i. We use localization
under stopping times and hence without loss of generality, assume that M i, i = 1, · · · , d
are continuous martingales. Let V ar[0,t](V i

· ) denote the total variation process of V i.
For i, j = 1, · · · , d define η̄i,jk := inf{t ≥ 0 : |[M i,M j]t| ≥ k} and η′k := inf{t ≥ 0 : |Xt| ≥ k}
and η̃ik := inf{t ≥ 0 : V ar[0,t](V i

· ) ≥ k}. Set ηk = (∧i,j η̄i,jk )∧η′k∧ (∧i η̃ik). Note that ηk ↑ ∞.
Consider the following two cases:

(i) If |X0(ω)| > k for some w, then ηk(ω) = 0. Such ω does not contribute to the integral∑d
i=1

∫ t∧ηk
0 ‖∂iτXsξ‖2

p− 1
2
d[M i]s, where [M i] := [M i,M i].

(ii) If |X0(ω)| ≤ k for some w, then |Xt∧ηk(ω)(ω)| ≤ k.

In view of these observations, to establish the existence of ∑d
i=1

∫ t
0 ∂iτXsξ dM

i
s we assume

{Xηk
t } is bounded. Since ∂i : Sp(Rd)→ Sp− 1

2
(Rd) is a bounded linear operator, there exist

constants C,C ′ such that

‖∂iτXηk
s
ξ‖p− 1

2
≤ C.‖τXηk

s
ξ‖p ≤ C ′‖ξ‖p, (using Lemma 2.11.7(i)).

Since E‖ξ‖2
p < ∞, we have the required integrability condition for the existence of the

Sp− 1
2
(Rd) valued integral ∑d

i=1
∫ t∧ηk

0 ∂iτXsξ dM
i
s and hence ∑d

i=1
∫ t

0 ∂iτXsξ dM
i
s also exists.

Similarly, we can show the existence of ∑d
i=1

∫ t
0 ∂iτXsξ dV

i
s as an Sp− 1

2
(Rd) valued integral

and that of ∑d
i,j=1

∫ t
0 ∂

2
ijτXsξ d[X i, Xj]s as an Sp−1(Rd) valued integral.

Fix φ ∈ S(Rd). Then φ ∈ S−p+1(Rd) and by Proposition 5.2.1, we have in S−p(Rd) a.s. for
all t ≥ 0

τ−Xtφ = τ−X0φ+
d∑
i=1

∫ t

0
∂iτ−Xsφ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτ−Xsφ d[X i, Xj]s.

Then a.s.

〈ξ , τ−Xtφ〉 = 〈ξ , τ−X0φ〉 +
〈
ξ ,

d∑
i=1

∫ t

0
∂iτ−Xsφ dX

i
s

〉

+
〈
ξ ,

1
2

d∑
i,j=1

∫ t

0
∂2
ijτ−Xsφ d[X i, Xj]s

〉
, ∀t ≥ 0.

(5.8)
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5.2. Stochastic partial differential equations involving random initial conditions

Now using Proposition 2.7.8, Proposition 2.7.18 and Lemma 2.11.7(iii), we have
〈
ξ ,

d∑
i=1

∫ t

0
∂iτ−Xsφ dX

i
s

〉
=

d∑
i=1

〈
ξ ,
∫ t

0
∂iτ−Xsφ dX

i
s

〉

=
d∑
i=1

∫ t

0
〈ξ , ∂iτ−Xsφ〉 dX i

s

= −
d∑
i=1

∫ t

0
〈∂iτXsξ , φ〉 dX i

s

=
〈
−

d∑
i=1

∫ t

0
∂iτXsξ dX

i
s , φ

〉

Similarly,〈
ξ ,

1
2

d∑
i,j=1

∫ t

0
∂2
ijτ−Xsφ d[X i, Xj]s

〉
=
〈

1
2

d∑
i,j=1

∫ t

0
∂2
ijτXsξ d[X i, Xj]s , φ

〉
.

For each φ ∈ S(Rd), using (5.8) we have a.s.

〈τXtξ , φ〉 = 〈τX0ξ , φ〉 −
〈

d∑
i=1

∫ t

0
∂iτXsξ dX

i
s , φ

〉

+
〈

1
2

d∑
i,j=1

∫ t

0
∂2
ijτXsξ d[X i, Xj]s , φ

〉
, ∀t ≥ 0.

In particular we get a P -null set N such that for ω ∈ Ω \ N and for any multi-index
n = (n1, · · · , nd) we have

〈τXtξ , hn〉 = 〈τX0ξ , hn〉 −
〈

d∑
i=1

∫ t

0
∂iτXsξ dX

i
s , hn

〉

+
〈

1
2

d∑
i,j=1

∫ t

0
∂2
ijτXsξ d[X i, Xj]s , hn

〉
, ∀t ≥ 0

where hn are the Hermite functions. Since the process {τXtξ− τX0ξ+∑d
i=1

∫ t
0 ∂iτXsξ dX

i
s−

1
2
∑d
i,j=1

∫ t
0 ∂

2
ijτXsξ d[X i, Xj]s} is Sp−1(Rd) valued and {hn : n ∈ Zd+} is a total set in

S1−p(Rd), we have the equality in Sp−1(Rd) a.s. (see Proposition 2.10.2)

τXtξ − τX0ξ +
d∑
i=1

∫ t

0
∂iτXsξ dX

i
s −

1
2

d∑
i,j=1

∫ t

0
∂2
ijτXsξ d[X i, Xj]s = 0, t ≥ 0.

This completes the proof.
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Chapter 5. Stationary solutions of stochastic partial differential equations in S ′

Alternative proof of Theorem 5.2.2. In the previous proof we have shown the existence of
the integrals ∑d

i=1
∫ t

0 ∂iτXsξ dX
i
s and ∑d

i,j=1
∫ t

0 ∂
2
ijτXsξ d[X i, Xj]s. In this argument we make

use of a property of stochastic integrals, viz. (5.9).
Let {ξ(n)} be a sequence of Sp(Rd) valued simple F0 measurable functions such that
ξ(n) n→∞−−−→

L2
ξ. Observe that

(a) Given any F0 measurable set F , an Sp(Rd) valued predictable step process {Gt} and
a continuous Rd valued semimartingale {Xt}, we have a.s.

1F

∫ t

0
Gs dXs =

∫ t

0
1FGs dXs, t ≥ 0. (5.9)

Above equality can be extended to the case involving norm-bounded Sp(Rd) valued
predictable process {Gt}.

(b) Given any F0 measurable set F , φ ∈ Sp(Rd), ψ ∈ S(Rd) and x ∈ Rd we have

〈1F τxφ , ψ〉 = 1F 〈τxφ , ψ〉 = 1F 〈φ , τ−xψ〉
= 〈1Fφ , τ−xψ〉 = 〈τx(1Fφ) , ψ〉

(5.10)

and hence 1F τxφ = τx(1Fφ). Similarly 1F τxφ = τ1F x(1Fφ).

Using Proposition 5.2.1 and equations (5.9), (5.10) we can establish the required result
when X is bounded and ξ is an Sp(Rd) valued simple F0 measurable random variable. In
particular, the following equality holds in Sp−1(Rd) a.s. for all t ≥ 0

τXt∧ηk ξ
(n) = τX0ξ

(n) −
d∑
i=1

∫ t∧ηk

0
∂iτXsξ

(n)dX i
s

+ 1
2

d∑
i,j=1

∫ t∧ηk

0
∂2
ijτXsξ

(n)d[X i, Xj]s,

where the localizing sequence {ηk} is as in the previous proof. Now letting n go to infinity
we get the equality in Sp−1(Rd) a.s. for all t ≥ 0

τXt∧ηk ξ = τX0ξ −
d∑
i=1

∫ t∧ηk

0
∂iτXsξ dX

i
s + 1

2

d∑
i,j=1

∫ t∧ηk

0
∂2
ijτXsξ d[X i, Xj]s.

Letting k go to infinity, we get the result.

We need an existence and uniqueness of solution to the following equation:

dZt = σ̄(Zt; ξ). dBt + b̄(Zt; ξ) dt; Z0 = ζ, (5.11)
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5.2. Stochastic partial differential equations involving random initial conditions

where ξ is an Sp(Rd) valued F0 measurable random variable and ζ is an Rd valued F0

measurable random variable. Unless stated otherwise, we assume that both ξ, ζ are inde-
pendent of the Brownian motion {Bt}.

We now introduce some notations and terminology. Let (Gt) denote the filtration gen-
erated by ξ, ζ and {Bt}. Let G∞ denote the smallest sub σ-field of F containing Gt for all
t ≥ 0. Let GP∞ be the P -completion of G∞ and let N P be the collection of all P -null sets
in GP∞. Define

F ξ,ζt :=
⋂
s>t

σ(Gs ∪N P ), t ≥ 0

where σ(Gs ∪ N P ) denotes the smallest σ-field generated by the collection Gs ∪ N P . This
filtration satisfies the usual conditions. F ξ,ζ∞ will denote the σ field generated by the
collection ⋃t≥0F ξ,ζt . If ζ is a constant, then we write (F ξt ) instead of (F ξ,ζt ).

Proposition 5.2.3. Suppose the following conditions are satisfied.

(i) ξ is norm-bounded in Sp(Rd), i.e. there exists a constant K > 0 such that ‖ξ‖p ≤ K.
(ii) E|ζ|2 <∞.

(iii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the functions x 7→
σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in Sp(Rd); i.e.
for any bounded set G in Sp(Rd) there exists a constant C(G) > 0 such that for all
x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then (5.11) has a continuous (F ξ,ζt ) adapted strong solution {Xt} with the property that
E
∫ T
0 |Xt|2 dt <∞ for any T > 0. Pathwise uniqueness of solutions also holds, i.e. if {X1

t }
is another solution, then P (Xt = X1

t , t ≥ 0) = 1.

Proof. We follow the proof in [82, Theorem 5.2.1] with appropriate modifications. First
we show the uniqueness of the strong solution.
Let {Z1

t } and {Z2
t } be two strong, continuous solutions of (5.11). Define a(t, ω) =

σ̄(Z1
t (ω); ξ(ω)) − σ̄(Z2

t (ω); ξ(ω)) and γ(t, ω) = b̄(Z1
t (ω); ξ(ω)) − b̄(Z2

t (ω); ξ(ω)). Since ξ

is norm-bounded, then by our hypothesis

|a(t, ω)|2 ≤ C2
∣∣∣Z1

t (ω)− Z2
t (ω)

∣∣∣2 , |γ(t, ω)|2 ≤ C2
∣∣∣Z1

t (ω)− Z2
t (ω)

∣∣∣2
where C = C(Range(ξ)). Then

∣∣∣Z1
t − Z2

t

∣∣∣2 =
∣∣∣∣∫ t

0
a(s). dBs +

∫ t

0
γ(s) ds

∣∣∣∣2
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≤ 2
∣∣∣∣∫ t

0
a(s). dBs

∣∣∣∣2 + 2
∣∣∣∣∫ t

0
γ(s) ds

∣∣∣∣2
Consider the localizing sequence {ηk} defined by ηk = inf{t ≥ 0 : |Z1

t − Z2
t | ≥ k}. Then

using Itô isometry and Cauchy-Schwarz Inequality,

E
∣∣∣Z1

t∧ηk − Z
2
t∧ηk

∣∣∣2 ≤ 2E
∫ t∧ηk

0
|a(s)|2 ds+ 2tE

∫ t∧ηk

0
|γ(s)|2 ds

≤ 2C2(1 + t)
∫ t∧ηk

0
E
∣∣∣Z1

s − Z2
s

∣∣∣2 ds
≤ 2C2(1 + t)

∫ t

0
E
∣∣∣Z1

s∧ηk − Z
2
s∧ηk

∣∣∣2 ds
(5.12)

For any positive integer k, consider the function v(t) = E
∣∣∣Z1

t∧ηk − Z
2
t∧ηk

∣∣∣2 on any compact
time interval [0, T ]. Then using Gronwall’s inequality (see Lemma 2.13.1) and the fact that
t→ v(t) is continuous, we get v ≡ 0. Now using Fatou’s Lemma,

E
∣∣∣Z1

t − Z2
t

∣∣∣2 ≤ lim inf
k→∞

E
∣∣∣Z1

t∧ηk − Z
2
t∧ηk

∣∣∣2 = 0, ∀t ∈ [0, T ].

This proves the uniqueness.
To show the existence of a strong solution, we use a Picard type iteration. Set Z(0)

t = ζ

and then successively define

Z
(k+1)
t := ζ +

∫ t

0
σ̄(Z(k)

s ; ξ) dBs +
∫ t

0
b̄(Z(k)

s ; ξ) ds, ∀k ≥ 0. (5.13)

Fix any compact time interval [0, N ]. For k ≥ 1, t ∈ [0, N ] we have

E|Z(k+1)
t − Z(k)

t |2 ≤ 2C2(1 +N)
∫ t

0
E|Z(k)

s − Z(k−1)
s |2 ds. (5.14)

Proof of the above estimate is similar to (5.12).
Using the Lipschitz continuity for any x ∈ Rd, y ∈ Range(ξ) we have, |σ̄(x; y)− σ̄(0; y)|+
|b̄(x; y)− b̄(0; y)| ≤ C|x|. But |σ̄(0; y)| = |〈σ , y〉| ≤ ‖σij‖−p‖y‖p and |b̄(0; y)| = |〈b , y〉| ≤
‖bi‖−p‖y‖p. This shows σ̄, b̄ has linear growth in x, i.e. there exists a constant D =
D(Range(ξ)) > 0 such that |σ̄(x; y)| ≤ D(1 + |x|), |b̄(x; y)| ≤ D(1 + |x|) for x ∈ Rd, y ∈
Range(ξ). Since Z(0)

t = ζ using (5.14) we get

E|Z(1)
t − Z

(0)
t |2 ≤ 2E

∫ t

0
|σ̄(ζ; ξ)|2 ds+ 2tE

∫ t

0
|b̄(ζ; ξ)|2 ds

≤ 4D2(1 +N)(1 + E|ζ|2)t, ∀t ∈ [0, N ].
(5.15)

Now we use an induction on k with (5.14) as the recurrence relations and (5.15) as our
base step. Then there exists a constant R > 0 such that

E|Z(k+1)
t − Z(k)

t |2 ≤
(Rt)k+1

(k + 1)! , ∀k ≥ 0, t ∈ [0, N ]. (5.16)
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Let λ denote the Lebesgue measure on [0, N ]. We are going to show that the iteration
converges in L2(λ×P ) and the limit satisfy (5.11). For positive integers m,n with m > n

we have

‖Z(m) − Z(n)‖L2(λ×P ) = ‖
m−1∑
k=n

(
Z(k+1) − Z(k)

)
‖L2(λ×P )

≤
m−1∑
k=n
‖Z(k+1) − Z(k)‖L2(λ×P )

=
m−1∑
k=n

(
E
∫ N

0
|Z(k+1)

t − Z(k)
t |2 dt

) 1
2

≤
m−1∑
k=n

(∫ N

0

(Rt)k+1

(k + 1)! dt
) 1

2

=
m−1∑
k=n

(
(RN)k+2

(k + 2)!

) 1
2

As m,n → ∞, ‖Z(m) − Z(n)‖L2(λ×P ) → 0. Using completeness of L2(λ × P ) we have a
limit, which we denote by {Xt}t∈[0,N ]. Using (5.16), we also have limn→∞ Z

(n)
t

L2(P )= Xt for
each t ∈ [0, N ].
This {Xt} is measurable and (F ξ,ζt ) adapted. Now using the linear growth of x 7→ σ̄(x; y)
(for every fixed y ∈ Sp(Rd)) we have

E
∫ N

0
σ̄(Xs; ξ)2 ds ≤ D2 E

∫ N

0
(1 + |Xs|)2 ds

≤ 2D2 E
∫ N

0
(1 + |Xs|2) ds

= 2D2N + 2D2‖X‖2
L2(λ×P ) <∞.

Hence {
∫ t

0 σ̄(Xs; ξ) dBs}t∈[0,N ] exists (see Remark 2.6.7). Since E
∫N

0 |Xs|2 ds < ∞, we
have

∫N
0 |Xs|2 ds < ∞ almost surely. Now using the linear growth of x 7→ b̄(x; y) (for

every fixed y ∈ Sp(Rd)) and Cauchy-Schwarz inequality, we can establish the existence of
{
∫ t

0 b̄(Xs; ξ) ds}t∈[0,N ].
Now using Itô isometry and the Lipschitz property of σ̄ we get

E
∣∣∣∣∫ t

0
σ̄(Z(k)

s ; ξ) dBs −
∫ t

0
σ̄(Xs; ξ) dBs

∣∣∣∣2 = E
∫ t

0
|σ̄(Z(k)

s ; ξ)− σ̄(Xs; ξ)|2ds

≤ C2 E
∫ t

0
|Z(k)

s −Xs|2 ds

≤ C2 E
∫ N

0
|Z(k)

s −Xs|2 ds.

Using Jensen’s inequality and the Lipschitz property of b̄ we get

E
∣∣∣∣∫ t

0
b̄(Z(k)

s ; ξ) ds−
∫ t

0
b̄(Xs; ξ) ds

∣∣∣∣2 ≤ tE
∫ t

0

∣∣∣b̄(Z(k)
s ; ξ)− b̄(Xs; ξ)

∣∣∣2 ds
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≤ C2tE
∫ t

0
|Z(k)

s −Xs|2 ds

≤ C2N E
∫ N

0
|Z(k)

s −Xs|2 ds

Using above estimates, for each t ∈ [0, N ] we have
∫ t

0
σ̄(Z(k)

s ; ξ) dBs
L2(P )−−−→
k→∞

∫ t

0
σ̄(Xs; ξ) dBs,

and ∫ t

0
b̄(Z(k)

s ; ξ) dBs
L2(P )−−−→
k→∞

∫ t

0
b̄(Xs; ξ) dBs.

From (5.13) we conclude that for each t ∈ [0, N ], a.s.

Xt = ζ +
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds.

The integral
∫ t

0 σ̄(Xs; ξ) dBs has a continuous version (see Proposition 2.6.8). We denote
the continuous version of {ζ +

∫ t
0 σ̄(Xs; ξ) dBs +

∫ t
0 b̄(Xs; ξ) ds}t∈[0,N ] by {X̃t}t∈[0,N ]. Then

for each t ∈ [0, N ], a.s.

X̃t = ζ +
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds = Xt, a.s.

In particular, for all t ∈ [0, N ] we have E|Xt − X̃t|2 = 0. Then
∫ t

0 σ̄(Xs; ξ) dBs =∫ t
0 σ̄(X̃s; ξ) dBs a.s. We can also show

∫ t
0 b̄(Xs; ξ) dBs =

∫ t
0 b̄(X̃s; ξ) dBs a.s. for each

t ∈ [0, N ]. Then for each t ∈ [0, N ], a.s.

X̃t = ζ +
∫ t

0
σ̄(X̃s; ξ) dBs +

∫ t

0
b̄(X̃s; ξ) ds, a.s.

Since {X̃t} is continuous, we have, a.s.

X̃t = ζ +
∫ t

0
σ̄(X̃s; ξ) dBs +

∫ t

0
b̄(X̃s; ξ) ds, t ∈ [0, N ].

So we have obtained a continuous (F ξ,ζt ) adapted solution up to any positive integer N .
The uniqueness of this continuous solution follows from the proof of uniqueness given at
the beginning of this proof.
Let {X(N)

t } and {X(N+1)
t } be the solutions up to time N and N + 1 respectively. Then

{X(N+1)
t∈[0,N ]} is also a continuous solution up to time N and hence by the uniqueness, is

indistinguishable from {X(N)
t } on [0, N ]. Using this consistency, we can patch up the

solutions {X(N)
t } to obtain the solution of (5.11) on the time interval [0,∞).
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We now come to a main result regarding the existence and uniqueness of solutions of
(5.11).

Theorem 5.2.4. Suppose the following are satisfied.

(i) E‖ξ‖2
p <∞.

(ii) ζ = c, where c is some element in Rd.
(iii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the functions x 7→

σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in Sp(Rd); i.e.
for any bounded set G in Sp(Rd) there exists a constant C(G) > 0 such that for all
x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then (5.11) has a continuous (F ξt ) adapted strong solution {Xt} such that there exists
a localizing sequence of stopping times {ηn} with E

∫ T∧ηn
0 |Xt|2 dt < ∞ for any T > 0.

Pathwise uniqueness of solutions also holds, i.e. if {X̃t} is another solution, then P (Xt =
X̃t, t ≥ 0) = 1.

Remark 5.2.5. Theorem 5.2.4 is also true if ζ is an Rd valued F0 measurable square inte-
grable random variable, which is also independent of the Brownian motion {Bt}. However,
we only need the version for ζ = 0 (see the proof of Theorem 5.2.15).

Proof of Theorem 5.2.4. For any positive integer k, define ξ(k) := ξ1(‖ξ‖p≤k). Since ξ is
Sp(Rd) valued, we have (‖ξ‖p <∞) = Ω. Since E‖ξ‖2

p <∞, we have ξ(k) k→∞−−−→
L2

ξ and the
convergence is also almost sure. Note that 1(‖ξ‖p≤k)ξ

(k+1) = ξ(k).
By (5.10), we have for any x ∈ Rd, y ∈ Sp(Rd), F ∈ F

1F σ̄(x; y) = σ̄(x;1Fy) = σ̄(1Fx;1Fy)
1F b̄(x; y) = b̄(x;1Fy) = b̄(1Fx;1Fy)

(5.17)

By Proposition 5.2.3 we have the (F ξ
(k)

t ) adapted (and hence (F ξt ) adapted) strong solution
denoted by {Z(k)

t }, satisfying a.s.

Z
(k)
t = c+

∫ t

0
σ̄(Z(k)

s ; ξ(k)). dBs +
∫ t

0
b̄(Z(k)

s ; ξ(k)) ds, t ≥ 0.

Using (5.9) and (5.17), we have a.s. for all t ≥ 0

1(‖ξ‖p≤k)Z
(k)
t = 1(‖ξ‖p≤k)c+

∫ t

0
σ̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)). dBs
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+
∫ t

0
b̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)) ds.

and

1(‖ξ‖p≤k)Z
(k+1)
t = 1(‖ξ‖p≤k)c+

∫ t

0
σ̄(1(‖ξ‖p≤k)Z

(k+1)
s ;1(‖ξ‖p≤k)ξ

(k+1)). dBs

+
∫ t

0
b̄(1(‖ξ‖p≤k)Z

(k+1)
s ;1(‖ξ‖p≤k)ξ

(k+1)) ds

= 1(‖ξ‖p≤k)c+
∫ t

0
σ̄(1(‖ξ‖p≤k)Z

(k+1)
s ; ξ(k)). dBs

+
∫ t

0
b̄(1(‖ξ‖p≤k)Z

(k+1)
s ; ξ(k)) ds

Using the uniqueness obtained in Proposition 5.2.3 (applied to (F ξt ) adapted processes),
we have a.s.

1(‖ξ‖p≤k)Z
(k+1)
t = 1(‖ξ‖p≤k)Z

(k)
t , t ≥ 0 (5.18)

with the null set possibly depending on k. Let Ω̃k be the set of probability 1 where the
above relation holds. Then on Ω′ := ⋂∞

k=1 Ω̃k, which is a set of probability 1, (5.18) holds
for all k.
Note that (‖ξ‖p <∞) = Ω and hence for any ω ∈ Ω, there exists a positive integer k such
that ‖ξ(ω)‖p ≤ k. Then we can write

Ω′ =
∞⋃
k=1

(Ω′ ∩ (‖ξ‖p ≤ k)) .

Note that Ω′ is an element of F with probability 1 and hence (Ω′)c is a null set in F . Since
(Ft) satisfies the usual conditions, we have (Ω′)c ∈ F0 and hence Ω′ ∈ F0.
We define a process {Xt} as follows: for any t ≥ 0

Xt(ω) :=

Z
(k)
t (ω), ifω ∈ Ω′ ∩ (‖ξ‖p ≤ k), k = 1, 2, · · ·

0, ifω ∈ (Ω′)c

From equation (5.18), Z(k+1)
t = Z

(k)
t , ∀t ≥ 0 on Ω′ ∩ (‖ξ‖p ≤ k) and hence {Xt} is well-

defined.
Since each {Z(k)

t } is (F ξt ) adapted and Ω′ ∩ (‖ξ‖p ≤ k) ∈ F0, adaptedness of {Xt} follows.
Since each {Z(k)

t } has continuous paths and Ω′∩ (‖ξ‖p ≤ k) ↑ Ω′, {Xt} also has continuous
paths on Ω′. On (Ω′)c, X ≡ 0 and hence has continuous paths.
We now show that {Xt} solves equation (5.11). On Ω′ we have

1(‖ξ‖p≤k)Xt = 1(‖ξ‖p≤k)Z
(k)
t , ∀t ≥ 0, k = 1, 2, · · · (5.19)
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i.e. above relation holds almost surely.
Then for each k = 1, 2, · · · , a.s. t ≥ 0

1(‖ξ‖p≤k)Xt = 1(‖ξ‖p≤k)Z
(k)
t

= 1(‖ξ‖p≤k)c+
∫ t

0
σ̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)). dBs

+
∫ t

0
b̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)) ds

= 1(‖ξ‖p≤k)c+
∫ t

0
σ̄(1(‖ξ‖p≤k)Xs; ξ(k)). dBs

+
∫ t

0
b̄(1(‖ξ‖p≤k)Xs; ξ(k)) ds, (using (5.19))

= 1(‖ξ‖p≤k)c+
∫ t

0
1(‖ξ‖p≤k)σ̄(Xs; ξ). dBs

+
∫ t

0
1(‖ξ‖p≤k)b̄(Xs; ξ) ds, (using (5.17))

= 1(‖ξ‖p≤k)c+ 1(‖ξ‖p≤k)

∫ t

0
σ̄(Xs; ξ). dBs

+ 1(‖ξ‖p≤k)

∫ t

0
b̄(Xs; ξ) ds, (using (5.9))

Let Ω̄k denote the set of probability 1 where the above relation holds. Then Ω̄ := ⋂∞
k=1 Ω̄k

is also a set of probability 1 and on Ω̄, for all k = 1, 2, · · · and for all t ≥ 0

1(‖ξ‖p≤k)Xt = 1(‖ξ‖p≤k)

(
c+

∫ t

0
σ̄(Xs; ξ). dBs +

∫ t

0
b̄(Xs; ξ) ds

)
.

Then on Ω̄ ∩ (‖ξ‖p ≤ k) we have for all t ≥ 0

Xt = c+
∫ t

0
σ̄(Xs; ξ). dBs +

∫ t

0
b̄(Xs; ξ) ds.

But Ω̄ ∩ (‖ξ‖p ≤ k) ↑ Ω̄ and hence on Ω̄ above relation holds for all t ≥ 0. So {Xt} is a
solution of (5.11).
Taking ηn := inf{t ≥ 0 : |Xt| ≥ n} it follows that E

∫ t∧ηn
0 |Xt|2 dt <∞ for any t > 0.

To prove the uniqueness, let {X̃t} be a continuous (F ξt ) adapted strong solution of (5.11).
Then a.s. for all t ≥ 0

1(‖ξ‖p≤k)X̃t

= 1(‖ξ‖p≤k)

(
c+

∫ t

0
σ̄(X̃s; ξ). dBs +

∫ t

0
b̄(X̃s; ξ) ds

)
= 1(‖ξ‖p≤k)c+

∫ t

0
σ̄(1(‖ξ‖p≤k)X̃s; ξ(k)). dBs +

∫ t

0
b̄(1(‖ξ‖p≤k)X̃s; ξ(k)) ds
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From the uniqueness obtained in Proposition 5.2.3 and using equation (5.19), we now
conclude a.s. for all t ≥ 0

1(‖ξ‖p≤k)X̃t = 1(‖ξ‖p≤k)Z
(k)
t = 1(‖ξ‖p≤k)Xt.

Since (‖ξ‖p ≤ k) ↑ Ω, this proves P (Xt = X̃t, t ≥ 0) = 1.

The next result Proposition 5.2.6 is a corollary of Theorem 5.2.4. In Theorem 5.2.4 we
used ξ(k) to approximate ξ and then established the existence of the solution. However if
we have more regularity of the coefficients σ̄, b̄ then Proposition 5.2.6 can be established
independently by using the Picard iteration as in Proposition 5.2.3. We present the details
about this technique.

Proposition 5.2.6. Suppose the following happens.

(i) E‖ξ‖2
p <∞.

(ii) ζ = c, where c is some element in Rd.
(iii) (Globally Lipschitz in x, globally in y) For any fixed y ∈ Sp(Rd), the functions

x 7→ σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x and the Lips-
chitz coefficient can be taken to be independent of y ∈ Sp(Rd); i.e. there exists a
constant C > 0 such that for all x1, x2 ∈ Rd, y ∈ Sp(Rd)

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C|x1 − x2|.

Then (5.11) has a continuous (F ξt ) adapted strong solution {Xt} with the property that
E
∫ T
0 |Xt|2 dt <∞ for any T > 0. Pathwise uniqueness of solutions also holds, i.e. if {X1

t }
is another solution, then P (Xt = X1

t , t ≥ 0) = 1.

Proof. The proof is similar to that of Proposition 5.2.3. We indicate the necessary changes
and use the same notations.
In proving the uniqueness, we have estimates on |a(t, ω)|, |γ(t, ω)| involving a constant
C > 0 which is now independent of ξ, i.e.

|a(t, ω)|2 ≤ C2
∣∣∣Z1

t (ω)− Z2
t (ω)

∣∣∣2 , |γ(t, ω)|2 ≤ C2
∣∣∣Z1

t (ω)− Z2
t (ω)

∣∣∣2 .
In Proposition 5.2.3, ξ was norm bounded and the constant C depended on Range(ξ). Now
C is independent of ξ because the coefficients σ̄, b̄ are ‘globally Lipschitz’. The uniqueness
follows using Gronwall’s inequality (see Lemma 2.13.1).
For the existence, we again define the iteration (5.13) with ζ = c. Then we get (5.14)
with the constant C > 0 independent of ξ. In Proposition 5.2.3, we had shown the linear
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5.2. Stochastic partial differential equations involving random initial conditions

growth (in x) of σ̄ and b̄. Now we use the following estimate |σ̄(ζ; ξ)| = |〈τ−cσ , ξ〉| ≤
‖τ−cσij‖−p‖ξ‖p and |b̄(ζ; ξ)| = |〈τ−cb , ξ〉| ≤ ‖τ−cbi‖−p‖ξ‖p. Then

E|Z(1)
t − Z

(0)
t |2 ≤ 2E

∫ t

0
|σ̄(ζ; ξ)|2 ds+ 2tE

∫ t

0
|b̄(ζ; ξ)|2 ds

≤ 2D(1 +N)E‖ξ‖2
p t, ∀t ∈ [0, N ],

where D > 0 is some constant depending on ‖τ−cσij‖−p and ‖τ−cbi‖−p.
Rest of the proof is same as that of Proposition 5.2.3.

In Theorem 5.2.4 we can assume locally Lipschitz nature of the coefficients σ̄, b̄ instead of
those being globally Lipschitz. This extension from globally Lipschitz to locally Lipschitz
is a well-known technique (see [56, Theorem 18.3 and the discussion in page 340 about
explosion], [93, Chapter IX, Exercise 2.10], [50, Theorem 2.3 and 3.1]). We denote the one
point compactification of Rd by R̂d := Rd ∪ {∞}.
We now recall a result about an extension of a Lipschitz function defined on a subset of
a metric space to the whole space. M. D. Kirszbraun proved a version of this result for
Euclidean spaces and the result is referred to as Kirszbraun Theorem.

Theorem 5.2.7 ([33, p. 202]). Let (X, d) be a metric space and let U be a subset of X.
Suppose f : U → R be Lipschitz continuous, i.e.

|f(x1)− f(x2)| ≤ K d(x1, x2), ∀x1, x2 ∈ U

where K > 0 is independent of the choice of x1, x2. Then there is an extension of f to X,
viz f̃ defined by

f̃(x) := inf
u∈U
{f(u) +K d(x, u)}, x ∈ X

such that f̃ is globally Lipschitz on X with the Lipschitz constant K, i.e.

|f̃(x1)− f̃(x2)| ≤ K d(x1, x2), ∀x1, x2 ∈ X.

As a consequence of the previous result, given a locally Lipschitz function on Rd, we
can define globally Lipschitz functions which agree with the locally Lipschitz functions on
certain sets.

Corollary 5.2.8. Let f : Rd → R be a locally Lipschitz function, i.e.

|f(x1)− f(x2)| ≤ Cn |x1 − x2|, ∀x1, x2 ∈ B(0, n)

where B(0, n) = {x ∈ Rd : |x| ≤ n} (for any positive integer n) and Cn > 0 is a constant,
depending only on n. Then there exist globally Lipschitz functions f (n) on Rd such that
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(i) f(x) = f (n)(x) for all x ∈ B(0, n).
(ii) Cn can be taken as the Lipschitz constant for f (n), i.e.

|f (n)(x1)− f (n)(x2)| ≤ Cn |x1 − x2|, ∀x1, x2 ∈ Rd.

Proof. For any n, the function f is a Lipschitz continuous function on B(0, n) and hence
by the previous Theorem has a globally Lipschitz extension f (n). This function satisfies
the required properties.

We use this corollary to extend Theorem 5.2.4 to the case involving locally Lipschitz
coefficients. If x 7→ σ̄(x; y) is Lipschitz continuous in x for each fixed y ∈ Sp(Rd), then we
can obtain globally Lipschitz functions as given in the previous corollary. If the Lipschitz
constant can be chosen independent of y, then the globally Lipschitz extensions will also
have the same Lipschitz constant independent of y.
Note that R̂d := Rd ∪ {∞} is the one point compactification of Rd.

Theorem 5.2.9. Suppose the following are satisfied.

(i) E‖ξ‖2
p <∞.

(ii) ζ = 0.
(iii) (Locally Lipschitz in x, locally in y) for any fixed y ∈ Sp(Rd) the functions x 7→ σ̄(x; y)

and x 7→ b̄(x; y) are locally Lipschitz functions in x and the Lipschitz coefficient is
independent of y when y varies over any bounded set G in Sp(Rd); i.e. for any bounded
set G in Sp(Rd) and any positive integer n there exists a constant C(G, n) > 0 such
that for all x1, x2 ∈ B(0, n), y ∈ G

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C(G, n)|x1 − x2|,

where B(0, n) = {x ∈ Rd : |x| ≤ n}.

Then there exists an (F ξt ) stopping time η and an (F ξt ) adapted R̂d valued process {Xt}
such that

(a) {Xt} solves equation (5.11) up to η i.e. a.s.

Xt =
∫ t

0
σ̄(Xs; ξ). dBs +

∫ t

0
b̄(Xs; ξ) ds, 0 ≤ t < η

and Xt =∞ for t ≥ η.
(b) {Xt} has continuous paths on the interval [0, η).
(c) η = limm θm where {θm} are (F ξt ) stopping times defined by θm := inf{t ≥ 0 : |Xt| ≥

m}.
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This is also pathwise unique in this sense: if ({X ′t}, η′) is another solution satisfying
(a), (b), (c), then P (Xt = X ′t, 0 ≤ t < η ∧ η′) = 1.

Proof. We first prove the existence in Steps 1 to 13. Unless otherwise specified the symbols
k,m, n will stand for positive integers.

Step 1: Fix a positive integer n. Now for each y ∈ Sp(Rd), using Corollary 5.2.8 we get a
globally Lipschitz function viz. σ̄n(x; y) such that

(i) σ̄(x; y) = σ̄n(x; y) for all x ∈ B(0, n).
(ii) For any bounded set G in Sp(Rd),

|σ̄n(x1; y)− σ̄n(x2; y)| ≤ C(G, n) |x1 − x2|, ∀x1, x2 ∈ Rd, y ∈ G.

Similarly define b̄n(x; y) from b̄(x; y). Note that σ̄n(0; y) = σ̄(0; y) and b̄n(0; y) =
b̄(0; y) for any y ∈ Sp(Rd). For y ∈ G, the linear growth of x 7→ σ̄n(x; y) and x 7→
b̄n(x; y) is established as done for x 7→ σ̄(x; y) and x 7→ b̄(x; y) in Proposition 5.2.3.

Step 2: Assume that ξ is norm-bounded. We want to establish the existence and uniqueness
of strong solution of

dXt = σ̄n(Xt; ξ). dBt + b̄n(Xt; ξ) dt, t ≥ 0; X0 = 0.

The arguments of Proposition 5.2.3 will produce the required result. For fixed x,
y 7→ σ̄(x; y) is linear, whereas y 7→ σ̄n(x; y) might not be linear. So the proof for
σ̄n(x; y), b̄n(x; y) is similar to Proposition 5.2.3, but is not an implication of it.

Step 3: Now we consider the case E‖ξ‖2
p < ∞. For any positive integer k, define ξ(k) :=

ξ1(‖ξ‖p≤k). By the previous step we have the existence and uniqueness of strong
solution of

dXt = σ̄n(Xt; ξ(k)). dBt + b̄n(Xt; ξ(k)) dt, t ≥ 0; X0 = 0.

Let {X(n,k)
t } denote the solution. Define {Z(n)

t } as Z(n)
t := X

(n,n)
t , t ≥ 0 for all n ∈ N.

Step 4: The integer n was arbitrary but fixed. To construct the solution as mentioned in the
statement we use approximation by varying n.
First fix any positive integer m < n. Note that

σ̄m(x; y) = σ̄(x; y) = σ̄n(x; y), ∀x ∈ B(0,m), y ∈ Sp(Rd). (5.20)

Define the stopping time Tm := inf{t ≥ 0 : |Z(m)
t | ≥ m, or |Z(n)

t | ≥ m}. Then a.s. for
all t ≥ 0

Z
(n)
t∧Tm =

∫ t∧Tm

0
σ̄n(Z(n)

s ; ξ(n)). dBs +
∫ t∧Tm

0
b̄n(Z(n)

s ; ξ(n)) ds
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=
∫ t∧Tm

0
σ̄(Z(n)

s ; ξ(n)). dBs +
∫ t∧Tm

0
b̄(Z(n)

s ; ξ(n)) ds, (using (5.20)).

Using (5.9) and (5.17), we have a.s. for all t ≥ 0

1(‖ξ‖p≤m)Z
(n)
t∧Tm = 1(‖ξ‖p≤m)

∫ t∧Tm

0
σ̄(Z(n)

s ; ξ(n)). dBs

+ 1(‖ξ‖p≤m)

∫ t∧Tm

0
b̄(Z(n)

s ; ξ(n)) ds

=
∫ t∧Tm

0
1(‖ξ‖p≤m)σ̄(Z(n)

s ; ξ(n)). dBs

+
∫ t∧Tm

0
1(‖ξ‖p≤m)b̄(Z(n)

s ; ξ(n)) ds

=
∫ t∧Tm

0
σ̄(Z(n)

s 1(‖ξ‖p≤m); ξ(m)). dBs

+
∫ t∧Tm

0
b̄(Z(n)

s 1(‖ξ‖p≤m); ξ(m)) ds.

From the above equation, we have

1(‖ξ‖p≤m)Z
(n)
t∧Tm =

∫ t∧Tm

0
σ̄m(Z(n)

s 1(‖ξ‖p≤m); ξ(m)). dBs

+
∫ t∧Tm

0
b̄m(Z(n)

s 1(‖ξ‖p≤m); ξ(m)) ds.
(5.21)

Again a.s.

Z
(m)
t∧Tm =

∫ t∧Tm

0
σ̄m(Z(m)

s ; ξ(m)). dBs +
∫ t∧Tm

0
b̄m(Z(m)

s ; ξ(m)) ds, t ≥ 0.

Then using arguments similar to (5.21), we can show a.s. for all t ≥ 0

1(‖ξ‖p≤m)Z
(m)
t∧Tm =

∫ t∧Tm

0
σ̄m(Z(m)

s 1(‖ξ‖p≤m); ξ(m)). dBs

+
∫ t∧Tm

0
b̄m(Z(m)

s 1(‖ξ‖p≤m); ξ(m)) ds.
(5.22)

Step 5: Now we show the uniqueness of solution of

dXt = σ̄m(Xt; ξ(m)). dBt + b̄m(Xt; ξ(m)) dt, t ≤ θ; X0 = 0,

where θ is an (Ft) stopping time.
Let {Xt} and {X ′t} be two (Ft) adapted square integrable continuous processes sat-
isfying the previous equation. Then under stopping by θ (Definition 2.4.8), we have
a.s. for all t ≥ 0

Xθ
t − (X ′)θt =

∫ t∧θ

0
[σ̄m(Xs; ξ(m))− σ̄m(X ′s; ξ(m))] dBs
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+
∫ t∧θ

0
[b̄m(Xs; ξ(m))− b̄m(X ′s; ξ(m))] ds.

As done in the uniqueness part of Proposition 5.2.3, we get

E
∣∣∣Xθ

t − (X ′)θt
∣∣∣2 ≤ C(1 + t)E

∫ t∧θ

0
|Xs −X ′s|

2
ds

≤ C(1 + t)
∫ t

0
E
∣∣∣Xθ

s − (X ′)θs
∣∣∣2 ds

for some constant C > 0. Consider the function

v(t) = E
∣∣∣Xθ

t − (X ′)θt
∣∣∣2

on any compact time interval [0, T ]. Then using Gronwall’s inequality (Lemma 2.13.1)
and the fact that t → v(t) is continuous, we get v ≡ 0. This proves P (Xθ

t =
(X ′)θt ) = 1 for each t. Using continuity of paths of {Xt} and {X ′t}, we conclude
P (Xθ

t = (X ′)θt , t ≥ 0) = 1. This proves P (Xt = X ′t, t ≤ θ) = 1.
Hence from (5.21) and (5.22) we have

P (1(‖ξ‖p≤m)Z
(m)
t = 1(‖ξ‖p≤m)Z

(n)
t , t ≤ Tm) = 1.

Step 6: Let Ωn,m := {ω ∈ Ω : 1(‖ξ‖p≤m)Z
(m)
t = 1(‖ξ‖p≤m)Z

(n)
t , t ≤ Tm} for positive integers

m,n with m < n. Now define

Ω̃ :=
( ∞⋂
n=1

n−1⋂
m=1

Ωn,m

)
.

Note that Ω̃ ∈ F with P (Ω̃) = 1. Then Ω̃c is a null set in F ξ∞ and hence is an element
of F ξ0 (since the filtration satisfies the usual conditions). Therefore, Ω̃ ∈ F ξ0 .
Now for any ω ∈ Ω we have ‖ξ(ω)‖p < ∞. Define N(ω) to be the least positive
integer n such that ‖ξ(ω)‖p ≤ m for all m ≥ n.
Now on Ω̃ we have the following consistency relations: for each ω ∈ Ω̃ and for
n > m ≥ N(ω)

(i) Z
(m)
t (ω) = Z

(n)
t (ω), t ≤ Tm(ω).

(ii) Tm(ω) = inf{t ≥ 0 : |Z(m)
t (ω)| ≥ m} = inf{t ≥ 0 : |Z(n)

t (ω)| ≥ m}.
(iii) From (ii),

Tm(ω) = inf{t ≥ 0 : |Z(n)
t (ω)| ≥ m}

< inf{t ≥ 0 : |Z(n)
t (ω)| ≥ n}

= Tn(ω)

Hence the sequence {Tn} is eventually increasing.
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Step 7: We claim that the [0,∞] valued function η defined below, is a (F ξt ) stopping time.

η(ω) :=

 lim
m→∞

Tm(ω), ∀ω ∈ Ω̃,

∞, otherwise.

Fix t ≥ 0. Then for any ω ∈ Ω̃, the sequence {Tm(ω)} is eventually increasing and
hence

η(ω) = lim
m→∞

Tm(ω) = sup{Tm(ω) : m ≥ N(ω)}, ω ∈ Ω̃. (5.23)

Then for ω ∈ Ω̃, η(ω) ≤ t if and only if Tm(ω) ≤ t,∀m ≥ N(ω). By the definition of
η we have

{ω ∈ Ω : η(ω) ≤ t} = {ω ∈ Ω̃ : η(ω) ≤ t}

=
∞⋃
n=1
{ω ∈ Ω̃ : Tm(ω) ≤ t, ∀m ≥ n}

=
∞⋃
n=1

⋂
m≥n
{ω ∈ Ω̃ : Tm(ω) ≤ t}

= Ω̃ ∩
 ∞⋃
n=1

⋂
m≥n
{ω ∈ Ω : Tm(ω) ≤ t}

 .
Since each Tm is an (F ξt ) stopping time, we have (Tm ≤ t) ∈ F ξt . Hence {ω ∈ Ω :
η(ω) ≤ t} ∈ F ξt . This proves η is an (F ξt ) stopping time.

Step 8: In this step we point out a decomposition of the space Ω× [0,∞). Observe that

Ω× [0,∞) =((Ω̃× [0,∞)) ∩ [0, η))
⊔

((Ω̃× [0,∞)) ∩ [η,∞))⊔
((Ω̃)c × [0,∞)),

where [0, η) refers to the stochastic interval {(ω, t) : 0 ≤ t < η(ω)} and a similar
expression holds for [η,∞). Again

(Ω̃× [0,∞)) ∩ [0, η) =
∞⋃
k=1

((Ω̃ ∩ (‖ξ‖p ≤ k))× [0,∞)) ∩ [0, Tk].

To prove the above equality, first note that the set on the right hand side is a subset
of that of the left hand side.
Now let (ω, t) be an element of (Ω̃× [0,∞))∩ [0, η). Then there exist positive integers
k1, k2 such that ‖ξ(ω)‖p ≤ k1 and t ≤ Tk2(ω). Then for k = max{k1, k2} we have
(ω, t) ∈ (Ω̃ ∩ (‖ξ‖p ≤ k))× [0,∞) ∩ [0, Tk]. This proves the other inclusion.
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5.2. Stochastic partial differential equations involving random initial conditions

Step 9: From the consistency conditions obtained in Step 6, we have

Z
(k)
t (ω) = Z

(k+1)
t (ω), ∀(ω, t) ∈ (Ω̃ ∩ (‖ξ‖p ≤ k))× [0,∞) ∩ [0, Tk]. (5.24)

Define a process {Zt} as follows

Zt(ω) :=


Z

(k)
t (ω), if (ω, t) ∈ (Ω̃ ∩ (‖ξ‖p ≤ k))× [0,∞) ∩ [0, Tk]
∞, if (ω, t) ∈ ((Ω̃× [0,∞)) ∩ [η,∞))
0, if (ω, t) ∈ (Ω̃)c × [0,∞).

Note that

[0, Tk] = ({(ω, t) : 0 ≤ t ≤ Tk(ω)} ∩ {(ω, t) : Tk(ω) <∞})⋃
({(ω, t) : 0 ≤ t <∞} ∩ {(ω, t) : Tk(ω) =∞}) .

From the decomposition of Ω× [0,∞) obtained in the previous step, it is clear that
Zt(ω) has been defined for all ω, t. Further {Zt} is well-defined due the consistency
condition (5.24).

Step 10: We show that {Zt} is (F ξt ) adapted and has continuous paths on [0, η). Observe that

Zt = (1(Ω̃)c + 1(Ω̃))Zt
= 1Ω̃Zt, (∵ Zt(ω) = 0,∀ω ∈ (Ω̃)c)

= 1Ω̃

(
1(t<η) + 1(t≥η)

)
Zt

= lim
k
1Ω̃1(t≤Tk)Zt +∞1Ω̃1(t≥η)

= lim
k
1Ω̃1(t≤Tk)1(‖ξ‖p≤k)Zt +∞1Ω̃1(t≥η), (∵ 1(‖ξ‖p≤k) ↑ 1Ω = 1)

= lim
k
1Ω̃1(t≤Tk)1(‖ξ‖p≤k)Z

(k)
t +∞1Ω̃1(t≥η).

But Ω̃ ∈ F ξ0 , (‖ξ‖p ≤ k) ∈ F ξ0 , (t ≤ Tk) ∈ F ξt , (t ≥ η) ∈ F ξt and {Z(k)} is (F ξt )
adapted. Hence from the above equality we conclude that {Zt} is (F ξt ) adapted.
By definition η =∞ on the set (Ω̃)c and Zt(ω) = 0 whenever (ω, t) ∈ (Ω̃)c × [0,∞).
Hence t 7→ Zt(ω) is continuous on [0, η(ω)) if ω ∈ (Ω̃)c.
Let ω ∈ Ω̃. Then ‖ξ(ω)‖p ≤ m, ∀m ≥ N(ω) (N(ω) as in Step 6). By definition
Zt(ω) = Z

(m)
t (ω) for all t ∈ [0, Tm(ω)],m ≥ N(ω). Since paths of {Z(m)

t } are contin-
uous, we have t 7→ Zt(ω) is continuous on [0, Tm(ω)] for all m ≥ N(ω). But Tm(ω)
eventually increases to η(ω) and hence t 7→ Zt(ω) is continuous on [0, η(ω)).

Step 11: For any positive integer k define θk := η ∧ inf{t ≥ 0 : |Zt| ≥ k}. In this step, we
show the connection between η and the θk’s.
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On (Ω̃)c, {t ≥ 0 : |Zt| ≥ k} is an empty set, since Zt = 0. Hence inf{t ≥ 0 : |Zt| ≥
k} =∞. Also by definition η =∞ on (Ω̃)c. Therefore on (Ω̃)c, we have θk =∞ and
limk θk = η.
Let ω ∈ Ω̃ and k ≥ N(ω). By definition Zt(ω) = Z

(k)
t (ω), t ∈ [0, Tk(ω)]. But Tk =

inf{t ≥ 0 : |Z(k)
t | ≥ k}. Hence θk(ω) = Tk(ω), k ≥ N(ω) (note that Tk(ω) < η(ω)).

Then limk θk(ω) = limk Tk(ω) = η(ω).
This identification of η as a limit of θk’s will not be used during this proof of existence.
We need this in the proof of uniqueness.

Step 12: We now establish existence of some stochastic integrals which will be used in the
Step 13. From Lemma 2.11.7(i), we have on Ω̃

|σ̄(Zt∧Tk ; ξ)| = |
〈
σ , τZt∧Tk ξ

〉
| ≤ ‖σ‖−p‖τZt∧Tk ξ‖p ≤ Ck‖ξ‖p

for some constant Ck > 0. Similarly,

|b̄(Zt∧Tk ; ξ)| ≤ C ′k‖ξ‖p

for some constant C ′k > 0. Then for any t ≥ 0

E
∫ t∧Tk

0
|σ̄(Zs; ξ)|2 ds ≤ C2

k (E‖ξ‖2
p) t <∞,

which shows the existence of the integral
∫ t∧Tk

0 σ̄(Zs; ξ) dBs. Similarly we can show
the existence of

∫ t∧Tk
0 b̄(Zs; ξ) ds. These stochastic integrals will be used in the next

step. We have ignored the null set (Ω̃)c in the above computation.
Step 13: We prove that the pair ({Zt}, η) is a solution of (5.11).

Let k be a positive integer. Let ω ∈ Ω̃ with ‖ξ(ω)‖p ≤ k. Then

Zt∧Tk(ω)(ω) =


Zt(ω), if Tk(ω) =∞
Zt(ω), if Tk(ω) <∞, t ∈ [0, Tk(ω)]
ZTk(ω), if Tk(ω) <∞, t ∈ (Tk(ω),∞).

Now we use the definition of {Zt} to prove a consistency relation between {Zt} and
{Z(k)

t }.
a) If Tk(ω) =∞ and t ∈ [0, Tk(ω)) then

Zt∧Tk(ω)(ω) = Zt(ω) = Z
(k)
t (ω) = Z

(k)
t∧Tk(ω)(ω)

b) If Tk(ω) <∞ and t ∈ [0, Tk(ω)] then

Zt∧Tk(ω)(ω) = Zt(ω) = Z
(k)
t (ω) = Z

(k)
t∧Tk(ω)(ω)
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c) If Tk(ω) <∞ and t ∈ (Tk(ω),∞) then

Zt∧Tk(ω)(ω) = ZTk(ω)(ω) = Z
(k)
Tk(ω)(ω) = Z

(k)
t∧Tk(ω)(ω).

In view of the above equalities, on Ω̃

Zt∧Tk1(‖ξ‖p≤k) = Z
(k)
t∧Tk1(‖ξ‖p≤k) (5.25)

and hence above equality holds almost surely.
Then a.s. for all t ≥ 0

1(‖ξ‖p≤k)Zt∧Tk

= 1(‖ξ‖p≤k)Z
(k)
t∧Tk

=
∫ t∧Tk

0
σ̄k(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)). dBs

+
∫ t∧Tk

0
b̄k(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)) ds, (using (5.22))

=
∫ t∧Tk

0
σ̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)). dBs

+
∫ t∧Tk

0
b̄(1(‖ξ‖p≤k)Z

(k)
s ; ξ(k)) ds, (using (5.20))

=
∫ t∧Tk

0
σ̄(1(‖ξ‖p≤k)Zs; ξ(k)). dBs

+
∫ t∧Tk

0
b̄(1(‖ξ‖p≤k)Zs; ξ(k)) ds, (using (5.25))

=
∫ t∧Tk

0
1(‖ξ‖p≤k)σ̄(Zs; ξ). dBs

+
∫ t∧Tk

0
1(‖ξ‖p≤k)b̄(Zs; ξ) ds, (using (5.17))

= 1(‖ξ‖p≤k)

[∫ t∧Tk

0
σ̄(Zs; ξ). dBs +

∫ t∧Tk

0
b̄(Zs; ξ) ds

]
, (using (5.9))

Let Ω′ denote the set of probability 1 where the above relations hold for all positive
integers k. Then on Ω′ ∩ Ω̃ we have for all t ≥ 0 and for all k ∈ N,

1(‖ξ‖p≤k)Zt∧Tk =
[∫ t∧Tk

0
σ̄(Zs; ξ). dBs +

∫ t∧Tk

0
b̄(Zs; ξ) ds

]
.

Recall that for any ω ∈ Ω, ‖ξ(ω)‖p ≤ k, ∀k ≥ N(ω) (N(ω) as in Step 6) and hence
for ω ∈ Ω′ ∩ Ω̃ we have for all t ≥ 0 and for all k ≥ N(ω),

Zt∧Tk(ω)(ω) =
(∫ t∧Tk

0
σ̄(Zs; ξ). dBs

)
(ω) +

(∫ t∧Tk

0
b̄(Zs; ξ) ds

)
(ω).
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Letting k go to infinity, we have a.s.

Zt =
∫ t

0
σ̄(Zs; ξ). dBs +

∫ t

0
b̄(Zs; ξ) ds, t < η.

Hence ({Zt}, η) is a solution of (5.11) and Step 13 ends here.

This concludes the proof of existence a solution of (5.11) and we now prove pathwise
uniqueness. Assume that two pairs (X(1), η1) and (X(2), η2) solve the given equation.
Define two sequences of (F ξt ) stopping times by

T 1,m := inf{t ≥ 0 : |X(1)
t | ≥ m}, T 2,m := inf{t ≥ 0 : |X(2)

t | ≥ m}.

Then ηi = limm T
i,m for i = 1, 2. Hence a.s. for any t ≥ 0, m ≥ 1 and i = 1, 2

X
(i)
t∧T 1,m∧T 2,m =

∫ t∧T 1,m∧T 2,m

0
σ̄(X(i)

s ; ξ). dBs +
∫ t∧T 1,m∧T 2,m

0
b̄(X(i)

s ; ξ) ds.

Note that |X(i)
t∧T i,m | ≤ m, t ≥ 0, i = 1, 2. Then using (5.9), (5.10) a.s. for all t ≥ 0

1(‖ξ‖p≤m)X
(i)
t∧T 1,m∧T 2,m =

∫ t∧T 1,m∧T 2,m

0
1(‖ξ‖p≤m)σ̄(X(i)

s ; ξ). dBs

+
∫ t∧T 1,m∧T 2,m

0
1(‖ξ‖p≤m)b̄(X(i)

s ; ξ) ds, (using (5.9))

=
∫ t∧T 1,m∧T 2,m

0
σ̄(1(‖ξ‖p≤m)X

(i)
s ; ξ(m)). dBs

+
∫ t∧T 1,m∧T 2,m

0
b̄(1(‖ξ‖p≤m)X

(i)
s ; ξ(m)) ds, (using (5.17))

=
∫ t∧T 1,m∧T 2,m

0
σ̄m(1(‖ξ‖p≤m)X

(i)
s ; ξ(m)). dBs

+
∫ t∧T 1,m∧T 2,m

0
b̄m(1(‖ξ‖p≤m)X

(i)
s ; ξ(m)) ds, (using (5.20)).

We can show P (1(‖ξ‖p≤m)X
(1)
t = 1(‖ξ‖p≤m)X

(2)
t , t ≤ T 1,m ∧ T 2,m) = 1 using Step 5. Let Ω̄

denote the set of probability 1 where the following relation holds

1(‖ξ‖p≤m)X
(1)
t = 1(‖ξ‖p≤m)X

(2)
t , t ≤ T 1,m ∧ T 2,m,m = 1, 2, · · · .

Recall that for any ω ∈ Ω, ‖ξ(ω)‖p ≤ m, ∀m ≥ N(ω) (N(ω) as in Step 6 of the proof of
existence) and hence for ω ∈ Ω̄ we have for all t ≥ 0 and for all m ≥ N(ω),

X
(1)
t (ω) = X

(2)
t (ω), t ≤ T 1,m(ω) ∧ T 2,m(ω).

But T 1,m∧T 2,m ↑ η1∧ η2. Hence for ω ∈ Ω̄, we have X(1)
t (ω) = X

(2)
t (ω), t ≤ η1(ω)∧ η2(ω).

This proves pathwise uniqueness.
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Remark 5.2.10. It should be possible to prove limt↑η |Xt| =∞ on the set (η <∞), where
(Xt, η) is the solution obtained in Theorem 5.2.9. This is a well-known property in the
case of explosions in classical finite dimensional diffusions ([50, Chapter IV, Lemma 2.1]).

In Proposition 5.2.11, we obtain a criterion (which essentially is a stronger assumption
on ξ) that imply a ‘local Lipschitz’ condition. We use this result to obtain Theorem 5.2.12,
which is a version of Theorem 5.2.9.

Proposition 5.2.11. Let p > d + 1
2 and σ ∈ S−p(Rd). Then for any bounded set G in

Sp+ 1
2
(Rd) and any positive integer n there exists a constant C(G, n) > 0 such that for all

x1, x2 ∈ B(0, n), y ∈ G

|σ̄(x1; y)− σ̄(x2; y)| ≤ C(G, n)|x1 − x2|,

where B(0, n) = {x ∈ Rd : |x| ≤ n}.

Proof. Let y ∈ Sp(Rd). Abusing notation, we denote the function x 7→ 〈δx , y〉 by y. The
first order partial derivatives of function y exist and the distribution y is given by the dif-
ferentiable function y (see Proposition 2.11.26). Furthermore, the first order distributional
derivatives of y are given by the first order partial derivatives of y, which are continuous
functions.
Let x1 = (x1

1, · · · , x1
d), x2 = (x2

1, · · · , x2
d) ∈ B(0, n). Then for any y ∈ Sp(Rd),

|σ̄(x1; y)− σ̄(x2; y)| ≤ ‖σ‖−p‖τx1y − τx2y‖p.

The target of the subsequent computations is to obtain an estimate of ‖τx1y− τx2y‖p. Now
for any 1 ≤ i ≤ d and t = λix

1
i + (1− λi)x2

i with λi ∈ [0, 1]

|(x1
1, · · · , x1

i−1, t, x
2
i+1, · · · , x2

d)|
= |(x1

1, · · · , x1
i−1, λix

1
i + (1− λi)x2

i , x
2
i+1, · · · , x2

d)|
≤ |(x1

1, · · · , x1
i−1, λix

1
i , 0, · · · , 0)|

+ |(0, · · · , 0, (1− λi)x2
i , x

2
i+1, · · · , x2

d)|
≤ |(x1

1, · · · , x1
i−1, x

1
i , 0, · · · , 0)|

+ |(0, · · · , 0, x2
i , x

2
i+1, · · · , x2

d)|
≤ 2n
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Let y ∈ Sp+ 1
2
(Rd) (note that Sp+ 1

2
(Rd) ⊂ Sp(Rd)). Then by Lemma 2.11.7, there exist

constants Cn > 0, C̃n > 0 independent of i such that

‖τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)∂iy‖p = ‖∂iτ(x1

1,··· ,x
1
i−1,t,x

2
i+1,··· ,x

2
d
)y‖p

≤ Cn ‖τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)y‖p+ 1

2

≤ C̃n ‖y‖p+ 1
2

(5.26)

The following is an equality of continuous functions.

τ(x1
1,··· ,x

1
i−1,x

1
i ,x

2
i+1,··· ,x

2
d
)y(·)− τ(x1

1,··· ,x
1
i−1,x

2
i ,x

2
i+1,··· ,x

2
d
)y(·)

= y(· − (x1
1, · · · , x1

i−1, x
1
i , x

2
i+1, · · · , x2

d))
− y(· − (x1

1, · · · , x1
i−1, x

2
i , x

2
i+1, · · · , x2

d))

=
∫ x1

i

x2
i

∂iy(· − (x1
1, · · · , x1

i−1, t, x
2
i+1, · · · , x2

d)) dt

=
∫ x1

i

x2
i

τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)∂iy(·) dt

In view of (5.26), we have the equality of distributions in Sp(Rd)

τ(x1
1,··· ,x

1
i−1,x

1
i ,x

2
i+1,··· ,x

2
d
)y − τ(x1

1,··· ,x
1
i−1,x

2
i ,x

2
i+1,··· ,x

2
d
)y

=
∫ x1

i

x2
i

τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)∂iy dt.

Then

‖τ(x1
1,··· ,x

1
i−1,x

1
i ,x

2
i+1,··· ,x

2
d
)y − τ(x1

1,··· ,x
1
i−1,x

2
i ,x

2
i+1,··· ,x

2
d
)y‖p

= ‖
∫ x1

i

x2
i

τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)∂iy dt ‖p

≤
∣∣∣∣∣
∫ x1

i

x2
i

‖τ(x1
1,··· ,x

1
i−1,t,x

2
i+1,··· ,x

2
d
)∂iy‖p dt

∣∣∣∣∣
≤ C̃n ‖y‖p+ 1

2
|x1
i − x2

i |.

Now

τx1y − τx2y = τ(x1
1,··· ,x

1
d−1,x

1
d
)y − τ(x1

1,··· ,x
1
d−1,x

2
d
)y

+ τ(x1
1,··· ,x

1
d−1,x

2
d
)y − τ(x1

1,··· ,x
1
d−2,x

2
d−1,x

2
d
)y

+ · · ·
+ τ(x1

1,x
2
2,··· ,x

2
d
)y − τ(x2

1,··· ,x
2
d
)y
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and hence ‖τx1y − τx2y‖p ≤ C̃n ‖y‖p+ 1
2

∑d
i=1 |x1

i − x2
i | ≤ dC̃n ‖y‖p+ 1

2
|x1 − x2|.

Then |σ̄(x1; y)−σ̄(x2; y)| ≤ ‖σ‖−p‖τx1y−τx2y‖p ≤ dC̃n ‖σ‖−p‖y‖p+ 1
2
|x1−x2|. In particular

if G is a bounded set in Sp+ 1
2
(Rd), then for any y ∈ G

|σ̄(x1; y)− σ̄(x2; y)| ≤ dC̃n ‖σ‖−p sup
y∈G

(‖y‖p+ 1
2
) |x1 − x2|,

i.e. the function x 7→ σ̄(x; y) is locally Lipschitz in x for any y ∈ G and that the Lipschitz
constant can be taken uniformly in y ∈ G.

The next result is a version of Theorem 5.2.9. We get the ‘local Lipschitz’ property of
the coefficients from extra regularity on ξ (see Proposition 5.2.11).

Theorem 5.2.12. Let p > d+ 1
2 . Suppose the following are satisfied.

(i) σ, b ∈ S−p(Rd).
(ii) ξ is Sp+ 1

2
(Rd) valued and E‖ξ‖2

p+ 1
2
<∞.

(iii) ζ = 0.

Then there exists an (F ξt ) stopping time η and an (F ξt ) adapted R̂d valued process {Xt}
such that

(a) {Xt} solves (5.11) up to η i.e. a.s.

Xt =
∫ t

0
σ̄(Xs; ξ). dBs +

∫ t

0
b̄(Xs; ξ) ds, 0 ≤ t < η

and Xt =∞ for t ≥ η.
(b) {Xt} has continuous paths on the interval [0, η).
(c) η = limm θm where {θm} are (F ξt ) stopping times defined by θm := inf{t ≥ 0 : |Xt| ≥

m}.

This is also pathwise unique in this sense: if (X ′t, η′) is another solution satisfying properties
(a), (b), (c), then P (Xt = X ′t, 0 ≤ t < η ∧ η′) = 1.

Proof. The proof is similar to Theorem 5.2.9. We indicate the necessary changes.

(i) Fix a positive integer n. Now for each y ∈ Sp+ 1
2
(Rd), using Corollary 5.2.8 we get a

globally Lipschitz function viz. σ̄n(x; y) such that
a) σ̄(x; y) = σ̄n(x; y) for all x ∈ B(0, n).
b) For any bounded set G in Sp+ 1

2
(Rd), using Proposition 5.2.11

|σ̄n(x1; y)− σ̄n(x2; y)| ≤ C(G, n) |x1 − x2|, ∀x1, x2 ∈ Rd, y ∈ G.
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Similarly define b̄n(x; y) from b̄(x; y). Note that σ̄n(0; y) = σ̄(0; y) and b̄n(0; y) =
b̄(0; y) for any y ∈ Sp+ 1

2
(Rd). The linear growths of x 7→ σ̄n(x; y) and x 7→ b̄n(x; y)

are established as done for x 7→ σ̄(x; y) and x 7→ b̄(x; y) in Proposition 5.2.3.
(ii) Rest of the proof is the same except that we take the variable y from Sp+ 1

2
(Rd).

We are ready to prove the main result of this section. We make two definitions extending
[90, Definition 3.1 and 3.3]. Note that ξ is assumed to be independent of the Brownian
motion {Bt} and Ŝp(Rd) = Sp(Rd) ∪ {δ}, where δ is an isolated point.

Definition 5.2.13. (A) We say {Yt} is an Sp(Rd) valued strong solution of equation
(5.1), if {Yt} is an Sp(Rd) valued (F ξt ) adapted continuous process such that a.s. the
following equality holds in Sp−1(Rd),

Yt = ξ +
∫ t

0
A(Ys). dBs +

∫ t

0
L(Ys) ds; t ≥ 0.

(B) By an Ŝp(Rd) valued strong local solution of equation (5.1), we mean a pair ({Yt}, η)
where η is an (F ξt ) stopping time and {Yt} an Ŝp(Rd) valued (F ξt ) adapted continuous
process such that
(1) for all ω ∈ Ω, the map Y·(ω) : [0, η(ω)) → Sp(Rd) is continuous and Yt(ω) =

δ, t ≥ η(ω).
(2) a.s. the following equality holds in Sp−1(Rd),

Yt = ξ +
∫ t

0
A(Ys). dBs +

∫ t

0
L(Ys) ds; 0 ≤ t < η.

Definition 5.2.14. (A) We say strong solutions to equation (5.1) are pathwise unique,
if given any two Sp(Rd) valued strong solutions {Y 1

t } and {Y 2
t }, we have P (Y 1

t =
Y 2
t , t ≥ 0) = 1.

(B) We say strong local solutions to equation (5.1) are pathwise unique, if given any two
Ŝp(Rd) valued strong solutions ({Y 1

t }, η1) and ({Y 2
t }, η2), we have P (Y 1

t = Y 2
t , 0 ≤

t < η1 ∧ η2) = 1.

Now we prove the existence and uniqueness of solutions to equation (5.1).

Theorem 5.2.15. Suppose the following conditions are satisfied.

(i) E‖ξ‖2
p <∞.

(ii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the functions x 7→
σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in Sp(Rd); i.e.
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5.2. Stochastic partial differential equations involving random initial conditions

for any bounded set G in Sp(Rd) there exists a constant C(G) > 0 such that for all
x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then equation (5.1) has an (F ξt ) adapted continuous strong solution. The solutions are
pathwise unique.

First we need a characterization of the solution of equation (5.1). This is an extension
of [90, Lemma 3.6] to random initial condition ξ.

Lemma 5.2.16. Let ξ, σ̄, b̄ be as in Theorem 5.2.15. Let {Yt} be an (F ξt ) adapted Sp(Rd)
valued strong solution of equation (5.1). Define a process {Zt} as follows:

Zt :=
∫ t

0
〈σ , Ys〉 dBs +

∫ t

0
〈b , Ys〉 ds, t ≥ 0.

Then a.s. Yt = τZtξ for t ≥ 0 and consequently Z solves equation (5.11) with Z0 = 0.

Proof. Since {Yt} is a continuous Sp(Rd) valued (F ξt ) adapted process and σ ∈ S−p(Rd), the
real valued process {〈σ , Yt〉} is a continuous (F ξt ) adapted process. Hence {

∫ t
0 〈σ , Ys〉 dBs}

is a continuous local martingale. Using similar arguments {
∫ t
0 〈b , Ys〉 dBs} is a real valued

continuous (F ξt ) adapted process.
First we define linear operator valued (Ft) adapted processes {L̄(t)} and {Āj(t)}, j =
1, · · · , d. For φ ∈ S ′(Rd),

L̄(t, ω)φ := 1
2

d∑
i,j=1

(〈σ , Yt(ω)〉 〈σ , Yt(ω)〉t)ij ∂2
ijφ−

d∑
i=1

(〈b , Yt(ω)〉)i ∂iφ,

Āj(t, ω)φ := −
d∑
i=1

(〈σ , Yt(ω)〉)ij ∂iφ.

Note that L̄(t, ω), Āj(t, ω) are linear operators from Sp(Rd) to Sp−1(Rd).
We write as Zt = (Z1

t , · · · , Zd
t ) and Ā(t) = (Ā1(t), · · · , Ād(t)). By Theorem 5.2.2, we have

the following equality in Sp−1(Rd): a.s. t ≥ 0

τZtξ = ξ −
d∑
i=1

∫ t

0
∂iτZsξ dZ

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτZsξ d[Zi, Zj]s

= ξ −
d∑
i=1

∫ t

0
(〈σ , Yt(ω)〉)ij∂iτZsξ dBi

s −
d∑
i=1

∫ t

0
(〈b , Yt(ω)〉)ij∂iτZsξ ds

+ 1
2

d∑
i,j=1

∫ t

0
(〈σ , Yt(ω)〉 〈σ , Yt(ω)〉t)ij∂2

ijτZsξ ds
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= ξ +
∫ t

0
Ā(s)(τZsξ). dBs +

∫ t

0
L̄(s)(τZsξ) ds.

Since {Yt} is a solution of equation (5.1), we also have a.s. t ≥ 0

Yt = ξ +
∫ t

0
Ā(s)(Ys). dBs +

∫ t

0
L̄(s)(Ys) ds.

Define localizing sequence {ηn} as

ηn := inf{t ≥ 0 : | 〈σij , Yt〉 | ≥ n, or | 〈bi , Yt〉 | ≥ n, i, j = 1, · · · , d}, n ≥ 1.

Now define X(n)
t := Yt∧ηn − τZt∧ηnξ. Then applying Itô formula on ‖ · ‖2

p−1 (see Proposi-
tion 2.7.20, also see Section 2.12 Item (vi)) we get a.s.

‖X(n)
t ‖2

p−1 =
∫ t∧ηn

0
2

d∑
i=1

〈
X(n)
s , Āi(s)X(n)

s

〉
p−1

dB(i)
s

+
∫ t∧ηn

0

[
2
〈
X(n)
s , L̄(s)X(n)

s

〉
p−1

+ ‖Ā(s)X(n)
s ‖2

HS(p−1)

]
ds

where {
∫ t

0 2∑d
i=1

〈
X(n)
s , Āi(s)X(n)

s

〉
p−1

dB(i)
s } is a continuous local martingale. If for some

ω, | 〈σij , Y0(ω)〉 | ≥ n or | 〈bi , Y0(ω)〉 | ≥ n, then ηn(ω) = 0 and such ω does not contribute
to the right hand side of the above equation. Hence without loss of generality, we assume
that the coefficients {〈σij , Yt〉} and {〈bi , Yt〉} are uniformly bounded. This in turn implies
that the process {

∫ t∧ηn
0 2∑d

i=1

〈
X(n)
s , Āi(s)X(n)

s

〉
p−1

dB(i)
s } is a continuous martingale.

Since the coefficients are bounded, by the Monotonicity inequality (see [39, Theorem 2.1],
Theorem 3.3.1 and Remark 3.3.2), there exists a constant Cn > 0 such that a.s.

‖X(n)
t∧ηn‖

2
p−1 ≤

∫ t∧ηn

0
2

d∑
i=1

〈
X(n)
s , Āi(s)X(n)

s

〉
p−1

dB(i)
s

+ Cn

∫ t∧ηn

0
‖Xn

(n)‖2
p−1 ds

≤
∫ t∧ηn

0
2

d∑
i=1

〈
X(n)
s , Āi(s)X(n)

s

〉
p−1

dB(i)
s

+ Cn

∫ t

0
‖X(n)

s∧ηn‖2
p−1 ds.

Taking expectation, we obtain E‖X(n)
t∧ηn‖2

p−1 ≤ Cn
∫ t

0 E‖X
(n)
s∧ηn‖2

p−1 ds for all t ≥ 0. By the
Gronwall’s inequality (Lemma 2.13.1) we get E‖X(n)

t∧ηn‖2
p−1 = 0 which implies the equality

a.s. Yt∧ηn = τZt∧ηnξ, t ≥ 0. Since ηn ↑ ∞, we have a.s. Yt = τZtξ, t ≥ 0. This implies a.s.
t ≥ 0

Zt =
∫ t

0
〈σ , Ys〉 dBs +

∫ t

0
〈b , Ys〉 ds
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=
∫ t

0
〈σ , τZsξ〉 dBs +

∫ t

0
〈b , τZsξ〉 ds

=
∫ t

0
σ̄(Zs; ξ). dBs +

∫ t

0
b̄(Zs; ξ) ds

This completes the proof.

Proof of Theorem 5.2.15. The proof is similar to that of [90, Theorem 3.4]. By Theorem
5.2.4, we have a solution {Zt} of (5.11) with initial condition Z0 = 0. Then using the
Itô formula in Theorem 5.2.2 and separating the dB and dt terms, leads to the stochastic
partial differential equation (5.1), which shows {τZtξ} is a solution.
To prove the uniqueness, let {Y 1

t }, {Y 2
t } be two solutions. Then define {Z1

t } and {Z2
t }

corresponding to {Y 1
t }, {Y 2

t } as in Lemma 5.2.16. Then {Z1
t }, {Z2

t } both solve (5.11) with
initial condition 0. Now the uniqueness part in Theorem 5.2.4 implies a.s. Z1

t = Z2
t for all

t ≥ 0 and hence a.s. Y 1
t = Y 2

t for all t ≥ 0. This completes the proof.

Since Yt = τZtξ solves equation (5.1) (notations as in Theorem 5.2.15), we have
E‖Y0‖2

p = E‖ξ‖2
p <∞. Now we prove L2 estimates on Yt using two different techniques.

Proposition 5.2.17. There exists a localizing sequence {ηn} such that

E sup
t≥0
‖Y ηn

t ‖2
p ≤ Cn.E‖Y0‖2

p,

where the constant Cn depends only on n.

Proof. The process {Zt}, defined in Lemma 5.2.16 is a continuous adapted process and
Z0 = 0. Define a localizing sequence {ηn} as follows: ηn := inf{t ≥ 0 : |Zt| ≥ n}, n ≥ 1.
Now using Lemma 2.11.7(i) there exists a polynomial Q of degree 2([|p|] + 1) such that

‖Y ηn
t ‖p ≤ ‖ξ‖p.Q(|Zηn

t |) ≤ ‖ξ‖p sup
{x:|x|≤n}

Q(|x|).

Hence supt≥0 ‖Y
ηn
t ‖2

p ≤ Cn ‖ξ‖2
p with Cn = (sup{x:|x|≤n}Q(|x|))2. This implies the required

estimate.

using line desired

Following [38, Lemma 1], we get the next estimate.

Proposition 5.2.18. There exists a localizing sequence {ηn} such that for any positive
real number T ,

E sup
t≤T
‖Y ηn

t ‖2
p−1 ≤ C.E‖Y0‖2

p−1,

where the constant C depends only on n and T .
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Proof. Define three localizing sequences. For any positive integer n, consider

η̄n := inf{t ≥ 0 : ‖Yt − Y0‖p ≥ n},

and
η′n := inf{t ≥ 0 : |〈σ , Yt〉| ≥ n, or |〈b , Yt〉| ≥ n},

and ηn := η̄n ∧ η′n. Note that ‖Y ηn
t ‖p ≤ ‖Y ηn

t − Y0‖p + ‖Y0‖p and using this inequality it is
easy to see that E supt≤T ‖Y

ηn
t ‖2

p−1 <∞ for any T > 0. Since the following equality holds
in Sp−1(Rd), a.s.

Yt = Y0 +
∫ t

0
A(Ys).dBs +

∫ t

0
L(Ys) ds, t ≥ 0.

Now using Itô formula for ‖ · ‖2
p−1 (see Proposition 2.7.20, also see Section 2.12 Item (vi))

we obtain a.s. t ≥ 0

‖Y ηn
t ‖2

p−1 = ‖Y0‖2
p−1 +

∫ t∧ηn

0
2

d∑
i=1
〈Y ηn

s , AiY
ηn
s 〉p−1 dB

(i)
s

+
∫ t∧ηn

0

[
2 〈Y ηn

s , LY ηn
s 〉p−1 +

d∑
i=1
‖AiY ηn

s ‖2
p−1

]
ds

(5.27)

where B
(i)
t denotes the i-th component of Bt. Since the coefficients {〈σij , Yt〉} and

{〈bi , Yt〉} are uniformly bounded, {
∫ t∧ηn

0 2∑d
i=1 〈Y ηn

s , AiY
ηn
s 〉p−1 dB

(i)
s } is a continuous

martingale.
If for some ω, |〈σ , Y0〉|(ω) ≥ n or |〈b , Y0〉|(ω) ≥ n then ηn(ω) = 0. But such ω does
not contribute to

∫ t∧ηn
0

[
2 〈Y ηn

s , LY ηn
s 〉p−1 + ∑d

i=1 ‖AiY ηn
s ‖2

p−1

]
ds and hence in computing

this expectation we may assume {|〈σ , Y ηn
t 〉|} and {|〈b , Y ηn

t 〉|} are uniformly bounded by
n. Then using the Monotonicity inequality (Theorem 3.3.1 and Remark 3.3.2) and taking
expectation in the previous equation yields

E‖Y ηn
t ‖2

p−1 ≤ E‖Y0‖2
p−1 + γ

∫ t

0
E‖Y ηn

s ‖2
p−1 ds

where the constant γ depends only on ηn. Then Gronwall’s inequality implies

E‖Y ηn
t ‖2

p−1 ≤ eγt.E‖Y0‖2
p−1, t ≥ 0. (5.28)

Let {Mt} and {Vt} respectively denote the martingale term and the finite variation term
on the right hand side of (5.27). Then using the Monotonicity inequality and (5.28), we
get

E sup
t≤T

Vt ≤ γ E sup
t≤T

∫ t

0
‖Y ηn

s ‖2
p−1 ds = γ

∫ T

0
E‖Y ηn

s ‖2
p−1 ds ≤ C̃ E‖Y0‖2

p−1 (5.29)
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for some constant C̃ depending only on ηn and T .
By Theorem 3.2.2 for each 1 ≤ i ≤ d, there exists a bounded operator Ti : Sp−1(Rd) →
Sp−1(Rd) such that

2 〈Y ηn
t , AiY

ηn
t 〉p−1 = −2

d∑
j=1
〈σji , Y ηn

t 〉 〈Y ηn
t , ∂jY

ηn
t 〉p−1

= −
d∑
j=1
〈σji , Y ηn

t 〉 〈Y ηn
t , TjY ηn

t 〉p−1 .

Since {|〈σ , Y ηn
t 〉|} is uniformly bounded by n,

|2 〈Y ηn
t , AiY

ηn
t 〉p−1 | ≤

d∑
j=1
|〈σji , Y ηn

t 〉| | 〈Y ηn
t , TjY ηn

t 〉p−1 |

≤ n
d∑
j=1
| 〈Y ηn

t , TjY ηn
t 〉p−1 |

≤ β‖Y ηn
t ‖2

p−1

(5.30)

where β = nd max{‖Tj‖Sp−1(Rd)→Sp−1(Rd) | 1 ≤ j ≤ d}.
To estimate the martingale term, we use the BDG inequalities (see Theorem 2.5.28). Note
that in the following inequalities the constant C may change values from line to line, but
it depends only on ηn and T .

E sup
t≤T
|Mt| ≤ C.E [M ]

1
2
T

= C.E
(∫ T∧ηn

0
4

d∑
i=1
〈Y ηn

s , AiY
ηn
s 〉

2
p− 3

2
ds

) 1
2

≤ C.E
(∫ T

0
‖Y ηn

s ‖4
p−1 ds

) 1
2

, (using (5.30))

≤ C.E
(

sup
t≤T
‖Y ηn

t ‖2
p−1

∫ T

0
‖Y ηn

s ‖2
p−1 ds

) 1
2

using A.M - G.M inequality,

≤ C

2 .E
(
ε sup
t≤T
‖Y ηn

t ‖2
p−1 + 1

ε

∫ T

0
‖Y ηn

s ‖2
p−1 ds

)
, (for any ε > 0)

≤ Cε.E sup
t≤T
‖Y ηn

t ‖2
p−1 + C.E‖Y0‖2

p−1, (using (5.28))

For the choice ε = 1
2C we get

E sup
t≤T
|Mt| ≤

1
2E sup

t≤T
‖Y ηn

t ‖2
p−1 + C.E‖Y0‖2

p−1. (5.31)

Using (5.27), (5.29) and (5.31) we get the desired estimate.
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Remark 5.2.19. If we repeat the steps of [38, Lemma 1], then in the previous proposition
we would end up with

E sup
t≤T
‖Y ηn

t ‖2
p−1 ≤ C.E‖Y0‖2

p− 3
2
.

Because of Theorem 3.2.2, we are getting a better estimate.

The counterpart of Theorem 5.2.15 involving locally Lipschitz coefficients is as follows.
This result is an extension of [90, Theorem 3.4].

Theorem 5.2.20. Suppose the following conditions are satisfied.

(i) E‖ξ‖2
p <∞.

(ii) (Locally Lipschitz in x, locally in y) for any fixed y ∈ Sp(Rd) the functions x 7→ σ̄(x; y)
and x 7→ b̄(x; y) are locally Lipschitz functions in x and the Lipschitz coefficient is
independent of y when y varies over any bounded set G in Sp(Rd); i.e. for any bounded
set G in Sp(Rd) and any positive integer n there exists a constant C(G, n) > 0 such
that for all x1, x2 ∈ B(0, n), y ∈ G

|σ̄(x1; y)− σ̄(x2; y)|+ |b̄(x1; y)− b̄(x2; y)| ≤ C(G, n)|x1 − x2|,

where B(0, n) = {x ∈ Rd : |x| ≤ n}.

Then an (F ξt ) adapted continuous strong local solution of equation (5.1) exists. The solu-
tions are also pathwise unique.

Proof. We follow the arguments in the proof of Theorem 5.2.15 and indicate the necessary
changes.
First we prove the uniqueness. Let ({Y (1)

t }, η(1)) and ({Y (2)
t }, η(2)) be two (F ξt ) adapted

continuous strong local solutions of equation (5.1). Now define two processes {Z(i)
t }, i = 1, 2

as follows:
Z

(i)
t :=

∫ t∧ηi

0
〈σ , Ys〉 dBs +

∫ t∧ηi

0
〈b , Ys〉 , 0 ≤ t < ηi

and set Z(i)
t := ∞, if t ≥ ηi. Then as in Lemma 5.2.16 (also see [90, Lemma 3.6]) we can

show a.s. Y (i)
t = τ

Z
(i)
t
ξ, 0 ≤ t < ηi. Then from the definition of {Z(i)

t } we have

Z
(i)
t =

∫ t

0
σ̄(Z(i)

s ; ξ). dBs +
∫ t

0
b̄(Z(i)

s ; ξ) ds, 0 ≤ t < ηi.

From the uniqueness obtained in Theorem 5.2.9 we conclude a.s. Z
(1)
t = Z

(2)
t , 0 ≤ t <

η1 ∧ η2. Hence a.s. Y (1)
t = Y

(2)
t , 0 ≤ t < η1 ∧ η2. This proves the pathwise uniqueness.
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Now we prove the existence of a strong local solution of equation (5.1). By Theorem 5.2.9
equation (5.11) has a solution ({Zt}, η). Define the Ŝp(Rd) valued process {Yt} as follows:

Yt :=

τZtξ, if 0 ≤ t < η

δ, if t ≥ η.

Then using the Itô formula in Theorem 5.2.2, the pair ({τZtξ}, η) solves (5.11). Since {Zt}
is (F ξt ) adapted and ξ is F ξ0 measurable, we have {Yt} is also (F ξt ) adapted. Since {Zt}
has continuous paths on the stochastic interval [0, η), by {Yt} also has continuous paths
on the same stochastic interval.

Remark 5.2.21. We describe two possible extensions of the results of this section - which
is a problem for the future. The description is in terms of properties of the coefficients σ̄, b̄.

(i) We would like to extend the results when there is time inhomogeneity in σ̄, b̄.
(ii) In our case, x 7→ σ̄(x; y) = 〈σ , τxy〉 , x 7→ b̄(x; y) = 〈b , τxy〉 are non-linear in x for

all fixed y ∈ Sp(Rd). We would like to extend the results to more general class of
non-linear coefficients.

5.3 Stationary Solutions

We have presented some sufficient conditions under which the stochastic partial differential
equation (5.1) has a unique strong solution. Now we investigate existence of stationary
solutions. Our approach is to use stationary solutions, if any, of the finite dimensional
stochastic differential equation (5.11). Assume that

(i) f : Rd → Rd×d, g : Rd → Rd are locally bounded, measurable functions such that the
stochastic differential equation

dZt = f(Zt)dBt + g(Zt)dt, ∀t ≥ 0 (5.32)

has a stationary, continuous solution and we denote the corresponding invariant
measure by ν. Let fij, gi, 1 ≤ i, j ≤ d be the component functions of f, g.

(ii) σij, bi (for i, j = 1, · · · , d) are tempered distributions given by functions.

Remark 5.3.1. Typically f, g will be locally Lipschitz functions such that explosions do
not happen in finite time. When f = Id (the d× d identity matrix), this non-explosion is
guaranteed by a ‘Liapunov’ type criteria (see [105, 7.3.14 Corollary]).

Remark 5.3.2. Existence of invariant measures of Markov processes and finite dimensional
diffusions has been studied by many authors (to cite only a few, see [11, 30, 42, 44, 45, 61],
[105, Chapter VII, Section 5]).
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Note that there exists a p > 0 such that σij, bi ∈ S−p(Rd) for all i, j. Fix such a p > 0
and consider the following subset of Sp(Rd),

C := {ψ ∈ Sp(Rd) :
∫
Rd
σij(y + x)ψ(y) dy = fij(x),∀x ∈ Rd;∫

Rd
bi(y + x)ψ(y) dy = gi(x),∀x ∈ Rd, i, j = 1, · · · , d}.

(5.33)

Since p > 0, elements of C are given by functions. Note that C is a convex set.
The motivation behind above conditions requires clarification. First we want to choose a
subset C of Sp(Rd) such that the coefficients σ̄(x; ξ) and b̄(x; ξ) in the equation (5.5) remain
the same, for ξ ∈ C. This allows us to think of σ̄(x; ξ) and b̄(x; ξ) as just σ̄(x) and b̄(x).
Second we want σ̄ = f and b̄ = g which is a choice that allows us to use the invariant
measure ν of (5.32). The set C considered above provides exactly those conditions.

Lemma 5.3.3. Let ψ ∈ C. Then σ̄(x;ψ) = f(x) and b̄(x;ψ) = g(x) for all x ∈ Rd.

Proof. Observe that,

〈bi , τxψ〉 = 〈τ−xbi , ψ〉 =
∫
Rd

(τ−xbi)(y)ψ(y) dy =
∫
Rd
bi(y + x)ψ(y) dy = gi(x).

Proof of the other part is similar.

We show the existence of a stationary solution of equation (5.1).

Theorem 5.3.4. Let ξ be a C-valued F0 measurable random variable with E‖ξ‖2
p <∞ and

independent of {Bt}. Then Yt := τZtξ is a stationary process and solves

dYt = A(Yt). dBt + L(Yt) dt; Y0 = τZ0ξ (5.34)

where {Zt} is a stationary, continuous solution of (5.32).

Proof. We give the proof for dimension d = 1. The case d > 1 is similar.
Using the Itô formula in Theorem 5.2.2 we get a.s. for all t ≥ 0,

τZtξ = τZ0ξ −
∫ t

0
∂(τZsξ) dZs + 1

2

∫ t

0
∂2(τZsξ) d [Z]s

= τZ0ξ −
∫ t

0
∂(τZsξ)f(Zs) dBs

−
∫ t

0
∂(τZsξ)g(Zs) ds+ 1

2

∫ t

0
∂2(τZsξ)(f(Zs))2 ds.

Now we use Lemma 5.3.3. Then a.s. t ≥ 0

τZtξ = τZ0ξ −
∫ t

0
∂(τZsξ)σ̄(Zs; ξ) dBs
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−
∫ t

0
∂(τZsξ)b̄(Zs; ξ) ds+ 1

2

∫ t

0
∂2(τZsξ)(σ̄(Zs; ξ))2 ds

So Yt = τZtξ solves (5.34).
Since {Zt} is a stationary solution to (5.32), for time points s, t1, t2, · · · , tn ≥ 0 we have

(Zt1 , Zt2 , · · · , Ztn) L= (Zs+t1 , Zs+t2 , · · · , Zs+tn),

where L= denotes equality in law.
Take ψ ∈ C. Then the map x 7→ τxψ is continuous and hence measurable (see Lemma
2.11.7(ii)). Using this fact, for Borel sets G1, · · · , Gn in Sp, we have

((τZt1ψ, τZt2ψ, · · · , τZtnψ) ∈ G1 ×G2 × · · · ×Gn)
= ((Zt1 , Zt2 · · · , Ztn) ∈ (τ·ψ)−1(G1)× (τ·ψ)−1(G2)× · · · × (τ·ψ)−1(Gn)).

Now using the stationarity of {Zt} we have

P ((τZt1ψ, τZt2ψ, · · · , τZtnψ) ∈ G1 ×G2 × · · · ×Gn)
= P ((τZs+t1

ψ, τZs+t2
ψ, · · · , τZs+tnψ) ∈ G1 ×G2 × · · · ×Gn)

(5.35)

Let µξ denote the law of ξ on Sp. Then using conditional probability, we have

P ((τZt1ξ, τZt2ξ, · · · , τZtnξ) ∈ G1 ×G2 × · · · ×Gn)

=
∫
Sp
P ((τZt1ξ, τZt2ξ, · · · , τZtnξ) ∈ G1 ×G2 × · · · ×Gn|ξ = ψ)µξ(dψ)

since ξ is C-valued,

=
∫
C
P ((τZt1ξ, τZt2ξ, · · · , τZtnξ) ∈ G1 ×G2 × · · · ×Gn|ξ = ψ)µξ(dψ)

=
∫
C
P ((τZt1ψ, τZt2ψ, · · · , τZtnψ) ∈ G1 ×G2 × · · · ×Gn|ξ = ψ)µξ(dψ)

since {Zt} is independent of ξ,

=
∫
C
P ((τZt1ψ, τZt2ψ, · · · , τZtnψ) ∈ G1 ×G2 × · · · ×Gn)µξ(dψ)

Similarly,

P ((τZs+t1
ξ, τZs+t2

ξ, · · · , τZs+tnξ) ∈ G1 ×G2 × · · · ×Gn)

=
∫
C
P ((τZs+t1

ψ, τZs+t2
ψ, · · · , τZs+tnψ) ∈ G1 ×G2 × · · · ×Gn)µξ(dψ).

Using (5.35) we have

P ((τZt1ξ, τZt2ξ, · · · , τZtnξ) ∈ G1 ×G2 × · · · ×Gn)
= P ((τZs+t1

ξ, τZs+t2
ξ, · · · , τZs+tnξ) ∈ G1 ×G2 × · · · ×Gn)

(5.36)
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i.e.
(τZt1ξ, τZt2ξ, · · · , τZtnξ)

L= (τZs+t1
ξ, τZs+t2

ξ, · · · , τZs+tnξ).

So Yt is stationary. This completes the proof.

Example 5.3.5. Take d = 1, f(x) ≡ 1, g(x) = −x, σ = f, b = g. Note that σ ∈ S−p for
p > 1

4 and b ∈ S−p for p > 3
4 (see Example 2.11.17 and Example 2.11.18). Take p > 3

4 .
First condition in the definition of set C (equation (5.33)) reduces to

∫
R ψ(y) dy = 1. In

view of this relation, the left hand side of the second condition simplifies to∫
R
−(y + x)ψ(y) dy = −

∫
R
yψ(y) dy − x

∫
R
ψ(y) dy = −

∫
R
yψ(y) dy − x.

Hence the second condition can be written as
∫
R yψ(y) dy = 0. Therefore

C = {ψ ∈ Sp :
∫
R
ψ = 1,

∫
R
yψ(y) dy = 0}.

C is non empty since (centered) Gaussian densities satisfy such conditions. Consider the
Ornstein-Uhlenbeck diffusion with the following initial condition:

dZt = dBt − Zt dt; Z0 ∼ N
(
0, 1

2

)
, (5.37)

where N(0, 1
2) denotes the law of a Normal random variable with mean 0 and variance 1

2 .
Recall that this gives the stationary solution (see [60, Chapter 5, 6.8 Example]). Theorem
5.3.4 asserts that Yt = τZtψ gives a stationary solution, when ψ ∈ C. Note that there exist
some constant R > 0 and a polynomial P of degree 2[|p|] + 1 (see Lemma 2.11.7)

E‖τZ0ψ‖2
p ≤ RE (P (|Z0|))2 ‖ψ‖2

p <∞,

since all absolute moments exist for Gaussian distribution.
More generally for constants σ0 > 0, α0 > 0, we look at the stochastic differential equation

dZt = σ0dBt − α0Zt dt; Z0 ∼ N
(
0, σ

2
0

2α0

)
.

Then for any ψ ∈ C (C as described above), we have the stationary solution Yt = τZtψ.
Note that the same subset C works irrespective of the constants σ0, α0.

The following lemma and Proposition 5.3.7 will be used in Example 5.3.8.

Lemma 5.3.6. The tempered distribution given by the function b(x) = x3, x ∈ R belongs
to S−p for p > 7

4 .
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Proof. We write Mx instead of M1 (see the multiplication operators defined in Exam-
ple 2.11.9). Observe that | 〈b , φ〉 | = | 〈1 , (Mx)3φ〉 |, ∀φ ∈ S. Therefore

| 〈b , φ〉 | ≤ ‖1‖−p‖(Mx)3φ‖p
≤ ‖1‖−p‖‖Mx‖S

p+ 1
2
→Sp‖Mx‖Sp+1→Sp+ 1

2
‖Mx‖S

p+ 3
2
→Sp+1 ‖φ‖p+ 3

2
.

Since 1 ∈ S−p for p > 1
4 (see Example 2.11.17), we have b ∈ S−p for p > 1

4 + 3
2 = 7

4 . Similar
computations were done in Example 2.11.18.

We recall the set up from [105, Chapter 7 Section 3 and Section 5]. Let g : Rd → Rd be
a continuously differentiable vector field and let Xg : [0,∞)× C([0,∞),Rd)→ Rd denote
the solution of the integral equation

Xg(t, ω) = ω(t) +
∫ t

0
g(Xg(s, ω)) ds (5.38)

up to the first time of explosion eg (see [105, equation (7.3.4)]). Define Ω(g) := {ω ∈
C([0,∞),Rd) : eg(ω) =∞} and Lg := 1

24+g ·∇. We cite a part of [105, 7.3.14 Corollary],
which is of current interest.

Proposition 5.3.7 ([105, 7.3.14 Corollary]). Suppose that h ∈ C2(Rd, [0,∞)) has the
properties that

lim
|x|→∞

h(x) =∞ and Lgh(x) ≤ A+Bh(x), x ∈ Rd,

for some pair A,B ∈ [0,∞). Then

W(d)
x (Ω(g)) = 1

for all x ∈ Rd, where W(d)
x denotes the distribution of ω ∈ C([0,∞),Rd) 7→ x + ω ∈

C([0,∞),Rd) under W(d) - the Wiener measure on C([0,∞),Rd).

Let U ∈ C2(Rd,R) be such that
∫
Rd exp(−2U(x)) dx = 1. Suppose that g = −∇U and

W(d)
x (Ω(g)) = 1,∀x ∈ Rd. Let B(Rd) denote the Borel σ-field on Rd. Then the measure ν

on Rd given by (see [105, equation (7.5.3)])

ν(B) :=
∫
B

exp (−2U(x)) dx, ∀B ∈ B(Rd), (5.39)

is invariant for the equation (5.38) (see [105, 7.5.18 Theorem]).
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Example 5.3.8. Take d = 1, f(x) ≡ 1, g(x) = −x3, σ = f, b = g. Note that σ ∈ S−p for
p > 1

4 and b ∈ S−p for p > 7
4 (see Example 2.11.17 and Lemma 5.3.6). Take p > 7

4 . As
in Example 5.3.5, the first condition in the definition of set C (equation (5.33)) becomes∫
R ψ(y) dy = 1. We now simplify the second condition.∫

R
−(y + x)3ψ(y) dy = −x3, ∀x ∈ R.

⇐⇒ −
∫
R
y3ψ(y) dy − 3x

∫
R
y2ψ(y) dy − 3x2

∫
R
yψ(y) dy − x3

∫
R
ψ(y) dy = −x3, ∀x ∈ R.

⇐⇒
∫
R
y3ψ(y) dy + 3x

∫
R
y2ψ(y) dy + 3x2

∫
R
yψ(y) dy = 0, ∀x ∈ R.

⇐⇒
∫
R
y3ψ(y) dy =

∫
R
y2ψ(y) dy =

∫
R
yψ(y) dy = 0

Therefore

C = {ψ ∈ Sp :
∫
R
ψ = 1,

∫
R
yψ(y) dy =

∫
R
y2ψ(y) dy =

∫
R
y3ψ(y) dy = 0}.

We show C is non empty since ψ1, ψ2 ∈ C where

ψ1(y) := exp(−y2)
[

3
2
√
π
− 1√

π
y2
]
, ψ2(y) := exp

(
−y

2

2

)[
3

2
√

2π
− 1

2
√

2π
y2
]
.

Note that ψ1, ψ2 ∈ S ⊂ Sp. We need to compute certain integrals to verify other conditions.
The moments of standard Normal distribution are given as follows: for positive integers n
([12, Example 21.1]),

1√
2π

∫ ∞
−∞

yn exp
(
−y

2

2

)
dx =

0, ifn is odd,
(n− 1)!!, ifn is even,

where (2k − 1)!! = 1 × 3 × · · · × (2k − 1) for positive integers k. More generally, for any
σ > 0 we have

1
σ
√

2π

∫ ∞
−∞

yn exp
(
− y2

2σ2

)
dx =

0, ifn is odd,
(n− 1)!!σn, ifn is even.

Then we can compute the integrals, corresponding to σ = 1 and 1√
2 :

∫ ∞
−∞

y exp
(
−y

2

2

)
dx =

∫ ∞
−∞

y3 exp
(
−y

2

2

)
dx = 0,

∫ ∞
−∞

exp
(
−y

2

2

)
dx =

√
2π,

∫ ∞
−∞

y2 exp
(
−y

2

2

)
dx =

√
2π,

∫ ∞
−∞

y4 exp
(
−y

2

2

)
dx = 3

√
2π,
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∫ ∞
−∞

exp(−y2) dx =
√
π,
∫ ∞
−∞

y exp(−y2) dx =
∫ ∞
−∞

y3 exp(−y2) dx = 0,

∫ ∞
−∞

y2 exp(−y2) dx =
√

2π
(

1√
2

)3

=
√
π

2 ,
∫ ∞
−∞

y4 exp(−y2) dx = 3
√

2π
(

1√
2

)5

= 3
√
π

4 .

Using these values, we have
∫ ∞
−∞

ψ1(y) dy = 3
2
√
π

√
π − 1√

π

√
π

2 = 1,
∫ ∞
−∞

y2ψ1(y) dy = 3
2
√
π

√
π

2 −
1√
π

3
√
π

4 = 0,

∫ ∞
−∞

ψ2(y) dy = 3
√

2π
2
√

2π
−
√

2π
2
√

2π
= 1,

∫ ∞
−∞

y2ψ2(y) dy = 3
2
√

2π
√

2π − 1
2
√

2π
3
√

2π = 0.

Other integrals, viz.
∫∞
−∞ yψ1(y) dy,

∫∞
−∞ y

3ψ1(y) dy,
∫∞
−∞ yψ2(y) dy,

∫∞
−∞ y

3ψ2(y) dy vanish
since the integrands are odd functions. This proves ψ1, ψ2 ∈ C. Using Proposition 5.3.7,
we now show that the finite dimensional diffusion (5.32) does not explode in finite time.
Consider the function h(x) = x2, x ∈ R. Then lim|x|→∞ h(x) =∞ and

1
2h
′′(x) + g(x)h′(x) = 1− 2x4 ≤ 1 + 0.h(x), ∀x ∈ R,

i.e. the condition is satisfied with the constants A = 1, B = 0. The finite dimensional
diffusion (5.32) has an invariant measure ν, given by (putting U(x) = x4

4 in equation (5.39))

ν(B) := c
∫
B

exp
(
−x

4

2

)
dx

for any Borel set B in R, where c is the normalization constant. Note that

∫ ∞
−∞

exp
(
−x

4

2

)
dx = 2

∫ ∞
0

exp
(
−x

4

2

)
dx

r=x4
2== 2

∫ ∞
0

exp(−r)2− 7
4 r−

3
4 dr

= 2− 3
4

∫ ∞
0

exp(−r)r 1
4−1 dr = 2− 3

4 Γ
(1

4

)
.

Hence c = 2 3
4
(
Γ(1

4)
)−1

. Theorem 5.3.4 asserts that Yt = τZtψ gives a stationary solution,
when ψ ∈ C.

We now prove an L1 estimate of a stationary solution {Yt} in terms of Y0.

Proposition 5.3.9. Let ξ, {Zt}, {Yt} be as in Theorem 5.3.4. In addition assume that
ξ is norm-bounded, Z0 has moments of orders up to 4([|p|] + 1) and f, g are Lipschitz
continuous. Then

(a) E‖Y0‖2
p = E‖τZ0ξ‖2

p <∞.
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(b) E supt≤T ‖Yt‖p ≤ C (E‖Y0‖2
p)

1
2 , where C is a positive constant depending only on f, g

and T .

Proof. For any norm-bounded C valued random variable ξ, we have E‖τZ0ξ‖2
p ≤ REP (|Z0|)

where R > 0 and P is a polynomial of degree 4([|p|] + 1) (see Lemma 2.11.7). Then by our
assumption, E‖τZ0ξ‖2

p <∞.
Observe that Yt = τZtξ = τZt−Z0τZ0ξ = τZt−Z0Y0. Using Lemma 2.11.7(i) we have

‖Yt‖p ≤ ‖Y0‖p Pk(|Zt − Z0|),

where Pk is a real polynomial of degree k = 2([|p|] + 1). Without loss of generality, we
assume that Pk has non-negative coefficients. We use the following estimate to establish
the result.

E sup
t≤T
‖Yt‖p ≤ (E‖Y0‖2

p)
1
2 (E sup

t≤T
Pk(|Zt − Z0|)2) 1

2 (5.40)

Now a.s. Zt − Z0 =
∫ t

0 f(Zs) dBs +
∫ t

0 g(Zs) ds, t ≥ 0. Hence for any positive integer m,

|Zt − Z0|m =
∣∣∣∣∫ t

0
f(Zs) dBs +

∫ t

0
g(Zs) ds

∣∣∣∣m
≤
(∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣+ ∣∣∣∣∫ t

0
g(Zs) ds

∣∣∣∣)m
≤
(∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣+ ∫ t

0
|g(Zs)| ds

)m
≤ 2m−1

[∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣m +
(∫ t

0
|g(Zs)| ds

)m]
.

The last inequality follows from Lemma 2.13.2. Continuing from above

sup
t≤T
|Zt − Z0|m ≤ 2m−1

[
sup
t≤T

∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣m + sup
t≤T

(∫ t

0
|g(Zs)| ds

)m]
.

Since f, g are Lipschitz continuous, there exist constants α, β > 0 such that

|f(x)| ≤ α(1 + |x|), |g(x)| ≤ β(1 + |x|), ∀x ∈ Rd.

Set Cm := E((1 + |Z0|)m) for integers 0 < m ≤ 2k. By the stationarity of {Zt}, Cm =
E((1 + |Zt|)m) for any t ≥ 0. Now using Jensen’s inequality, for any integer 0 < m ≤ 2k

E sup
t≤T

(∫ t

0
|g(Zs)| ds

)m
≤ E sup

t≤T
tm−1

∫ t

0
|g(Zs)|m ds

= ETm−1
∫ T

0
|g(Zs)|m ds
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≤ βmTm−1
∫ T

0
E((1 + |Zs|)m) ds

= βmTm−1
∫ T

0
Cm ds

= βmTmCm.

Note that ∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣ ≤ d∑
i=1

∣∣∣∣∣∣
d∑
j=1

∫ t

0
fij(Zs) dBj

s

∣∣∣∣∣∣ ≤
d∑

i,j=1

∣∣∣∣∫ t

0
fij(Zs) dBj

s

∣∣∣∣ .
Then for any integer 0 < m ≤ 2k, by Lemma 2.13.2(

sup
t≤T

∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣
)m
≤

 d∑
i,j=1

sup
t≤T

∣∣∣∣∫ t

0
fij(Zs) dBj

s

∣∣∣∣
m

≤ (d2)m−1
d∑

i,j=1

(
sup
t≤T

∣∣∣∣∫ t

0
fij(Zs) dBj

s

∣∣∣∣
)m

Then using BDG inequalities (see Theorem 2.5.28) there exist a suitable constant γ > 0,
such that for any integer 0 < m ≤ 2k

E
(

sup
t≤T

∣∣∣∣∫ t

0
f(Zs) dBs

∣∣∣∣
)m
≤ (d2)m−1

d∑
i,j=1

E
(

sup
t≤T

∣∣∣∣∫ t

0
fij(Zs) dBj

s

∣∣∣∣
)m

≤ (d2)m−1γ
d∑

i,j=1
E
(∫ T

0
|fij(Zs)|2 ds

)m
2

≤ (d2)m−1γ
d∑

i,j=1
E
(∫ T

0
|f(Zs)|2 ds

)m
2

≤ d2mγ E
(∫ T

0
|f(Zs)|2 ds

)m
2

≤ d2mγαm E
(∫ T

0
(1 + |Zs|)2 ds

)m
2

≤ d2mγαmTm−1 E
∫ T

0
(1 + |Zs|)m ds

= d2mγαmTm−1
∫ T

0
E(1 + |Z0|)m ds

= d2mγαmTmCm

From the above estimates, for any integer 0 < m ≤ 2k

E sup
t≤T
|Zt − Z0|m ≤ 2m−1TmCm(d2mγαm + βm).
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Now P 2
k has the form (Pk(x))2 = ∑2k

m=0 amx
m with am ≥ 0, ∀m. Then

E sup
t≤T

Pk(|Zt − Z0|)2 ≤
2k∑
m=0

am E sup
t≤T
|Zt − Z0|m

≤ a0 +
2k∑
m=1

am 2m−1TmCm(d2mγαm + βm).

Hence using (5.40), we get the result.

Remark 5.3.10. We make a few observations.

(1) If the convex set C (as in (5.33)) has more than one element, then we can consider
probability measures on C which are convex combinations of Dirac measures on C.
By Theorem 5.3.4, we have the existence of infinitely many stationary solutions
corresponding to each of these probability measures. To rationalize, this may be
happening due to C being not translation invariant.

(2) We note that the set C, as in Example 5.3.5, is not compact. To see this first take p
sufficiently large so that the tempered distribution given by the function x 7→ x2 is
in S−p. Then the image of C under this tempered distribution (a continuous linear
functional on Sp) contains (0,∞), the variances of centered Gaussian densities. So C
is unbounded and non-compact.
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An Itô formula in S ′

6.1 Introduction

The Itô formula has been studied in various - and quite general - frameworks starting from
real valued processes to processes taking values in Nuclear spaces ([22,53,59,67,74,75,86,
88–90, 112]). In this chapter we prove an Itô formula which generalizes a result for con-
tinuous semimartingales and is motivated by applications to stochastic partial differential
equations driven by Lévy processes.
Let (Ω,F , (Ft), P ) be a filtered complete probability space satisfying the usual conditions.
Recall that τx, x ∈ Rd are the translation operators on the space of tempered distribu-
tions (Example 2.11.6). Let p ∈ R. Given φ ∈ S−p(Rd) and an Rd valued (Ft) adapted
continuous semimartingale Xt = (X1

t , · · · , Xd
t ), we have the following Itô formula (see

[89, Theorem 2.3]).

Theorem 6.1.1. {τXtφ} is an S−p(Rd) valued continuous semimartingale and we have the
equality in S−p−1(Rd), a.s.

τXtφ = τX0φ−
d∑
i=1

∫ t

0
∂iτXsφ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXsφ d[X i, Xj]s, t ≥ 0.

This result has been used in [90] to show the existence of a solution of some stochastic
differential equations in S ′(Rd). In the previous chapter, we have extended this result to
the case where φ is an F0 measurable S−p(Rd) valued random variable (see Theorem 5.2.2)
and then used it in Theorem 5.2.15.

The aim of the current chapter is to prove Theorem 6.1.1 for semimartingales {Xt} with
jumps. A version of this Itô formula was also proved in [112, Theorem III.1] with equality in
S ′. In [67, Theorem 3], the author has proved this formula for twice continuously (Fréchet)
differentiable functions while dealing with a single Hilbert space. Note that derivatives of
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Chapter 6. An Itô formula in S ′

φ ∈ S−p(Rd) may not be in the same space. Using the technique of regularization of E ′

valued processes, the result [67, Theorem 3] was also proved in [77, Theorem 8] in the case
of an E ′ valued continuous martingale, where E is a countably Hilbertian Nuclear space.

Given an S−p(Rd) valued norm-bounded predictable process {Gt} and an Rd valued
semimartingale {Xt}, the stochastic integral

∫ t
0 Gs dXs can be defined (see Section 2.7 and

Section 2.12). Note that for any φ ∈ S(Rd), a.s. (see Proposition 2.7.8 and Proposi-
tion 2.7.15) 〈∫ t

0
Gs dXs , φ

〉
=
∫ t

0
〈Gs , φ〉 dXs, t ≥ 0.

We exploit this property to prove an Itô formula (see Theorem 6.2.3). We apply the Itô
formula to a one-dimensional process X, which solves a stochastic differential equation
driven by a Lévy process and show the existence of a solution of a stochastic ‘partial’
integro-differential equation in the Hermite-Sobolev spaces (see Theorem 6.3.1). This is
similar to the solution obtained in [90] for continuous processes X. In Proposition 6.3.3
we identify the local time process of a real valued semimartingale as an S ′ valued process.
Most of the results in this chapter are from [7].

6.2 An Itô formula

Given φ ∈ S ′(Rd), there exists a p > 0 such that φ ∈ S−p(Rd). Let Xt = (X1
t , · · · , Xd

t ) be
an Rd valued (Ft) semimartingale with rcll paths and has the decomposition a.s.

Xt = X0 +Mt + At, t ≥ 0

where Mt = (M1
t , · · · ,Md

t ) is an Rd valued locally L2-bounded martingale and At =
(A1

t , · · · , Adt ) is an Rd valued process of finite variation (Lemma 2.5.34). Both {Mt} and
{At} have rcll paths and M0 = 0 = A0 a.s. By Lemma 2.11.7(i), {τXtφ} is an S−p(Rd)
valued process.
Recall that the process {Xt−} defined by

Xt− :=

X0, if t = 0.
lims↑tXs, if t > 0.

is predictable (see Proposition 2.5.4).

Lemma 6.2.1. Let φ,X be as above. Then for any 1 ≤ i ≤ d and 1 ≤ j ≤ d,

(i) {τXt−φ} is an S−p(Rd) valued predictable process.
(ii) {∂iτXt−φ} is an S−p− 1

2
(Rd) valued predictable process.

(iii) {∂2
ijτXt−φ} is an S−p−1(Rd) valued predictable process.
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6.2. An Itô formula

Proof. By Proposition 2.5.4, {Xt−} is predictable. Since x 7→ τxφ : Rd → S−p(Rd) is
continuous (see Lemma 2.11.7(ii)), the process {τXt−φ} is predictable.
For any 1 ≤ i ≤ d, we have τx(∂iφ) = ∂iτxφ (see Lemma 2.11.7(iii)) and ∂i : S−p(Rd) →
S−p− 1

2
(Rd) (see Lemma 2.11.4). Hence {∂iτXt−φ} is an S−p− 1

2
(Rd) valued predictable pro-

cess.
Similarly for 1 ≤ i, j ≤ d, the processes {∂2

ijτXt−φ} are S−p−1(Rd) valued predictable
processes.

Note that there exists a set Ω̃ with P (Ω̃) = 1 such that (see Corollary 2.5.41 and
Lemma 2.5.42) ∑

s≤t
| 4Xs|2 <∞, ∀t > 0, ω ∈ Ω̃.

If ω ∈ Ω̃, then there are at most countably many jumps of X on [0, t].

Lemma 6.2.2. Let φ, {Xt} be as above. Fix ω ∈ Ω̃. Fix ψ ∈ S(Rd). Then for all s ≤ t∣∣∣∣∣
〈
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ) , ψ

〉∣∣∣∣∣ ≤ C(t). |4Xs|2‖ψ‖p+1,

and hence

‖τXsφ− τXs−φ+
d∑
i=1

(4X i
s ∂iτXs−φ)‖−p−1 ≤ C(t).|4Xs|2, (6.1)

where t 7→ C(t) is a positive non-decreasing function of t. In particular,

τXtφ− τXt−φ+
d∑
i=1

(4X i
t ∂iτXt−φ) = 0, if |4Xt| = 0.

Proof. By [89, Proposition 1.4], there exists some positive integer n such that the map
x 7→ τxφ ∈ S−n(Rd) is a C2 map. For any fixed ψ ∈ S(Rd) we have x 7→ 〈τxφ , ψ〉 is a C2

map and

∂i 〈τxφ , ψ〉 = ∂i 〈φ , ψ(·+ x)〉
= 〈φ , ∂iψ(·+ x)〉
= 〈φ , τ−x∂iψ〉 = −〈∂iτxφ , ψ〉 .

For any 1 ≤ i, j ≤ d, we have ∂2
ij = ∂i∂j = ∂j∂i on S ′(Rd) and hence ∂2

ij : S−p(Rd) →
S−p−1(Rd) is a bounded linear operator (see Example 2.11.3). Then there exists a constant
α > 0 such that

‖∂2
ijθ‖−p−1 ≤ α‖θ‖−p, , ∀θ ∈ S−p(Rd). (6.2)
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Chapter 6. An Itô formula in S ′

We follow the proof of [56, Theorem 23.7] and define B(t, ω) := {x ∈ Rd : |x| ≤
sups≤t |Xs(ω)|}. Then using Taylor’s formula for the C2 map x 7→ 〈τxφ , ψ〉, we have
for all s ≤ t

∣∣∣∣∣
〈
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ) , ψ

〉∣∣∣∣∣
=
∣∣∣∣∣〈τXsφ , ψ〉 − 〈τXs−φ , ψ〉 +

d∑
i=1

〈
∂iτXs−φ , ψ

〉
4X i

s

∣∣∣∣∣
=
∣∣∣∣∣〈τXsφ , ψ〉 − 〈τXs−φ , ψ〉 −

d∑
i=1

∂i
〈
τXs−φ , ψ

〉
4X i

s

∣∣∣∣∣
≤1

2 .| 4Xs|2
 d∑
i,j=1

sup
y∈B(t,ω)

|
〈
∂2
ijτyφ , ψ

〉
|


≤1

2 .| 4Xs|2
 d∑
i,j=1

sup
y∈B(t,ω)

‖∂2
ijτyφ‖−p−1

 ‖ψ‖p+1

≤α2 .| 4Xs|2
(

sup
y∈B(t,ω)

‖τyφ‖−p
)
‖ψ‖p+1 (using (6.2)).

Define C(t, ω) := α
2

(
supy∈B(t,ω) ‖τyφ‖−p

)
. Then C(t, ω) is non-decreasing in t and for all

s ≤ t ∣∣∣∣∣
〈
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ) , ψ

〉∣∣∣∣∣ ≤ C(t). |4Xs|2‖ψ‖p+1.

From above estimate we have

‖τXsφ− τXs−φ+
d∑
i=1

(4X i
s ∂iτXs−φ)‖−p−1 ≤ C(t).|4Xs|2.

In particular τXtφ− τXt−φ+∑d
i=1(4X i

t ∂iτXt−φ) = 0 if |4Xt| = 0.

For any i, j = 1, · · · , d, let {[X i, Xj]ct} denote the continuous part of {[X i, Xj]t}. We
now prove the main result of this chapter.

Theorem 6.2.3. Let p > 0 and φ ∈ S−p(Rd). Let X = (X1, · · · , Xd) be an Rd valued
(Ft) semimartingale. Let 4X i

s denote the jump of X i
s. Then {τXtφ} is an S−p(Rd) valued

semimartingale and ∑
s≤t

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]
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6.2. An Itô formula

is a S−p−1(Rd) valued process of finite variation and we have the following equality in
S−p−1(Rd), a.s.

τXtφ = τX0φ−
d∑
i=1

∫ t

0
∂iτXs−φ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijτXs−φ d[X i, Xj]cs

+
∑
s≤t

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]
, t ≥ 0.

(6.3)

Proof. We proceed in steps.

Step 1: Let Ω̃ be as in Lemma 6.2.2. Then ω ∈ Ω̃ implies (see equation (6.1))

∑
s≤t
‖τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)‖−p−1 ≤ C(t)

∑
s≤t
|4Xs|2 <∞. (6.4)

Recall that if ω ∈ Ω̃, then there are at most countably many jumps of X on [0, t]. In
view of the above estimate we define for any t ≥ 0

Yt(ω) :=
∑
s≤t

[
τXs(ω)φ− τXs−(ω)φ+

d∑
i=1

(4X i
s(ω) ∂iτXs−(ω)φ)

]
, ω ∈ Ω̃

and set Yt(ω) := 0, ω ∈ (Ω̃)c. Then {Yt} is a well-defined S−p−1(Rd) valued (Ft)
adapted process.

Step 2: Now we show {Yt} has rcll paths and is a process of finite variation. Fix ω ∈ Ω̃. We
claim

(i) Yt− = ∑
s<t

[
τXsφ− τXs−φ+∑d

i=1(4X i
s ∂iτXs−φ)

]
, t > 0.

(ii) Yt+ = ∑
s≤t

[
τXsφ− τXs−φ+∑d

i=1(4X i
s ∂iτXs−φ)

]
= Yt, t ≥ 0.

We prove (i). Proof of (ii) is similar.
Let {tm} be an increasing sequence converging to t. Then∥∥∥∥∥∑

s<t

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]
− Ytm

∥∥∥∥∥
−p−1

=
∥∥∥∥∥ ∑
tm<s<t

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]∥∥∥∥∥
−p−1

≤
∑

tm<s<t

∥∥∥∥∥τXsφ− τXs−φ+
d∑
i=1

(4X i
s ∂iτXs−φ)

∥∥∥∥∥
−p−1

≤ C(t)
∑

tm<s<t

|4Xs|2 (using (6.1))

= C(t)
∑
s<t

| 4Xs|2 −
∑
s≤tm
| 4Xs|2
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m→∞−−−→ 0 (using Lemma 2.5.42(i)).

This proves (i). Then using (i), (ii) we have on Ω̃

4Yt = τXtφ− τXt−φ+
d∑
i=1

(4X i
t ∂iτXt−φ),

and 4Yt = 0 if 4Xt = 0. Now using (6.1), we also have
∑
s≤t
‖ 4 Ys‖−p−1 ≤ C(t)

∑
s≤t
|4Xs|2 <∞, ω ∈ Ω̃

and Yt = ∑
s≤t4Ys. We have shown {Yt} has rcll paths. Now we show that {Yt} has

paths of finite variation.
Let ω ∈ Ω̃ and t > 0. Let P = {0 = t0 < t1 < · · · < tm = t} be a partition of [0, t].
Then

m∑
i=1
‖Yti − Yti−1‖−p−1

=
m∑
i=1

∥∥∥∥∥∥
∑

ti−1<s≤ti

[
τXsφ− τXs−φ+

d∑
i=1

(4X i
s ∂iτXs−φ)

]∥∥∥∥∥∥
−p−1

≤
m∑
i=1

∑
ti−1<s≤ti

∥∥∥∥∥τXsφ− τXs−φ+
d∑
i=1

(4X i
s ∂iτXs−φ)

∥∥∥∥∥
−p−1

=
∑
s≤t

∥∥∥∥∥τXsφ− τXs−φ+
d∑
i=1

(4X i
s ∂iτXs−φ)

∥∥∥∥∥
−p−1

≤ C(t)
∑
s≤t
|4Xs|2.

Since the quantity C(t)∑s≤t |4Xs|2 is independent of the choice of the partition P,
we have {Yt} is of finite variation with

V ar[0,t](Y·) ≤ C(t)
∑
s≤t
|4Xs|2

on Ω̃.
Step 3: To complete the proof we need to verify the following equality in S−p−1(Rd), a.s. for

all t ≥ 0

Yt = τXtφ− τX0φ+
d∑
i=1

∫ t

0
∂iτXs−φ dX

i
s −

1
2

d∑
i,j=1

∫ t

0
∂2
ijτXs−φ d[X i, Xj]cs.
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First we assume that the processes {Xt−}, {[X i, Xj]ct}, i, j = 1, · · · , d are bounded.
Since ∂i : S−p(Rd) → S−p− 1

2
(Rd) is a bounded linear operator, by Lemma 2.11.7(i),

we have for all t ≥ 0, i = 1, · · · , d

‖∂iτXt−φ‖−p− 1
2
≤ C.‖τXt−φ‖−p ≤ C.Pk(|Xt−|)‖φ‖−p ≤ C ′,

where C,C ′ > 0 are appropriate constants. Similarly, there exists a constant C ′′ > 0
such that

‖∂ijτXt−φ‖−p−1 ≤ C ′′, ∀t ≥ 0, i, j = 1, · · · , d.

Hence {τXt−φ}, {∂iτXt−φ}, {∂2
ijτXt−φ} are norm-bounded predictable processes (see

Lemma 6.2.1). As per the results mentioned in the previous section, we can define
stochastic integrals

I1
t :=

d∑
i=1

∫ t

0
∂iτXs−φ dX

i
s, I2

t :=
d∑

i,j=1

∫ t

0
∂2
ijτXs−φ d[X i, Xj]cs, t ≥ 0

which are respectively S−p− 1
2
(Rd) and S−p−1(Rd) valued and have rcll paths.

For n ∈ Zd+ applying the Itô formula (see [56, Theorem 23.7]) to the C2 map x 7→
〈τxφ , hn〉 we have, a.s. for all t ≥ 0

〈τXtφ , hn〉 = 〈τX0φ , hn〉 −
d∑
i=1

∫ t

0

〈
∂iτXs−φ , hn

〉
dX i

s︸ ︷︷ ︸
=〈I1

t , hn〉

+ 1
2

d∑
i,j=1

∫ t

0

〈
∂2
ijτXs−φ , hn

〉
d[X i, Xj]cs︸ ︷︷ ︸

=〈I2
t , hn〉

(6.5)

+
∑
s≤t

[
〈τXsφ , hn〉 −

〈
τXs−φ , hn

〉
+

d∑
i=1

〈
∂iτXs−φ , hn

〉
4X i

s

]
,

where 4X i
s denotes the jump of X i

s. Now varying n in the countable set Zd+, we get
a common null set Ω̃ such that for all ω ∈ Ω \ Ω̃, for all n ∈ Zd+ and for all t ≥ 0, we
have

〈 (τXtφ− τX0φ+
d∑
i=1

∫ t

0
∂iτXs−φ dX

i
s

− 1
2

d∑
i,j=1

∫ t

0
∂2
ijτXs−φ d[X i, Xj]cs − Yt), hn 〉 = 0.

Using Proposition 2.10.2, we get the required equality in S−p−1(Rd) for semimartin-
gales {Xt} such that {Xt−}, {[X i, Xj]ct}, i, j = 1, · · · , d are bounded.

161



Chapter 6. An Itô formula in S ′

Step 4: Now suppose at least one of {Xt−}, {[X i, Xj]ct}, i, j = 1, · · · , d is not bounded. Then
define

σ̄n := inf{t ≥ 0 : |[X i, Xj]ct | ≥ n, i, j = 1, · · · , d}

and
σ̃n := inf{t ≥ 0 : |Xt| ≥ n},

where | · | represents the Euclidean norms in the appropriate space Rm (m = 1 or d).
Set σn = σ̄n ∧ σ̃n. Then {([X i, Xj]c)σnt }, i, j = 1, · · · , d are bounded.
If |X0(ω)| > n for some w, then σn(ω) = 0. Such ω does not contribute to the
integral ∑d

i=1
∫ t∧σn

0 ‖∂iτXs−ξ‖2
p− 1

2
d 〈M i〉s etc. So we may assume the processes {Xσn

t−}
are bounded. Hence a.s. in S−p−1(Rd) we have for all t ≥ 0

τXt∧σnφ =τX0φ+
d∑
i=1

∫ t∧σn

0
∂iτXs−φ dX

i
s

− 1
2

d∑
i,j=1

∫ t∧σn

0
∂2
ijτXs−φ d[X i, Xj]cs − Yt∧σn .

Letting n go to infinity we get the result.

6.3 Two applications

In this section, we apply the Itô formula 6.2.3 firstly in Theorem 6.3.1 to obtain a solution of
a certain stochastic ‘partial’ integro-differential equation in the Hermite-Sobolev spaces and
secondly, in Remark 6.3.4 to explore some connections with the technique of ‘regularization’
of random linear functionals on S(Rd). The first application is similar in spirit to the
same obtained in [90, Theorem 3.4 and Lemma 3.6] for continuous processes (also see
Theorem 5.2.15, Lemma 5.2.16 and Theorem 5.2.20).

Let p ∈ R. Let φ ∈ Sp and σ, b ∈ S−p. Define σ̄(x) := 〈σ , τxφ〉 , b̄(x) := 〈b , τxφ〉 ,∀x ∈
R. Let F,G : Sp × R → R and let F̄ , Ḡ : R × R → R be given by F̄ (x, x̃) :=
F (τxφ, x̃), Ḡ(x, x̃) := G(τxφ, x̃). Let {Bt} be a standard (Ft) Brownian motion and
let N be a Poisson process driven by a Lévy measure ν. Let Ñ denote the compensated
measure. Assume that B and N are independent. Consider the problem of existence of a
solution of the following one-dimensional equation

Xt =
∫ t

0
b̄(Xs−) ds+

∫ t

0
σ̄(Xs−) dBs

+
∫ t

0

∫
(0<|x|<1)

F̄ (Xs−, x) Ñ(dsdx) +
∫ t

0

∫
(|x|≥1)

Ḡ(Xs−, x)N(dsdx).
(6.6)
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We are following the set up of [3, Chapter 6 Section 2] and we take c = 1. Recall that this
parameter c separates the small and large jumps. One usually omits the term involving
large jumps, i.e. the term involving G, since a solution of (6.6) can be obtained from the
modified stochastic differential equation

dXt = b̄(Xt−) dt+ σ̄(Xt−) dBt +
∫

0<|x|<1
F̄ (Xt−, x) Ñ(dtdx). (6.7)

using interlacing ([3, Example 1.3.13]).
We assume conditions on σ̄, b̄, F̄ which imply the existence of solutions of equation (6.7).
For each x, y ∈ R, define ā(x, y) := σ̄(x)σ̄(y). Now assume the following two conditions.

(i) (Lipschitz condition) There exists K1 > 0 such that

|b̄(y1)− b̄(y2)|2 + |ā(y1, y1)− 2ā(y1, y2) + ā(y2, y2)|

+
∫

0<|x|<1
|F̄ (y1, x)− F̄ (y2, x)|2 ν(dx) ≤ K1 |y1 − y2|2,∀y1, y2 ∈ R.

(6.8)

(ii) (Growth condition) There exists K2 > 0 such that

|b̄(y)|2 + |ā(y, y)|+
∫

0<|x|<1
|F̄ (y, x)|2 ν(dx) ≤ K2 (1 + |y|2),∀y ∈ R. (6.9)

Under this conditions, a solution of the stochastic differential equation (6.7) exists (see
[3, Theorem 6.2.3]) and hence that of (6.6) also exists. We denote this solution of (6.6) by
{Xt}. Using the growth condition (6.9), we have∫ t

0

∫
(0<|x|<1)

|F̄ (Xs−, x)|2 ν(dx)ds ≤
∫ t

0
K2(1 + |Xs−|2) ds ≤ K2(1 + sup

s∈[0,t]
|Xs−|2)t,

and hence the integrability condition follows: a.s.∫ t

0

∫
(0<|x|<1)

|F̄ (Xs−, x)|2 ν(dx)ds <∞, ∀t ≥ 0. (6.10)

As an application of Theorem 6.2.3 we get the next result.

Theorem 6.3.1. The Sp valued process Y defined by Yt := τXtφ solves the following
stochastic differential equation with equality in Sp−1:

Yt(φ) = φ+
∫ t

0
A(Ys−(φ)) dBs +

∫ t

0
L(Ys−(φ)) ds

+
∫ t

0

∫
(0<|x|<1)

(
τF (Ys−(φ),x) − Id+ F (Ys−(φ), x) ∂

)
Ys−(φ) ν(dx) ds

+
∫ t

0

∫
(0<|x|<1)

(
τF (Ys−(φ),x) − Id

)
Ys−(φ) Ñ(dsdx)

+
∫ t

0

∫
(|x|≥1)

(
τG(Ys−(φ),x) − Id

)
Ys−(φ)N(dsdx),

(6.11)
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where the operators A,L on Sp are as follows:

Aφ := −〈σ , φ〉 ∂φ,

and
Lφ := 1

2 〈σ , φ〉
2 ∂2φ− 〈b , φ〉 ∂φ.

Proof. Observe that

4Xt = F̄ (Xt−,4Xt)1(0<|4Xt|<1) + Ḡ(Xt−,4Xt)1(|4Xt|≥1). (6.12)

From (6.12) we make two observations. Firstly, |F̄ (Xt−,4Xt)|1(0<|4Xt|<1) ≤ 1. In partic-
ular, this implies

|F̄ (Xt−,4Xt)|41(0<|4Xt|<1) ≤ |F̄ (Xt−,4Xt)|21(0<|4Xt|<1).

Secondly, we have the following simplification.

τXsφ− τXs−φ+4Xs ∂τXs−φ

= (τ4Xs − Id) τXs−φ+4Xs ∂τXs−φ

= 1(0<|4Xs|<1)
(
τF̄ (Xs−,4Xs) − Id+ F̄ (Xs−,4Xs) ∂

)
τXs−φ

+ 1(|4Xs|≥1)
(
τḠ(Xs−,4Xs) − Id

)
τXs−φ+ 1(|4Xs|≥1) Ḡ(Xs−,4Xs) ∂τXs−φ.

Using equation (6.1), we have

1(0<|4Xs|<1)

∥∥∥(τF̄ (Xs−,4Xs) − Id+ F̄ (Xs−,4Xs) ∂
)
τXs−φ

∥∥∥
−p−1

≤ C(s).1(0<|4Xs|<1) |F̄ (Xs−,4Xs)|2,

where t 7→ C(t) is a positive non-decreasing function. Then∫ t

0

∫
(0<|x|<1)

∥∥∥(τF̄ (Xs−,x) − Id+ F̄ (Xs−, x) ∂
)
τXs−φ

∥∥∥2

−p−1
ν(dx)ds

≤
∫ t

0
C(s)2

∫
(0<|x|<1)

|F̄ (Xs−, x)|4 ν(dx)ds

≤ C(t)2
∫ t

0

∫
(0<|x|<1)

|F̄ (Xs−, x)|2 ν(dx)ds <∞, (by (6.10)).

Similarly ∫ t

0

∫
(0<|x|<1)

∥∥∥(τF̄ (Xs−,x) − Id
)
τXs−φ

∥∥∥2

−p− 1
2
ν(dx)ds

≤ C̃(t)2
∫ t

0

∫
(0<|x|<1)

|F̄ (Xs−, x)|2ν(dx)ds <∞, (by (6.10)),
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where t 7→ C̃(t) is some non-decreasing function. Hence

∑
s≤t

[
τXsφ− τXs−φ+4Xs ∂τXs−φ

]
=
∫ t

0

∫
(0<|x|<1)

(
τF̄ (Xs−,x) − Id+ F̄ (Xs−, x) ∂

)
τXs−φN(dsdx)

+
∫ t

0

∫
(|x|≥1)

(
τḠ(Xs−,x) − Id

)
τXs−φN(dsdx)

+
∫ t

0

∫
(|x|≥1)

Ḡ(Xs−, x) ∂τXs−φN(dsdx)

=
∫ t

0

∫
(0<|x|<1)

(
τF̄ (Xs−,x) − Id+ F̄ (Xs−, x) ∂

)
τXs−φ Ñ(dsdx)

+
∫ t

0

∫
(0<|x|<1)

(
τF̄ (Xs−,x) − Id+ F̄ (Xs−, x) ∂

)
τXs−φ ν(dx)ds

+
∫ t

0

∫
(|x|≥1)

(
τḠ(Xs−,x) − Id

)
τXs−φN(dsdx)

+
∫ t

0

∫
(|x|≥1)

Ḡ(Xs−, x) ∂τXs−φN(dsdx).

Now by the Itô formula (Theorem 6.2.3)

τXtφ = τX0φ+
∫ t

0
A(τXs−φ) dBs +

∫ t

0
L(τXs−φ) ds

−
∫ t

0

∫
(0<|x|<1)

F̄ (Xs−, x) ∂τXs−φ Ñ(dsdx)

−
∫ t

0

∫
(|x|≥1)

Ḡ(Xs−, x) ∂τXs−φN(dsdx)

+
∑
s≤t

[
τXsφ− τXs−φ+4Xs ∂τXs−φ

]
= φ+

∫ t

0
A(τXs−φ) dBs +

∫ t

0
L(τXs−φ) ds

+
∫ t

0

∫
(0<|x|<1)

(
τF̄ (Xs−,x) − Id+ F̄ (Xs−, x) ∂

)
τXs−φ ν(dx) ds

+
∫ t

0

∫
(0<|x|<1)

(
τF̄ (Xs−,x) − Id

)
τXs−φ Ñ(dsdx)

+
∫ t

0

∫
(|x|≥1)

(
τḠ(Xs−,x) − Id

)
τXs−φN(dsdx)

Hence Yt(φ) := τXtφ solves the equation (6.11).

Remark 6.3.2. We proved the existence of a solution to equation (6.11) in the previous
theorem. Uniqueness of solutions of (6.11) will be taken up in future.
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Given a real valued semimartingale {Xt}, consider the local time process denoted by
{Lt(x)}t∈[0,∞),x∈R. Note that this process is jointly measurable in (x, t, ω) and for each
x ∈ R, {Lt(x)} is a continuous adapted process. Note that the occupation density formula
[87, p. 216, Corollary 1] (also see [88, Proposition 4 and Theorem 3]) follows from the
comparison of two versions of Itô formula in the finite dimensional case, first being the
Meyer-Itô formula [87, Chapter IV, Theorem 70] (an application of which leads to the
Tanaka formula) where local time appears and second the usual version for C2 functions.
By the occupation density formula, we have for any φ ∈ S, a.s.∫ ∞

−∞
Lt(x)φ(x) dx =

∫ t

0
φ(Xs−)d [X]cs , (6.13)

where [X] stands for [X,X] and [X]c denotes the continuous part of [X]. By [87, p. 216,
Corollary 2] a.s. ∫ ∞

−∞
Lt(x) dx =

∫ t

0
d [X]cs ,

which shows a.s. for all t, the map x 7→ Lt(x) is integrable. We now identify the local
time process in S ′. A version of this result was proved in [89, Lemma 2.1] for continuous
semimartingales X.

Proposition 6.3.3. The S ′ valued process {
∫ t

0 δXs−d [X]cs} is S−p valued for any p > 1
4 and

for each t,
∫ t

0 δXs−d [X]cs is given by the integrable function x 7→ Lt(x).

Proof. Note that for any fixed x ∈ R, the distribution δx is in S−p for any p > 1
4 (see

Proposition 2.11.14). Also τxδ0 = δx (Lemma 2.11.15). Hence by Lemma 6.2.1, {δXt−} is an
S−p valued predictable process. By Lemma 2.11.14(ii), it is also bounded. Then we have the
S−p valued process {

∫ t
0 δXs−d [X]cs}, where each of the random variables

∫ t
0 δXs−d [X]cs , t ≥ 0

is defined as a Bochner integral for any p > 1
4 .

But for any integer n ≥ 0, by (6.13) a.s. for all t ≥ 0〈∫ t

0
δXs− d [X]cs , hn

〉
=
∫ t

0

〈
δXs− , hn

〉
d [X]cs

=
∫ t

0
hn(Xs−) d [X]cs

=
∫ ∞
−∞

Lt(x)hn(x) dx

Then there exists a P null set Ω̃ such that on Ω \ Ω̃ for all integers n ≥ 0 and all t ≥ 0〈∫ t

0
δXs− d [X]cs , hn

〉
=
∫ ∞
−∞

Lt(x)hn(x) dx.

Then for each t, the S ′ valued random variable
∫ t

0 δXs−d [X]cs is given by the function
x 7→ Lt(x) (see Proposition 2.10.2).
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Remark 6.3.4. It was observed in [89, Corollary 2.5] that the Itô formula in the finite
dimensional case can be written in a ‘functional’ form. Since τxδ0 = δx (Lemma 2.11.15),
for any continuous Rd valued (Ft) adapted semimartingale {Xt}, we have a.s. (see Theo-
rem 6.1.1)

δXt = δX0 −
d∑
i=1

∫ t

0
∂iδXs dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2
ijδXs d[X i, Xj]s, t ≥ 0, (6.14)

with equality in some S−p(Rd). If φ ∈ S(Rd), then the duality φ(Xt) = 〈δXt , φ〉 together
with equation (6.14) implies the Itô formula in the finite dimensional case. Using The-
orem 6.2.3, a similar identification of the Itô formula in the finite dimensions can now
be obtained for semimartingales {Xt} with jumps. This identification can be stated in
terms of random linear functionals on S(Rd) (for the notion of random linear functionals
on Nuclear spaces, see [117, Chapter 4]). The Itô formula for a smooth function φ and a
continuous semimartingale {Xt} can be written as φ(Xt) = φ(X0) + I1

t (φ) + I2
t (φ), t ≥ 0

where
I1
t (φ) :=

d∑
i=1

∫ t

0
∂iφ(Xs) dX i

s, I2
t (φ) := 1

2

d∑
i,j=1

∫ t

0
∂2
ijφ(Xs) d[X i, Xj]s,

are random linear functionals on S(Rd). In the context of Itô’s regularization Theorem
([53, Theorem 2.3.2], [117, Theorem 4.1]), we can ask whether there exist S−q(Rd) (for
some q ∈ R) valued adapted processes {Ĩ1

t }, {Ĩ2
t } such that for any φ ∈ S(Rd), a.s t ≥ 0〈

Ĩ1
t , φ

〉
= I1

t (φ),
〈
Ĩ2
t , φ

〉
= I2

t (φ).

The discussion at the beginning of this remark answers this question in the affirmative.
This type of regularization problems have been studied in [59, Theorem 3.1.3], [77, 78]
which dealt with martingales, submartingales and certain stochastic integrals and in [85]
with semimartingales where ‘S ′(Rd) regularized’ versions were obtained. This connection
can be obtained in a more general setting. We say an S ′(Rd) valued (Ft) adapted rcll
process {Xt} is a weak semimartingale if for each φ ∈ S(Rd), {〈Xt , φ〉} is a real valued
semimartingale, i.e. a.s.

〈Xt , φ〉 = Xφ
0 +Mφ

t + Aφt , ∀t ≥ 0. (6.15)

where Xφ
0 is an F0 measurable real valued random variable, {Mφ

t } is a real valued local
martingale with Mφ

0 = 0 a.s. and {Aφt } is a real valued FV process with Aφ0 = 0 a.s.. Under
some continuity conditions of φ 7→ E(Mφ

t )2 and φ 7→ EV ar[0,t](Aφ· ), it is possible to obtain
an S−p(Rd) valued semimartingale {X̃t} such that a.s. Xt = X̃t, t ≥ 0. Similar results
can be obtained for collections of random linear functionals, e.g. {I1

t }, {I2
t } as above. A

preprint about these results is under preparation.
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tions, Communicated (2014), arXiv:1410.4633[math.PR].

[9] , Stationary solutions of stochastic partial differential equations in the space
of tempered distributions, Communicated (2014), arXiv:1412.1912[math.PR].

[10] Suprio Bhar and B. Rajeev, Differential Operators on Hermite Sobolev Spaces, To
appear in Proc. Indian Acad. Sci. Math. Sci. (2015).

[11] R. N. Bhattacharya, Criteria for recurrence and existence of invariant measures for
multidimensional diffusions, Ann. Probab. 6 (1978), no. 4, 541–553. MR 0494525 (58
#13375)

171



Bibliography

[12] Patrick Billingsley, Probability and measure, third ed., Wiley Series in Probability
and Mathematical Statistics, John Wiley & Sons Inc., New York, 1995, A Wiley-
Interscience Publication. MR 1324786 (95k:60001)

[13] Jean-Michel Bismut, A generalized formula of Itô and some other properties of
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Boston, Boston, MA, 1992, pp. 1–129. MR 1203373 (94f:60065)

[26] , Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour
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École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol.
1097, Springer, Berlin, 1984, pp. 143–303. MR 876080 (87m:60127)

[67] Hiroshi Kunita, Stochastic integrals based on martingales taking values in Hilbert
space, Nagoya Math. J. 38 (1970), 41–52. MR 0264754 (41 #9345)

[68] , Stochastic partial differential equations connected with nonlinear filtering,
Nonlinear filtering and stochastic control (Cortona, 1981), Lecture Notes in Math.,
vol. 972, Springer, Berlin, 1982, pp. 100–169. MR 705933 (85e:60068)

[69] , Stochastic differential equations and stochastic flows of homeomorphisms,
Stochastic analysis and applications, Adv. Probab. Related Topics, vol. 7, Dekker,
New York, 1984, pp. 269–291. MR 776984 (86g:58145)

[70] , Stochastic flows and stochastic differential equations, Cambridge Studies
in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997,
Reprint of the 1990 original. MR 1472487 (98e:60096)

[71] Andreas E. Kyprianou, Fluctuations of Lévy processes with applications, second ed.,
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List of symbols

|n| n1 + · · ·+ nd for any multi-index n =
(n1, · · · , nd) ∈ Zd+

|x| Standard Euclidean norm of x, when
x ∈ R or Rd

a.s. almost surely

B(Rd) The Borel σ-field on Rd.

B(0, n) {x ∈ Rd : |x| ≤ n}. The dimension
d will be understood from the context.

C Set of complex numbers

C∞(Rd) The set of real valued infinitely dif-
ferentiable functions on Rd.

δx, x ∈ Rd Dirac distributions.

∂i, i = 1, · · · , d Partial derivative operators
on S ′(Rd).

E ′(Rd) The space of compactly supported
distributions on Rd.

L= Equality in law.

(2k − 1)!! Denotes the product 1× 3×· · ·×
(2k− 1), when k is a positive integer.

H Hermite operator. See Index ‘Her-
mite operator H’ for more reference.

hn, n ∈ Zd+ Hermite functions on Rd.

1A indicator function of some measurable
set A.

〈· , ·〉p The Hermite-Sobolev inner product,
p ∈ R.

L1(Rd) The set of real valued integrable func-
tions on Rd, with respect to the
Lebesgue measure.

L2(Rd) Set of real valued square integrable
functions on Rd, with respect to the
Lebesgue measure.

〈M,N〉 Predictable quadratic variation of
real valued martingales M and N

〈M〉 Meyer process of a real valued mar-
tingale M . Shorthand for 〈M,M〉.

4X The jump process of a process X.

[X, Y ] Quadratic variation of R valued semi-
martingales X and Y .

[X] Shorthand for [X,X], when X is a
real valued semimartingale.

M 2 The vector space of real valued rcll L2

martingales.

M 2
∞ the vector space of real valued rcll L2-

bounded martingales.

M 2,c the vector space of real valued contin-
uous L2 martingales.

M 2,c
∞ the vector space of real valued contin-

uous L2-bounded martingales.
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List of Symbols

Mi Operators on S ′(Rd) given by multi-
plication by the co-ordinate functions
xi, i = 1, · · · , d. See Index ‘Multipli-
cation operators Mi’ for more refer-
ence.

X∗ supt≥0 |Xt|, when {Xt} is a real or Rd

valued stochastic process.

X∗t sups≤t |Xs|, when {Xt} is a real or Rd

valued stochastic process.

N Set of natural numbers

‖ · ‖p The Hermite-Sobolev norm, p ∈ R.

R Set of real numbers

Rd Cartesian Product R×R× · · · ×R, d
times. The d dimensional Euclidean
space.

R̂d Rd ∪ {∞}, the one point compactifi-
cation of Rd

Ŝp(Rd) Sp(Rd) ∪ {δ}, where δ is an isolated
point.

S abbreviated for S(R)

S ′ abbreviated for S ′(R)

S ′(Rd) The space of tempered distributions
on Rd.

S ′(Rd;C) Continuous linear functionals on
S(Rd;C)

S(Rd) The space of real valued rapidly de-
creasing smooth functions on Rd.

S(Rd;C) The space of C valued rapidly de-
creasing smooth functions on Rd.

Sp abbreviated for Sp(R)

Sp(Rd) Hermite-Sobolev space, Completion
of (S(Rd), ‖ · ‖p) for p ∈ R

Sp(Rd;C) Hermite-Sobolev space, Comple-
tion of (S(Rd;C), ‖ · ‖p) for p ∈ R

τx, x ∈ Rd Translation operators on S ′(Rd).

V ar[0,t](f) Total variation of a function f :
[0, t]→ B, where B is a Banach space.

Z Set of integers

Zd+ Set of multi-indices n = (n1, · · · , nd)
where ni are non-negative integers
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Index

A characterization result on Gaussian
flows, 98

Annihilation operators, 58

BDG inequalities, 22
Bochner integral, see Bochner integration
Bochner integration, 13

Cauchy problem for L∗, 92
existence and uniqueness, 108

Creation operators, 58

Decomposition of local martingales, 21
Derivative operators ∂i, 53

Adjoints ∂∗i , 73
Diffusions depending deterministically on

the initial condition, 93
Characterization, 94, 97, 99

Doob’s maximal quadratic inequality, 22
Doob-Meyer decomposition, 20

Examples of tempered distributions
Dirac distributions, 58
Distribution given by the Cosine

function, 63
Distribution given by the Heaviside

function, 62
Distribution given by the sign function,

63
Distribution given by the Sine function,

63
Distributions given by constant

functions, 60

Distributions given by integrable
functions, 61

Distributions given by multiplication,
60

Filtrations, 15
Right continuous, 15
Usual conditions, 15

Finite dimensional stochastic differential
equations

existence and uniqueness, 117, 121, 124,
126, 137

Invariant measures, see Stationary
solutions

Stationary solutions, 145, 148, 151
Finite variation process, see FV process
Fourier transform, 56
Functions of bounded variation, 12

Total variation, 12
FV process, 18, 31

Hilbert valued, 31
integrable variation, 26
locally integrable variation, 27
Real valued, 18

Gronwall’s Inequality, 66

Hermite functions, 45
Recurrence relations, 46

Hermite operator H, 57
Hermite polynomials, 45
Hermite-Sobolev spaces, 49
Hilbertian topology, 49
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Index

Infinite dimensional stochastic partial
differential equations

existence and uniqueness, 138, 144
Stationary solutions, 146, 148, 150

Itô formula, 44, 65, 113, 155, 158
A functional form, 167
Application involving Lévy processes,

163
for norms, 44, 66

Kirszbraun Theorem, 125

Lifting of finite dimensional processes, 5
Local time, 166
Localizing sequence, 17
Localizing sequence of stopping times, 17

Martingale, 18, 30
L2, 19, 30
L2-bounded, 19, 30
Hilbert valued, 30
local, 19, 30
locally L2, 19, 30
locally L2-bounded, 19, 30
locally square integrable, 19
Meyer process, 20
Quadratic variation, 21
Real valued, 18
square integrable, 19, 30

Monotonicity inequality, 71, 81, 88
for (A∗, L∗), 88, 105
for constant coefficient differential

operators, 81, 142
for differential operators with variable

coefficients, 88
interpretation in terms of C0 group of

translation operators, 83
Multi-index, 46
Multi-indices, 46

Multiplication operators Mi, 57
Adjoints M ∗

i , 85

Occupation density formula, 166
Operators on Hermite-Sobolev spaces, see

Operators on tempered
distributions52

Operators on tempered distributions
Annihilation operators, 58
Creation operators, 58
Derivative operators ∂i, 53
Fourier transform, 56
Hermite operator H, 57
Multiplication operators Mi, 57
Shift operators, 52
Translation operators τx, 55

Ornstein-Uhlenbeck diffusion, 102

Predictable σ-field, 17
Predictable process, 17, 31

Hilbert valued, 31
Real valued, 17

Predictable sets, 17
Probability space

Complete, 15
Completion, 15
Usual conditions, 15

Processes of finite variation, see FV process

Random linear functionals, 167
Regularization, 6, 167

Schwartz topology, 48
Semigroups of bounded linear operators, 66

C0 group given by translation
operators, 67

Uniformly continuous semigroup given
by matrices, 67

Semimartingale, 23, 31
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Rd valued, 25
canonical decomposition, 23
covariation, 24
Hilbert valued, 31
Purely discontinuous, 24
Quadratic variation, 24
Real valued, 23
special, 23
Weak semimartingale, 167

Shift operators, 52
Stieltjes integral, see Stieltjes integration
Stieltjes integration, 26, 31

Hilbert valued integrands, 31
Real valued integrands, 26

Stochastic integral, see Stochastic
integration

Stochastic integration, 26
Sp(Rd) valued predictable integrands,

65
Hilbert valued predictable integrands,

36, 43
Real valued predictable integrands, 27,

29
w.r.to a real L2-bounded martingale,

27, 36
w.r.to a real semimartingale, 29, 43

Stochastic process, 16
adapted, 16
continuous, 16
continuous modification, 16
Hilbert valued, 30
increasing process, 18
indistinguishable, 16
measurable, 16
modification, 16
Progressively measurable, 16
rcll, 16

rcll modification, 16
Real valued, 17
Submartingale, 19
Supermartingale, 19

Stopping time, 16
Submartingale, 19
Supermartingale, 19

Total variation, 12
Translation operators τx, 55
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