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CHAPTER

Introduction

The study of stochastic differential equations (SDEs) and the semimartingales that arise
as the solutions of these equations is central in the subject of stochastic analysis. The last
80 years have seen the birth and the subsequent growth of this subject. Topics such as
stochastic flows ([70]), evolution equations (|20,65]), stochastic filtering theory ([24,37,58,
68,[83]), stochastic control theory (]|4,/17]) have given tremendous impetus to understand
SDEs.

The development of SDEs in Euclidean spaces primarily centered on the properties
of the diffusion coefficients and the drift terms. Classical results on the existence and
uniqueness of the solutions of these equations are based on coefficients which are Lipschitz
continuous. It is well-known that locally Lipschitz coefficients lead to solutions with possi-
ble explosions. Notions of weak and strong solutions, related semigroups and corresponding
infinitesimal generators have yielded rich results. Most of these results are well-understood
and the following texts give an idea of these basic results ([21},46,50}54-56, 60, 74,82} /87,
93,/107]). Extensions of these results dealt with processes which have jumps, like Lévy
processes ([3}71,100]) and with processes which have more general state spaces. Such ex-
tensions include the notion of semimartingales ([27,56}74]) and general Markov processes
([14,94.]95,/102,/105,106]) and these have also been topics of research in their own right.

These developments in the theory of SDEs have taken place with a finite dimensional
(Euclidean) state space. But the development of stochastic partial differential equations
(SPDESs) has required an extension of this theory to infinite dimensions and in particular to
suitable Hilbert spaces. The following books and monographs give some idea of the different
directions that have been studied (]20}22,23}26}40,/59,63},64,74,/117,[120]). This thesis is
concerned with some mathematical problems that arise when an 1t6 type SDE is formulated
as an SPDE driven by the same Brownian motion. In the rest of the introduction, we give
an overview of results leading to such a formulation.



Chapter 1. Introduction

1.1 Stochastic partial differential equations

The subject of SPDEs is a relatively recent development. This subject was already present
in the theory of stochastic flows in an ‘embryo’ form (see |70, Chapter 6]). While the
classical theory of SDEs dealt with the time evolution of a single particle in a diffusive
medium and its variants thereof in filtering and control theory, several applications involv-
ing deterministic systems perturbed by noise, as described for example in [117], required
the incorporation of a spatial parameter into the SDE model to describe the effects of the
spatial dependence of the noise as well as to model the evolution of a system of particles.
SPDEs have emerged as a variant of the classical SDE model, incorporating features like
the spatial dependence of the noise mentioned above. One of the distinctive features is an
extension of the classical PDE results and techniques to situations where the physical sys-
tem described by a PDE is now subject to random disturbances, modelled by the addition
of a noise term analogous to the manner in which an It6 SDE is the perturbation of an
ODE by a diffusion term involving Brownian motion or other types of noise like Lévy pro-
cesses. A typical example is the stochastic heat equation |23, pp. 27-40]. Another recent
application to Navier-Stokes equations was considered in [103]. While the SPDE model
has drawn attention to the possibilities of a rigorous mathematical formulation of hitherto
intractable physical models, like the KPZ equation ([43]), the connections of these models
with the ‘classical’ diffusion models of It6 ([52]) or Stroock and Varadhan (|107]) have
been less well researched. On the other hand a class of stochastic processes called Super
processes ([15,[25}29,35]72,|118]) that describe the evolution of a system of (interacting)
particles are more explicitly modelled on the classical diffusion model (or more generally
motion in a Markovian set up) and are at the same time less well described by SPDE
models (see however [62,/120]).

One way of bridging the gap between the SPDE models and classical diffusion theory
is to recast the equations of classical diffusive motion in the framework of SPDEs. This
was done using the It6 formula as the principle tool, first in a series of papers [111-115]
and later from a somewhat different perspective in another set of papers [88-92]. Both
approaches used the framework of distributions to formulate the problem. The differences
in the two approaches arose in the techniques used. To proceed further we have to consider
the framework of distribution theory in which many of the results of SPDEs are formulated.
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1.2 Random processes taking values in the space of

Distributions

The development of the stochastic Calculus of variations (Malliavin Calculus, [81]) and
White noise theory (|47]) had already made the theory of distributions due to L. Schwartz
([101]) an important tool in the study of stochastic processes. Further, given the fact that
SPDEs involved both techniques from PDE and those dealing with spatially dependent
noise, it is perhaps natural that the theory of distributions is of import in this subject.
Two strands of the theory of distribution valued processes directly feed into the topic of this
thesis, viz. the theory of &'(R9) - the space of tempered distributions (or more generally
countably Hilbertian) - valued processes as developed in ([53,59]) and certain analytic
techniques like the ‘Monotonicity inequality’ ([65]) whose antecedents lie in the study of a
class of SPDEs with solutions in certain Hilbert spaces that are Sobolev spaces ([6583]).
In [53], It6 developed a theory of random processes taking values in S'(RY) or D’ ([41]).
This was further developed in [59]. The main advantage in this framework is that we
are able to use the well developed theory of stochastic integration in Hilbert spaces (|74])
and at the same time deal with general S'(R?) or D’ valued processes. Yet the techniques
developed in [22] or [74] for solving SDEs or SPDEs in a single Hilbert space are insufficient
for dealing with equations where the solutions take values in a single Hilbert space whereas
the equations hold in a different space. As mentioned above, one needs here certain analytic
techniques like the Monotonicity inequality to prove existence and uniqueness results. The
Monotonicity inequality is a close relative of the so called coercivity inequality developed
in [83] to prove existence and uniqueness results for stochastic evolution equations in the
framework of a triple of Hilbert spaces (see [96]). It is used in [65] to prove uniqueness
results for SPDEs. If the operators (A, L) respectively corresponding to the diffusion and
drift terms in an SPDE viz.

dY; = A(Y,).dB, + L(Y;) dt (1.1)

satisfy this inequality in a suitable Hilbert space, then pathwise uniqueness holds for this
equation. It is to be noted that such techniques for proving existence and uniqueness are
not available if one is dealing with equations as above in §’(R?) directly as in [112] without
using its countable Hilbertian structure.

The problem of developing an SPDE framework for the classical diffusion models of
[to-Stroock-Varadhan can now be reformulated in the countable Hilbertian framework of
S'(R%). Given the fact that for a finite dimensional diffusion {X;} its law is in some sense
determined by Ito’s formula via a martingale formulation, an important first step is to
identify {X;} with the S'(R?) valued process {dx,} via Itd’s formula. This was done in
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[89,112]. It was shown in [89] that this can actually be done in the countable Hilbertian
framework of S'(R?), arriving at an equation for Y; = dx, in the above form. As noted
earlier the special feature of such equations is that the process {Y;} takes values in one of
the Hermite-Sobolev spaces that constitute &’ (R?), viz. S,(R?) for some p € R whereas the
equation holds in a different (larger) space S,_1(R%) D S,(R?). These are real separable
Hilbert spaces (see [53]). It was also noted in [89] that dx, = Tx,(d) (Where 7,2 € R?
denotes the translation operators, see Example and in this form the results could
be stated for a general tempered distribution ¢ € S'(R?) in the form 7y,(¢) (see also [112]
for an expression for 7x,(¢) in the equivalent form given by the convolution ¢ * dx,). The
SPDE was solved in the special (linear) case when A and L were constant coefficient
differential operators in [38] using the fact that the pair (A, L) satisfied the Monotonicity
inequality, which was shown separately in [39]. The formulation of the problem in terms
of the translation operators 7,,z € R? opened the way for applying analytic techniques
based on the boundedness of these operators on the Hilbert spaces S,(R?) ([91]) and for
interpreting the expected value E(7y,®) as the convolution with the heat kernel, viz. ¢ * p,
when {X,;} is a d-dimensional Brownian motion. In particular, these provide a stochastic

representation of the well-known solutions of the heat equation (also see [5, Chapter II,
(4.14) Theorem]).

These results were extended in [92] to the case of variable coefficients with heat equation
for the Laplacian being replaced with the forward equation for the diffusion {X;}. The
results of [92] also provided an SPDE for stochastic flows generated by an Itd type SDE,
where a solution of the SPDE was built up using the ‘fundamental solutions’ {dx=}, { X7}
being the solution of the SDE generating the flow. More recently, it was shown in [90]
that solutions of SPDE , with L - a non-linear second order elliptic operator arising
in the diffusion theory and A - a suitable ‘square root of —L’, arise as the translations of
the initial value Yy(= y, say € S'(R?)) by a process {Z;(y)} satisfying a finite dimensional
SDE, i.e. Y; = 7z,4,)(y). Here the Monotonicity inequality plays an important role. The
results of [90] also provide a notion of non-linear convolution needed to make sense of
the non-linear evolution equation that arises on taking expectations in analogous to
the manner in which the usual notion of convolution appears in the solution of the heat

equation for the Laplacian.

1.3 Some salient features of our methods

In this section, we describe certain technical aspects of the ideas mentioned in the previous
sections. This thesis focuses on processes which take values in the countably Hilbertian
Nuclear space S(RY) (the space of real valued rapidly decreasing smooth functions on R9)
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or its dual S'(R¢) and we use a ‘Hilbert space approximation’ to &'(R%), viz. we work with
processes taking values in the Hermite Sobolev spaces S,(R?), which are completions of
S(R?) in the Hilbertian norms || -||,. We can describe the countably Hilbertian topology on
S(R?) via these norms, which allows us to use the machinery from the theory of stochastic
integration on Hilbert spaces to SPDEs in &'(RY).

Note that differentiation and multiplication by polynomials (more generally, multipli-
cation by smooth functions) are standard operations on &’(R?) and these are basic con-
stituents in the differential operators that one uses. A technical difficulty then arises due
to the fact that these differential operators are unbounded operators on a Hermite Sobolev
space S,(R?). One usually has to take larger spaces as the range of these operators, which
will typically be another Hermite Sobolev space. As a consequence and as observed earlier,

the following situation repeats in multiple scenario: an S,(R?) valued process satisfying a
SPDE in S,_1(R?) - which is a larger space (e.g. see [90,92]).

One approach in constructing S'(R?) valued processes as well as studying SPDEs in
S'(RY) is via a ‘lifting’ of finite dimensional processes to processes taking values in some
S,(R%). This ‘lifting” procedure is used in this thesis and we describe two methods below.

(I) The first method uses the duality of function spaces with its dual (e.g. S(R?Y) with
S'(RY), C*(R?) - the space of real valued smooth functions on R - with &'(R?) -

the space of compactly supported distributions on R¢) and can be thought of as a
‘linear’ method. If the flow { X7} generated by It6’s SDE

dXt == O'(Xt) dBt -+ b(Xt) dt, (12)

is smooth enough in the initial condition x, then we can evaluate smooth functions on
this flow. For ‘nice’ functions ¢, observe that the evaluation can be written in terms
of a duality ¢(X[) = <5ng , ¢> and this is where the identification of { X[} with
{0xz} becomes paramount. In [92], the composition yielded a continuous linear map
Xi(w) : C®°(RY) — C*=(R?). Then using the dual map X;(w) : &(R?) — &£'(R?), one
generates distribution valued processes from the range of X;. Since £'(R?) C S'(R?),
the processes generated via this method are also S'(R?) valued. We use this method
in Chapter 4 to obtain results similar to [92].

(IT1) The second method involves translation operators 7.,z € R? on &'(RY) (Exam-
ple and can be thought of as a ‘non-linear’ method. The process {7x,¢} is an
S,(R?) valued process, where {X;} is an R? valued process and ¢ € S,(R?). In an It6
formula [89, Theorem 2.3], it was shown that {7x,¢} is a continuous semimartingale,
if {X;} is so. As noted in the previous section, this method led to a correspondence
([90]) between a class of finite dimensional SDEs and a class of SPDEs in &'(R?) with

5
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deterministic initial condition in some S,(R?). We use this method in Chapter 5 to
extend the results in [90] to random initial conditions. In Chapter 6, we extend the

It6 formula [89, Theorem 2.3] where {X;} is a semimartingale with jumps.

Another approach in the construction (and also to understand the properties) of S’(R?)
valued random variables and processes - more generally processes taking values in the dual
of Nuclear spaces - uses the technique of ‘regularization’ of random linear functionals on
Nuclear spaces ([53,57,59,77-80,85]). We do not use this technique in this thesis; however
some comments regarding this technique and our work have been made in Remark [6.3.4]

1.4 A chapter-wise summary

Unless stated otherwise, (Q, F, (F;), P) will be a filtered complete probability space satis-

fying the usual conditions and {B;} a d dimensional (F;) standard Brownian motion.

In Chapter 2, we recall basic results from analysis and the theory of stochastic pro-
cesses. First we cover functions of bounded variation and Bochner integration in Sections
2 and 3 and then go on to list definitions and basic results related to real and Hilbert
valued processes in Sections 4,5,6 and 7. In Section 9, the Schwartz topology on S(RY)
([110, Chapter 25], [98, Chapter 7, Section 3], [36, Chapter 8|) is described. In Section 10
we describe a countably Hilbertian Nuclear topology on S(R%) (|41, Chapter 1 Appendix],
[53, Chapter 1.3]), which coincides with the Schwartz topology ([89, Proposition 1.1]. We
also define the Hermite Sobolev spaces, denoted by S,(R?), indexed by real numbers p
([p3, Chapter 1.3]). Using the properties of the Hermite functions described in Section 8,
we list examples of tempered distributions and operators on S’(R¢) (and in particular, on
S,(R%)) in Section 11. Section 12 covers results on stochastic integration tailored to S,(R?)
valued predictable integrands. Sections 13 and 14 contain some inequalities and results
from semigroup theory, respectively.

In Chapter 3, we prove the Monotonicity inequality for (A = (Ay,--- ,A4,), L) in ||- ||,
in two different settings.

(i) In Section 3, we prove the inequality for constant coefficient differential operators

(Theorem [3.3.1]) given by

d
Ai:—ZUjiaj, L:
j=1

d

d
Z (O'O't)ija?j - Z bz@
1=1

1,j=1

N | —

This result was already proved in [39, Theorem 2.1]. We give a new proof, which
involves a simplified computation via an identification of the adjoint of the operators
Oii=1,-++,d on S,(R?) as a sum —9; + T; where T} is a bounded linear operator
on S,(R?) (see Theorem [3.2.2).
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(ii) In Section 4, we consider the inequality when the operators A, L contain variable
coefficients, i.e. for

d
Ap = =" 0 (ort)) , Vip € S'(RY)
k=1

and

1 d

Ly = }Zl % ((o0")igt) — Zlai (b)), Vo € S'(RY)
ij= i=

where 045,b0;,1 < 4,57 < d are smooth functions with bounded derivatives. This
inequality was used in [92] to prove the uniqueness of the solution of the Cauchy
problem for L as above. We prove the inequality when o is a real d x d matrix
and b(z) := a+ Cx, Vo € R? with a € R? and C = (¢;;) is a real d x d matrix
(see Theorem [3.4.2). The proof is similar to that of Theorem and uses the
identification of the adjoint of a multiplication operator on the Hermite Sobolev
spaces (see Theorem [3.4.1]).

An important step in the proof shows the existence of some bilinear forms on S,(R?).
For example, we prove that the map (¢,v) — (0,0, Tﬂb)p is a bounded bilinear form on
(SRY, |- 1) x (S(RY), || - ||,) and hence extends to a bounded bilinear form on S,(R%) x

S,(R?) (see Lemma [3.2.5, Theorem [3.4.1)).

In Chapter 4 Section 2, we introduce and characterize a class of diffusions - that
depend deterministicically on the initial condition - given by It6’s SDE with Lipschitz
coefficients, such that the general solution is the sum of the solution starting at 0 and the
value of a deterministic function at the initial condition (see Definition [£.2.1)). We show,
under ‘nice’ conditions (Proposition Theorem that these diffusions correspond
to the coefficients given as follows.

(i) o is a real d x d matrix.
(ii) b(z) := a + Cxz, Vo € R? where a € R? and C = (c;;) is a real d x d matrix.

These coefficients generate Gaussian flows and hence the above correspondence can be
taken as characterization results on Gaussian flows in the class of flows that arise as the
strong solutions of an Ito stochastic differential equation with smooth or Lipschitz coeffi-

cients and driven by a Brownian motion {B;}.

In Section 3, continuing with these coefficients o and b, we define continuous linear
maps X;(w) : S(RY) — S(R?) (Lemma [4.3.4) and the corresponding adjoints X;(w) :
S'(RY) — S'(RY). For any ¢ € LY(RY) C S'(R?), we define an S_,(R?) valued (for an

appropriate p) continuous adapted process {Y;(¢)} with two properties, viz

(1) Yi(th) = X; () (sce equation (ITT)).
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(ii) {Y;(¢)} solves the following equation in S_, 1(R?), a.s. (see Theorem [4.3.8))

Vi) = o+ [ AW@) dB, + [ (Vi) ds, Vi 2 0

Taking expectation on both sides of the previous equation, we show that () := EY;(¢)
solves the Cauchy problem for L* with the initial condition ¢ € £!(R%). Using Monotonic-
ity inequality for (A*, L*) (Theorem , we show that both these solutions are unique.
These results are motivated by the results in [92].

In Chapter 5 Section 2, we extend the correspondence obtained in [90] to allow ran-
dom initial conditions for Y in SPDE (L.I). Let £ be an S,(R?) valued, Fy measurable,
square integrable (independent of {B,}) random variable. Let () denote the right con-
tinuous, complete filtration generated by ¢ and {B;}. Then under ‘nice’ conditions, the
SPDE

dY, = A(Y)). dB, + L(Y)) dt; Yo =¢ (13)

has a unique S,(R?) valued (Ff) adapted strong solution given by Y; = 74,(€), t > 0 (see
Theorem [5.2.15)) where {Z;} solves the SDE

dZ, = 5(Z;;€).dB, + b(Zy; €) dt;  Zy = 0.

Note that A, L, 7, b are defined in terms of o, b € S_,(R%). The hypothesis requires a certain
‘globally Lipschitz’ nature of the coefficients, which depends on £. This ‘globally Lipschitz’
condition can be further relaxed to a ‘locally Lipschitz’ condition (Theorem |5.2.20)).

In Chapter 5 Section 3, we construct stationary solutions of the infinite dimen-
sional SPDE . Given a stationary solution, say {Z;}, of some finite dimensional SDE,
we identify a subset C (see equation (5.33)) of S,(R?), which allows the ‘lifting’ of {Z,}
(Theorem . This technique has been applied to Example and Example m

In Chapter 6, we prove the following Itd formula: Let p € R. Given ¢ € S_,(R?) and
an R? valued semimartingale X; = (X}, -+, X@), we have the equality in S_, ;(R%), a.s.

T, = g — Z/ O, GdXi + - Z/ 21y, Gd[X7, X7

1]1

+> [Txﬁb —Tx, ¢+ Z(AX; aﬂxsﬁ)] , >0,
s<t i=1

where AX denotes the jump of X (Theorem [6.2.3]). If X is continuous, then the result
follows from [89, Theorem 2.3]. We apply the It6 formula to a one-dimensional process
X, which solves an SDE driven by a Lévy process and show the existence of a solution

8



1.4. A chapter-wise summary

of a stochastic ‘partial” integro-differential equation in the Hermite-Sobolev spaces (The-
orem [6.3.1)). This is similar to the solution obtained in [90] for continuous processes X.
An identification of the local time process of a real valued semimartingale as an S’ valued
process is presented in Proposition [6.3.3]

We provide a list of publications (including preprints) which constitute the material
of this thesis and a bibliography of books, monographs and research articles which have
been referenced. A list of commonly used symbols, an index of terms and topics have been
added at the end. We refer to a result due to Burkholder, Davis, Gundy (Theorem
as ‘BDG inequalities’.







CHAPTER

Preliminaries

2.1 Introduction

In this chapter, we recall basic results from analysis and the theory of stochastic processes
- which we use in this thesis. Our requirement in the context of stochastic integration
with Hilbert valued (specifically those taking values in a Hermite-Sobolev space) processes
amounts to integrating Hilbert valued predictable processes with respect to real semi-
martingales. While the stochastic integration of Hilbert valued predictable processes with
respect to Hilbert valued Wiener processes and cylindrical Wiener processes (]22,/40]) or
the stochastic integration of Hilbert valued predictable processes with respect to Hilbert
valued semimartingales ([74]) are well-known, we have been unable to locate any reference
in the literature that precisely deals with our requirement. We do not require the full gen-
erality (as in [74]) in which the results in the theory of Hilbert valued stochastic integration
are proved. We prove well-known results of stochastic integration in this context, starting
from the basic principles and this topic covers a major portion of this chapter.
Definitions and necessary results on real valued functions of bounded variation and Bochner
integration are covered in Sections 2 (we refer to [2]) and 3 (we refer to [105, pp. 267-271])
respectively. In Section 4, we recall of filtrations and stochastic processes. Section 5 and
Section 6 contain results on real valued stochastic processes and Section 7 is about Hilbert
valued processes. For these sections, we refer to [27],55,564|60% 74}, 82, 87,93].

In this thesis, we deal with processes taking values in the space of tempered distributions
(denoted by S’(R?)), in particular in an Hermite Sobolev space. In Section 8 we recall prop-
erties of the Hermite functions ([47,51,/108,[109]). Two sections, viz. Section 9 and Section
10 are devoted to study the Schwartz topology ([110, Chapter 25], [98, Chapter 7, Section 3],
[36, Chapter 8]) and a countably Hilbertian Nuclear topology (|53, Chapter 1.3], |41, Chap-
ter 1 Appendix|) on the space of rapidly decreasing smooth functions on R? denoted by
S(RY). The fact that these two topologies coincide is well-known ([89, Proposition 1.1]).

11
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Examples of tempered distributions and some operators on the Hermite Sobolev spaces
are covered in Section 11. Some of the computations viz. Lemma [2.11.16] Lemma [2.11.20]
Example and Example might be new. In Section 12, we restate some re-
sults from Section 7 for integrands taking values in the Hermite Sobolev spaces. Section
13 contains two basic inequalities including the Gronwall’s inequality (Lemma 2.13.1). In
Section 14 we cover two examples of semigroups of bounded linear operators, using the

terminology and notations from [84, Chapter 1].

2.2 Functions of bounded variation

Let a,b € R with a < b.

Definition 2.2.1 (]2, Definition 6.4]). A set of points P = {x¢, x1, - ,z,} satisfying the
inequalities
Aa=Tg<T1 < < Xp_1<xp=0>,

is called a partition of [a, b]. The collection of all possible partitions of [a, b] will be denoted
by Pla, b].

We may write P = {a =20 <2y < --- < 2,1 < x, = b} to denote a partition of [a, b].

Definition 2.2.2. (i) (]2, Definition 6.4]) Let f be a real valued function on [a,b]. If
P={a=zy <2 < - <xyp1 < x, = b} is a partition of [a,b], write Afy =
flzx) — f(ag_q) for k = 1,2,--- ,n. If there exists a positive real number M such
that >0, | A frl < M for all partitions of [a,b], then f is said to be of bounded
variation on [a, b]. We denote the sum Y-}, | A fi| by Var(P, f).

(ii) (]2, Definition 6.8]) Let f be of bounded variation on [a,b]. The real number
sup{Var(P, f) : P € Pla,b|} is called the total variation of f on the interval [a, b].
We denote this supremum by Varg(f).

Theorem 2.2.3. Let f be of bounded variation on |a,b|.
(i) ([2, Theorem 6.11]) Let ¢ € [a,b]. Then f is of bounded variation on [a,c] and on

[e,b] and we have
Var[mb](f) = Var[a,c](f) + Var[c,b}(f)-
(it) ([2, Theorem 6.12]) Let V' be defined on [a,b] as follows:

Vig) = | VTan(Difa <z b
Oifr = a.

ThenV and V — f are non-decreasing functions on [a,b]. Of course f is the difference
of V.and V — f.

12
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(1ii) (|2, Theorem 6.14]) Let V' be as in (ii). Then
a) If f is right continuous on |a,b), then so is V. The converse is also true.
b) If [ is left continuous on (a,b], then so is V. The converse is also true.
c) Every point of continuity of f is also a point of continuity of V. The converse
is also true.

Theorem 2.2.4 ((]|2, Theorem 6.13])). Let f : [a,b] — R be a function. Then f is bounded
variation on |a,b] if and only if f can be expressed as the difference of two increasing

functions.

The next result is well-known and we state it without proof.

Proposition 2.2.5. Let f : [0,00) — R be a function such that for any t > 0, f is of

bounded variation on [0,t]. Assume that f is right continuous. Then

VCLT[O,t}(f) = Supz / <;Z> —f <t(k2:n 1))

m21 1

, Vt €[0,00).

2.3 Bochner integration

In this subsection, we recall basic results on Bochner integration. Our main reference for
this subsection is [105], pp. 267-271].
Let p be an arbitrary non-negative measure on a measurable space (2, F). Let (B,| - |)

be a real separable Banach space with dual B'.

Definition 2.3.1. (i) A function X : 2 — E is said to be p-simple if X is F measurable,
(X #0) < oo and X takes on only a finite number of distinct values.
(ii) Given a p-simple function f, its integral with respect to u is the element of B given
by
E*[X] = / X(w)pldw) == Y p(X =)z
Q 2€B\{0}

Another description of E#[X] is as the unique element of B with the property that
(BY[X], A) =B*[(X, )], VA € B

(iii) If X : Q@ — B is F measurable, then so is w € Q — || X(w)| € R. We say X is p-
integrable if E#[|| X||] < co and we say X is u-locally integrable if 14X is p-integrable
for every A € F with u(A) < oo. The space of B valued p-integrable functions will
be denoted by £!(u;B).

13
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Theorem 2.3.2 ([105, Lemma 5.1.20]). For each p-integrable X : Q — B there is a unique
element E#*[X] € B such that

(B4(X], \) = BY[(X, M), VA € B
The mapping X € L' (w;B) — E*[X] € B is linear and satisfies
IEXIXT] < E*[)| X))

Finally there exists a sequence {X,,} of B valued p-simple functions with the property that
EA{)1X, — X ] == 0.

Theorem 2.3.3 ([105, Theorem 5.1.22]). Let (2, F,u) be a o finite measure space and
X :Q — B a p-locally integrable function. Then

p(X #0) =0 < E*[14X]=0,VA e F,u(A) < oc.

Assume that B is a sub o field such that p restricted to B is o finite. Then for each pu-
locally integrable X : 2 — B there is a p almost everywhere unique -locally integrable, B
measurable function Xg: € — B such that

E#[EAXB] = ]E“[ILAX], VA € B,,LL(A) < Q.
In particular, if Y : Q — B is another u-locally integrable function, then for all o, € R,
(aX + BY)g = aXp+ BYg, (u—a.c.)

Finally, || Xs| < (|X|))s p-a.e. and hence the mapping X € LY (u;B) — X € L1 (u; B) is
a linear contraction.

We call the p equivalence class of Xp’s (obtained in the previous theorem) the p con-
ditional expectation of X given B. In general, we ignore the distinction between the

equivalence class and a representative of the class. The p equivalence class may also be
denoted by E#[X|B]. If X : Q — B is p-locally integrable and C is a sub o-field of B, then

we have

EF[X|C] = E*[E*[X|B)C], (1 — a.c)

Also given any bounded real valued B measurable function Y on (€2, F, 1) we have

E'[Y X|B) = YEX[X|B], (1 — a.c.)

14
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2.4 Filtrations, Stopping times and Stochastic processes

We recall some definitions from basic probability theory.

Definition 2.4.1. (i) Let (2, F, P) be a probability space. The P completion of F is
defined to be the o-field generated by F and N, where N denotes the class of all
subsets of P-null sets in F.

(ii) The probability space (€2, F, P) is said to be complete if the P completion of F is F
itself.

We take [0,00) to be our time set. Note that we write V¢ > 0 to mean Vt € [0, 00).

Definition 2.4.2. (i) Given a probability space (Q, F, P), a filtration on [0,00) is de-
fined as a non-decreasing family of o-fields F; C F, t > 0. We denote the family by
(F2)-
(ii) Wesay (2, F, (F1), P) is a filtered probability space if (F;) is a filtration of (2, F, P).
(iii) We say a filtration (F;) is right continuous if
Fip = Fs = Fi, YVt > 0.

s>t

(iv) For any t € (0,00), F;— will denote the o field generated by U,., Fs. We also take
Fo— := Fo. Fo will denote the o-field generated by the collection U;q J.

Definition 2.4.3. A filtered complete probability space (Q, F, (F;), P) is said to satisfy
the usual conditions if

(i) Fo contains all P-null sets of F.
(ii) The filtration (F3) is right continuous.

Let (0, F, (F.), P) be a filtered probability space. Let F denote the P completion of
F and put N := {A € F : P(A) = 0}. Define F; := o{F,,N},t > 0, ie. the o field
generated by F; and N.

Lemma 2.4.4 (|56, Lemma 6.8]). Let (2, F, (F;), P) be a filtered probability space.

(i) Foy = Foy forallt > 0.
(ii) The filtration (Fi.) is the smallest right continuous and complete extension of (Fy).

Let B be a real separable Banach space with norm || - ||. Let B(B) denote the Borel o
field on B. Let (2, F, (F;), P) be a filtered complete probability space satisfying the usual

conditions.
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Definition 2.4.5. (i) We say X = {X; : ¢t € [0,00)} is a B valued stochastic process if
X is a B valued F/B(B) measurable random variable for each ¢ € [0, c0).
(ii) We say a stochastic process {X;} is (F;) adapted if X; is F;/B(B) measurable for all
t € [0, 00).
(iii) The stochastic process {X,} is called measurable, if the mapping

(t,w) — Xy(w) : ([0,00) x ©,B([0,00)) @ F) — (B, B(B))

is measurable, where B([0, 00)) denotes the Borel o-field on [0, c0).
(iv) Let {X;} be a stochastic process. A stochastic process {Y;} is said to be a modification
of {X;} if
P(X,=Y,) =1, Yt € [0,00).

(v) We say {X;} has continuous (respectively rcll) paths if a.s. the paths ¢ — X;(w) are
continuous functions (respectively right continuous function with left limits). We say
{X:} is a continuous (respectively rcll) process if it has continuous (respectively rcll)
paths.

(vi) A stochastic process {X;} is said to have a continuous (respectively rcll) modification
if there exists a stochastic process {Y;} with continuous (respectively rcll) paths and

P(X;=Y;) =1, vt €[0,00).

(vii) Two stochastic processes {X;} and {Y;} are said to be indistinguishable if
P(X, =Y, te[0,00)) = 1.

(viii) A stochastic process {X;} is progressively measurable if its restriction to Q x [0, ] is
Fi: @ B([0,t]) measurable for every ¢ > 0, where B([0,]) denotes the Borel o field on
[0,t]. Such a process is (F;) adapted.

Convention: Unless otherwise specified, we will assume the following:

(i) F=Fu.
(ii) The filtered probability space (€2, F, (F;), P) is complete and satisfies the usual con-
ditions.
(iii) Adapted processes will be with respect to the underlying filtration (F;).

Definition 2.4.6. A [0, 00| valued random variable 7 is said to be an (F;) stopping time
(or simply a stopping time if the filtration is understood from the context) if

(1 <t)eF, Vte|0,00).
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Proposition 2.4.7. (i) Let 7 and o be two (F;) stopping times. Then max{r,c} = T7Vo
and min{r,0} =7 A o are also (F;) stopping times.
(ii) Let {1,} be a sequence of (F;) stopping times. Then sup,, 7, = V,7, and inf, 7, =
AnTn are also (F;) stopping times.
Definition 2.4.8. Let {X;} be an (F;) adapted process and let 7 be an (F;) stopping
time. Define the stopped process { X7} by

X;(w) = Xt/\’T(w) (w), Vt > 0,w € €.
Definition 2.4.9. Let {X;} be an (F;) adapted process.

(i) We say {X;} has the property II locally if there exists a sequence of stopping times
{7} with 7, 1 oo and {X/"} has the property II for each n.

(ii) If {X;} has property II locally corresponding to a sequence of stopping times {7,}
with 7, T 0o, then we say {7,} is a localizing sequence of stopping times or simply a

localizing sequence.

2.5 Real valued stochastic processes

In this section, we recall some basic results involving real valued stochastic processes.

2.5.1 Predictable processes

Definition 2.5.1. In the product space € x [0, 00), we define the predictable o-field to be
the o-field generated by all real valued continuous (F;) adapted processes. Elements of this
o-field are called predictable sets and any real valued measurable function on Q x [0, 00)
(with respect to this o-field) is called a predictable process.

Lemma 2.5.2 ([56, Lemma 22.1]). The predictable o-field is generated by each of the
following classes of sets or processes:
(1) Fo x [0,00) and the sets A X (t,00) with A € Fy, t > 0.

(ii) the real valued left-continuous (F;) adapted processes.

Proposition 2.5.3 (|55, Chapter I, 2.4 Proposition]). If {X:} is a real valued predictable
process and if T is a stopping time, then {X]} is also a predictable process.

Let {X;} be an (F;) adapted process such that its paths have left limits. Then define
an (F;) adapted process {X;_} as follows:
X(], lft - 0

Xt— =
limsﬁ Xs, ift > 0.

17
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Proposition 2.5.4 ([55, Chapter I, 2.6 Proposition]). If {X;} is a real valued (F;) adapted
process with rcll paths then {X,_} is a predictable process.

2.5.2 Processes of finite variation

Definition 2.5.5. Let {A;} be a real valued (F;) adapted process with rcll paths.

(i) {A:} is an increasing process if the paths of the process, viz. t — A;(w) are non-
decreasing for almost all w and Ag = 0.

(ii) {A;} is called a finite variation process (or a process of finite variation or simply
an FV process) if almost all paths of the process are of bounded variation on each
compact interval of [0, 00). For any ¢ > 0 the total variation of {A;} will be denoted
by Varypg(A.).

Remark 2.5.6 (Regularity of paths of the total variation process). Let {A;} be an FV
process. Then the paths of the total variation process {Vary4(A.)} are a.s. non-decreasing
and in particular has left limits a.s. The paths are also a.s. right continuous (see Theorem

2.2.3(iii))). By Proposition [2.2.5] a.s.

om

Varpg(A) =sup

mzl g—1

A;TI; — Awi_y |, Vt € [0, 00).
Note that the random variables A T 1 < k < 2™ are F; measurable and hence so is
{Varjpy(A.)}. Therefore {Varpyg(A.)} is an (F;) adapted increasing process.

Theorem 2.5.7. (27, Chapter VI, 52 Theorem]) Let A be an increasing process. There
exist a continuous increasing process A°, a sequence {T,,} of stopping times (with graphs
in general not disjoint) and a sequence {\,} of constants > 0, such that

If A is predictable, the T, can be chosen predictable.

2.5.3 Martingales

Let | - | denote the Euclidean norm on R? The dimension will be understood from the
context.

Definition 2.5.8 (|74, 8.1 Definition]). An R? valued (F;) adapted stochastic process is
called an (F;) martingale (or simply a martingale, if the filtration is clear) if

(i) E|X;| < oo for all t > 0.
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(ii) For every s,t > 0 with s < ¢t and every A € F;,
E(14X,) =E(1aXy).

Proposition 2.5.9 ([74, 10.9 Theorem]). Let {X;} be a real valued (F;) martingale. Then
it has an rcll modification.

Remark 2.5.10. In the definition of a martingale the regularity of paths, viz. rcll paths is
not a requirement. But for theoretical development regularity of paths plays an important
role. Unless otherwise specified we work with continuous or rcll processes.

Definition 2.5.11. Let {X,} be an (F;) martingale.

| < o0

(i) We say {X;} is an £? martingale (or a square integrable martingale), if E|X;,
for all t > 0.
(ii) We say {X,} is an £*-bounded martingale, if sup,-,E|X;|* < co.

Definition 2.5.12. Let {X;} be a real valued (F;) adapted process. Then {X;} is called
a submartingale (respectively a supermartingale) if

(i) E|X;| < oo forallt > 0.
(ii) For every s,t > 0 with s < ¢ and every A € Fj,

E(14X;) <E(1,4X;)
(respectively E(14X) > E(14X3)).

Remark 2.5.13. Condition (ii) in Definition is often stated in terms of the condi-
tional expectation as E[X;|F;] = X almost surely.

Definition 2.5.14. Let {X;} be a real valued (F;) adapted process. It is called a local
martingale (respectively local £? martingale, locally square integrable martingale, local
submartingale) if there exists a localizing sequence {7,} such that for each n, the stopped
process {X/"} is a martingale (respectively £ martingale, square integrable martingale,

submartingale).

Proposition 2.5.15 ([56, Lemma 6.11]). Let {M;} be an R? valued martingale and con-
sider a convex function f : RY — R such that {X,} defined by X, = f(M,) is integrable
for all t. Then {X;} is a real valued submartingale. The statement remains true for real

submartingales { M.}, provided that f is also non-decreasing.

Note that z + 2% and = + |z| are convex functions on R and hence we get the next

result.
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Corollary 2.5.16. Let {M;} be a real valued square integrable martingale. Then {M}2}

and {| M|} are submartingales.

The following result is a version of the Doob-Meyer decomposition theorem due to

Meyer and Doléans.

Theorem 2.5.17 (Doob-Meyer decomposition, [56, Theorem 22.5]). A process X is a
local submartingale if and only if it has a decomposition X = M + A where M is a local
martingale and A is a locally integrable, increasing, predictable process. In that case M
and A are a.s. unique.

Lemma 2.5.18 (([74, 13.7 Corollary 1))). Every predictable right continuous martingale

18 continuous.

Proposition 2.5.19. (|87, Chapter III, Theorem 12]) A predictable local martingale M of

finite variation is a.s. constant i.e. a.s. My = My, t > 0.

Let .#* (respectively .#*¢) denote the vector space of real valued rcll £ martingales
(respectively continuous £2? martingales) with the locally convex structure defined by the
seminorms M — E|M,|?, t € [0,00). Let .#2 (respectively .#2¢) denote the vector space
of real valued rcll £%-bounded martingales (respectively continuous £?-bounded martin-
gales). Note that an £?-bounded martingale {M;} is closable, i.e. there exists an Fy

measurable random variable M., such that
M, = E[My|F], as.

The spaces .#2 can be endowed with a Hilbert space structure by considering the scalar
product (M, N) ,. :=E[MNy]. Then .#2¢ is a Hilbert subspace of .#2 (see |74, 16.4
Proposition]).

Proposition 2.5.20 (([74, 17.2 Proposition])). Let {M;} and {N,} be two real valued L
martingales. There exists (up to indistinguishability) a unique predictable F'V process {V;}
with the property that { MyNy — V;} is a martingale and Vo = 0.

Definition 2.5.21 (([74, 17.3 Definition])). If {M;} and {N;} are two real valued £? mar-
tingales, the process {V;} (obtained in the previous proposition) will denoted by {(M, N),}.
We write {(M),} instead of { (M, M),} and this process is called the Meyer process of {M;}.

Given a martingale or a local martingale {M;} we now assume M, = 0.
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Theorem 2.5.22 (Decomposition of local martingales). (/50, Lemma 25.5] or |87, Chapter
III, Theorem 25]) Given any real valued local martingale { M.}, there exist two real valued
local martingales { M|}, {M['} one of which has bounded jumps and the other is of locally

integrable variation and a.s.
M, = M, + M/, t > 0.

Lemma 2.5.23. Any real valued local martingale with bounded jumps is locally L£2-bounded.

Proof. The arguments are taken from the discussion following [87, Chapter III, Theorem
25]. Let {M;} be a local martingale with bounded jumps. Let T, := inf{t > 0: |M;| > n}.
Suppose the jumps of {M;} are bounded by a constant § > 0. Then |M\r,| < n + 5.
Hence {M,} is locally bounded and in particular, sup,oE(M;r,)* < (n + 8)*. Hence

{M,} is locally £2-bounded. O

By the structure theorem for £2 martingales (|74, 17.7 Theorem)|), for any M € .#*
(respectively .#2) there exist a continuous martingale M¢ € .#? (respectively .#2) such
that M¢, M — M¢ are orthogonal in the following sense: M¢(M — M¢) is a martingale, or
equivalently (M, M — M) = 0 (|74, 17.4 Proposition]). The process M¢ will be called
the continuous part of M and M — M€ will be called the purely discontinuous part of M
([74, 17.8 Definition], also see |27, Chapter VIII, Section 2, 43 Theorem]).

Theorem 2.5.24 (Quadratic variation of a martingale). ({74, 18.6 Theorem and 18.9
Corollary 2]) Let M, N € .#*. Then there exists (up to indistinguishability) a unique FV
process with rcll paths, denoted by {[M, N],} with the following properties.

(i) For every increasing sequence {11} of increasing subsequences of [0,00) viz. 11, :=

{0 <ty <ty <---} such that

limt, = o0, lim §(IL,) =0,

k1oo n—oo

where §(I1,,) := sup; cp, (tig1 — t;), one has

[M7 N]t = lim Z (Mtiﬂ/\t - Mti/\t)(NtiJrl/\t - Nti/\t)-
n—oo
t; €Il
(ii) MN — [M, N] is a martingale.
(iii) Let M€, N¢ denote the continuous part of M, N respectively. Then for every t

[M,N], = (M¢,N°), + 3" AM, A N, a.s.

s<t

with the series on the the right hand side being a.s. summable.
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(iv) If M is continuous, then [M, M| = (M, M).

Definition 2.5.25. Let M € .#?. Then [M, M] is called the quadratic variation process
of the martingale M. For brevity we write [M] instead of [M, M].

2.5.4 Martingale inequalities

Theorem 2.5.26 (|87, Chapter I, Theorem 20]). Let {X;} be a non-negative submartingale.
For all p > 1, we have

p p
E<sup\Xt\> < (p) sup E|.X,[?
>0 p—1) >0

Recall that if {M,;} is a real valued square integrable martingale with rcll paths, then
{|M;|} is a non-negative submartingale (see Corollary [2.5.16)). Then taking p = 2 in the
previous theorem we get the next result.

Proposition 2.5.27 (Doob’s maximal quadratic inequality). (87, p.11]) Let {M;} be a
real valued L£L?-bounded martingale with rcll paths. Then

2
E (sup\]\/[t|> < 4sup E|M,)*.
>0 >0

Next norm inequalities involving quadratic variation of a martingale are known as BDG
inequalities.

Theorem 2.5.28 (Burkholder, Davis, Gundy). (i) (/56, Proposition 15.7]) There exist
some constants ¢, € (0,00), p > 0, such that for any continuous local martingale M
with My =0

g

p > 0.

o0 !

P

¢,'E[M]3, <E (Stglg |Mt|> < ¢ [M]

(it) ([56, Theorem 25.12]) There exist some constants ¢, € (0,00), p > 1, such that for
any local martingale M with My =0

¢ 'E (M2 <
>0

p
<E <sup ]Mt|> <cE[M]2, p>1.

Remark 2.5.29. In the BDG inequalities, the constant ¢, can be chosen independent of
the martingale M (see [87, Chapter IV, Theorem 48]).
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2.5.5 Semimartingales

Definition 2.5.30. A real valued (F;) adapted process {X;} with rcll paths is called a
semimartingale if there exist a local martingale {M;} with My = 0 and an FV process {A;}
with Ayg = 0 such that a.s.

Xt:X0+Mt+At7 tZO (21)

Proposition 2.5.31. The decomposition is unique if the F'V process {A;} is pre-
dictable, i.e. if there exist a local martingale {N;} and a predictable FV process {V;} such
that a.s.

Xy =Xo+ N+ Vi, t >0,

then a.s. My = Ny, Ay =V;, t > 0.
Definition 2.5.32. A semimartingale {X,} with a decomposition a.s.
X, = Xo+ M, + Ay, t >0

where {M,} is a local martingale with My = 0 and {A;} a predictable FV process with
Ag = 0, is called a special semimartingale. We shall refer to the decomposition above as

the canonical decomposition of X.

Example 2.5.33 (Examples of special semimartingales). Any of the following two condi-

tions imply the existence of a canonical decomposition of {X;}.

(i) {X:} has bounded jumps ([87, Chapter III, Theorem 31]).
(ii) {X:} is a continuous semimartingale ([87, Chapter III, Corollary to Theorem 31]),

Lemma 2.5.34. Let {X,} be a real semimartingale. Then {X,;} has a decomposition, a.s.
Xt:X0+Mt+At,tZO

where { M} is a local L*-bounded martingale with My = 0 and {A;} is a process of finite

variation with Ay = 0.

Proof. This result is an observation pointed out during the course of the proof of [56,
Theorem 23.4].

By definition there exists a local martingale {M;} with My = 0 and a FV process {A;}
with A9 = 0 such that a.s. X; = Xo+ M; + A, t > 0. By Theorem [2.5.22] there exist local
martingales {M/}, {M]'} such that a.s. My = M} + M/, t > 0, {M,} has bounded jumps
with M) = 0 and {M]'} is of locally integrable variation with M} = 0. Then
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(i) {M/} is a local L2-bounded martingale (see Lemma [2.5.23)).
(ii) {M}'} is an FV process.

Hence a.s. Xy = Xo + M| + (M]' 4+ A;) gives the required decomposition. O

Remark 2.5.35. The decomposition of a real semimartingale observed in the previous
lemma is not necessarily unique.

Definition 2.5.36 ([56, pp.437-8]). Given two real valued semimartingales { X;} and {V;},
{X;_} and {Y;_} denote the left-continuous versions of the processes, respectively. Define
the quadratic variation [X] and the covariation [X, Y| be the ‘integration-by-parts’ formulas

[X]t L= Xt2 — Xg — 2Xt7~Xt7

1
X,Y], = X, = XY — X, Y = XY, = 3([X + V], — [X ~V],)

We list some properties of the covariation process {[X,Y],} when

Theorem 2.5.37 ([56, Theorem 23.6]). Let X, Y be two real valued semimartingales. Then
(i) [X,Y]=[X - X0, Y = Y] a.s.;

(ii) {[X]} is a.s. non-decreasing, and {[X,Y]} is a.s. symmetric and bilinear;
(iii) |[X, Y]] < [ld[X, Y]] < [X]? [Y]? as.;
(iv) ANX] = (AX)? and A[X,Y] = AX AY a.s.;
(v) [foVsdX,, Y] = [y Vsd[X,Y], a.s. for any locally bounded, predictable process {V,};
(vi) [ X7,Y]=[X",Y"| =[X,Y] a.s. for any stopping time T;
(vii) if M, N are locally L*-bounded martingales, then [M, N| has a compensator (M, N),
i.e. [M,N]—(M,N) is a local martingale;
(viii) if A has locally finite variation, then [X, A}, = > ,<; AXs A A, a.s.

Definition 2.5.38 ([56, p. 445]). A semimartingale X = M + A is said to be purely
discontinuous if there exist some local martingales M, M2, --- of locally finite variation
such that E(sup,, |M —M ",)? — 0 for every t > 0. Note that this property is independent
of the choice of the decomposition X = M + A.

Theorem 2.5.39 (Decomposition of semimartingales, Yoeurp, Meyer). ([56, p. 445]) Any
semimartingale X has an a.s. unique decomposition X = Xy + X¢+ X<, where X¢ is a

continuous local martingale with X§ = 0 and X is a purely discontinuous semimartingale.
Furthermore, [X¢] = [X]° and [Xd} = [X]? a.s.

Proposition 2.5.40 ([74, 25.5 Corollary 3]). Let {X;} be a real semimartingale. Then for
any t > 0, we have
PO (AX,)* <o0) =1

s<t
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2.5.5. Semimartingales

where AX, denotes the jump of {X;} at time s.

Let X = (X!, -+, X% be an R? valued semimartingale, i.e. each of {X*}, i =1,---,d
is a real semimartingale. Let AX, denote the jump of {X;} at time s. Then | A X,|* =
¢ (AX?)? and we have a corollary to the previous result.

Corollary 2.5.41. Let X = (X',--- , X4) be an R? valued semimartingale. Then for each
t>0 a.s.

P(Z\AXS|2<OO) =1

s<t

Let X = (X!, -+, X%) be an R? valued semimartingale and consider the set Q; = {w :
o<t | A Xs(w)]? < oo}, t > 0. Define Q =N, Q. Then P(Q) =1 and on the set Q we
have

YA X P < oo, VE> 0.

s<t
Lemma 2.5.42. Fiz w € §).

(i) Fizt > 0. Let {t,} be a strictly increasing sequence converging to t. Then

Tim 3 A X(@)P =Y A X

s<tn s<t

(i) Fizt > 0. Let {t,} be a strictly decreasing sequence converging to t. Then

im Y [ AXW]PE= Y A X (W)

n—oo
tm<s<ty t<s<t,

Proof. We only prove part (7). Proof of part (i) is similar.
Note that L, <s<p)| & Xs(w)* < | A Xy(w)]? and (t,,t) L 0. Since Y, | A X (w)]* < o0,

by the Dominated Convergence theorem, we get

> [AX W)l Lo.

tn<s<t

Since Yoo | A Xo(w)]? = Yacr, | A Xs(w) P = 324, <ot | & Xs(w)[?, part (i) follows. O

Alternative proof of Lemma[2.5.49(i) On Q, Y, | AX,|? < 0o and hence for any positive
integer n the set

1
{s:]| A Xs(w)| 2%,3<t}

is finite. Then for each n, there exists a positive integer m = m(n) such that

1
sup{s : | A X (w)| > —, s <t} < timen)-
n
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Hence
T AX@PS Y |AXW@P <Y A X W) Yne N,
s<t, Sgtm(n) s<t
|AXs(@)|25
Since
D IAX WP =sup{ > |AX(0)}
s<t n s<t,
[AXs(w)|>5
and {Y,<;, | & Xs(w)[*} is non-decreasing, we have part (7). O

2.6 Stochastic integration

Let (2, F, (F;), P) be a filtered complete probability space satisfying the usual conditions.
Unless stated otherwise stopping times or adapted processes will be with respect to the

filtration (F;).

2.6.1 Stieltjes integration

Our main reference for this subsection is [87, Chapter I, Section 7]. Let {A;} be a real valued
(F:) adapted increasing process. Now fix an w such that ¢t — A;(w) is right continuous
and non-decreasing. This function induces a measure p4(w, ds) on [0,00) (with the Borel
o field).

If f is a real valued bounded Borel function on [0, 00), then [} f(s)pa(w,ds) is well-defined
for each ¢t > 0. We denote this integral by [ f(s) dA,(w).

If F:[0,00) x Q — R is bounded and jointly measurable, then we can define the integral
[3 F(s,w)dAg(w). The map (t,w) — [y F(s,w)dA,(w) is jointly measurable and a.s. for
fixed w, t, (t,w) = [3 F(s,w)dA,(w) is right continuous.

If {A;} is a real valued (F;) adapted process of finite variation, then it can be expressed as
the difference of two increasing processes, viz. {Varp(A.)} and {Varp(A.) — As}. Then
for F' as above we define

t t t
/ F(s)dA, == / F(s)dVarp.g(A) — / F(s) d(Varg(A) — A,),
0 0 0
which is a jointly measurable integral. We may use F-A to denote the process { [y F/(s) dA,}.

Definition 2.6.1 ([87, Chapter III, Section 3]). Let {A;} be a real valued (F;) adapted
process of finite variation with Aq = 0.

(i) {A:} is of integrable variation if E [;° |dAs| < co. We denote the random variable
Io7 1dAs| by Varp«)(A.). Note that a.s. Varpe)(A.) = limy_,o Varp(A.).

26



2.6.2. Stochastic integration with respect to a real £2-bounded martingale

(ii) {A;} is of locally integrable variation if there exists a localizing sequence {T},} such
that E [;" |[dAs| < oo, for each n.

We now recall a result from [27, Chapter VI|. Note that in this reference ‘integrable’

means ‘of integrable variation’.

Proposition 2.6.2 (|27, Chapter VI, Theorem 80(a)]). Any real valued predictable process
of finite variation is of locally integrable variation.

As an application of Theorem we get the next result.

Proposition 2.6.3 (|27, Chapter VI, 53 Remarks (d)]). Let {A:} be a predictable process of
finite variation. Let {V;} be a bounded predictable process. Then {3 V, dA,} is a predictable
process.

Remark 2.6.4. If the FV process {A4;} is continuous, then one can define the integral
J3 Vi dA, for progressively measurable integrands {V;}.

2.6.2 Stochastic integration with respect to a real £2-bounded martingale

Let 42, ,,. denote the space of local £*-bounded martingales and let ‘%i,cloc denote the
subspace of .#2 ., consisting of continuous martingales. Let .#2 ,,,. denote the subspace
of M2, ,,. with initial value 0. Let M € ... Let {(M),} denote the predictable process
such that {M? — (M),} is a local martingale.
Let £ denote the class of bounded predictable step processes V' with jumps at finitely many
fixed times, viz
n
‘/t - Z nk1(7k77k+1](t)7

k=1

where 75, are stopping times and 7, are F,, measurable random variables. For such processes

define the elementary predictable integral as

t n
| VoM. = 3 (M, = Mins,).
k=1
We may use V - M to denote the process {[i V,dM,}. Let £2(M) denote the class of
real valued predictable processes {V;} such that a.s. [j V2d (M), < oo for every t > 0.
Given any (F:) adapted rcll process {X;}, we define the (F;) adapted process {X;} by
Xt* = SuPsgt |XS|

Theorem 2.6.5 ([56, Theorem 23.2]). The elementary predictable integral extends a.s.
andV € L2(M) intoV-M € M2

uniquely to a bilinear map of any M € M2 . 0.locy Such
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that if (V2- (M,)); 2 0 for some V,, € L2(M,) and t > 0, then (V, - M,); 2> 0. It has the
following additional properties, the first of which characterizes the integral:

(i) (V-M,N) =V -(M,N) a.s. for all N € 42
(it) U-(V-M)=UV)-M a.s.
(iit) AV -M)=V AM a.s.

(w) (V-M) =V -M" = Vi) M as. for any stopping time 7.

Joc*

Remark 2.6.6. If the martingale {M,} is continuous, then one can define the integral
3V, dM, for progressively measurable integrands {V;}.

Remark 2.6.7 ([60, Chapter 3, 2.11 Remark]). Let {M;} be a real valued continuous
square integrable martingale such that the sample paths ¢ — (M), (w) of the quadratic
variation process {(M),} are absolutely continuous functions of ¢t for P a.e. w. Let £ (M)

denote the set of equivalence classes of all real valued measurable (F;) adapted processes
{X;} such that

T
IE/ X2d (M), < 00, VT > 0.
0
In what follows, we refer to the processes { X} themselves as elements of Z(M). Then we
can define the process { i X, dM,} for all X € .Z(M). Note that { [/ X,dM,} is in .4,>°

and for a standard Brownian Motion {B;} we have (B), = t. Hence {5 X;dB} can be
defined for all X € Z(B).

Proposition 2.6.8. Let Z(B) be as in previous remark. Let X € £ (B).

(i) ([82, Theorem 3.2.5]) LetT > 0. Then there exists a continuous (F;) adapted stochas-
tic process {I;} such that

t
P(]t :/ XSdBS> —1,Vt e [0, 7).
0
(ii) There exists a continuous (F;) adapted stochastic process {1} such that

t
P ([t :/ X, dBS> — 1, ¥t € [0,00).
0

Proof. Part (ii) follows from part (i) by consistency of the continuous modifications. Let
{I;} and {J;} be some modifications on [0, n] and [0, m] respectively, when n, m are positive
integers with n < m. Then a.s. I, = J; for each t € [0, n]. By continuity of these processes
we conclude a.s. [} = J;, Vt € [0,n]. Using this consistency we can define a continuous

modification on [0, 00). O
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2.6.3 Stochastic integration with respect to a real semimartingale

Let {A;} be an (F;) adapted FV process with rcll paths and Ay = 0. Let £(A) denote
the space of predictable processes {V;} such that a.s. the integral [}V, dA, exists in the
Stieltjes sense, for all £ > 0.

Lemma 2.6.9 ([56, Lemma 23.3]). Let V' be a predictable process with |V |P € L(A), where
A is increasing and p > 1. Then there exist some Vi, Vs, --- € € with (|V,, = V|P- A)* -0
a.s. for allt > 0.

Lemma 2.6.10. Let {V;} be a real valued bounded predictable process. Let {M;} be an

L2-bounded martingale and { A} is a process of finite variation such that a.s.
Mt - At, \V/t S [O,T]

Then a.s.
t t
/ VSdMsz/ V,dA,, Yt € [0,T).
0 0

Proof. This result is included in the proof of Theorem 23.4 in [56]. We present the argument
for completeness sake.

The two integrals agree when V € £. For bounded and predictable V', there exists a
sequence {V(™} in £ such that (V™ —V)2. (M))* — 0 and (|V® — V|- A)* — 0 as.
Then (V™ - M), & (V- M), and (V™ - A), — (V - A), for every ¢ > 0. This proves the
required equality. O

Theorem 2.6.11 (|56, Theorem 23.4]). The L? integral V - M and the ordinary Lebesque-
Stieltjes integral extend a.s. uniquely to a bilinear mapping of any semimartingale X and
locally bounded predictable process V' into a semimartingale V - X. This mapping has the

following properties.

(i) U-(V-X)=(UV)-X a.s.
(i) AV -X)=VAX a.s.
i) (V- X)" =V -X"= Vi) X a.s. for any stopping time .
[0,7]
(iv) For any locally bounded predictable processes V,Vi,Va, -+ with V- > |V,| — 0 point-
wise, we have (V, - X); 2 0 for all t > 0.
(v) If X is a local martingale, then so is V - X.

Remark 2.6.12. If the (F;) semimartingale {X;} is continuous, then one can define the
integral [y Vi dX, for progressively measurable integrands {V;}.
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2.7 Hilbert valued processes

We have already mentioned in the introduction that we do not require results on Hilbert val-
ued stochastic integration in their full generality. Our requirement in this context amounts
to integrating Hilbert valued predictable processes with respect to real semimartingales.
Unless stated otherwise H will be a real separable Hilbert space. Let || - ||, (-, -} denote the
norm and inner product respectively and let {e, : n = 1,2,---} denote an orthonormal
basis for H. We also assume that our filtered complete probability space (2, F, (F;), P)
satisfies the usual conditions. Unless stated otherwise, adapted processes will be with re-
spect to this filtration.

In |74], spaces of martingales were defined with only right continuous paths and processes
with rcll paths are called R. R. C (regular right continuous) processes. Some of the results
there (e.g. |74, 20.5 Theorem]) are stated for martingales with right continuous paths;
however we will only need these results for martingales with rcll paths.

2.7.1 Basic definitions

Definition 2.7.1. (i) An H valued (F;) adapted stochastic process {X;} is called an
(F:) martingale (or simply a martingale, if the filtration is clear) if
a) E||X;]| < oo forall t > 0.
b) For every s,t > 0 with s < ¢t and every A € F,

E(1,X,) = E(L4X,).

(ii) Let {X;} be an (F;) martingale.
a) Wesay {X;} is an £? martingale (or a square integrable martingale), if E|| X;[|? <
oo for all ¢ > 0.
b) We say {X;} is an £*-bounded martingale, if sup,s, E[| X¢||* < oo.

(iii) Let {X;} be an H valued (F;) adapted process. It is called a local martingale (respec-
tively local £ martingale, locally £*-bounded martingale) if there exists a localizing
sequence {7,} such that for each n, the stopped process {X;"} is a martingale (re-
spectively £2 martingale, £2-bounded martingale).

Remark 2.7.2. In Section[2.3] we have pointed out the existence of conditional expectation
for integrable B valued random variables (where B is a real separable Banach space).
Therefore condition b) in the definition of an H valued martingale, can be stated in terms

of conditional expectation (see [74, 8.3 Remarks]) as follows: for all 0 < s < ¢,

X, = E[X,|F,] as.
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2.7.2. Stieltjes integration

Remark 2.7.3. In [74], most of the results have been stated for martingales which have
right continuous paths. Unless stated otherwise, in this thesis we work with martingales
which have rcll paths.

Lemma 2.7.4. Let {M,;} be an L* martingale. Then {||M;||*} is a submartingale.

Proof. Let {e, :n =1,2,---} denote an orthonormal normal basis for H. Then {(M, , e,)}
is a real valued £2 martingale for each n and hence the process {(M; , e,)°} is a real valued
submartingale.

Writing || M, (w)]|? = 5%, (My(w) , e,)” we get the result. O

Definition 2.7.5. An (F;) adapted H valued process {A;} with rcll paths is said to be a
process of finite variation (simply an FV process) if a.s. for all t > 0

n
Supz ||Atz - Ati—l” < 0
I =

where the supremum is taken over all partitions Il = {0 =, < t; < --- < t, =t} of [0,1].

Definition 2.7.6 (|74, 23.7 Definition]). An H valued process X with rcll paths is called
an (F;) semimartingale if X can be decomposed a.s. X; = X+ M; + Ay, t > 0 where M
is a locally £2-bounded martingale with My = 0 and A is an FV process with Ay = 0.

Definition 2.7.7. A function X : Q x [0, 00) — H is said to be a predictable process, if it

is measurable with respect to the predictable o field.

2.7.2 Stieltjes integration

We can proceed as in Subsection [2.6.1] Let {A4;} be a real valued FV process with Aq = 0.
We denote the total variation process of {A:} by {Vjo(A.)} (see Definition 2.5.5). Let
{G,} be an H valued predictable process such that a.s. for all ¢ > 0,

t
/0 1G]l [dAs| < oo (2.2)

We denote the space of such predictable processes by L£(A). For any G € L(A), a.s. for all
t > 0, the Stieltjes integral [ G, dA, is defined as a Bochner Integral on [0, ] with respect
to the measure |dA| (see Subsection [2.3)).

For predictable step processes {G;}, we can write down the explicit form of the inte-
gral [j G,dA, as follows. Let {G;} be a predictable step process of the form G; =
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et Litgtera)(t) ap where 0 < ¢ < tp < ---t, and a;’s are H valued F;, measurable
random variables. Then

n

¢
/0 GsdAs = Z(At/\tkH - At/\tk)ak-

k=1

Note that for any G € L(A),

t t
H/ GdA,| < [ ]Gi] A, (2.3)
0 0

Proposition 2.7.8. (i) Let G € L(A). Let K be a real separable Hilbert space and
T :H — K be a bounded linear operator. Then a.s. t >0, ng G, dA, = fot TG, dA,.
In particular, for any h € H, a.s. for allt >0

</OtGSdAS, h> :/0t<Gs, By dA,.

(ii) Let {G:} be a locally norm-bounded H valued predictable process. Let K, T be as in

part (i). Then the same conclusions are true.

Proof. Part (i) follows from the theory of Bochner integration. Fix an w such that
[y |G|l |dAs| < oo. The result is easily verified when s + G(w) is simple and then ex-
tended by continuity of 7" when G((w) converges to G (w) pointwise, where s + G (w)
are simple functions.

To prove part (ii), observe that there exists a localizing sequence {7, } such that the process
{Ji™ T(G,) dAs} is an H valued FV process, for each n. By part (i), we have a.s. for all
t>0

tATh tNTn
T ( e, dAS) _ /0 T(G,) dA,.

But a.s. 7, 1T 00 as k — oo. We get the result by letting n go to infinity in the previous
equality. For the last part of the result, we need to use the bounded linear functional
h — (h', h) and the argument is similar to that in part (7). O

We now prove a technical lemma.

Lemma 2.7.9. Let y;,ys, -+ be H wvalued rcll functions on [0,00). Suppose that the se-
quence {yn} is Cauchy in the following sense: for any fized € > 0 and for any T > 0 there
exists a positive integer N such that

sup || yn(t) — ym(®)|| <€, Yn,m > N. (2.4)
t<T

Then the following statements hold true.
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2.7.2. Stieltjes integration

(1) The function y(t) := lim, oo Yn(t), t > 0 is well-defined and hence the sequence {y,}
has a pointwise limit y.
(ii) For any T >0

n—00
— 0.

sup [[y(t) — ya (1)
¢<T
(7ii) y is rcll.

Proof. For any fixed ¢ > 0, the Cauchy condition implies that {y,(¢)} is an H valued
Cauchy sequence and hence the existence of the point-wise limit y follows from the com-
pleteness of HI.
By our hypothesis for any fixed € > 0 and for any T" > 0 there exists a positive integer N
such that

lyn(t) — ym(®)|| < €, Vn,m > N,t € [0,T].

Letting m go to infinity in the previous relation, we get
lyn(t) —y(®)]] <€, ¥n = N,t € 0,17,

which proves (i7).

Now we prove the right continuity of y. Let s, > 0 with ¢t < s <t+ 1 and let € > 0 be
arbitrarily chosen.

By our hypothesis, there exists a positive integer N such that

sup [[y(s) —yn(s)| <€, Vn > N.
s<t+1
Fix an n > N. Observe that

ly(&) = y($) < Mly(t) = yn O + [lyn (@) = yn ()] + [lynls) = y(s)]l
< 26+ [lyn(t) — yn (9]l

Since y, is right continuous, right continuity of y follows.

An argument similar to above shows the existence of left limits of the function t — y(t):
fix any ¢ > 0 and let {t,,} be a monotonically increasing sequence converging to t. Then
for positive integers k, [, n,

ly(tk) =y < Ny () = yn ()l + llyn () = yu (@) + [lyn(t) — y@)|)-

For any fixed n, the function ¢ — y,(¢) has left limits and hence existence of left limits of
the function ¢ — y(t) follows. O

Let G € L(A). Properties of the process {fi G, dA,} are pointed out in the next result.
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Proposition 2.7.10. Let G € L(A).

(i) {fs G, dA} is (F;) adapted.

(ii) { [y GsdA,} has rell paths.
(iii) If {A;} is predictable, then so is {[i Gy dA,}.
(iv) {Js GsdAS} is an FV process.

Proof. Let {e, :n=1,2,---} be an orthonormal basis. By Proposition a.s.

AtGSdAS=§</(]tGSdAS, en>en=§1(/ot<as, en) dA5> en

Note that | (Gs, e,) | < ||Gs|| and hence a.s. for all t > 0 we have

t
[ Gy enlldAy] < .
0

Then for each n we have the real valued process {fj (G, , e,) dA,} is (F;) adapted. Hence
{J§ G, dA,} is also (F;) adapted.

For part (i4), let w € © be such that [} ||G4(w)]| |dAs(w)| < oo for all ¢ > 0. We show that
t [3Gy(w) dAg(w) is rell.

Fix a positive real number 7' > 0. By Theorem [2.3.2] there exists a sequence of simple
functions {t — ¢™(t) : n=1,2,---} such that

[ 16w) = () a, )] =20,

Fix ¢ > 0 and choose a positive integer N, sufficiently large, such that [j ||Gy(w) —
g"(s)|| |[dAs(w)| < § for all n > N.

Let gV (t) = ! _, 1, hy where Ey, - -, Ej are disjoint Borel subsets of [0, 7] and hy,--- , by
are elements of H. Let R = 1+ max{|lhx|| : 1 < k <I[}. For each k € {1,--- 1}, we can
find sets Uy, which are finite unions of intervals of the form (a, ],0 < o < < T such

that
€

T
— <
|1 = 1] 1dAW)] < 5

Then
JNX® ZﬂUkth\dA W)l < /0T1|Gs<w>—gN<s>urdAs<w>|
+ [ g zﬂmhknm( )

€
<3 /Zuhknnm 1,144, (@)
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2.7.2. Stieltjes integration

€ Tl
<SR[0S s, Lyl dAw)
0 k=1

IN

€.

Continuing from the above estimate, using (22.3) we have

/Ot <GS(W) _kilﬂUkhk> dAs(w) / |G (w Z]lUkth dA(W)] < e.

sup
t<T

Since t € [0,7] + [i >t | Ty hpdA(w) is rcll, above estimate implies gives an uni-
form approximation of ¢t € [0,T] — [ Gs(w)dAs(w) in terms of rcll functions. Then

by Lemma {fs G4 dA} has rcll paths.
Proof of part (7i7) is similar to [27, Chapter VI, 53 Remarks (d)]. First assume {A4;} is an
increasing predictable process. By Theorem [2.5.7]

At - A? + Z )\nﬂ(TnSt),

where {Af} is a continuous increasing process, A, are constants and 7,, are predictable
times. Then

t t
/ G, dA, = / Gy dAS + 3 NG, Lir<n).
0 0 n

The sum >, \,G7,1(1,<) is predictable since G, is Fr, = Fr,— measurable. We now
show { i Gy dAS} is predictable. The proof is similar to part (i). We have a.s.

/OthdAi </GdA > Z(/Ot<os,en> dA§>en

n=1
By Proposition {Ji (G, , e,) dAS} is predictable for each n and hence sois { [j G, dA,}.
If {A;} is a predictable FV process, then we can express it as a difference of two predictable
increasing processes and hence { [ G, dA,} is also predictable.

We now prove part (iv). Let ¢ be a positive real number and let {0 =, < t; < --- < t, =t}
be a partition of [0,t]. Observe that

tit1 t; t
/ ’ GSdAS—/ GSdAS:/ Lo GadAy, i = 0,1, 0 — 1.
0 0 0
Then using (2.3)), we have

n—1
>
=0

tit1

Z / ]]' t tz+1
=0
—1

Z [ Vsl Gall A
=0
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t
= [ 1G.IHlaA,]
0
Since the upper bound [y ||G,|| |dA,| is independent of the partition {0 = to < t; < --- <
t, = t}, the previous inequality proves that {[j G, dA,} is an FV process. ]
2.7.3 Stochastic integration with respect to a real £2-bounded martingale

Let {M,} be a real valued (F;) adapted £?-bounded martingale with rcll paths and M, = 0.
Let {(M),} denote the predictable increasing process such that {M? — (M),} is an (F;)
martingale.

Let {G;} be an H valued predictable process such that for all ¢ > 0,

E [ Gl (M), < co. (25

We denote the space of such predictable processes by £2(M;H).

Proposition 2.7.11. Let G € L*(M;H). Then there exists a sequence of predictable step
processes G such that

t
E/ Gy — GO|2d (M), "% 0, vt > 0.
0

Proof. First we write Gy(w) = 322, g¥(w)ey, in the orthonormal basis. The convergence is
pointwise. Since {G;} is predictable, so are {gF} for all k, since gF = (G, ex). Now Define

=>_gi(we
k=1

and

W= 3 dwe

k=n+1
For each fixed k, we have gF(w)? < ||G"(t,w)||* and hence

t 2 "t
E [ (o) did), <B [G,I?d (M), < oo
0 0
Then there exists a sequence of predictable step processes { gr ’l(w) :1=1,2,---} such that
2
E/ ) — gk (w))” d (), B0, vt > 0.

Define G,y (t,w) = Sr_, g¢' (w)ex. Note that {G,,(t)} is also a predictable step process.
Then for each fixed n

t
E [ 1Gn(s,w) = Guals,w)|Pd (M), == 0, vt > 0. (2.6)
0
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2.7.3. Stochastic integration with respect to a real £2-bounded martingale

Now ||G™(s,w)|| < |Gs(w)|l, |IG™(s,w)|| =% 0 for fixed s,w and G' € L2(M;H). Hence
E/Ot 1G(w) — Gls, ) |2 d (M), = E/Ot 1G™ (s, )| d (M), 222 0, it > 0.
For any e > 0, for each ¢ > 0 there exists a positive integer n = n(t) such that
E [ 1Gy(w) — Gals,w)lPd (M), < 5.
By (2.6), for any ¢ and n = n(t), there exists a positive integer { = I(n) such that

t 9 €
E [ 1Ga(s,w) = Guals, )P d (M), < <.
0 4
Hence
! 2 ! 2
E [ G(w) = Guals, )] d (M), < 2B [ [[G.(w) = Guls, )| d (),
t
+2E [ [|Ga(s,w) = Guals,w) [Pd (1),
<,
which proves the result. 0

Definition 2.7.12. We define the stochastic integral for predictable simple processes by
t n
/0 Gy dM; = Z(Mt/\ti - MtAti,l)gz'
i=1
where n is a positive integer, to, %1, - - ,t, are real numbers satisfying 0 <ty < t; < - 1,,

G =37 Loy ) 95 9i is an H valued, F;, | measurable random variable.

Proposition 2.7.13. Let {G:},{M;} be as in the previous definition. The following are
properties of the stochastic integral defined above.

(i) {Js GydM,} is an (F;) adapted L* martingale with the isometry

t 2 t
E|| GodM,| =E [ G2 d (M), . (2.7)
0 0

(ii) { [y GsdM,} has rell paths.

Proof. Since each g¢; is F;, , measurable and {M,} is an (F;) martingale, by definition
{J§GydM,} is (F;) adapted. We prove that the stochastic integral is a martingale. Let
s,t >0 with s <t. Fixany ¢ =1,--- ,n. We claim that, a.s.

E {(th - Mt/\ti_l)gz“Fs} = (Ms/\ti - Ms/\ti—1>gi-
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We prove the result for the case t; < s. Proof of the result for the cases s < t;_; and
ti_1 < s <t; are similar.

Ift; < s, then F, | C F;, C Fs. Since g; is Fy,_, measurable and {M,} is a martingale, we
have (see the notion of conditional expectation on separable Banach spaces in Subsection

23)
E {(thei - Mt/\ti—l)gi“FS:I =K [(Mt/\ti - Mt/\ti,l)lfs} i
= (Ms/\ti - Ms/\tiq)gi-
Since a.s. E {fg G, dM, ]-"S] = Y0 E[(My,ne — Mg, at)gi| Fs], above relation implies that

the process { [y G, dM,} is a martingale. Now we show that it is square integrable. Let
t > 0. Then

t
EH/ G. dM.
0

2 n n
=K <Z(Mmti - Mt/\ti_l)gi ) Z(Mmtj - Mt/\tj_l)gj>
i=1 j=1

=K Z <9i7 9j> (Mt/\ti - MtAti,l)(Mt/\tj - thtj,l)-

,j=1

We show that the terms in the above sum are 0, if ¢ # j. We show this for the case i < j
and the proof for ¢ > j is similar.
If 1 < j, then t; <t;_1. Then

E <gia gj) (Mt/\ti - Mt/\ti,l)(Mt/\tj - Mt/\tj,l)

=K (EKQZ ) 9j> (Mt/\ti - Mt/\ti,l)(Mt/\tj - Mt/\tj,l)’fti])
= E (<g’L7 g]> (Mt/\ti - Mt/\ti,1>E[<Mt/\tj - Mt/\tjfl)’-ﬁ.ti])
— 0’

since a.s. E[(Mt/\tj — Mt/\tjfl)"ﬂi] = Mt/\ti — Mt/\ti = 0
From the above computation, we have

t 2 n
E H/O GsdM|| = EZ ||gi||2(MtAti - MtAti,l)Q
i=1
= EZ ||gi||2(<M>t/\ti - <M>tAt7:_1)
i=1
t
—E [ |G.JPd (),
< OQ.
This completes the proof of part (7). Part (i7) follows from the rcll paths of {M,}. O
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Let {M,},{G,}, {G} be as in Proposition 2.7.11] Consider the measure i3, on the
product o-field of 2 x [0,t] (for any fixed ¢t > 0) defined by

t u2
par(A x (una]) = B [ Laguna 40, = E [ 1ad (01),,

1

for any A € F,,0 < uy < up < t. From now onwards, we denote duy by dP x d (M
By the isometry (2.7)), the sequence {fi GM™ dM, : n = 1,2,---} is Cauchy in £3(Q
[0,t],dP x d (M) ;H). By |28, Theorem III.6.6] this space is complete. Now define

).

t t
/ G, dM, = lim / GO dM,.
0 n 0

Proposition 2.7.14. Let G € L?>(M;H). The following are the properties of the process
{Jp GodM.}.
(i) The definition of { [y G,dM,} does not depend on the sequence {G™}.
(ii) { [ GsdM,} is an (F;) adapted £L* martingale.
(iii) We have the isometry: E Hf(f G dM, o E Jq [|Gsl[?d (M),.
(iv) {3 Gy dM,} has an rcll modification.

Proof. To prove (i), let {G™ :n =1,2,---} and {G™ :n =1,2,---} be two sequences
such that both {[i G™MdM, : n = 1,2,---} and {[{G™dM, : n = 1,2,---} converge
to f(f GsdM,. Define a new sequence of random variables where the odd-numbered and
the even-numbered terms are from {fi G dM, : n = 1,2,---} and {[f G dM, : n =
1,2, -} respectively. This new sequence is again Cauchy in £2(Q x [0,¢],dP x d (M)).
Hence it has a limit and which in turn shows that

t t _
lim / GO dM, = lim / G dM,.
n 0 n 0

This shows the uniqueness of the limits of {fy G dM, :n =1,2,---} and {3 G™ dM, :
n=12---}
By the construction of G™ in Proposition , all the terms [; G dM, are (F;) mea-
surable and hence so is [j G, dM,. To prove {3 G, dM,} is a martingale, let 0 < s < ¢
and A € F,. Since convergence in £2(Q x [0,¢],dP x d (M)) also imply the convergence in
LY(Q x [0,t],dP x d(M)), we have

E

t t
L [ G, dMu] = lmE |14 [ G dMu}
0 n 0

— limE {ILA / e dMu]
n 0

:E[ﬂA/OSGudMu}
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Proof of the isometry in (i7i) is similar to the proof of the martingale property. We use
the same approximation along with the joint continuity of the inner product.

We now prove {fg GsdM,} has an rcll modification. Note that fg GsdM, is defined as a
limit of a Cauchy sequence { [y G™ dM, :n =1,2---}in L2(Q2x [0,t],dP xd (M) ; H). For
each n, the process { [ G™ dM,} is an £? martingale with rcll paths. By Doob’s maximal
quadratic inequality ([74, 20.6 Theorem]|), we have

t t
P <sup|| / G dn, — / GO A, || > e>
0 0

t<T

1 t t
< SEsup| [ G ans,— [ G a2
0

€2 4<T

T
< SE [ 169 — P,
€ 0

for any T, e > 0. Hence P (supKT | s G dM, — 2 GO dM,|| > e) is small for sufficiently
large n, m. This implies { fo " dM, :n =1,2,---} converges in probability uniformly in
[0,T]. In particular, we have a.s. convergence along some subsequence. By Lemma ,
this limit, say {I;}:cjo,r) has rcll paths. But for each ¢t € [0,T], I; = J3 Gy dM, a.s., since
J3 Gy dM, is the limit in £2(Qx [0,¢],dP x d (M) ;H) of {fy G dM, :n =1,2---}. Hence
{Js G, dM,} has an rcll modification. O

Let {M;} be a real valued local £%-bounded martingale with rcll paths and M, = 0.
Let {G;} be an H valued predictable process such that there exists a localizing sequence
{7} with the following property: for all ¢ > 0 and all positive integers n,

E/ G| d (M), < oo.

Without loss of generality, we assume that for the same localizing sequence {7}, {M/™}
are £2-bounded martingales. Then for each n, we can define the (F;) adapted process
{5 L(0,r,1(8)Gs dM,}, which is an £* martingale. Note that

t t
[ 10mi)GadM, = [ G,an, 23)
0 0

Using this observation we now prove a property of the processes { [i Gy dM"}.

Proposition 2.7.15. Let {G:},{M;:}, {7 : n = 1,2,---} be as above. Fiz a positive
integer m. Let K be a real separable Hilbert space and T : H — K be a bounded linear
operator. Then a.s. t >0,

t t
T / G, dMT = / TG, dM™.
0 0
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2.7.3. Stochastic integration with respect to a real £2-bounded martingale

In particular, for any h € H, a.s. for allt >0
t t
< | Goan, h> = [ (G by dngz
0 0

Proof. Note that E [j [|G||?d (M™), < oo for all t > 0. By Proposition [2.7.11] there
exists a sequence of predictable step processes {Ggl) :1=1,2,---} such that

t
E/ Gy — GOI2d (M™). 2= 0, vt > 0
0

and [§ Gy dM™ is the limit of the sequence [j GO dMT™ : 1 =1,2,--- in L2(Qx[0,t],dP x
d(M™);H). Then we can show a.s. for all ¢ > 0,

t t
T/ GO gy :/ TGO dM™ Y =1,2, - .
0 0

Since T' : H — K is a bounded linear operator, letting [ go to infinity in the previous
relation, we have a.s. t > 0,

t t
T / G, dMT = / TG, dM™.
0 0

For any fixed h € H, consider the bounded linear functional Th' := (h’, h). Hence a.s. for
allt >0

</OtGSdM;m, h> :/Ot(Gs, By dMT.

This completes the proof. n

Remark 2.7.16. Proposition 2.7.15[ was also observed in [89, Proposition 1.3] when {M,}

is continuous.

As a corollary of the Proposition [2.7.15] we get the next result.

Corollary 2.7.17. Let {G;},{M;}, {7, : n=1,2,---} be as in Proposition|2.7.18. Then
for any positive integer n, a.s. for allt > 0 we have

/ 10,0, (8)Gly AMT1 = / G, dMT™.
Proof. For any h € H. we claim that a.s. for all ¢ > 0

([ doms)Goartz= ) = ([ Goanize, 1)

First we assume the claim and complete the proof. Let {e,, : m = 1,2,---} be an orthonor-
mal basis for H. Since the processes { [y L(,5,](s)Gs dMT+1}, { [y Gs M} are determined
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by the functionals (-, e,,) ,m = 1,2,--- the proof follows from the claim.
We now prove the claim. By Proposition [2.7.15] we have a.s. for all £ > 0,

t
(o (9G. Mg = by (06 1) bz
0

tATn+1
= [ Lo ls) (G 1) dbp

tATn
= [ (G m) anpe

[e=]

tATh
_ / (G, h) dM™
0

< G, dM™ >

This completes the proof of the claim. n

Using the consistency relations obtained in the previous result, we define
t t
/ G, dM, = / Gy dM™ .t < 7,
0 0

Since 7, 1 0o, {f¢ G, dM,} is a local £? martingale with rcll paths. The next relation
follows readily from the definition.

tATh t
/ @, dM, ::/ G, dM™,t > 0.
0 0

Proposition [2.7.15 now can be extended to the next result.

Proposition 2.7.18. Let {M,} be a real valued (F;) adapted local L* martingale with rcll
paths and My = 0. Let {G,} be an H wvalued predictable process such that there exists a
localizing sequence {1} with the following property: for all t > 0 and all positive integers

n,

]E/ I1GS]2 d (M), < oo.

Let K be a real separable Hilbert space and T : H — K be a bounded linear operator. Then
a.s. t >0,

t t
T/ Gdes:/ TG, dM,.
0 0

In particular, for any h € H, a.s. for allt >0

</0tGSdMS, h> :/0t<G8, By dM,.
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2.7.4. Stochastic integration with respect to a real semimartingale

Proof. The proof uses Proposition 2.7.15, For any positive integer n, we have a.s. for all
t>0

tATn t
T/ G, dM, :T/ G, dMT
0 0
t
— / TG, dM™
0
tATh
— / TG, dM,
0
Since 7, T 0o, we have a.s. for all £ > 0
t t
T/ Gdes:/ TG, dM,.
0 0

For any fixed h € H, consider the bounded linear functional Th' := (h’, h). Hence a.s. for

all £ > 0 t t
</ GSdMS,h>:/ (G, , h) dM,.
0 0

This completes the proof. O

2.7.4 Stochastic integration with respect to a real semimartingale

Let {X;} be a real valued (F;) semimartingale. Without loss of generality we assume
Xo = 0. By Lemma [2.5.34] there exists a local £2:-bounded martingale {M;} with M, = 0
and a process of finite variation {A;} with Ay = 0 such that a.s.

Xt:Mt+At,tZO.

Let {G:} be an H valued norm-bounded (i.e. there exists a constant R > 0 such that a.s.
|Gt]|-p < R for all t) predictable process.
Define the stochastic integral of {G,} with respect to {X;} as

t t t
/GSdXS ;:/ GSdMS+/ G.dA,, t > 0.
0 0 0

Proposition 2.7.19. Let X, M, A, G be as above. Then {[fj G,dX,} is well-defined, i.e.
it does not depend on the decomposition X = M + A.

Proof. For any h € H, we have | (G, h) | < ||Gi||||h]] < R||h||. Hence {(G:, h)} is a
bounded predictable process. Using Lemma [2.6.10] we conclude that for each h € H, the
process

{/Ot<Gs,h> dMSJr/Ot(Gs,h) dAS}
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does not depend on the decomposition X = M + A. Now varying h in the orthonormal
basis {e, : n =1,2,---}, we get a common null set Q) such that for all w € Q \ Q, for all
n=1,2--- and for all £ > 0, we have by Proposition and Proposition [2.7.18]

</0tGSdMS+/OthdAS,en> :/Ot<Gs,en> dMS+/0t<GS,en> dA,.

If any element h € H satisfies (h, e,) = 0, Vn, then h = 0. Hence the above relation
identifies the H valued process { fot GsdM, + f(f GsdAg} independent of the decomposition
X=M+A. O

The next result is an application of Itd formula (|56, Theorem 15.19]) to Hilbert valued

continuous semimartingales.

Proposition 2.7.20. Let {X;} be an H valued continuous semimartingale with a decom-

position: a.s.

t t
Xt:XO—i—/ Gdeer/ V.dA,, t >0,
0 0

where {G} and {V;} are locally norm-bounded H valued predictable processes, { M} a real
valued continuous L£* martingale with My = 0 and { A} a real valued continuous F'V process
with Ag = 0. Then a.s. t >0

t t t
Il = 1XlP+2 [ (X, G dMe+2 [ (X0, V) dA + [ G2,

Proof. First we assume {G;} and {V;} are norm-bounded and {M;} is an L£?*-bounded
martingale. Let {e, : n = 1,2,---} denote an orthonormal basis for H. Then the real
valued processes {(G¢, en)}, {(V4, en)} are bounded and predictable for all n. Now a.s.
foralln =1,2,--- and for all ¢t > 0 we have

t t
(Xis ea) = (Ko, en) + [ (Gayea) dMy+ [ (Vi ea) dA
0 0

Since {X;} is continuous, {(X;, e,)} is locally bounded and predictable for each n. Using
It6 formula ([56, Theorem 15.19]) to the map x € R — z® we have a.s. foralln =1,2,---
and for all ¢t > 0

t 1 st
(X, e = (Xo. en>2+2/ (X, en) d(Xs, en) +f/ 20 (X, . e,)].
0 2 Jo
t
:<X0,6n>2+2/ (X, en) (G, en) dM,
0

+2/0t(X5,en) (Vi) en) dAS+/Ot(GS,en>2d[M]S.
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Since {G:}, {V:} are bounded predictable processes and {X;} is continuous, the processes
{(X:, Gy}, {{(X+, Vi) } are locally bounded and predictable. Then

m

1X:]1* = lim_ Zl (Xt €n)’
:%%2<X0>6n>2+%%2 Z X, en) (G, en) dM,
—|—nli_r>lcl)o2 Z X, en) ‘@,en>dAs+%i_r>n Z Gy, en)’ d[M],
_Z Xo, en) +2/ Xy, en) (G, en) dM,
+2 Otio(s,en) (Vs €en) dAs+/0ti<Gs,en>2d[M]s
n=1 =1

t t
_ ||X0|y2+2/ (X, Gy dMs+2/ (X,, V) dA,
0 0
t 2
+ [ NGz,

Now we work with G, V, M as in the statement. Let {7,,} be a localizing sequence such that
for each n, {G7"} and {V;"} are norm-bounded and {M;"} is an £*-bounded martingale.
Then {f{"™ G, dM,} is an H valued £ martingale and {[i"™ V, dA,} is an H valued FV

process. Computation similar to above now yields a.s. t > 0

tATh

tATn
X2 = IXal?+2 [ (X Gy a2 [T (XL V) dA,
tATh
+ [ G,

Since 7, T 00, letting n — oo we get the result. m

2.8 Hermite functions

Let {H,(x) : n = 0,1,---} be the Hermite polynomials on R, which are the generating

functions of exp(2xt — t?), i.e.
exp(22t — %) = Z H,(

Define the Hermite functions h,, on R as follows:

ZL‘2

hn(x) == (Q"n!\/?)_% exp <—2> H,(z), e Rin=0,1,---

45



Chapter 2. Preliminaries

Let Z1 := {n = (n1, - ,ng) : n; are non-negative integers}. We refer to the elements of Z%
as multi-indices. If n is a multi-index, we define |n| := ny+---+ng where n = (ny, - -+, ng).

For multi-indices n, define the Hermite functions h,, on R? as follows:
Bo(21, 5 24) 1= By (21) X By (12) X -+ X By, (24), V(21,29, -+ ,24) € R

where the functions h,, on the right hand side are Hermite functions on R.
Convention: This convention will be used throughout the thesis. We take h, = 0, if
n=(ny,---,ng) with some n; < 0.

Proposition 2.8.1. We list some well-known properties of the Hermite functions.

(1) (51, [108]) Hermite functions on R are uniformly bounded, i.e. there exists a con-
stant C > 0 such that

|hn(2)] < C, Ve Ryn=0,1,---.

(ii) Hermite functions on R are uniformly bounded.

(117) hn(—x) = (—=1)"h,(z), 2 € R. In particular, h, is an odd function if n is odd and is
an even function otherwise.

(iv) {hy :n € Z1} is an orthonormal basis for L*(R?) (see (109, Chapter 1]).

(v) (147, Appendiz A.5, equation (A.26)]) Hermite functions on R satisfy the following

recurrences.

n n+1
Oha(z) = |/ Shur () = | e b (a), @ € R

1
tha(e) = S hna(2) + 1 o b (a), @ € R

The d dimensional version of the recurrences is stated as follows: Let {e; : i =
1,---,d} be the standard basis vectors in R?. Let n = (ny,--- ,nq) € Z% be a multi-

index. Then
. 1]
Oihn() = |/ b, () - ,/m;hnm (@), © € R

i [n; +1
zihy(x) = %hn_ei (x) + n;rthrei(x), r € RY

(vi) Consider the Hermite functions h,, on R. Then

and

and

0, if n is odd,

(—1)%%\/%("\;%”, if n is even,

hn(0) =
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2.8. Hermite functions

where (2m — 1)!! is the double factorial given by

Ix3x---x(2m—1), ifm=1,2,---

(2m— D! =
1, ifm=0.

Proof. Proof of part (i) follows from part (i) as follows. By definition,
Bo(21, 5 2) 1= By (21) X By (w2) X - X b, (2q), V(21,22, -+ ,24) € R

where the functions h,,, on the right hand side are Hermite functions on R. Then by part
(i), we have
|ha(2)] < C% Vo € REn e 24,

This completes the proof of part (ii).
For part (iii), observe that for any ¢,z € R

i Hn(—x)::; = exp(2(—x)t — t?)

= exp(2x(—t) — (—)*)

= nZO H,(z) |

NG

Comparing coefficients of " on both sides we get H,(—x) = (—1)"H,(x), Vo € R. Since
B
We now prove part (vi). By [47, Appendix A.5, equation (A.20)] we have a recurrence

x +— exp(—%-) is an even function of x, the above relation implies part (iii).

relation of the Hermite polynomials
Hyp(z) =2zH,(z) — 2nH, 1(z),n=1,2,--- jz € R.
Putting x = 0 in above relation we get
H,1(0) = —2nH, 1(0),n=1,2,---. (2.9)

Note that Hyo(x) = 1 and Hy(z) = 2z for x € R. Then Hy(0) = 1 and H,(0) = 0. Then
using the principle of Mathematical induction we get

H,(0) = 0, ifnis odd
" (—1)325(1 x 3 x -+ x (n— 1)), ifnis even.
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Note that the empty product 1 x 3 X --- x (n — 1) for the case n = 0 is interpreted as 1.
Now by definition of the Hermite functions we have h,(0) = (2"n!\/7)~2 H,(0) and hence

0, if n is odd,
hy(0) = no1 (n—D)I . .
(—1)2 s i n s even.

[]

Convention: Any ¢ € £2(R?) can be written as ¢ = 372, Yin|=k Pnhn Where ¢, € R. We
use the following convention throughout the thesis. We take ¢, = 0, if n = (ng,- -+ ,ng)

with some n; < 0.

2.9 Schwartz topology on the space of rapidly decreasing

smooth functions
Let S(R?) be the space of smooth rapidly decreasing real valued functions on R? with

the topology given by L. Schwartz (see [110, Chapter 25], |98, Chapter 7, Section 3],
[36, Chapter 8]). The space is also called the Schwartz space. This is defined by

SRY) = {¢ € C*(R?) : Vk > 1,|max sup (1 + |z]?)*|0%¢(x)| < oo},

<k pcRrd
where
(i) |z| stands for the Euclidean norm of x € R?,
(ii) @ = (a1, - ,aq) are elements of Z% where
7% ={a = (a1, ,ay) : a;are non-negative integers}
with o] =1+ 4+ ay

(iii) 0%¢p = o7 --- 05 ¢.

The space S(R?) is a real vector space. The family of seminorms
max sup (1 + jz[)* |0 p(2)], k > 1 (2.10)

on S(R?) defines a locally convex topology and under this topology S(R?) is a Fréchet

space. From now onwards, this topology on S(R?) will be called Schwartz topology. We
state the following result without proof.

Lemma 2.9.1. Let LY(RY) (respectively L2(R?)) denote the space of real valued functions
on RY, which are integrable (respectively square integrable) with respect to the Lebesgue
measure. Then S(R?) C LY(R?) and S(R?) C L2(R?).
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Usually we consider the following collection of complex valued functions
S(R%C) = {¢ € C*(R%C) : Vk > 1, max sup (1 + jz[*)*|0% ()] < oo},
z€R4

where [0%¢(x)| stands for the absolute value of a complex number.

Let S'(R?) denote the dual of S(R?) (as a real vector space). The space S'(R?) is also
called the space of tempered distributions. In an analogous manner S'(R%; C) is defined as
the dual of S(R?;C) (as a C vector space).

2.10 Hilbertian topology on S(Rd)

Let (-, -) represent the £2(R?Y) inner product. For any fixed p € R, consider the following
formal sums

<¢7 77Z)>p = Zzo:O Z\n|:k(2k + d)2p <¢7 hn> <77Z)7 hn> ) (2 11)
18113 = S0 Tiati (2 + &) (¢, hn)’
Then (S(R?), || -|,) are pre-Hilbert spaces and completing them one obtains the separable
Hilbert spaces (S,(R?),] - ||,), known as the Hermite-Sobolev spaces (see [53, Chapter

1.3]). The collection {hE : n € Z%1} is an orthonormal basis for (S,(R%), || - |,), where
h? .= (2k + d)~Ph,, with k = |n]|.

In [53], it was shown that (S_,(R%),| - ||_,) are dual to (S,(R%),|| - ||,) for any p > 0.
Furthermore, the following are also known:

L2RT) = (So(RY), [| - llo),
for p < g, (Sy(RY), [ llg) € (Sp(RI), [I - 1)
SRY) = Mper(SpRY), || - 1I,);
S'(R?) = Uper(Sp(RY), [ - II)
The following notations will be used throughout:
(i) §,8,S, will stand for S(R), S’(R), S,(R) respectively.

(ii) Given ¢ € S(R?Y) (or S,(R%)) and ¢ € S'(R?) (or S_,(R?)), the action of ¢ on 1 will
be denoted by (¢, 1).

Since || - |-, is the norm dual to | - ||, (for p > 0) we have

1]l := sup{l{¢, V)] : [[¥ll, < 1,0 € Sp(RY)}, ¢ € S_p(RY).

and
(o, V)| < [18]l-pll¥]lp, V& € S_p(RY), ¥ € S,(RY).

The next result provides an explicit expression for the norm || - ||,..
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Lemma 2.10.1. Fizp € R and ¢, ¢ € S,(RY) C S'(R%). Then

(i) 1915 = 5320 S (2k + ) (&, ha)*.
(i) (), d), = LiZo Lpj=k(2k + ) {0, hn) (6, hn).

Proof. Suppose {¢,,} be a sequence in S converging to ¢ in S,.
We first consider the case p < 0. Recall that h,? € S_,(R%), Vn € Z%. Then

[ (Wm s h?) = (05 B ) 1< o = Wl =2 0. (%)

Again
[ (m s W), — (05 12), | < ([ — DIl RG], == 0.
But
(s BE), = (2 + A (s By = (s ?) = (Ums B?) -
Hence (¢, ht) = (¢, h,P) = (2k +d)? (¢, hy,) and

1[I = ZZ (&, W), ZZ (2k + d)* (¢, hn)*.

k=0 |n|=k k=0 |n|=k

If p > 0, observe that 1,1 € Sp(R?) = L2(R?) and
19 = ¥mllo < [l = Ymlly === 0
Now the statement (%) can be proved as follows.
[ 1?) = (0, 1) | < o = ol llo 2% 0.
Hence (¢, ht) = (¢, hyP) = (2k +d)P (¢, hy,) and
[l =30 3 (0, =30 3 k4 (0, )
k=0 |n|=k k=0 |n|=k

To prove (ii), let ¢, ¢ € S,(R?). Then

(. 80, = e+ 61— v~ ol
—ZZ 2k+d2” (W + ¢, ha)® = (W — &, hy)?)

k=0 |n|=k

_ S S @k (0, b (6, )

k=0 |n|=k

This completes the proof.
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Proposition 2.10.2. Let ¢ € S'(RY). Then ¢ is determined by the values {{¢, h,) : n €
Z1}. In particular, any element ¢ € Sp(R?) C S'(R?) (for some p € R) is determined by
the same collection.

Proof. Since S_,(R?) 1+ §'(R?) as ¢ — oo, there exists a positive real number p such that
¢ € S_p(RY). Since {h,? : n € Z%} forms an orthonormal basis for S_,(R?), we have

oSS S (o, m) hin.
k=0 |n|=k P

Then for any ¢ € S(RY), (¢, ¥) = 3320 Xpnjer (05 hy?)_, (h,”, ). Therefore the tem-
pered distribution ¢ : ¢ = (¢, ) is determined by the values {{(¢, h,?)_ :n € Z%}.

Now for any m € Z%, using Lemma [2.10.1

(0, ha?) =30 3 Ch+d) ™ (@, h) (b ha)
k=0 |n|=k
= 2fm|+d)" (¢, hn) (b o)
= 2[m[ +d)7" (¢, hm) -
Hence the values {(¢, h,?) , :n € Z4} are determined by {(¢, h,) : n € Z%} and so is
2 O

Proposition 2.10.3 ([89, Proposition 1.1]). The topology on S(R?) induced by the collec-
tion {|| - ||, :p=1,2,---} is the Schwartz topology.

Definition 2.10.4. [53, Definitions 1.1.1 and 1.1.2] Let p,q be two real numbers. Let
{e, :n=1,2,---} be an orthonormal basis for (S,(R?), ]| - |,). Then define

1

s = (S lel)

n=1
Then || - ||, is said to be Hilbert-Schmidt bounded by || - ||, if (p : ¢)us < co. We denote
this by [| - |, <ms || - llo-

Remark 2.10.5. [53| Remark 1.1.1] (p : q¢)us is well defined independently of the choice

of the orthonormal normal basis {e, }.

Proposition 2.10.6. Let p € R and ¢ > p+ 2. Then || - ||, <us || - [lq-

Proof. The collection {h% : n € Z%} forms an orthonormal basis for S,(R?) and we have

Do > lIRglE < -2k + d)*P V% {n € Z : |n| = k}.
k=0

k=0 |n|=k
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By [34, Chapter II, section 5], #{n € Z% : |n| = k} = (k+d 1) Now there exists a constant
C > 0 such that
ktd—1\ (h+d—1D(k+d—2)--(k+1)
d—1 ) (d—1)!

< C.(2k + d)*. (2.12)

Hence

Z > ||th2<CZ (2k + o)X=,

k=0 |n|=k

In particular for ¢ > p + g the series on the right hand side is finite, which proves the
statement. O

2.11 Computations with Hilbertian Norms || - ||,

2.11.1 Operators on Hermite Sobolev spaces

First we study some well-known operators on the space of tempered distributions.

Example 2.11.1 (Shift operators). Let {e; : 1 < i < d} denote the standard basis for

R?. Define linear operators U_,, U., on S,(R?) by the formal expressions: for ¢ S )
020 Xjnjk Pnlin € Sp(R?),
Uie,d =Y > bnsehn, U_eid:=> > dnc;hn. (2.13)

k=0 |n|=k k=0 |n|=k

Lemma 2.11.2. Fiz any 1 <i < d and p € R. The linear operators U,.,,U_., defined as

above are bounded linear operators on S,(R?).

Proof. Given any ¢ € S,(R?), we can write ¢ Zk 0 2jnj=k Pnfin. Then observe that
1Use, ol = Z > 2k +ad)*e,.,
k=0 |n|=k
i m | |—k+§n—n+el(2k T+ D6

2% +d \* )
< [ —
= (?J;% <2l<; +d+ 2) ) ol
which implies U,,, is a bounded operator on S,(R%). Similarly U_,, is also a bounded
operator on S,(R?). O
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Example 2.11.3 (Derivative operators). Consider the derivative maps denoted by 0; :
S(R?) — S(R?) for i = 1,--- ,d. By duality we can extend these to 9; : S'(R?) — S'(R?)
as follows: for ¢ € §'(R%),

(i), @) = — (¢, Bi9) , Vo € S(R?).

Lemma 2.11.4. Fiz 1 < i< d and p € R. Then 0; : Sp+%(Rd) — S,(RY) is a bounded
linear operator.

Proof. Since S(R?) C L2(R?) (see Lemma [2 , any element ¢ € S(R?) can be written
as & = Y320 Yjnj=k Pnhn Where ¢, € R. Then using Proposition [2.8.1{(v)| we get

06=3" Y 6u(dih)

k=0 |n|=k

- Z Z ¢n [ hn e; “ni—i_lthrei]
k=0 |n|=k 2

SDIND SRS LEREE SH S P S

k=0 |m|=k—1, k=0 |m|=k-+1,

m=n—e; m=n-+e;
o fm; +1 + 1 m

- Z Z ¢m+ei Z Z ¢m €; h

I=—1, |m|=l |m|=l

I=k—1 D

m; +1 + 1 m

- Z Z qu—i—ez Z Z ¢m e; h

=0 |m|=l =0 |m|=l

In the last step we have made use of convention that h,, = 0,¢,, = 0if |m| =1 = —1.

From the above computation we get

D=7 > {QSMW B an\/q h,. (2.14)

k=0 |n|=k

Then

2
(9Z- 2: o 2k+d 2p n e\/ﬁ_ e nl]
ol = 5 004 7 orn "5 - 6
s 2 n; + 1 7\ 2
< kzogjk@md) P9 {(%lﬁ ) (gzﬁn_ei\/;) ]

<ZZ 2k+d2p [¢n+e( )+¢ne }

k=0 |n|=k
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Since n; < |n| = k we have n; < k < 2k +d. Also n; < k <2k impliesn; + 1 <2k +1 <
2k + d. Hence using the shift operators (see Lemma [2.11.2))

10:gll; < D > (2K +d)* [¢n o, + 0n_c]

k=0 |n|=k

<[00l s, N0l s | T .

Since S(R?) is dense in SP%(R“{) in || - Hp%, above bound extends to all ¢ in Sp+%(Rd).

This completes the proof. O

For any 1 < i < d and p € R, observe that {¢ € S,(R?) : 9,9 € S,(R)} D Sp+%(Rd).
Let us denote the set {tp € S,(R?) : 9,00 € S,(RY)} by D(;,p). Then 9; : D(9;,p) C
S,(R%) — S,(R?) is a linear operator.

Lemma 2.11.5. The linear operator 9; : S,(RY) — S,(RY) with domain D(0;,p) is a closed

unbounded linear operator on S,(R?).

Proof. Let {¢m} be a sequence in D(0;,p) converging to ¢ € D(0;,p) in the norm || - ||,
Let the sequence {0;¢,,} converge to ¢ in || - ||,. To prove 0; is closed, we need to show

0;¢ = 1. Since

(i) 9,9 are elements of S,(R?),
(ii) S_,(R?) is dual to S,(R?),
(iii) {h,?} is an orthonormal basis for the space S_,(R?),

to complete the proof it is enough to show (see Proposition [2.10.2))
(06, hy?) = (¥, hy?) , ¥n € Z.
Fix n € Zi and observe that
[ h77) = (i, h?) | < ([0 = Dbyl 225 0.

Therefore (¢, h,?) = lim,, (0;¢m , h,P) = — limy, (¢, O;h,,P).

n

Now 9;h,,? € S(R?) C S_,(R?). Hence
(b 017) = (9, 0b?) < Nlom — Bllplln7 |-y 2= 0.

Continuing from above,

(0, h?) = =1im (Gm, Oih,") = = (&, 07 ) = (9, BP) -
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This shows 0; is closed.
Using Proposition [2.8.1(v)| we have for any n € Z¢ with |n| = k,

: 11
Oh? = (2k +d) 7 ( %hn_ei - ,/”Z;hnm) .

Suppose p > 0. Note that for £ > 0

Halh‘lT)LHp = (Qk + d) b ghn—ei - \l Thn-‘r&l
p
2 n; —|— 1
+ 2k +d) "% ||| ——=— e,
p 2
1 2
> (2k +d)™% W/ni;hnm

ni+1 (20k+1)+d\”

()
S M +1
-2

In particular, [|9;h}, [|2 > 52 with b, € D(9;,p). Hence 8; : S,(R?) — S,(RY) is an

unbounded operator if p > 0.

If p < 0 then observe that for £ > 1

2

= (2 +d)> %hn_

p

p

2
ol = 2k + | Tn | ok @y |
nip 2 i 2 +e;
p
n; 2 ’
> (2k +d) " ||\/ =P,
2 p
on (2(k—1)+d 2p>@
2 2k +d -2

Using arguments as in the case p > 0, we can prove 9; : S,(R?) — S,(R?) is an unbounded
operator if p < 0. ]

Example 2.11.6 (Translation operators). For z € RY, define translation operators on

Schwartz class functions by
(o f)(y) == fly — ), Vy € RY.
We can extend this operator to 7, : S'(R?) — S'(R?) by

(120, ¥) = (¢, T0¥) , V¢ € S'(RY), ¥ € S(RY).
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Lemma 2.11.7. The translation operators have the following properties:

(i) ([91, Theorem 2.1]) For x € R? and any p € R, 7, : S,(R?) — S,(R?) is a bounded
linear map. In particular, there exists a real polynomial Py of degree k = 2([|p|] + 1)
such that

1720l < PellzDlillp, Yo € Sp(RY),

where |z| denotes the standard Euclidean norm of x.
(i) Fiz ¢ € Sp(RY). Then x — 7,¢ is continuous.
(iii) For x € R and anyi=1,--- ,d we have 7,0; = 0;T,.

Proof. Proof of part (ii) is contained in the proof of [92, Proposition 3.1].
We only prove part (iii). Fix an element ¢ € S(R?). Then for y € R,

(T—e0:0)(y) = (0:)(y + ) = 0i((y + x)) = (BiT—¥)(y)
ie. 7_,00) = 0;7_,. Now for ¢ € §'(R?) and any ¢ € S(R?),
<ai7—az¢7 ?ﬂ) = - <Tz¢7 @W = - <¢a szﬁﬂﬂ)
= — (¢, O7—o¥) = (0i9, 7)) = (T.0i0, V) .

This completes the proof. O

The Hermite-Sobolev spaces S,(IR%; C) can also be defined for Schwartz space S(R?; C)
where the functions are complex valued. For any fixed p € R, the inner product and the
norm become

{(f, 908, (Ra:0) "= Lieo 2ojnj=k (2K + )7 (S ) (g Ta) (2.15)

Hf”?SP(Rd;(C) = ZZO:O Z\n\:k(2k + d)Qp |<f7 h’n) |2

where || is the absolute value in the complex plane. If T € S'(R%C) is such that
(T, ¢) € R, Vo € S(R?) then we have

17N, ko = 1T gl (2.16)
since (T, h,), n € Z} are real.

Example 2.11.8 (Fourier transform). Consider the Fourier transform of ¢ € S(R%; C)
defined by

3= ()" [t

We list some well-known properties of the Fourier transform.
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(i) 7: S(R% C) — S(RY; C) is a continuous linear onto map. By duality, we can define the
Fourier transform of tempered distributions: let ¢ € &'(R%), then define ¢ € &'(R%)
by

(4, 6)=(v, ), ¢ € S(RY).
(ii) For ¢,¢ € S(R%C), m = ¢t where ¢ * ¢ denotes the convolution given by
¢ % (x) = Jaa d(y)¥(x — y) dy.
(iii) Note that (see [47, Appendix A.5, equation (A.27)])

m / e~ TR (y) dy = (—i)"hn(z), Vi € R.

Then for any n = (ny,-++ ,nq) € Z% and x = (21, -+ ,xq4) € R?

I
Ve ~ N
B
3
F

e " hn1 (yl) dyl) . (\/ﬁ /R e hnd (yd) dyd)
— 0" ) hny (1) -+ (=) o (2a)

This implies ~ : S,(R?%; C) — S,(R% C) is an onto isometry, i.e.

17|l s,rec) = IT]| s, (me:0)- (2.17)

Example 2.11.9 (Multiplication operators). Consider the multiplication operators .#;, i =
1,--+ ,d defined by

(M) (x) = 2:0(2), ¢ € SRY), 2 = (x1,--- ,1q4) € R

By duality these operators can be extended to .#; : S'(RY) — S'(R?Y). Using arguments
as in Lemma [2.11.4] and the recurrence formula in Proposition [2.8.1v)| we can show .#; :
Spv 1 (RY) — S,(R?) are bounded linear operators, for any p € R. Using arguments as in
Lemma [2.11.5] we can show .Z; : S,(R?) — S,(R?) are closed unbounded linear operators
on S,(RY).

Example 2.11.10 (Hermite operator). For ¢ € S(R?) define H : S(R?) — S(R?) by (see
[109, Chapter 1, page 2] and [91} section 3])

Hg¢ := fj(//ﬂ —
i=1
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which can also be written as (|z|? — A)¢. Tt is well-known that
Hh, = (2k + d)h,, (2.18)
where |n| = k for any multi-index n = (ny,--- ,ng4). In particular, H is a positive operator

on L*(RY).
For p € R, define

HP ¢ = i ST 2k +d)? (¢, ) B

k=0 |n|=k

Example 2.11.11 (Creation and Annihilation operators). For 1 < i < d, define the
Creation operators by

Afd = (M~ D)9, o € S(RY)
and the Annihilation operators by
A7 ¢ = (M + D¢, & € S(RY).
Proposition 2.11.12 ([91, Proposition 3.1]). Some properties of the operators H, Aj | A;

are listed below.

(i) For any p,q € R, [[H2]l,, = |8l V6 € S(RY). Consequently, B = S,(R%) —
S,—»(RY) extends as a linear isometry. Moreover this linear map is onto.

(i) H= YL (A7 A + AT A7).

2.11.2 Some tempered distributions
Example 2.11.13 (Dirac distributions). Fix z € R? and define the Dirac distribution §,
by
{0z, ¢) = d(x), Yo € S(RY).
0z € S'(RY) since | (3, @) | < supega [p(y)]-

The following result is an important property of the Dirac distributions.

Proposition 2.11.14 ([92, Theorem 4.1]). (i) Let x € RY. Then 6, € S_,(R?) for any
p> 4. Further if p> 4, then limy_e0 ||62]]—p = 0.
(ii) Let vy € ZL. Letp > 2+ 1. Then

sup [|076,]|—p < o0.
z€Rd

In particular, for any p > %, there exists a constant C' = C(p) > 0 such that ||0,]|—, <
C, Vz € R
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We point out a well-known property of Dirac distributions. This property will be used
in Chapter 6.

Lemma 2.11.15. For any x € R, 7,80 = 6,.

Proof. For any ¢ € S(R?),

(200, @) = (00, T-20) = (0o, O(- + @) = d(x) = (0, @) -

Hence the required equality follows. n

We explicitly compute the norm of a Dirac distribution.

2
1 1
Lemma 2.11.16. ||50|\%% = ;750 (Z) .

Proof. Using Lemma [2.10.1} we have

o0

oo, = 3520+ 1)1 {6, B
n= 0
z_j (2n +1)""h,(0)? (2.19)
1 & 1 2m — 1)I1?
= \/— Z JT—— (« QO') ) , (see Proposition [2.8.1|(vi))

n:2m

Call a,, := 4m1+1%, m=20,1,---. Then ag = 1 and

Uper  AmA+1 (2m+ DI 2m!
A, _4m+5<(2m—1)!!> (2m + 2)!
Cdm+12m+1 (m+g)(m+ )
S Am+52m+2 (m+2)(m+1)

and hence using Pochhammer’s symbol (see [1, 6.1.22, p. 256])

m—1 1 1 1 1
U a k+35)k+7)  Gm(Pm 1
m = X oo X — X — = .
U a " ,LIO E+2)k+1)  ()m ml

Then the sum of the series > 0°_ a,, in (2.19) is the evaluation of the Gauss Hypergeometric
series oF (3,4 2;2) (see [1, 15.1.1, p. 558]) at z = 1. Note that 2 —1 -2 =1 >0 and
hence using |1, 15.1.20, p. 558] we have

) 1 115\ 1TEr3E)
100llZ1 = ﬁ2F1(2 IAVS 1) VaTG)T(1)

We recall some properties of the Gamma function (see [97, pp. 192-194]).
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(i) T(1) =
(i) [(3) = \/_ (see |97, equation (99), p. 194]).
(iii) By [97, Theorem 8.18] I'(2) = 1T'(3).
(iv) For 0 < & < oo we have the identity (see [97, equation (102), p. 194])
0=t s r+1
M) = =1 )r (%)
Putting z = % in the above identity, we have
1 3 1
r(D)r () - verg) - =2
Then )
gz, = SO 106 1y
e ATE)r() @) 4rdred)  aver \4

Example 2.11.17 (Distributions given by constant functions). For any ¢ € S(R?; C) we
have (see Example [2.11.8))

d d
(Bo. ) = (80, 8) =60 = (5-) [ oy = (52) 1. 9),
where 1 represents the tempered distribution given by the constant function 1. Now for
P>
12l = 11 g ll=r = 125y ey, (by @I))
(27T) ||50||5_p(Rd<c (by -
= (2 7T)2 ||50||S,,,(Rd;<0)
= (2m)%dol|. (by [@I8)).
Hence 1 € S_,(R?) for p > 4.
Example 2.11.18 (Distributions given by multiplication). On R¢ look at the mapping

x +— x;. Since this map has linear growth, we get a tempered distribution, which we denote
by x;. Observe that for any ¢ € S(R%) and p > %

(i, &) | = [(1, Aid) | < [[1]] -2l
< Nll-pll-ills,, | @oy-s,ma)- [0llpes-

Since 1 € S_,(R?) for p > ¢ (see Example [2.11.17)), we have 2; € S_,(R?) for p > 4+ 1 =

d+2
1
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Example 2.11.19 (Distributions given by integrable functions). Given f € L}(RY), i.e.
an integrable function, observe that

L, f@)o(e) do

< sup [o(@)]| [ 1f(@)|da, Vo € SR,

rER4

Therefore any integrable function acts as a tempered distribution. Abusing standard no-
tations, we denote by £!(IR?) the space of tempered distributions which are given by inte-
grable functions. If ¢ is such a distribution, then we denote the corresponding integrable
function again by v. Note that S(RY) C £L}(R?) (see Lemma [2.9.1)).

Next result will be used in Chapter 4.

Lemma 2.11.20. Let p > 4. Then £'(RY) C S_,(R?).

Proof. By Proposition [2.11.14](ii)|, there exists a constant C' = C'(p) > 0 such that ||d,||_, <
C, Vz € R% Observe that for ¢ € £1(R?),

[ @8] pde < € [ o) de < oo
R R

Hence [ga ¥(7)d, dz exists as a Bochner integral and is a well-defined element of S_,(R?).
But for any ¢ € S(R?),

W, 0) = [ p@oayde = [ (@)@, 0) do= ([ v()de, o).

Therefore as a tempered distribution ¢ = [pa ¥(2)d, dz and hence ¢ € S_,(R?), which
proves (ii). O

The next result is an well-known application of Stirling’s approximation and we use it
in Example [2.11.22]
Lemma 2.11.21. We have

lim
n—o0 4qn

Proof. By Stirling’s approximation (see [97, p. 194, equation (103)]),

_ n!
hm —_— = 1.
n—o00 27-‘-n e~ nnn

2n!

(n!)?

and using the above limit, we get the result. O

Writing (2:) =
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Example 2.11.22 (Distribution given by the Heaviside function). Let H = 1( ). Now
the distributional derivative of H is given by dg, since for any ¢ € S,

(OH , 6) = — (H, 06) = = |~ 96(y) dy = 6(0) = (5. 6)

Note that Oh, = \/ghn_l — "Tﬂhnﬂ, n > 0 (see Proposition 2.8.1(v)). Set a, =
(H, hy),n>0. Then

[H|Z=>"(2n+1)*a.

n=0
We want to identify a p € R such that this series is finite (i.e. H € S,) and with this goal
in mind, we first obtain a growth estimate of |a,/|.
We also take a_; = 0. Then from the previous relations we get

/ 1
_\/Zan—l + n_2|—an+1 = hn(0)7 n > 0.

A direct computation gives ag = [;° ho(y) dy = % From this recurrence relations, for

n =0 we get a; = v/2h(0) = ﬁ% Recall that (see Proposition [2.8.1{(vi)

0, if n is odd,

(—1)%%\/77("\;%)”, if n is even

hn(o) =

Simplifying the recurrence relation, we get for any integer n > 1,

\/ (2n)! o + 1 1
Aoy, = Qg 2nn' s 2n a2n+1 = A2p—1 —|— ﬁhgn(O) (220)

(2n—1)!

Now multiplying the recurrence of the odd-numbered terms by T WO get
(2n+ )N (2n — 1N (2n — 1!
Jont 2 = iy =y 2t H A ey eel(0)
2n — 1!l V2 (2n)!
o (71—)a2n_1 + (_1>n - ( ) 5
2n=1(n —1)! v 4r(n!)
A telescopic sum gives,
(2n + 1! b V2 (2n)! i
oyl = 1" = —1)"b, 2.21
e = SR e D
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\/_ (271)' 7'('%
5> n > 1. By Lemma [2.11.21} —=y/nb, — 1 as n — oo. Hence
- Jmar(nl)? V2

b, — 0 as n — oo.

where b,

But bg? = 22(711}) < 1,i.e. {b,} is a monotonically decreasing sequence. Hence >0° | (—1)"b,,
converges and hence the partial sum sequence is bounded. From the telescopic sum relation
(2.21]), we now conclude the existence of a constant C' > 0 such that |ag, 1| < f n > 1.
Using the recurrence of the even-numbered terms (see equation (2.20)), by Lemma
we have /mnay, — 1 as n — oo.

Then, we can choose the constant C' large enough so that as, < %\/ﬁ, n > 1.

For H to belong to some S_, we need the convergence of >°° , (2n+1)~?—=, which happens

Jn’
ifp>i. SOHES_pforp>i.

Remark 2.11.23. Computation of the coefficients (with respect to the basis of {h,
n =0,1,---}) of some tempered distributions are available in some texts. For Heaviside
function see [19} Section 2, equation (8)], [99, p. 162].

Example 2.11.24 (Distribution given by the sign function). Consider the sign function
f on R given by
1, ifx >0

flo) = —1,ifz <0

Observe that f = 2H — 1 and hence the distribution given by f is in S_, for p > %.

Example 2.11.25 (Distributions given by the Sine and Cosine functions). Using the

Fourier transform on the Hermite functions we have

\/% / e~ TR, (y) dy = (—i)"hn (). (2.22)

Evaluating the previous relation at x = 1 and adding we have
o0 n [T n [T
/—oo COS(y)hn(y) dy = <_Z) §(hn<1) + hn<_1)) = (_Z) \/g<51 + 671 ) hn) :
Observe that the leftmost term in the above equality is real. There is no inconsistency in
the previous relation since h,(1) + h,(—1) = 0 for odd values of n (if n is odd then so is

hy, see Proposition [2.8.1|(iii))).
Evaluation of (2.22)) at © = +1 and subtraction gives

/_O:o sin(y)hn(y) dy = (z’)“\/z {0y —6_1, hn) .

Since 01,01 € S_,, for p > i (see Proposition [2.11.14]), the tempered distributions given
by the Sine and Cosine functions are also in the same space.
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Fix p > d+ 3 and y € S,(R?). Note that §, € S_,(R?), Vo € R? (see Proposi-
tion [2.11.14). Hence z — {(J,, y) : R — R is well-defined. Abusing notation, we denote
this function by y. Next result is about the continuity and differentiability of the function

Y.

Proposition 2.11.26. Let p,y be as above. Then the first order partial derivatives of
function y exist and the distribution y is given by the differentiable functiony. Furthermore,
the first order distributional derivatives of y are given by the first order partial derivatives
of y, which are continuous functions.

Proof. We can write y in terms of the orthonormal basis {h2 : n € Z%}, where h? =
d
(2k + d)"Ph,, with |n| = k. Then y S ED 2h20 2jnj=k Ynhn for some y,, € R. Note that
(i) The Hermite functions h, are uniformly bounded. Let C' > 0 be a bound. For
any 1 < i < d, 0;h, = \/%hn_ei — ”ijlh%ei where {e, -+ ,eq} is the standard
orthonormal basis for R? (see Proposition [2.8.1]).

(i) From Lemma [2.10.1} [|y||2 = Y30 Y=k (2k + d)*Py;. In particular, (2k + d)*y2 <
lyll2 and hence |y, < ||lyll,(2k + d)77 for any multi-index n with |n| = k.
(iii) There exists a constant C’ > 0 such that the cardinality #{n € Z% : |n| = k} <

C'.(2k + d)*! (see equation (2.12)) in Proposition [2.10.6]).

Then
Z Z ynhn(l‘) < Z Z |ythn(I)|
k=0 |n|=k k=0 [n|=k

<Clylp > > @k+d)™”
k=0 |n|=k

< CC'ylly Y_(2k +d)~r*
k=0

cootpsarh)
In particular the convergence of 3232 3", =k Ynhn(7) is uniform in z. Similarly we can
show the convergence of >332 32, = Yn0ihn(2) is uniform in x. Then partial derivatives
of y(x) = X720 Xjnj=k Ynhn(x) exist, since term by term differentiability is allowed by
the uniform convergence. The partial derivatives are given by 32322 3,2k YnOihn (), i =
1,---,d and are continuous again due to the uniform convergence of the above series. []
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2.12 Stochastic integration with S,(RY) valued integrands

In this subsection we consider S,(R?) valued integrands and state results of stochastic
integration with Hilbert valued integrands as considered in Section [2.7 Let (Q, F, (F), P)
be a filtered complete probability space satisfying the usual conditions. Let {V;} be an
S,(R?) valued norm bounded predictable process. Let {M,} be a real valued (F;) adapted
L?-bounded martingale with My = 0 and {A;} be a real valued FV process with Ay = 0.

(i) We have a.s. [y ||Vi[|2d (M), < oo for any ¢t > 0, where (M) is the predictable
process such that M? — (M) is a martingale. So we have the S,(R?) valued process
(Ve dML).

(i) Fix 1 <i < d. Now 9; : S,(RY) = S, (Rd) is a bounded operator (Lemma 2.
and hence {9;V;} is an S, (]Rd) Valued norm bounded predictable process. As in
(i), we can define {3 9;V, dM }, which is an Spﬁ(Rd) valued process.

(iii) We have a.s. [ ||Vill, |[dAs| < oo for any ¢ > 0 and hence {[i V,dA,} is an S,(R9)
valued (F;) adapted process. If {A;} is predictable, then so is {5 Vs dA,}.

(iv) Let p € S (]Rd) and {X;} be an R? valued (F;) adapted continuous process. Then by
Lemma | {7x,0} is an S,(R?) valued (F;) adapted continuous process and
in partlcular it is locally bounded. Hence we can define the processes { fo Tx, ¢ dMs}
and {fi 7x.¢dA}. If {X,} is a continuous semimartingale, then we can also define
the process {[i Tx,¢ dXs}.

(v) As an application of [89, Theorem 2.3|, we get the following It6 formula: Let ¢ €
Sp(R?Y) and X = (X',--- , X?) be an R valued continuous (F;) adapted semimartin-
gale. Then we have the following equality in S, (R%), a.s. for all t > 0

T, = Txgd — Z/ O, pdX + = Z/ 27 b d X7, X7,

zyl

(vi) We compute certain norms of Hermite Sobolev valued processes under ‘nice’ condi-
tions. We show this as a proof of concept and to simplify the computations further,
we assume d = 1. Similar expressions on the norm of Hermite Sobolev valued pro-
cesses will be used at various points in this thesis (see Theorem [4.3.8] Lemma [5.2.16]

Proposition [5.2.18)).

Suppose that {X;} is given by the stochastic differential equation
dXt = O'(Xt) dBt + b(Xt) dt, t Z 0

where 0 : R — R, b : R — R are bounded smooth functions and {B;} is a standard
(F:) Brownian motion. Then the following equality holds in S,—; a.s. for all t > 0

X, O = Tx, @ — / s)0Tx, 0 dB;s — / s)0Tx. O ds
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+ - / )2 9Pry. 6 ds.
Using Proposition 2.7.20] we have
I dl2 1 = Irxo @l 2 / (rx,6, O7x,9), , dB,
— 2/ ) (Tx, ¢, 07x,9), , ds
+/ szgb 0 TXS¢>p ) ds
+/ )?||07x. 0 i_lds

2.13 Some basic inequalities

The following result is usually called the Gronwall’s inequality.

Lemma 2.13.1 (|56, Lemma 18.4], [87, Chapter V, Theorem 68]). Let f be a continuous
function on [0,00) such that

for some a,b > 0. Then f(t) < ae” for allt > 0.
Moreover if f is non-negative and a = 0, then [ vanishes identically.

The next result is a well-known inequality. For the sake of completeness, we include a

proof.

Lemma 2.13.2. Let k be a natural number. Then for positive real numbers aq,--- ,a, we

have

a’f+---+a’;>(a1+---+an>k
p— n *

n

Proof. The inequality follows from the observation that the map x +— 2% : (0, 00) — (0, c0)

is convex. O

2.14 Semigroups of bounded linear operators

We recall some basic results for semigroups of bounded linear operators on a real Banach
space. In what follows, X will be a real Banach space and || - || will stand for both the
norm on X and also for the operator norm. The terminology used are standard and can be
found in [84, Chapter 1]. For any bounded linear operator A, e/ will denote the bounded
linear operator defined by 0% & A",

The following result is well-known and we state it without proof.

66



2.14. Semigroups of bounded linear operators

Theorem 2.14.1. Fiz x € X and let A be a bounded linear operator on X. Define
T,:=¢e t>0. Then

(i) ([84, Chapter 1, Corollary 1.4 d) and Theorem 2.4 d)]) The map t — Ty(x) is con-

tinuous on [0,00) and we have
t
Ti(x) = $—1—/ AT(x)ds, t > 0.
0
(ii) t — Ty(x) is the unique continuous map on [0,00) satisfying above property.

Proof. Note that Corollary 1.4 d) and Theorem 2.4 d) in [84, Chapter 1] are proved for Cy
semigroups. In statement (7) since A is a bounded linear operator, the domain D(A) = X
and the semigroup {7; : 0 < ¢t < oo} is a uniformly continuous semigroup, which in
particular is a Cj semigroup.

For the sake of completeness, we give a proof of statement (ii). If f,g:[0,00) = X are
continuous maps satisfying

f(t):x—i—/OtAf(s)ds, q(t) :x+/0tAg(s)ds, vt >0,

then for all ¢t > 0

176) = gl < | [ Alrs) = g as| < 1l [ 15 = gts) 1 ds.
By Lemma [2.13.1} || f(¢) — g(t)|| = 0, > 0 which implies the required uniqueness. O

We mention two examples of semigroups of bounded linear operators which will be used
in this thesis.

Example 2.14.2. Let C be a real square matrix of order d. Then C' is a bounded linear
operator on R%. Let z € R?. By Theorem [2.14.1| t — e'Cz is the unique continuous map
on [0, 00) satisfying

t
eCr=x +/ escscds, t>0.
0

Example 2.14.3. Fix p € R. Then 7; is a bounded linear operator on S, for any ¢ € R
(see Lemma [2.11.7(i))). Again for t,s € R and ¢ € S, we have 7,¢(-) = ¢(- — s) and hence

(Te(7:0)) (1) = (1:0)(- = 1) = &(- =t = 5) = T1150(").

Since S is dense in S, from the previous equality we have 7,7, = 745. Of course 7y = I, the
identity operator on S,. Therefore the family {7, : —co <t < oo} is a group of bounded
linear operators on S,. Using Lemma [2.11.7[ii)| we conclude that the above family is a Cj
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group. Since this Cy group has the same infinitesimal generator as that of the Cjy semigroup

{m: 0 <t < oo}, by [84, Corollary 2.5], we conclude the infinitesimal generator is a closed

linear operator on S, with dense domain.

The following result is well-known in the case of £?(R) (i.e. Sy). We include a proof

for completeness.

Lemma 2.14.4. The infinitesimal generator of the Cy group {1, : —oo < t < oo} is the

operator —0 on S, with domain
=1 . .
D={Yes: %II% Tl/] exists and is an element of S,}.
—

Proof. We claim

(i) ScD.
(ii) For any ¢ € S,

t—0 t
In particular, the equality above also holds in S,,.
First we assume the claim and prove the statement of the result.

Let ¢ € D and call ¢ := lim;_,o Z=L4). Then for any ¢ € S(C S-,), we have

t

Tt—[
t

t—0
Ylpllgll-» == 0.

(-0, o) <o -

Then

Hence ¢ = —d for any ¢ € D.

(2.23)

To complete the proof, we need to establish our claim. Let ¢ € S and fix ¢t € R\ {0}. Since
¢ is a C? function, by Taylor’s formula for any z € R there exists 6, € (0,1) such that

dlx+t) = ¢(z) + top(z) + 2;28%(35 + 0,t).
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Then for any positive integer n, putting y = x + 0,¢ we have

oz +1) — ¢(x)
t

(1+22)" —am@wzu+m%“§p%u+ﬂﬂﬂ

nlt
= (14 (- 07" o0y
Since 0, € (0,1), for any ¢ with [t| < J5 we have 263> < 1 and hence
L+ (y — 0:1)° < 1+2(y° + 624%) < 2(1 +¢7).

Therefore for |t| < \% with y = x + 0,

(1422 | 2T | < 04 4 oot
which implies
Sug(l + Z,2)n Qb(;p + ti - Qb(fl‘) o a¢($) < ‘t|2n71 su]g(l 4 y2)n ‘82(25(?;)‘ '
fAS ye

Since ¢ € S, sup,er(1l +4*)" [0°¢(y)| < oo and hence

sup(1 + 2*)" bz + ti — o) _ do(z)| =% 0,
Tz€R
ie. 7
sup(1 + z°)" = o(z) — 9o (x)| =5 0.
zeR

Any derivative of ¢ is again an element of S and hence above limit is true when ¢ is replaced
by any derivative of ¢. Since the seminorms given by the supremums (see equation ([2.10))

defines the topology on & we have
lim Tt
t—0

_ I ﬁ
—0 2 90,

Since the convergence in S is equivalent to the convergence in all ||-||, norms for p = 1,2, - - -

(see Proposition [2.10.3]) we have

T_t — I Sp

o=

Now for any real number p, we can choose a positive integer n such that p < n. Then
1= 6 — 90|, < | =¢ — 0¢|ln and hence

lim
t—0

Jp, Vp=1,2,---.

=1
lim =62 95 VpeR.
t—0
This proves ¢ € D. This shows § C D and the proof of the claim is complete. O
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CHAPTER

Monotonicity inequality for stochastic partial

differential equations in S’'(R%)

3.1 Introduction

Consider the existence and uniqueness problem for stochastic partial differential equations
of the form
dY; = L(Y;) dt + A(Y;).dB,,

where (B;) is a r-dimensional Brownian motion and (Y;) an &'(R?) valued process, with
Yy a given S'(R?)-valued random variable and the operators L and A = (Ay,---, A,)
are certain differential operators. A sufficient condition for existence and uniqueness, the
Monotonicity inequality for the pair of operators (A, L) has been studied by many authors
(see [381139,59,65,90,92]). Let ||-]| be a Hilbertian semi-norm on &'(R¢) with corresponding
inner product (-, -). Say that the pair of operators (A, L) satisfies the ‘Monotonicity
inequality’ for the semi-norm || - || if

2(¢, L) + Zl 1AglI* < Clll?, Yo € S(RY). (3.1)
Here the semi-norm should be such that the space contains the range of A, L and the space
S(R?). In practice, the norm ||- || is taken as one of the Hermite-Sobolev norms |- ||,,, p € R.
A related inequality, called the coercivity inequality is also considered in the context of
stochastic partial differential equations, but in the setting of a Gelfand triple of Hilbert
spaces (see [65,83]). We prove the Monotonicity inequality in two different settings.

(i) In Section 3, we prove the inequality for constant coefficient differential operators

given by
d d

L= ; Z (O'Ot)ija?- - Zbl&

ij=1 i=1
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and .
Ai = — Z O'jz'aj.
j=1

This result was already proved in [39, Theorem 2.1]. We give a new proof, the crux
of which is outlined below.

(ii) In Section 4, we consider the inequality when the operators L, A contain variable
coefficients, i.e. for

d

L= 3 3 ((00)) — 320 (b)Y € 8B

ij=1 i=1
and

d
Aip = =" O (owt)) , Vo € S'(R?)
k=1

where 045,b0;,1 < 4,5 < d are smooth functions with bounded derivatives. This
inequality was used in [92] to prove the uniqueness of the solution of the Cauchy
problem for L as above. We prove the inequality when o is a real d x d matrix and
b(x) := a+ Cr, Vo € R? with a € R and C = (¢;;) is a real d x d matrix.

The problem of characterizing coefficients o, b for which the Monotonicity inequality holds
in the second case, remains unresolved, to our knowledge. For the first case, the proof
given in [39] was essentially computational. It involved expanding ¢ along an orthonormal
basis {h?} in S,(RY), where h? := (2k + d)Ph,, and k = |n|. The left hand side in the
inequality above can then be computed using linearity, in terms of the action of L and A;
on the AP, which in turn can be computed, using the recurrence relation for the action of
the derivatives J; on the Hermite functions, viz. 0;h, (Proposition . It was shown
that the resulting series was essentially the same as that for ||¢||?, by showing that certain
sequences appearing in successive terms of the series were bounded ([39, Lemma 2.2]).

The method used in our proof can be described in the following steps.

(i) We identify the adjoints 9, #;,i = 1,--- ,d of the operators 0;, #;,i = 1,--- ,d
on S,(RY). We show that 9 = —0; + T; and .4 = #; + T; on (S(RY), || - [|,)
where T}, T; are bounded linear operators on S,(R%), expressible in terms of certain
shift and multiplication operators - both of which are bounded linear operators on
S,(R%) (see Theorem and Theorem [3.4.1)). We crucially use the recurrence
relations for O;h,,, #;h, in terms of other h,’s. The proof that Ti,ﬁ are bounded
operators involves a ‘first-order’ version of the inequalities proved in |39, Lemma 2.2]
(see Lemma [3.2.4).

(ii) This step can be broadly identified as an ‘integration by parts’ argument. We observe
that the term in 2 (¢, L) , corresponding to the second order term in L cancels with
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ET: |A;¢|2, leaving only terms of the form (T;¢, 9;¢),,- We estimate these terms using
i=1

certain bounded bilinear forms on S,(R?) (see Lemmal[3.2.5/and Theorem [3.4.1). Our
proof is a generalization of the proof in the case p = 0 (i.e. L£2(R?)), for which it
follows trivially by ‘integration by parts’.

(iii) The rest of the proof boils down to estimating the term coming from the first order

term in L, which again follows from the identification of the adjoints.

In Remark (3.3.3] an interpretation of the Monotonicity inequality for the constant
coefficient differential operators (A, L) is presented in terms of the Cy-group of translation
operators.

In Chapter 4, we use the Monotonicity inequality for (A, L) involving variable coeffi-
cients (Theorem [3.4.2)) to show the uniqueness of solutions of the Cauchy problem for L
when the initial condition v is a tempered distribution given by an integrable function.

Most of the results in this chapter are from [10].

3.2 The Adjoint of the Derivative on the Hermite-Sobolev
spaces

Since S(R?) C L*(R?) (see Lemma [2.9.1) and {h, : n € Z%} is an orthonormal basis for
L2(R?) (see Proposition [2.8.1[iv)]), any ¢ € S(RY) can be written as

6= Y Guhn.

k=0 |n|=k

Recall that we are using the convention: ¢, = 0, h,, = 0 whenever n; < 0, for some 1.

For i =1,--- ,d the derivative operators (see Example } 0;: Spp1 (RY) — S, (R?) are
bounded linear operators. Note that 0;,1 < ¢ < d are densely defined unbounded closed
linear operators on S,(R?) (see Lemma [2.11.5)).

Let 9; denote the Hilbert space adjoint of 9; on S,(R?). For convenience of notation, we

do not include p in 9}, though it should be understood that we are working for a fixed

p € R. Now 97 : Domain(9;) C S,(RY) — S,(R?) with
Domain(9;) = {¢ € S,(R?) : Domain(9;) 21 + (i), ¢)

is a bounded linear functional}.

P Y

Note that O satisfies
(O, &), =, 079),, ¥ € Domain(0;), ¢ € Domain(0;).

Lemma 3.2.1. Domain(0;) contains S(R?).
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Proof. Let ¢ € S(R?). Then for any 1 € Domain(d;), by Proposition [2.8.1v)| we have
<az¢7 hn> - <¢7 8zhn>

=2 ) P )

Then (see Lemma [2.10.1])
(0, 9), ZZ (2K + ) (b, hn) (&, Do)
k=0 |n|=k
:_Oo 2k+d2p & 7hn—ei 7hn
IIPICEL Vo e (6, )
[ ; 1
+ Y3 @k Y (@ B (9 )
k=0 |n|=k
_i Z 2k+d2p (U, hn) (D5 him—e,) %
k=0 [rm|—k+1
m=n-e;
ST @R ) {0 B |
k=0 fm|=k—1

=3 3 kA= 2P (0, h) (6, he) [
)

- Z Z (2k+d+2)2p <¢’ hm> <¢7 hm+ei> .
k=—1 |m|=k 2
Observe that the term for £ = 0 in the first sum evaluates to 0 because of h,,_., = 0.
Again the term for £k = —1 in the second sum is 0 because of h,, = 0. Hence

(O, ),
- m; (2k+d—2\"
Z:: 2k (2k + )™ (¢, hun) [<¢, - \/:<2k+d ) ] (32)

- mi+ 1 (2k+d+2\"
-3 3 (ke d ) [w,hmmu/ ()

: : : 2%+d—2\ P
We now prove an estimate of the first sum in terms of ||1)||,. Note that limy_, ( ot ) =
1 and h 2hed=2)" o > Also f Iti-index m = ith
and hence sup{ (W) 1k > 1} < 0o. Also for a multi-index m = (my, -+ ,my) wit

|m| = k we have m; < |m| =k < 2k < (2k + d). Then

S5 kA (0, B [<¢, L (W)]

k=1|m|=k
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2%k +d—2\" & m;
<sup (LTCT 2 %+ d)2|(00 . ) |[(6 ) oo, )|/
e (P507) B T 0k I ml a1y
1 2k +d —2\" & 1
< —_gup|TETC %+ d)2HE |, b (6, e,
< (i) X X @k a i bl o)
1
1 2k +d — 2 ’
< _— 2k +d)* (¢, h
" VRl If( 2k+d> (kz.n;k v >)

N

X (Z Z 2k +d)** b, b, ) , (by Cauchy-Schwarz inequality)
k=1 |m|—Fk

1 2k +d—2\% < It )\’
= ﬁigll) <2k—|—d> Hw”P (Z Z (2k+d) * <¢> hm76i> )

k=1 |m|=k

Now

NE

2k + )P (), hine,)”
=k

>
Il

1|m

S @k+d)* (¢, hy)’

—eis
Im|=k

- f: (2K + A (D)’

1n=

=3 >k +2+ D)7 (g, hn)
k=0 |n|=k

2k+d+2>2p+1 00

2k + 2)% T (¢, h,)?
S T ;lék( )P0, hn)

2% +d+2\ "
= sup (w) 91+

Last two estimates gives us an estimate of the first sum on the right hand side of (3.2

k=1 |m|=k

1 2%k +d -2\ ok +d+2\""2
< _ _— 1
T (o 2) i s (o 2) bl

Since ¢ € S(R?) C SH%(Rd), we have HqﬁHer% < 00. We can obtain a similar estimate of
the second sum on the right hand side of (3.2)) in terms of |[¢||,. Then from (3.2)), there
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exists a constant C' = C(¢) such that
(i, ), | < Cllllp, V¢ € Domain(0;).

This shows ¢ — (9,9, ¢), is a bounded linear functional on Domain(0;) when ¢ € S (RY).
Hence S(R?) C Domain(0}). O

Using integration by parts, we have 97 = —9; on (S(R?), || - [lo). In the next Theorem,
we compute 97 in (S(RY), || - ||,) explicitly and the resulting formula generalizes the above
relation to the case p # 0.

For each i = 1,--- ,d we define two sequences:

an,i =

; [(Qk +d—2) — (2k + d)QP]

2 (2k + d)2 53
y o mit] (2k + d)% — (2k 4+ d + 2)% '
e 2 (2k + d)2r
where n = (ny,- -+ ,ng) is a multi-index with |n| =k > 0.

Let {e; : 1 < i < d} denote the standard basis for R?. Define linear operators A;, B; on
S(R?) by the formal expressions: for ) = > > ¥,h, € S(RY),

k=0 |n|=k

A =33 anithnhn, B =3 > by ithnhy. (3.4)

k=0 |n|=k k=0 |n|=k

Theorem 3.2.2. For any 1 <i < d, each of A;, B; is a bounded operator on (S(RY), || -|,)
and hence extends to (S,(RY), || - ||,) as bounded linear operators. Furthermore, for any
1 <i<d and for any ¢, € S(R?),

(06, ), + (6, 00, = (6, (AU—e, + BUL V) (3.5)
where U_.,, Uy, are the shift operators defined in Example[2.11.1. Hence we have
0; = =0+ Ti on (SRY), [ - [I,)

where T; = fLU_ez. +BZ-U+EZ. 1 a bounded linear operator on Sp(Rd). By density arguments,
(13.5) can be extended to any ¢, € Sp+%(Rd).

Before proving this Theorem, we first prove some necessary results.
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Lemma 3.2.3. For any 1 <i <d and ¢,v € S(R?),
<az¢7 77ZJ>p + <¢a az¢>p
= i Y 2k + d)Phpan e, + i 7 (2k 4+ d)P by itnses

k=0 |n|=Fk k=0 |n|=Fk

(3.6)

Lemma 3.2.4. Fizi=1,---,d. Then there exists a constant M, > 0, (independent of i)
such that

M M
sup |ani| < =2 sup b < =2

{nln|=k} VE mnl=ky Vk

for any k > 1. In particular, the sequences {a,;} and {b,;} are bounded.

(3.7)

Proof of Lemma [3.2.8 Since ¢,v € S(R?), we can write

k=0 |n|=Fk k=0 |n|=k

By equation ([2.14)), we have

> + 1 n;
ai - ¢n e; i_(én—ei Z]h
T p o ISR

Similar expression is true for 0;1.

Therefore, (¢, dptb), = Z 2k +d)* 3 b [/ Ve, — /5]

In|=F

and

O 1), = Sk + P Y,

7¢n+ei - 2¢nei]

k=0 In|=k 2

SRS B I
k=0 |m|=k+1 2

m=n-+te;

_ Z Z 2k 4+ d)* P Vmte; 5
k=0 |m|=k—1

=3 Y (2 d = 2P|
k=1 |m|=k 2

o0 i 1
Y Y @k d 2Pty
k=—1|m|=k 2
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the corresponding term for k = 0 in the first sum evaluates to 0 because of ¥, ¢,/ 5", also
the term for £ = —1 in the second sum is 0 because of ¢,,

. 2k+d—2
_Z Z (2k + d)*P ¢,y [¢m e‘\/:<2k‘+d> ]

k=0 |m|=k

o0 1 (2 +d+2\%
_ U + )Py, |y o | 2
;O%Zk( )P {d} il 75 St d

Then
2k+d—2
- Qk + d 2 m m—e P — — 1
53 e o (25552) )
+1 2% +d+2\*
2k + d)*P b [Vimre \/T LI (et e e
+,;)|§k T [w V2 { ( 2k +d ) H
=2 Y Ck+d)PInamitme, + Y D 2k + )P Onbmitmie,
k=0 |m|=k k=0 |m|—=Fk
This completes the proof. O

Proof of Lemma [3.2.4) We prove for a,,;’s. Proof for b, ;’s are similar.
We can safely ignore the term for |n| = k = 0.
Now for |n| =k € N,

[n ﬁ (2k +d —2)% — (2k + d)*r
|a/nl 2’77, [ 2k+d>2p

(2k +d —2)? — (2k + d)?*P
<k [ (2k + d)2 ]

To find an upper bound of a,;’s, we follow the method in Lemma (2.2) of [39)].
Choose an analytic branch of z + 2% in a domain containing the positive real axis and

J(=) = (1 T2 j—zdz>2p -1

then we can define

in a sufficiently small neighbourhood of 0, say in a ball of radius § > 0, i.e. B(0,).

Since f(0) = 0, 3 an analytic function g defined on B(0,d) such that f(z) = zg(z), Vz €
B(0,6). But on the compact set B(0, ) the function g is bounded, say by some constant
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R>0.
Fix a positive integer N such that + < 2. Then Vk > N and n with |n| = k,

1 R
il < VE|7 ()] < 2l ()] < 72
Then taking M := max{max(m.iy1<p|<n,1<i<a} 1/ || |anil}, R}, we have

lan.i| < Vn, with|n| =k > 1.

M
va
From this inequality required bound can be obtained.

Proof for b, ;’s are similar. Finally we choose M, as the larger of the two constants which

were obtained for a,;’s and b,,;’s separately and we have

M, M
lani] < =2, |onil < =2, Vn, with|n| =k > 1.

v vk
Taking M = max{M,, max{ag,bo; : 1 <i < d}}, we get
|an,i| S M]’)? |bn,z| S M;/;a VTL

This completes the proof. O

Alternative proof of Lemma [3.2.4] This approach was suggested by an anonymous
referee. We use mean value theorems to establish the bounds.
We present the proof for the case d = 1. The sequences become

_\/ﬁ @n-17—(@n+1»| , _ [n+1[@n+1)%—(2n+3)>
=y (2n + 1) =\ T (2n + 1)

We show an upper bound for {a,}. Proof for {b,} is similar.

Consider the following continuously differentiable function

f@y:(Q‘xfﬂxep4ﬂy

2+«

Observe that
(x) anzﬁ[ &)~ 10)
0 o= (32)" e 1

(c) z— (2 +x> is a real valued continuous function on [0, 1] and hence there exists a

2p—1
constant R > 0 such that 0 < (2;—;) <R,z €][0,1].

79



Chapter 3. Monotonicity inequality for stochastic partial differential equations in S’(R%)

Now using mean value theorem for any n € N
1
FE) = FOI < [T 1F @) at

F2—t\*1 4
- (G+) d
0 \2+4t (2+1)2

1

dt 1 1
<4R =4R |- — —
o (2+1)? [2 2+}l]
2R R
= < —
2n+1 " n
and hence |a,| S%for all n € N. O

Proof of Theorem [3.2.2. Linearity of A;, B;,Uy.,,U_.. is clear from definition. Given
¢ € S(RY),

1Asll; = 3" > (2K +d)*|an*6;,

k=0 |n|=k
< <sup |anﬂ-\2> Z Z (2k + d)*P¢?
" k=0 |n|=k
< (MI'))2||¢||12) (by Lemma ((3.2.4))

Therefore || 4;6||, < M]||¢||, for all ¢ € S(R?) and hence H%NliHSp(RdHSP(Rd) < Mj,. Similarly,
| B| S, (RA)—s, (k) < M. Hence A;, B; are bounded linear operators on S,(R%).

Using Lemma (3.2.3), we now have
(0i9, ), + (¢, 0i), = <¢» (AU_e, + BiU+ei)q/)>p'

By Lemma(2.11.2) U,,,, U_., are bounded linear operators on S,(R%). Hence T; = (A;U_,+
B,U,.,) is also a bounded linear operator on S,(R?). O

The operators T; have the following important property that will be needed in the next
section.

Lemma 3.2.5. For any 1 <i,j <d, the map (9;(), T;()), : S(R?) x S(R?) — R defined
by
(6,6) = (06, Ty, , ¥, € S(RY)

is a bounded bilinear form in || - |, and hence extends to a bounded bilinear form on

(Sp R, - 11p) x (SR, N - [Ip)-
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Proof. For ¢,1 € S(R?),

<81¢7 7}¢>p
=3 3 Rk+ AP (Db, ha) (T, D)
k=0 |n|=k
- i Z (Qk + d)Zp <¢7 aihn) <(AJ’U*€J' + BjU+€j)w> hn>
k=0 |n=k|

- Z Z (2k + d)2p <¢> &hn—ei - \/th+ei>
k=0 |n|=k 2 2

X <(AjU—ej + BjUse, )0, h”>

= — i Z (2/{5 + d)Qp ( %an—ei - ni;_lgbn-‘rei)

k=0 |n|=k
X (an,jwnfej + bn,jwnJrej)

From Lemma (3.2.4)), we have a,, ; ~ O(ﬁ),bm ~ O(ﬁ)

Now using the Cauchy-Schwarz inequality, we get a constant C' > 0, such that

[(0i0, Ty, | < Cliollll]lo-

This completes the proof. O

3.3 The Monotonicity inequality

Let {f; : 1 < i < r} denote the standard orthonormal basis for R". Let 0 = (0;;) be a
constant d x r matrix with (a;;) = (00');; and b = (by, ..., bs) € R For ¢ € S, we define

Lqﬁ = % Z‘ijl amﬁqub — 2?21 bzaz¢a
Aip = =21 05(0;0), i=1,--- ,r
Agb == (A1¢7 cee 7AT¢)

So that for [ € R",

A1) =~ 3> 03(016) = S A

i=1j=1
The following result has already been established in [39] and we present another proof
using the results obtained in the previous section.

Theorem 3.3.1. For every p € R,3 a constant C = C(p,d, (045), (b;)) > 0, such that

2(¢, Lo), + [ Adlli50) < ClI9II; (3.8)
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for all ¢ € S(R?), where 1A I5rs() = 2iet | Aidll7. Furthermore, by density arguments
the above inequality can be extended to all ¢ € Spy1(R?).

Proof. Let ¢ € S(RY). For convenience, we introduce two notations

d 1 4
Lyg:=— Zbiaid); Lyg := B Z az’j@?ﬁ-
i=1

ij=1

Observe that for any ¢, € S(R?), by Theorem we have

(@, 0:), +(0ip, ), = (T, V), < Tills,@a)ss, @) 9111 ¢]lp-

Therefore,

d

(6, L), + (Lo, ¥), = = bi [, 0, + (B9, ¥),]

i=1

< (Z\bill\Tzllspdes,,(Rd)) 1@llalllq-

7

Taking ¢ = 1), we obtain

206, La0), < (BT 00 ) 1 3:9)
Now using Theorem [3.2.2]
d d
2(¢, Lag), = > (00")i;(6,050), = > (00")i(; 0, 0;0),
i,j=1 tj=1
d d
= — Z (O'O't)ij <8Z¢, 8j¢>p + Z (O'O't>ij <E¢, @-gzﬁ)p (310)
i,j=1 t,j=1

Note that (o0");; = >j_y 0ok Then

d r d d
— > (00"); (00, 0;9), = — > <Z Ik, Zajkaj¢>

ij=1 k=1 \i=1 j=1 »
== (Ad(fr), AD(fr)),
k=1
= —[| A8l %50
Hence from ((3.10) we have
d
2(¢, Lao), + 1Al Tsq) = D (00"); (Ti0, 0;0),,- (3.11)
ij=1
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Using Lemma |[3.2.5| we get

2(¢, La¢), + Al Hsiq) < C'lI9lI;
for some constant C” > 0. Combining with (3.9) we get the result. O]

Remark 3.3.2. From the proof it is clear that the constant C' in the Monotonicity in-
equality actually depends on the upper bound of |o;;| and |b;|. In |39, Remark 3.1]), it
was observed that the Monotonicity inequality can be extended to the case where the
coefficients are bounded random processes.

Remark 3.3.3 (An interpretation using the Cj group of translation operators). We con-
sider the simple case when d = 1 and A = —0. Fix p € R. Note that the translation
operators (see Example {7, : t € R} forms a Cy-group of bounded linear operators
on S, with A as the infinitesimal generator (see Lemma and A is a densely defined
closed linear operator on S, with the domain of A containing S. Then for any ¢ € S,

.

Tt—I

A 2 1im

t—0 t
Now given ¢, € § we have

(6, Av), =lim (0,

Tt—]

¢> , (I being the identity operator)
p

—lim > (o, (r— D)),

t—0 ¢

1
= lim — (H?¢, H? (1, — I)¢),, (H as in Example 2.11.11))

t—0 ¢
— %g% 1 <H2p¢, (1, — I)¢>0 , (.- His a positive operator on £?)
=ty (7o~ D0, 0)
iy (B DB ),
= lim 1 (HPH (r_, — I)H”¢, Hw>0
= lim 1 (H(r —DHY, )

= (H(-A)HY¢, )
Hence A* = —H2? AH¥ on (S, || - ||,). Now
(0. 4%0) +[A9]}; = — (H AP, Ap) + (Ao, Ag),
= ((A— H 2 AH%)¢, A¢>p (3.12)
= (H(H”A - AH™)¢, A¢>p
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We show H™?(H*? A — AH?) is the bounded operator obtained in Theorem By

Proposition [2.8.1|(v)
n n+1
S+ 4 B

For ¢ € S with ¢ = Y02 dnhy,, using ([2.18) we have

(H2pA AHZP Z ¢nH2p [\/7}% 1= H 1hn+1]

— Z bn(2n + 1)* Ah,

n=0
[ / 1
2n — 1)2phn 1— n—2f—(2n + 3)2phn+1]

=—Z¢n

+ i ¢n(2n + 1)2p |:\/§hn—1 - \/ n_;_lhn—i-l]

== 36 [\f3 {2177 - ok 0Py

1
n ; {@n+1)% - (2n+3)7} hn+1]
Then
on —1)% — (2n+ 1)

H ?(H¥A — AH?)¢ n \f ( P
( Z ¢ l (2n — 1) !

L +1 (2n+1)? — (2n+3)%

2 (2n + 3)% e

= In+1 (2n+ 1) — (2n + 3)%
— —ng [an—i-l 2 (27’L+ 1)2p

L6 1\/;(271—1)21’ (2n+1)2pl .

(2n+1)%

= - Z(bn¢n+1 + anqbn—l)hn
n=0

Here we have used the notations {a,} and {b,} instead of {a, 1} and {b,1} (see equa-
tion (3.3))). Now write T instead of T} (see Theorem [3.2.2). Then we have
H ?(H?A - AH?) = -T
and hence by and Lemma [3.2.5) m there exists a constant C' > 0 such that
(0, 4%) +Adl} = (To, 00), < Col;
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for any ¢ € S.

3.4 The Monotonicity inequality for (A*, L*)

In the introduction to this chapter, we have used the notations A, L for the differential
operators with variable coefficients. This was done for the sake of brevity. The inequality
used in [92] is denoted in terms of (A*, L*), because there a duality formulation transformed
certain flows and the stochastic partial differential equation solved by the dual flow involved
the adjoint operators of the original pair (A, L). To bear this in mind, we continue to use
the notation (A*, L*).

Suppose that o = (0y;),i = 1,--- ,d;j = 1,--- ,r and b = (by,--- ,bg) where o;;,b;
are C™ functions on R? with bounded derivatives. Consider the differential operators

A* = (A%, .- A, L* on 8'(RY) given as follows: for ¢ € S'(R?)

Asp = — 0 Ok (owit)) (3.13)
L™y = %ch‘l,jzl aizj ((U‘Tt>ij¢) - zc‘l:1 0 (b))

From now onwards we consider the case r = d. If 0;;,b;, 1 <, 7 < d are real constants,
i.e. 0 is a real square matrix of order d and b € R, then the Monotonicity inequality for
(A*, L*) follows from [39, Theorem 2.1] (also see Theorem [3.3.1)), since Af,i =1,--- ,d and
L* are now constant coefficient differential operators (see [92, Remark after Theorem 4.4]).
In this section, we prove the inequality for a slightly more general class of examples, viz. o
is a real square matrix of order d and b(x) := a+Cz, Vo € R where a = (ay, -+, aq) € R?
and C' = (¢;5) is a real square matrix of order d. Unless otherwise specified, p will be an
arbitrary but fixed real number.

First we identify the adjoint of the multiplication operators .#;,i = 1,--- ,d (see Exam-

ple BT on (SRY), - )

Theorem 3.4.1. The following are some properties of the operators ;.
(i) For any 1 <i<d and ¢,7¢ € S(RY),
(M, ), — (6, M),
- Z Z (Qk + d)2p¢nan,iwn—ei - Z Z (Qk + d)2p¢nbn,i¢n+ei

k=0 |n|=k k=0 |n|=k

(3.14)

and hence

M= M+ T; on (SR, |- )
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with T, is a bounded linear operator on (S,(R?), | - ||,) given by
T; = AU, — BiUye,
where /L», U_.,, BZ», Uie,, i bni are as in Theorem .
(ii) For any 1 <1i,5 <d, the map <8Z-(-), TJ()>p : S(RY) x S(RY) — R defined by
(6,9) = (00, Tj0) , Vo0 € S(RY)

is a bounded bilinear form in || - ||, and hence extends to a bounded bilinear form on

(Sp(RE), 11 - [lp) X (Sp(R), | - 1I)-
(iii) For any 1 < i < d, let T; be as in Theorem . Then for any 1 < i,j < d, the

map (AMi(-), Tj(-)), : S(R?) x S(R?) — R defined by
(6, 9) = (Mio, Ti),, Yo,9 € S(RY)

is a bounded bilinear form in || - ||, and hence extends to a bounded bilinear form on

(Sp R, - 1lp) x (Sp R, 1 - [Ip)-

Proof. Since ¢,1 € S(RY), we can write

k=0 |n|=k k=0 |n|=k

Now ;¢ = Z Z Gn(AMihy), Wwhere Mihy, = /5 hy_e, + ”glhwei foralln = (nq,..,nq)
k=0 |n|=k
(see Proposition [2.8.1)). Therefore,

% n hn e; L—i_lhn 61‘]
6= kzmzkcb {\f e
:Z S e, /mz+1h +Z > e el\rhm

k=0 |m|=k—1, k=0 |m|=k+1,
m=n—e; m=n-+e;

0 1
= Z Z (bereZ“m h + Z Z ¢m e,\/ h

I=—1, |m|=l =1, |m|=l

l=k—1 = k+l

o0 / : + 1 m;
:§|Z| P - Tz +§|Z| e h

=0 |m|=l m|=l

Similar expression is true for .#;1). Therefore,

(¢, M), = i(% + ) > n; + 1

k=0 In|=k

n;
wnJrel 2wnei]
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3.4. The Monotonicity inequality for (A*, L*)

and

(M, 0y, = Sk P Y o,

7¢n+ei + 2¢n—ei]

k=0 In|=k 2

C S Y 2kt )Pty
k=0 |m|=k+1 2

m=n-e;

+ Z Z Qk"'_d (bmwm—l-ei 2
k=0 |m|=k—1

-y Z 2k + d = 2)% Gt e[
= 2

i1
T D D C R Y Lt
k=—1|m|=k

the term for £ = 0 in the first sum evaluates to 0 because of ¥, . /55t also the term for
k = —1 in the second sum is 0 because of ¢,,

' 2k +d -2
-5 5 o oo (%477

k=0 |m|=k

oo 1 (2k+d+2\*
+ 2%k + d) Py | rser | —
,;)g_jk( )7¢ [w e 2 2k + d

Combining expressions for (#Zi¢, 1), and (¢, A1), we get
(Mid, ), — (o, M),

o 2k +d—2\"
-5 5 enraron T { (2r5) -
- - fmi+1 [ (2k+d+2\7
’;)lgk 2k+d ¢m [¢m+eZ 2 {1 < Qk‘—i—d ) }]

=3 > 2k + D)7 Onamithme; — Y > (2k + )P Gmb itPmte;

k=0 |m|=k k=0 |m|=Fk

Proof of part (ii) and (iii) are similar to Lemma [3.2.5l We give the details for part (i7).
For ¢,¢ € S(RY),

(09, Tyw),

=3 X 2k + ) (06, hu) (T, ha)

k=0 |n|=k

87



Chapter 3. Monotonicity inequality for stochastic partial differential equations in S’(R%)

= i > 2k + )P (), Oita) (AU-e; = BiUse, )00, ha)

k=0 |n=k|
:_Zzzk+d2p< \/7}1” el_\/nl+1hn+ei>
k=0 |n|=k
<(AjU—6J‘ - BJ‘U+€J.)77Z), hn>
= — Z Z (2]{7 + d)2p ( Egbn—ei - i il 1¢n+el)
k=0 |n|=k 2
X (an,jwn—ej- - bn,jwn—&-ej)

From Lemma (3.2.4), we have a,, ; ~ O(ﬁ),bw ~ O(ﬁ)

Now using the Cauchy-Schwarz inequality, we get a constant C' > 0, such that

(06, Ty) | < Clldllallille

This completes the proof. O

The following is the main result of the section.

Theorem 3.4.2. Let o = (o, -+ ,q) € R and C = (¢;;) be a real square matriz of order
d. Let o be a constant function, i.e. o(x) = (0i;), Vo € R? where 0;; € R, 4,5 =1,--- ,d.
Let b= (b, ,bg) with b(x) := a+ Cx, Vo € R%. Fizp € R. Then
(i) The maps A} are bounded linear operators from Sp+%(Rd) to S,(RY) and L* is a
bounded linear operator from S,.1(RY) to S,(RY).

(i) Monotonicity inequality for A*, L* holds, i.e. there exists a positive constant R =

R(p,d, (04j), (b;)), such that
2(0, L'¢), + A0l sy < RllO (3.15)
for all g € Sp1(RY).

Proof. Let ¢ € S'(R?). Then, Af¢p = — 3%, Op (01i0) = — X4_, 010k (@), for 1 < i < d.
Also

L'¢== Za( )ij$) — zdjaz

2]1 1

= 5 Z (c0");;07 Zalaz Z ¢i;0;

i,j=1 i=1 3,7=1
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For any ¢ € R, 0; : S, 1 (RY) — S,(RY) and 4 : Syl 1 (RY) — S, (R?) are bounded linear
operators (see Example EI and Example [2.11.9)). Hence we get the boundedness of A}
and L* as mentioned in part (7).

To prove (ii), we first introduce the notations: for ¢ € S'(R?),

1 d d
LT(QS) = 5 Z (O’O’ Zaz i , L;(¢) = - Z ci]@- (M
i,j=1 i,j=1

By Theorem m, there exists a constant C' = C(p, d, (03;), (b;)) > 0,
2(6, Lig), + 40\ his ) < Cllol5 Vo € Spa(RY).
To complete the proof, it is enough to show that
2(0, L39), < C"|1¢l;, V¢ € S(RY)

for some constant C" = C'(p, d, (0;5), (b;)) > 0 and then the same inequality extends to
¢ € Spy1(R?) via density arguments.
For ¢ € S(RY),

{fom‘ — j. 8, (M;¢) = 6 + M;(9,0)
fori # j, 0; (M;¢) = M;(0;9)
Then for any 4, using Theorem and Theorem [3.4.1]
(6, 0: (M), = lo|2 + (&, ( o)),
= l16ll; + (Mio, i), + (L6, i)
= l0ll; + (Mig, (=07 +T))), +(Tio>, 0ig)
= 612 = (0. (Mi9) . 6), + (Mo, Tg), + (Tie0, id)

and hence 2(¢, 9; (Mig)), = |6]12 + (Mo, Tig), + (Ti6, 9i9) .

For i # j, a similar computation yields 2 (¢, 0; (Mj¢)>p = (M;9¢, Tmﬁ}p + <Tj¢, 8Z¢> .
p
Hence

<¢7 L;¢ 2_: 7 i j¢)>p
Z Cij ¢7 i —QZC“ ¢7 ¢)>
i#j
d d
—- X [Mqﬁ, 7.6), + (T, ,a@u ~ 6l
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Chapter 3. Monotonicity inequality for stochastic partial differential equations in S’(R%)

Bilinearity of (¢,) — (M;¢, T@)p + <Tj¢, 5z'<15> (see Theorem [3.4.1)) gives the required
p
estimate on 2 (¢, L;¢), and this completes the proof. O

Remark 3.4.3. Theorem covers a class of examples where the Monotonicity in-
equality for the pair (A*, L*) holds. The problem of characterizing all (o, b) such that the
inequality holds is a problem for the future. This question remains unresolved to date, to
our knowledge.
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CHAPTER

Gaussian flows and probabilistic representation of

solutions of the Forward equations

4.1 Introduction

[t6’s stochastic differential equations provide a concrete model for stochastic flows, on which
topic there is a considerable literature (see [6},13}16,/18,31}[32}/49./66|,69, 70,/73.|76.|104L 119
and the references therein). In this chapter, we study three interrelated properties (which
we call property I, IT and III) of stochastic flows arising as solutions of finite dimensional
stochastic differential equations, viz.

In Section 2 we explore property I and in Section 3 we consider properties 11, II1.
Property I: We want to identify the pairs (o,b) (assumed to be Lipschitz continuous)
such that the general solutions { X[} (z denotes the deterministic initial conditions) of the
corresponding diffusions are the sum of the solution starting at 0, i.e. {X?} and the value of
a deterministic function at the initial condition, viz. f(t,x). We call this class of diffusions
as diffusions depending deterministically on the initial condition (see Definition . A
consequence of this notion is that the map ¢t — f(¢,2) is C! for each fixed z € R? (see
Lemma .

Property II: We want to identify the pairs (o,b) (assumed to be sufficiently smooth) such
that the map z — (X7) is in S(R?) whenever ¢ € S(R?). In [92], a similar composition
of maps led to the existence of a solution of (see |92, Theorem 3.3))

Vi) = v+ [ AVw) B+ [ L) ds, e 20, (4.2)

in some Hermite Sobolev space S,(R?), where ¢ € £'(R?) - the space of compactly sup-
ported distributions on R? {B;} - a r dimensional standard Brownian motion and the
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

operators A* = (Aj,---, A¥), L are as in equation (3.13)).
Property I1I: We want to identify the pairs (o, b) such that the solution to the SPDE (4.2)
is unique. This question remains unresolved to date, to our knowledge. The Monotonicity

inequality for the pair (A*, L*) is a sufficient condition for the uniqueness.
We consider the case r = d and show that all three properties hold if

(i) o is a real d x d matrix.
(ii) b(z) := a + Cxz, Vo € R? where a € R? and C = (c;;) is a real d x d matrix.

Under ‘nice’ conditions we show that property I holds if and only if the pair o,b is
given by (i) and (ii) (Proposition [4.2.5] Theorem [£.2.4). Since the flows generated by these
coefficients are Gaussian, these results can be considered as characterization results on
Gaussian flows. In Proposition and Theorem we discuss some generalizations
of Definition £.2.1]

For ,b in our class, we observe that {X? + e/“z} solves equation (4.1)) (Lemma .
In particular this result implies property II. Using this result, we define continuous linear
maps X;(w) : S(RY) — S(R?) (Lemma and the corresponding adjoints X;(w) :
S'(RY) — S'(RY). Recall that the space of tempered distributions given by integrable
functions, viz. £'(R?) is a subset of S_,(R?) whenever p > ¢ (Lemma . For any
Y € L1(RY), we construct an S_,(R?) valued continuous adapted process {Y;(¢))} with the
property X; (1) = Y;(¢) (see equation (4.17)). We then show that the process {Y;(¢)}
satisfies the stochastic partial differential equation inS_, 1 (RY) with Yy = ¢ € L' (R?)

(Theorem (4.3.8)).

Note that the Monotonicity inequality for (A*, L*), mentioned in property III, was
proved in Chapter 3 for o,b as given by (i) and (ii) (Theorem [3.4.2)).

Taking expectation on both sides of equation (4.2), we show in Theorem that
(t) == EY;(¢) solves the Cauchy problem for L*, viz.
dy(t)

“dt = L*Y(t); ¥(0) =1, (4.3)

where 1 € L}(R?). Furthermore, the uniqueness of solutions of follows from the
Monotonicity inequality for (A*, L*). This result was motivated by [92, Theorem 4.4],
where the uniqueness of was obtained for ¢ € £'(R?). Note that we have explicitly
proved the Monotonicity inequality for the pair (A*, L*) (corresponding to o, b in our class),

whereas in [92] it was stated as an assumption.

It was shown in [90] that the solutions of certain stochastic partial differential equa-
tions can be represented as translates of the initial condition by the solution of a finite
dimensional diffusion. In Proposition 4.3.10, we prove a similar result, viz. the tempered
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4.2. Diffusions with the solution depending deterministically on the initial condition

distribution Y;(¢) is given by the integrable function e=*""(%) 7y, 0yt(e1¢-) where tr(C) is
the trace of the matrix C.

Most of the results in this chapter are from [§].

4.2 Characterizing diffusions with the general solution

depending deterministically on the initial condition

Let (2, F, (F;), P) be a filtered complete probability space satisfying the usual conditions.
Let {B;} be a standard d-dimensional (F;) Brownian motion. Now consider the diffusion:

where the coefficients o : R — R%? b : R — R are Lipschitz continuous. Note that o, b
satisfy a linear growth condition, i.e. there exists a constant K > 0 such that

o ()] + [b(2)] < K(1 + [2]), Vo € RY,

where |- | denotes the Euclidean norm in the appropriate spaces. For any z € R?, let { X7}
denote the solution of (4.4) with Xy = x.

Definition 4.2.1. We say the general solution to the diffusion (4.4)) depends determinis-
tically on the initial condition, if there exists a function f : [0,00) x R? — R? such that
for any z € R?, we have a.s.

X (w) = f(t,o) + XP(w), t > 0. (4.5)

Remark 4.2.2. A motivation to look for this type of diffusions is to have ‘nice’ solution
{X¥} so that the composition  — ¢(X}") has ‘smoothness’ for ¢ in a suitable function
class. A special case of this type of diffusions and subsequent composition will be used in
Section 3.

If equation (4.5)) is satisfied, then the function f has ‘nice’ properties. This is our next
result. The component functions of f are denoted by fi,---, f4.

Lemma 4.2.3. If the general solution of the diffusion (4.4) depends deterministically on
the initial condition, then for all (t,z) € [0,00) X R%, the partial derivative %{(t,x) ex-
ists and for every fired x € RY, the map t — 2L(t,x) is continuous, where %(t,a:) =

ot
(%(t,%), T 7%@71.))'
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

Proof. Due to the linear growth of the coefficients o, b, the first and second moments of
X7 exist for all x,¢. If equation (4.5)) is satisfied, then for all =, ¢ we have

flt,2) =EXF —EX? =z + /Ot [Eb(X?) — Eb(X?)] ds.

This implies the differentiability of f and the continuity of t %(t,x) for every =z €

R, O

In Theorem and Proposition we characterize diffusions depending determin-
istically on the initial condition. In the first result we obtain a characterization under a
non-degeneracy condition on ¢ and smoothness assumptions on certain derivatives of b, f.

In the second result we consider the case when f is in a product form.

For any d x d matrix C, the bounded linear operator on R? given by the matrix
o 5C™ will be denoted by €'

Theorem 4.2.4. Let 0,b be Lipschitz continuous functions. Suppose the following happen:

(i) there exists an v € R such that the determinant of (0;;(x)) is not zero,
(ii) b; € C*RYR),i =1,--- ,d where b= (by,- -+ ,bg),
(ii1) for every fizved v € ]Rd the map t — af = (t, :c) is of bounded variation.

Then the general solution of the diffusion (4.4) depends deterministically on the initial
condition through (4.5)) if and only if o is a Teal non-singular matrix of order d and b is of
the form b(z) = a + Cx and f(t,z) = €'z where « € R? and C is a real square matriz of
order d.

Proof. Suppose that the solution of the diffusion depends deterministically on the initial
condition through (4.5). Then for any z € R?, a.s. t >0

f<t7 ) = Xz o XO
— 10,z +/ [ (X7) —a(XO)] dB, +/ [ b(X?) b(XS)} ds.
Note that necessarily we must have f(0,z) = . Now rewriting above relation

/Ot [o(X2) = o(X?)] . dB, + /Ot [b(Xj) —h(X0) — aa{(s,x)] ds = 0.

But the first integral is a continuous martingale and the second is a continuous process of
finite variation. Hence the martingale is almost surely constant (see Proposition [2.5.19)).
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4.2. Diffusions with the solution depending deterministically on the initial condition

Since it starts at 0, the martingale term is 0 a.s. and hence so is the finite variation term,
ie. as. t>0

/ o (x2) - o(X9)] B, =0, (4.62)

[ s =) - Fissn| as =0 )

The quadratic variation of the martingale in (4.6al) is also 0 and hence for any fixed x € R?
and for any 7,7 =1,--- ,d a.s.

t
/ [m’j(X;”) — aij(Xg)r ds=0,t>0.
0

But for fixed z and a.s. w the map t — [0;;(X]) — 0y (X9)]? is continuous and hence for
allz € R i j =1, ,d as. [0,;(X7) —05(X0)]°> = 0,Vt > 0. Putting ¢ = 0 we have
0i;(x) = 04;(0), € R? i.e. o is a constant d x d matrix. The fact that the determinant of
o is non-zero, follows from our hypothesis.

On the other hand, from equation , for each x € RY, a.s. t > 0,

Evaluating at ¢t = 0 yields

Let {B”} denote the ith component of {B,}. Since b; € C*(R% R), by It6 formula we
have for z € R?, a.s. t > 0,

bi(X7) = bi() + i /0 C0bi(X7) d(x7))

123 [Coom 0 aoew, (@]

jk=1 B

Using (4.7)) and the It6 formula above, we have a.s. ¢ > 0,

Ofi
ot

(t,x) = bi(X}) — bs(X})

= [bi(z) — b:(0)] + i /Ot (9;0:(X7) = 9;b4( X)) oA BY

J,k=1
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

+ Zd:/ot [@b,(Xj)b,(Xj) - 3jbi(Xg)bi(XS)] ds

1 &
+5 2 [ (00 [0:0i(X2) — 0,00,(X0)] ds

j k=1
o . d ot
= P01 3 [ (om0 - 9p(XD) oypdB®

jk=1"0

o3 [ [ 2) - o (XX ds

1Lt
+3 2 | (005 [0,000:(X2) = 0,00:(XD)] ds.

Then a.s. t > 0,

af’L afz d ¢ T
) = 0.0 = 30 [ (9b(x0) — 9b(XD) 030 BY
jk=1
d st
#3 [ om0 (x0) - ah(Xby(X2)] ds
j=1
1 d ¢ t T 0
5> /0 (00") 1 [005:(XT) — 0,0,b:(X0)] ds.
k=1
Again, the martingale term must be zero. Then for any i,k = 1,---,d we have a.s.

2
>e 0% (ﬁjbi(th) — 8jbi(X?)> =0, t > 0. Evaluating at ¢ = 0 and simplifying we have
Y41 051(0;bi(x) — 9;b;(0)) = 0. The last equation we can write as

éhbz(x) — 0161(0)
ol . = 0.

Since o is non-singular, we have for each ¢,j7 = 1,--- ,d the function x — 0,b;(x) is a
constant function. Define ¢;; := 0;b;(0) and write C' = (¢;;). Then

bi(z) — b;(0) = (bi(xlax% e, xg) — bi(0, 29, - - - Jd))
+ (bi(OVCEQv e 7$d) - bi(0707x37 e 7$d))
++(bl<07707$d)_b7,(07 )

.. 7O)
181bi(y,$2,"' 7xd)dy++/0 dadbi(oﬂ"' 707y>dy

I
S—

0

Cijl'j
—)

<
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4.2. Diffusions with the solution depending deterministically on the initial condition

Now for any fixed x € RY, we have f(0,z) = z and

flt, o) — o = /Ot [b(x7) — b(X?)] ds = /Otc (X7~ X0] ds = /Ot Cf(s,x)ds.

Hence f(t,z) = e'“x (see Example . This completes the proof of necessity.
To prove the converse, observe that there exists a P null set N such that for all w €
Q\N,t>0

X0 :/OtadBS—irozt—i—/OtCngs.

Again for any t > 0,2 € R? we have (see Example
er=a+ /Ot Ce*“x ds.
Hence on Q\ N for all t > 0,7 € R? we have
XtOJretCa::x+/0tast+at+/0tC’(Xg+esca:) ds (4.8)
so that the sum {X? + e!“x} solves equation (4.4)). O

In Definition if the function f is in a product form , then a similar characterization
can be obtained without additional smoothness assumptions on b, f.

Proposition 4.2.5. Let 0,b be Lipschitz continuous functions.

(i) Suppose the general solution of the diffusion (4.4) depends deterministically on the
initial condition, where the function f has the decomposition f(t,z) = g(t)h(x) with
g € CY([0,00),R),h € C(RY,RY). Then f(t,x) = g(t)x for some g € 2 where

2 :={g € C'([0,00),R) : g(0) = 1}.
(i) The solution to (4.4)) is linear in the initial condition in the following sense
X;=gt)Xo + X0 t>0 (4.9)

for some g € Z if and only if o is a constant d X d matrix and b is of the form
b(z) = a + Bz where o € RY, 3 € R. In this case, the solution has the form

eﬁtXO + O—f(f 65(15—8) dBS + CB;—la’ Zfﬂ 7& 0
Xo "—tOé"—O'Bt, Zfﬁ =0

Xt:
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

Proof. Since a.s. X = f(0,7) + X, we have z = g(0)h(z), Vo € R% So ¢(0) # 0.
Without loss of generality, we may assume ¢(0) = 1. Then h(z) = z, f(t,z) = g(t)z. This
proves part (i).

If holds for some g € &, then as in Theorem , we can show o is a constant d X d
matrix. Using equation , we have for all z € R%, a.s. t >0

/ [b(xE) — B(X) — (s)2] ds 0. (4.10)

For fixed  and a.s. w the map t — b(XF) — b(X?) — ¢'(t)z is continuous and hence from
([#.10) we have, for all z € R?

a.s. b(X")—bX))—g(t)x=0,Vt>0. (4.11)
Putting ¢ = 0 we have for all z € R, b(x) = b(0) + ¢’(0)z. Now for all z € R?, a.s. for
>0,
b(XT) = b(X}) — g () = b(X} + g(t)z) — b(X}) — ¢ (t)x
= {b(0) + ¢'(0)X} + g'(0)g(t)x} — {b(0) + ¢ (0) X7} — g'(t) = {g(0)g(t) — g'(t)}
Then using ([4.11)), we have
g0)g(t) =g'(t); t = 0; g(0) = 1.

Solution to the previous differential equation is given by g(t) = €9 ©* ¢ > 0. Then b(z) =
b(0) 4+ ¢'(0)z and is determined by the values b(0), ¢'(0).
The converse part can be verified through direct computation. O

Remark 4.2.6. If o is a d x d real matrix and b is of the form b(x) = a + Cx,z € R,
then the flow generated by equation is Gaussian. Consequently, Theorem and
Proposition [4.2.5] can be considered as characterization results on Gaussian flows in the
class of flows that arise as the strong solutions of an Itd stochastic differential equation

with smooth or Lipschitz coefficients and driven by a Brownian motion {B;}.

In dimension d = 1, for convex functions we can apply the following generalization of
[t6 formula.

Theorem 4.2.7 ([93, Chapter VI, (1.1) Theorem]). If {X:} is a continuous real valued
semimartingale and f : R — R is a convex function, then there exists a continuous in-
creasing process {A{} such that a.s. t >0

FOX) = F(Xo) + [ F2(X) X, + 5Af

where [’ is the left-hand derivative of f.
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4.2. Diffusions with the solution depending deterministically on the initial condition

Using the previous theorem, we get the following version of Theorem [4.2.4}

Proposition 4.2.8. Let 0,b be Lipschitz continuous functions on R. Suppose the following
happen:

(i) there exists an x € R such that o(x) is not zero,
(7i) b is continuously differentiable and is a finite linear combination of convex functions,
(iii) for every fived x € R?, the map t — %(t, x) is of bounded variation.

Then the general solution of the diffusion (4.4) depends deterministically on the initial
condition through (4.5)) if and only if o is a non-zero constant function and b is of the form
b(z) = a+ Cx and f(t,r) = e“a where o, C € R.

Proof. The proof remain the same as in Theorem [4.2.4] except the following minor change
in the proof of necessity.

First observe that if h : R — R is convex, then so is Sh for any scalar § > 0. Again
the sum of two convex functions is convex. If b = ?:1 Bih; for scalars §; € R and convex
functions h;, then without loss of generality we may assume |5;| = 1, i.e. b will be a
difference of convex functions b = hy — ho.

Note that b'(-) = V' (-) = (h1)"(-) — (he)"(-). Now use Theorem instead of the
It formula for C? functions for the computations involving b(X?) in the necessity part of
Theorem [£.2.41 O

ILBIIlaIk 4.2.9- (l) : ne IIla‘y ory l]la e al (] I)[()Ve Sl 1 lla es ]“S (o)1 the fOllOWl g pe
Of conditior n ty
X—tsw(UJ) f(t, S, x) + S(tszo(< 7)’ t > s; X’Ss,x T

for s > 0,7 € R%.
(i) If equation (4.5)) is satisfied then we have f(t,z) = E[X?—X?]. Assuch the conditions
on f (in Theorem Proposition [4.2.5) can be stated in terms of the means

EX?, x € R%
(iii) Diffusions satisfying (4.5]) also satisfy the following condition: for any x,y € R?, a.s.
t>0

X = X{ = ft,z) = f(t,y).

In certain situations such differences were shown to be diffusions (see [116, Proposi-
tion 2.2]).

(iv) Semimartingales with independent increments have been considered in [55, Chapter
II]. In particular, it was shown that any rcll process with independent increments

must be a sum of a semimartingale with independent increments and a deterministic
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

part ([55, Chapter II, 5.1 Theorem]). This is similar to (4.5]), but we are interested in
the dependence of a possible deterministic part of the flows (generated by stochastic
differential equations) on the initial condition.

In the next proposition, we present an example where Definition [4.2.1) appears. Given
a random field (X7 x € R ¢ > 0) in many situations it is reasonable to assume that the
field can be decomposed as X7 = Y;* + Z;, where {Y;*} is a ‘local’ component and {Z;} is
a ‘global’ component. We show that under certain conditions the ‘local’ component has to
be deterministic.

Proposition 4.2.10. Suppose that Z; = X? and that for all z € RY, the field Y;* = XF—X?
is independent of Z. In addition assume that { X'} solves

and the sigma-fields generated by the processes { X} and {B;} are the same. Then {Y}
is deterministic.

Proof. Under our hypothesis, {Y;*} is both adapted to the said sigma-field and is indepen-
dent of it. Hence {Y;*} is deterministic. O

Example 4.2.11. We note that not all Gaussian flows are of the form (4.5)). Consider the
stochastic differential equations in dimension one:

2
dX; = 2dB, + (o — X;) dt; X = %

where « is some fixed real number. The solution is given by

2

Xr=ett 4 x/t e dB, —ale™t — 1)
T2 0 ° ’

which is not of the form (4.5)), but the flow is Gaussian.

In Proposition [4.2.10, we can allow o,b to be random, but independent of {B;} and
then the conclusion still holds, conditional on the o-fields of o,b. We take this to be in a

product form in the next theorem.

Theorem 4.2.12. Let (Y, F', P') be a complete probability space and (", F", (F}'), P")
a filtered complete probability space satisfying the usual conditions. Define Q := Q' x Q".
Consider the filtered probability space (0, F & F" (F @ F,'), P’ x P"). Let {B;} be an
(F/) Brownian motion. Assume that F;' = c{Bs : 0 < s <t} and F" = o{B; : t > 0}.
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Let b: R x Q — R? be B(RY) @ F' @ Fi/ /B(R?) measurable and o : R? x Q — R4 pe
B(RY) @ F' @ F/B(R™?) measurable, where B(R?) denotes the Borel sigma field on R.

Suppose that a unique strong solution to the following stochastic differential equation
dXt = O'(Xt) dBt —+ b(Xt) dt,t 2 0, XO =X

exists for each x € RY. Denote the solution by {X*}. Suppose that

(i) o{B;:t >0} = a{X? : t > 0},
(ii) {XF— X2 : 2z €RYt >0} and {B; :t > 0} are independent.

Then a.s. W' (P'), a.s. W" (P") the process {X¥ — X} depends on ' alone.

Proof. By condition (ii), a.s. w' (P'), {B; : t > 0} and {XZ¥(w',)—X?(w',-) : t > 0,7 € R%}
are independent.

Since { X[} is the strong solution of a stochastic differential equation, there exists a P’-null
set N7 C Q' such that for every w € Q' \ N/, a.s. w” (P"),

t

t
X (W) =+ (/ o(X,) dBS> (W', W) +/ b(Xs(w' "), ") ds, t > 0.
0 0
Hence a.s. ' (P’), the random variables X#(w',-),t > 0,2 € R¢ are measurable with
respect to o{B; : t > 0} and by condition (i), so are XZ(«',-) — X2(«',-),t > 0,2 € R%
Hence a.s. ' (P), XF(w', ") — X2(w',w"),t > 0,2 € R? is deterministic in w”, i.e. the

random variables depend on w’ alone. O]

4.3 A probabilistic representation of the solutions of the

Forward equations

Let (Q, F,(F:), P) be a filtered complete probability space satisfying the usual conditions
and let {B;} denote a standard (F;) r-dimensional Brownian motion. We obtain the
existence and uniqueness of solutions of equations (4.2)) and (4.3]) where

(i) r = d and the coefficients of the stochastic differential equation are as follows:
o is a real square matrix of order d and b(z) = a + Cx, Vo € R? where a =
(a1, ,aq) € R?and C = (¢;;) is a real square matrix of order d.

(ii) ¢ is a tempered distribution on R¢ given by an integrable function (see Exam-

ple 2.11.19). Recall that £!(R?) denotes the space of all such distributions and
LYR?Y) C S_,(R?) for any p > ¢ (see Lemma [2.11.20)).

Since o,b are C*° functions with bounded derivatives, a diffeomorphic modification
of the solution of (4.1]) exists (see [70], [92, Theorem 2.1]). We first observe that such
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

a modification can be written in an explicit form. The proof actually follows from the
converse part of Theorem [4.2.4] We observe that the proof there actually produces a null
set independent of the initial conditions x € R¢, even though as per Definition the

null set may well vary over z.

Lemma 4.3.1. Let 0,b be as above. Let {X(t,0)} denote the solution of
dX: = o(Xy).dBy + b(Xy)dt; Xy = 0.
Then a.s. for allt >0,z € R4
X(t,0)+ ey =2+ /Ot odBs + at + /Ot C(X(s,0) +e*“x) ds (4.12)
so that the sum {X(t,0) + e!“x} solves the stochastic differential equation
dX; = o(Xy).dB; + b(Xy)dt; Xo==x.

Example 4.3.2. For the case 0 = Id (Id denotes the d x d identity matrix), b(z) = —=x,
we get the well-known Ornstein-Uhlenbeck diffusion, whose solution is given by

¢
X(t,z)=e¢"x —I—/ e"9dB,, 0 <t < 0. (4.13)
0

In what follows, {X (¢, 2)} and N will denote the solution and the null set mentioned
in Lemma respectively.

As in [92, equation (3.3)]), for any ¢ € L*(R?) we define

Yi(w) (@) = /R (@)Fx ) i, w € Q\N (4.14)
and set Y;(w)(¢)) :=0, if w € N.

Proposition 4.3.3. Let ¢, {X;},{Y;(¢}) be as above. Let p > 4. Then {Y,(¢)} is an (F;)

adapted S_,(R?) valued continuous process. Furthermore, {Y;(1)} is norm-bounded.

Proof. By Proposition 2.11.14 for any p > ¢ there exists a positive constant v = (p)
such that ||6,|_, <7, Vo € R%. Then

/Rd [V (2)].]|0x (1,00 | —p d < ’y/Rd |Y(z)| dr < .

Therefore the right hand side of equation (4.14)) is Bochner integrable for any w € Q \ N
and Y;(¢) is a well-defined element of S_,(R?) for any p > 4. Similar arguments were used
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4.3. A probabilistic representation of solutions of the Forward Equations

to show L1(R?) € S_,(RY) (see Lemma [2.11.20)). The following equation gives an upper
bound of the norm of {Y;(¢¥)}, viz.

/Rd ¢<x)6X(t,x,w) dz

=<1 [ @) da. (4.15)

Since {X(t,z)} is (F;) adapted for each z, so is {Y;(v))}. We now prove {Y;(¢)} has
continuous paths.

Note that 7.,z € R? denote the translation operators on S_,(R?) (see Example [2.11.6)
and 0y € S_,, (Proposition and 7,09 = 0,. Since {X(¢,2)} has continuous paths
for each z € R%, by Lemma , {6x @t} also has continuous paths in S_,(R?) for
each z € R? The upper bound in allows us to apply the Dominated Convergence
theorem and continuity of {Y;(¢))} follows. O

Since {Y;(¢)} is norm-bounded (equation (4.15])), it is also square integrable, i.e.
2
EIViw)2, <* ([, @] ds) < ox. (4.16)

For any ¢t > 0,w € Q\ N, the map = — X (¢,z,w) is an affine map and hence it is a
C*> map with bounded derivatives. Then the map z + ¢(X (¢, 7, w)) is in S(R?) whenever
¢ € S(R?). This allows us to define a linear map, denoted by X;(w) : S(R?) — S(R?) and
given by (X;(w)¢)(z) := ¢(X (¢, 7,w)), x € R%

Lemma 4.3.4. Fiz any t > 0,w € Q\ N. The linear map X;(w) : S(RY) — S(R?) is
continuous.

Proof. Let ¢ € S(R?Y). To simplify the notations, we write 5 = X (t,0,w) and I' = (v;;) for
the matrix €/“. Then T is invertible and

(Xu(@))(x) = $(8 + ),z € R

Let N be a non-negative integer. For any d x d matrix D, ||D|| and |D| will denote the

operator norm and Euclidean norm respectively. Then

sup (1 + [2[*)"](Xy(w) o) ()]

z€R4

= sup (1 +[z[*)"|¢(8 + T'z)|

rERY

= sup (1 + T (y — 5)|2)N |o(y)|, (puttingy = B + I'x)

yeRd

< sup (1+ 0711y - B)P) " [é(w)|

y€ER4
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

< sup (1+ [T 2201y + 18P)) 16(v)]

y€Rd

< MY sup (1+yP?)" o(y)]

y€ER4

where M = max{2||T"||%, (1 4+ 2|3*|IT7Y|?)}. Now let 1 <i < d. Then 9;(X;(w)¢p)(z) =
>4 Vi Ord(B + ') and hence

d
10 (X (w Z |Vki| [Okp(B + Tx)| < || Z |0k (5 + T'z)|.
=1 k=1
We now combine the two estimates above to obtain
d
N
sup (1 + |22V [0:(X, (w)6) ()] < [T 3 sup (1+ 1) (06 (y).
zeR4 k—1 yER?

Hence

max sup (1+ o) ¥]0,(X(w)6) (0)] < @ max sup (1+[y?)" [0 (y)].

1<i<d rERd 1<k<d yGRd

for some constant o > 0. Similar estimates can be obtained for higher derivatives of
X;(w)¢. Since the seminorms in equation (2.10) determine the topology on S(R?), the

above estimate proves the continuity of the linear map X;(w). ]

Remark 4.3.5. We point out an observation regarding the constants obtained in the
previous proof. For fixed w € Q\ NV, the map s — X(s,0,w) is continuous. So is the map
s+ ¢, This implies that the terms |e*C| and max{2[[e~*¢||?, (1+2|X (s,0,w)[*|le=*||?)}
can be dominated uniformly in s when s € [0, ¢], for any fixed ¢ > 0. This fact will be used
in the proof of Theorem [4.3.8]

Let X;(w) : S'(RY) — S’(RY) denote the transpose of the map X;(w). Then for any
0 € S'(RY),
(X7(0), @) =0, Xu(0)), Vo € S(RT).
Using ([4.14)), for any ¢ € S(R?), ¢ € L' (R?) we have

Yiw) . ¢) = [ 0@ o(X (L)) dr = [ () (Xu(@)(w) de = (0, Xi(6))

This implies

Yi(¥) = X7 (¥), V¢ € L'(RY). (4.17)
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4.3. A probabilistic representation of solutions of the Forward Equations

The operators A, L are given as follows: for ¢ € S(RY) and z € R?,

Ap = (A9, , Aud),
Aid(z) = Zk 1Ukz($)5k¢( ) (4.18)
Lo(x) = 5 30,21 (00")ij(2)056(x) + XL, bi(2)dig (),

where o' denotes the transpose of o. For 1) € S'(R?) consider the adjoint operators A*, L*
as follows.

A*d} = (Aiwa e 7A>ckl¢)a
Asyp = —Zi 1 Ok (o)) (4.19)
L) = 5 2450 05 (00 )igth) — S0y 0 (bi) -

We now look at A*, L* as operators on S,(R?).

Proposition 4.3.6. Fix p € R. There exist constants C; = C1(p),Cy = Cy(p) > 0 such
that
[A700,— 1 < Cullfllp, IL70]lp-1 < Caf|O]]p, VO € S,

Furthermore, we have the Monotonicity inequality for (A*, L*), i.e. there exist a constant
Cp > 0 such that
200, L°6), + | A0 ssg) < GBI, Y0 € Spun,

where ||A*9||12LIS(p) =Y, ||A;k9||;2;
Proof. For any q € R, 8;,.4; : S(RY) — S, %(Rd) are bounded linear operators (see
Example [2.11.3] and Example [2.11.9)). Using the definitions of A*, L* estimates on the

norms follows.
Proof of the Monotonicity inequality for (A*, L*) follows from Theorem m O]

Proposition 4.3.7. Let p > 4. Then { [y A*(Y,(¢)) .dBs} is an (F;) adapted 87p7%(Rd)

valued continuous martingale.

Proof. Since {Y;(¥)} is an S_,(R?) valued continuous adapted process, to complete the
proof it is enough to show that

t
E [ AV, yds < 00, ¥i =1, ,d,t >0,

But A} is a bounded linear operator from S_,(R?) to S_p_%(Rd) foreachi=1,--- ,d and
the process {Y;(¢)} is norm-bounded (see (4.15))). Hence the required estimate follows. [
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Chapter 4. Gaussian flows and probabilistic representation of solutions of the Forward equations

Theorem 4.3.8. Letp > ¢ and ¢ € L' (R?). Then the S_,(R?) valued continuous adapted
process {Y,(¥)} satisfies the following equation in S—,_1(R?), a.s.

Vi) =6+ [ AV) dB, + [ (V) ds, e 0. (4.20)

This solution is also unique.

Proof. By Ito’s formula for any ¢ € S(R?), and any z € R?

(Xi(0))(x) = ¢(X (2, 7))
7) +/Ot A(X(s,7)). dB, +/Ot Lo(X (s, 7)) ds

(
o)+ [0 @) B, + [ (X, (L)) () ds

Note that L¢ € S(R?) since ¢ € S(R?) and hence {x — (X;(L¢))(x)} is an S(R?) valued
process. Using differentiation under the sign of integration we can establish the existence
of all derivatives of x + [J(X,(L¢))(x)ds for any t > 0. Given non-negative integers
N,aq,- -+, a4, the terms

sup (1+ z[*)"|0f* - 95 (X (Lg))(x)|, s € [0,1]

rER4

can be dominated uniformly in s (see Remark the upper bound may depend on w)

and hence

sup (1 + |22) \ / D01 -+ 009(X (L)) () ds
r€RY
t
< [ |sup (1 + |2)¥or - 054 (Xo(Le)) ()| ds
0 |zecrd
< 0.

Hence {z + [3 Lo(X (s,2)) ds} is an S(R?) valued process. So are {z — ¢(X (t,2))}, {z >
¢(z)}. Hence from the equality obtained via the It6 formula, we conclude that the process
{z— [{(X(Ap))(x). dB,} is also an S(RY) valued process.

Then for ¢ € S(R?), by ([£.17), a.s. t >0

(Yi(¥), &) = (b, Xu(0))
_ <¢, ¢+/OtXS(A¢).dBS+/OtXS(L¢)ds>

using Proposition [2.7.18]
=W, 0+ [ ., Xo(Ao)) dB,+ [ (6, X, (L) ds
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=00+ [AY.0), 8) B+ [ (L), 6) ds

again using Proposition [2.7.18]

= (o4 [ aviw).dn, + [ V@) ds, o)

Since {h, : n € Z%} is countable, a common P-null set can be obtained outside with the
previous relation holds for all ¢ € {h, : n € Z%}. But this set is total in S,+1(R?) and
A7 1 Sp(RY) = S, 1 (RY), L+ S_y(RT) — S_,1(R?) are bounded linear operators (by
Proposition 4.3.6). This proves Y;(¢)) solves (4.20)) in S_, ;(R?).

Now we are going to show that the solution of the equation
dYy = AV, dB, + LY, dt; Yo =1

with v € £1(R?) must be unique.
Let {Y;'},{Y;?} be two continuous solutions of the previous equation. Define Z; := Y;! —
Y2t >0. Then in S_, ;(R?) a.s.

t t
Zt:/ A*ZSdBSJr/ L*Z.ds, ¥t > 0.
0 0

Note that {Z;} is S_,(R?) valued and we want the uniqueness in S_, ;(R?). Using It
formula for [|-[|2,_;, (see Proposition [2.7.20} also see [Section [2.12|Item (vi)|) we obtain a.s.
t>0

1202, = [ 2020 L2+ SN, ds 0,

where {M,;} is some continuous local martingale with My = 0. Let {n,} be a localizing
sequence such that for each n, { M} is a continuous martingale and || Z;" || -,—1 is bounded.
Then

tANn

d
[ —— i [2(23,L*Zs)_p_1+ZHA;“Zs||2p1] ds + M
=1

tANn 9 n
<R [ 12, ds 4 M

t
< Rpor [ 12202,y ds 4+ M

where R_, ; > 0 is a constant obtained from the Monotonicity inequality (Proposi-
tion [4.3.6). Taking expectation in the above inequality, we have

B2 s < Ry [ ENZIR, 0 d
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Then using Gronwall’s inequality (Lemma [2.13.1)), we have E[Z"||> ,_; = 0, which shows
a.s. Y} = Y2 t <n,. Since n, 1 oo, we have a.s. Y;! = Y2 ¢ > 0. This completes the proof
of uniqueness. O

The next result is about the existence and uniqueness of solution to equation (4.3)) with
initial condition ¢ € £!'(R9). By a solution to equation (4.3) we mean an S,(R?) valued
continuous function ¢(-) : [0, 00) — S,(R?) for some p such that

0(0) = w(0) + [ L*(s) ds
holds in S, 1 (RY).

Theorem 4.3.9. Let p > 4 and ¢ € L(R?). Then ¢(t) := EY,(¥) solves the initial value
problem (4.3)), i.e.

EYi(6) =+ [ I'EY,(0)ds

holds in S_,_1(R?). Furthermore this is the unique solution.

Proof. We first observe some properties of the terms appearing on both sides of the stochas-
tic partial differential equation (4.20)).

(i) Since the random variables Y;(¢)) are bounded in the norm || - ||_,, independent
of t > 0 (equation ), P(t) := EY,(¢) are well-defined elements of S_,(R?).
Furthermore, the continuity of ¢ +— 1 (¢) follows from the Dominated Convergence
Theorem, using the continuity of the process {Y;(¢)}.

(ii) {3 A*Y,(v)).dB,} is a continuous martingale and in particular, E [j A*Y,(¢)). dB, = 0
(see Proposition [£.3.7).

(iii) Another consequence of the existence of a bound of ||Y;(¢)||—,,t > 0 independent of ¢
(equation (4.15))) is that the random variables [; L* Y,(3)) ds are bounded in ||+ ||_,_1
for each ¢. Here we have used the fact that L* : S_,(R?) — S_,_;(R?) is a bounded
linear operator (Proposition . The same boundedness and linearity of L* also
imply L*E Y;(v)) = E L* Y;(¢) and hence for each ¢t > 0,

IE/O L*Ys(lp)ds:/o EL*YS(zp)ds:/O LEY,(4) ds.

In view of the above observations, taking term by term expectation on both sides of (4.20)
we obtain

t
EYi(y) =¥+ [ L'EY,(¢)ds
in S,p,1<Rd).
The proof of uniqueness of the solution is same as in [92, Theorem 4.4]. We use the
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Monotonicity inequality in Proposition and the Gronwall’s inequality (Lemma[2.13.1]).
Let 9(t) be another S_,(R?) valued continuous solution. Define ¢(t) := 1(t) — 4)(t),t > 0.
Then ¢(t) is continuous in ¢ and it satisfies

/L* )ds, t > 0
in S_,_1(RY) and
wapfqWWQJW@MAw
</ [ L 1+ZHA* 12,1 | ds
st{AW®MH$

where R_,_; > 0 is a constant obtained in the Monotonicity inequality. Then the Gron-

wall’s inequality imply ¢(t) = 0,¢ > 0, which proves the required uniqueness. O

The process {Y;(¢)} can also be described in terms of {X(¢,0)} without using the
integral representation in (4.14). We show that the tempered distribution Y;(¢)(w) is
given by an integrable function. This representation of Y;(1) is similar to the representation
obtained in [90, Lemma 3.6], where the author looked at the solution of stochastic partial
differential equations governed by certain non-linear operators. Given a d X d matrix D,
det(D),tr(D) will denote the determinant and trace of the matrix respectively.

Proposition 4.3.10. Let v € L'(RY) and w € N'. Then
Yi(w) = e "D rpan(),
where Z; = X (t,0),¢(z) := (e *x) fort > 0,7 € R™
Proof. For ¢ € S(R%), we have
W), 0) = [ V@o(X(t.x)de = [ b@)o(er +Z) dr
= |det(e™*¢ |/ e (2 — Z,))p(2) dz, (putting z = 'z + Z,)
= e tt(C /Rd Ui(z — Zy)o(2) dz,
= O [ (2 00)(2)0(2) dz
Rd

= (7" N rz1), 6) -

Here we have used the equality det(e™*¢) = e7*"(©) (|48, Problem 5.6.P43]). Using Propo-
sition [2.10.2| we conclude Y;(¢) = et 744, (+). O
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Remark 4.3.11. In this section, we obtained the probabilistic representation of solutions
of (4.3), when the initial condition ¢ € L*(R?) and the coefficients o, b of the stochastic
differential equation (4.1]) are in a specific form. Possible extensions of these results to the
case - when the initial condition v is an £9(R?) function for some ¢ > 1 or more generally
a finite linear combination of the distributional derivatives of £4(R¢) functions (¢ > 1) -
will be taken up in future.

Remark 4.3.12. It may be possible to obtain more examples of coefficients o, b by relaxing
the conditions of Theorem 4.2.4] These coefficients may be the ‘right” candidates for which
we can define the necessary compositions and continuous linear maps as in Lemma {4.3.4)

leading to existence of solutions of the stochastic partial differential equation (4.20)).
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CHAPTER

Stationary solutions of stochastic partial differential

equations in &'

5.1 Introduction

In [90], a correspondence was shown between finite dimensional stochastic differential equa-
tions and stochastic partial differential equations in §’'(R?) via an 1t6 formula. The results
there involves deterministic initial conditions in some Hermite Sobolev space S,(R?). In
this chapter we extend this correspondence to random initial conditions. Assuming the
existence of stationary solutions of finite dimensional stochastic differential equations, we
then show the existence of stationary solutions of infinite dimensional stochastic partial

differential equations, via an Ito6 formula which is used in proving the said correspondence.

Let (Q, F, (F;), P) be a filtered complete probability space satisfying the usual condi-
tions. In Section 2, we consider the problem of existence and uniqueness of solutions of
the stochastic partial differential equation

dY, = A(Y,).dB, + L(Y,) dt; Yy =€, (5.1)

where

(i) {B:} is a d dimensional standard (F;) Brownian motion.
(ii) ¢ is an S,(R?) valued Fy measurable random variable, independent of {B;}.
(iii) the operators A := (Ay, -+, Ag), L on S,(R?) are given as follows: for ¢ € S,(R?)

d
j=1
and
1 d d
Lo=5 3 (0, 8) {0, 0))i 050 = D (b, 0); Oid, (53)
i,j=1 i=1
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Chapter 5. Stationary solutions of stochastic partial differential equations in &’

where (o, ¢)' stands for the transpose of the matrix (o, ¢),

(iv) o = (04)axa, b = (b1, ba, -+ ,bg) with o5,b; € S_,(R?) for i,j =1,2,--- ,d. For any
¢ € Sp(RY), by (0, ¢) we denote the d x d matrix with entries (o, 0)ij = (0ij, B)-
Similarly (b, ¢) is a vector in R? with (b, @), := (b;, ¢).

We show that the above problem is related to the problem of existence and uniqueness
of solutions of the finite dimensional stochastic differential equation:

dZ; = 5(2;;€). dB, + b(Zy;: €) dt;  Zy = 0, (5.4)

where the functions &(-;%) : R? — R% and b(-;1p) : R — R? are given by o(z;¢) =
(04, 7o) and b(z;9) == ((bi, 70)), with the parameter 1) € S,(R?) and 7,7 € R
denoting the translation operators (see Example 2.11.6). In particular if {Z;} solves equa-
tion (5.4), then Y; = 77,(§) solves equation (5.1)), .

We first prove an It6 formula (Theorem [5.2.2)) which is an extension of Proposition [5.2.1]
(an implication of [89, Theorem 2.3]). Next we prove Theorem which gives an ex-
istence and uniqueness of the solutions of the finite dimensional stochastic differential
equation

dZ; = 6(Z;€). dBy + b(Zy; §) dt;  Zo = ¢ (5.5)

where ¢ is square integrable and ¢ = ¢ € R%. Note that the hypothesis requires a certain
‘globally Lipschitz’ nature of the coefficients, which depends on £ - the initial condition for
Y. We need control on the norm of £ to make the usual proof via Picard iteration work.

We also note that the same proof works if the random variable ( is square integrable.

The ‘globally Lipschitz’ condition can be further relaxed to ‘locally Lipschitz’ condi-
tions. We prove this in Theorem [5.2.9 and show that the solution involves a possible
explosion. We also provide a criterion on &, which imply the ‘locally Lipschitz’ condition
(Proposition [5.2.11). Using this result, we prove Theorem [5.2.12] which is a version of
Theorem [5.2.9

We continue with ‘globally Lipschitz’ coefficients and obtain a characterization result
of solutions of equation viz. Lemma (an extension of [90, Lemma 3.6]) which
allows us to prove the pathwise uniqueness of the solutions of equation in Theo-
rem [5.2.15] The existence of solutions of equation follows from the It6 formula
(Theorem and the existence of solutions of the finite dimensional stochastic differen-
tial equation . A version of this result for the ‘locally Lipschitz’ coefficients is proved
in Theorem . Note that the equation for Z involves the initial condition for Y
i.e. & but with Zy = 0. These results extend results in [90, Section 3|, where £ was taken
to be deterministic.
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For ‘globally Lipschitz’ coefficients we prove £2 estimates on the supremum of the norms
of the solutions of equation ({5.1)), in terms of the initial condition (see Proposition |5.2.17]

Proposition [5.2.18)).

A motivation for studying the existence and uniqueness problem for the stochastic par-
tial differential equation is to study stationary solutions of these equations. In Section
3, we construct stationary solutions of equation by a ‘lifting’ of stationary solutions
of the finite dimensional stochastic differential equation . We define a subset C of the
Hermite Sobolev space with the following property: if the initial random variable £ is de-
terministic and takes values in the set C, then the associated finite dimensional stochastic
differential equations remain the same, i.e. the coefficients &, b are ‘constant’ on C.
This property is observed in Lemma [5.3.3| and using which we show the existence of sta-
tionary solutions of stochastic partial differential equations in our class (Theorem .
To guarantee non-explosion for finite dimensional stochastic differential equations with
locally Lipschitz coefficients, we use a ‘Liapunov’ type criteria ([105, 7.3.14 Corollary]).
Two examples of stationary solutions are given in Example [5.3.5 and Example [5.3.8/ In
Proposition we obtain £' estimates on the supremum of the norms of the stationary
solutions of equation , in terms of the initial condition.

Most of the results in this chapter are from [9].

5.2 Stochastic partial differential equations involving random

initial conditions

An outline of the approach taken in this section was set out in Section 1. Let & be an
S,(R?) valued Fy measurable random variable. We need an It6 formula (Theorem [5.2.2)),
a ‘deterministic’ version (Proposition |5.2.1]) of which follows from [89, Theorem 2.3].

Proposition 5.2.1. Let p € R and ¢ € S_,(R?Y). Let X = (X',---, X?) be an R? valued
continuous (F;) adapted semimartingale. Then we have the following equality in S—,_1(R?),

a.s.

T, = Txgd — Z/ O, b dX’ + - Z/ 2 hd X X7, V> 0. (5.6)

’L] 1
We need to extend above result to allow random ¢.

Theorem 5.2.2. Let p € R. Let € be an S,(R?) valued Fy measurable random variable
with E[€||2 < oo. Let X = (X',---, X?) be an R valued continuous semimartingale.
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Then we have the following equality in S,_1(R?), a.s

T € = Ty — Z/ Oy . £dXT + = Z/ 27 Ed[XE XI), V> 0. (5.7)

z]l

Proof. First we show the existence of X%, [+ 9;7x.£dX! as an S, 1 (R?) valued integral.
Let X{ = X+ M; + V;’ be the decomposition of X*, where M*, V" are the continuous
local martingale part and the continuous finite variation part of X¢. We use localization
under stopping times and hence without loss of generality, assume that M i = 1,--- ,d
are continuous martingales. Let Varp(V") denote the total variation process of V*.
Fori,j=1,---,ddefine 7’ := inf{t > 0 : |[[M’, M7],| > k} and 1)}, := inf{t > 0 : | X;| > k}
and 7} == inf{t > 0: Varpg(V?) > k}. Set e = (A 107) A A(As 713). Note that 1y, 1 oc.
Consider the following two cases:

(i) If | Xo(w)| > k for some w, then n;(w) = 0. Such w does not contribute to the integral

Sl Jo ™ 10 ElI7 o dIM],, where [M'] = [M*, M].
(if) If [ Xo(w)| < K for some w, then | Xy, (@) < .

In view of these observations, to establish the existence of >, [7 0;7x.& dM! we assume
{X"} is bounded. Since 9; : S,(R?) — S, 1 (RY) is a bounded linear operator, there exist
constants C, C’ such that

H(‘?Z»TX;zkng_% < Clrymélly < C'[|€]lp, (using Lemmaf2.11.7(7))).

Since E||¢ ||12) < 00, we have the required integrability condition for the existence of the
Spfé(Rd) valued integral ¢, [ 0, TXSSdM’ and hence Y%, [¢ 0;7x.& dM! also exists.
Similarly, we can show the existence of 0, [j 9;7x,£dV] as an S, _ (Rd) valued integral

and that of Y7, [§ 027x,£ d[X", X7]; as an S,_1(R?) valued mtegral.
Fix ¢ € S(R?). Then ¢ € S_,,1(R?) and by Proposition [5.2.1, we have in S_,(R?) a.s. for
allt >0

T_x, ¢ —T_XO¢+Z/ O x.pdX! + = 2/327'_;((;5Xm X7,.

'le

Then a.s.

(€ 7x0) =6 mxed) + (6,3 [ O oaxz)

< / 27 x.pd[X", XJ]>,W20.
Zj 1
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Now using Proposition Proposition [2.7.18| and Lemma [2.11.7(iii), we have

<§7 sz:l/otaﬂ—X.ﬁdXi> = 2 1< / OiT_x., ngdX’>

d t ]
=3 [ (€ arxo)ax;

d

= _;/0 <aiTXs£7 ¢> dX;

d t )
= <—;/0 aﬂ'ngdXS, ¢>

Similarly,

<£7 > [ ot sodix X >:< s [0 mde@Xﬂ]s,¢>-

z]l 2,7=1

For each ¢ € S(R?), using (5.8) we have a.s.

(6. 0) = (6, ) = <Z [ rxgaxi, ¢>
< / 27y £ d[X, XJ]S,¢>,Vt20.
1,7=1

In particular we get a P-null set N such that for w € Q \ N and for any multi-index
n=(ny,---,ng) we have

(Tx,.€ 5 hn) = (%06, ) < /afxsgdx >

< Z/ szde’XJ]s,hn>,Vt20

2,7=1

Where h,, are the Hermite functions. Since the process {7x,& — Tx,& + 34, Jo OiTx, £ dX! —
Yy fy 03rx, Ed[XT, X)) is Spoq(R?) valued and {h, : n € Z21} is a total set in
Sl_p( ), we have the equality in S,_1(R?) a.s. (see Proposition [2.10.2))

Txtg TXOf—FZ/aTXSdeZ—*

i,0=1

/ Prx, £ d[ X', X, =0,¢>0.

This completes the proof. O
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Alternative proof of Theorem[5.2.3. In the previous proof we have shown the existence of
the integrals >¢ | [7 0;7x.& dXZ and D fo szé d[X*, X7],. In this argument we make
use of a property of stochastic integrals, viz. .

Let {¢™} be a sequence of S,(RY) valued simple Fo measurable functions such that
0 nZ—QOO> &. Observe that

(a) Given any JFy measurable set F', an S,(R?) valued predictable step process {G;} and
a continuous R? valued semimartingale {X;}, we have a.s.

t t
1F/ G, dX., :/ 15G,y dX,, 1> 0. (5.9)
0 0

Above equality can be extended to the case involving norm-bounded S,(R?) valued
predictable process {G}.
(b) Given any JF, measurable set F', ¢ € S,(R?), v € S(RY) and x € R? we have

<]1F7_x¢7 Q/)> = ILF <Tx¢> 1/}) = ILF <¢7 T—x¢>
= (Lro, Tab) = (7(Lpd), ¥)

and hence 1p7,¢ = 7, (1p¢). Similarly 1p7,¢ = 79 ,.(1rd).

Using Proposition and equations (5.9), (5.10)) we can establish the required result
when X is bounded and ¢ is an S,(R?) valued simple F, measurable random variable. In

(5.10)

particular, the following equality holds in S,_1(R?) a.s. for all ¢ > 0
d AN )
T € = ™ =3 | orgax:

+ = Z/ Ox, £Md[X, X7,

zgl

where the localizing sequence {n;} is as in the previous proof. Now letting n go to infinity
we get the equality in S, ;(R?) a.s. for all ¢ > 0

d_ rtAn
TXtAnkSZTXOS_Z/O aTngdXZ‘i‘ Z / szngZ XJ]
=1

Z]l

Letting k go to infinity, we get the result. O]

We need an existence and uniqueness of solution to the following equation:

dZ; = 5(24;€).dB, + b(Z; €) dt;  Zy = ¢, (5.11)
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5.2. Stochastic partial differential equations involving random initial conditions

where ¢ is an S,(R?) valued F, measurable random variable and ¢ is an R¢ valued JF
measurable random variable. Unless stated otherwise, we assume that both &, ( are inde-

pendent of the Brownian motion {B;}.

We now introduce some notations and terminology. Let (G;) denote the filtration gen-
erated by £, ¢ and {B;}. Let G, denote the smallest sub o-field of F containing G; for all
t > 0. Let G be the P-completion of G, and let N7 be the collection of all P-null sets
in GI . Define

FH¢ o= N oG UNT), t>0

s>t
where o(G, UNT) denotes the smallest o-field generated by the collection G, UNT. This
filtration satisfies the usual conditions. F&¢ will denote the o field generated by the
collection ;> FEC.If C is a constant, then we write (FF) instead of (F&°).

Proposition 5.2.3. Suppose the following conditions are satisfied.

(i) € is norm-bounded in S,(R?), i.e. there exists a constant K > 0 such that |||, < K.

(ii) E|¢|* < oo.

(iii) (Globally Lipschitz in z, locally in y) For any fized y € S,(R?), the functions x —
o(z;y) and x — b(x;y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in S,(R?); i.e.
for any bounded set G in S,(R?) there exists a constant C(G) > 0 such that for all
1,20 ERYy €G

| (z1;y) — (23 y)| + |b(z159) — b(aa;y)| < C(G)|w1 — 2.

Then (5.11) has a continuous (.7-"5’4) adapted strong solution {X;} with the property that
E fOT | X2 dt < oo for any T > 0. Pathwise uniqueness of solutions also holds, i.e. if {X}}
is another solution, then P(X; = X}, t > 0) = 1.

Proof. We follow the proof in [82, Theorem 5.2.1] with appropriate modifications. First

we show the uniqueness of the strong solution.

Let {Z!} and {Z?} be two strong, continuous solutions of (5.11)). Define a(t,w) =
F(ZH @) E(w)) — (Z2(w) €w)) and A(t,w) = B(ZMw)iE(w)) — HZAw); Ew)). Since €
is norm-bounded, then by our hypothesis

alt,w)? < C?|ZHw) — Z2W)|, hitw)P < C?| 2} (w) - Z2(w)[

where C' = C(Range(§)). Then

2

|2} - fo = ’/Ota(s).st + /Otv(s) ds
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Chapter 5. Stationary solutions of stochastic partial differential equations in &’

/Ota(s). ’/Otv(s) ds

Consider the localizing sequence {n;.} defined by n, = inf{t > 0: |Z! — Z?| > k}. Then

using [t6 isometry and Cauchy-Schwarz Inequality,

2
<2

|z, — 22, | < 2E/ la )|2ds+2t]E/ +(5)|? ds
< 202(1+t)/A E —Z§ ds (5.12)
< 20%(1 +1) / E|z., - 72, | ds
For any positive integer k, consider the function v( ’ — tmvk on any compact

time interval [0, 7']. Then using Gronwall’s inequahty (see Lemma [2.13.1)) and the fact that
t — v(t) is continuous, we get v = 0. Now using Fatou’s Lemma,

E|z} - 22\ <hmme\ —zz, | =0vte o).

tAN

This proves the uniqueness.
To show the existence of a strong solution, we use a Picard type iteration. Set Zt(o) =(
and then successively define

Z{+) '—CJF/ (Z"); ¢)dB, +/ b(ZW®): €)ds, Vi > 0. (5.13)
Fix any compact time interval [0, N|. For k > 1,t € [0, N| we have
¢
E|ZMY — 2P <2021+ V) [ BIZ® - 20 Pas. (5.14)
0

Proof of the above estimate is similar to ((5.12)).
Using the Lipschitz continuity for any x € R%,y € Range(£) we have, |5(z;y) — 7(0;y)| +
[b(x;y) = b(0; )| < Claf. But |a(0;9)| = [{o, »)| < lloijll-pllyllp and [6(0; )] = (b, y)| <
16ill=pllyll,-  This shows &,b has linear growth in x, i.e. there exists a constant D =
D(Range(€)) > 0 such that |6 (z;y)| < D(1 + |z]), |b(z;y)| < D(1 4+ |z|) for z € R,y €
Range(§). Since Zt(o) = ( using (5.14) we get
1) _ 502 o 2 L 2
B2 - ZOF < 2B [ 10(G O ds + 20E [ bG:) ds

<4D*(1+ N)(1+E|¢[*)t, Vt € [0, N].

(5.15)

Now we use an induction on k with (5.14) as the recurrence relations and ({5.15)) as our
base step. Then there exists a constant R > 0 such that

)k—i—l

Rt
Bz - 2P < |

< e Tr ,Vk >0,t € [0, N]. (5.16)
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5.2. Stochastic partial differential equations involving random initial conditions

Let A denote the Lebesgue measure on [0, N]. We are going to show that the iteration
converges in £2(\ x P) and the limit satisfy (5.11]). For positive integers m,n with m > n
we have

12 — Z0| 2y = || Z ( 7 (k+1) (k)) lc2(a )
m—1
< Z 1Z*Y = ZW] 20y
I ;
- (E / |2 Zt(k)|2dt>
k=n 0
m—1

AEHL N2 m-l N2 2
(e ) ()
1! = \ (k+2)!
As m,n — oo, |Zt™ — ZM| r2\py — 0. Using completeness of £L*(A x P) we have a

limit, which we denote by {X;}iep,n)- Using (5.16), we also have lim,_,oo zm £Lp) X, for
each ¢ € [0, N].

This {X,} is measurable and (F°) adapted. Now using the linear growth of 2 — & (x;y)
(for every fixed y € S,(R?)) we have

E/ (X, €)? s<D2E/ (1+|X.))2d

§2D2E/ (1+]X,) ds
0
= 2D*N + 2D?|| X |22 (ax p) < 00

Hence {[5 5(Xs;€) dBs}icp,n exists (see Remark 2.6.7). Since E [\ |X,[?ds < oo, we
have [V |X,|?ds < oo almost surely. Now using the linear growth of 2 ~ b(z;y) (for
every fixed y € S,(R?)) and Cauchy-Schwarz inequality, we can establish the existence of

{fo (Xs, £) ds}te[o NJ-
Now using It6 isometry and the Lipschitz property of o we get

[t

E

S?

E [ 16026 = (X, )Pas
5021@/ 125 — X, |2 ds

0

N
gC’QIE/ 1Z®) — X, |2 ds.

0

Using Jensen’s inequality and the Lipschitz property of b we get

[ 0z®seas - [ Hxsg)ds

<tIE/ 620 6) — b(xs;)| ds
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Chapter 5. Stationary solutions of stochastic partial differential equations in &’

t
< C%E/ 1Z5) — X, |2ds
0
N
< CZNE/ 12" — X, |2ds
0

Using above estimates, for each ¢ € [0, N] we have

L2(P)
—_—
k—o0

[ a(z:6)aB, 20 ['5(x,6)dB,
0 0

and

t_
/ b(Z0;€)dB, =2
0

k—o0

t_

[ bx6)aB,
0

From (j5.13]) we conclude that for each ¢ € [0, N], a.s.

X, =(+ /Ota(Xs;é) dB, + /Ot b(X.; €) ds.

The integral [j 6(Xs; &) dB, has a continuous version (see Proposition . We denote
the continuous version of {¢ + [{ &(Xs; &) dB, + [ b(X,; €) ds}icpo,n) by {)A(Jt}te[o’m. Then
for each t € [0, N], a.s.

X, =C+ /0t5(X3;5) dB, + /Otl_)(Xs;f) ds = X,, as.

In particular, for all ¢ € [0, N] we have E|X; — X;|> = 0. Then [!5(X,;€)dB, =
Ji5(Xs;€)dBy as. We can also show [Jb(X,;€)dB, = [1b(X,;€)dB, as. for each
t € [0, N]. Then for each t € [0, N], a.s.

— t t
X, :c+/ (X €) dBS+/ b(X,: €) ds, as.
0 0
Since {X,} is continuous, we have, a.s.
— t t_
K=+ [ o(Xi€)dB, + [ B(X)ds, t € [0,N].
0 0

So we have obtained a continuous (.Ef’c) adapted solution up to any positive integer N.
The uniqueness of this continuous solution follows from the proof of uniqueness given at
the beginning of this proof.

Let {Xt(N)} and {Xt(NH)} be the solutions up to time N and N + 1 respectively. Then
{Xt(év[gf zlv)]} is also a continuous solution up to time N and hence by the uniqueness, is
indistinguishable from {Xt(N)} on [0, N]. Using this consistency, we can patch up the
solutions { X} to obtain the solution of on the time interval [0, 00). O

120



5.2. Stochastic partial differential equations involving random initial conditions

We now come to a main result regarding the existence and uniqueness of solutions of
(5.11)).

Theorem 5.2.4. Suppose the following are satisfied.

(i) || < oo.

(ii) ¢ = ¢, where ¢ is some element in RY.

(iii) (Globally Lipschitz in z, locally in y) For any fized y € S,(R?), the functions x
o(z;y) and x — b(x;y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in S,(R?); i.e.
for any bounded set G in S,(R?) there exists a constant C(G) > 0 such that for all
1,20 ERYy €G

5 (z1;y) — 7 (x239)| + [b(z1;y) — blwa; )| < C(G)|m1 — 9.

Then has a continuous (Ff) adapted strong solution {X;} such that there exists
a localizing sequence of stopping times {n,} with B [{"" |X,|*dt < oo for any T > 0.
Pathwise uniqueness of solutions also holds, i.e. if {Xt} is another solution, then P(X; =
X, t>0)=1.

Remark 5.2.5. Theorem is also true if ¢ is an R? valued F, measurable square inte-
grable random variable, which is also independent of the Brownian motion {B;}. However,

we only need the version for ¢ = 0 (see the proof of Theorem [5.2.15]).

Proof of Theorem [5.2.J) For any positive integer k, define €™ := £1(¢,<k). Since & is

—00

Sy(R?) valued, we have (||¢]], < oo) = Q. Since E[|¢]|2 < oo, we have £ k—> ¢ and the

convergence is also almost sure. Note that 1 ¢, <x) gt — k),
By (5.10), we have for any z € R? y € S,(RY), F € F

1po(z;y) = o(x; 1py) = o(lpx; Lpy)

i ¢ ) (5.17)
1pb(x;y) = b(w; Lpy) = b(1pz; Lpy)

By Proposition we have the (]—"f(k)) adapted (and hence (F¢) adapted) strong solution
denoted by {Zt(k)}, satisfying a.s.

7 —c+/ (78, ¢®) B, +/ b(Z®: ¢® ds, ¢ > 0.
Using (5.9) and (5.17)), we have a.s. for all t > 0

(k) b k). c(k
Lijel,<kyZe ~ = 1(||£\\p§k)c+/0 F(L(jep, < 25 €M), dB,
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Chapter 5. Stationary solutions of stochastic partial differential equations in &’

+ /Otb(]l<||£||p3k)2§’“);£(k)) ds.
and
]l(||§||p§k)Zt(1€+l) = 11(”5”p<k)c+/tg L e, <k 255 Le, <n€*Y). dB,
+/ Ul <m 28 Le, <m€ ™) ds
= IL<||£||p<k>0+/ (e, <p 2841 €M) dB,

[ B0 0 276 ) s

Using the uniqueness obtained in Proposition m (applied to (]—'f) adapted processes),

we have a.s.
k+1 k
Liel,<mZe T = Lgep,em i, t > 0 (5.18)

with the null set possibly depending on k. Let Qj be the set of probability 1 where the
above relation holds. Then on Q' := N2, 4, which is a set of probability 1, holds
for all k.

Note that (]|£]|, < co) = © and hence for any w € €2, there exists a positive integer k such
that [|{(w)]|, < k. Then we can write

o0

@ = (J (@ n (el < k).
k=1
Note that € is an element of F with probability 1 and hence (€')¢ is a null set in F. Since
(F;) satisfies the usual conditions, we have ()¢ € Fy and hence Q' € Fy.
We define a process {X;} as follows: for any ¢ > 0

Xy i V@) i € QA (ely < B k=12,
w) =
t 0, ifw € (V)"

From equation (5.18), ZF™ = z® vt > 0 on ' N (||¢]|, < k) and hence {X,} is well-
defined.

Since each {Zt(k)} is (F¢) adapted and Q' N (||€], < k) € Fo, adaptedness of {X;} follows.
Since each {Zt(k)} has continuous paths and Q' N (||¢]|, < k) 1, {X;} also has continuous
paths on €. On (©')¢, X = 0 and hence has continuous paths.

We now show that {X;} solves equation (5.11]). On €’ we have

L(jel, <t Xe = Ljel,<m 2, VE > 0,k =1,2, - (5.19)
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5.2. Stochastic partial differential equations involving random initial conditions

i.e. above relation holds almost surely.
Then for each £k =1,2,---, a.s. t >0

_ (k)
L, <m)Xe = L(je),<r) Ze

t
= ]1<||£||ps1c>0+/0 (1 (e,<m 285 €M) dB,
' (k). £(k)
+/0 b(L (e, <k Zs 5 €M) ds
t
= 1<||s||ps1<:>0+/0 & (L (e, <y Xs; €*)). dBy
t_
+/0 (L ey, <) Xs: €P) ds, (using (5-19))
t
= ]1<||£||p§c>0+/0 Ljell,<r)0(Xs; ). dBs
t _
+/0 L), <r)b(Xs; €) ds, (using (5.17)))
t
= Ljell,<wyc + ﬂ(ufupgk)/o 0(Xs;&). dB,

t_
+ Lijell,<k) /0 b(X;€) ds, (using (5.9))

Let Q. denote the set of probability 1 where the above relation holds. Then Q.= Ny o
is also a set of probability 1 and on Q, for all k =1,2,--- and for all ¢t > 0

t t_
D<) Xe = (el <k) <C+/0 0(Xs;§). dB; +/O b(X; ) dS) :
Then on QN ([|€]l, < k) we have for all £ > 0
t t_
X, :c+/ 6(Xs;§).st+/ B(X,: &) ds.
0 0

But QN (J|¢]l, < k) T Q and hence on Q above relation holds for all £ > 0. So {X,} is a
solution of ({5.11)).

Taking 7, := inf{t > 0:|X,| > n} it follows that E ;""" |X,|?>dt < oo for any ¢ > 0.
To prove the uniqueness, let {X,} be a continuous (FF) adapted strong solution of (5.11)).
Then a.s. forallt > 0

Ll <k Xt
t - t_
= Ljell,<k) <c+/0 6(Xs;£)~st+/0 b(Xs; €) d8>

t ~ t_ -
= ﬂ(ugnpgk)CJr/O 5(1(“5\‘}@))(5;5(’“)).dBS+/0 b(1 (el <k Xs; EV) ds
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From the uniqueness obtained in Proposition and using equation (5.19)), we now
conclude a.s. for all t > 0

o k) _
Loel,<nXe = Lel,<m Ze = L(iefp<m Xt

Since (||¢]|, < k) 1 €, this proves P(X, = X;, t > 0) = 1. O

The next result Proposition is a corollary of Theorem In Theorem we
used € to approximate & and then established the existence of the solution. However if
we have more regularity of the coefficients &, b then Proposition can be established
independently by using the Picard iteration as in Proposition[5.2.3] We present the details
about this technique.

Proposition 5.2.6. Suppose the following happens.

(i) || < oo.

(ii) ¢ = ¢, where ¢ is some element in RY.

(iii) (Globally Lipschitz in z, globally in y) For any fived y € S,(R%), the functions
x + o(z;y) and x — b(x;y) are globally Lipschitz functions in x and the Lips-
chitz coefficient can be taken to be independent of y € S,(RY); i.e. there exists a
constant C' > 0 such that for all x1, 2o € R% y € S,(RY)

5(21;y) — 0 (w2;9)| + [b(21;9) — b(wa; )| < Clzy — 4.

Then (5.11)) has a continuous (Fr) adapted strong solution {X,} with the property that
E i |X,|?dt < oo for any T > 0. Pathwise uniqueness of solutions also holds, i.e. if {X}'}
is another solution, then P(X; = X/}, t > 0) = 1.

Proof. The proof is similar to that of Proposition [5.2.3] We indicate the necessary changes
and use the same notations.

In proving the uniqueness, we have estimates on |a(t,w)|, |y(t,w)| involving a constant
C' > 0 which is now independent of &, i.e.

2 2
W) < C? |7 w) - 22 (w)|

ja(t,w)? < €| 2} (w) - Z}(w)

In Proposition[5.2.3] ¢ was norm bounded and the constant C' depended on Range(£). Now
C is independent of ¢ because the coefficients 7, b are ‘globally Lipschitz’. The uniqueness
follows using Gronwall’s inequality (see Lemma [2.13.1)).

For the existence, we again define the iteration ([5.13) with ( = ¢. Then we get
with the constant C' > 0 independent of £. In Proposition [5.2.3] we had shown the linear
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5.2. Stochastic partial differential equations involving random initial conditions

growth (in z) of & and b. Now we use the following estimate |5(¢;€)| = [{(T_.0, )| <
I7—cijl|-pli€llp and [b(¢; ) = [(T-cb, E)] < [[7-cbill [I€]lp- Then

t t _
B|Z{" - 2 < 2E [ (G ds+ %E [ oG ds
< 2D(1+ N)E|jg|3t, ¥ € [0, N],

where D > 0 is some constant depending on ||7_.04;||—, and ||7_.b;||—p.
Rest of the proof is same as that of Proposition [5.2.3] O

In Theoremwe can assume locally Lipschitz nature of the coefficients &, b instead of
those being globally Lipschitz. This extension from globally Lipschitz to locally Lipschitz
is a well-known technique (see [56, Theorem 18.3 and the discussion in page 340 about
explosion], [93, Chapter IX, Exercise 2.10], |50, Theorem 2.3 and 3.1]). We denote the one
point compactification of R¢ by R := R? U {oo}.

We now recall a result about an extension of a Lipschitz function defined on a subset of
a metric space to the whole space. M. D. Kirszbraun proved a version of this result for
Euclidean spaces and the result is referred to as Kirszbraun Theorem.

Theorem 5.2.7 (|33, p. 202]). Let (X,d) be a metric space and let U be a subset of X.
Suppose f: U — R be Lipschitz continuous, i.e.

|f(x1) = f(z2)| < Kd(z1,22), VE1,20 €U

where K > 0 is independent of the choice of x1,x2. Then there is an extension of f to X,
viz f defined by
f(z) = 1r€1(fj{f(u) + Kd(z,u)}, z € X

such that f is globally Lipschitz on X with the Lipschitz constant K, i.e.

|f($1) - f($2)| < Kd(xy,29), Vo1, 29 € X.

As a consequence of the previous result, given a locally Lipschitz function on R?, we
can define globally Lipschitz functions which agree with the locally Lipschitz functions on
certain sets.

Corollary 5.2.8. Let f : R — R be a locally Lipschitz function, i.e.
|f(z1) = f(z2)| < Cp |2y — 2], Yy, 29 € B(0,n)

where B(0,n) = {x € RY: |z| < n} (for any positive integer n) and C,, > 0 is a constant,
depending only on n. Then there exist globally Lipschitz functions f™ on R® such that
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(i) f(x) = f™)(x) for all z € B(0,n).
(ii) C, can be taken as the Lipschitz constant for f™ i.e.

[f (1) = 9 (@2)] < Culay — a2, Yo, 0 € RY.

Proof. For any n, the function f is a Lipschitz continuous function on B(0,n) and hence
by the previous Theorem has a globally Lipschitz extension f(™. This function satisfies
the required properties. O

We use this corollary to extend Theorem to the case involving locally Lipschitz
coefficients. If  + &(z;y) is Lipschitz continuous in x for each fixed y € S,(R?), then we
can obtain globally Lipschitz functions as given in the previous corollary. If the Lipschitz
constant can be chosen independent of y, then the globally Lipschitz extensions will also
have the same Lipschitz constant independent of .

Note that Ré := R?U {oo} is the one point compactification of R%

Theorem 5.2.9. Suppose the following are satisfied.
(i) EJll}2 < oc.
(ii) ¢ =0.
(iii) (Locally Lipschitz in x, locally in y) for any fizedy € S,(R?) the functions x — &(z;y)
and x +— B(x;y) are locally Lipschitz functions in x and the Lipschitz coefficient is
independent of y when y varies over any bounded set G in S,(R%); i.e. for any bounded

set G in Sp(R?) and any positive integer n there exists a constant C(G,n) > 0 such
that for all x1,z5 € B(0,n),y € G

o (215y) = o(w2;9)] + [b(an;y) — blaziy)] < C(G 0]y — w2,

where B(0,n) = {x € R?: |z| < n}.

Then there exists an (Fy) stopping time n and an (]-"f) adapted Re yalued process { X}
such that

(a) {X:} solves equation (5.11)) up to n i.e. a.s.
¢ t_
Xt:/ 6(Xs;§).st+/ B(X,:€)ds, 0 <t <7
0 0

and Xy = oo fort > .

(b) {X:} has continuous paths on the interval [0, 7).

(¢) n = lim,, 8,, where {6,,} are (Ff) stopping times defined by 6y, = inf{t > 0 : | X,| >
m}.
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5.2. Stochastic partial differential equations involving random initial conditions

This

is also pathwise unique in this sense: if ({X/},n') is another solution satisfying

(a), (b), (c), then P(X; = X],0<t<nAn)=1.

Proof. We first prove the existence in Steps 1 to 13. Unless otherwise specified the symbols

k,m,n will stand for positive integers.

Step 1:

Step 2:

Step 3:

Step 4:

Fix a positive integer n. Now for each y € S,(R?), using Corollary we get a
globally Lipschitz function viz. &, (z;y) such that

(i) o(x;y) = o,(z;y) for all z € B(0,n).

(ii) For any bounded set G in S,(R?),

‘5’n<l‘1;y) - 6n<x2;y>’ S C(G> 77,) ‘xl - 1’2’, vth? € Rda Yy e G.

Similarly define b,(z;y) from b(x;y). Note that ,(0;y) = (0;y) and b,(0;y) =
b(0;y) for any y € S,(R%). For y € G, the linear growth of x — &,(x;y) and z
bn(2;7) is established as done for 2 — (z;y) and  +— b(z;y) in Proposition m

Assume that £ is norm-bounded. We want to establish the existence and uniqueness

of strong solution of
dX; = 00(X;€). dBy + b (Xy5€) dt, t > 0; X = 0.

The arguments of Proposition will produce the required result. For fixed z,
y +— o(x;y) is linear, whereas y — &, (z;y) might not be linear. So the proof for
On(x;y), bp(z;y) is similar to Proposition , but is not an implication of it.

Now we consider the case E||{||2 < oo. For any positive integer k, define k) =
§1 (e, <k)- By the previous step we have the existence and uniqueness of strong
solution of

dX; = 6, ( Xy €M) . dB, + by (X €W dt, t >0, X, =0.

Let {X™*} denote the solution. Define {Z™} as Z™ := X" ¢ > 0 for alln € N.
The integer n was arbitrary but fixed. To construct the solution as mentioned in the
statement we use approximation by varying n.
First fix any positive integer m < n. Note that

Tm(2;y) = 0(z;y) = u(x;y), Vo € B(0,m),y € Sp(RY). (5.20)

Define the stopping time 7, := inf{t > 0: \Ztm)] > m, or |Zt(n)\ > m}. Then a.s. for
allt >0

tATm, AT
Zt(/r\%“m =/ Gn(ZM: M) dB, +/ b (Z: €)Y ds
0 0
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Step 5:

t/\TnL t/\Tm —
=/ a(ZM; ™). dB, +/ b(ZM; €M) ds, (using (5.20))).
0 0

Using (5.9) and (5.17)), we have a.s. for all t > 0

tATm
L (el <m) Zonty, = L(jelp<m) /O F(Z{M;¢™).dB
tATy _
+ 1(||§Hp3m>/0 b(Z{M; €M) ds
tATm,
:/0 L(jef,<m)d(Z; €M), dB
tATm _
+/O L (e, <mb(Z7; €0 ds
tATm,
= / 7(Z e <my: €™)- B,
t/\Tm _
+/ L gl <my; €M) ds.
From the above equation, we have
tATm
Lty <m) Zinty, =/ Tm (21 ey <m); €™)- dBs

t/\Tm_ (m)
+/ ety my €) ds.

(m) tATm,
Zm :/ G(Z1M); €M) 4B, +/ (20 €0 ds ¢ > 0,
0
Then using arguments similar to (5.21)), we can show a.s. for all £ > 0
1 zm [ (2o .¢0M) dB
(elozm Zent, = | Tm(Z" L(ielpzm) €7)- dBs

t/\T’UL —_
+/0 b (Z8 Ll mys €™) ds.
Now we show the uniqueness of solution of
AXy = 6 ( X33 €M) dBy + by (X3 €M) dt, t < 0, Xy =0,

where 0 is an (F;) stopping time.

(5.21)

(5.22)

Let {X;} and {X]} be two (F;) adapted square integrable continuous processes sat-

isfying the previous equation. Then under stopping by € (Definition [2.4.8)), we have

a.s. forallt >0

X (X% = [ (X €M) — 0, (XL €0)] B
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5.2. Stochastic partial differential equations involving random initial conditions

Step 6:

t/\9 _
[ (X €0) = B (X130 d
As done in the uniqueness part of Proposition [5.2.3] we get

0 INIE tno 12
E[x! - (x")!] 50(1+t)E/0 X, — X! ds

2
ds

s

t
gcu+w/m¢@—4xw
0
for some constant C' > 0. Consider the function

2

v(t) = E|x7 — (X)]]

on any compact time interval [0, T]. Then using Gronwall’s inequality (Lemma/2.13.1))
and the fact that ¢ — v(t) is continuous, we get v = 0. This proves P(X{ =
(X")9) = 1 for each t. Using continuity of paths of {X;} and {X}}, we conclude
P(X! = (X" t>0)=1. This proves P(X; = X;, t <0) = 1.

Hence from (5.21)) and (5.22)) we have

m n)
Hhmém%)ZMwmm@,téﬂmzL

Let Qpm = {w € Q: IL(H§||pgm)Zt(m) = ]]_(Hnggm)Zt(n), t < T,,} for positive integers
m,n with m < n. Now define

oo n—1

-0 )

n=1m=1
Note that Q € F with P(Q) = 1. Then Q° is a null set in F& and hence is an element
of F§ (since the filtration satisfies the usual conditions). Therefore, Q € F§.
Now for any w € 2 we have ||{(w)]|, < co. Define N(w) to be the least positive

integer n such that [|{(w)|l, < m for all m > n.

Now on  we have the following consistency relations: for each w € € and for
n>m > N(w )

(i) 2™ () = ()t<T(w)-
(if) Tm( ) = mf{t >0 12 ()| >m} = inf{t > 0: |2 ()| > m}.
(iii) From (ii),
Tp(w) = inf{t > 0: 2 (w)| > m}
<inf{t > 0: 2" (w)| > n}
= Th(w)

Hence the sequence {T,} is eventually increasing.
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Step 7:

Step 8:

We claim that the [0, o] valued function 7 defined below, is a (Ff) stopping time.

lim T, (w), Yw € Q,
n(w) = {m*“’

oo, otherwise.

Fix ¢ > 0. Then for any w € €0, the sequence {Tn(w)} is eventually increasing and
hence

n(w) = lim Tp(w) = sup{Tp(w) : m > N(w)}, w € Q. (5.23)

m—0o0

Then for w € Q, n(w) < t if and only if T}, (w) < t,¥m > N(w). By the definition of

1 we have
fweQ:inw) <t}={weQ: nw) <t

:G{wGQ:Tm(w)St,szn}

:[_'jl N{wed: Tuw) <t}
:(m(fj ﬂ{weQ:Tm(w)gt}).

Since each T, is an (.7-"5) stopping time, we have (T, < t) € FE. Hence {we N:
n(w) <t} € Fr. This proves 7 is an (Fr) stopping time.
In this step we point out a decomposition of the space Q2 x [0,00). Observe that

Q0 x [0700) :(<Q >i [07 OO)) N [O’n)) U((Q X [07 OO)) N [7% OO))
LI((©)° x [0, 00)),

where [0,7) refers to the stochastic interval {(w,t) : 0 < t < n(w)} and a similar
expression holds for [n,00). Again

(€2 % [0,00)) N [0,7) = kUl((Q N (llElly < k) > [0,00)) N[0, T,
To prove the above equality, first note that the set on the right hand side is a subset
of that of the left hand side.
Now let (w, t) be an element of (Q X [0,00))N[0,7). Then there exist positive integers
k1, ko such that ||{(w)]|, < k1 and ¢ < Ty, (w). Then for & = max{ki, k2} we have
(w,t) € (QN (J|€]l, < k) x [0,00) N[0, T}]. This proves the other inclusion.
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5.2. Stochastic partial differential equations involving random initial conditions

Step 9:

Step 10:

Step 11:

From the consistency conditions obtained in Step 6, we have
k)¢, )y — 7 (k+1) O
Zy (W) =2 (W), Y(w, t) € (N ([l < k) % [0,00) N[0, T (5.24)
Define a process {Z;} as follows

ZP(w), if (w,t) € (N (|€]l, < k) x [0,00) N[0, T]
Zy(w) = { oo, if (w, ) € (2 x [0,00)) N [, 00))

0, if (w, ) € (2)° x [0, c0).
Note that

0,T] = {(w,t) : 0 <t <Tp(w)} N{(w,t) : Ti(w) < 00})
U{(w,t) : 0 <t <oo}N{(w,t): T(w) = c}).

From the decomposition of 2 x [0, 00) obtained in the previous step, it is clear that
Z;(w) has been defined for all w,¢. Further {Z,;} is well-defined due the consistency

condition (5.24)).

We show that {Z;} is (FF) adapted and has continuous paths on [0, 7). Observe that

Zy = (1(5)6 + 1(5))Zt
=157, (. Zy(w) = 0,Yw € (Q)°)
= 1 (L<m + Lazn) Z

= 111?1 ﬂﬁﬂ(tSTk)Zt + 00151(1277)
= lim 151 <z Ljelp<n Ze + 00Iglezn, (- Loz T 1o =1)

= lim T <t Lelp <ty Ze + 00T g1 (12m)-

But Q € Fg, (l€ll, < k) € F5,(t < Too) € Fr,(t > n) € Fy and {ZW} is (Ff)
adapted. Hence from the above equality we conclude that {Z;} is (Ff) adapted.

By definition 1 = oo on the set (2)¢ and Z;(w) = 0 whenever (w,t) € ()¢ x [0, 00).
Hence t — Zy(w) is continuous on [0, 7(w)) if w € (Q)°.

Let w € Q. Then |[¢(w)], < m, ¥m > N(w) (N(w) as in Step 6). By definition
Zy(w) = Z™ (W) for all t € [0, T (w)],m > N(w). Since paths of {Z™} are contin-
uous, we have t — Z;(w) is continuous on [0, T}, (w)] for all m > N(w). But T, (w)
eventually increases to n(w) and hence t — Z;(w) is continuous on [0, n(w)).

For any positive integer k define 6 := n Ainf{t > 0 : |Z;| > k}. In this step, we

show the connection between n and the 6;’s.
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On (Q)°, {t > 0:|Z,| > k} is an empty set, since Z; = 0. Hence inf{t > 0: |Z,] >
k} = oco. Also by definition 7 = 0o on (Q)¢. Therefore on ()¢, we have 0}, = co and
limg 6 = 7.
Let w € Q and k > N(w). By definition Z,(w) = Z™(w), t € [0, T,(w)]. But T, =
inf{t > 0: |Zt(k)] > k}. Hence Oy(w) = T (w), k > N(w) (note that Ti(w) < n(w)).
Then limy, 0 (w) = limy Ti(w) = n(w).
This identification of n as a limit of 8;’s will not be used during this proof of existence.
We need this in the proof of uniqueness.

Step 12: We now establish existence of some stochastic integrals which will be used in the

Step 13. From Lemma 2.11.7, we have on Q
16(Zuint: 1 = 1{0 s 7200, | < N0l plI7200m, &l < CillE

for some constant Cy > 0. Similarly,

6(Zenzi; €)1 < Crlléll

for some constant C}, > 0. Then for any ¢ > 0
AT,
E [ 10(Z:9)l ds < GBIt < o,

which shows the existence of the integral [y Tk G 0(Zs; &) dBs. Similarly we can show
the existence of fot/\T’“ b(Z,;€)ds. These stochastic integrals will be used in the next
step. We have ignored the null set (Q)C in the above computation.

Step 13: We prove that the pair ({Z,},n) is a solution of (5.11)).
Let k be a positive integer. Let w € Q with ||¢(w)||, < k. Then

Zy(w), if Ty(w) = oo
Zint () (W) = Zi(w), if Ti(w) < 00,t € [0, Ty (w)]
Zr (), i Ti(w) < 00,t € (Th(w), 00).

k

Now we use the definition of {Z;} to prove a consistency relation between {Z;} and

{2}
a) If Tp(w) = oo and t € [0, Ti(w)) then

Zint)(@) = Zuw) = 27 () = Zijp, (@)
b) If Tp(w) < oo and t € [0, Ty(w)] then

Zinty() (@) = Zi(w) = Z (W) = Z0) 0y ()
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5.2. Stochastic partial differential equations involving random initial conditions

¢) If Ti(w) < o0 and t € (T (w), 00) then
k k
Zint () (@) = 21,0 (@) = Zi5 1) (@) = Ziny () ().
In view of the above equalities, on Q

k
Zinr Mjety<ty = Zinn etk (5.25)

and hence above equality holds almost surely.
Then a.s. forall t > 0

Ljelt, <k) Zeny,
=1 zZ%)
(IEllp<k) ZinT,

tAT,
= [ a0 25€0).aB
tATy _
+/ (L, <y 243 €W) ds, (using (6.22))
AT,
:/0 7 (L(e,<m 2 €W). dB
tATy _ k’
+/0 b(L(jg,<i 2" €M) ds, (using (B:20))
AT .
2/0 (Ll <k Zs; €*)). dB
tATy _ i
+/ b(L (e, <k Zs: €*)) ds, (using (525))
t/\Tk
—/ Lig,<mo(Zs; §). d
tATy .
+/0 L (e, <k)b(Zs; €) ds, (using (5.17))
tATy tATy
= Lieto<n UO 0(Zs;€)- dB; +/ b(Zs;€)d ] , (using (5.9))

Let ' denote the set of probability 1 where the above relations hold for all positive
integers k. Then on €' N we have for all ¢t > 0 and for all £ € N,

ATy ATy, _
Ljelp<h) Zent, = VO 0(Zs;€)-dBs + | - b(Zs;¢) dS] :

Recall that for any w € Q, ||€(w)|l, < k, VE > N(w) (N(w) as in Step 6) and hence
for w € ' N Q we have for all ¢ > 0 and for all k> N(w),

Zugole) = ([ 0(zi9.an.) @)+ ([ izag ) )

133



Chapter 5. Stationary solutions of stochastic partial differential equations in &’

Letting k go to infinity, we have a.s.

t t_
Z= [ 3(Z;€).dB, + [ WZyi€)ds, t <
0 0

Hence ({Z;},n) is a solution of (5.11)) and Step 13 ends here.

This concludes the proof of existence a solution of (5.11)) and we now prove pathwise

uniqueness. Assume that two pairs (X1 n') and (X® n?) solve the given equation.

Define two sequences of (]:tE ) stopping times by

V™ .= inf{t > 0 : |Xt(1)| >m}, T*™:=inf{t >0: |Xt(2)] > m}.
Then 7® = lim,,, T%™ for i = 1,2. Hence a.s. for any t >0, m > 1 and i = 1,2
@) tATLmATZm ) tATLmATZm ]
X rimpgen = | o(X05¢).dB, + | b(X{":€) ds.
0 0

Note that | X, /\Tl

<m,t>0,i=1,2. Then using (5.9), (5.10) a.s. for all t >0
() tATLmAT2 ™ B Q)
L(glly <m) Xyartmpgzam = /0 L)1, <m0 (X,"; §). dBs

tATLmAT2:m -
T / 1(jef,<mb( X5 €) ds, (using (5.9))
e (i). ¢(m)
- / (L, <mXs”;6™). dBs
tATLMATZm
+/ b(1 (e, <my X 75 €™ ds, (using (5.17))
e (i), ¢(m)
:/o Om(L(elp<m) X" €). dB
EATLMATZm
) bon (L ety <o X7; €0) ds, (using (5.20)).

We can show P(IL(HgnpSm)Xt(l) = IL(Hgnpgm)Xt(z), t < Thm AT?™) =1 using Step 5. Let Q
denote the set of probability 1 where the following relation holds

L e, <m Xe " = LelyemXiss t < TV AT?™ = 1,2, -

Recall that for any w € Q, ||{(w)]|, < m, Vm > N(w) (N(w) as in Step 6 of the proof of
existence) and hence for w € Q we have for all t > 0 and for all m > N(w),

XM (W) = XP(w), t < TV (w) AT (w).

But 7™ A T2™ 4 ' An2. Hence for w € Q, we have X7 (w) = XP(w), t < n'(w) An*(w).

This proves pathwise uniqueness. O
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5.2. Stochastic partial differential equations involving random initial conditions

Remark 5.2.10. It should be possible to prove limyy, | X;| = 0o on the set (n < 0o0), where
(Xt,m) is the solution obtained in Theorem [5.2.9, This is a well-known property in the

case of explosions in classical finite dimensional diffusions (|50, Chapter IV, Lemma 2.1]).

In Proposition |5.2.11] we obtain a criterion (which essentially is a stronger assumption
on ) that imply a ‘local Lipschitz’ condition. We use this result to obtain Theorem [5.2.12]
which is a version of Theorem [5.2.9]

Proposition 5.2.11. Let p > d + 5 and 0 € S_,(R?). Then for any bounded set G in
Sp+%(Rd) and any positive integer n there exists a constant C(G,n) > 0 such that for all

x1, 79 € B(O,n),y € G
0(21;y) — o(ze5y)| < C(G,n)|x1 — 22,

where B(0,n) = {r € R?: |z| < n}.

Proof. Let y € S,(R%). Abusing notation, we denote the function z + (8, , y) by y. The
first order partial derivatives of function y exist and the distribution y is given by the dif-
ferentiable function y (see Proposition [2.11.26). Furthermore, the first order distributional
derivatives of y are given by the first order partial derivatives of y, which are continuous
functions.

Let x! = (2}, ,2}), 2% = (22,--- ,2%) € B(0,n). Then for any y € S,(R?),

o (215y) = 022 9)| < llofl-plI7,y = Twstllp-

The target of the subsequent computations is to obtain an estimate of || 7.,y — 7, ¥/, Now
for any 1 <i < dand t = Nz} + (1 — \;)z? with \; € [0,1]

|(ZL‘%, 7$}—17t’x?+17"' 7x?l)|
= ‘(SE%, 71’11717>‘1'le + (1 - )‘i)mzzvxiz+17"' ,I3)|
< |($%, ,$%_1,)\Z{U},O,--~ 70)’

+ |(07 ,O,(l _/\i)‘r?’x§+1"" 7x?l)|
<

‘(l’%, 71‘1‘1717131‘1707"' 70)|
+ |(0>"' ,0733?,517?+1,--- ,333)|
< 2n
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Let y € Sp%(Rd) (note that Sp+%(Rd) C S,(R%)). Then by Lemma [2.11.7, there exist

constants C,, > 0, C,, > 0 independent of 7 such that

HT(x%,---,x%il,t,xal,---,xi)aiy“P = ||ai7—(z%,---,m%il,t,xal,---,mz)ynp
S Cn ||T(J:i,---,x%_l,t,w?_‘_l,m,azi)pr—&—%

< oyl

The following is an equality of continuous functions.

T(:(:},--- ,x%_l,x%,x§+1,--- ,xfl)y() - T(m%,--- ,x%_l,x?,x?+l,--- ,x?l)y<>

= ( - (‘T%a 7xz'l—laxilvxzz+1"" 71‘3))
- y( - (.I‘%, T 7x11717$z27m12+17"' ngl))

= aiy(' - (.27%, axz'l—lvt>$z2+17 T 7x?l))dt

= T(xi’---7x11717t,z?+1’---73321)8@'3/(‘) dt

In view of ([5.26)), we have the equality of distributions in S,(R?)

T(‘riv 7:17741,171'7(17:17124,11"' 1:E§)y - T("E%) ’1%71,1?,35?4,17”' 7;173)y

!
:/x T(x%f“ z! ot 7x3)82ydt

i— 10107

Then
IT@l ol ata e a2)Y — Tl wla2a?,, a2 Y
.
- ” /:1:2 T(xi,m,x}_l,t,xlz_'_l,-n,x?l)aiy dt ”P
(3
’
<\ Lo Ittt P8l
i
~ 1 2
<Cn Hpr—i—% | — @3-
Now

Te Y — TaY = T(a:},n- ,a:(ll_l,xcll)y - T(:r},--- 7Icll—17‘r3)y

+ T(Z%’ »xé,l,mg)y - T(x%» ’mé,Q»xZ,ng)y
_|_ ..
+ T(m%’mg’ Q)y - T(m%7 . ’ng)y

(5.26)
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and hence |72,y = Tusplly < Co lyllpey St = 2] < dCollyl ey o — 22l
Then [5(2159) @23 9)| < ] pll72ry—Taayly < Co 011y llyll 3 |21 —2]. In particular
if G is a bounded set in Sp+%(Rd), then for any y € G

7 (21;y) = o (2239)] < dCy |||y SUD([[yllp+.4) |21 = 2al,
Yy

i.e. the function x — & (z;y) is locally Lipschitz in x for any y € G and that the Lipschitz
constant can be taken uniformly in y € G. O]

The next result is a version of Theorem We get the ‘local Lipschitz’ property of
the coefficients from extra regularity on £ (see Proposition [5.2.11)).

Theorem 5.2.12. Let p > d + % Suppose the following are satisfied.
(i) o,b € S_,(RY).
(ZZ Eiieré(Rd) valued and EH{H;JF% < 00.
Then there exists an (Ff) stopping time n and an (Ff) adapted R¢ valued process {X:}
such that

(a) {X:} solves (5.11) up ton i.e. a.s.

t t_
Xt:/ 5(X5;§).dBS+/ b(X.;€)ds, 0 <t <1
0 0

and X; = oo fort >n.
(b) {X:} has continuous paths on the interval [0, 7).
(¢) n = lim,, 8,, where {6,,} are (F¢) stopping times defined by 6y, = inf{t > 0 : | X,;| >
m}.
This is also pathwise unique in this sense: if (X[, n') is another solution satisfying properties
(a), (b),(c), then P(X; = X],0<t<nAn)=1.

Proof. The proof is similar to Theorem We indicate the necessary changes.

(i) Fix a positive integer n. Now for each y € S, 1 (R%), using Corollary we get a
globally Lipschitz function viz. ,(z;y) such that
a) o(x;y) = o,(z;y) for all z € B(0,n).
b) For any bounded set G in S, +%(]Rd), using Proposition [5.2.11

0215 y) — Gn(22;9)] < C(G,n) |21 — 22, Vi, 20 € RY, y € G.
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Similarly define b, (x;y) from b(x;y). Note that ,(0;y) = 7(0;y) and b,(0;y) =
b(0;y) for any y € Sp+%(Rd). The linear growths of z + 7, (x;y) and z + b, (z;y)
are established as done for 2 — &(2;y) and z +— b(x;y) in Proposition [5.2.3|

(ii) Rest of the proof is the same except that we take the variable y from S, 1 (R%).

[]

We are ready to prove the main result of this section. We make two definitions extending
[90, Definition 3.1 and 3.3]. Note that ¢ is assumed to be independent of the Brownian
motion {B;} and S,(R%) = S,(R?) U {6}, where § is an isolated point.

Definition 5.2.13. (A) We say {V;} is an S,(RY) valued strong solution of equation
(5.1), if {Y;} is an S,(R%) valued (Ff) adapted continuous process such that a.s. the
following equality holds in S,_; (R?),

Y, = 5+/ dB+/ Y ds; t > 0.

(B) By an S,(R?) valued strong local solution of equation (5.1)), we mean a pair ({Y;},7)
where 7 is an (Fy) stopping time and {Y;} an S,(R?) valued (F;) adapted continuous
process such that

(1) for all w € Q, the map Y.(w) : [0,n(w)) = S,(RY) is continuous and Y;(w) =
5, t > n(w).
(2) a.s. the following equality holds in S,_1(R?),

Y, = §+/ dB+/ Y. ds; 0<t <1,

Definition 5.2.14. (A) We say strong solutions to equation are pathwise unique,
if given any two S,(RY) valued strong solutions {Y,'} and {V¥;*}, we have P(Y;! =
Y2, t>0)=1
(B) We say strong local solutions to equation are pathwise unique, if given any two
S,(R?) valued strong solutions ({¥;'},7") and ({¥;2},7?), we have P(Y;! = Y2, 0 <
t<n'An?) =1.

Now we prove the existence and uniqueness of solutions to equation (j5.1)).

Theorem 5.2.15. Suppose the following conditions are satisfied.
(i) E[&]l; < oo
(ii) (Globally Lipschitz in x, locally in y) For any fized y € S,(R?), the functions x —
o(z;y) and x — b(x;y) are globally Lipschitz functions in x and the Lipschitz co-
efficient is independent of y when y varies over any bounded set G in S,(RY); i.e.
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5.2. Stochastic partial differential equations involving random initial conditions

for any bounded set G in S,(R?) there exists a constant C(G) > 0 such that for all
1,72 ERYy €@

(215 ) — 0(22;9)| + [b(z1;y) — b(w239)| < C(G)|z1 — 2.

Then equation 1) has an (.7:,55) adapted continuous strong solution. The solutions are

pathwise unique.

First we need a characterization of the solution of equation ({5.1)). This is an extension
of |90, Lemma 3.6] to random initial condition &.

Lemma 5.2.16. Let £,5,b be as in Theorem |5.2.15, Let {Y;} be an (F¢) adapted S,(R?)
valued strong solution of equation (5.1)). Define a process {Z} as follows:

t t
Z, ;:/ (o, V) st+/ (b,Y.) ds, t > 0.
0 0

Then a.s. Yy, = 72,& fort > 0 and consequently Z solves equation (5.11]) with Zy = 0.

Proof. Since {Y;} is a continuous S,(R%) valued (F) adapted process and o € S_,(R%), the

real valued process { (o, ¥;)} is a continuous (Fr) adapted process. Hence {[{ (o, V,) dB,}

is a continuous local martingale. Using similar arguments {3 (b, Y;) dB,} is a real valued

continuous (F¢) adapted process.

First we define linear operator valued (F;) adapted processes {L(t)} and {A4;(t)}, j =
,d. For ¢ € §'(RY),

Etwlo =1y 3 (o i) {0 i)y 50— (0, V)0
At )0 = =D (0, Vi) 00,

Note that L(t,w), A;(t,w) are linear operators from S,(R?) to S,_1(R?).
We write as Z; = (Z},--- , Z%) and A(t) = (Ay(t), -+, Ag(t)). By Theorem [5.2.2, we have
the following equality in S,_1(R%): a.s. t >0

ey Z/angdZUr Z/ 27,.Ed| 71, 70),

’le

=&~ Z/ (o, Ye(w)))ij0im2.€ dB; — 21/0 (b, Yi(w)))ijOiTz,€ ds

+ z [, Yl (o, Vi) )22 7,6 ds

'le
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—§+/ )(72.£). dB +/ 72.£) ds

Since {Y;} is a solution of equation (|5.1)), we also have a.s. t >0

Y, = §+/ dB+/

Define localizing sequence {n,} as
Np i=inf{t >0:|(0s;, Y2) | >mn,or|{(b;, Ys)| >n,4,j=1,--- ,d}, n>1.

Now define X\ := Y, — Tunm, & Then applying It6 formula on || - [|2_, (see Proposi-
tion [2.7.20] also see [Section [2.12[ Item (vi)|) we get a.s.

tANn d _ .
IO = [T 2 (X, A XY dBY
0 i=1

p—1

tANn — n
RO BEXO) | AX s ds

where {3 23¢, <X M A(s)X S(”)>p_1 dB{¥} is a continuous local martingale. If for some
w, [ {oij, Yo(w)) | > nor |(b;, Yo(w)) | > n, then n,(w) = 0 and such w does not contribute
to the right hand side of the above equation. Hence without loss of generality, we assume
that the coefficients {(0;;, Y2)} and {(b; , Y;) } are uniformly bounded. This in turn implies
that the process { [y’ 2%, <Xs(”) : Ai(s)X§")> . dB™} is a continuous martingale.
Since the coefficients are bounded, by the Monotponicity inequality (see [39, Theorem 2.1],
Theorem and Remark , there exists a constant C,, > 0 such that a.s.

tAnn 4 _ .
fo,lg/ 2Z<X§">,Ai(5)X§”)> 4B

p—1

HXt/\n,L

+C, / 1712, ds

tANn _ .
< 23 (XM Ay(s) X ™ dBY
_/0 7::1< s Y (8) S >p_1 S
O [ X, ds

n 0 SANn [1p—1

Taking expectation, we obtain ]E||XJ\L,7 12, < Cn fo IEHXS/\%H 1ds for all t > 0. By the
I

Gronwall’s inequality (Lemma [2.13.1]) we get E||Xt/\nn 1 =0 Which implies the equality

a.s. Ying, = Tz,0,,&,t > 0. Since 1, T oo, we have a.s. Y; = 72,§,¢ > 0. This implies a.s.
t>0

t t
Zt:/ (0, Yy st+/ (b, Y,) ds
0 0
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g /t <O', TZS£> st _'_ /t <b7 TZs£> dS
0 0

:/ 5(ZS;§).dBS+/ b(Zs; €) ds
0 0

This completes the proof. O

Proof of Theorem[5.2.15. The proof is similar to that of [90, Theorem 3.4]. By Theorem
we have a solution {Z;} of with initial condition Z, = 0. Then using the
[t6 formula in Theorem and separating the dB and dt terms, leads to the stochastic
partial differential equation ({5.1)), which shows {72,£} is a solution.

To prove the uniqueness, let {Y,'}, {¥;*} be two solutions. Then define {Z!} and {Z?}
corresponding to {Y;'}, {¥;*} as in Lemma [5.2.16] Then {Z}}, {Z?} both solve (5.11)) with
initial condition 0. Now the uniqueness part in Theorem implies a.s. Z} = Z2 for all
t > 0 and hence a.s. Y;! =Y;? for all £ > 0. This completes the proof. O

Since Y; = 7z¢ solves equation (5.1) (notations as in Theorem [5.2.15), we have
E||Ys|]2 = E[|]|2 < oo. Now we prove £ estimates on Y; using two different techniques.

Proposition 5.2.17. There exists a localizing sequence {n,} such that

Esup [[Y"[[; < Co E[[Yoll5,
>0
where the constant C,, depends only on n.

Proof. The process {Z;}, defined in Lemma [5.2.16| is a continuous adapted process and
Zy = 0. Define a localizing sequence {n,} as follows: n, :=inf{t > 0:|Z;] > n}, n > 1.
Now using Lemma [2.11.7(i)| there exists a polynomial @) of degree 2([|p|] + 1) such that

V"l < 11€llp- QU1 Z"]) < ||§||p{ sup Q).

:lz|<n}

Hence sup, [|[Y;"[12 < C,, [[€]]2 with C,y = (supy.(pj<py @(|2]))?. This implies the required
estimate. n

using line desired

Following [38, Lemma 1], we get the next estimate.

Proposition 5.2.18. There exists a localizing sequence {n,} such that for any positive
real number T,
Esup [Y,™[[;-, < C.E[[Yo];
t<T

p—1»

where the constant C' depends only on n and T'.
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Proof. Define three localizing sequences. For any positive integer n, consider
o o= i{t > 0: ¥ = Yoll, > n},
and
= int{t > 0: (0, Y| = n, or (b, ¥i)| > n},

and 7, := 7, A1n,. Note that [|Y;"[|, < ||V —Yo|l, + ||Yol|, and using this inequality it is
easy to see that Esup,.p [|Y;™]|2_; < oo for any T > 0. Since the following equality holds
in S, ;(RY), a.s.

t t
Vo=Yo+ [ AY,).dB, + [ L(Y))ds t =0,
0 0

Now using It formula for || - ||2_, (see Proposition [2.7.20} also see [Section [2.12] Item (vi))
we obtain a.s. t > 0

tAn, 9 .
2 = Yl + [ 230, Ay, dBY
= (5.27)
A d )
[0 O p), e A ds

where B{” denotes the i-th component of B;. Since the coefficients {(0i;, Y2)} and
{(b;, Y;)} are uniformly bounded, {[i""™ 2% (Y7 AYm) dBM} is a continuous
martingale.

If for some w, (o, Yy)|(w) > n or [(b, Yo)|(w) > n then n,(w) = 0. But such w does
not contribute to 3"\ [2 (Y, LY+ >4 [JAY ”;29—1} ds and hence in computing
this expectation we may assume {|{(c, ¥;")|} and {|[(b, ¥;")|} are uniformly bounded by
n. Then using the Monotonicity inequality (Theorem and Remark and taking

expectation in the previous equation yields
t
n (]2 2 (]2
BV 2, SEIYl, +7 [ BNV |2 ds
where the constant v depends only on 7,,. Then Gronwall’s inequality implies

E[IY™ oy < e™"E[[Yol[-1, t > 0. (5.28)

p—1»

Let {M;} and {V;} respectively denote the martingale term and the finite variation term
on the right hand side of (5.27)). Then using the Monotonicity inequality and (5.28)), we
get

t T ~
EsupVi < vEsup [ V2 ds =~ [ B2 ds <CEIG[2,  (5.29)
t<T t<T JO 0
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5.2. Stochastic partial differential equations involving random initial conditions

for some constant C depending only on 7, and T
By Theorem for each 1 < 7 < d, there exists a bounded operator T; : Sp_l(Rd) —
S,—1(R%) such that

M=~

2(Y;", Y™, = =2 oy, Vi) (V" 0,

p—1
1

M- -

Il
N

(o5, Y"™) (Y™, T;Y,™)

p—1°
J

Since {|(co, ¥;")|} is uniformly bounded by n,

d
2V, AY), o | <D0 Koge, Y)Y, T,Y™)

]:

p—1 |

(5.30)

| /\

d
Z (Y, Ty

p—1 |

e
shese 8 — i mse{1T5, en5, e 121 ).

To estimate the martingale term, we use the BDG inequalities (see Theorem [2.5.28]). Note
that in the following inequalities the constant C' may change values from line to line, but
it depends only on 7, and T

1
Esup |M;| < C.E[M]?

t<T

T/\'V]n d 9 %
~CE ( o v ds>
0 i=1 :

T 2
<cB ([ s wine E30)
0
%
1ds>

C 1 /T
< S (comp iz o [ e
t<T

T
< CE (sup v [ e
t<T 0

using A.M - G.M inequality,

’ ds> , (for any e > 0)
< CeEsup 1Yy [l5-1 + C-E[|Yo[l-y, (using (5:28))
For the choice € = % we get
1
Esup |[M,] < iE sup [|Y;"]12_, + C.E[|Y,|2_;. (5.31)
t<T t<T

Using (5.27)), (5.29) and (5.31)) we get the desired estimate. O
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Remark 5.2.19. If we repeat the steps of |38, Lemma 1], then in the previous proposition
we would end up with

Esup ||, < CE|Y 2.
t<T 2

Because of Theorem [3.2.2, we are getting a better estimate.

The counterpart of Theorem [5.2.15|involving locally Lipschitz coefficients is as follows.
This result is an extension of [90, Theorem 3.4].

Theorem 5.2.20. Suppose the following conditions are satisfied.
(i) B[} < oo.
(ii) (Locally Lipschitz in x, locally in y) for any fizredy € S,(R?) the functions x — & (z;y)
and x — b(x;y) are locally Lipschitz functions in x and the Lipschitz coefficient is
independent of y when y varies over any bounded set G in S,(RY); i.e. for any bounded

set G in Sp(R?) and any positive integer n there exists a constant C(G,n) > 0 such
that for all x1,x € B(0,n),y € G

5 (z1;y) — o (22 y)| + |b(21;y) — b(z23y)| < C(G,n)|z1 — 24|,

where B(0,n) = {z € R?: |z| < n}.
Then an (]-}5) adapted continuous strong local solution of equation 1} exists. The solu-

tions are also pathwise unique.

Proof. We follow the arguments in the proof of Theorem |5.2.15| and indicate the necessary
changes.
First we prove the uniqueness. Let ({Y,M},71) and ({Y;?},n®) be two (FF) adapted

continuous strong local solutions of equation 1} Now define two processes {Zt(z)}, 1=1,2

as follows: ' _
(i) tAn* tAn* .
Z0= [ e vy aBo+ [ .Y 0t <y
0 0

and set Z\" := 0o, if t > 1. Then as in Lemma [5.2.16 (also see |90, Lemma 3.6]) we can
show a.s. Y, = L&, 0 <t <n'. Then from the definition of {Zt(z)} we have

G _ [ . b ). ;
Z," = a(Z;€).dBs+ | b(Z7;&)ds, 0 <t <n'.
0 0

From the uniqueness obtained in Theorem we conclude a.s. Zt(l) = t(2), 0<t<
nt An?. Hence a.s. YV =YV,® 0 <t < n!An? This proves the pathwise uniqueness.
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Now we prove the existence of a strong local solution of equation (5.1)). By Theorem
equation (5.11)) has a solution ({Z;},n). Define the S,(R%) valued process {Y;} as follows:

TZtga ifo<t< n
9, ift > n.
Then using the It6 formula in Theorem the pair ({7z,&}, n) solves (5.11)). Since {Z;}

is (F8) adapted and € is F§ measurable, we have {Y;} is also (Ff) adapted. Since {Z,}
has continuous paths on the stochastic interval [0,7), by {Y;} also has continuous paths

Yy =

on the same stochastic interval. O

Remark 5.2.21. We describe two possible extensions of the results of this section - which
is a problem for the future. The description is in terms of properties of the coefficients &, b.

(i) We would like to extend the results when there is time inhomogeneity in &, b.
(ii) In our case, z — o(z;y) = (0, Toy) ,x +— b(z;y) = (b, 7,y) are non-linear in x for
all fixed y € S,(R?). We would like to extend the results to more general class of

non-linear coefficients.

5.3 Stationary Solutions

We have presented some sufficient conditions under which the stochastic partial differential
equation (5.1)) has a unique strong solution. Now we investigate existence of stationary
solutions. Our approach is to use stationary solutions, if any, of the finite dimensional

stochastic differential equation (5.11)). Assume that

(i) f:RY — R g:R? — R? are locally bounded, measurable functions such that the
stochastic differential equation

has a stationary, continuous solution and we denote the corresponding invariant
measure by v. Let fi;,9:;,1 <1,j < d be the component functions of f,g.
(i) 0y,b; (fori,j =1,---,d) are tempered distributions given by functions.

Remark 5.3.1. Typically f, g will be locally Lipschitz functions such that explosions do
not happen in finite time. When f = Id (the d x d identity matrix), this non-explosion is
guaranteed by a ‘Liapunov’ type criteria (see [105, 7.3.14 Corollary]).

Remark 5.3.2. Existence of invariant measures of Markov processes and finite dimensional
diffusions has been studied by many authors (to cite only a few, see [11}30,42.|44}45,61],
[105, Chapter VII, Section 5]).
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Note that there exists a p > 0 such that o;;,b; € S_,(R?) for all 4, j. Fix such a p > 0

and consider the following subset of S,(R?),
Cim{Y € SR : [ aiy+ahily)dy = fy(w), Vo € RY
R (5.33)
/]Rd bi(y +2)Y(y) dy = g;(x),Vo € R 4,5 =1,--- ,d}.

Since p > 0, elements of C are given by functions. Note that C is a convex set.

The motivation behind above conditions requires clarification. First we want to choose a
subset C of S,(RY) such that the coefficients & (x; £) and b(x; €) in the equation (5.5) remain
the same, for & € C. This allows us to think of &(x;&) and b(z;€) as just o(z) and b(z).
Second we want & = f and b = g which is a choice that allows us to use the invariant
measure v of . The set C considered above provides exactly those conditions.

Lemma 5.3.3. Let ¢ € C. Then &(x;%) = f(x) and b(z;v) = g(x) for all v € R™.
Proof. Observe that,
(i, ) = (Tabi, ¥) = /}Rd(T—xbi)(y)iﬁ(y) dy = /Rd bi(y + )¢ (y) dy = gi(x).

Proof of the other part is similar. O]

We show the existence of a stationary solution of equation (5.1).

Theorem 5.3.4. Let & be a C-valued Fy measurable random variable with E||£])2 < co and

independent of {B;}. Then Y, := 74,& is a stationary process and solves
dY; = A(Y,).dB; + L(Y;) dt; Yo = 712,& (5.34)

where {Z;} is a stationary, continuous solution of (5.32)).

Proof. We give the proof for dimension d = 1. The case d > 1 is similar.
Using the [t6 formula in Theorem we get a.s. for all £ > 0,

06 =g~ [ 0628 dZ+ 5 [ P78 d12),
—a& ~ [ 072 (2.) B,
[ orn09(z) ds + 5 [ P (r0)((2.) ds.
0 0
Now we use Lemma [5.3.3] Then a.s. t >0

706 = 26— [ 00728)5(2,€) dB,
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5.3. Stationary Solutions

~ [0z 6 ds + 5 [ 0(r1.6)(0(Z:6)) ds
0 2Jo
So Y; = 77,€ solves ([5.34)).

Since {Z;} is a stationary solution to (5.32)), for time points s, t1,tq, - ,t, > 0 we have
L
(Ztl’ Zt27 T 7Ztn) = (Zs+t1a Zs—f—tga o 7Zs+tn);

where £ denotes equality in law.

Take ¢p € C. Then the map = +— 7,1 is continuous and hence measurable (see Lemma

2.11.7(ii)). Using this fact, for Borel sets Gy,--- , G, in S, we have

((thlw,TZth,“' ,TZtnw) €G; x Gy X+ X Gn)
= ((Zo, 21y -+ Z0,)) € (1) TH(GL) X (79) TH(Ga) x -+ x (1)) TH(G)).

Now using the stationarity of {Z;} we have

P((TZt1¢’TZt2¢7“' aTZtnw) = G1 X G2 X oo X Gn)

(5.35)
= P((724, 0, 72.0,0s 72,00, %) € Gi X G2 X - X G)
Let e denote the law of £ on §,. Then using conditional probability, we have
P((12, &, 72,8, ,72,6) € Gt Xx Gy X -+ X Gy)
= [, P, & 7,6 72, 8) € G x Gy x o X Gl = ) )
since ¢ is C-valued,
= [ P2y 72,6+ 72,€) € Gr X Go X -+ X Gulé = ¥) pre(d)
= /CP((TZHWTZQ% Tz, ) € GL X Gy X X Gyl = 0) pe(d)
since {Z;} is independent of &,
= [ P2y, 72, 0.+ 72, 8) € G1 X G x -0 x G )
Similarly,
P((72000,6 TZ0i0,65 5 T2040,§) € G X G X - X Gy)
= /CP((TZHH%TZSHQ% T, ) € Gy X Gy X -2 X Gy) pre(di).
Using we have
P((72,,&, 72,8 172,6) € Gt X G X -+ X Gy) (5.36)

= P((TZs+t1£JTZs+t2§a T 77_Zs+tn§> € Gl X G2 X o X Gn)
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i.e.
L
(TZt1€7 TZt2€7 5 T2y, 5) = (TZs+t1€7 TZs+t257 e 77_Zs+tn£)'

So Y, is stationary. This completes the proof. O

Example 5.3.5. Take d = 1, f(z) = 1,¢9(x) = —x,0 = f,b = g. Note that 0 € S_, for

p > i and b € &_,, for p > % (see Example [2.11.17| and Example [2.11.18|). Take p > %.

First condition in the definition of set C (equation ([5.33))) reduces to [z ¥ (y)dy = 1. In
view of this relation, the left hand side of the second condition simplifies to

|~y = [yw)dy—z [ v@)dy=— [ yoty)dy -

Hence the second condition can be written as [z y1(y) dy = 0. Therefore

C={ves,: [v=1 [ yuly)dy=0}.

C is non empty since (centered) Gaussian densities satisfy such conditions. Consider the
Ornstein-Uhlenbeck diffusion with the following initial condition:

dZ, = dB, - Zydt;  Zo~ N(0,3), (5.37)

12

where N (0, %) denotes the law of a Normal random variable with mean 0 and variance %
Recall that this gives the stationary solution (see [60, Chapter 5, 6.8 Example]). Theorem
asserts that Y; = 74,1 gives a stationary solution, when 1) € C. Note that there exist

some constant R > 0 and a polynomial P of degree 2[|p|] + 1 (see Lemma [2.11.7))
El7z,¢ll; < RE(P(1Z) [[]; < oo,

since all absolute moments exist for Gaussian distribution.

More generally for constants o¢ > 0, a9 > 0, we look at the stochastic differential equation

02, = oodB, — oo Zedt;  Zo ~ N(0, 42).

? 2a0

Then for any ¥ € C (C as described above), we have the stationary solution Y; = 7,1).
Note that the same subset C works irrespective of the constants og, ayg.

The following lemma and Proposition will be used in Example [5.3.8|

Lemma 5.3.6. The tempered distribution given by the function b(x) = x3, x € R belongs
to S_, forp > %.
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Proof. We write ., instead of .#; (see the multiplication operators defined in Exam-

ple 2.11.9). Observe that | (b, ¢) | =| (1, (#4,)*¢) |, V¢ € S. Therefore

(b, &) | < 1Ll ()41,

< -plll-ells,, s |- ollspia—s, o -l 3=, 19llp4s-

Since 1 € S_,, for p > i (see Example[2.11.17), we have b € S_,, for p > i—k% = E. Similar
computations were done in Example [2.11.18| O

We recall the set up from [105, Chapter 7 Section 3 and Section 5]. Let g : R — R? be
a continuously differentiable vector field and let X9 : [0, 00) x C(]0, 00), R?) — R denote
the solution of the integral equation

X(t,w) =wl(®) + [ " (X9 (s,w)) ds (5.38)

up to the first time of explosion €9 (see [105, equation (7.3.4)]). Define Q(g) := {w €
C([0,00),R?) : e4(w) = 00} and LI := 1 A+¢-V. We cite a part of [105, 7.3.14 Corollary],
which is of current interest.

Proposition 5.3.7 ([105, 7.3.14 Corollary|). Suppose that h € C?*(R%[0,00)) has the
properties that

lim h(z) =ooc and L(x) < A+ Bh(z),z € R?,

|z|—o00

for some pair A, B € [0,00). Then

for all z € RY, where W\ denotes the distribution of w € C([0,00),R?) +— x +w €
C([0,00),RY) under W' - the Wiener measure on C(]0,00), R%).

Let U € C?(R% R) be such that [ exp(—2U(x))dx = 1. Suppose that g = —VU and
WD (Q(g)) = 1,Vx € RY. Let B(RY) denote the Borel o-field on R%. Then the measure v
on R? given by (see [105, equation (7.5.3)])

v(B) ::/ exp (—2U(x)) dz, VB € B(R?), (5.39)
B

is invariant for the equation ([5.38)) (see [105} 7.5.18 Theorem]).
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Example 5.3.8. Take d = 1, f(z) = 1,9(x) = —2*,0 = f,b = g. Note that 0 € S_,, for

p > i and b € S_,, for p > Z (see Example [2.11.17| and Lemma . Take p > Z. As
in Example the first condition in the definition of set C (equation ([5.33])) becomes

Jg ¥(y) dy = 1. We now simplify the second condition.

/R—(y +2)*Y(y) dy = —2*, Vo € R.
= = [y dy =30 [ o) dy—3a* [yl dy—a® [ w(y)dy=—a®, Vo e R,
= /Ry%(y) dy + 3:6/Ry2¢(y) dy + 3x2/Ry?/)(y) dy =0, Vz € R.
= /Ry?’@b(y) dy = /Ry%(y) dy = /Ryw(y) dy =0
Therefore
c={ves,: [v=1[ywwdy= [ yv@)dy= [ y'uly)dy =0},

We show C is non empty since 9,99 € C where

Note that ¢1,192 € S C S,. We need to compute certain integrals to verify other conditions.

U1(y) = exp(—y?) [

The moments of standard Normal distribution are given as follows: for positive integers n
([12, Example 21.1]),

1 /00 . y? p 0, ifnis odd,
— exp | —% | do =
vV 21 J—o0 Y P 2

(n— 1!, ifnis even,

where (2k — 1)!! =1 x 3 x -+ x (2k — 1) for positive integers k. More generally, for any

1 o y? 0, if nis odd,
/ yrexp | —5 5 | de =
oV 21 J oo 20 (n—1le™, ifnis even.

1.
7

o > 0 we have

Then we can compute the integrals, corresponding to o = 1 and

2

o0 o0 2
/ Y exp <_y2> da::/ y?® exp (_y2> dz =0,

00 2 0 2 oo 2
/ exp (_y2> dr =V 27r,/ y? exp <_y2) dx = V2, / y* exp (_y2> dx = 3V 2m,
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/ exp(—y*) dz = /7, /_OoyeXp(—yQ) dr = /_Oo y’ exp(—y*) dz = 0,

—00

/ o exp(— dx—\/%<\}_>3 \/_/ o exp y)dx=3\/%<\}§>5=3ﬁ.

Using these values, we have

3 1 3 13
/y% \/2_ 7£

|y = - Jdy = 5=~ =

SN \/_2_ 2/ =0

o0 32 Vor ) 1 B

Other integrals, viz. [, yibr (y) dy, [, y%l (y) dy, [ yeba(y) dy, [ P s(y) dy vanish
since the integrands are odd functions. This proves 4,1y € C. Using Proposition [5.3.7]
we now show that the finite dimensional diffusion does not explode in finite time.
Consider the function h(x) = 22, 2 € R. Then lim;o h(z) = co and

1
(@) + g(x)l (x) = 1 - 22* <1+ 0.h(z), Vz € R,

i.e. the condition is satisfied with the constants A = 1, B = 0. The finite dimensional
diffusion (5.32)) has an invariant measure v, given by (putting U(x) = % in equation (5.39))

v(B) = C/Bexp <_a:24) dx

for any Borel set B in R, where ¢ is the normalization constant. Note that

/_OO exp (—f) dr = 2/ exp (—) Az '=

oo 1
=271 / exp(—r)ri_1 dr = 2717 <) :
0 4

-1
Hence ¢ = 21 (F(i)) . Theorem [5.3.4] asserts that Y; = 74,7 gives a stationary solution,
when ¢ € C.

2/ exp(— 24r Tdr

w

We now prove an L' estimate of a stationary solution {Y;} in terms of Yj.

Proposition 5.3.9. Let £,{Z;},{Y;} be as in Theorem |5.3.4 In addition assume that
¢ is norm-bounded, Zy has moments of orders up to 4([|p|] + 1) and f,g are Lipschitz

continuous. Then

(a) EYoll; = Ellrz&]l; < oo
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(b) Esup,cp [|Yi][, < C (EHYE)HIQ))%, where C' is a positive constant depending only on f, g
and T.

Proof. For any norm-bounded C valued random variable £, we have E||7z,£[2 < REP(]Z))
where R > 0 and P is a polynomial of degree 4([|p|] + 1) (see Lemma[2.11.7)). Then by our
assumption, E||7z,&[|2 < oco.

Observe that Y; = 72,§ = 72,-2,72,§ = Tz,—2,Yo. Using Lemma we have

IYiellp < [1Yolly Pr(1Z: = Zol),

where P is a real polynomial of degree k = 2([|p|] + 1). Without loss of generality, we
assume that P, has non-negative coefficients. We use the following estimate to establish
the result.

Esup Y, < mmmﬂMWawt Zo))?)z (5.40)

Now a.s. Z; — Zo = Js f(Z,)dBs + [3 g(Z,)ds, t > 0. Hence for any positive integer m,

7, — ‘/ \)dB, +/

g( Of(ZS dBSJr‘/gZ ds)m

(o [
swl[/of( (/\gZS]ds>].

The last inequality follows from Lemma [2.13.2] Continuing from above

/Otf(Z Bm+§1<1$</ 9(Z |ds> ]

Since f, g are Lipschitz continuous, there exist constants «, 5 > 0 such that

sup |Z, — Zo|™ < 2" [sup
t<T t<T

[f(@)] < a1+ |z)), lg(@)] < A1+ |al), Vo € RY.

Set Cp, := E((1 + |Zo|)™) for integers 0 < m < 2k. By the stationarity of {Z;}, C,, =
E((1+|Z:])™) for any t > 0. Now using Jensen’s inequality, for any integer 0 < m < 2k

Esup(/ lg(Z |ds) <]Esuptm 1/ lg(Zs)|™ ds

t<T

T
=EW”AIM&WWS
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T
< g [+ |20 ds
0
T
— me,1 Cmd
B A s
= pB"rmc,,.

Note that

[rzias| <3S [ iz

Then for any integer 0 < m < 2k, by Lemma [2.13.2

1=

(?EIT) /0 f(Zs)st> S( 133;) / [ii(Z )
2\m— J
<@r S (ar / sz i)

Then using BDG inequalities (see Theorem [2.5.28)) there exist a suitable constant v > 0,
such that for any integer 0 < m < 2k
t nN™
[ iz, aB; )
0

)m < (a*)m ! Ed: E (Sup
72E</ pzras)

[ 12, an,

E (sup

t<T

ij=1 t<T
2,j=1

’YZE (/ Zs)!2d8>

1,j=1
T
< " E ( [ irzoeas)
0
T
< d?Mya™E (/ (1+ ]ZS\)2d3>
0

T
< d2m7ame_1]E/ (1+|Zs))" ds
0

m
2
m
2

m
2

T
= d*"yam T / E(1+ |Zo|)™ ds
0
— dzm’)/OémeCm
From the above estimates, for any integer 0 < m < 2k

Esup |Z; — Zo|™ < 2" T Co(dP™ya™ + ™).

t<T
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Chapter 5. Stationary solutions of stochastic partial differential equations in &’

Now P? has the form (Py(z))? = 2, a,,2™ with a,, > 0,¥m. Then

2k
Esup Pi(|Z: — Zo|)? < > an Esup|Z; — Zo|™
t<T m=0 t<T

2%
< ag+ Z U 27T O (2™ o™ + B™).
m=1
Hence using (5.40)), we get the result. O

Remark 5.3.10. We make a few observations.

(1) If the convex set C (as in (5.33))) has more than one element, then we can consider
probability measures on C which are convex combinations of Dirac measures on C.
By Theorem [5.3.4] we have the existence of infinitely many stationary solutions
corresponding to each of these probability measures. To rationalize, this may be
happening due to C being not translation invariant.

(2) We note that the set C, as in Example [5.3.5] is not compact. To see this first take p
sufficiently large so that the tempered distribution given by the function z — 22 is
in S_,. Then the image of C under this tempered distribution (a continuous linear
functional on S,) contains (0, c0), the variances of centered Gaussian densities. So C

is unbounded and non-compact.
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CHAPTER

An It6 formula in S’

6.1 Introduction

The It6 formula has been studied in various - and quite general - frameworks starting from
real valued processes to processes taking values in Nuclear spaces ([22,531[594|67} 74} 75/,86,
88-90,/112]). In this chapter we prove an It6 formula which generalizes a result for con-
tinuous semimartingales and is motivated by applications to stochastic partial differential
equations driven by Lévy processes.

Let (2, F, (F;), P) be a filtered complete probability space satisfying the usual conditions.
Recall that 7,,2 € R? are the translation operators on the space of tempered distribu-
tions (Example . Let p € R. Given ¢ € S ,(R?) and an R? valued (F;) adapted
continuous semimartingale X; = (X},---, X%), we have the following It6 formula (see
[89, Theorem 2.3]).

Theorem 6.1.1. {7x,¢} is an S_,(R?) valued continuous semimartingale and we have the
equality in S_,_1(R?), a.s

T, = Ty — Z/ O, pdXi + = Z/ 27,6 d[X, XI),, > 0.

1]1

This result has been used in [90] to show the existence of a solution of some stochastic
differential equations in &'(R%). In the previous chapter, we have extended this result to
the case where ¢ is an Fy measurable S_,(R?) valued random variable (see Theorem |5.2.2)
and then used it in Theorem [£.2.15

The aim of the current chapter is to prove Theorem for semimartingales { X;} with
jumps. A version of this It6 formula was also proved in [112, Theorem III.1] with equality in
S’. In [67, Theorem 3], the author has proved this formula for twice continuously (Fréchet)
differentiable functions while dealing with a single Hilbert space. Note that derivatives of
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Chapter 6. An Itd formula in &’

¢ € S_,(R?) may not be in the same space. Using the technique of regularization of E’
valued processes, the result [67, Theorem 3] was also proved in [77, Theorem 8] in the case

of an £’ valued continuous martingale, where E is a countably Hilbertian Nuclear space.

Given an S_,(R?) valued norm-bounded predictable process {G;} and an R? valued
semimartingale { X;}, the stochastic integral [; G, dX, can be defined (see Section [2.7] and
Section [2.12). Note that for any ¢ € S(R?), a.s. (see Proposition and Proposi-

tion 2.7.15)
t t
([ Gedx.. o) = [(G..0) dxst =0,
0 0

We exploit this property to prove an Itd formula (see Theorem . We apply the Ito
formula to a one-dimensional process X, which solves a stochastic differential equation
driven by a Lévy process and show the existence of a solution of a stochastic ‘partial’
integro-differential equation in the Hermite-Sobolev spaces (see Theorem . This is
similar to the solution obtained in [90] for continuous processes X. In Proposition [6.3.3]
we identify the local time process of a real valued semimartingale as an S’ valued process.
Most of the results in this chapter are from [7].

6.2 An Ité formula

Given ¢ € S'(R?), there exists a p > 0 such that ¢ € S_,(RY). Let X, = (X},---, X{) be
an R? valued (F;) semimartingale with rcll paths and has the decomposition a.s.

Xt:X0+Mt+At,tZO

where M; = (M},---, M¢) is an R? valued locally £2-bounded martingale and A; =
(AL,--, A?) is an R? valued process of finite variation (Lemma [2.5.34). Both {M;} and
{A;} have rcll paths and My = 0 = Ay a.s. By Lemma , {7x,6} is an S_,(R?)
valued process.

Recall that the process {X;_} defined by

X(), 1ft - 0
Xt— =
limsﬁ XS, ift > 0.

is predictable (see Proposition [2.5.4]).

Lemma 6.2.1. Let ¢, X be as above. Then for any 1 <1 <d and1 < j <d,

(i) {mx, ¢} is an S_,(R?) valued predictable process.
(it) {9;x, ¢} is an S_,_1(R?) valued predictable process.

1
2

(iii) {0}7x, ¢} is an S_,_1(R?) valued predictable process.
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6.2. An It formula

Proof. By Proposition [2.5.4) {X;_} is predictable. Since x — 7,6 : R — S_,(R?) is
continuous (see Lemma [2.11.7(ii)]), the process {7x,_¢} is predictable.

For any 1 < i < d, we have 7,(0;¢) = 9;7,¢ (see Lemma [2.11.7(iii))) and 9; : S_,(RY) —
Sfpf%(Rd) (see Lemma [2.11.4)). Hence {0;7x, ¢} is an Sfpfé(Rd) valued predictable pro-

cess.
Similarly for 1 < i,j < d, the processes {0}7x,_¢} are S_,_1(R?) valued predictable
processes. O

Note that there exists a set Q with P(Q) = 1 such that (see Corollary [2.5.41| and

Lemma [2.5.42))
STIAX P <00, ¥t >0,w€EQ,

s<t

If w € €, then there are at most countably many jumps of X on [0, t].

Lemma 6.2.2. Let ¢, {X,;} be as above. Fiz w € Q. Fiz ¢ € S(RY). Then for all s <t

< C(t)- ’A X5’2|WHP+1?

d
<TX5¢ —7x, ¢+ (AX[07x, ¢), ¢>

i=1

and hence
d
17,6 — Tx, ¢ + Y _(AXI0imx, )| p1 < C(t).|A X[, (6.1)
i=1

where t — C(t) is a positive non-decreasing function of t. In particular,

d
TXz(b - TXt—(b + Z(AXZ aiTXt—(b) = 07 Zf|A Xt| = 0.

i=1

Proof. By [89, Proposition 1.4], there exists some positive integer n such that the map
= 7,0 € S_,(R?) is a C% map. For any fixed ¢ € S(RY) we have z + (7,0, 1) is a C?
map and

= (0, 0nb(- + 1))
= <¢> T—xaiw> = <ai7—a:¢7 Qﬂ) :
For any 1 < i,j < d, we have 9}, = 8,0; = 9;0; on §'(R?) and hence 9, : S_,(RY) —

S_p-1(R?) is a bounded linear operator (see Example [2.11.3). Then there exists a constant
a > 0 such that

10501l -p-1 < allf]l—p, ;90 € S_p(R). (6.2)




Chapter 6. An Itd formula in &’

We follow the proof of [56, Theorem 23.7] and define B(t,w) := {z € R? : |z| <

sup,<; | Xs(w)|}. Then using Taylor’s formula for the C*? map x — (7,0, 1), we have
for all s <t

d
<TXS<Z5 —Tx, O+ Y (AX[07x,_0), ¢>‘
i=1

d .
=1x,0, V) — <7’Xs—¢’ ¢> + Z <5¢TXS_¢, w> A X

=1

d

=|(mx,0, V) = (7x, ¢, ¥) =30 (rx, ¢, ¥) A X

i=1

=

1 d
Si‘AXSF (Z sup \<812]Ty¢7¢> ‘)

i,j=1YEB(t.w)

1
<=,

DO |

d
‘AXSF (Z sup )”8%7y¢"p1) 191lp41

i,j=1YEB(tw

(0% .
<CIaXP ( up )||Ty<z>||_p> 14 (using (52)).

yeB(t,w

Define C(t,w) := § (supyeB(t’w) HTy¢H,p). Then C(t,w) is non-decreasing in ¢ and for all
s<t

< C)-1A XLl

d
<TX5¢ —7x, ¢+ > (AX[07x, ¢), ¢>

i=1

From above estimate we have
d .
I7x.0 — Tx, ¢ + Y (AXLOx, )| —p—1 < C(t).]A X,
i=1

In particular 7x,¢ — 7x, ¢ + X0 (AX} 0itx,_¢) = 0 if |A X,;| = 0. O

For any 4,7 = 1,--- ,d, let {{X", X7]¢} denote the continuous part of {[X*, X7],}. We
now prove the main result of this chapter.

Theorem 6.2.3. Let p > 0 and ¢ € S_,(R?). Let X = (X*,---, X%) be an R? valued
(Fi) semimartingale. Let AX! denote the jump of X:. Then {7x,¢} is an S_,(R?) valued
semimartingale and

d
Z Tx, 0 — Tx,_ ¢+ Z(AXi O0itx, )

s<t i=1
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6.2. An It formula

is a S_p_1(RY) walued process of finite variation and we have the following equality in

S_p-1(RY), a.s.

T, = Ty — Z/ Oy, $dXi + - Z/a%x ¢ d[ X, X9

1]1

+ [szcb —Tx, ¢+ Z(AXé @szgb)l ,t>0.

s<t i=1

Proof. We proceed in steps.
Step 1: Let Q be as in Lemma Then w € § implies (see equation 1}

d
dllxd — e b+ D (AX 0mx, @)ll-p1 S CH)D_|AX P <0 (64)
s<t i=1 s<t
Recall that if w € €, then there are at most countably many jumps of X on [0,#]. In
view of the above estimate we define for any ¢t > 0

Yt(w) ZZZlTXS(w)¢_TX gb—i—Z AXZ aTX (w)¢)‘|,w€§~2
s<t
and set Yy(w) := 0, w € (Q)°. Then {Y;} is a well-defined S_,_;(R?%) valued (F,)
adapted process.
Step 2: Now we show {Y;} has rcll paths and is a process of finite variation. Fix w € Q. We

claim
(1) Yio = Yoce 70,0 = 7x, ¢+ T (AX D7y, 0)], t > 0.

(i) Y = Soet [0 — 7x, 0+ Xy (AKX D7y, 6)| = Vi, t > 0.
We prove (7). Proof of (i) is similar.
Let {t,,} be an increasing sequence converging to ¢. Then

d
> [szqﬁ —Tx. 0+ D_(AX, @sz_aﬁ)] - Y,

s<t i=1 —p—1
d
= Z lTXéﬁb —Tx, ¢+ Z(AX; aﬂ'Xsﬁb)]
tm <s<t i=1 —p—1
d .
< Z TX. 0 — Tx. ¢+ Z(AX; 0iTx,_ )
tm<s<t i=1 —p—1
<C(t) Y |AX,P (using 61)
tm<s<t
=0 | X IAXL = Y | AX
s<t s<tm
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Chapter 6. An Itd formula in &’

Step 3:

722 0 (using Lemmal2.5.42{4)).

This proves (i). Then using (), (i7) we have on

d
AY, = 7x,0 — Tx,_ ¢ + Y _(AX] Oitx,_0),

i=1
and AY; =0 if AX; =0. Now using (6.1]), we also have

S AVt <CH YA X < 00, weQ

s<t s<t

and Y; = >, AY,. We have shown {Y;} has rcll paths. Now we show that {Y;} has

paths of finite variation.

Let we Qandt >0. Let P={0 =ty <t; < --- < tn, =t} be a partition of [0,1].
Then

Z an - ni—lH_p_l

d
> lTxﬁ —Tx,_ ¢+ Y (AX] @szﬁ)l

ti—1<s<t; =1

—p—1

szqb—TXS QH-Z (AX!0;mx,_¢)

=1

—p—1

X, O — Tx,_ <Z5+Z AX!Ox, o)

<O A X

s<t

—p—1

Since the quantity C'(t) Y.<, |A X,|? is independent of the choice of the partition PP,
we have {Y;} is of finite variation with

VCLT’[Qﬂ (Y) < C(t) Z ’A XS‘Z
s<t
on €.
To complete the proof we need to verify the following equality in S_,_;(R?), a.s. for
allt >0

Y, = 7x,0 — TXOd)—i—Z/ 8TXS_¢dXZ—— / 2Tx, dd[X', X7]°.

1] 1
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6.2. An It formula

First we assume that the processes {X;_}, {[X?, X7|¢}, 4,5 = 1,--- ,d are bounded.
Since 0; : S_p(R?) — S_,_1(R) is a bounded linear operator, by Lemma 2.11.7(i)|,
we have for all t > 0,i=1,--- ,d

10imx,_ @l p—i < Cllrx,_0ll-p < C.R( X )9l < €,

where C, C" > 0 are appropriate constants. Similarly, there exists a constant C” > 0
such that
||8¢jTXt7¢||_p_1 < C”» vVt >0,i,5=1,---,d.

Hence {7x,_¢},{0itx,_¢},{0};7x,_¢} are norm-bounded predictable processes (see
Lemma |6.2.1). As per the results mentioned in the previous section, we can define

stochastic integrals
d ¢ ‘
I ::Z/ Oirx,_pdXi, I2:= / Py, ¢d[X', XI)°, t > 0
=170 1,7=1

which are respectively S_, 1 (RY) and S_,_1(R?) valued and have rcll paths.
For n € Z2% applying the Itd formula (see [56, Theorem 23.7]) to the C? map z
(T+¢, h,) we have, a.s. for all t >0

d

(70, ha) = (g, b = 3 [ (Oi7x, 0, b dX:

=1

=(1}  hn)
1&g o
+53 /0 (B27x, 6 ha) X7, XIS (6.5)
ij=1
()
+ Z l(TXSQSa hn) — <7'X57¢7 hn> + zd:<az‘7'xs¢, hn> AXé] ;
s<t i=1

where AX? denotes the jump of X?. Now varying n in the countable set Zi, we get
a common null set 2 such that for all w € Q \ Q, for all n € Z‘i and for all t > 0, we
have

d t )
((Tx6 = Tx6 + Z | oy odx

- Z / 27, Gd[X, X = Y;), hy ) = 0.
1] 1
Using Proposition [2.10.2] we get the required equality in S_,_1(R?) for semimartin-
gales {X;} such that {X;_ }, {[X? X7]¢}, 4,5 =1,--- ,d are bounded.
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Step 4: Now suppose at least one of {X;_}, {[X?, X7]¢}, 4,7 = 1,--- ,d is not bounded. Then
define
g, =inf{t > 0:|[X" X >n,ij=1,--,d}

and
on = inf{t > 0:|X;| > n},

where |- | represents the Euclidean norms in the appropriate space R™ (m = 1 or d).
Set 0, = G, A G,,. Then {([ X, X7]¢);"}, 4,7 = 1,--- ,d are bounded.

If | Xo(w)| > n for some w, then o,(w) = 0. Such w does not contribute to the
integral 3¢, 777" \\8iTXS_£]|§_% d (M")_ etc. So we may assume the processes { X7}

are bounded. Hence a.s. in S_,_1(R?) we have for all ¢t > 0
d tAon .
TXinon @ =Tx0® + Z/O OiTx,_ ¢ dX
i=1

1 d tAon 9 ) )
- 5 Z /0 aijTXs—(bd[Xl?X]]g - }/;5/\0,1-

ij=1

Letting n go to infinity we get the result.

6.3 Two applications

In this section, we apply the It6 formula[6.2.3|firstly in Theorem|[6.3.1]to obtain a solution of
a certain stochastic ‘partial’ integro-differential equation in the Hermite-Sobolev spaces and
secondly, in Remark [6.3.4] to explore some connections with the technique of ‘regularization’
of random linear functionals on S(R%). The first application is similar in spirit to the
same obtained in |90, Theorem 3.4 and Lemma 3.6] for continuous processes (also see

Theorem [5.2.15] Lemma and Theorem [5.2.20)).

Let p€ R. Let ¢ € S, and 0,b € S_,. Define 5 () := (0, 7,.0) ,b(z) := (b, T.¢) ,Vx €
R. Let ;G : §, x R — R and let F,G : R xR — R be given by F(z,%) =
F(1,6,%), G(z,%) := G(1,¢,%). Let {B;} be a standard (F;) Brownian motion and
let N be a Poisson process driven by a Lévy measure v. Let N denote the compensated
measure. Assume that B and N are independent. Consider the problem of existence of a

solution of the following one-dimensional equation
t_ t
X, = / b(X, ) ds +/ (X, ) dB,
0 0

' t (6.6)
" /0 /<o<z|<1) F(Xowy ) N(dsdr) + /0 /(mm) G(Xs-, 2) N(dsdz). "
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6.3. Two applications

We are following the set up of |3, Chapter 6 Section 2] and we take ¢ = 1. Recall that this
parameter ¢ separates the small and large jumps. One usually omits the term involving
large jumps, i.e. the term involving G, since a solution of can be obtained from the
modified stochastic differential equation

dX, = b(X,_)dt + &(X;_) dB, + F(X,_,z) N(dtdz). (6.7)

0<|z|<1

using interlacing (|3, Example 1.3.13]).
We assume conditions on &, b, F which imply the existence of solutions of equation 1'

For each z,y € R, define a(z,y) := o(z)o(y). Now assume the following two conditions.

(i) (Lipschitz condition) There exists /; > 0 such that

b(y1) — b(y2) | + |a(yr, 1) — 2a(y1, y2) + alyz, yo)|

, , 6.8)
* foctorer |F(y1,2) = F(ys, ) v(de) < Kilyy — 92*, ¥y, 92 € R. (

(ii) (Growth condition) There exists Ky > 0 such that
b(y)|* + laly. y)| + |F(y, 2)* v(de) < K> (1+ |y*), ¥y € R. (6.9)

0<|z|<1

Under this conditions, a solution of the stochastic differential equation (6.7 exists (see
[3, Theorem 6.2.3]) and hence that of also exists. We denote this solution of by
{X;}. Using the growth condition ([6.9), we have

t _ t
/ / \F(X,_,2) | v(dz)ds g/ Ko(l 4 | X, [2)ds < Ko(1 + sup | X, |?)t,
0 J(0<|z|<1) 0

s€[0,t]

and hence the integrability condition follows: a.s.

t _
/ / \F(X,_,2)]2 v(dz)ds < oo, Vt > 0. (6.10)
0 J(0<|z|<1)
As an application of Theorem we get the next result.

Theorem 6.3.1. The S, valued process Y defined by Y, = 7x,¢ solves the following
stochastic differential equation with equality in S,_;:

=0+ / ) dB, + /
//o<|m|<1 F(ve- (@) — Td+ F(Y (¢>,x)8) Y, (¢) v(dx) ds
* /0 /(0<|x|<1) T, () — 1d) Ya (¢) N(dsdz)
* /ot /(le) (e (@0 — 1d) Yoo () N(dsdz),

(6.11)
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Chapter 6. An Itd formula in &’

where the operators A, L on S, are as follows:

A¢ = <07 ¢> a¢7

and

Proof. Observe that
AXy = F(X,, AX) T o<iax, <) + G(Xio, AX) T jax,>1)- (6.12)

From (6.12)) we make two observations. Firstly, |F(X;—, AX;)|1o<|ax,<1) < 1. In partic-
ular, this implies

|F(Xt—7 AAXt)lélIL(0<|AXt|<1) < |F(Xt—7 AAXt)|21L(O<|AXt|<1)-
Secondly, we have the following simplification.

Tx. 0 —Tx, ¢+ AX;01x,_ @

= (tax, — Id)Tx, ¢+ AX;07x,_ ¢

= Tociax.i<n) (Trex,axy — 1d+ F(Xoo, AX)0) 7x, ¢

+ 1jax,i>1) (T@(XMMS) - Jd) X, 6+ Lax.sn G(Xe, AX,) Orx, 6.

Using equation ([6.1]), we have

]]'(0<‘AX5‘<1) H (TF‘(X377AXS) - .[d —I'_ F(XS—7 AXS) 8) TX57¢H71)71
S C(S)-1(0<|AXS\<1) ’F(Xs,, AXS)P?

where t — C(t) is a positive non-decreasing function. Then
¢ _ 2
/0 /(0<|I|<1) H (TF(XFJ) —Id+ F(Xs_,x) 3) TX57¢H_p_1 v(dz)ds
<[ "O(s)? / \F(X._, 2)|" v(dz)ds
0 (0<|z|<1)
< C(t)2/0t /<o<x|<1> F(X,_, 2)|? v(da)ds < oo, (by [6.10)).

Similarly

~ t _
SO /( X a)Pu(dr)ds < oo, (by @10)),
0 0<|z|<1
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where t — C(t) is some non-decreasing function. Hence

> {sz(b —7x,_ ¢+ AX,07x,_ gzﬁ}

s<t

- /Ot /(o<|x<1) (TF(XS,@) —Id+ F(X,-,x) 8) Tx, ¢ N(dsdx)
+ /t /|$|>1 TG(Xs—yx) — Id) Tx, ¢ N(dsdx)

/ /|z|>1 x) 0tx, ¢ N(dsdx)
_ /0 /(0<|z<1> T, ) — ld+ F(Xoo,2)0) 7x,_¢ N(dsdx)
+ /Ot /(0<|m|<1) (Tp(xs_,x) —Id+ F(X,_,z) 8) . pv(dr)ds

t

+ / /|x|>1 TG(Xsmyz) — Id) Tx,_ ¢ N(dsdx)

/ /|z|>1 x) O1x, ¢ N(dsdz).

Now by the It6 formula (Theorem [6.2.3))

=6+ [ Alrx_6)dB, + [ Lirx._6)ds

t _ —
- / / F(X,_,z)drx, ¢ N(dsdz)
(0<|z|<1)

/ /|x>1> 7) 07x,-¢ N{dsdz)
+> [TXS —7x, ¢+ AX,01x,_ gb}
s<t

t t
=¢+ /0 A(7x,_¢) dBs + /0 L(rx, ¢)ds
t -
[ (e — 14+ F(Xo,2)0) 7. _w(da)ds
0 J(0<lz|<1)
[ 1d) 7x, ¢ N(dsdz)
+ 2 - T
0 Jo<zl<1) (TF(XS_,I) Xoo
t Id N(dsd
+/0 /(|x>1) <TG(XS*’”) B )sz,gzﬁ (dsdx)
Hence Y;(¢) := 7x, ¢ solves the equation (6.11)). 0

Remark 6.3.2. We proved the existence of a solution to equation (6.11)) in the previous
theorem. Uniqueness of solutions of (6.11]) will be taken up in future.
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Chapter 6. An Itd formula in &’

Given a real valued semimartingale {X;}, consider the local time process denoted by
{L(x) }+eo,00),zcr- Note that this process is jointly measurable in (z,¢,w) and for each
x € R, {L(z)} is a continuous adapted process. Note that the occupation density formula
[87, p. 216, Corollary 1] (also see [88, Proposition 4 and Theorem 3]) follows from the
comparison of two versions of It6 formula in the finite dimensional case, first being the
Meyer-1td formula [87, Chapter IV, Theorem 70] (an application of which leads to the
Tanaka formula) where local time appears and second the usual version for C? functions.
By the occupation density formula, we have for any ¢ € S, a.s.

| Lwotayde = [ 6(X, ) (X, (6.13)

where [X] stands for [X, X] and [X]° denotes the continuous part of [X]. By [87, p. 216,
Corollary 2] a.s.

/O:oLt(:c)d:z::/Otd[X]z,

which shows a.s. for all ¢, the map = — L;(x) is integrable. We now identify the local
time process in §’. A version of this result was proved in [89, Lemma 2.1] for continuous

semimartingales X.

Proposition 6.3.3. The &' valued process { [§ dx,_d [X|S} is S, valued for any p > % and

s

for each t, [ 6x, d[X] is given by the integrable function x> Ly(x).

Proof. Note that for any fixed z € R, the distribution ¢, is in S_, for any p > % (see

Proposition[2.11.14)). Also 7,69 = 0, (Lemma|2.11.15)). Hence by Lemma|6.2.1} {dx,_} is an

S_, valued predictable process. By Lemma it is also bounded. Then we have the
S_, valued process { [y 6x, d[X]S}, where each of the random variables [j dx, d[X]S,t >0
is defined as a Bochner integral for any p > i

But for any integer n > 0, by a.s. for all t >0

t t
([ ox dIXTs o) = [ (dx. s ha) dIX;
0 0
t
— [ ha(Xo ) dIX];
0
- / Y Lu(@)h(z) da
Then there exists a P null set € such that on \ Q for all integers n > 0 and all £ > 0
t 00
</ 6x. d[X]°, hn> _ / Lo(@)h () da.
0 —00

Then for each ¢, the S' valued random variable fj 0x, d[X ]S is given by the function

x +— L;(z) (see Proposition [2.10.2)). O
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6.3. Two applications

Remark 6.3.4. It was observed in [89, Corollary 2.5] that the It6 formula in the finite
dimensional case can be written in a ‘functional’ form. Since 7,00 = d, (Lemma [2.11.15)),
for any continuous R? valued (F;) adapted semimartingale {X;}, we have a.s. (see Theo-

rem 1)

= by, — Z/ 0,0, dXi + - Z / 25, d[XT, X7],, t >0, (6.14)
2%
with equality in some S_,(R?). If ¢ € S(R?), then the duality ¢(X;) = (dx, , #) together
with equation implies the It6 formula in the finite dimensional case. Using The-
orem [6.2.3] a similar identification of the It6 formula in the finite dimensions can now
be obtained for semimartingales {X;} with jumps. This identification can be stated in
terms of random linear functionals on S(R?) (for the notion of random linear functionals
on Nuclear spaces, see [117, Chapter 4]). The It6 formula for a smooth function ¢ and a
continuous semimartingale {X;} can be written as ¢(X;) = ¢(Xo) + I} (@) + I (), t > 0
where
Z/ Db(X,) dXE,  TX(¢) - Z/ d[X’, X7),,
2=

are random linear functionals on S(RY). In the context of Itd’s regularization Theorem
(53} Theorem 2.3.2], [117, Theorem 4.1]), we can ask whether there exist S_,(R?) (for
some ¢ € R) valued adapted processes {I}}, {I2} such that for any ¢ € S(R?), a.s t >0

(I, ¢) =1}(¢), (I}, ¢) = I}(9).
The discussion at the beginning of this remark answers this question in the affirmative.
This type of regularization problems have been studied in [59, Theorem 3.1.3], [77,/7§]
which dealt with martingales, submartingales and certain stochastic integrals and in [85]
with semimartingales where ‘S’(R?) regularized’ versions were obtained. This connection
can be obtained in a more general setting. We say an S’(R?) valued (F;) adapted rcll
process {X;} is a weak semimartingale if for each ¢ € S(RY), {{X;, ¢)} is a real valued

semimartingale, i.e. a.s.
(Xy, ¢) = X§ + M + AL, ¥t > 0. (6.15)

where X{ is an F, measurable real valued random variable, {J\/‘I',f5 } is a real valued local
martingale with M{ = 0 a.s. and {A} is a real valued FV process with AS = 0 a.s.. Under
some continuity conditions of ¢ — E(Mt¢)2 and ¢ — E Varpy(A?), it is possible to obtain
an S_,(R?) valued semimartingale {X,} such that a.s. X; = X,,¢ > 0. Similar results
can be obtained for collections of random linear functionals, e.g. {I}}, {I?} as above. A
preprint about these results is under preparation.
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In|  ny+--- 4 ng for any multi-index n =
(ny, -+ ,nq) € Zi

|z|  Standard Euclidean norm of =, when
r € R or R?

a.s.  almost surely

B(R?) The Borel o-field on R?.

B(0,n) {z € R?: |z| < n}. The dimension
d will be understood from the context.

C Set of complex numbers

C>=(R%) The set of real valued infinitely dif-
ferentiable functions on R¢.

0z, ¢ € R? Dirac distributions.

0;,i =1,---,d Partial derivative operators

on §'(R%).

E'(RY) The space of compactly supported
distributions on R

£ Equality in law.

(2k — 1)!I! Denotes the product 1 x 3 x -+ X
(2k — 1), when k is a positive integer.

See Index ‘Her-

mite operator H’ for more reference.

H Hermite operator.

hp,n € Zi Hermite functions on R

indicator function of some measurable
set A.

14

List of symbols

(-, +), The Hermite-Sobolev inner product,
p e R.

L1(R?) The set of real valued integrable func-
tions on RY, with respect to the
Lebesgue measure.

L2(R?) Set of real valued square integrable
functions on R?, with respect to the
Lebesgue measure.

(M, N) Predictable quadratic variation of
real valued martingales M and N

(M) Meyer process of a real valued mar-

tingale M. Shorthand for (M, M).
AX The jump process of a process X.

[X,Y] Quadratic variation of R valued semi-
martingales X and Y.

[X]  Shorthand for [X,X], when X is a
real valued semimartingale.

AM*  The vector space of real valued rcll £2
martingales.

A2 the vector space of real valued rcll £
bounded martingales.

> the vector space of real valued contin-
uous £? martingales.

AMEC the vector space of real valued contin-

uous L£2-bounded martingales.
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List of Symbols

Operators on &'(RY) given by multi-
plication by the co-ordinate functions
it = 1,--- ,d. See Index ‘Multipli-
cation operators .#; for more refer-

ence.

X*  supyg | Xy, when {X,} is a real or R?

valued stochastic process.

SUpP,<; | Xs|, when {X,} is a real or R
valued stochastic process.

N Set of natural numbers
The Hermite-Sobolev norm, p € R.
R Set of real numbers

Cartesian Product Rx R x --- xR, d

times. The d dimensional Euclidean

space.

R?  R?U {oo}, the one point compactifi-

cation of R?

S,(RY) S,(R?) U {0}, where § is an isolated
point.

S abbreviated for S(R)

S’ abbreviated for S'(R)

S'(R?) The space of tempered distributions
on R¢.

S'(R?%; C) Continuous linear functionals on
S(R% C)

S(R?) The space of real valued rapidly de-

creasing smooth functions on R%.

S(R% C) The space of C valued rapidly de-
creasing smooth functions on R¢.

S,  abbreviated for S,(R)

S,(R?) Hermite-Sobolev space, Completion
of (S(RY), |- I,) for p € R

S,(R% C) Hermite-Sobolev space, Comple-
tion of (S(R% C),| - ||,) for p € R

T,z € RY Translation operators on &'(R9).

Varpy(f) Total variation of a function f :
[0,t] — B, where B is a Banach space.

Z Set of integers

¢ Set of multi-indices n = (nq,--- ,ng)

where n; are non-negative integers
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A characterization result on Gaussian

flows,
Annihilation operators,

BDG inequalities,
Bochner integral, see Bochner integration
Bochner integration,

Cauchy problem for L*,
existence and uniqueness, [108
Creation operators,

Decomposition of local martingales,
Derivative operators 0;,
Adjoints 97,
Diffusions depending deterministically on
the initial condition,
Characterization, [94] [07]
Doob’s maximal quadratic inequality,
Doob-Meyer decomposition,

Examples of tempered distributions

Dirac distributions,

Distribution given by the Cosine
function,

Distribution given by the Heaviside
function,

Distribution given by the sign function,
(6%

Distribution given by the Sine function,
0]

Distributions given by constant

functions,

Index

Distributions given by integrable
functions,

Distributions given by multiplication,
(o10]

Filtrations,
Right continuous,
Usual conditions,
Finite dimensional stochastic differential
equations

existence and uniqueness, [I17], 124
[126], [137]

Invariant measures, see Stationary
solutions

Stationary solutions,

Finite variation process, see FV process
Fourier transform,
Functions of bounded variation,
Total variation,
FV process, [I8]
Hilbert valued,
integrable variation,
locally integrable variation,
Real valued,

Gronwall’s Inequality,

Hermite functions,
Recurrence relations,
Hermite operator H,
Hermite polynomials,
Hermite-Sobolev spaces,
Hilbertian topology,
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Index

Infinite dimensional stochastic partial
differential equations

existence and uniqueness, [I38|
Stationary solutions, 148

1t6 formula, [44] [65], [113] [155]
A functional form, [167]

Application involving Lévy processes,
165!

for norms,

Kirszbraun Theorem, [125

Lifting of finite dimensional processes,
Local time, [166

Localizing sequence,

Localizing sequence of stopping times,

Martingale, [I8]
22,19
L2-bounded, ,
Hilbert valued,
local,
locally £2,[19]
locally £2-bounded, [19]
locally square integrable,
Meyer process,
Quadratic variation,
Real valued,
square integrable, [19]
Monotonicity inequality, [71],
for (A*,L*),[88
for constant coefficient differential
operators, [81], [142)]
for differential operators with variable
coefficients,
interpretation in terms of Cy group of
translation operators,
Multi-index,
Multi-indices,

Multiplication operators .,
Adjoints .},

Occupation density formula, [166]
Operators on Hermite-Sobolev spaces, see
Operators on tempered
distributionds2l
Operators on tempered distributions
Annihilation operators,
Creation operators,
Derivative operators 0;,
Fourier transform,
Hermite operator H,
Multiplication operators .;,
Shift operators,
Translation operators 7,
Ornstein-Uhlenbeck diffusion, [102]

Predictable o-field,
Predictable process,
Hilbert valued,
Real valued,
Predictable sets,
Probability space
Complete,
Completion,
Usual conditions,
Processes of finite variation, see FV process

Random linear functionals,

Regularization, [6]

Schwartz topology,
Semigroups of bounded linear operators,
Cy group given by translation
operators, [67]
Uniformly continuous semigroup given

by matrices, [67]
Semimartingale, [23]
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R? valued, rcll modification,

canonical decomposition, Real valued,
covariation, [24] Submartingale,
Hilbert valued, Supermartingale,
Purely discontinuous, Stopping time,
Quadratic variation, Submartingale,

Real valued, Supermartingale,

special,

Weak semimartingale, [L167]
Shift operators,
Stieltjes integral, see Stieltjes integration
Stieltjes integration, [26]

Hilbert valued integrands,

Real valued integrands,

Stochastic integral, see Stochastic

Total variation,

Translation operators 7,

integration
Stochastic integration,

S,(R?) valued predictable integrands,

Hilbert valued predictable integrands,
36, B3]

Real valued predictable integrands, [27]
29

w.r.to a real £L2-bounded martingale,
27, [39]

w.r.to a real semimartingale, [29]

Stochastic process,

adapted,

continuous, [I6]

continuous modification,

Hilbert valued,

increasing process, [I]

indistinguishable,

measurable,

modification,

Progressively measurable,

rell,
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