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1 Introduction

1.1 Dual-record System (DRS)

The problem of population size estimation is a very important administrative and statistical

concern which includes a vast area of application in the fields of epidemiology, demography

and official statistics. Federal agencies are generally interested to know the actual size (say,

N ) of a specified population or any vital event that occurred in a specified area within a

given time span. Census or civil registration system often fails to extract the true size of

the population. The degree of inaccuracy depends on the actual size of the population, its

diversity and of course, on the quality of the counting process. Any attempt to count all

the individuals in a given moderate or large population is inevitably subject to error. As a

remedy, the use of capture-recapture type experiment is being used for a long time. As per

record, Laplace (1783 [60]) made the first implementation of such experiment in order to

estimate the number of inhabitants in France. Thereafter, identical methods independently

proposed by Petersen (1896 [73]) and Lincoln (1930 [63]) in order to estimate the size of an

interest population became famous as Lincoln-Petersen estimate which is based only on

one recapture operation after the first capture attempt. Individuals counted at the time of

first capture are matched with the list of individuals prepared by the second attempt. In

literature, this type of data structure with only two counting attempts covering the population

is known as Dual-record System or simply, Dual System. A stabilized version of Lincoln-

Petersen estimator developed by Chapman (1951 [24]) is still in use by numerous practitioners.

Schnabel (1938 [81]) considered a multi-sample extension of the Lincoln-Petersen method,

where each sample captured commencing from the second is examined for marked members

and then every member of the sample is given another mark before being returned to the

population. Later this multi-sample extension became very popular, especially for wildlife
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Chapter 1. Introduction

populations and commonly known as capture-mark-recapture (CMR) or simply capture-

recapture experiment. Most of the advanced statistical models are developed after 1950’s

in order to efficiently describe several situations arising in the real world for dependency

between capture and recapture operations, varying individual capture probabilities, etc.

Excellent reviews by Seber (1982[82], 1986[83]), Otis et. al.(1978[71]) and Chao (2001[23]) are

available on capture-recapture theory. Thus, Dual-record System (DRS), which is particularly

planned for human population, is technically very close to capture-recapture system with

only two sampling occasions.

In modern era, an application of the capture-recapture method is made in order to measure

the extent of registration for vital events (ChandraSekar and Deming 1949 [17]; Ayhan, 2000

[1]) in the form of DRS. Apart from the estimation of the size of a general population or vital

events, this method has an extensive use for population growth estimation (Marks et al.,

1974 [66]; Krotki, 1978 [59]), illusive or hard-to-count populations (Jibasen et al., 2012 [58];

Dreyfus et al., 2014 [33]) and also in several epidemiological applications including under-

ascertainment in traditional epidemiological surveillance (Chao et al., 2001 [23]). Dual Record

System Estimation is also used for the application to the problem of estimating undercount in

census (Wolter, 1986 [102]; Cressie, 1989 [31]; Ayhan and Ekni, 2003 [2]; Elliot and Little, 2005

[34]; Watcher, 2008 [97]). In this application, a survey is usually conducted independently

after the census operation to estimate the number of events missed in the census count by

matching the two available lists of individuals. However, for human population, nature of

the capture-recapture experiment is purposefully different than that for wildlife population.

We will discuss about this difference in the next section. In the context of counting events in

a human population, this kind of data structure with matching information from more than

three lists is known as Multiple-record system, which is equivalent to the capture-recapture

system in biological studies (see Otis et al., 1978 [71] and Seber, 1986 [83]). However, in the

context of human population, more than two sources of information is hardly found since

establishment of more than two sources is operationally complicated, expensive and also,

human capture probabilities are relatively higher than animal. Application of DRS in some

other studies related to human population includes estimation of the size of victims due to

war, natural calamity, accidents, etc.

1.2 DRS & Two-sample Capture-Mark-Recapture (CMR) Technique

Any attempt to count all individuals belonging to a large or moderately large population is

inevitably subject to errors. If the interest population is hard-to-reach (e.g. drug addicted

2



1.2. DRS & Two-sample Capture-Mark-Recapture (CMR) Technique

persons, street-beggars, particular species of an animal, etc.), then also complete listing

is quite impossible by any attempt. Capture-recapture technique deals with this problem

by employing two or more independent attempts to count all individuals in each attempt

and formulates a well-structured operational technique by matching all the available lists

of individuals prepared from those attempts. Since a part (or, say, a sample) of the interest

population is captured in each attempt, not all, hence these are usually called sampling

occasions. Thus, in any capture-recapture experiment, T (say) no. of sampling occasions or

counting attempts are performed, where T ≥ 2. The first attempt is termed as capture and all

subsequent attempts are called recapture. For details on capture-recapture technique, see

Pollock (2000[74]) and Chao (2001a[22]).

Dual-record System (DRS) comprises of exactly one recapture attempt after the usual capture

and therefore, there are only two sampling occasions. For human population, more than two

attempts are seldom used. Very few evidence has been found yet where capture-recapture

type experiment dealt with three attempts (Zaslavsky and Wolfgang, 1993[107]; Ruche et

al., 2013[78]). Indeed, in order to study a human population, these two attempts (capture

and one recapture) may not always be time-ordered. In several instances, two attempts for

counting are carried out simultaneously by two different agencies.

Let us present some details on DRS in the following generic setup. Suppose, it is tried to

count a population by two independent systems. Then individuals in the 1st list (made from

first system) are matched one-by-one with the 2nd list of individuals (made from second

system). Capturing status of an individual is denoted by any of the notations 11, 10, 01 and

00 representing respectively the category of persons (i) present in both the lists, (ii) present

in List 1 but absent in List 2 and (iii) present in List 2 but absent in List 1 and (iv) absent in

both the lists (see Figure 1.1).

Example 1.2.1 Post Enumeration Survey (PES). This specialized survey is conducted indepen-

dently within two to five months ahead from the usual census operation to estimate the size of

possible undercount or overcount of people in a specified geographic region (say, whole country,

or a state, or a county/district, etc). A sample of small administrative units are selected at the

time of PES. Consider such an administrative unit U with the actual population size, say, N

(without individuals living in institutions or homeless). Therefore, the census enumeration of

population in that administrative unit comprises the List 1, whereas List 2 is implicitly made

up of those people in the same administrative unit captured at the time of PES, which is called

the P-sample. This sample is used to estimate the undercount in the original census for this

block by matching persons in the census and P-sample lists. Another sample of individuals

3



Chapter 1. Introduction

Figure 1.1: Venn Diagrammatic View of Dual-record System

from census population is made for quantifying the errors in census itself (such as duplications

or erroneous enumerations) and their effect on census coverage. This sample is called the

E-sample. Clearly, in this example, two attempts (census and PES operations) are time-ordered

as PES is carried out after census. More details about PES along with its operational strategies

in several countries can also be found in Krotki (1978 [59]).

Difference between DRS & Two-sample CMR System

Capture-Mark-Recapture (CMR) technique for wildlife populations and Multiple-record

system (MRS) for human are broadly similar in concept. While the purpose of the CMR

is estimation of population size, the estimation of the total number of events is usually of

interest in the MRS. However, this difference is only in nomenclature, but the definition

of population under consideration may be different for CMR and MRS (E1-Khorazaty et

al., 1976 [35]). MRS is also used to estimate size of whole or a specific group of human

population. Dissimilarities between the CMR and MRS techniques arise mainly because of

their application to different types of populations. Instead of marking in animal populations,

the characteristics (such as name, sex, occurrence date, address, etc.) of each event are

recorded in the case of human population. Some writers believe that there is a wide divergence

between these two techniques in the matching process (Marks, Seltzer and Krotki, 1974[66]).

This is because the DRS, being a kind of MRS, is concerned essentially with the event recorded

4



1.3. DRS: Construction and Early Estimates

by different sources, and hence with a two-way match (which determines the matching status

of all the events in both sources), while the CMR is concerned with determining the group to

which an animal belongs (captured or uncaptured), and hence with a one-way match. But

practically, both yields same result.

As stated earlier, DRS is the particularization of MRS when number of capture occasion is two.

For human population capture probabilities are usually higher and conducting more than

two counting attempts are generally difficult to implement, hence more than two are seldom

used for human population. Animal requires relatively large number of captures, practically

at least four, due to their very low capture probability and more mobility. Further, sampling

occasions in CMR are usually time-ordered. But, there are some examples where DRS (or

MRS) is constructed without any restrictions of time-ordered attempts, specially in the field

of Epidemiology and the counting of hard-to-reach populations (Chao et al., 2001b[23]; Xu et

al., 2014[103]). Marks et al. (1974[66]) presents a good relationship between the assumptions

behind CMR and the equivalent assumptions for DRS technique.

1.3 DRS: Construction and Early Estimates

Prior to constructing a Dual-record system (DRS) originating from a given human popula-

tion with unknown size N , let us state six main assumptions on the capture and recapture

operations and individual’s capture probabilities. Therefrom, we will notice that the different

set of assumptions will lead to different models.

1.3.1 Assumptions

The general DRS is prepared based on the following first three key assumptions. Further,

three assumptions which are commonly used for the analysis of human populations are also

mentioned here.

A1. Closed Population. The population under consideration should be closed between the

time of first and second counting attempts. No birth, death, immigration or emigration

should occur between these two time points when capture attempts are exercised.

A2. Proper Matching. Ensuring careful matching of the census records with the records

from survey, it is possible to make a determination without error that an individual is either

captured only in List 1 or only in List 2 or in both.
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Implication of this assumption is that each captured individual is classified correctly in any

one of the three categories (11,10,01), already mentioned in section 1.2. However, there is

another cell which refers the individuals belongs neither to the List 1 nor the List 2. It is always

thought that some of the N individuals belong to this fourth cell, that means it is non-empty

but unknown also. This unknown cell makes the N unknown.

A3. Autonomous Independence. The two lists - List 1 and 2 are made as a result of N mutually

independent trials. The position of each individual (i.e. in which category among 11, 10 or 01

s/he belongs) in the population is thought of as the realization of each trial.

This assumption has a relevance in statistical modelling as the capture status of i-th indi-

vidual in a DRS (11,10,01,00) is distributed as the multinomial distribution with four cell

probabilities (pi 11, pi 10, pi 01, pi 00) ∀i = 1(1)N .

A4. Causal Independence. Probability for an individual being included in List 1 is independent

of his/her inclusion in List 2. Hence, the cross-product ratio θi =
pi 11pi 00
pi 10pi 01

is equal to 1 for i-th

person, i = 1(1)N .

A5. Homogeneous Capture probabilities. The capture probabilities are same over all individu-

als separately for each of the two sources. Thus, pi 1· = p1· and pi ·1 = p·1 ∀i .

A6. Time-variation. This assumption is particularly relevant in CMR type experiment specially

for human population. In DRS, it tells pi 1· 6= pi ·1∀i , that means different attempts have

different capture probabilities. Thus, for homogeneous population, p1· 6= p·1. For human

population, this assumption is very reasonable.

The first two assumptions A1 and A2 are most basic and required for any Closed Population

analysis of CMR data. Capture-recapture literature or the DRS literature discusses many of

these assumptions. For further discussions, see Otis et al. (1978[71]), Seltzer and Adlakha

(1974[84]), and Cowan and Bettin (1982[28]).

Remark: Most of the times populations are not homogeneous with respect to both capture

probabilities. To ensure homogeneity, Chandrasekar and Deming (1949[17]) suggested form-

ing poststrata dividing the population according to various cross-sectional age, race, sex and

geographical groups so that people in each of those resultant post-strata are reasonably ho-

mogeneous, e.g. in 2000, US Census proposed about 12600 post-strata according to 50 States

× 6 Races/Origin × 7 Age/Sex × 2 Tenures × 3 Geographic Regions. In recent times, Wang

et al. (2006[98]) proposed a method to form homogeneous post-strata based on Bayesian

treed capture-recapture model in the application of population size estimation for census

6
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undercount.

1.3.2 Construction of DRS

Consider a human population U of true size N. It is believed that any census counting fails to

capture all individuals in U. To know the true extent of this coverage or equivalently the true N,

one collects another list independently covering the same population. Therefore by matching

the two lists, individuals in U can be classified according to a multinomial fashion based on

the assumptions A1, A2 and A3. As an example, Indian census uses a specialized survey, called

Post Enumeration Survey (PES) and US Census Bureau uses their regular survey - Current

Population Survey (CPS) as the second source. Proper matching generates four groups and

each individual of U lies in any of this four groups depending upon his/her capture status.

(i) Individuals who are present in both lists (x11), (ii) Individuals who are present in first list

only (x10), (iii) Individuals who are present in second list only (x01) and (iv) Individuals who

are not present in any lists (x00). Data structure is given in the left panel of Table 1.1. This

particular data structure is known as Dual-record System (DRS) or capture-recapture data for

two sampling occasions. x0 = x11+ x10+ x01 is the total number of distinct persons found

by the two lists. The last cell (x00), presenting the number of missed individuals by both the

systems, makes the total population size N(= x··) unknown. If we consider the population

U having the characteristics of homogeneity (Assumption A5), expected cell probabilities

for an individual are given in the right panel of Table 1.1. All these notation will be followed

throughout in this thesis.

Table 1.1: 2×2 table for Dual-record-System Model

Observed Cell Frequency Expected Cell Proportions
List 2 List 2

List 1 In out Total In out Total
In x11 x10 x1· p11 p10 p1·
Out x01 x00 x0· p01 p00 p0·
Total x·1 x·0 x·· =N p·1 p·0 p·· = 1

1.3.3 Dual System Estimate (DSE)

Typical capture-recapture theory says that fraction recaptured among the 2nd sample esti-

mates the fraction of the whole population caught the first time. This idea is equivalent to

the assumption of causal independence (assumption A4) between capture probabilities of

the two attempts. Thus, the probability to be captured in 2nd list has no connection with the
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capture probability for List 1. In other words, assumption of causal independence implies

that the cross-product ratio for 2× 2 table, θ0 =
p11p00
p10p01

, is 1. Therefore, p00 =
p10.p01

p11
. Hence,

replacing pi j by xi j /N , we have x00 =
x10.x01

x11
. Thus, we have the Dual System Estimator (or

DSE) for (N , p1·, p·1) as:

N̂D S E = x0+ x̂00 =
�

x1·x·1
x11

�

, p̂1·,D S E =
x11

x·1
and p̂·1,D S E =

x11

x1·
,

respectively, where [u ] refers to the largest integer not more than u . DSE for N is a traditional

estimator used frequently in practice for human population and is equivalent to the well

known Lincoln-Petersen estimator (N̂LP ) (see section 1.4.1 for detail discussion). Note that the

resulting conditional MLE N̂t from model Mt , later in section 1.4, is also same as N̂D S E . As

N̂D S E , N̂LP and N̂t are same and based on the independence assumption, henceforth, these

are unanimously denoted as N̂i nd throughout the thesis and we call this DSE of N . Thus,

DSE N̂i nd considers all the assumptions A1−A6 stated in section 1.3.1, though assumption

A3 is not required as N̂i nd does not build up on the assumption of statistical modelling.

N̂D S E is also known as CD estimator (denoted as N̂ (C D )), in honour of Chandrasekar and

Deming (1949 [17]) for their pioneering work on human population in modern era. Chan-

drasekar and Deming (1949 [17]) proposed their model based on the assumption that the

changes of an event being missed by the two data sources are independent of one another.

In other words, the basic CD model explicitly assumes that the conditional probability of an

event being caught by one system, given that it is caught by the second system, is equal to the

conditional probability of an event being caught by the first system, given that it is missed by

the second system. In practice, it is unlikely that these conditional probabilities are really

equal (Seltzer and Adlakha, 1974 [84]).

Chandrasekar and Deming (1949 [17]) observed that it may be possible to reduce the bias

that results from a lack of independence, by classifying the events into homogeneous groups,

and making the estimate of events separately for each group (see the remark in section 1.3.1).

This will be effective if the correlation for the contingency table for each grouping or stratum

is near zero, but the correlation for the contingency table for all strata combined is not zero

(Jabine and Bershad, 1968 [55]).

Both Chandrasekar and Deming, and Jabine and Bershad found evidence of positive cor-

relation (between the events missed by the two sources) when the method was applied to

subgroups as well as to the total data. While the method of subgrouping offers an improved

estimate, it still suffers from the defect that independence within subgroups is assumed
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1.3. DRS: Construction and Early Estimates

(Greenfield, 1975 [45]).

Greenfield and Tam (1976 [46]) showed that (x10 x01)
1/2 is a good approximation of Greenfield’s

estimator x̂ (G )00 , when x11 ≥ (x10 x01)
1/2 and is exactly equal to x̂ (G )00 if x11 < (x10 x01)

1/2. When

x11 < (x10 x01)
1/2 < 3x11, then (x10 x01)

1/2 gives a close approximation of x̂ (G )00 .

In consequence, Chandrasekaran and Deming (1981 [18]) evaluated the earlier developments

of the recent past in their paper. They emphasized that x̂ (C D )
00 6= (x10 x01/x11) if the correlation

is present. The associated correlation coefficient between the two lists is defined as,

ρ̂(C D ) =
x11 x00− x10 x01

[(x11+ x10)(x11+ x01)(x10+ x00)(x01+ x00)]
1/2

.

Chandrasekaran and Deming (1981 [18]) has proposed that, the CD estimator (1949 [17])

x̂ (C D )
00 = (x10 x01/x11) if ρ̂(C D ) = 0. If ρ̂(C D ) > 0, then x̂ (C D )

00 > (x10 x01/x11) and CD method

underestimates x̂ (C D )
00 . If ρ̂(C D ) < 0, then x̂ (C D )

00 < (x10 x01/x11) and CD method overestimates

x̂ (C D )
00 .

1.3.4 Some Modifications over DSE

Chapman’s modified estimator. When the number of matches between two sources are

found to be zero (0), we cannot compute N̂i nd . To avoid this problem, a modification of this

estimator due to Chapman (1951[24]) is given by

x̂00 =
x10 x01

x11+1
.

Therefore, Chapman’s modified estimator of N is given by

N̂C P M =
(x1·+1)(x·1+1)

x11+1
−1. (1.1)

This estimate is less affected by zeros and is said to be less biased than the N̂i nd estimator.

However, DSE (N̂i nd ) often fails miserably either when x11 is found to be zero or very close

to zero, or when the underlying independence assumption between capture probabilities

is violated. Chandrasekar and Deming (1949[17]) addressed this problem and analyzed

the extent of the lack of independence. Many methodologists (see Isaki et al., 1987[54];

El-Khorazaty, 2000[36]) and practitioners (Jarvis et al., 2000[56]; Tilling, 2001[94]; Xu et al.,

9
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2014[103]) argued that the independence assumption may not be justified often in reality. A

nice review is done by Brittain and Bö hning (2009[13]) on the various methods available by

relaxing the independence assumption in DRS context. Now we present some alternative

estimates.

Jabine-Bershad Estimate. Jabine and Bershad (1968 [55]) proposed the an estimator of N .

They assume that both collections use the same procedure and therefore, the expected values

of x10 and x01 are the same. Let us denote the same value as n∗, i.e. x10 ≈ x01 = n∗. These are

the numbers of vital events not included in one list but which are included in the other list.

N̂ (J B ) = x11+2n∗+
(n∗)2

x11
=
(x11+n∗)2

x11
. (1.2)

They also proposed the following expression for the bias of the estimator N̂ (C D ).

B
�

N̂ (C D )�= N̂ (C D )− (x11+2n∗+ x00) =
(n∗)2

x11
− x00.

The correlation between the two sets of observations was determined as,

ρ̂ J B =
x11 x00− (n∗)2

(x11+n∗) (x00+n∗)
.

Chao’s Lower Bound Estimate. Anne Chao (1987[19], 1989[20]) proposed an alternative

estimator of population size by relaxing the assumption of causal independence (assumption

A4). With the help of Cauchy-Schwartz inequality, Chao proposed lower bound estimate of

x00 as

x̂00 =
(x10+ x01)2

4x11
.

Therefore, Chao’s estimator of N is given by

N̂C ha o = x0+
(x10+ x01)2

4x11
. (1.3)

Here, assumption A6 of time-variation is considered. If two marginal capture probabilities

are same, i.e. p1· = p·1, we can see that Chao’s estimator will be identical to N̂i nd .

Zelterman Estimate. Let us consider the Horvitz–Thompson (H-T) estimator of population
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size given by

N̂H T =
x0

1−p00
.

Zelterman (1988 [108]) proposed an estimate of p00 using only 1’s and 2’s from the zero-

truncated count distribution. Their estimate performs well in terms of bias under the zero-

truncated Poisson model. Moreover, this estimate works well if contaminations follow a

Poisson mixture. The estimator of Zelterman (1988 [108]) is

N̂Z e l t =
x0

1− e x p [−2x11/(x10+ x01)]
. (1.4)

Ayhan’s Estimator: Breakdown of Error Components. Ayhan (2000 [1]) has proposed an

adjustment for the “not-reported cases” from both data sources. This provided a breakdown

of the error components of the x00 cell of the contingency table, which has improved the

outcome of the estimator. To achieve this, not reported cells was partitioned into “not

reported” and “missed” cases. The unmatched cases from both data sources for the cells of

the original layout were evaluated as “missed” as a result of undercoverage (UC), and “not

reported” as a result of non-response (NR). For different cases, Ayhan (2000 [1]) has proposed

several alternative estimators.

Several type of data sources (census, sample survey, or registry) can be utilized as a pair for

evaluation. For using two sample cases for illustration, Ayhan (2000 [1]) has proposed the

following estimators for the case of equal sample sizes, i.e. n1 = n2, where

n1 = x1·+N R (n1), n2 = x·1+N R (n2).

Now, the total number of events that should have been obtained from List 1 is n∗1 , with

n̂∗1 = x1· +N R (n1) +U C (n∗1). Similarly, the total number of events that should have been

obtained from List 2 is n∗2 , with n̂∗2 = x·1+N R (n2) +U C (n∗2).

Therefore, the estimator based on the List 1 was proposed by Ayhan (2000 [1]) as

N̂ (A)
1 = x0+ x̂ (A)00 = x0+

��

n∗1 − x1·
�

− x01

�

, (1.5)
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Again, the estimator based on the List 2 was proposed as

N̂ (A)
2 = x0+ x̂ (A)00 = x0+

��

n∗2 − x·1
�

− x10

�

. (1.6)

Details of their methodology are given in their paper.

Maximum Likelihood Estimator of p00 in N̂H T . Brittain and Bö hning (2009[13]) derived a

general form for the maximum likelihood estimator of p00 in the Horvitz–Thompson estimator

N̂H T mentioned above, based on the assumption that the observed data on the no. of times a

captured individual is being enlisted follow a zero-truncated binomial distribution with trial

parameter m = 2 and p is the underlying capture probability. Thus, p00 = (1−p )2 and final

estimate of N using the H-T estimator after plugged in the derived MLE for p is

N̂Z e l t =
x0

1− (1− p̂M L E )2
, (1.7)

where p̂M L E = 2x11/(x10+ x01+2x11). From the construction of above two estimators, it is

clear that both the assumptions A6 of time-variation and A4 of causal independence is not

accounted for.

All of the above estimators are potentially relevant for wildlife populations, which is not of

our interest in this present project. Except Chapman’s adjusted and Chao’s lower bound

estimator, all other estimators do not consider the assumption A6 of Time-variation which

is very relevant for human population, especially for DRS (or, MRS) in social science and

epidemiological applications.

Otis et al. (1978 [71]) specified eight models that incorporated potential sources of variation

by modelling capture probabilities as dependent on time, behaviour, and/or heterogeneity,

in the context of CMR technique where T ≥ 2. In total, they presented eight models for

different combination of the three factors (1) Time-variation, (2) Behavioral dependence and

(3) Heterogeneity, depending on their presence. Here, we discuss some of those basic models

briefly under DRS. Other models that are closely related to these models are actually under

the broader class of basic capture-recapture models and not relevant here. In addition to the

basic assumptions A1 and A2 pointed out earlier in section 1.3.1, here we consider another

assumption A3 which is responsible for the individuals to be classified in multinomial fashion.

Thus, it helps to understand the different situations through well-structured parametric
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statistical modelling.

1.4 Time Variation Model (Mt )

1.4.1 Formulation and Lincoln-Petersen Estimate

A very common practice, across all fields, is to assume casual independence (assumption

A4) for simplicity between two lists’ probabilities. Let us consider one more assumption A5:

individuals are homogeneous in terms of their capture probabilities, which can be achieved

from Chandrasekar-Deming’s suggestion of post-stratification. Assumption A4 implies that

the event of an individual being included in List 2 is independent of his/her inclusion in List

1. Hence, p11 = p1·p·1. In addition to that, the assumption A6 is accounted for this model

i.e., two marginal capture probabilities satisfy p1· 6= p·1. This model is well-known as Mt and

associated likelihood for N ≥ x0 is

L t (N , p1·, p·1)∝
N !

(N − x0)!
p

x1·
1· p

x·1
·1 (1−p1·)

N−x1· (1−p·1)
N−x·1 (1.8)

This model is one of the popular and useful in the arena of capture-recapture studies for

human population, Mt model, which is similar to the one proposed by Lincoln and Petersen.

Henceforth, it is also well known as Lincoln-Petersen Model. For fixed N , t = (t1, t2) is sufficient,

where t1 = x1· and t2 = x1· + x·1, so that a likelihood function for N may be based on the

conditional distribution of x11, x10, x01 given t . The conditional likelihood obtained from

(1.8) is

LC (N )∝

�

N

x11, x10, x01

�

�

N

t1

��

N

t2− t1

� =
(N − x1·)!(N − x·1)!

N !(N − x0)!
,

for N ≥ x0. Derivation of the above conditional likelihood can also be found in Severini

(2000[87], pp. 281). Hence, for given observed data x = (x1·, x·1, x11), associated MLE for N

and p1· are:

N̂t =

�

x1·x·1
x1·+ x·1− x0

�

=
�

x1·x·1
x11

�

, (1.9)

Therefore, p̂1·;t = x1·/N̂t and p̂·1;t = x·1/N̂t (1.10)
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where x0 is total number of distinct captured individuals in two lists, x0 = x11 + x10 + x01.

Thus, conditional MLE N̂t becomes identical to the N̂i nd (see section 1.3.3).

Further, the unconditional MLE of N , N̂U M L E , can be obtained from the estimating equation
∑x0

j=1(N − j +1)−1+ l n (1− x1·/N )+ l n (1− x·1/N ) = 0. If the root of the equation is N ∗ (say),

then either [N ∗] or [N ∗+1] is the N̂U M L E depending upon which has greater likelihood.

1.4.2 Other Estimates from Mt

Besides several likelihood and pseudo likelihood estimates (Darroch, 1958[32]; Otis et al.,

1978[71]and Bolfarine et al., 1992[10]), some frequentist (Chao, 1987[19]; Zelterman, 1988[108])

methods have been proposed on this model. Bayesian approach was pioneered by Castledine

(1981[15]), Smith (1988[90], 1991[91]) and later, by George and Robert (1992[42]) on a hierar-

chical Bayesian Mt model. Wang et al. (2007 [99]) opined that the choice of noninformative

priors for model parameters depends on the number of sampling occasions only. Yang and

Paul (2010[106]) comprehensively compare some popular estimates with their proposed

empirical Bayes as well as interval estimators. Recently, Xu et al. (2014[103]) provide a nice

objective prior in connection with this model.

1.5 Behavioral Response Model (Mb )

In case of human population, the assumption of causal independence has been highly crit-

icized. Individual’s probability of capture in List 2 may be changed in response to capture

in List 1. This incidence can happen mainly due to individual’s behavior or change in inter-

viewer’s behavior or operational strategies taken by the organization conducting field-work.

Let us assume that the assumption of time variation (assumption A6) in the capture probabil-

ities does not hold i.e. p1· = p·1 and assumption A5 holds. In addition we denote

P r (An individual is captured in List-2 | S/He is included in List-1) =
pi 11

pi 1·
= c ,

P r (An individual is captured in List-2 | S/He is not included in List-1) =
pi 01

1−pi 1·
= p .
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If p < c , then two lists are said to be positively associated and when p>c, then two lists are

negatively associated. Hence, MLEs from the corresponding likelihood function

Lb (N , c , p )∝
N !

(N − x0)!
p x0 c x11 (1− c )x1·−x11 (1−p )2N−x0−x1· (1.11)

are as follows:

N̂b =





x0

1−
�

x0−x1·
x1·

�2 ,



 (1.12)

p̂b =
2x1·− x0

x1·
(1.13)

and ĉb =
x11

x1·
. (1.14)

Remark: Though this model has some relevance for wildlife population, but for human it is

not at all appropriate. We discuss this model here just as a basis for the next model.

1.6 Time-Behavioural Response Variation Model

1.6.1 Formulation & Likelihood Failure

Causal independence assumption (A4) is often criticised in surveys and censuses of human

populations (Chandrasekar and Deming, 1949[17]). Often an individual who is captured by

first attempt may have more chance to be included in the second list than the individual who

has not been captured by first attempt. If it is, then the corresponding population is treated

as recapture prone, otherwise, for reverse case, the population becomes recapture averse. This

change in behavior of an individual at the time of second time capturing may occur due to

different causes (see Wolter, 1986) and this feature is grossly known as behavioral response

variation.

At first, we consider the assumption of homogeneity (A5) for a population as like last two

models. Let us consider the notation of recapture probability c and other conditional proba-

bility p (same notation as stated in case of model Mb in section 1.5). Further, in addition to

assumption A6 used in model Mt , we further assume c 6= p which refers a violation of causal

independence (stated in assumption (A4) in DRS). Hence, the model likelihood function
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becomes

L t b (λ)∝
N !

(N − x0)!
c x11 p

x1·
1· p x01 (1−p1·)

N−x1· (1−p )N−x0 (1− c )x10 , (1.15)

where λ = (N , p1·, p , c ) with λ ∈ Λ = {(N , p1·, p , c )|N > x0,0 < p1·, p , c < 1}, and it consists of

lesser number of sufficient statistics (x11, x1·, x·1) than the parameter λ. Thus, however, we

have a model, (1.15), that makes intuitive sense of real scenario but is not identifiable. Next,

we will see a re-parameterization in (1.15) that models the underlying causal dependence

situation better but is still not identifiable.

Since, c 6= p , there always exists some constantφ (> 0) such that c =φp . Thisφ is termed as

behavioral response effect. Now if we re-parameterize λ by λ′ = (N , p1·, p ,φ), then likelihood

(1.15) can be reformed as

L t b (λ
′)∝

N !

(N − x0)!
φx11 p

x1·
1· p x·1 (1−p1·)

N−x1· (1−p )N−x0 (1−φp )x10 . (1.16)

Thus, whenφ 6= 1, the cross-product ratio for 2×2 table, θ0 =
p11p00
p10p01

, is not unity. A population

is said to be recapture prone if and only ifφ > 1 or equivalently, c > p . Again, cross-product

ratio, θ0 < 1 refers exactly the reverse picture, and therefore a population having this char-

acteristic, is called recapture averse. Hence, recapture aversion is established if and only if

c < p or equivalently,φ < 1. The parametric relations between p1·, p , c andφ in Mt b are as

follows:

p = p01/(1−p1·), c = p11/p1·, and c =φp . (1.17)

However, inclusion of the new parameterφ through the re-parametrization does not help to

reduce the dimension of parameter for the model in (1.15). Therefore, this current model

suffers from a identifiability problem asφ (or p ) is not identifiable but the productφp = c

is easily identifiable. The model Mt b acts as a generalization of the models Mt and Mb .

Estimation of N in this Mt b -DRS context is one of our prime objects throughout all chapters

in this thesis.

Remark: I. Whenφ = 1, equivalently c = p , Mt b will be reduced to Mt . Therefore, conditional

probability p will be identical to the marginal probability p·1.

II. In other way, if p1· = p·1 in Mt b , then, Mt b will be reduced to Mb .

III. In Mt b ,φ is orthogonal to N (for details about parameter orthogonality, see Cox and Reid
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(1987 [30]).

Likelihood (1.16) is still ill-behaved as (1.15). However, we consider likelihood function

(1.16) for inferential purposes in forthcoming chapters since its underlying parameter φ

is of interest in some instances. As per our knowledge, no successful method has been

proposed for model Mt b in DRS, specially for the human population, except Nour (1982[68]).

Nour(1982[68]) considered a population where causal independence does not hold in DRS

but lists are assumed to be positively associated, that means, this situation is equivalent to the

model Mt b withφ > 1 (i.e., recapture prone population), as it is often likely in demographic

study of human population. However, their approach is not model based and estimate of N

was obtained as

N̂N o u r = x0+
2x11 x10 x01

(x 2
11+ x10 x01)

.

1.6.2 Mis-specification Analysis for DSE under Mt b

In the DRS case, the association between two sources is usually positive in demographic

examples and the Chandrasekar-Deming estimate might be regarded reasonably as providing

a lower limit. Greenfield (1975[45]) suggests an upper limit to the value of N while Nour

(1982[68]) presents an estimate falling between these two estimates under natural assump-

tions related to demographic surveys. But for a population with sensitive characteristics, such

as drug users, population with a disease like Common Congenital Anomaly, this association

might become negative.

In the context of several real life applications on homogeneous human population, N̂t , equiv-

alently N̂i nd , derived from model Mt is commonly used due to its simplicity though appropri-

ateness of Mt b is well-understood. Hence, a threat of model mis-specification naturally arises

when independence assumption is believed to be violated. In this section we investigate how

serious that threat could be. Suppose, the actual underlying model is Mt b with parametriza-

tion (N , p1·, p ,φ). We have computed approximate bias and variance of the estimator N̂i nd

and present it in the following theorem.

Theorem 1.6.1 Large sample approximation to the bias and variance of N̂i nd =
�

x1·x·1/x11

�
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for estimating N are

B i a s
�

N̂i nd

�

Mt b
= N (1−p1·)

1−φ
φ
+

1

φ

(1−p1·)(1−φp )
p1·φp

,

V a r
�

N̂i nd

�

Mt b
=

2p1·(1−p1·)(φ−1)
φ

+
N (1−p1·)

φ

�

1−φp

p p1·φ
+ (1−φ)

�

.

Proof. For the proof we will use the following Lemma.

Lemma 1.6.2 (Raj, 1977[76], pp. 378.) Suppose x , y and z are three random variables with

finite moments upto second order. Then, large sample approximation to the mean and variance

of (x y /z ) are

E
� x y

z

�

≈
E(x )E(y )

E(z )

�

1+
C o v (x , y )
E (x )E (y )

−
C o v (x , z )
E (x )E (z )

−
C o v (y , z )
E (y )E (z )

+
V a r (z )

E 2(z )

�

,

Var
� x y

z

�

≈
E 2(x )E 2(y )

E 2(z )

�

V a r (x )
E 2(x )

+
V a r (y )

E 2(y )
+

V a r (z )
E 2(z )

+2
C o v (x , y )
E (x )E (y )

−2
C o v (x , z )
E (x )E (z )

−2
C o v (y , z )
E (y )E (z )

�

. (1.18)

(1.19)

From multinomial setup of DRS, we have E (xa b ) = N pa b , V a r (xa b ) = N pa b (1−pa b ) and

C o v (xa b , xc d ) =−N pa b pc d , ∀ a , b , c , d ∈ {0,1, ·} such that (a , b ) 6= (c , d ). Then replacing x ,

y and z by x1·, x·1 and x11 respectively in first result of Lemma 1.6.2, we have

E (N̂i nd ) =N p0+
N p01p10

p11

�

1+
1

N
+

1−p11

N p11

�

=N p0+
N p01p10

p11
+

p01p10

p 2
11

.

Hence, Bias(N̂i nd )=E (x1·x·1/x11)−N =−N (1−p0) +N (p01p10/p11) + (p01p10/p
2
11). Therefore,

we found Bias(N̂i nd )=N (1− p1·)(1−φ)/φ +
(1−p1·)(1−φp )

p1·φ2p based on the model parameters of

Mt b , after some algebraic manipulation using (1.17).

Again by replacing x , y and z by x1·, x·1 and x11 respectively in the result on the variance

stated in Lemma 1.6.2, we have

V (N̂i nd ) =
N

p11

�

p1·p·1
p11

−p1·−p·1+
2

N

�

p11p00−p10p01

�

�

,

after series of algebraic simplifications. Then, using (1.17), V (N̂i nd ) is finally obtained in
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1.6. Time-Behavioural Response Variation Model

terms of the parameters of underlying model Mt b as

V (N̂i nd ) =
N (1−p1·)

φ

�

(φ−1)
�

2p1·

N
−1

�

1−φp

p p1·φ

�

,

=
2p1·(1−p1·)(φ−1)

φ
+

N (1−p1·)
φ

�

1−φp

p p1·φ
+ (1−φ)

�

.

(1.20)

Hence, the proof of Theorem 1.6.1 is complete. �

Clearly, when φ increases above one, second part of the right hand side in bias gradually

goes down to 0 as p1· andφp = c are expected to be more than 0.5. Hence, simple estimate

N̂i nd underestimates N and its bias tends to −N (1−p1·) as φ increases. Similarly, when φ

decreases to 0, N̂i nd increasingly overestimates N . Moreover, N̂t is not at all consistent if the

underlying model deviates from causal independence. Thus, assumption of φ = 1 may be

risky and therefore, use of N̂i nd may lead to an inefficient estimate.

On the other hand, when φ is exactly 1 (i.e. causal independence case), bias and variance

reduce to

B i a s
�

N̂i nd

�

Mt
=
(1−p1·)(1−p·1)

p1·p·1
,

V a r
�

N̂i nd

�

Mt b
= N

�

(1−p1·)(1−p·1)
p1·p·1

�

respectively, since p = p·1 under independence. This results are also found identical to Wolter

(1986[102], pp. 342). Therefore, bias will be negligible when p1· and p·1 both are large.

Illustration. To present a graphical illustration of the extent of bias and variance of the DSE

N̂t under the model Mt b , here we simulate six populations with different pair of capture

probabilities (p1·, p·1)={(0.50, 0.65), (0.60, 0.70), (0.80, 0.70), (0.70, 0.55), (0.30, 0.50), (0.50,

0.30)} characterising different plausible situations relevant for human population. We also

consider two values for N , N = 500 and 2000. Figure 1.2 depicts the nature of bias incurred by

the popular estimate N̂t as well as its variance when behavioral response effectφ varies over

positive real line. It is noticed that the variance will be negative for most of the populations

whenφ > 1.5. Thus the above approximation for variance (in Theorem 1.6.1) does hold only

up to a certain limit of φ; here say, that upper limit is 1.5. Thus, this approximate result is
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only useful to investigate the efficiency of N̂t when model Mt b is appropriate but φ is not

very far from 1.

Figure 1.2: Mis-specification analysis based on the bias and dispersion of N̂t overφ for six
simulated populations following model Mt b with N = 500

1.6.3 Estimation for Multiple CMR

Model Mt b has a strong relevance in practice for a group of homogeneous individuals when

causal independence between the sample lists is not certain. Otis et al. (1978[71]) addressed

the nonidentifiability problem related to the model Mt b . Several authors tried to solve

the non-identifiability problem for homogeneous population when number of capturing

occasions (T ) is strictly more than two (i.e. T ≥ 3) or three (i.e. T ≥ 4), which are mainly

focused for analysing the wildlife populations. Lloyd (1994[65]) used a martingle approach

to solve the problem using an assumption that the recapture probabilities bear a constant

relationship to the initial capture probabilities when number of capture occasions (T ) is

strictly greater than two. They also established the asymptotic equivalence of their proposed

estimator and the MLEs for models Mt and Mb when the population size is large. Later,

Chao et al. (2000[21]) extended this result for Mt b and they also established some exact

and asymptotic equivalency results. Quasi-likelihood method by Chao et al. (2000[21]) and

univariate Markovian approach proposed by Yang and Chao (2005[105]) also successfully

solve the nonidentifiability for T ≥ 3 and provide significant improvement over the classical

solutions - unconditional and conditional MLE obtained from the popular assumption of

Lloyd (1994[65]). But the identifiability problem persists in DRS since, in this case, Lloyd’s

assumption does not help to reduce the dimension of the model parameters. In Bayesian
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paradigm, Lee and Chen (1998[61]) applied the Gibbs sampling idea to the model Mt b but

they did not use recapture data and estimates were unstable and prior sensitive. Later, Lee

et al. (2003[62]) applied noninformative priors to all model parameters exceptφ, for which

prior was chosen by a trial-and-error method. To discover a reasonable range for φ, they

require large number of samples (i.e. T ≥ 4) likely for animal population size estimation but

unlikely for human. Finally, they came up with a fully Bayesian solution using MCMC, but

their empirical study as well as real data application were exercised in the spirit of multiple

lists (T > 3) problem. Wang et al. (2015[100]) also proposed a hierarchical Bayesian Mt b

model for multiple lists with the assumption that the odds of recapture bears a constant

relationship to the odds of initial capture. However, we think that the potential of the fully

Bayesian method proposed by Lee et al. (2003[62]) should be investigated in this present

complex DRS situation, which is not attempted earlier. In demographic context, usually

φ > 1 occurs which implies population is recapture prone. But for a population with sensitive

characteristics, such as drug users, population with Common Congenital Anomaly disease

etc.,φ < 1 and then one may call that population as recapture averse. When such information

is available, one can hope that performance of any suitable method should improve.

1.7 Time-Heterogeneity Model (Mt h )

This model includes variation due to both time and heterogeneity in the capture probabilities.

Hence, it considers only the assumptions A4 and A6, but not A5. It can be shown that N̂i nd is

not a consistent estimator in this context and approximate bias is

B i a s (N̂i nd )Mt h
= −N

C o v (p1·, p·1)
C o v (p1·, p·1) +E (p1·)E (p·1)

(1.21)

where covariance is defined as 1
N

∑

i (pi 1·− p̄1·)(pi ·1− p̄·1), with p̄1· = E (p1·) =
1
N

∑

i pi 1· and

p̄·1 = E (p·1) =
1
N

∑

i pi ·1. When C o v (p1·, p·1) > 0, estimator N̂i nd under this model shows

downward bias and hence, N will be underestimated. This happens in most of human pop-

ulation size estimation problems in practice. Moreover, this estimator can be improved by

considering one further assumption:

A7. Heterogeneous Independence. Two capture probabilities are uncorrelated in population,

i.e., C o v (p1·, p·1) = 0. A sufficient condition for heterogeneous independence is homogeneity,

i.e., pi 1· = p1· or, pi ·1 = p·1 ∀i . So, homogeneity in at least one of the two capture probabilities
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can assure consistent estimation.

The above model has been outlined first time in Chandrasekar and Deming (1949 [17]).

Analysing the model Mt h is a very tedious job in real life applications as it contains too

many parameters. More number of parameters makes a model more complex and therefore,

estimation will be rather challenging as nonidentifiability occurs due to high dimensional

parametric model. In recent past, Link (2003[64]), Holzmann et al. (2006[50]) and Farcomeni

and Tardella (2012[38]) worked on identifiability issues for heterogeneous population. How-

ever, this project is totally concentrated only on human population and in practice, most

of the human populations are either homogeneous in nature or they are usually segregated

into several homogeneous sub-populations, called post-strata. Moreover, assumption of

Time-variation (A6) between two capture occasions is very much relevant in case of human

population. Therefore, relevant homogeneous capture-recapture models (e.g. Mt , Mt b ) can

be applied for those post-strata and finally, we aggregate the estimates in order to obtain the

estimate of size of bigger population. So, careful post-stratification has been recommended

always (Wolter, 1986[102]). However, even after post-stratification, some unavoidable resid-

ual heterogeneity does matter. Gosky and Ghosh (2011[44]) found the model Mt b as the most

robust model in estimating N based on comparative simulation study in Bayesian paradigm

over all the models proposed in Otis et al. (1978[71]).

1.8 Motivating Vignettes

1.8.1 Real Data Sets and Analytical Issues

Let us explain briefly about the real data sets which are going to be analysed in order to

illustrate our proposed methodologies in subsequent chapters. As per literature, the first two

data sets are appropriate for model Mt , whereas other data sets demonstrate possible causal

dependence.

Transmitted Tuberculosis Data. To estimate the number of transmitted Tuberculosis (TB)

cases in three urban districts of Madrid during 1997-1999, Ien igo et al. (2003[53]) used con-

ventional epidemiological data and the information on clustered cases obtained by DNA

fingerprinting as independent Dual-record System. Using different covariates, they formed

several stratifications in the population for the analysis. Here we consider the whole unstrati-

fied population and its stratification based on sex and age only to illustrate the independence

model Mt .
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Road Traffic Mortality Data. Another data on deaths from road traffic injuries (RTIs), avail-

able in Samuel et al. (2012[80]), is also considered in support of independence model. RTIs

are responsible significantly for the preventable death and disability in developing countries

and it is grossly under-reported. For that, police accident reports and a hospital-based trauma

registry together build up an incomplete DRS and that is used to estimate the size of the

Road Traffic Deaths separately for all inhabitants, men and women in the Lilongwe district of

Malawi.

Malawi Death Data. Greenfield (1975[45]) reports a DRS data on birth, death and migration

obtained from a Population Change Survey conducted by the National Statistical Office in

Malawi between 1970 and 1972. The sample was stratified into five strata. To illustrate the

application of the methods proposed in subsequent chapters we choose the data on death

records only for two strata - (i) Lilongwe (ĉ = 0.593, x10 > x01) and (ii) Other urban areas

(ĉ = 0.839, x10 < x01) due to its different ĉ values and opposite nature of x10 and x01 values.

Significantly lower ĉ value helps to anticipate that the people of Lilongwe are less keen to

give the information on deaths again in survey time than that of Other urban areas people.

Injection Drug user Data. Another example of DRS data is considered on injection drug user

(IDU) of greater Victoria, British Columbia, Canada (Xu et al., 2014[104]). To track the changes

in the prevalence of HIV and hepatitis C, the Public Health Agency of Canada developed

the national, cross-sectional I-Track survey. With only two samples from the I-Track survey

(phase I and phase II), some closed population mark-recapture models were implemented

to estimate the number of IDUs in greater Victoria, BC. They found that estimate N̂i nd for

the total number of injection drug users was 3329. They anticipated that N̂i nd might not be

worthwhile for this situation and used Huggins (1989[52]) conditional likelihood approach to

deal with plausible heterogeneity in the data and the estimate was 3342. Moreover, the time

ordering of samples offers an opportunity to use model Mt b . Literature on epidemiological

studies on such type of hidden or hard to reach population says that individual, who are listed

in first survey, tries to avoid the listing operation in second survey. There is high possibility of

recapture-aversion (i.e. φ < 1). Low recapture rate ĉ = 0.075 strengthens this possibility.

Children Injury Data. In Epidemiological study, use of capture-recapture experiment is very

popular but more than two lists are hardly ever found. The simple estimate N̂i nd assuming

list-independence is widely employed in this domain, even sometimes without judging its

relevancy. Here we consider a work by Jarvis et al. (2000[56]), in which authors illustrate the

serious drawbacks in the use of this estimator specifically for injury related data. The problem

was to enumerate those children under 15 years of age from addresses in Northumbria who
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were seriously injured in local Motor Vehicles Accidents (MVA) between 1 April, 1990 and 31

March, 1995. One source was Stats19 data covering all road traffic accidents in Northumbria

causing injuries to children that had been reported to the police and another was the Hospital

Episode data (HES) covering admissions of children. The associated DRS data are presented

in Table 4 of Jarvis et al. (2000[56], pp. 48) for three different classes - Cyclists, Passengers and

Pedestrians. Jarvis et al. argued that children injured in MVAs as pedestrians or cyclists rarely

enter insurance claims for which they have to inform police for case diary. Sometimes the

police, in establishing whether an injury is serious, are recommended to contact the hospital

to find out whether the child is admitted or not. It is noted that N̂i nd ’s are more than twice

the total number of cases actually observed (x0). Also, value of the estimate ĉ for these three

classes are 0.25, 0.40 and 0.59 respectively, which are substantially small. All these direct to

the possibility of list dependency (indicatingφ < 1, due to very small amount of recapture)

and this motivate us to include this example in our illustration.

Handloom PES Data. This is a new data from a survey aimed to estimate the undercount

in the census of handloom workers residing at Gangarampur in South Dinajpur district of

state West Bengal in India. The survey was post enumeration type (i.e. PES) and conducted

in November, 2013 which is three months after the census operation. Handloom products

have a rich tradition in this state. As an industrial and trade activity, Handloom Industry

occupies a place second only to agriculture in providing livelihood to the people. The task

was initiated to count all workers (master weavers and labours only) attached to Handloom

Industry in West Bengal for the development of this industry. The present data on urban

Gangarampur, which is going to be used here, is a part of the whole project. In the urban

area, there are sixteen wards and out of them only two wards are selected randomly for PES.

Sampled Ward no. 2 correctly counts 126 persons in main census operation, while PES counts

107 persons and 85 persons are matched correctly. Hence, total number of distinct captured

individuals (x0) is 148 which is very closer to the N̂i nd = 159. Data related to another sampled

Ward, no. 16, is as follows: correct census count 131, correct PES count 103 and matched 50

persons. Therefore, associated x0 value is 184 but N̂i nd is 270, approximately. The nature

of the data on two wards are surprisingly different except the similarity that both posses

x1· > x·1 and this is most probably because of temporary seasonal migration for outside work.

Surveyors reported that workers in Ward 16, which is very close to town head-quarter, might

be somewhat reluctant to enlist themselves in second time (i.e. at the time of PES). Moreover,

most of them are working outside (other districts) and usually come home in particular

seasons. That is why, Ward no. 16 results very low matches than Ward no. 2. Another reason

may be that some people think that one-time enrollment at the time of census is enough.
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So, underlyingφ may be less than 1. These possibilities as well as the beliefs of the experts

of Textile Directorate of Govt. drive the idea that the estimator N̂i nd is not suitable here as

independence fails. Being quite certain about the homogeneity within wards from the experts

of Textile Directorate, we apply the model Mt b to these data.

1.8.2 Methodological Issues

ÉM1. Estimation of Vital Statistics: Zero 4th Cell

Another estimate of N is used by considering the fourth unknown cell (in Table 1.1) to be Nil.

Hence N̂ will be just x11+ x10+ x01 = x0 = N̂SRS . This estimator assuming x00 = 0 is usually

practiced in Indian Sample Registration System (SRS) which is responsible for the count of

vital events in India under the Office of the Registrar General, India. The rationale behind the

assumption is that each and every event (i.e. new birth, death, marriage) is registered at least

once by the continuous recording of vital events through Civil Registration system and the

periodic retrospective survey (carried in every six months). The absolute value of the bias of

this estimator is greater than the corresponding constant component of the bias of N̂i nd . Raj

(1977[76]) also empirically established the larger bias and almost equal variance than that of

N̂i nd . Besides this result, the assumption of complete capture by the dual system is not at all

worthy. The general belief of the events omitted in one system are also likely to be omitted in

the other results in some of the individuals remaining uncaptured and hence, x00 is likely to

be non-zero.

ÉM2. Violation of Independence: Correlation Bias

In general, population consists different types of people with different capture probabilities.

If anyone considers heterogeneity in his/her model then the calculation will be very much

complex and cumbersome. Chandrasekar and Deming (1949[17]) first time addressed the

bias in (1.21). Following their recommendation to reduce this bias-effect, post-stratification

is made before the analysis of human coverage error including census undercount estimation.

Wolter (1986[102]) suggested to use the simple model (Mt ) or (Mb )within post-strata. But,

some amount of residual heterogeneity probably remains and this residual part causes some

bias in the estimate. In practice, US census bureau and some other census organizations

use the formula for DSE which are not so simple as N̂i nd due to effect of weights and im-

putations. Each component of DSE may be subjected to bias. Moreover, another type of

bias, called correlation bias, must play a role in DSE regardless of any other types of biases.
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Actually, it originated from the failure of underlying independence assumption of DSE. This

independence assumption can fail at least for any of the two following situations:

I. Heterogeneity. If heterogeneity is present in at least one of the capture probabilities (List 1

or 2), then C o v (p·1, p1·)> 0 which leads to N̂i nd being underestimated from (1.21).

Chandrasekar and Deming(1949[17]) first time addressed this phenomenon. Later Otis et

al. (1978[71]) modelled this factor along with time-variation assumption (A6) in Model Mt h

discussed in section 1.7.

II. Causal dependence. Existence of causal dependence either reflected by c > p or c < p ,

where c and p are defined in earlier section. When c > p , N̂i nd will underestimate and for

c < p , N̂i nd will overestimate.

When heterogeneity exists it is generally suspected to be of the form where persons more

likely to be missed in the census are also more likely to be missed in the PES, then correlation

bias is negative implying underestimation by the DSEs and in that way Case I implies Case II.

While causal dependence can lead to either positive or negative biases in DSEs, generally the

concern about correlation bias is that heterogeneity lead to underestimation (Bell, 2001[7]).

ÉM3. Bias due to a Newly Identified Source

Here, we introduce an idea on a possible source for bias in estimating N when independence

model Mt is used. At the time of Post Enumeration Survey (PES) (or, second time capture

occasion), more efficient and well-trained enumerators are appointed than census (or, first

time capture occasion). Objective is to catch more and more persons, especially to capture

those individuals who remain uncounted at the time of census (i.e. in List 1). But in some

cases, this fact may raise the dependency between two systems. This causal dependence can

be judged by deviation of the cross-product ratio, θ0 = (p11p00/p01p10), from 1. If in practice,

more efforts are devoted to catch the missed persons in List 1, then p01 increases and p00

decreases. As a result θ0 tends to zero, for fixed p11 and p10. This phenomenon violates the

causal independence assumption between census and PES.

In most of the countries, it has been found that correlation bias tends to lead to underestima-

tion by DSE if persons missed in the census are less likely to be counted in the PES than those

captured by the census. Hence, in human dual coverage system, p < c is likely to occur. If

enough training has been given to survey (i.e. PES) investigators, both p and c will increase.

However, we always expect that after a careful training for survey, conducted for assessing
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census results, observed cell x01 exceeds x10 for which the necessary and sufficient condition

is p01 > p10.

ÉM4. Population Size Estimation in DRS: A Missing Data Analysis

Lists of individuals available from different sources on the same population through a capture-

recapture type experiment are framed in a contingency table where one cell, referring absence

in all lists, is always missing. Thus, the population size estimation, particularly from DRS,

can also be viewed as a missing data estimation problem. Popularly a log-linear model

is used for the estimation of the count in the empty cell. This model is estimated for the

contingency table where the empty cell is treated as a structural zero. Once the model is

found that describes the counts in the cell adequately, the parameter estimates of this model

are projected onto the empty cell, yielding an estimate of the number of individuals missed by

all lists (see Heijden et al., 2009[95]). However, in ecological models, usually direct estimation

of total number of individuals is exercised, which is equivalent to the problem of estimation

of the count of structurally missing cell. Thus, several relevant statistical tools which are

popular in missing data analysis literature, viz. EM algorithm, Stochastic EM, Imputation,

etc., can be applied.

ÉM5. Non-identifiability / Likelihood Failure

Inappropriateness of model Mt and practical sense of linkage between second and first

time capture attempts indicates the existence of some behavioral dependence at the time

of second attempts. Hence, model Mt b would be most relevant and certainly, appropriate

choice for homogeneous closed population (see section 1.6.1 for detail discussion on Mt b ). In

DRS, primarily, model Mt b consists four unknown parameters (N , p1·, p , c ) in (1.15), whereas

we have only three sufficient statistics available. However, inclusion of the new parameterφ

through a re-parameterization does not help to reduce the dimension of parameter for model

in (1.15). In (1.16), we cannot estimate bothφ and p separately, because of the problem with

identifiability.

Definition 1.8.1 A parameter ξ for a family of distributions
�

f (x |ξ) : ξ ∈Ξ
	

is identifiable if

for ξ 6= ξ′, f (x |ξ), as a function of x , is not identical with f (x |ξ′).

Therefore, this current model suffers from a identifiability problem which is a property of the

model, not of an estimator. This results in likelihood failure and therefore difficulty arises in
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making inference about the underlying population size N .

In this circumstance, suitably adjusted or penalized likelihoods or pseudo-likelihoods, infor-

mative Bayesian techniques could be helpful. Inference from this ill-behaved likelihood is a

challenging issue, which remains more or less untouched in the context of human population.

ÉM6. Knowledge on the Directional Nature of Behavioral Dependence

Earlier discussions advocate that the model Mt b would be more general and appropriate for

closed homogeneous human population as list-independence is often violated for human

populations. Moreover, Mt b suffers from the nonidentifiability problem. Literature (e.g.,

Nour, 1982[68]) suggests that right assumption on the direction of behavioral dependence

might help in production of better result. If the correct knowledge on direction of the be-

havioral dependence is available, efficiency of estimation procedure for N would improve

significantly, given the data. Therefore, researchers should give more emphasis on the identi-

fication of the possible nature of dependence, i.e. whether the given population is recapture

prone or averse.

ÉM7. Asymptotics

Estimation of population size N is basically a statistical problem falling under Finite Popula-

tion Sampling (FPS) but the relevant models from capture-recapture type experiments are

not regular models. Consistency properties in regular statistical models are usually studied

for eventually divergent number of observed units. In capture-recapture analyses most of the

authors study the consistency property considering the inferential result as N diverges (Sen,

1985[85]). However, in this case N is an unknown parameter which makes the convergence

problem more difficult to be conceived and addressed. Another aspect, often neglected in the

literature, of evaluation for eventual behaviour of the inferential outcome is the one related to

the accumulation of evidence gathered as the amount of trapping effort increases. Moreover,

differently from N , the number T of trapping occasions is not a parameter and hence can

be planned by researchers. Otherwise, consistency can be looked upon as any of the two

capture probabilities p1· and p·1 converges to 1 or p0 converges to 1. However, in this project,

we follow the conventional approach of studying asymptotic results as N →∞.
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1.9 Research Objectives & Overview

1.9.1 Objectives

Main goal of this project is to produce alternative and efficient estimates of the size N of a

specified population based on only two sample capture-recapture type data-structure, called

Dual-record System (DRS).

A popular model in this context, Mt , usually consists of the assumption of causal indepen-

dence between two capture attempts. At first, we try to address some features and delimita-

tions of this model Mt in the context of both methodological and application aspects.

Literature advocates that the assumption of causal independence does not work in reality.

We encounter a problem of estimating the undercount rate in census as a regular practice

of DRS by Census Bureaus of different countries. The problem of estimating undercount

rate in census is equivalent to the problem of estimating N . We propose a more efficient

undercount rate estimation rule by relaxing the usually practiced independence assumption.

We will present this part of the work focusing on the Indian decennial census undercount

rate estimation procedure.

As stated above that model Mt doesn’t suit the reality, literature suggests best model for

closed homogeneous human population is Mt b . Development of some efficient estimation

procedures for N in the complex Mt b -DRS context, by avoiding the underlying model non-

identifiability, is the prime object of this thesis.

In particular we propose new pseudo-likelihood based estimation methodologies for N

which have a potential to produce a comparably efficient estimator among all other existing

likelihood based estimates for model Mt . The newly proposed pseudo-likelihood based

estimation methodologies are also applied for model Mt b . In rest of the current project, we

confine ourselves to the construction of various methods in Bayesian paradigm to tackle the

complex Mt b model with the presence of behavioral dependency among individuals at the

time of second survey.

Our final aim is to develop classification strategies to identify the true nature of underlying

possible behavioral dependency in individuals (discussed in 1.6). Given this identified knowl-

edge, it is expected that more efficient inferential methodologies can be proposed for model

Mt b .
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1.9.2 Overview

In sections 1.4-1.7 of this chapter, we discussed different relevant models under Dual-record

System (DRS) for closed and homogeneous human population. Model Mt , which is very

popular in census undercount estimation & epidemiological studies, is presented along

with different frequentist and likelihood estimates. But model Mt is often misleading as

the assumption of independence does not work in many instances. Later, existence of

causal dependency between two apparently independent data collection systems is examined

through incorporation of an additional (i.e. third) data collection system. Thus, a brief idea

is sketched out on Triple-record System (TRS). Thereafter, the extended model, termed as

Mt b , in the presence of behavioral dependency at the time of second survey is discussed in

detail. We present the likelihood and discuss the associated parameter non-identifiability

problem. Extent of inaccuracy of the popular estimator N̂t (or, equivalently, N̂i nd ) under

the possible presence of behavioral dependency is calculated in order to understand the

performance of the estimator N̂i nd when we deviate from the independence between two

systems. We have studied the robustness of N̂i nd against possible departures from the basic

causal independence assumptions. The estimate (N̂t ) from independent capture-recapture

model Mt is widely used in this context though appropriateness of the behavioral dependence

model Mt b is unanimously acknowledged. Literature suggests that model Mt b can be free

from parameter non-identifiability problem when available data collection systems is three

or more. We briefly review some of the popular works done on the model Mt b especially

for wild-life populations where more than three data collection systems are usually applied,

because capture probabilities for animal are very small. Indeed, more than two systems

are seldom used for human population. In Mt b , parameterφ is not estimable. Thisφ has

two directions, either it is greater than 1 or it is less than 1. Nour (1982 [68]) presented an

estimator in an equivalent platform assuming positive dependence (which is similar toφ > 1

in Mt b ) between two systems. This work motivates us to propose estimation strategies for

N with known directional knowledge onφ. We believe that if the directional knowledge is

correctly available, then proposal of more efficient estimation rules (for N ) can be formulated

successfully.

Every large census operation should undergo evaluation programs to find the sources and

extent of inherent coverage errors. In chapter 2 (which is based on Chatterjee and Mukherjee,

2016b[26]), we briefly discuss the statistical methodology to estimate the undercount rate in

Indian census based on DRS. We explicitly study the correlation bias (discussed in section

1.8.2) involved in the estimate, its extent, and consequences. A new potential source of bias
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in the estimate is identified and discussed. During the survey, more efficient enumerators

compared to the census operations are appointed, and this fact may inflate the dependency

between two lists and lead to a significant bias. Some examples are given to demonstrate

this argument in various plausible situations. We suggest one simple and flexible approach

which can control this bias. Our proposed estimator can efficiently overcome the potential

bias by achieving the desired degree of accuracy (almost unbiased) with relatively higher

efficiency. Overall improvements in the results are explored through simulation study on

different populations.

Motivated by various applications, chapter 3 investigates the usage of a pseudo-likelihood

method - profile-likelihood, explicitly for both the models Mt and Mt b . Therefore, an adjust-

ment over profile likelihood is proposed for model Mt b . The proposed method is evaluated

in terms of performance and compared with available Bayes estimate (Lee et al., 2003[62])

and N̂t through extensive simulation study. Finally two real life examples with different

characteristics are presented for illustration.

In chapter 4 (which is partially based on Chatterjee and Mukherjee, 2016a[25]), we discuss

another important pseudo-likelihood function, called integrated likelihood, in the context

of population size (N ) estimation under DRS for both the models Mt and Mt b . At first an

improved integrated likelihood is formulated from model Mt based on a suitably constructed

weight function with the help of a novel idea by Severini (2007 [88]) using non-informative

priors only. A comparative ordering is established among several likelihood and pseudo-

likelihood based estimates from Mt . The resulting likelihood has several desirable properties.

For model Mt b , available and proposed methods are mostly developed in Bayesian paradigm

due to the non-identifiability of the model Mt b under DRS. In chapter 4, our next contribu-

tion is in developing a non-Bayesian estimation strategy for model Mt b through the same

improved integrated likelihood method (which is applied for model Mt ) using informative

priors depending upon the availability of the directional behavioral knowledge. By such

construction, proposed integrated likelihood also possess several desirable properties in-

cluding negligible prior sensitiveness. Simulation studies are carried out to explore the

performance of the proposed method for both the models. Empirical results demonstrating

efficiency and usefulness are reported. Finally, illustration based on relevant real life data

sets (epidemiological and economic census) are presented separately for both the models.

Dual-record system (DRS) model with time and behavioral response variation has attracted

much attention specifically in the domain of official statistics and epidemiology, as the
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assumption of list independence often fails. The relevant model suffers from parameter iden-

tifiability problem. One advantage of the Bayesian approaches is that even nonidentifiable

models can be treated without any restrictions on parameters (Chao, 2001a[22]). Successful

implementations in Lee and Chen (1998[61]), Lee et al. (2003[62]) etc. motivate us to take

up Bayesian techniques in order to analyse the model Mt b . Complicated calculations in

Bayesian approaches can now be handled by computer-intensive algorithms through the use

of Gibbs sampling, a Markov chain Monte Carlo method.

Therefore, in chapter 5 (which is based on Chatterjee and Mukherjee, 2016c[27]) some prob-

lems in full Bayes method with flat non-informative prior are addressed, particularly in

Mt b -DRS context. We formulate the population size estimation in DRS as a missing data

problem. Two empirical Bayes approaches are developed along with a reformulation of an

existing Bayes treatment, under the common roof of missing data analysis. Some features and

associated posterior convergence for these methods are mentioned. Investigation through an

extensive simulation study finds that our proposed approaches are comparably favourable

to the existing Bayes approach for this complex model depending upon the availability of

directional nature of underlying behavioral response effect. A real-data example is given to

illustrate the methods.

In chapter 6, another empirical Bayes approach is proposed based on a functionally depen-

dent informative prior in order to draw inference on N under Mt b -DRS setup using very

simple Gibbs sampling strategy. Inference are drawn from resulting posterior for different

loss function. We explore the features of this proposed method and its usages depending on

the availability (or non-availability) of the information on the directional nature of behavioral

response effect. Extensive simulation studies are carried out to evaluate their performance

and compare with few available approaches. Finally, a real data application is provided for

the model and the methods.

Problem of estimating human population size from dependent dual-record system (DRS) is a

very challenging task due to the non-identifiability of Mt b model under DRS. In section 1.8.2,

we already discussed about the possible benefit of the available knowledge on the directional

nature of dependence, i.e. whether the given population is recapture prone or averse. Our

contribution in chapter 7 lies in the construction of some competing strategies to identify

the directional nature of underlying behavioral dependency of individuals (i.e. whether

the population is recapture prone or averse). This classification strategies would be quite

appealing in order to improve the inference as evident from the contemporary literature and

the empirical evaluation studies of the proposed methods in chapters 5 and 6. Comparative
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simulation study and application to all the different real life data sets, used in other different

chapters, are carried out to explore the performance of these strategies.

Chapter 8 concludes with our overall findings towards the aim of this whole project. We

indicate a future research agenda generated during the course of this thesis work. However,

these future works also include some of the interesting issues in this context, which are not

addressed in section 1.8.
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2 Census Coverage Error Estimation:

With Particular Reference to India1

2.1 Introduction and Motivation

Census is the only primary and complete source of data which is used as an input for many of

the socio-economic policies and planning by any government. Hence, knowing the exact size

of population is very much essential for effective policy formulation and implementation.

Moreover, census also gives extensive quantitative information to the researchers across many

fields directly related to human life at a specified time canvassing each and every household

in a country regardless of its size and all types of operational hazards. Aim of a census is

to count and collect required information on every resident but, inevitably, some errors do

exist in the census results due to a host of causes that includes non-response, duplication,

erroneous enumeration, deficiency in collection strategy, its implementation and some

other factors. The errors in counting are classified broadly as coverage error. Coverage error

refers to either an undercount or overcount of the population. Indeed, vastness of the census

undertaking might itself be responsible for existence of such errors. So serious census officials

should evaluate their census operation to find the extent of different types of such errors and

investigate their sources. Estimation of different types of coverage errors is also an integral

part of census operation. Several authors are active in this domain of research since more than

three decades (see Wolter, 1986 [102]; Cressie, 1989 [31]; Elliot and Little, 2005 [34]; Watcher,

2008 [97]). One important part of coverage error evaluation is to deal with methodologies to

estimate coverage errors and then adjust the existing result using it. Necessity to have correct

1 This chapter is based on Chatterjee, K., Mukherjee, D. (2016b[26]). An improved estimator of omission rate
for census count: With particular reference to India. Communications in Statistics - Theory and Methods 45,
1047-1062.
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information regarding population characteristics is becoming more and more important for

census officials and scientists. Dual System Estimation (DSE) [discussed in section 1.3.3] is a

very simple and well known tool widely used for estimation of coverage errors. But it is being

criticized since the last three decades by several statisticians and demographers. India, being

one of the pioneers to start census evaluation program, uses this method since 1951 and

as per our knowledge, no constructive discussion has been made yet on its methodological

issues in Indian context. Assessment of methodological and operational aspects of coverage

error estimation for Indian census is important and has enough scope to strengthen the

evaluation process to elucidate better quality information from census.

Borrowing the idea from capture-recapture theory, DSE estimates the quality of census re-

sults. Chandrasekar and Deming (1949 [17]) first introduced this method to evaluate the

performance of human vital record system. In chapter 1 we have noticed that DSE might

be affected by sampling error and various types of non-sampling errors. Breiman (1994[12])

discussed some sources of general non-sampling errors in DSE from operational issues in US

Census. Bias due to the presence of heterogeneity and/or behavioral dependence between

capture-recapture probabilities are discussed by several researchers (see Chandrasekar and

Deming (1949[17]), Wolter (1986[102]), Freedman et al. (1994[39]) and Stark (1998[92]). To

ensure homogeneity, Chandrasekar and Deming (1949 [17]) suggested to form post-strata

dividing the whole population according to various cross-sectional groups so that people

in each of those post-strata are quite homogeneous. An estimate of coverage error in each

post-stratum is calculated and then the coverage error for each block group (or larger admin-

istrative unit such as state, zone etc.) in the country is estimated from those post-strata level

estimates according to the fraction of each post-stratum it contains. The current chapter

deals with estimation methodologies of census omission rate for one arbitrary post-stratum.

A specialized survey, known as Post Enumeration Survey (PES), is conducted within three

months of Indian census enumeration. This PES is used to estimate the coverage error in

Indian census in terms of omission rate only for national and zonal levels. The estimates

of omission rate (at per thousand individuals) in Indian census for 1991 and 2001 based on

DSE are stated in Table 2.1. In section 2.2.2, we discuss how omission rate in Indian census

Table 2.1: Net Omission rate (at per thousand individuals) by residence in Indian census for
1991 and 2001.

Rural Urban Total
1991 16.8 19.8 17.6
2001 16.8 39.8 23.3

Source: ORGI (2006[69]).
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count through dual systems is estimated from PES. The most interesting counterpart in the

bias of any Dual-record system estimate based on causal independence assumption is called

correlation bias (briefly discussed in section 1.8.2). Assessment of the performance of DSE

(N̂i nd ) in terms of overall bias, which is highly dominated by correlation bias, is made in

this chapter. We mentioned a new type of source in section 1.8.2, which possibly inflates

the correlation bias factor especially for a particular type of population. This is analyzed

in detail in section 2.3. In section 2.4 of this chapter, a new estimator of omission rate has

been proposed. It is shown that the potential source, which is responsible for increasing

the correlation bias in DSE estimator, cannot affect our proposed estimator significantly.

This proposed new approach increases the extent of accuracy as well as efficiency up to a

certain level. Finally, in section 2.5, simulation results support this improvement over all

other existing estimators.

2.2 Preliminaries

One of the pernicious features of coverage error is that an assessment of its extent cannot

be made from the census data itself (Wolter, 1986 [102]). The enumerative check which was

thought to be essential to evaluate the census results should be independent as otherwise

it will give us strongly biased estimate. Thus, PES is done independently from census and

selected households in the PES sample are checked against the census to estimate coverage

errors. However, some countries use their regular survey as the second source in lieu of

PES, e.g. US Census Bureau currently uses the Current Population Survey (CPS). Indeed,

estimation of the size of omitted persons in census is equivalent to the estimation of the true

population size. If N is that true size of a given population and C is the expected number of

people counted by census, then (N −C ) would be the expected size of omitted people. Thus,

census coverage error can be defined as

Net Omission Rate, r =
N −C

C
or

Undercount Rate, u =
N −C

N
.

India estimates r whereas US census bureau measures u to report the extent of coverage

errors in their respective censuses.
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2.2.1 Post Enumeration Survey: A Dual-record System & Some Estimates

In DSE, the foremost assumption is independence between two lists. But if the population is

not homogeneous enough then it makes the two lists correlated and serious bias can affect

the DSE N̂i nd . To ensure homogeneity assumption, target population is divided into several

mutually exclusive post-strata (see Remark in section 1.3.1) and then DSE is calculated for

each of those post-strata.

Let us consider a post-stratum U with size N and all individuals within are homogeneous

with respect to capture probabilities. We also assume each individual in U is an inhabitant of

exactly one of the M administrative or geographic clusters covering the whole population.

Each cluster has on an average T individuals under U so that MT =N. Random sample of

m clusters is selected to perform a Post Enumeration Survey (PES) independently after the

census and every individual in those sampled clusters is tried to be captured. Therefore,

for each post-stratum U, Census and PES act here as capture and recapture operations

respectively. Therefore, individuals (∈ U) in 1st list (made from census) are matched one-

by-one with the list of individuals (∈ U) in PES. Thus, the present data structure for each

post-strata is similar to the DRS in Table 1.1, discussed in section 1.3.2. Following DSE (in

section 1.3.3), here, the estimate of N will be

N̂ =
M

m

x·1.x1·

x11
. (2.1)

Unfortunately, each of the ingredients used to calculate N̂ , in (2.1), is subject to error (Stark,

1998[92]). Heterogeneity within post-strata may be quite large (Freedman et al., 1994[39]).

Dividing the population into many relatively small post-strata can increase within strata

homogeneity. However, small strata can have high sampling variance and ratio bias (Hogan,

2001[49]). Positive dependence between two lists leads the population size to be under

estimated. Such major drawback is due to a bias, termed as correlation bias which may occur

due to failure of causal independence and homogeneity in the capture probabilities within

post-strata.

For the population coverage error estimation, Ayhan and Ekni (2003 [2]) has proposed three

alternative estimators, by using the Dual Record System estimation. They also proposed

Census Coverage Rate, Census Discrepancy Rate and Census Discrepancy as coverage error

measures for the censuses.
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Ayhan and Ekni (2003 [2]) has proposed the following population total estimate which was

based on the dual record system estimate of the Chandrasekar and Deming (1949 [17]) which

was also based on the Population Census versus Sample Survey, as the two data sources.

Let N (1)
h and n (1)h respectively denote the projected population size and the selected sample

size from the h t h region. Therefore, for the regional estimates, Ayhan and Ekni (2003 [2])

proposed the estimator for region h as

N̂ (1)
h = F (1)h n (C D )

h ,

where, the expansion factor

F (1)h =N (1)
h /n

(1)
h

and n (C D )
h is the unweighted dual record system estimate developed by Chandrasekar and

Deming (1949 [17]). Further details of this methodology can be found in their paper.

Ayhan (2000 [1]) has also proposed population total estimators in this context which are

based on his Adjusted Dual Record System Estimator. The total number of events from the

data in List 1 can be estimated as:

N̂1 =
M

m

�

x1·+ (n1− x1·) + (n
∗
1 −n1).

�

The total number of events from the data in List 2 can be estimated as:

N̂2 =
M

m

�

x·1+ (n2− x·1) + (n
∗
2 −n2).

�

Notations for the above estimators developed by Ayhan (2000 [1]) are clarified in section 1.3.4.

2.2.2 Coverage Error Estimation in Indian Census

Now we pay attention to the measurement of coverage error in the Indian context. India

evaluates her census performance by estimating omission rate in census count. Studying the

properties of this estimator is one important concern of this article.

In the census of 2001, every state was divided into three strata - rural, semi-urban and urban.

Required number of Enumeration Blocks (EB) are selected linear systematically within each
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of three strata. EB is an administrative cluster unit equivalent to one Houselisting Block with

population up to 800 (see Circular No. 20, Census of India, 2011 [70]). Each household in

every sampled EB is visited and asked about current living status, census day residency etc.

Then a 2× 2 table for each EB under each stratum is prepared as in Table 1.1. Whole PES

design, sampling and interviews are done independent of census operation.

Let zh j and yh j respectively denote the enumerated and omitted population of the j-th block

of the h-th stratum (for rural and urban in each state). Total number of enumerated and

omitted persons in the h-th stratum are estimated as Ẑh =wh

∑nh
j=1 zh j and Ŷh =wh

∑nh
j=1 yh j

respectively. Where wh =
Nh
nh

denotes weight for the h-th stratum, Nh= the total number of

EBs which contain h-th stratum and nh= number of sample EBs which contain h-th stratum.

Thus,
∑

h Nh =M and
∑

h nh =m . Ẑh obtained from Ĉ =wh x1· and hence, Ŷh is estimated

by N̂i nd − Ĉ = wh

�

(x1·x·1/x11)− x1·
�

as constructed for h-th stratum by summing over all

sampled block level data. India evaluates her census counting by estimating the omission

rate corresponds to h-th post-stratum as,

r̂h =
N̂i nd − Ĉ

Ĉ
=

Ŷh

Ẑh
, (2.2)

with estimated variance of omission rate, ˆv a r (r̂h ) =
nh (1− fh )

X̂ 2
h

∑nh
j=1 (yh j − r̂h zh j )2. Since, r̂h is

based on DSE N̂i nd , we call r̂h as DSE of rh . Detailed accounts of this coverage error estimation

method along with other dual system methods are revisited in Rao et. al. (2009[77]). Finally,

India publishes the omission rates only at national and zonal levels by age, sex and residence.

One can find this in the Report on Post Enumeration Survey 2001, published by ORGI, Govt.

of India. India produces the estimates on every sex-residence cross-sections for each of 13

age groups. However, details of the estimation procedure for zonal level estimates are not

provided.

2.2.3 Extent of Correlation Bias

Correlation bias (CB) plays a vital role in DSE regardless of any other type of biases. This

occurs due to failure of a general independence assumption that underlies the DSEs (Griffin,

2008[47]).

While causal dependence can lead to either positive or negative biases in DSEs, generally the

concern about CB is heterogeneity leading to underestimation (Bell, 2001[7]). CB in r̂ based
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on DSE can be modeled as r ∗ − r , where r ∗ = N ∗−C
C and N ∗=N + N10N01

N11
−N00, denotes the

population total assuming both the lists are completely independent and C =N1· =N11+N10

where Ni j bears similar meaning as the quantity xi j in Table 1.1, for all i , j ∈ {1, 2}.

We will try to decompose the bias in r̂h for h-th post-stratum into two parts. The first part is

caused due to sampling and the second represents the extent of loss due to the assumption

of complete independence. This second part refers to the correlation bias (CB), which is a

completely non-sampling bias. Hence

B i a s (r̂h ) = E (r̂h )− rh

= (E (r̂h )− r ∗h ) + (r
∗

h − rh )

= Sampling Bias + Correlation Bias. (2.3)

Now we calculate the bias of r̂ and express it in the form of (2.3) in order to extract the extent

due to CB. Let us consider new notation for the DSE r̂ as r̂(1) for the sake of notational clarity

as the first estimator of r under consideration.

Theorem 2.2.1 The large sample bias and variance of r̂(1) up to the first order approximation

are respectively given by

B i a s (r̂(1)) ≈ b̃1 =
p01

np 2
11

−
p01p10

p1·p11
(θ0−1), (2.4)

V a r (r̂(1)) ≈ ṽ1 =
p·1p01

np 3
11

. (2.5)

Proof. Let us consider the setup discussed in section 2.2.2. All notation are kept unchanged.

Further, let a j=
∑T

k=1 Ia j k and a=
∑m

j=1 a j , where the indicator Ia j k takes the value 1 with

probability p11 when k-th individual of the j-th sample cluster is captured in both the census

and PES lists, otherwise I j k = 0. Similarly, b j=
∑T

k=1 Ib j k and P r (Ib j k = 1)=p01. Ib j k = 1 if k-th

individual of the j-th sample EB is captured by PES only. Hence, E(a j )=T p11, E(b j )=T p01,

V (a j )= T p11(1−p11), V (b j )= T p01(1−p01) and Cov(a j , b j ′ )= - T p11p01 if j = j
′
, otherwise 0.

Now, Ĉ = M
m x1· and from (2.1), we have N̂ =wh

x1·x·1
x11

. After some simplification, r̂(1) = x01/x11.

E(a) = mTp11, E(b) = mTp01,
V (a) = mTp11(1−p11), V (b) = mTp01(1−p01),

Cov(a,b) =
∑m

j=1 Cov(a j , b j ) =−mT p11p01.
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Putting a = x11 and b = x01 and taking large sample approximation to the E(r̂(1)) and V(r̂(1))

with the help from Taylor’s expansion (Raj, 1968 [75]), we can write

E(r̂(1)) = E
�

b

a

�

≈
E(b )
E(a )

�

1−
Cov(a , b )
E(a )E(b )

+
V(a )
[E(a )]2

�

=
p01

p11
+

p01

np 2
11

, (2.6)

V(r̂(1)) ≈
[E(b )]2

[E(a )]2

�

V(a )
[E(a )]2

+
V(b )
[E(b )]2

−2
Cov(a , b )
E(a )E(b )

�

=
p·1p01

np 3
11

. (2.7)

So, Bias(r̂(1))≈
p01

np 2
11
− 1

p1·

�

p00−
p10p01

p11

�

, where mT=n(say), total number of individuals in the

sample to be interviewed. Correlation bias, r ∗− r = p01
p11
− 1

p1·
+1=− 1

p1·

�

p00−
p10p01

p11

�

. Hence,

replacing p00 in terms of θ0, we have the clear decomposed form of the Bias(r̂(1)) as in (2.4),

according to (2.3). We also notice that Bias(r̂1)→ (r ∗− r ) = C B (r̂ ) as n→∞. �

Estimation of CB is another objective that has been tried by several practitioners, specially

in the domain of coverage error or undercount rate estimation of census (see Bell, 1993 [6];

Wachter and Freedman, 2000 [96]; Shores and Sands, 2003 [89]; Griffin, 2008 [47]). Bell (1993

[6]) estimated the θ0 from demographic analysis at national level. However, in this article we

will not attempt to estimate this CB. We will just demonstrate how the estimate of omission

rate based on DSE can be affected by the correlation bias factor in various situations.

Remark:Correlation bias depends on the population only. We can simply say that it is noth-

ing but the difference between the actual population and the population where complete

independence between two capturing is assumed.

2.3 A New Potential Source for Bias

At the time of PES, more efficient and well-trained enumerators (than census time) are ap-

pointed. Objective is to catch more and more persons, especially to capture those individuals

who had small chance to be captured in the census (i.e. in List 1). But in some cases, this fact

may raise the dependency between two systems. This causal dependence can be judged by

deviation from cross-product ratio, θ0 = (p11p00/p01p10). Let us define c as the probability of

the event that a person is detected at PES time when he/she was already captured by census
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and p as the probability that a person is detected at PES time when he/she was not captured

by census enumerator. These two conditional probabilities characterize the behavioral de-

pendency in individual (see model Mt b in section 1.6). Then from Theorem 2.2.1, CB in r̂

can be expressed as

C B (r̂(1)) = −
p01p10

p11p1·
(θ0−1) (2.8)

=
1−p1·

p1·

�p

c
−1

�

, (2.9)

using (1.17). In most of the countries, it has been found that correlation bias leads to un-

derestimation of omission rate if persons missed in the census are less likely to be counted

in PES than those captured by the census. Hence, in human dual coverage system, p < c

is likely to occur. If enough training has been given to survey investigators, both p and c

will increase. However, we always expect that after a careful training for PES, conducted

for assessing census results, observed x·1 exceeds x1· for which the necessary and sufficient

condition is p·1 > p1·. But in most of the cases, this fact may raise the dependency between

the two lists. If in practice, more efforts are devoted to catch the missed persons in List 1, then

p01 increases and simultaneously, p00 decreases. As a result, θ0 tends to 0, for fixed p11 and

p10. This phenomenon violates the causal independence assumption (A4) between census

and PES. We addressed this issue in M3 in section 1.8.2.

Example. Now, we consider some hypothetical populations in order to illustrate the above

fact in various situations. We assume a post-strata with average 30 individuals per EB (or

cluster) i.e. T = 30 and m no. of such EBs are selected with equal probabilities. For mod-

erate and small sample, we consider m = 30 and 5. We consider two different populations

representing different nature of dependence.

Population X. We consider a population where census captured people are more likely to

be recaptured at PES time than the people not captured in census. So, p < c . So, we call it

recapture prone population. A special training is given to survey investigators to capture more

people. In normal sense, we can think c and p both will increase. We consider four alternative

(c , p ) values here. Empirically it is shown in Table 2.2 that correlation bias dominates the

overall bias for both small and large sample sizes. Let us assume situation X2 or X3 occurs

in lieu of situation X1, then result will be unsatisfactory. Negativity of CB increases. This

apparent small increment can inflate the large population figure. When situation X3 occurs

in lieu of situation X1 or X2, the result becomes little worse. But when situation X3 occurs in
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Table 2.2: Four different situations of which all have p < c . Exact Correlation Bias (CB) and
Gross Bias of r̂(1) are shown in each case. Here T= 30.

Sl. No. c p p1· CB Bias(m=30) Bias(m=5)

X1 0.72 0.68 0.7 -0.0238 -0.0229 -0.0185
0.85 -0.0098 -0.0095 -0.0080

X2 0.77 0.69 0.7 -0.0445 -0.0437 -0.0398
0.85 -0.0183 -0.0181 -0.0167

X3 0.90 0.80 0.7 -0.0476 -0.0469 -0.0436
0.85 -0.0196 -0.0194 -0.0182

X4 0.80 0.55 0.7 -0.1339 -0.1333 -0.1304
0.85 -0.0551 -0.0549 -0.0539

place of situation X4, CB and bias will change significantly in favor. These scenarios are same

for both the value of census capture probability p1· = 0.70 and 0.85.

Population Y. For some section of the population, people are less interested to be captured

second time. This type of population is demostrating recapture aversion. So, for this case

p > c . Moreover, better training at the survey time also helps p > c to hold. Table 2.3 shows

Table 2.3: Four different situations of which all have p > c . Exact Correlation Bias (CB) and
Gross Bias of r̂ are shown in each case. Here T= 30.

Sl. No. c p p1· CB Bias(m=30) Bias(m=5)

Y1 0.65 0.82 0.7 0.1121 0.1134 0.1200
0.85 0.0462 0.0466 0.0488

Y2 0.65 0.90 0.7 0.1648 0.1663 0.1735
0.85 0.0679 0.0684 0.0708

Y3 0.68 0.76 0.7 0.0504 0.0515 0.0571
0.85 0.0208 0.0211 0.0230

Y4 0.70 0.90 0.7 0.1224 0.1237 0.1299
0.85 0.0504 0.0508 0.0530

that situation Y1 has equal c but greater p with respect to situation Y2. We see bias will change

here from 26% to 39%. Bias is also increased significantly if parameter p1·=0.85 is assumed.

In another example, if situation Y4 occurs in place of situation Y3, then estimate r̂ will be

seriously affected by correlation bias. Then bias will be approximately 28.6% from 11.7%. It is

noted that people for whom p > c holds might be affected more due to this kind of reason. If

we consider T= 150, then CB will remain unchanged then we will certainly observe that bias

is closer to CB as mT = n increases. For both of the recapture averse or prone population,

CB is acting as a major component of the bias.

It is clear that conducting much more efficient enumeration at PES time (than census) may
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sometimes distort the estimate under the assumption of list-independence or equivalently

causal independence. If p·1 increases due to increment of p01, then p00 tends to 0. Hence θ0

also tends to 0 and appropriateness of r̂(1) is lost. Recapture averse population (Population-Y)

may be affected more by this incident. It is observed that the estimate of omission rate in

India can be seriously affected by correlation bias. As the true value of cross-product ratio

(θ0) moves far from 1, r̂(1) will be more biased. However, estimator r̂(1) itself sometimes do

not perform well in both types of population when correlation bias is not negligible.

Remark I. For all situations under Population X, θ0 is always greater than 1 and for Population

Y, θ0 is less than 1.

2.4 DSE-type Estimators and Proposed Affine Combination

2.4.1 DSE-type Estimator

Now, we shall develop one approach to obtain an almost unbiased estimate of omission rate

r which also has smaller variance within a broad class of estimators obtained from any dual

system approach.

Cross-product ratio regulates the extent of dependency in DRS. Fixing the cross-product ratio

(θ0) at a known θ (∈ [0,∞)), C and N can be estimated as

Ĉ = (M /m )x1· and

N̂θ = (M /m )
�

x1·x·1
x11

+ (θ −1)
x10 x01

x11

�

(2.10)

respectively, based on PES. Therefore,

r̂θ =
�

x01

x11
+ (θ −1)

x10 x01

x11

�

(2.11)

For given θ , we call this r̂θ as DSE-type estimator for r . This is the generalized version of DSE

estimate of N. Once the value of θ is assumed or estimated, then one can calculate N̂θ .

Proposition 2.4.1 Suppose x , y , w and z are four random variables with finite moments upto
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second order. Then, large sample approximation to the mean of x y
w z is

E
� x y

w z

�

≈
E(x )E(y )
E(w )E(z )

�

1+
C (x , y )

E (x )E (y )
+

C (w , z )
E (w )E (z )

−
C (x , z )

E (x )E (z )
−

C (x , w )
E (x )E (w )

−
C (y , z )

E (y )E (z )
−

C (y , w )
E (y )E (w )

+
V (w )
E 2(w )

+
V (z )
E 2(z )

�

(2.12)

Theorem 2.4.1 The large sample approximation to the bias and variance of r̂θ are

B i a s (r̂θ ) ≈ b̃2+θ
p01p10

p11p1·

�

1+
1

np01
+

1

np11

�

, (2.13)

V a r (r̂θ ) ≈ θ 2ṽ1+ (1−θ )2ṽ2+2θ (1−θ )
p 2

01

p1·p11

�

1

np01
−

1

n 2p11p1·

�

, (2.14)

where ṽ1 =
p·1p01

np 3
11

and ṽ2 =
p0p01

np 3
1·

. Further, r̂θ has minimum variance among all the DSE-type

omission rate estimators∈D at θ =max{0, (ṽ2− ṽ12)/(ṽ1+ ṽ2−2ṽ12)}, where ṽ12 ≈C o v (r̂(1), r̂(2)).

Proof. Using the simplified form of large sample approximation to the mean of (x/z ), given

in Raj (1977 [76]) and from the relation x01
x1·
+ x01 x10

x11 x1·
= x01

x11
, we have the following result using

Proposition 2.4.1 as

E

�

x01 x10

x11 x1·

�

= E
�

x01

x11

�

−E

�

x01

x1·

�

≈
p01p10

p11p1·

�

1+
1

np1·
+

1

np11

�

.

From this result, B i a s (r̂θ ) in Theorem 2.4.1 is well implied. Using the result in Propo-

sition 2.4.1, which can be proved in this context by replacing four cell frequencies from

x01, x10, x11 and x1· in the places of x , y , w and z respectively, we have Cov(r̂(1),r̂(2)) ≈ ṽ12 =
p 2

01
p1·p11

�

1
np01
− 1

n 2p11p1·

�

. Hence the proof for V a r (r̂θ ). In the expression of V a r (r̂θ ), the coeffi-

cient of θ 2 is V (r̂1− r̂2), which is positive and the coefficient of θ will be nonnegative when
�

p1·
p11
− p01

np 2
11

�

≥ p0
p1·

and r̂θ will have minimum variance at θ=max{0,
� ṽ2−ṽ12

ṽ1+ṽ2−2ṽ12

�

}. �

In the coverage error estimation problem, bias may be much more important than the s.e. of

estimate under specific dependency assumption. So, our idea is to combine two conventional

estimators and create a new weighted estimator using them, such that it would be almost

unbiased as well as variance could be controlled more effectively.

Remark: Note that θ0 is the true cross-product ratio of the two systems whereas θ is the
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assumed or estimated value of the underlying cross-product ratio (θ0) in the model.

Let us first consider the method of estimating r, that Indian PES does, following Chandrasekhar-

Deming (1949[17]) approach. Independence is assumed between two capture probabilities

which leads to cross-product ratio, θ = 1. Hence from (2.10), N̂θ=1 = (M /m )(x1·x·1/x11) and

estimate of r becomes r̂(1) = (x01/x11) = r̂θ=1 (say). Thus, r̂ , r̂(1) (introduced in section 2.2.3)

and r̂θ=1 are exactly same estimators. The second estimator we consider is for θ = 0. Here it is

assumed that there is no individual left in each of the m sampled clusters who were missed by

both the census and PES. Hence N̂θ=0 = (M /m )x0, where x0 = x11+ x01+ x10 and this leads to

the estimator, r̂(2) = (x01/x1·) = r̂θ=0 (say). Indian SRS (Sample Registration System) uses this

estimator to estimate number of vital events (Raj, 1977 [76]). Now we present the following

theorem and establish some basic features of r̂θ=1 and r̂θ=0 therefrom.

Theorem 2.4.2 The large sample bias and variance of r̂(2)(= r̂θ=0) up to the first order approxi-

mation are respectively given by

B i a s (r̂θ=0) ≈ b̃2 =
p01

np 2
1·
−θ0

p01p10

p1·p11
, (2.15)

V a r (r̂θ=0) ≈ ṽ2 =
p0p01

np 3
1·

. (2.16)

Proof. Following same steps as in the proof of the Theorem 2.2.1, one can easily find the

approximate bias and variance of r̂(2) by replacing a and b with x1· and x01 respectively. �

We will discuss later the use of the biases for r̂(1) and r̂(2) in section 2.4.2. From (2.4) and (2.15)

it is clear that Bias(r̂(1)) > Bias(r̂(2)). Small bias in the estimate may produce non-negligible

figure on omitted persons for large population. So, bias is the key factor in coverage error

estimation. Thus, in any dual system analysis, first step is to take a specific value of θ (viz.

1 or 0) and then maintain that dependency level across all clusters operationally, so that θ0

would be close to the chosen θ . Alternatively, θ0 is estimated using some third source at

some aggregated level and then it is assumed that same level of dependence holds for all

subpopulations. But both the strategies have serious drawbacks for the following reason. For

any estimator in dual system context, the bias always has two parts like (2.3). (i) Sampling

bias in both of the r̂(1) and r̂(2) is found as of O(n−1), where n =mT . For reasonably large n, the

sampling bias will be relatively small. In any ratio estimator in this context, the numerator (i.e.

the estimator of (N-C)) is always dependent on the model assumption. (ii) The component

due to CB in r̂(1) is negative if two lists are positively associated whereas it would be positive
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when two lists are negatively associated. The CB is not at all dependent on sample size. For

large sample size, overall bias tends to CB and then only CB matters.

Thus, even if we adopt more efficient ratio estimators, as Hartley-Ross unbiased estimator or

Murthy-Nanjamma’s estimator, this will help to get rid of the existing sampling (design) bias

and leave the major part (CB) unaffected. So improvement in the estimation of omission rate

will not be significant with this strategy. Therefore, we employ an alternative strategy in the

next section whereby the variance is minimized subject to a fixed bound on the bias.

2.4.2 Construction of Estimator

Suppose D, defined as D= {r̂θ |θ ∈ [0,∞)}, denotes a class of all possible DSE-type omission

rate estimators, where r̂θ = (N̂θ − Ĉ )/Ĉ from (2.10). So, r̂(t ) ∈D, for t = 1, 2. We consider a

linear combination of the working estimators r̂(1) and r̂(2) as

r̂u = ω∗n r̂(1)+ (1−ω∗n )r̂(2), (2.17)

where the weightω∗n ∈R is to be estimated.

Theorem 2.4.3 The estimator r̂u , having the form as in (2.17), belongs to D if and only if

ω∗n ∈ [0,∞).

Proof. For an arbitraryω∗n ∈R, r̂u =ω∗n r̂(1)+(1−ω∗n )r̂(2) =
x01
x1·
+ω∗n

x01 x10
x11 x1·

= x01
x11
+(ω∗n −1) x01 x10

x11 x1·
,

obtained from the relation x01
x1·
+ x01 x10

x11 x1·
= x01

x11
and so, from (2.10) r̂u can be expressed as r̂θ=ω∗n .

Henceω∗n must belong to [0,∞) if r̂u ∈D.

On the contrary, ifω∗n ∈ [0,∞), then r̂u ∈D, by the definition of D. �

Since,ω∗n ∈ [0,∞), r̂u ∈D is clearly an affine combination of r̂(1) and r̂(2) with the weightω∗n .

The motivation behind the consideration of such combination is gained from the possibility

of increment in correlation bias discussed in section 2.3. Different post-strata have different

level of dependency structures at the time of conducting a relatively efficient PES than census.

The proposed approach follows the true underlying process and that itself will decide the

weightage that should be given to the working estimator r̂(1). Thus, r̂u is flexible and robust.

Now, we will try to understand the behavior of the general DSE-type ratio estimator r̂θ over θ

graphically, obtained by monte-carlo approximation. Figure 2.1 shows that variance of r̂θ
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Figure 2.1: Plot of variance and absolute bias of r̂θ for varying θ . Monte-Carlo variances and
absolute biases are presented from 5000 simulations on each of four situations - 1, 2, 3, 4 under
Population X and under Population Y.

has some increasing non-linear pattern and in the [0, 1] region, variance increases slowly.

But absolute bias of r̂θ has totally reverse characteristic in [0, 1] for Population X whereas

for Population Y, one can find certainly an r̂θ for θ ∈ (0, 1) which is better than r̂(1) and r̂(2) in

terms of absolute bias and better than r̂(1) in terms of variance. For Population X, there will

be a trade-off between variance and absolute bias.

Estimation of θ0. Bias(r̂u ) can be obtained from Bias(r̂(1)) and Bias(r̂(2)). Estimation of cross-

product ratio, θ0 (here, odds ratio OR) is needed for calculation of biases of r̂(1) and r̂(2)

from complete 2× 2 table. So one always wants to use as small a sample as possible to

estimate θ0. Along with three other cell values x11, x01, x10, the last cell value x00 for those

very small number of clusters can be calculated from authentic administrative records (if

it exists) or otherwise from independent recounting and follow-up enumerations. Most

49



Chapter 2. Census Coverage Error Estimation: With Particular Reference to India1

common estimator for θ0 is dO R = x11 x00
x01 x10

. But due to possibility of empty cell, a modified

version of dO R was proposed by adding 0.5 to each cell (Haldane, 1955[48]). Parzen et al.

(2002[72]) gave a median unbiased estimator of OR considering binomial distribution for

each row of the 2×2 table and this method ensure that the estimate will be in (0,∞). Small

sample adjustments for point estimation of OR in logarithmic scale produces very small bias

and almost symmetric sampling distribution (see Gart and Zweifel, 1967[40]). But bias is

not invariant under non-linear inverse transformation. A special adjustment over dO R was

proposed by Jewell (1986[57]) for small sample estimation. This estimator posses significant

reduction in bias and variance under the condition x01 and x10 6= 0. The small sample

adjustment by Haldane (1955[48]) on dO R is designed for bias reduction in estimating log(OR).

As a result, its performance is poor in comparison to Jewell′s small sample adjusted estimator

as a point estimate. Unconditionally this small sample estimator is essentially unbiased

for each row (or column) sum of the 2× 2 table larger than 20 (Jewell, 1986[57]). A monte

Table 2.4: Monte Carlo comparison between three methods for small sample adjusted OR
estimation. Bias and RMSE are computed for each method over 5000 simulations for T = 30.

Absolute Bias RMSE
sample size mmle midp small mmle midp small

c = 0.77, p = 0.69, p1· = 0.70, OR=1.5041
2 0.0287 0.3286 0.0064 1.4934 1.4236 1.0586
4 0.0009 0.1618 0.0013 0.7960 0.7951 0.6994

c = 0.80, p = 0.80, p1· = 0.70, OR=1.0
2 0.0755 0.2506 0.0089 1.1098 1.0431 0.7764
4 0.0313 0.1195 0.0051 0.5947 0.5956 0.5221

c = 0.68, p = 0.76, p1· = 0.70, OR=0.6711
2 0.0486 0.1271 0.0043 0.5656 0.5612 0.4569
4 0.0183 0.0652 0.0039 0.3456 0.3481 0.3138

c = 0.80, p = 0.99, p1· = 0.70, OR=0.0404
2 0.0867 0.2845 0.0024 0.1477 0.3383 0.1038
4 0.0319 0.1104 0.0009 0.0689 0.1266 0.0721

carlo comparison study between these three odds ratio estimation methods − (i) modified

mle [mmle] due to Haldane (1955[48]) and Gart and Zweifel (1967[40]) in logarithmic scale,

(ii) median unbiased estimator [midp] and (iii) small sample estimator [small] has been

carried out via simulation over 5000 replications. We notice that if the data (x11, x01, x10,

x00) from those small number of sub-sampled clusters is almost correctly known or counted

or even x00 is little overcounted, then small sample estimator performs much better than

midp and mmle for both p1· = 0.70 and 0.85. Even for a sub-sample of size 2, the small
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sample estimator is almost unbiased and relatively efficient. In fact one can consider only

5% sub-sampling of m sampled clusters (for m ≥ 40). Hence our natural aim would be to

find accurate value of x00 for only those very small number of sub-sampled clusters such that

no person having the characteristic (neither counted in census nor included in PES list) is

omitted. For instance, we may select those clusters for which x00 is possibly found correctly.

Thus as per the recommendation from empirical analysis, we adopt here the small sample

estimate θ̂ s
0 due to Jewell (1986 [57]) for further analyses.

For fixed θ0, the ml e ′s of b̃1 and b̃2 are given by

ˆ̃b1 =
x01

x 2
11

− (θ0−1)
x01 x10

x1·x11
, (2.18)

ˆ̃b2 =
x01

x 2
1·
−θ0

x01 x10

x1·x11
. (2.19)

Finally we use jackknife bias reduction technique to the mle’s ˆ̃b1 and ˆ̃b2 in (2.18) and (2.19)

and then replace θ0 by θ̂ s
0 in those expressions. But B i a sω∗n (r̂u ) is still unknown due toω∗n

only. Since, variance is not as much important as bias here, so, we shall fix an upper bound u0

for the absolute bias of r̂u at a desired level and then simply determine the optimal weight by

minimizing the variance Vω∗n (r̂u )with respectω∗n over the domainΩu0
= {ω∗n ∈R

+ : |Bω∗n (r̂u )| ≤

u0}. we consider a computer intensive optimization technique. From (2.13) and (2.14), finally

Bω∗n (r̂u ) and Vω∗n (r̂u ) are respectively estimated as ÔBω∗n (r̂u ) and ÔVω∗n (r̂u ) by using the optimal

weightω∗n .

2.4.3 Consistency

From Theorems 2.4.1 and 2.4.3 says that V a r (r̂u ) always decreases to zero, as n→∞, irre-

spective of the true value of cross-product ratio (θ0). Now (2.13) and Theorem 2.4.3 together

implies that the bias B i a s (r̂θ ) in Theorem 2.4.1 will vanish if θ is equal to the true θ0 for large

n . Thus we establish the following

Theorem 2.4.4 The following statements are equivalent:

(a) r̂u is MSE consistent.

(b) Bias(r̂u ) tends to 0 as n→∞.

(c)ω∗n → θ0 as n→∞.

51



Chapter 2. Census Coverage Error Estimation: With Particular Reference to India1

2.5 Simulation Study: Evaluation

In this section we present some numerical evidence that illustrate the overall betterment of

the proposed estimator r̂u over any r̂(t ), t ∈ {1, 2}. Finite sample behavior of the estimator of

omission rate is taken into consideration for comparison with respect to MSE and relative

absolute bias. We assume same number of sampled EBs (clusters) and average EB size under

the given post-stratum as in section 2.3. We also consider same hypothetical situations as in

section 2.3. For each of these situations, estimate of bias and variance of the estimators r̂(1),

r̂(2) and the proposed r̂u are presented in Tables 2.5 and 2.6.

Table 2.5: Comparison of proposed and classical DSE estimators for omission rate in Popula-
tion X based on Monte Carlo estimates of bias, variance and MSE. Here p ≤ c and m = 30,
T = 30, u0 = 0.001. All numerical figures are presented in the scale of 10−2.

p1· = 0.70 p1· = 0.85
Estimator X1 X2 X3 X4 X1 X2 X3 X4

B i a s B i a s
r̂(1) -2.292 -4.373 -4.467 -13.444 -1.073 -1.898 -1.761 -5.616
r̂(2) -13.733 -13.289 -8.311 -19.382 -5.766 -5.556 -3.338 -8.061
r̂u -0.099 -0.100 -0.097 -0.099 -0.098 -0.098 -0.084 -0.100

Variance Variance
r̂(1) 0.1265 0.1104 0.0935 0.0762 0.0355 0.0312 0.0265 0.0224
r̂(2) 0.0600 0.0611 0.0735 0.0464 0.0176 0.0179 0.0212 0.0140
r̂u 0.1729 0.1931 0.2431 0.2937 0.0452 0.0472 0.0465 0.0577

MSE MSE
r̂(1) 0.1790 0.3016 0.2930 1.8836 0.0470 0.0672 0.0575 0.3377
r̂(2) 1.9459 1.8270 0.7642 3.8029 0.3501 0.3266 0.1325 0.6637
r̂u 0.1730 0.1931 0.2431 0.2937 0.0453 0.0474 0.0465 0.0578

The estimator r̂u achieves much higher accuracy than the two existing estimators r̂(1) and r̂(2).

It is clear from Table 2.5 that for recapture prone population (Population X), r̂(1) works better

than r̂(2) in terms of accuracy and efficiency (through MSE) when p1· = 0.70 and 0.85. r̂u has

larger variance than that of r̂(1) and r̂(2) but it has least absolute bias.

In case of recapture averse population (Population Y ) only, the optimal weight makes (2.17)

as a convex combination. Appropriateness is not clear between r̂(1) and r̂(2). Results have

clear agreement with natural inference that as θ0 becomes close to 0, r̂(2) is better than

r̂(1) otherwise r̂(1) is better. However, our proposed affine combination approach performs

significantly better than the working estimator r̂(1) for Population B in terms of both accuracy

and efficiency (through both the variance and MSE). In section 2.3 we already showed that
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Table 2.6: Comparison of proposed and classical DSE estimators for omission rate in Popula-
tion Y based on Monte Carlo estimates of bias, variance and MSE. Here p > c and m = 30,
T = 30, u0 = 0.001. All numerical figures are presented in the scale of 10−2.

p1· = 0.70 p1· = 0.85
Estimator Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

B i a s B i a s
r̂(1) 11.266 16.606 5.065 12.392 4.671 6.833 2.002 5.082
r̂(2) -7.749 -4.274 -10.343 -4.242 -3.170 -1.780 -4.348 -1.768
r̂u -0.098 -0.089 -0.099 -0.087 -0.092 -0.071 -0.096 -0.071

Variance Variance
r̂(1) 0.2044 0.2321 0.1662 0.1954 0.0550 0.0615 0.0456 0.0523
r̂(2) 0.0755 0.0849 0.0687 0.0854 0.0217 0.0241 0.0199 0.0241
r̂u 0.1078 0.0967 0.1269 0.0972 0.0325 0.0289 0.0371 0.0291

MSE MSE
r̂(1) 1.4736 2.9896 0.4227 1.7311 0.2732 0.5285 0.0857 0.3106
r̂(2) 0.6759 0.2676 1.1383 0.2653 0.1221 0.0558 0.2090 0.0553
r̂u 0.1079 0.0968 0.1270 0.0973 0.0326 0.0290 0.0372 0.0291

the potential source may hamper the Population Y more. The proposed approach introduces

the estimator r̂u which is almost unbiased and more efficient than r̂(1). In the current study

emphasis is given on the bias and our approach is regulated by the parameter u0. We consider

u0 = 0.001 here. One can reduce it more to have approximately unbiased estimate for all

populations but in that case one might lose efficiency to some extent or Ωu0
might become

empty. This approach has a flexible nature that one can reduce the variance of r̂u at higher

order sacrificing the accuracy level little bit. Hence, r̂u allows some trade-off between the

levels of accuracy and efficiency between two classical dual system estimators. In Table 2.7,

the basic descriptive statistics of the optimal estimates of weightω∗n over 1000 simulations

is given. Clearly when the situations are under Population X, optimal weights are greater

than 1. For Population Y, estimatedω∗n chooses a appropriate balance factor between the

working estimator r̂(1) and the r̂(2). Two additional populations SX 5 and SY 5, corresponding

to underlying θ0 value as 1 and 0 respectively, are considered here for checking the internal

consistency of the proposed approach. Result shows that when true model has the situation

SX 5 and census capture probability is 0.7, the expected weight to the working dual system

estimator r̂(1) is 0.976, while for the situation SY 5, the average optimal weight to r̂(1) is 0.0062.

That means for larger sample size, weights are getting closer to 1 and 0 for SX 5 and SY 5

respectively since absolute bias has a very small upper bound. It proves that the data based

approach to find optimum value of the weight functionω∗n is consistent and also fulfill the

ICR inclusion criterion advocated by Elliot and Little (2000 [37]). The ICR (independence
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Table 2.7: Descriptive statistics forω∗n over 1000 simulated samples. T = 30 and u0 = 0.001.
For each situation with each value of p1·, upper and lower values correspond with sample
size m = 30 and 60 respectively.

Population X Population Y
p1· m Situation Mean Median S.D. Situation Mean Median S.D.

0.70 30 X1 1.1963 1.0811 0.6326 Y1 0.4084 0.3565 0.2530
60 1.1957 1.1319 0.4334 0.4053 0.3806 0.1738

0.85 30 1.1751 1.0130 0.7689 0.3988 0.3173 0.3588
60 1.1925 1.1066 0.5608 0.3906 0.3579 0.2177

0.70 30 X2 1.4704 1.3218 0.7647 Y2 0.2035 0.1706 0.1557
60 1.4841 1.4148 0.5444 0.2015 0.1855 0.1053

0.85 30 1.4257 1.2405 0.9138 0.2007 0.1466 0.2073
60 1.4746 1.3705 0.6805 0.1942 0.1733 0.1375

0.70 30 X3 1.9229 1.7154 1.0863 Y3 0.6743 0.5918 0.3896
60 2.0766 1.9306 0.8619 0.6685 0.6313 0.2657

0.85 30 1.7054 1.5125 1.1829 0.6706 0.5480 0.5139
60 1.9446 1.7743 1.0027 0.6555 0.6018 0.3382

0.70 30 X4 2.7342 2.6534 1.0347 Y4 0.2533 0.2092 0.2017
60 3.0292 2.9657 0.8727 0.2524 0.2272 0.1374

0.85 30 2.5020 2.3235 1.1491 0.2516 0.1825 0.2679
60 2.8571 2.8044 0.9683 0.2423 0.2123 0.1729

0.70 30 SX 5 0.9757 0.8438 0.6188 SY 5 0.0062 0.0061 0.0009
60 0.9800 0.9196 0.4316 0.0030 0.0029 0.0007

0.85 30 0.9537 0.7943 0.7241 0.0001 0.0 0.0009
60 0.9631 0.8799 0.5263 0.0 0.0 0.0003

of capture and re-capture) inclusion is a statistical parsimony principle that says without

evidence of correlation bias, one should accept the independence model.

2.6 Conclusion

The present study is concerned with the methodological issues (M2 and M3 discussed in

section 1.8.2) in the estimation of coverage error using omission rate estimator r̂θ=1 (or r̂(1))

at post-stratum level. It is noticed that the classical estimator r̂(1) will be biased and affected

seriously by the dominating correlation bias factor if the underlying cross-product ratio is far

from 1. It may produce a bad estimate under the threat of the possible new cause discussed

in section 2.3, specially for the situations under recapture averse population. A class of DSE-

type ratio estimators is defined and there is a clear trade-off between bias and variance for

most of the estimators belonging to D. The proposed estimator is simple as well as flexible.

This data based weighted linear combination actually follows the true underlying process.

One can use r̂u in lieu of r̂(1) to improve the estimate of omission rate in census count. Our
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approach helps to get rid of the possible problem due to any kind of unwanted hike in the

dependency or correlation bias. The affine combination approach has potency to produce

an almost unbiased estimate. Even for small subsampling to estimate θ0, one can achieve

an unbiased estimate using Jewell′s adjustment. The current affine combination approach

in general helps to increase the efficiency by making a trade-off with accuracy level within

its bound. Indeed, we develop an almost unbiased estimator for omission rate which also

depends on the small sample estimation of θ0 but the proposed estimator is much more

robust. These results are well anticipated by the rigorous understanding of the nature of r̂θ

for θ ∈ [0,∞) and from the flexible construction of proposed r̂u . We have also established

the consistency of our proposed estimator theoretically and empirically. The new estimator

has a great improvement over usual DSE specially for the recapture averse population. For

recapture prone population our estimator performs better in terms of accuracy. Thus we

conclude that performance of the proposed weighted estimator is better than the estimator

in practice r̂(1) and other candidate estimator r̂(2) according to both the criteria of accuracy

and efficiency.
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3 Profile Likelihood Method

3.1 Introduction and Motivation

In the introductory chapter 1, we have discussed that the problem of population size es-

timation for human is a very important statistical concern which includes a vast area of

application in the fields of epidemiology, demography and official statistics. Application of

capture-recapture type experiment in this regard along with special events, like war, natural

calamity, etc., are also very popular in interdisciplinary platform. In the context of human

population, Dual-record System (DRS) is often used. Among several models for DRS discussed

in sections 1.4-1.7, model Mt has received much attention in practice for homogeneous pop-

ulation. But this Mt model is not appropriate in most of the situations for human population

where the assumption of independence between capture probabilities fails. Discussion on

the violation of such independence appears in M2 in section 1.8.2. Hence, we would have

a more complicated model Mt b , which is structurally most satisfactory for homogeneous

population. Though the relevancy of the model Mt b is understood in many situations, but

due to lack of identifiability in DRS, Mt b is seldom used for human population and model Mt

becomes popular for its simplicity in both demographic and epidemiological studies. Hence

the issue of model mis-specification can be raised. We have analysed the effect of model

mis-specification in section 1.6.2 in detail based on the proposed result in Theorem 1.6.1. To

overcome this non-identifiability issue of model Mt b (see M5 in section 1.8.2), several fully

Bayesian techniques are postulated (see Lee and Chen, 1998 [61]; Lee et. al., 2003 [62]) with

flat informative priors. However, in Bayesian paradigm, difficulty may arise as the resulting

estimator for N may be very sensitive to the choice of prior. We will discuss this issue further

in chapters 5 and 6 later. This possible threat for using Bayesian techniques motivate us to

consider a non-Bayesian technique, say, pseudo-likelihood methods. In the present chapter
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we consider profile likelihood as a suitable choice of pseudo-likelihood method.

Profile likelihood approach replaces the nuisance parameter present in the model by its

conditional MLE. Early discussions on the elimination of nuisance parameters and profile

likelihood function are found in Cox (1975[29]) and Basu (1977[5]). Later, modified profile

likelihood function was introduced by Barndorff-Nielsen (1983[3]); see also Barndorff-Nielsen

and Cox (1994 [4], Ch. 8) to explore the properties of modified profile likelihood. Sometimes

modified profile likelihood becomes difficult to calculate as it requires determination of a

ancillary statistic. Therefore, adjusted profile likelihood function was developed by Cox and

Reid (1987 [30]), though it has a limitation that it requires an orthogonal parametrization. In

any capture-recapture type model, all the parameters except N are commonly regarded as

nuisance parameters. In this context, profile and adjusted profile likelihood has been studied

by Bolfarine et al. (1992 [10]) for independence model Mt . In this article, we confine ourselves

to the profile likelihood that can summarize the set of likelihoods {L (N ,ψ) :ψ ∈Ψ} over Ψ,

the domain of nuisance parameterψ and some of its relevant modifications. We explicitly

investigate the potentiality in application of these profile likelihood and related modifications

for both the models Mt and Mt b in DRS context. We also propose a new adjustment to the

profile likelihood for the generic model Mt b so that resulting pseudo-likelihood function can

be used for estimating N efficiently. Our aim is to estimate the population size N from model

Mt b -DRS based on these profile likelihood and related modifications in this chapter.

In the next section, the usefulness of profile and modified profile likelihood functions are

investigated in connection to models of interest. Therefrom, we develop an adjustment to the

profile likelihood for Mt b in section 3.3 to get rid of the identifiability problem. Evaluation

and comparison of the proposed approach with the existing Bayes approach, developed by

Lee et al. (2003), is carried out through an extensive simulation study. In addition to that,

comparative graphical investigations on the performance and robustness of the proposed

approach are carried out in this section, against the commonly used estimate N̂i nd . Illus-

tration of all the competing methods through two real datasets are presented in section 3.4.

Finally in section 3.5, we summarize our findings and provide some comments about the

usefulness of existing and our proposed profile likelihood based approaches.

3.2 Profile Likelihood Method and its Modifications

Let us consider a statistical model with likelihood function L (λ) with λ = (θ ,ψ), where θ

is parameter of interest andψ represents nuisance parameter, both may be vector valued.
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Presence of more nuisance parameters in the model might affect the comparative inferential

study based on the likelihood (Severini, 2000 [87]). Problem of eliminating the nuisance

parameter can be handled in several ways. The problem of eliminating ψ is statistically

equivalent to finding a function that can summarize the set of likelihoodsL ∗ = {L (θ ,ψ|x) :

ψ ∈ Ψ} over Ψ. The resulting function L∗(θ ), as a function of θ , is used to some extent as

a likelihood function as if the inference frame has θ as the full parameter. Although L∗(θ )

might have many of the properties of a genuine likelihood function, in general it is not

exactly a genuine likelihood function and, hence, inferences based on this assumption may

be misleading, particularly whenψ is high-dimensional. Technically, such function L∗(θ ) is

referred to as pseudo-likelihood function of θ by summarizing L (θ ,ψ|x) over Ψ. This kind of

pseudo-likelihood function includes profile likelihood and integrated likelihood, the former

being of the interest in this chapter. There are several other kinds of pseudo-likelihood

functions in the literature, such as marginal, conditional and partial likelihoods. Profile

likelihood function† is one of the popular pseudo likelihood functions and here, nuisance

parameter is replaced by its conditional MLE based on the interest parameter and data.

Modified profile likelihoods (Barndorff-Nielsen, 1983 [3]) and adjusted profile likelihoods

(Cox and Reid, 1987 [30]) are basically modifications to the profile likelihood function.

3.2.1 Profile Likelihood (PL) Method

Profile likelihood (PL) approach summarizesL ∗ atψ= ψ̂θ , the conditional mle ofψ for given

θ . Thus, in profile likelihood, L∗(θ ) becomes L (θ ,ψ̂θ ) = L P (θ ), say. Therefore, estimation

of θ is obtained by maximizing L P (θ ) considering as a likelihood function of θ . In general,

it is not a proper likelihood function. Thus, inference based on this assumption may be

misleading, specifically whenψ is high-dimensional.

In the context of independent model, Mt , PL for interest parameter θ =N is given by

L P
t (N ) = L t (N , p̂1·;N , p̂·1;N ) =

N !

(N − x0)!
(N − x1·)

N−x1· (N − x·1)
N−x·1 N −2N ,

for N ≥ ma x (x1·, x1·, x0) = x0. Here, as elsewhere in the paper, multiplicative terms not

depending on N in likelihood function of N have been ignored. L P
t (N +1)/L P

t (N )> 1 implies

N < (x1·x·1/x11)−1. Thus, L P
t (N ) is increasing in N for N < (x1·x·1/x11)−1 and hence, when

(x1·x·1/x11) is an integer, the corresponding mle N̂ P
t is (x1·x·1/x11) − 1. When (x1·x·1/x11)

is not an integer, N̂ P
t is either [x1·x·1/x11]− 1 or [x1·x·1/x11], according to which produces

† Integrated likelihood is another pseudo likelihood method which is the subject matter for the next chapter.
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the maximum value of the profile likelihood, where [u ] denotes the greatest integer not

greater than u , for u ∈R . N̂ P
t is finite iff x11 > 0. Maximum profile likelihood (PL) estimate

can also be obtained by maximising L P
t (N ) assuming N as a real number and using the

formula for digamma function of any positive integer z (obtained from recursive relation),

β (z ) = (∂ /∂ z )l o g (Γ (z )) =−γ+Σz−1
a=1(1/a ), where γ is the Euler-Mascheroni constant.

For any parametrization of model Mt b , such as (1.15) or (1.16), the PL for N reduces to

L P
t b (N ) = L t b (N , p̂1·;N , p̂ , ĉ ) =

N !

(N − x0)!
(N − x0)

N−x0 N −N ,

for N > x0, as PL is parametrization invariant. Clearly L P
t b (N ) is decreasing for N > x0

as
∏x0−1

i=1 (1−
i

N ) < (1−
1
N )

x0−1. It can be written that L P
t b (N ) = (1−

x0
N )

N−x0
∏x0−1

i=1 (1−
i

N ) <

(1− 1
N )

N−1. Now as (1− 1
N )

N−1 ↓N , L P
t b (N ) is a decreasing function in N for N > x0. Hence,

mle will be the lower bound of N i.e. N̂ P
t b = (x0+1). It is clear that profile likelihood is not

useful, as it stands, for estimating the population size N .

3.2.2 Modified Profile Likelihood (MPL) and Its Approximation (AMPL)

Since marginal and conditional likelihoods are not available for Mt b , the idea is to use a

suitable modification to the profile likelihood. Several such modifications are suggested in

the literature. PL cannot approximate a marginal or conditional likelihood function and that

leads to poor performance. We now discuss a modification to the profile likelihood function.

In general, modified profile likelihood (MPL) proposed by Barndorff-Nielsen (1983) is written

as

L M P (θ ) =D (θ )| ĵψψ(θ ,ψ̂θ )|−1/2L P (θ ), (3.1)

where D (θ ) = | ∂ ψ̂θ
∂ ψ̂
|−1, the inverse of jacobian J (θ ) = ∂ x/∂ ψ̂θ ∝ ∂ ψ̂/∂ ψ̂θ and ĵψψ is the

observed Fisher information of ψ for fixed θ . The actual derivation of L M P (θ ) as an ap-

proximation to a conditional likelihood is sketched in Severini (2000) considering (ψ̂θ , a ) as

sufficient with θ held fixed and a is ancillary statistic. However, we can simply express the

partial derivative factor in L M P (θ ) as follows.

Let us denote the logarithm of any likelihood L (·) as `(·). Then conditional mle ψ̂θ implies
∂ `(θ ,ψ|θ̂ ,ψ̂,a )

∂ ψ |ψ=ψ̂θ = `ψ(θ ,ψ̂θ ) = 0, as sufficient statistics may be written in terms of (θ̂ ,ψ̂, a ),
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a being ancillary. Then, by differentiating with respect to ψ̂we have

`ψ;ψ(θ ,ψ̂θ )
∂ ψ̂θ

∂ ψ̂
+ `ψ;ψ̂(θ ,ψ̂θ ) = 0.

This implies ∂ ψ̂θ
∂ ψ̂
= ĵψψ(θ ,ψ̂θ )−1`ψ;ψ̂(θ ,ψ̂θ ), where ĵψψ(θ ,ψ̂θ ) =−`ψ;ψ(θ ,ψ̂θ ). Hence, MPL

in (3.1) may also be written in the following form

L M P (θ ) = |`ψ;ψ̂(θ ,ψ̂θ )|−1| ĵψψ(θ ,ψ̂θ )|1/2L P (θ ), (3.2)

and hence in (3.2), D (θ ) = | ĵψψ(θ ,ψ̂θ )|/|`ψ;ψ̂(θ ,ψ̂θ )|, according to the form in (3.1).

There is an approximation to L M P suggested by Severini (1998 [86]) in which D (θ ) is taken as

| ĵψψ(θ ,ψ̂θ )|/|I (θ ,ψ̂θ ; θ̂ ,ψ̂)|, where Fisher’s information

I (θ ,ψ;θ0,ψ0)≡ (∂ /∂ ψ0)E {`ψ(θ ,ψ)|θ0,ψ0}

carries the parameters (θ ,ψ) in the original score function, but the expectation part of

random variables with the parameters (θ ,ψ) is replaced by (θ0,ψ0) and I (θ ,ψ;θ0,ψ0) is

an approximation to `ψ;ψ0
(θ ,ψ) as

E {`ψ(θ ,ψ)|θ0,ψ0}= `ψ(θ ,ψ|θ0,ψ0) +O (1) and

`ψ;ψ0
(θ ,ψ) = (∂ /∂ ψ0)`ψ(θ ,ψ|θ0,ψ0).

Hence, approximated modified profile likelihood (AMPL) is

eL M P (θ ) = |I (θ ,ψ̂θ ; θ̂ ,ψ̂)|−1| ĵψψ(θ ,ψ̂θ )|1/2L P (θ ). (3.3)

Remark: Clearly, L M P (θ ) = eL M P (θ ) iff |`ψ;ψ̂(θ ,ψ̂θ )|= |I (θ ,ψ̂θ ; θ̂ ,ψ̂)|, ignoring the terms not

depending on θ .

Implementation to models Mt and Mt b :

Model Mt . The following result shows that MPL and AMPL are identical on the domain

N ≥ x0 for model Mt . Severini (1998 [86]) only stated this result.
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Theorem 3.2.1 Both L M P and eL M P are same for model Mt with θ =N ,ψ= (p1·, p·1) and for

N ≥ x0, it is given by

L M P
t (N ) = eL M P

t (N ) =
N !(N − x1·)N−x1·+1/2(N − x·1)N−x·1+1/2

(N − x0)!N 2N+1

= L P
t (N )(N − x1·)

1/2(N − x·1)
1/2N −1.

Proof. According to parametrization θ =N andψ=(p1·, p·1), it is straightforward to show from

log-likelihood `t (θ ,ψ) of model Mt that (∂ /∂ ψ)`t (θ ,ψ) = `t
ψ(θ ,ψ) =

�

x1·
p1·
− N−x1·

1−p1·
, x·1

p·1
− N−x·1

1−p·1

�

and

E {`t
ψ(θ ,ψ)|θ0,ψ0}

�

�

�θ0=θ̂ ,ψ0=ψ̂
=

�

N̂ p̂1·

p1·
−

N − N̂ p̂1·

1−p1·
,

N̂ p̂·1
p·1
−

N − N̂ p̂·1
1−p·1

�

.

Therefore, |I t (θ ,ψ̂θ ; θ̂ ,ψ̂)|= N 4

(N−x1·)(N−x·1)
, since ψ̂θ =

� x1·
N , x·1

N

�

and

I t (θ ,ψ; θ̂ ,ψ̂) =
∂

∂ ψ̂
E {`t

ψ(θ ,ψ);θ0,ψ0}
�

�

�θ0=θ̂ ,ψ0=ψ̂
.

Again, from Severini (2000 [87]), we have |`t
ψ;ψ̂
(θ ,ψ̂θ )|= N 4

(N−x1·)(N−x·1)
, ignoring the terms not

depending on data. Thus, |`t
ψ;ψ̂
(θ ,ψ̂θ )| = |I t (θ ,ψ̂θ ; θ̂ ,ψ̂)|. Therefore, from Remark 3.2.2,

L M P (θ ) = eL M P (θ ) for Mt and ĵ t
ψψ(θ ,ψ̂θ ) = −`ψ;ψ(θ ,ψ̂θ )=D i a g { N 3

N−x1·
, N 3

N−x·1
}, which leads

to the proof using equation (3.2). �

An interesting relation between PL and MPL for the model Mt is formulated in the next theo-

rem. Thereafter, Theorem 3.2.3 shows that MPL estimate is same as the ordinary likelihood

estimate of N .

Theorem 3.2.2 The maximum profile likelihood estimator, N̂ P
t , is no greater than the maxi-

mum modified profile likelihood estimator N̂ M P
t .

Proof. Let us define R M P
t (N ) = L M P

t (N +1)/L M P
t (N ). Then we have

R M P
t (N ) =R P

t (N )×
(N − x1·+1)1/2(N − x·1+1)1/2

(N − x1·)1/2(N − x·1)1/2
N

(N +1)
,
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where R P
t (N ) = L P

t (N + 1)/L P
t (N ). Now, by some algebraic manipulation it can be shown

that (N−x1·+1)1/2(N−x·1+1)1/2

(N−x1·)1/2(N−x·1)1/2
N
(N+1) ≥ 1 for all N ≥ 2x1·x·1

(x1·+x·1)
. Moreover, 2x1·x·1

(x1·+x·1)
< x0 always. So,

R M P
t (N ) ≥ R P

t (N ) > 1 for all x0 ≤ N < (x1·x·1/x11) − 1. Therefore, the maximum profile

likelihood estimate N̂ P
t is always less than or equal to the the maximum modified profile

likelihood estimate N̂ M P
t . �

Theorem 3.2.3 L M P
t (N ) is increasing in N for N < (x1·x·1/x11)−1 and hence, the correspond-

ing mle, N̂ M P
t is [x1·x·1/x11] if (x1·x·1/x11) is not an integer; and is (x1·x·1/x11)−1, if (x1·x·1/x11)

is an integer.

Proof. From Theorem 3.2.2, we have R M P
t (N )≥R P

t (N )> 1 for all N < (x1·x·1/x11)−1. Now, if

L P
t (N ) is maximum at N = eN (say), then R P

t ( eN )≤ 1< R P
t ( eN −1)≤ R M P

t ( eN −1) if eN −1≥ x0.

Since R P
t ( eN )≤R M P

t ( eN ) for eN ≥ x0 i.e. (x10 x01/x11)> 1, one have to check whether R M P
t ( eN )>

1 or not, for different possible eN .

Now, it is clear that if eN = [x1·x·1/x11]−1, R M P
t ( eN )> 1 since [x1·x·1/x11]−1≤ (x1·x·1/x11)−1,

therefore N̂ M P
t = [x1·x·1/x11].

If eN = [x1·x·1/x11], R M P
t ( eN )< 1 since [x1·x·1/x11]> (x1·x·1/x11)−1, therefore N̂ M P

t = [x1·x·1/x11].

When (x1·x·1/x11) is integer, eN = (x1·x·1/x11) − 1, therefore R M P
t ( eN ) < 1, hence N̂ M P

t =

(x1·x·1/x11)−1.

Hence, associated mle N̂ M P
t is equal to (x1·x·1/x11)−1 if (x1·x·1/x11) is an integer; otherwise

N̂ M P
t = [x1·x·1/x11]. All estimates are finite iff x11 > 0. �

Thus, for (x1·x·1/x11) ∈Z+, the set of positive integers, N̂ P
t = N̂ M P

t = eN M P
t = (x1·x·1/x11)−1

and for (x1·x·1/x11) not ∈Z+, N̂ M P
t = eN M P

t = [x1·x·1/x11]≥ N̂ P
t .

Model Mt b . Now we present the computation of MPL and AMPL in the context of model Mt b .

Let us consider at first the parametrization (1.15) and θ =N ,ψ= (p1·, p , c ). So, by differentiat-

ing the log-likelihood with respect toψ, we have `t b
ψ (θ ,ψ) =

�

x1·
p1·
− N−x1·

1−p1·
, x01

p −
N−x0
1−p , x11

c −
x10

1−c

�

.

Therefore,

E {`t b
ψ (θ ,ψ)|θ0,ψ0}

�

�

�θ0=θ̂ ,ψ0=ψ̂
=

�

N̂ p̂1·
p1·
− N−N̂ p̂1·

1−p1·
, N̂ p̂ (1−p̂1·)

p − N−N̂ p̂ (1−p̂1·)−N̂ p̂1·
1−p , N̂ ĉ p̂1·

c − N̂ (1−ĉ )p̂1·
1−c

�

, since E (x0|θ0,ψ0) = p0(1−p1·;0)+
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p1·;0. Now,

I t b (θ ,ψ; θ̂ ,ψ̂) =
∂

∂ ψ̂
E {`t b

ψ (θ ,ψ)|θ0,ψ0}
�

�

�θ0=θ̂ ,ψ0=ψ̂

and ψ̂θ =

�

x1·

N
,

x01

N − x1·
,

x11

x1·

�

Hence,

|I t b (θ ,ψ̂θ ; θ̂ ,ψ̂)| ∝ N 2(N − x1·)/(N − x0),

|`ψ;ψ̂(θ ,ψ̂θ )| = | ĵψψ(θ ,ψ̂θ )|
�

�

�

�

∂ ψ̂θ

∂ ψ̂

�

�

�

�

,

�

�

�

�

∂ ψ̂θ

∂ ψ̂

�

�

�

�

= N −1(N − x1·)
−1

and | ĵψψ(θ ,ψ̂θ )| = N 3(N − x1·)
2(N − x0)

−1.

So, |`t b
ψ;ψ̂
(θ ,ψ̂θ )|∝N 2(N − x1·)/(N − x0), where

`t b
ψ;ψ̂
(θ ,ψ̂θ ) =

∂

∂ ψ0
E {`t b

ψ (θ ,ψ)|θ0,ψ0}
�

�

�θ0=θ̂ ,ψ0=ψ̂,ψ=ψ̂θ
.

Hence, we have |`t b
ψ;ψ̂
(θ ,ψ̂θ )|= |I t b (θ ,ψ̂θ ; θ̂ ,ψ̂)|, ignoring the terms not depending on θ =N .

Therefore, from (3.2) and (3.3), L M P
t b (N ) = eL

M P
t b (N ) and hence, the following result.

Theorem 3.2.4 For the model Mt b with θ =N ,ψ= (p1·, p , c ), both of L M P
t b and eL M P

t b is equiv-

alent to

L t b (N ) =
N !

(N − x0)!
(N − x0)

(N−x0+1/2)N −(N+1/2) = L P
t b (N )(1− x0/N )

1/2,

for N > x0.

Now, (∂ /∂ N )`M P
t b (N ) = (∂ /∂ N )`P

t b (N ) +
1

2(N−x0)
− 1

2N . Using the asymptotic approxima-

tion of gamma function, l o g (Γ (z + 1)) = z {l o g (z ) − 1} + l o g (z )/2 + l o g (2π)/2 +O (z−1),

we have (∂ /∂ N )`P
t b (N ) =

1
2N −

1
2(N−x0)

+ O (N −3) = O (−N −2) < 0 for N > x0. Therefore,

(∂ /∂ N )`M P
t b (N ) = (∂ /∂ N )`P

t b (N ) +
x0

2N (N−x0)
= O (N −3) > 0 for N > x0. Hence clearly, L M P

t b

also does not give any finite maximum likelihood estimate.
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So far we have understood that Mt b is the most suitable underlying model that a homoge-

neous capture-recapture system must follow but we also notice the failure of this model even

in case of modified and approximate modified profile likelihoods. In the next section, we

propose a suitable adjustment to the profile likelihood function for model Mt b so that reason-

ably good estimate is available. We also discuss the conditions under which the associated

estimate of N exists. The adjustment is so designed as to preserve better frequentist and

robust properties than N̂i nd even in a small neighbourhood around 1.

3.3 Proposed Methodology for Mt b

3.3.1 Adjustment to Profile Likelihood (AdPL) and Related Properties

Understanding the failure of PL and its two modifications - MPL and AMPL, for Mt b here

we propose an adjusted version of the profile likelihood so that resulting likelihood is useful

for non-Bayesian likelihood inference. Our proposed adjusted profile likelihood (AdPL) for

generic model Mt b with adjustment coefficient δ (∈R) is

bL AP (θ ) =

�

�

�

�

∂ ψ̂θ

∂ ψ̂

�

�

�

�

−δ

| ĵψψ(θ ,ψ̂θ )|−1/2L P (θ ), (3.4)

Note that in particular, whenφ = 1, Mt b ⇒Mt and therefore, bL AP (θ ) will be same as L M P (θ )

in (3.1) iff the adjustment coefficient δ is fixed at 1. That means, for model Mt , our proposed

AdPL reduces to the MPL, given in Theorem 3.2.1, if δ= 1.

In the context of model Mt b with parametrization (1.15),
�

�

�

∂ ψ̂θ
∂ ψ̂

�

�

�=N −1(N − x1·)−1. Hence we

have the following result using (3.4) and L M P
t b (N ).

Theorem 3.3.1 For model Mt b with θ = N , ψ = (p1·, p , c ), the adjusted profile likelihood

∀N > x0, according to (3.4), is given by

bL AP
t b (N ) = L P

t b (N )N
2(δ−1)(1− x1·/N )

δ−1(1− x0/N )
1/2

= L M P
t b (N )N

2(δ−1)(1− x1·/N )
δ−1

=
N !

(N − x0)!
N δ−N−3/2(N − x1·)

δ−1(N − x0)
N−x0+1/2
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Now the following theorem justifies the condition on the domain of δ in order to have a finite

maxima for the adjusted profile likelihood for Mt b .

Theorem 3.3.2 (a) Finite maximum adjusted profile likelihood estimate of N exists for the

model Mt b only if δ < 1.

(b) For the model Mt b , ∃ some δ0(< 1) 3∀δ <δ0, bL AP
t b (N ) ↓N and hence, corresponding mle of

N tend to the lower bound (x0+1).

Proof. (a) Let us define (∂ /∂ N )l o g bL AP (N ) =b`′(N ). We have b`
′

t b (N ) =β (N +1)−β (N − x0+

1)− l o g N + (δ−3/2−N )/N + (δ−1)/(N − x1·) + l o g (N − x0) + (N − x0+1/2)/(N − x0). After

some algebraic simplification using the asymptotic approximation of digamma function

β (N ) = O (N −1) we have, b`
′

t b (N ) = (δ− 1)/N + (δ− 1)/(N − x1·) + AN , where AN is positive

quantity decreases to zero and equivalent to O (N −2), because β
′
(N ) = O (N −2). Clearly, if

δ= 1, b`
′

t b (N )> 0, for all N > x0. When δ > 1, b`
′

t b (N ) =O (N −1)> 0, for all N > x0. Therefore,

bL AP (N ) is strictly increasing for N > x0 if δ≥ 1 and hence, finite mle, N̂ AP
t b , does not exist for

δ ≥ 1. Again if δ < 1, then b`
′

t b (N ) = AN +BN , where BN = (δ−1)(2N − x1·)/N (N − x1·)< 0 is

increases to zero. So, there may exist some N , for whichb`t b (N ) has maxima. If BN dominates

AN for all N , then maxima coincides with the lowest value, i.e. (x0+1). Hence we can certainly

establish that, for any δ < 1, (x0+1)≤ N̂ AP
t b <∞. Thus, finite mle for Mt b exists only when

δ < 1.

(b) In case of model Mt b , as L P
t b (N ) ↓N for N ≥ x0 and L M P

t b (N ) ↑N for N > x0, then from

Result 3.2.4, we can say that (1− x0/N )1/2 increases in N with a greater rate than the rate of

decrement of L P
t b (N ). Now, N 2(δ−1)(1− x1·/N )δ−1 decreases with N for δ < 1. Therefore, from

Result 3.3.1 one can definitely say that there must exist some δ0 < 1 3 ∀δ <δ0, bL AP
t b (N ) ↓N

and hence the proof. �

Now we try to find a suitable δ (such that δ0 <δ< 1), rather a class of suitable δ, in order to

obtain a reasonable estimate of N . Considering N as real, we found the first derivative of

adjusted profile log-likelihood as (∂ /∂ N )b`t b (N ) = (δ−1)/N +(δ−1)/(N − x1·)+AN , where

sequence AN is positive and equivalent to O (N −2) for fixed data since digamma function

β (N ) =O (N −1). Equating this to zero we have, (1−δ)O (N −1) = AN and this impliesδ= 1−BN ,

where BN is positive sequence of N and equivalent to O (N −1). In practice, one can choose a

δ such that δ= 1−O (N −1).

The expression for the maximum adjusted profile likelihood estimate of N terms out to be

mathematically intractable and thus obtaining an explicit solution is not possible. We explore
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the frequentist and robustness properties of the estimator through computation in section

3.3.2.

Remark: If we apply the proposed adjusted profile likelihood to Mt , then

bL AP
t (N ) = L M P

t (N )N 2(δ−1), for all N ≥ x0.

For model Mt , analogous to Theorem 3.3.2, we have following observations:

(a) ∃ some δ0(< 1) 3 ∀δ < δ0, bL AP
t (N ) ↓ N and hence, corresponding mle of N tend to the

lower bound x0,

(b) ∃ some δ′(> 1) 3∀δ >δ′, bL AP
t (N ) does not have finite estimates.

3.3.2 Simulation Study

In this section, we consider some simulated populations reflecting different possible sit-

uations under Mt b , to illustrate the behaviour of our proposed estimate along with some

competitive estimators in DRS. First, we simulated four populations for each behavioral

dependence situation (φ = 1.25 andφ = 0.80 respectively represents the recapture proneness

and aversion) that encompasses all possible combinations. Capture probabilities for those

populations, each having size N = 500, are structurally presented in Table 3.1. In Indian

PES each EB (Enumeration Block) is approximately 100− 125 households, which means

approximately 450-600 individuals. Thus, we generically analyse simulated population of size

500 in this thesis (smaller sizes would be of little practical relevance). The expected number

of distinct captured individuals (E (x0) =N (p11+p01 +p10)) for each population is cited in

Table 3.1. The first two populations for eachφ with p1· < p·1 refers the usual situation in Post

Table 3.1: Populations with N = 500 considered for simulations study

Population φ p1· p·1 E (x0) Population φ p1· p·1 E (x0)

P1 1.25 0.50 0.65 394 P5 0.80 0.50 0.65 430
P2 1.25 0.60 0.70 422 P6 0.80 0.60 0.70 459
P3 1.25 0.80 0.70 458 P7 0.80 0.80 0.70 483
P4 1.25 0.70 0.55 420 P8 0.80 0.70 0.55 446

Enumeration Survey (PES). The last two populations with p1· > p·1 are just the opposite case

which is observed often in a study of the estimation of injecting drug users (IDU). Now, 200

data sets (x11, x·1, x1·) are generated from each of the above eight populations.

We present the adjusted profile likelihood estimate (AdPL) for each situations for different

reasonable δ values. To compare the performance of our proposed method with existing
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Bayesian strategy, we compute the estimates by Lee et al. (2003[62]). However, Lee et al.

(2003[62]) illustrated their approach in the context of animal capture-recapture experiment

with a large number of sampling occasions. Details of their computation strategy, particularly

for DRS, can be found in Chatterjee and Mukherjee (2016c[27]), on which the Chapter 5 is

based on. In addition, N̂i nd is also computed to empirically measure the extent of bias due

to model mis-specification discussed in section 1.6.2. Final estimates of N is obtained by

averaging over 200 replications. Based on those 200 estimates, sample s.e., sample RMSE

(Root Mean Square Error) and 95% bootstrap confidence interval (C.I.) are also presented

in Table 3.2 forφ = 1.25 representing recapture-prone situations and Table 3.3 forφ = 0.80

representing recapture-averse situations. For Lee’s Bayes estimates, 95% credible interval

(C.I.) based on sample quantile of the marginal posterior distribution of N is presented.

Table 3.2: Summary results for populations P1-P4 (representing recapture-prone situations)
when No directional information onφ is available. Lee et al. (2003[62])’s method is used with
prior π(φ) =U (0.5, 2).

Method P1 P2 P3 P4

N̂i nd N̂ (s.e.) 450(14.10) 460(11.23) 480(7.07) 469(12.01)
RMSE 51.54 41.32 20.55 32.55

C.I. (425, 480) (438, 481) (465, 493) (444, 491)

Lee N̂ (s.e.) 468(20.56) 483(18.45) 485(6.61) 471(8.11)
RMSE 37.94 24.97 16.97 30.61

C.I. (398, 561) (426, 560) (460, 513) (422, 542)

AdPl δ= 1−0.75N −1 N̂ (s.e.) 486(12.15) 513(10.61) 539(7.15) 499(9.74)
RMSE 18.86 17.01 39.82 9.61

C.I. (461, 507) (491, 532) (525, 552) (578, 516)

δ= 1−1.25N −1 N̂ (s.e.) 461(11.47) 488(10.01) 515(6.78) 476(9.27)
RMSE 40.32 15.54 16.32 25.68

C.I. (439, 480) (467, 506) (501, 527) (456, 493)

δ= 1−1.75N −1 N̂ (s.e.) 449(11.13) 476(9.77) 504(6.60) 466(9.02)
RMSE 51.64 25.85 7.71 35.23

C.I. (428, 469) (455, 493) (491, 516) (446, 482)

Table 3.2 says that as δ(< 1) is chosen to be closer to 1, AdPL performs better for case of low

capture probabilities (P1 and P4). In other situations (P2 and P3) where capture probabilities

are high, efficient adjustment coefficient δ will be (1−1.25N −1). In other words, we try to

analyse the performance from the perspective of two kinds of populations where x1· < x·1
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and x1· > x·1. For both kind of situations x1· < x·1 (i.e. P1 and P2) and x1· >10 (i.e. P3 and P4),

AdPL performs progressively better as δ(< 1) is chosen to be closer to 1. Except P3, AdPL

shows more efficient result than Lee’s method. In most of the recapture prone situations,

N̂i nd misleads us, particularly for the cases where capture probabilities are low and/or when

underlyingφ is far from 1.

Table 3.3: Summary results for populations P1-P4 (representing recapture-averse situations)
when No directional information onφ is available. Lee et al. (2003[62])’s method is used with
prior π(φ) =U (0.5, 2).

Method P5 P6 P7 P8

N̂i nd N̂ (s.e.) 563(23.15) 550(14.94) 526(8.08) 538(14.26)
RMSE 67.21 52.48 27.09 40.44

C.I. (523, 615) (524, 578) (510, 541) (513, 565)

Lee N̂ (s.e.) 474(20.80) 512(15.76) 516(6.17) 517(13.02)
RMSE 35.58 19.83 18.71 21.75

C.I. (431, 566) (461, 575) (486, 553) (451, 615)

AdPl δ= 1−0.75N −1 N̂ (s.e.) 533(9.53) 562(7.44) 574(5.70) 536(8.15)
RMSE 34.57 63.05 74.25 36.88

C.I. (513, 552) (547, 577) (563, 584) (521, 551)

δ= 1−1.25N −1 N̂ (s.e.) 505(9.40) 534(6.98) 548(5.21) 510(7.75)
RMSE 10.72 35.23 48.40 13.01

C.I. (487, 524) (519, 547) (537, 557) (497, 525)

δ= 1−1.75N −1 N̂ (s.e.) 492(9.18) 521(6.75) 535(5.00) 499(7.52)
RMSE 12.45 22.04 35.88 9.65

C.I. (474, 510) (506, 534) (525, 545) (485, 512)

Similarly, when we turn to analyse the hypothetical populations with recapture averseness,

Table 3.3 shows that as δ is chosen to be relatively smaller at (1−1.75N −1), AdPL performs

reasonably better. In low capture situations (P5 and P8), AdPL shows more efficient result

than Lee’s method. Table 3.3 also shows that in any recapture averse situations, N̂i nd will

highly overestimate N whenφ is substantially different from 1.

Hence, in both situations of recapture aversion and proneness, performance of N̂i nd be-

comes worse particularly for the populations where x1· < x·1. Lee’s Bayes estimate, with prior

π(φ) =U (0.5,2), generally underestimates forφ > 1 and overestimates forφ < 1 but use of

their estimate is recommended than that of N̂i nd to avoid serious model mis-specification.

However, we found that our proposed adjusted profile likelihood method, with suitably cho-
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sen value of δ, can be a good alternative to Lee et al. (2003 [62]) and it performs better than

Lee’s in most of the situations.

Variance of N̂ AP
t b :

It is found in at the end of section 1.6.2 in Chapter 1 that s.e.(N̂i nd ) is O (N 1/2)when indepen-

dence holds. We also found that estimator N̂ AP
t b is mathematically intractable for computing

its variance. Hence, to study the nature of variability in N̂ AP
t b , a graphical comparison of the

extent of variability in N̂ AP
t b against N̂t , when underlying model is Mt b , is presented.

Let us consider four simulated populations P2, P4, P6 and P8 introduced earlier and rename

them as S1, S2, S3 and S4 respectively. From each of these four population, 200 estimates from

200 generated data sets constitutes the sampling distributions of the estimator and hence

we find the bootstrap s.e. of the estimate. Similar statistics are computed for the estimator

N̂i nd = (x1·x·1/x11) and finally, comparative behaviour of the l n (s .e .) of both the estimators

N̂i nd and N̂ AP
t b are plotted against l n (N ) in Figure 3.1. This figure shows that s.e.(N̂ AP

t b ) is less

than s.e.(N̂t ) ∀N . Numerical investigations carried out above suggests that the proposed

adjusted profile likelihood could be more helpful in the context of population size estimation

(under the model Mt b ) and it shows better efficiency than the usual DSE estimator N̂i nd in

terms of s.e.

Now we examine some frequentist as well as robustness properties of the proposed adjusted

profile-likelihood estimate N̂ AP
t b along with N̂i nd =(x1·x·1/x11).

Frequentist Coverage Performance:

Firstly, under the mis-specification threat (see section 1.6.2), we graphically study the coverage

performance of N̂i nd as N varies to compare with the N̂ AP
t b . We consider all the artificial

populations (under Mt b ) simulated earlier in section 3.3.2. For moderately large population

(say, N > 100), we found both the N̂i nd and N̂ AP
t b to be approximately normal. Figure 3.2

shows multiple plots of the 95% relative UCL ( = (N̂ + 1.96s .e .(N̂ ))/N ) and LCL ( = (N̂ −

1.96s .e .(N̂ ))/N ) corresponding to the estimators N̂i nd and N̂ AP
t b over several true N for all

populations P1-P8. The Relative LCL and relative UCL contains 1 with 0.95 probability. Hence,

we are able to compare how much the relative confidence limits deviate from 1 with gradually

increasing true N (here, it ranges from 100 to 1000). Figure 3.2 shows that relative confidence

bounds of N̂ AP
t b are tighter as well as closer to 1 in most of the situations compared to N̂i nd

for all the populations for different N values.
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Figure 3.1: Comparative plots of s .d .(N̂ ) for both the estimates N̂ AP
t b (dotted line) and N̂i nd

(continuous line) are drawn against true N in a logarithmic scale for the simulated populations
S1, S2, S3 and S4.

Robustness Consideration:

Our other interest lies on the robustness of the proposed estimator and N̂i nd . Actually the

model Mt b is driven by the unidentifiable behavioral response effectφ. An useful estimator

for N should be robust to the underlying φ value and hence, in Figure 3.3, we present a

comparative study on robustness for both the estimates against differentφ. We fix true N

at 500 and same four artificial situations of section 3.3.2 are assumed. φ is considered to

vary between 0.50 and 3.00 for each of the four populations. Figure 3.3 depicts that N̂ AP
t b has

better robustness w.r.t. φ than N̂i nd in all situations.

71



Chapter 3. Profile Likelihood Method

Figure 3.2: Comparative plots of confidence bands of N̂ /N corresponding to both the es-
timates N̂ AP

t b (dotted line) and N̂i nd (continuous line) are drawn against true N for all the
populations P1-P4 (recapture-prone cases) and P5-P8 (recapture-aversion cases). The tar-
geted value of N̂ /N is indicated at 1.0 (presenting unbiasedness).

3.4 Real Data Applications

3.4.1 Malawi Death Data

A DRS data is considered on death count obtained from a Population Change Survey con-

ducted by the National Statistical Office in Malawi between 1970 and 1972 (for details, see

Greenfield, 1975 [45]). Details on this data is presented in section 1.8.1 of Chapter 1. Only

two strata, called Lilongwe (ĉ = 0.593, x·1 > x1·) and Other urban areas (ĉ = 0.839, x·1 < x1·),

are selected to illustrate our approach observing different ĉ values and opposite nature of x·1

and x1·.

Now, if anyone wishes to use the model Mt assuming list-independence and calculate the
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Figure 3.3: Comparative plots of confidence bands of N̂ /N corresponding to both the esti-
mates N̂ AP

t b (dotted line) and N̂i nd (continuous line) are drawn against differentφ for four
situations. The targeted value of N̂ /N is indicated at 1.0 (presenting unbiasedness).

estimate N̂i nd , he/she would find that 365 and 2920 deaths occurred in Lilongwe and Other

urban areas respectively. Nour (1982 [68]) argued that the assumption of independent col-

lection procedures is unacceptable in reality. Assuming the fact that two data sources are

positively correlated (i.e. φ > 1) in a human demographic study, they estimated death sizes

as 378 (i.e. φ̂ = 1.33) and 3046 (i.e. φ̂ = 1.13) for Lilongwe and Other urban areas respectively.

However, in this article we do not make any such assumptions on the directional nature of

φ. Then, Lee et al.’s fully Bayes method with uniform prior π(φ) =U (0.1,2) finds that 372

(φ̂ = 1.19) and 3205 (φ̂ = 1.30) deaths occured in Lilongwe and Other urban areas respectively.

Our adjusted profile likelihood method estimates the death sizes as 378 (φ̂ = 1.33) and 3428

(φ̂ = 1.53) respectively, by suitably taking δ= 1−4(1− ĉ )N −1. Our estimates agree with Nour’s

for Lilongwe but Nour’s estimate for Other urban areas is significantly smaller than Lee’s

estimate as well as our estimate.

73



Chapter 3. Profile Likelihood Method

3.4.2 Injection Drug user Data

Another example of DRS data is considered on injection drug user (IDU) of greater Victoria,

British Columbia, Canada (Xu et al., 2014 [104]). To track the changes in the prevalence of HIV

and hepatitis C, the Public Health Agency of Canada developed the national, cross-sectional

I-Track survey. Details on this data is presented in section 1.8.1. Xu et al. (2014[104]) found

that estimate N̂i nd for the total number of injection drug users was 3329. They anticipated

that N̂i nd might not be worthwhile for this situation and used Huggins (1989 [52]) conditional

likelihood approach to deal with plausible heterogeneity in the data and the estimate was 3342.

Moreover, the time ordering of samples offers an opportunity to use model Mt b . Literature

on epidemiological studies on such type of hidden or hard to reach population says that

individual, who are listed in first survey, tries to avoid the listing operation in second survey.

There is high possibility of recapture-aversion (i.e. φ < 1). Low recapture rate ĉ = 0.075 which

strengthens this possibility.

Considering the DRS data originated from model Mt b withφ > 0, Lee’s (2003[62]) fully Bayes

method with prior π(φ) =U (0.01,2) finds that 596 (φ̂ = 0.11) number of drug users are in

that population. As ĉ is found very low, our adjusted profile likelihood method estimates

the size of injection drug users as 584 (φ̂ = 0.09) taking δ = 1− 4(1− ĉ )N −1. Hence, Lee’s

method and our adjusted profile likelihood method says that if you consider the model Mt b

as appropriate, then total number of injection drug user of greater Victoria is around 580 to

600, a much lower estimate than the estimate of drug users under independence.

3.5 Conclusions

We have considered the most general model Mt b for human population that allows the be-

haviour response effect to play a significant role along with time variation effect in estimating

N . The model Mt b suffers from identifiability problem where evidence of potentiality to

overcome that burden by suitable Bayesian methods is found in literature. However, in this

article we have investigated the usefulness of pseudo likelihood approaches based on profil-

ing the interest parameter N . Ordinary profile, modified profile and approximated modified

profile likelihoods have been shown to be useless for model Mt b . An adjustment of profile

likelihood (AdPL) is proposed tuned by an adjustment coefficient so that reasonably better

solution can be obtained.

The proposed method depends on the choice of δ (close to 1−N −1) using the knowledge

of ĉ and possible direction ofφ. In real life situation, ifφ is unknown, then uniform choice

74



3.5. Conclusions

is possible. Full Bayes with uniform prior provides wider coverage than any other method

but it also possesses lower efficiency than AdPL. Moreover, Lee’s trial-and-error approach

to discover a suitable range for uniform prior π(φ)may take a lot of computational time.

Some other disadvantages are subjectiveness of the informative prior π(φ), highly dispersed

conditional posterior of φ, etc. Thus, the adjusted profile method is useful to obtain an

efficient estimate of population size (N ) very quickly from this complex DRS. In addition to

that, AdPL helps to produce more efficient alternatives specially in recapture prone situations.
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4 Integrated Likelihood Approach2

4.1 Introduction and Motivation

Estimation of the size of a given homogeneous population based on DRS have wide range of

applications from both the frequentist and Bayesian practice. Several estimation techniques

from model Mt and a few for Mt b are available in literature, which are briefly mentioned

in sections 1.4 and 1.6 respectively. In Bayesian paradigm, difficulty may arise as the re-

sulting estimator for N , the population size, might be very sensitive to the choice of prior.

However, when there is nuisance parameter in the model, inference is often based on a

pseudo-likelihood function with properties similar to those of a likelihood function. Since

the basic interest in any capture-recapture type experiment is to make inference on N only, all

other model parameters are treated as nuisance parameters. Thus, non-Bayesian inferential

techniques from such pseudo-likelihood functions are becoming very popular, specially for

complex models like Mt b , Mt h , etc. Usefulness of this kind of non-Bayesian techniques such

as profile and adjusted profile likelihood (Bolfarine et al., 1992[10]), integrated likelihood

with uniform and Jeffrey’s prior (Salasar et al., 2014[79]) also have been investigated in the

literature for model Mt . Advantage of integrated likelihood is that it always exists, unlike

other pseudo-likelihoods - profile, marginal and conditional. Moreover, in small or moderate

samples, it is well known that profile likelihood is not always effective. In integrated likeli-

hood method, the main challenge is to choose a suitable weight function on the nuisance

parameter. All the above merits of integrated likelihood method motivate us to take up the

2 Part of this chapter is based on Chatterjee, K., Mukherjee, D. (2016a[25]). An improved integrated likelihood
population size estimation in Dual-record System. Statistics and Probability Letters 110, 146-154.
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issue of suggesting a new but comparably efficient integrated likelihood approach. In ad-

dition to that, a suitably constructed integrated likelihood could be a potential alternative

to Bayesian method in order to overcome the non-identifiability burden that persists in the

model Mt b . Severini (2007[88]) presents an efficient approach for selecting a weight function

and resulting likelihood preserves some important statistical properties.

The present chapter has a two-fold aim. Firstly, explicit investigation of the applicability

of our proposed integrated likelihood approach formulated in DRS, with the help of Sev-

erini’s (2007[88]) technique, for the model Mt . Secondly, we extend our proposed integrated

likelihood approach to the relatively complex Mt b -DRS context. In this chapter, we will

further investigate the applicability of non-informative (such as uniform, Jeffrey’s) priors as

suitable weigh functions. If this is found to be ineffective, the challenge will be to overcome

the non-identifiability problem of model Mt b successfully by choosing suitable informative

priors.

In the next section, general idea of integrated likelihood method with uniform and Jeffrey’s

weights are presented under DRS in order to obtain an estimate of the population size N

for both the models Mt and Mt b . Later we formulate an integrated likelihood approach

with the help of Severini (2007[88]) in section 4.3. Implementation of this approach for both

the models Mt and Mt b are explained in sections 4.4 and 4.5, respectively, along with the

simulation studies and real data applications for each of the two said models. We also prove

a comparative ordering among all the relevant likelihood and pseudo-likelihood estimates

available for Mt in section 4.4.1. Finally we conclude this chapter in section 4.6.

4.2 Integrated Likelihood Method: Preliminaries

We draw special attention to the integrated likelihood method so that the resulting likelihood

function is useful in this context and satisfies some desirable properties. Integrated likelihood

summarizesL ∗ (discussed in the first paragraph of Section 3.2) by a weighted averaging of

L ∗ over Ψ, with respect to a suitable nonnegative weight function π(ψ|θ ), as

L I (θ ) =

∫

Ψ

L (θ ,ψ|x)π(ψ|θ )∂ ψ. (4.1)

One advantage of this pseudo-likelihood approach is that it is always possible to construct,

unlike conditional or marginal likelihood. π(ψ|θ ) need not be a proper density function. A
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drawback is the plausible subjectiveness in the choice of π(ψ|θ ) and non-orthogonality of

ψ to the parameter of interest θ . Uniform and Jeffrey’s priors on ψ are two popular non-

informative prior densities. Salasar et al. (2014[79]) considered these two priors for multiple

capture-recapture experiment with model Mt .

Independence Model: Mt

In the context of model Mt , θ =N andψ= (p1·, p·1). Now, if the data is supposed to be gener-

ated from model Mt , and uniform prior is considered for both of p1· and p·1 independently,

we obtain the integrated likelihood as

LU
I (N ) =

Γ (N − x1·+1)Γ (N − x·1+1)
Γ (N − x0+1)Γ (N +2)(N +1)

and

RU
I (N ) =

LU
I (N +1)

LU
I (N )

=
(N − x1·+1)(N − x·1+1)(N +1)

(N − x0+1)(N +2)2
.

Hence, MLE from L I
U is N̂ U

I = [{−b −
p

(b 2−4a c )}/2a ]+1, where a =−(x11+2), b = (x·1 x·1−

2x11 + 2x0 − 5) and c = (x1·x·1 − x11 + 3x0 − 3). On the other hand, Jeffrey’s prior on ψ is

πJ (ψ)∝
p

|I(ψ)|= p−1/2
1· p−1/2

·1 (1−p1·)−1/2(1−p·1)−1/2, where I(ψ) is the Fisher’s information

matrix onψ. The resulting integrated likelihood using πJ (ψ) is

L J
I (N ) =

Γ (N − x1·+1/2)Γ (N − x·1+1/2)
Γ (N +1)Γ (N − x0+1)

and

R J
I (N ) =

L J
I (N +1)

L J
I (N )

=
(N − x1·+1/2)(N − x·1+1/2)

(N − x0+1)(N +1)
.

Hence, associated MLE is

N̂ J
I = [{x1·x·1+ (x10 x01)/2−1}/(x11+1)] +1.

For any real u , [u ] denotes the greatest integer not more than u . Both estimates always exist,

even for x11 = 0. The next theorem gives a comparative relation between these two basic

integrated likelihoods.

Theorem 4.2.1 N̂ J
I ≤ N̂ U

I , provided x1·, x·1 ≥N /2.
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Proof. R J
I (N ) =RU

I (N )(N −x1·+1/2)(N −x·1+1/2)(N +2)2(N −x1·+1)−1(N −x·1+1)−1(N +1)−2.

Now, let (N − x1·+1/2) = a1 and (N − x·1+1/2) = a2. Then

(N − x1·+1)(N − x·1+1)
(N − x1·+1/2)(N − x·1+1/2)

=
(a1+1/2)(a2+1/2)

a1a2
= 1+

1

2a1
+

1

2a2
+

1

4a1a2
.

If we assume x1·, x·1 ≥N /2, then (N +1)−1 ≤ (2a1)−1 and (N +1)−1 ≤ (2a2)−1 which establishes

that R J
I (N )<RU

I (N ). �

Behavioral Dependence Model: Mt b

In capture-recapture context, for fixed θ , Jeffrey’s and uniform/constant priors are the two

most popular non-informative prior densities on ψ (Salasar, 2014[79]). When θ = N , the

uniform prior, π(ψ|N )∝ 1, whereψ= (p1·, c , p ) for likelihood (1.16), implies

L I
U (N ) =

∫

Ψ

L (N ,ψ|x)∂ ψ∝ (N +1)−1(N − x1·+1)−1.

Again if we consider π(ψ|N ) as Jeffrey’s prior, then π(ψ|N ) is proportional to
p

|IN (ψ)|, where

IN (ψ) is 3×3 Fisher’s Information matrix for given N . Therefore,

π(ψ|N ) =
�

�

�

�

D i a g o na l

�

N

p1·(1−p1·)
,

N p01

c (1− c )
,

N (1−p1·)
p (1−p )

��

�

�

�

1/2

= {c (1− c )p (1−p )}−1. (4.2)

Hence,

L I
J (N ) =

∫

Ψ

L (θ ,ψ|x)π(ψ|θ )∂ ψ=
(N − x1·)

(N +1)(N − x0)
.

Thus, both of the above pseudo likelihoods show failure of this integrated likelihood method

when non-informative prior is used, because this prior could not include any extra infor-

mation to the likelihood and that is why the resultant likelihood could not overcome the

non-identifiability problem.
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4.3 Proposed Integrated Likelihood Approach

In order to construct an integrated likelihood function to be useful for non-Bayesian inference,

the resultant integrated likelihood should possess frequentist properties relevant for likeli-

hood function. These properties should have implications for the selection of the conditional

prior density π(ψ|θ ). Severini (2007[88]) analysed some of these properties which suggest

that π(ψ|θ ) is to be chosen so that, for nuisance parameter γ, with the same dimension asψ

and unrelated to θ , γ and θ should be independent under π(ψ|θ ) (at least approximately).

Therefore the task is to find such parameter γ and then choose a prior density π(γ) for γ that

does not depend on θ . Here we take unrelated to mean that γ̂θ , the maximum likelihood

estimator of γ for fixed θ , is approximately constant as a function of θ (see Cox and Reid,

1987[30]). Hence, the integrated likelihood function for θ with respect to π(γ) reduces to

LS (θ ) =

∫

Γ

L (θ ,γ|x)π(γ)∂ γ. (4.3)

Construction of such unrelated nuisance parameter γ is as follows:

If the model is re-parameterized by a nuisance parameter γ that is strongly unrelated to θ

i.e. γ̂θ = γ̂+O (n−1/2)O (|θ − θ̂ |) and if π(γ|θ ) does not depend on θ , then the first two Bartlett

identities hold for integrated likelihood approximately to O (N −1). From the implicit equation

we have

E {`ψ(θ ,ψ); θ̂ ,γ} ≡ E {`ψ(θ ,ψ);θ0,γ0} |(θ0=θ̂ ,γ0=γ)
= 0, (4.4)

from which one can solve γ as γ(θ ,ψ; θ̂ ). Severini (2007 [88]) proved that γ̂ = ψ̂ and γ is

strongly unrelated to θ . Then solution γ(θ ,ψ; θ̂ ) from (4.4) is called zero-score-expectation

parameter. Now, one can choose any suitable prior π(γ) for γ as L
S

does not heavily depend

on the chosen prior whereas for orthogonal parameters, the proposed integrated likelihood

may depend on the choice of prior.

One can find γ in a different way. The aim is to find a function γ(θ ,ψ) such that γ̂θ = γ̂+

O (n−1/2)O (|θ − θ̂ |). Hence we find such a parameter γ= g (θ ,ψ)which impliesψ= h (θ ,γ) for

some h, if such a function h exists, so that ψ̂θ = h (θ , γ̂θ ) = h (θ , γ̂)+O (n−1/2). So, for any value

of θ , ψ̂θ depends on the data only through γ̂. In many situations, γ̂ does not exist. So, we

consider γ as a function of θ̂ in addition to (θ ,ψ). It can be written as γ= g (θ ,ψ; θ̂ ), which
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impliesψ= h (θ ,γ; θ̂ ). As ψ̂θ = h (θ , γ̂θ ; θ̂ ), we must have

ψ̂θ = h (θ , γ̂; θ̂ ) +O (n−1/2)O (|θ − θ̂ |), (4.5)

where γ̂θ = γ̂+O (n−1/2)O (|θ − θ̂ |). Hence, one may attempt to find such a function h so that

(4.5) holds.

Now we discuss several desirable properties of L
S
(θ ). γ is less related to θ than any param-

eter orthogonal to θ . Thus, π(γ) is less sensitive to θ than π(ψ|θ ). Moreover, the resulting

integrated likelihood approximately satisfies the score unbiasedness and information unbi-

asedness properties, very less prior sensitivity and invariance with re-parametrization.

4.4 Analysis of Model Mt

4.4.1 Implementation & Associated Results

In order to apply the proposed approach to model Mt , at first we find the strongly unrelated

nuisance parameter corresponding to ψ = (ψ1,ψ2) = (p1·, p·1) and the resulting likelihood

function is stated in the following theorem.

Theorem 4.4.1 For model Mt , the strongly unrelated nuisance parameter is γ=(γ1,γ2), where

γ1 = (N /N̂ )p1· and γ2 = (N /N̂ )p·1. Therefore, the likelihood given by (1.8) becomes

L (N ,γ1,γ2)∝
N !

(N − x0)!
N −(x1·+x·1)γ

x1·
1 γ

x·1
2 (1−γ1

N̂

N
)N−x1· (1−γ2

N̂

N
)N−x·1 ,

N ≥ x0 and γ1,γ2 > 0.

Proof. The log-likelihood of model Mt is `(N ,ψ1,ψ2) = Σ
x0−1
i=0 l n (N − i ) + x1·l n (ψ1) + (N −

x1·)l n (1−ψ1)+x·1l n (ψ2)+(N −x·1)l n (1−ψ2) and `ψ1
(N ,ψ1,ψ2) = (x1·/ψ1)−(N −x1·)/(1−ψ1),

`ψ2
(N ,ψ1,ψ2) = (x·1/ψ2)− (N − x·1)/(1−ψ2). Therefore,

E (`ψ1
(N ,ψ1,ψ2) : N0,ψ1,0,ψ2,0) = (N0ψ1,0/ψ1)− (N −N0ψ1,0)/(1−ψ1),

E (`ψ2
(N ,ψ1,ψ2) : N0,ψ1,0,ψ2,0) = (N0ψ2,0/ψ2)− (N −N0ψ2,0)/(1−ψ2).
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Using (4.4) we obtain N̂ γ1
ψ1(1−ψ1)

= N
1−ψ1

and that implies

γ1 = (N /N̂ )ψ1 = (N /N̂ )p1·,γ2 = (N /N̂ )ψ2 = (N /N̂ )p·1.

Thus, one may easily obtain the final likelihood after replacing p1· and p·1 with the corre-

sponding unrelated nuisance parameters γ1 and γ2 respectively. �

In order to choose a suitable prior π(γ), for γ1,γ2 > 0, here we consider independent prior

specification π(γ) = π(γ1)π(γ2) and use only non-informative priors, such as uniform and

Jeffrey’s priors, as discussed in Section 4.2. Hence, we can easily find the likelihood function

LS (N ) of N only, by integrating over the domain Γ (=R+×R+) of γ, following (4.3).

Proposition 4.4.1 Under the setup of Theorem 4.4.1, if improper uniform prior is used i.e.

π(γ1)∝ 1 and π(γ2)∝ 1, then integrated likelihood of N (≥ x0) is given by

L
U
S (N ) =

Γ (N − x1·+1)Γ (N − x·1+1)N 2

Γ (N − x0+1)Γ (N +2)(N +1)
. (4.6)

It is clear that L
U
S (N ) converges to 0 as N →∞. From uniform likelihood L

U
S (N ), we obtain

the ratio

RU
S (N ) =

L
U
S (N +1)

L
U
S (N )

=
(N − x1·+1)(N − x·1+1)(N +1)3

(N − x0+1)(N +2)2N 2

Hence, L
U
S (N ) is increasing in N for N <N0, where N0 satisfies N 4

0 x11−N 3
0 (x1·x·1−4x11+2)−

N 2
0 (3x1·x·1 − 2x0 − 6x11+ 6)−N0(3x1·x·1 − 4x1· − 4x·1+ 5)− (x1·x·1 − x1· − x·1) = 0. Hence one

may have the following proposition.

Proposition 4.4.2 The integrated likelihood estimate corresponding to (4.6) is

N̂ U
S = [N0] +1, if N0 is not an integer and N̂ U

S =N0, if N0 is an integer.

Proposition 4.4.3 Under the setup of Theorem 4.4.1, if the prior π(γ) is Jeffrey’s prior i.e.

π(γ1,γ2)∝ γ−1/2
1 γ−1/2

2 (1−γ1
N̂
N )
−1/2(1−γ2

N̂
N )
−1/2, then integrated likelihood of N (≥ x0) is

L
J
S (N ) =

Γ (N − x1·+1/2)Γ (N − x·1+1/2)
Γ (N − x0+1)Γ (N )

. (4.7)

83



Chapter 4. Integrated Likelihood Approach2

Again, L
J
S (N ) converges to 0 as N →∞. From (4.7), we obtain the ratio

R J
S (N ) =

L
J
S (N +1)

L
J
S (N )

=
(N − x1·+1/2)(N − x·1+1/2)

N (N − x0+1)
.

Thus,
L

J
S (N+1)

L
J
S (N )

> 1 implies N <
x1·x·1

x11
− x1·+x·1

2x11
+ 1

4x11
=N1 (say). Hence the following proposition.

Proposition 4.4.4 The maximum integrated likelihood estimate obtained from (4.7) is N̂ J
S =

[N1] +1, if N1 is not an integer and N̂ J
S =N1, if N1 is integer.

Now we further establish some results on N̂ J
S and N̂ U

S along with some other pseudo-likelihood

based estimates, such as, profile likelihood, conditional likelihood and basic integrated like-

lihood with non-informative priors. As it has been shown in section 1.4.1 of chapter 1 that

conditional MLE N̂C from the Lincoln-Petersen model is identical to the popular dual system

estimate N̂i nd .

Theorem 4.4.2 N̂ U
I ≤ N̂ J

S , if and only if ma x (x1·, x·1)< 2N /3.

Proof. RU
I (N ) = (N − x1·+1)(N − x·1+1)(N +1)(N − x0+1)−1(N +2)−2. Let a1 = (N − x1·+1/2),

a2 = (N − x·1+1/2) and y = (N +1). If we assume R J
S >RU

I , then a1a2(y+1)2

(a1+1/2)(a2+1/2)y (y−1) > 1

⇔ a1a2(3y +1) > y (y −1)(a1+a2+1/2)/2

= N (N +1)(N − (x1·+ x·1)/2+3/4)

> N (N +1).mi n (a1, a2)

⇔ a2(3N +4) > N (N +1), (WLG, a1 < a2, i.e. x·1 < x1·)

Therefore, neglecting the terms of O (N −1), we find 2N + 3 − 3x·1 + 3/2 > 4x·1/N . Since

0≤ p·1 ≤ 1, it is sufficient to check whether 2N +3−3x·1+3/2> 4 or, N > 3x·1/2−1/4. Thus,

if N > 3x·1/2, R J
S >RU

I . Similarly, when a1 > a2, R J
S >RU

I only if N > 3x1·/2. Hence, R J
S >RU

I

if and only if ma x (x1·, x·1)≤ 2N /3. Otherwise, R J
S <RU

I . �

If (x1·+ x·1)/2x11 is close to 0, N̂ J
S is approximately equal to N̂i nd , since (1/4x11 =Op (N −1))

is negligible for moderate or high N . It is easy to see that N̂ U
I ≤ N̂ U

S and N̂ J
I ≤ N̂ J

S from the

expressions of RU
S (N ), RU

I (N ), R J
S (N ) and R J

I (N ). If we consider the case of conditional MLE

N̂C , we have extensions of these results which are given as Theorems 4.4.3 and 4.4.5.
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Theorem 4.4.3 When x11 > 0,

(a) N̂ U
I ≤ N̂C ≤ N̂ U

S . As all relevant estimates belong to subset of Z+, and relative difference

between RU
S (N ) and RC (N ) is of O (N −2), then N̂ U

S and N̂C commonly coincide.

(b) N̂ J
I ≤ N̂ J

S ≤ N̂C .

Proof of Theorem 4.4.3(a). In association with likelihood (1.8) for model Mt , the conditional

likelihood LC (N ) is shown in Severini (2000, pp. 281). Then,

RC (N ) =
LC (N +1)

LC (N )
=
(N − x1·+1)(N − x·1+1)
(N − x0+1)(N +1)

= RU
I (N )

(N +2)2

(N +1)2
.

Hence, RC (N ) = RU
I (N )(1+ AN ), where AN is a positive quantity of order O (N −1). Thus,

RC (N )>RU
I (N ), which implies N̂ U

I ≤ N̂C . Again, RC (N ) =RU
S (N )(N +2)2N 2/(N +1)4. Using

the result of A.M. > G.M, it can be easily shown that RC (N ) < RU
S (N ), which implies N̂ U

S ≥

N̂C . Moreover, RC (N ) = RU
S (N )(1− BN ), where BN is a positive quantity of order O (N −2).

Hence, equality holds between N̂ U
S and N̂C even for moderate N , as both of them are integer

estimates.

In order to proof the second part of the above theorem, at first we consider R J
S (N ) where

R J
S (N ) = (N − x1·+1/2)(N − x·1+1/2)(N − x0+1)−1N −1. Therefore,

RC (N ) =R J
S (N )×

(N − x1·+1)(N − x·1+1)N
(N − x1·+1/2)(N − x·1+1/2)(N +1)

.

Now consider a1 and a2 as in the proof of Theorem 4.2.1. Then, (a1+1/2)(a2+1/2)/a1a2 >

1+mi n (a−1
1 , a−1

2 )+ (a1a2)−1/4> 1+N −1 = (N +1)/N . So, RC (N )> R J
S (N ). Hence the proof

using the result N̂ J
I ≤ N̂ J

S . �

N̂C is almost identical to N̂ U
S which is due to the close relation between the integrated and

conditional likelihood functions. The following theorem states yet another inequality relation

between previously discussed estimates and the profile likelihood estimate N̂P , where N̂P is

just a DRS version of profile likelihood estimate discussed in Bolfarine et al. (1992, [10]). Let

us consider the following Lemma in order to establish the next theorem.

Lemma 4.4.4
�

N
N+1

�2N �

1+ 1
N−x1·

�N−x1·
�

1+ 1
N−x·1

�N−x·1
< 1.

Proof of Lemma. Since N − x1· < N , N − x·1 < N and ln(1+ y )/y ↓ y ,
�

1+ 1
N−x1·

�N−x1·
<

�

1+ 1
N

�N
and

�

1+ 1
N−x·1

�N−x·1
<
�

1+ 1
N

�N
. �
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Theorem 4.4.5 (a) N̂P ≤ N̂C ,

(b) N̂ J
S ≤ N̂P when x1·+ x·1 ≥N /2,

(c) N̂P ≤ N̂ U
I when x1·, x·1 ≥ 2N /3 and N̂P ≥ N̂ U

I when x1·, x·1 ≤N /3.

Proof. Part (a). We have RP (N ) =
LP (N+1)

LP (N )

=
N 2N (N − x1·+1)(N − x·1+1)
(N +1)2N+1(N − x0+1)

�

1+
1

N − x1·

�N−x1·
�

1+
1

N − x·1

�N−x·1

= RC (N )
N 2N

(N +1)2N

�

1+
1

N − x1·

�N−x1·
�

1+
1

N − x·1

�N−x·1

.

Hence, using Lemma 4.4.4, the proof is complete from RP (N )<RC (N ).

Part (b). At first we find RP (N ) =R J
S (N )

(N−x1·+1)(N−x·1+1)
(N−x1·+1/2)(N−x·1+1/2)

× N
N+1

�

1+ 1
N

�−2N �

1+ 1
N−x1·

�N−x1·
�

1+ 1
N−x·1

�N−x·1
. We assume RP (N )< R J

S (N ). Hence, using

Lemma 4.4.4 we must have

(N − x1·+1)(N − x·1+1)
(N − x1·+1/2)(N − x·1+1/2)

N

N +1
< 1.

That implies numerator of the l.h.s. of the above expression, N um =N (N − x1·)(N − x·1) +

N (N − x1·) +N (N − x·1) +N is less than the denominator of the l.h.s., D e no m = (N − x1·+

1/2)(N − x·1+1/2)(N +1). After some simple algebraic manipulations, one can write

D e no m =N um + x1·x·1− (N +1)(x1·+ x·1−1/2)/2

and thus we need x1·x·1− (N +1)(x1·+ x·1−1/2)/2> 1

⇔ 2 >

�

1

p1·
+

1

p·1

�

+
1

N

�

1

p1·
+

1

p·1
−

1

2p1·p·1

�

−
1

2N 2p1·p·1
, (4.8)

since x1· = N p1· and x·1 = N p·1. If we ignore the terms of O (N −2) for moderate or large N

and assume p1·+p·1 >
1
2 or equivalently x1·+ x·1 >

N
2 , then inequality (4.8) does not hold. So,

RP (N )>R J
S (N ) by contradiction and hence the proof of Theorem 4.4.5(b).

Part (c). We have

RP (N ) =RU
I (N )

�

1+ 1
N

�−2N �

1+ 1
N+1

�2 �

1+ 1
N−x1·

�N−x1·
�

1+ 1
N−x·1

�N−x·1
.

Then, ln RP (N ) = ln RU
I (N ) +M , where M is the logarithm of the remaining terms of the
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above expression. We consider second order approximation of M and after some routine

simplification, we have

M '
1

N
+

2

N +1
−

1

(N +1)2
−

1

2(N − x1·)
−

1

2(N − x·1)
.

Now if x1·, x·1 ≥ 2N /3, then 1
2(N−x1·)

, 1
2(N−x·1)

≥ 3/2N . Hence, M ≤ 1
N +

2
N+1 −

1
(N+1)2 −

3
N < 0.

Thus, RP (N ) < RU
I (N ) under x1·, x·1 ≥ 2N /3. Again, if x1·, x·1 ≤ N /3, then M ≥ 1

N +
2

N+1 −
1

(N+1)2 −
3

2N > 0. Thus, RP (N ) > RU
I (N ) under x1·, x·1 ≤ N /3. This completes the proof of

Theorem 4.4.5(c). �

Thus, summarizing all the above results, we have the theorem below.

Theorem 4.4.6 For alternative capture-recapture propensity, we have the following ordering

among relevant estimates:

(a) N̂ J
I ≤ N̂ U

I ≤ N̂ J
S ≤ N̂P ≤ N̂C ≤ N̂ U

S if x1·, x·1 ∈ [N2 , 2N
3 ),

(b) N̂ J
I ≤ N̂ J

S ≤ N̂P ≤ N̂ U
I ≤ N̂C ≤ N̂ U

S if x1·, x·1 ≥ 2N
3 ,

(c) If mi n (x1·, x·1) ∈ [N2 , 2N
3 ) and ma x (x1·, x·1)≥ 2N

3 , then either (b) holds or N̂ J
I ≤ N̂ J

S ≤ N̂ U
I ≤

N̂P ≤ N̂C ≤ N̂ U
S .

4.4.2 Simulation Study

In this section, performance of both the newly developed integrated likelihood estimates N̂ U
S

and N̂ J
S are investigated along with mle, N̂U M L E , some other pseudo-likelihood based esti-

mates - N̂C , profile likelihood N̂P and other two general integrated likelihood estimates N̂ U
I

and N̂ J
I . First we simulate six hypothetical populations following model Mt , corresponding

to six pairs of capture probabilities (p1·, p·1)={(0.50, 0.65), (0.60, 0.70), (0.60, 0.80), (0.80, 0.70),

(0.80, 0.60), (0.70, 0.55)} for each population of size 500 and 5000 (to investigate the size effect

on estimator, if any). We denote these six populations as P1, P2, . . ., P6 respectively and the

associated results are presented in Table 4.1. 200 data sets on (x1·, x·1, x11) are generated from

each population and final estimate of N is obtained by averaging over 200 estimates. Now,

based on those 200 estimates, sample s.e., sample RMSE (Root Mean Square Error) and 95%

confidence interval (C.I.) are computed.

Empirical study confirms the findings of Theorem 4.4.3(a) that the proposed estimate N̂ U
S is

exactly identical to the conditional mle N̂C . Also, N̂C is identical to N̂i nd . Thus only N̂ U
S is

presented in Table 4.1. This table shows that the general integrated likelihood estimates N̂ U
I

and N̂ J
I are almost same in DRS, while the performances of profile likelihood estimate N̂P
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Table 4.1: Summary results of the proposed estimates N̂ U
S and N̂ J

S along with other existing
integrated likelihoods, profile likelihood and unconditional mle for the populations P1-P6.

Population N̂U M L E N̂P N̂ U
I N̂ J

I N̂ U
S N̂ J

S

N = 500
P1 N̂ (s.e.) 499(15.78) 498(15.77) 499(15.67) 499(15.71) 500(15.87) 499(15.80)

RMSE 15.82 16.74 15.84 15.92 15.87 16.85
C.I. (474, 533) (473, 532) (474, 533) (473, 534) (475, 534) (474, 533)

P2 N̂ (s.e.) 499(11.79) 499(11.75) 499(11.70) 499(11.75) 500(11.80) 500(11.75)
RMSE 11.84 11.80 11.74 11.78 11.80 11.75

C.I. (478, 518) (479, 519) (479, 519) (479, 519) (479, 519) (479, 519)

P3 N̂ (s.e.) 499(9.23) 500(9.25) 499(8.95) 499(8.92) 501(9.23) 500(9.25)
RMSE 9.29 9.25 9.00 8.98 10.21 9.25

C.I. (482, 517) (482, 518) (482, 516) (482, 516) (483, 518) (482, 518)

P4 N̂ (s.e.) 499(8.05) 500(8.03) 500(7.95) 499(7.93) 500(8.10) 500(8.02)
RMSE 8.12 8.03 7.95 7.95 8.10 8.02

C.I. (486, 515) (486, 515) (486, 515) (486, 516) (486, 516) (486, 515)

P5 N̂ (s.e.) 499(8.56) 499(8.64) 500(8.61) 499(8.68) 500(8.65) 499(8.63)
RMSE 8.63 8.70 8.61 8.73 8.65 8.68

C.I. (482, 513) (483, 514) (483, 514) (482, 514) (483, 514) (483, 514)

P6 N̂ (s.e.) 498(12.98) 497(12.99) 498(12.93) 498(12.95) 499(13.03) 499(12.95)
RMSE 13.13 14.24 14.35 14.36 13.07 12.05

C.I. (473, 519) (472, 519) (473, 519) (473, 521) (474, 521) (474, 520)

N = 5000
P1 N̂ (s.e.) 5002(56.32) 4994(49.28) 5002(56.32) 5002(56.33) 5003(56.36) 5002(56.32)

RMSE 56.35 49.65 56.35 56.37 56.44 56.35
C.I. (4900, 5111) (4906, 5087) (4902, 5111) (4901, 5112) (4903, 5112) (4902, 5112)

P2 N̂ (s.e.) 4996(39.80) 4998(41.89) 4996(39.80) 4996(39.81) 4999(39.82) 4996(39.80)
RMSE 40.00 41.95 40.00 40.01 39.85 40.00

C.I. (4905, 5072) (4917, 5078) (4906, 5072) (4906, 5073) (4908, 5075) (4906, 5072)

P3 N̂ (s.e.) 4996(30.52) 4996(28.88) 4096(30.55) 4096(30.54) 4997(30.51) 4996(30.52)
RMSE 30.78 28.99 30.83 30.81 30.73 30.78

C.I. (4940, 5057) (4948, 5059) (4941, 5057) (4941, 5058) (4941, 5058) (4940, 5057)

P4 N̂ (s.e.) 5000(25.02) 4999(23.72) 5000(24.92) 4999(24.97) 5000(25.04) 4999(25.04)
RMSE 25.02 23.74 24.92 25.01 25.04 25.08

C.I. (4957, 5055) (4951, 5048) (4957, 5055) (4957, 5056) (4957, 5056) (4957, 5055)

P5 N̂ (s.e.) 4997(29.62) 4998(30.94) 4998(29.59) 4998(29.64) 4999(29.64) 4998(29.61)
RMSE 29.77 30.98 29.64 29.71 29.68 29.68

C.I. (4940, 5055) (4942, 5060) (4941, 5056) (4941, 5056) (4941, 5056) (4941, 5056)

P6 N̂ (s.e.) 4998(42.76) 5006(45.48) 4999(42.76) 4998(42.77) 4999(42.79) 4999(42.76)
RMSE 42.81 45.87 42.77 42.82 42.80 42.77

C.I. (4908, 5080) (4919, 5086) (4909, 5080) (4909, 5081) (4910, 5081) (4909, 5080)

and unconditional mle N̂U M L E are quite similar. But N̂P is less preferable due to its relatively

small accuracy for low capture probabilities and significantly greater computation time. The

present numerical results show that the proposed integrated likelihood estimate with Jeffrey’s

prior, N̂ J
S , is slightly more efficient than N̂ U

S , in most of the situations. Hence, it is found to

be the best among all other competitive pseudo-likelihood estimates and slightly better than

N̂U M L E . It is also found that N̂ J
S ≤ N̂ U

S , which is similar to the result for general integrated
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likelihood (see Theorem 4.2.1). Comparing the results for different population sizes, it is seen

that the variation is roughly of order
p

N , which is consistent with the theory. Otherwise, the

performance of alternative estimators show quantitatively similar ranking.

4.4.3 Real Data Applications

I. Transmitted Tuberculosis Data. To estimate the number of transmitted Tuberculosis (TB)

cases in three urban districts of Madrid during 1997-1999, Ien igo et al. (2003, [53]) used

conventional epidemiological data and the information on clustered cases obtained by DNA

fingerprinting as independent Dual-record System. Using different covariates, they formed

several stratifications in the population for the analysis. For illustration of our proposed

methods, here we consider the whole unstratified population and its stratification based on

sex and age only (see Table 4.2).

II. Road Traffic Mortality Data. Another data on deaths from road traffic injuries (RTIs),

available in Samuel et al. (2012, [80]), is also considered for illustration purpose. RTIs are

responsible significantly for the preventable death and disability in developing countries and

it is grossly under-reported. For that, police accident reports and a hospital-based trauma

registry together build up an incomplete DRS and that is used to estimate the size of the

Road Traffic Deaths separately for all inhabitants, men and women in the Lilongwe district of

Malawi (see Table 4.2).

Using the above two data sets we have computed the various estimates as put forward above,

along with the performance measures, s.e. and 95% confidence interval (C.I.). Both of these

measures are computed by usual parametric bootstrap method over a bootstrap sample of

size 500. The ordering of the estimators in our real data illustrations are consistent with the

theory and simulation results. The efficiency behaviour of N̂ J
S , N̂ U

S , N̂ J
I and N̂ U

I all turn out

to be as expected. The variability is also well within the
p

N order bounds as suggested by

the numerical results.

4.5 Analysis of Model Mt b

4.5.1 Implementation & Associated Results

In this section we extend our investigation on the applicability of newly developed integrated

likelihood approach (in section ) for the time-behavioral dependence model. We construct

the relevant unrelated nuisance parameter γ, then choose π(γ) satisfying posterior unbi-
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Table 4.2: Summary results of the proposed estimates N̂ U
S and N̂ J

S along with other estimates
in two real data applications.

Population N̂U M L E N̂P N̂ U
I N̂ J

I N̂ U
S N̂ J

S

TRANSMITTED TUBERCULOSIS DATA
Total N̂ (s.e.) 148(27.23) 148(27.15) 143(22.92) 144(24.73) 150(27.83) 148(0.76)

C.I. (109, 219) (113, 235) (108, 200) (107, 207) (112, 223) (146, 149)

Male N̂ (s.e.) 82(19.48) 83(20.93) 80(14.66) 80(16.26) 85(20.40) 83(19.52)
C.I. (59, 134) (63, 147) (60, 114) (59, 119) (61, 138) (59, 135)

Female N̂ (s.e.) 59(27.40) 60(26.95) 54(14.06) 56(17.47) 62(29.05) 60(27.27)
C.I. (37, 142) (41, 148) (37, 94) (36, 110) (38, 150) (37, 143)

Lower Age N̂ (s.e.) 106(70.28) 106(47.16) 92(28.02) 96(37.96) 111(74.81) 106(70.32)
(< 35 Years) C.I. (60, 308) (65, 247) (59, 171) (58, 214) (62, 327) (61, 308)

Higher Age N̂ (s.e.) 52(10.77) 52(10.45) 51(8.50) 51(9.25) 54(11.55) 52(10.83)
(≥ 35 Years) C.I. (38, 81) (42, 85) (38, 72) (38, 75) (39, 85) (38, 81)

ROAD TRAFFIC MORTALITY DATA
Total N̂ (s.e.) 382(47.03) 382(44.77) 375(43.76) 378(45.39) 385(46.70) 382(46.02)

C.I. (38, 81) (321, 474) (308, 477) (308, 485) (313, 497) (309, 494)

Male N̂ (s.e.) 289(34.67) 289(32.23) 284(31.92) 285(32.82) 292(35.01) 289(34.67)
C.I. (232, 371) (241, 362) (230, 357) (231, 362) (234, 374) (233, 371)

Female N̂ (s.e.) 68(39.85) 68(33.87) 60(17.49) 62(22.68) 71(42.60) 68(39.87)
C.I. (39, 194) (43, 183) (38, 106) (38, 126) (40, 209) (39, 194)

asedness condition. We present the consequent theorems, results and properties for the

parametrization (1.15) in chapter 1.

At first we consider the nuisance parameterψ= (p1·, c , p ) along with the parameter of interest

θ =N . Following theorem finds strongly unrelated parameter corresponding to the nuisance

parameterψ.

Theorem 4.5.1 Using (4.4), the strongly unrelated parameter for ψ is γ=(γ1,γ2,γ3), where

γ1 = (N /N̂i nd )p1·, γ2 = c and γ3 =
1−p1·

(N̂i nd /N )−p1·
p .

Since current model suffers from non-identifiability, so non-informative priors for resultant

unrelated parameters (as in Theorem 4.5.1) would not work satisfactorily, as in the case of

ordinary integrated likelihoods under uniform and Jeffrey’s priors. Thus, we consider some

informative prior for γ so that hyper-parameters satisfy some relations that lead to effective

frequentist properties.

Theorem 4.5.2 In connection with Theorem 4.5.1, if the prior π(γ) is of the form π(γ) =

π(γ1)π(γ2)π(γ3) and π(γ1) =G B 1(b1 =
N

N̂i nd
, r1, s1), π(γ2) =U ni f (0,1) and π(γ3) =G B 1(b2 =
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1−p1·
(N̂i nd /N )−p1·

, r2, s2), for any positive real numbers r2, s2, r1, s1 satisfying r2+ s2 = s1, then inte-

grated likelihood of N for model Mt b becomes

L
I
t b (N ) =

Γ (N − x0+ s2)Γ (N +1)
Γ (N + r1+ s1)Γ (N − x0+1)

, (4.9)

for N ≥ x0. Thus, for the given values of r1, s1 and s2, L
I
t b (N ), in (4.9), is non-decreasing in N

for

N ≤
x0(r1+ s1−1)

r2+ r1
−1 (4.10)

and L
I
t b (N ) converges to 0 as N →∞.

On the basis of the relationship between γ andψ, mentioned in Theorem 4.5.1, we suggest the

values of hyper-parameters r2, s2 and r1 using posterior unbiasedness of γ (after considering

γ as function of N ). We suggest r2 = b x01 and s2 = b (N ∗− x0) for some b , where N ∗ is some

other working estimate of N . So, s1 = b (N ∗ − x1·). Now, for fixed N , γ1 = (N /N̂i nd )p1· =

(N /N̂i nd )(x1·/N ) = (x1·/N̂i nd ). Hence, from the posterior unbiasedness condition regarding

unrelated parameter γ1, we have (x1·/N̂i nd )' Eπ(γ1) = (N /N̂i nd ){(r1+ x1·)/(r1+ s1+N )} and

this implies r1 = x1·s1/(N − x1·) after some algebraic manipulation. Thus r1 depends on N

and therefore, the right hand side of the condition in (4.10) also becomes dependent on N .

So, N ≤ x0{r1(N )+s1−1}
{r2+r1(N )} − 1⇔ x0{r1(N )+s1−1}

{r2+r1(N )} −N ≥ 1 and x0{r1(N )+s1−1}
{r2+r1(N )} −N is non-increasing in

N . Hence, the following theorem discusses the possibility of existence of the corresponding

maximum likelihood estimate.

Theorem 4.5.3 For r1 = x1·.s1/(N − x1·) = r1(N ), ∃ a real N > x0, say N0 = N0(x), such that

N ≤ x0{r1(N )+s1−1}
{r2+r1(N )} −1⇔ x0{r1(N )+s1−1}

{r2+r1(N )} −N ≥ 1⇔N ≤N0 <∞.

Hence from Theorem 4.5.3, it can be said that L
I
t b (N ) is increasing in N for N ≤ N0 and

hence, N̂ I
t b = [N0]+1, if N0 is not an integer and N̂ I

t b = [N0] and [N0]+1 if N0 is an integer. The

expression for N0 terms out to be mathematically intractable and thus obtaining an explicit

solution is not possible. We explore the frequentist properties of the estimator through

computation. To implement the above prior specification, we suggest N ∗ = (N̂N o u r + N̂i nd )/2

and b = (1+(N̂i nd −((x0+N̂i nd )/2)−1)−1)/2, when we don’t know anything about the plausible

direction ofφ. On the other hand, if we know thatφ > 1 (recapture proneness), then N ∗ =
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N̂N o u r and b = 1. If p hi < 1 (recapture aversion), suggested N ∗ = N̂i nd and b = (N̂i nd −

((x0+ N̂i nd )/2)−1)−1. However, use of directional knowledge onφ can certainly improve the

inference if the knowledge is correct. A classification strategy of the given population in terms

of the behavioral nature is proposed in chapter 7 along with a discussion on how to apply it

for real data.

Remark: If anyone is interested to consider θ = (N ,φ) or θ = (N , c , p ), as c =φp , relevant

for likelihood (1.15) then strongly unrelated parameters can be obtained from the relevant

log-likelihood functions as before. Now, forψ = p1·, if the prior is taken on the associated

unrelated parameter γ as π(γ) =G B 1(b = N
N̂i nd

, r, s ), for any positive real numbers r and s ;

then integrated likelihood for N ≥ x0 reduces to

L
I
Mt b
(N , c , p ) =

Γ (N − x1·+ s )Γ (N +1)
Γ (N + r + s )Γ (N − x0+1)

c x11 p x01 (1− c )x10 (1−p )N−x0 ,

which fails to produce the mle of θ = (N , c , p ) from the corresponding estimating equations.

Perhaps the failure is due to the lack of enough information to make inference about the

two parameters N and φ, which are actually orthogonal to each other (for details about

parameter orthogonality, see Cox and Reid (1987[30]).

Analogous to the analysis of likelihood (1.15), one may like to consider the likelihood (1.16)

associated to another parametrization to make inference aboutφ in addition to N . But, in lieu

of includingφ directly into θ , we include p in θ . Ultimately, estimate ofφ can be obtained

directly through the relation ĉ =φp . The theorem below followed by a result showing final

integrated likelihood attached to parametrization in (1.16).

Theorem 4.5.4 When θ = (N , p ) andψ= (p1·,φ) for model Mt b with parametrization (1.16),

then strongly unrelated parameter is given by γ = (γ1,γ2), where γ1 = (N /N̂i nd )p1· and γ2 =

(p/p̂ )φ.

Theorem 4.5.5 In connection with Theorem 4.5.4, if the prior π(γ) is of the form π(γ) =

π(γ1)π(γ2) and π(γ1) =G B 1(b2 =
N

N̂i nd
, r2, s2) and π(γ2) =G B 1(b1 = p−1, r1, s1), for any positive

real numbers r2, s2, r1 and s1, then integrated likelihood becomes

L
I
t b (N , p ) =

Γ (N − x1·+ s2)Γ (N +1)
Γ (N + r2+ s2)Γ (N − x0+1)

N p1 p x01 (1−p )N−x0 . (4.11)
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for N ≥ x0 and r1, s1 are independent of N . However, we skip further development from (4.7),

as our present aim is to estimate N only.

4.5.2 Simulation Study

In this section we conduct a simulation study to evaluate the performance of our proposed

approach and understand its efficiency in applying the method using the available direc-

tional knowledge onφ. This study is designed as follows. Let us simulate eight hypothetical

populations corresponding to four pairs of capture probabilities (p1·, p·1)={(0.50, 0.65), (0.60,

0.70), (0.80, 0.70), (0.70, 0.55)} for each case of recapture prone (represented by φ = 1.25)

and recapture averse (represented byφ = 0.80) situations as like section 3.3.2 for simulation

study in Chapter 3 (see Table 3.1). Here also, all the populations are truly of size N = 500.

Results for truly recapture prone and recapture averse simulated populations are presented

respectively in the top and bottom panels of Table 4.3. First two cases with p1· < p·1, represent

the usual situation in DRS from Post Enumeration Survey (PES) conducted for estimating

census undercount estimation. 200 data sets on (x1·, x·1, x11) are generated from each of

the eight populations. Our proposed integrated likelihood estimate have been obtained for

each data sets. Finally, estimate of N̂ S
t b is obtained by averaging over 200 posterior means.

Based on those 200 estimates, the bootstrap sample s.e., sample RMSE (Root Mean Square

Error) and 95% confidence interval (C.I.) are computed. In addition to that, to compare

the performance of our proposed method with a full Bayesian strategy developed by Lee

et al. (2003[62]), we compute similar statistics for Lee’s method. Detailed discussions on

the computation strategy of Lee’s method, particularly for DRS, can be found in Chatterjee

and Mukherjee (2016c[27]) or in sections 5.2 and 5.4 of Chapter 5. A second benchmark

for comparison, another pseudo-likelihood based method proposed in chapter 3, namely

Adjusted Profile Likelihood (AdPl) based estimator, is also used. All the details of computation

for AdPL are available in chapter 3. Summary results of our proposed integrated likelihood

method as well as Lee’s and AdPL (with δ= 1−1.25N −1) methods are presented in Table 4.3.

From Table 4.3 it can be clearly noticed that our proposed estimate is more efficient than

Lee’s and AdPL in most of the situations, in terms of RMSE and closeness to the true value. In

all situations except P2, 95% credible intervals for Lee’s estimate and AdPL are wider than the

confidence intervals of N̂ S
t b . Precisely, Lee > AdPL > N̂ S

t b , in terms of length of the associated

interval estimates.
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4.5.3 Real Data Applications

To illustrate the method proposed in section 4.5.1, here we consider two real DRS datasets,

I. Children Injury Data and II. Handloom PES Data. Details on these two datasets are al-

ready presented in section 1.8.1. Proposed estimates are obtained separately for known

and unknown directional knowledge on underlying parameter φ for both of the data sets.

N̂ S
t b is computed along with other comparative estimators include common DSE estimator

N̂i nd , Lee’s(2003[62]) estimator and AdPL (see section 3.3). Besides estimate, s.e. and 95%

confidence interval for N is also computed based on bootstrap technique for each estimator.

I. Children Injury Data. Let us consider the DRS data from Jarvis et al. (2000[56]), in which

authors illustrate the serious drawbacks in the use of commonly DSE estimator N̂i nd , specifi-

cally for injury related data. The problem was to enumerate those children under 15 years

of age from addresses in Northumbria who were seriously injured in local Motor Vehicles

Accidents (MVA) between 1 April, 1990 and 31 March, 1995. The common estimates under

independence (N̂i nd ) for these three classes are shown in third column of Table 4.4. It is

noted that N̂i nd ’s are more than twice the total number of cases actually observed (x0). Also,

value of the estimate ĉ for these three classes are 0.25, 0.40 and 0.59 respectively, which are

substantially small. All these direct to the possibility of list dependency indicatingφ < 1, due

to very small amount of recapture and this motivate us to include this data in our illustration.

These three classes have a common feature that x1· < x·1. We present summary of results

in Table 4.4 for our proposed integrated likelihood method along with Lee et al’s Bayes and

AdPL estimate for comparison.

For the data of Cyclists and Passengers (in Table 4.4), all the estimators agree with the negative

departure from independence. For Pedestrians, all estimators excluding AdPL indicate that

this class has positive dependence between two available lists. Like previous example, here

also Lee’s estimates posses larger variation than all other estimates and hence its credible

intervals are too wide. Estimate N̂ S
t b (W O A) has better efficiency than AdPL except for the

Pedestrians. The proposed N̂ S
t b (W A) produces estimate closely to AdPL. Further, in most of

the all cases, it has smaller variance and tighter confidence bounds, as expected.

II. Handloom PES Data. Let us consider a new data from a survey aimed to estimate the

undercount in the census of Handloom workers residing at Gangarampur in South Dinajpur

district of state West Bengal in India. Sampled Ward no. 2 correctly counts 126 persons in

main census operation, while PES counts 107 persons and 85 persons are matched correctly.

Hence, total number of distinct captured individuals (x0) is 148 which is very closer to the
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N̂i nd = 159. Data related to another sampled Ward, no. 16, is as follows: correct census count

131, correct PES count 103 and matched 50 persons. Therefore, corresponding x0 is 184

but N̂i nd is 270. The nature of the data on two wards are surprisingly different except the

similarity that both posses x1· > x·1, which is opposite to the previous example of Children

Injury Data. Reason behind x1· > x·1 is the temporary seasonal migration of local handloom

worker to other districts in search of handloom work. Surveyors reported that workers in

Ward 16, which is very close to town head-quarter, might be somewhat reluctant to enlist

themselves in second time (i.e. at the time of PES). Moreover, most of them are working

outside (other districts) and usually come home in particular seasons. That is why, Ward

no. 16 results very low matches than Ward no. 2. Another reason may be that some people

think that one-time enrollment at the time of census is enough. So, underlyingφ may be less

than 1. These possibilities as well as the beliefs of the experts of Textile Directorate of Govt.

drive the idea that the estimator N̂i nd is not suitable here as independence fails. Being quite

certain about the homogeneity within wards from the experts of Textile Directorate, we apply

the model Mt b for these data and compute the estimates following our proposed integrated

likelihood method . We also compute Bayes estimate proposed by Lee et al. (2003[62]) and

AdPL, as earlier, for comparison in dependence situation. We also execute the summary

results if list-independence is assumed in order to measure the extent of deviation of other

dependent estimates from independence.

In Table 4.5, our proposed estimate for Ward no. 2, without assuming any directional nature,

agrees with the estimate from independence assumption. Other the Bayesian estimates devel-

oped by Lee et al. (2003,[62]) and AdPL indicate small negative departure from independence.

N̂ S
t b (W A) is around 164 assumingφ > 1. For the other sampled Ward, if we incorporate the

recapture aversion assumption in our proposed method, it implies that approximately 210

workers are residing in Ward no. 16, which is same as AdPL estimate.

4.6 Conclusion

The integrated likelihood method proposed here is demonstrated to be a potentially efficient

alternative to the various maximum likelihood and pseudo-likelihood estimates available

in the literature for the popular Mt model in the context of dual-record system (DRS). It is

shown that the present integrated likelihood developed with the help of the idea introduced

by Severini (2007[88]) is quite useful and yields efficient estimates for DRS or two-sample

capture-recapture model. We prove a clear ordering among the relevant alternative estimates.

Closeness between N̂i nd and N U
S is also established. Extensive numerical illustration shows
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consistency with the theoretical findings on the efficiency of proposed estimates and ordering.

List-independence assumption does not hold satisfactorily in many instances. Various data

from epidemiological studies and coverage error estimation motivate us to use a suitable

model by relaxing the assumption of list-independence and build up efficient inferential

strategy. As far as homogeneous human population size estimation is presumed throughout

the project, two-sample capture-recapture experiment is appropriate along with Mt b mod-

elling. Here we consider integrated likelihood method as a non-Bayesian strategy which has

a potential to overcome the non-identifiability in Mt b −D RS model. We have shown that

general integrated likelihoods using common non-informative priors fail to produce esti-

mates. To overcome this shortcoming, here we proposed an integrated likelihood approach

with suitable prior on unrelated nuisance parameter. This pseudo-likelihood mechanism

produces efficient estimates satisfying several frequentist properties, prior insensitiveness,

invariance, etc. To deal with non-identifiability, suitable informative prior is used and the

choice of some hyperparameters are suggested depending upon the availability of directional

knowledge onφ, if any. Indeed, this project presents an efficient non-Bayesian strategy for

the complex Mt b -DRS model.
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4.6. Conclusion

Table 4.3: Summary results of the proposed integrated likelihood method along with full
Bayes (Lee et al. (2003[62])) and non-Bayesian AdPL estimates for all the populations. Here,
Populations P1-P8 correspond to model Mt b .

Population Leea AdPLb N̂ S
t b

P1 N̂ (s.e.) 472(18.94) 461(11.47) 478(14.82)
RMSE 34.11 40.32 26.75

C.I. (438, 518) (439, 480) (450, 508)

P2 N̂ (s.e.) 478(11.04) 488(10.01) 486(13.15)
RMSE 24.33 15.54 19.60

C.I. (451, 519) (467, 506) (460, 511)

P3 N̂ (s.e.) 490(7.55) 515(6.78) 498(8.69)
RMSE 12.02 16.32 9.05

C.I. (473, 515) (501, 527) (480, 514)

P4 N̂ (s.e.) 488(12.38) 476(9.27) 497(13.51)
RMSE 17.03 25.68 13.85

C.I. (457, 531) (456, 493) (471, 521)

P5 N̂ (s.e.) 472(18.77) 505(9.40) 487(12.12)
RMSE 35.42 10.72 17.81

C.I. (431, 565) (487, 524) (465, 512)

P6 N̂ (s.e.) 490(10.91) 534(6.98) 499(8.28)
RMSE 13.65 35.23 8.30

C.I. (460, 560) (519, 547) (484, 515)

P7 N̂ (s.e.) 509(6.39) 548(5.21) 502(5.07)
RMSE 10.34 48.40 5.40

C.I. (485, 545) (537, 557) (492, 511)

P8 N̂ (s.e.) 481(9.39) 510(7.75) 481(8.17)
RMSE 20.08 13.01 20.55

C.I. (448, 545) (497, 525) (467, 495)

aPrior U(0.2,1.5) is used for bottom panel populations as Lee et al.’s strategy fails to generate samples from
U(0.2, 1)

bwith δ= 1−1.25N −1
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Table 4.4: Summary results of the proposed integrated likelihood estimates for Children
Injury Data, with (WA) and without (WOA) the assumption on the directional knowledge on
φ, are presented. Lee’s full Bayes estimate and adjusted profile likelihood estimates (AdPL)
with δ= 1−4(1− ĉ )N −1 are also presented for comparison.

Class & N̂ S
t b N̂ S

t b
(Estimate ĉ ) N̂i nd Lee AdPL (W O A) (W A)

Cyclists N̂ (s.e.) 495 (69.68) 427 (72.72) 245 (6.81) 376 (34.81) 294 (18.52)a

(0.254) C.I. (359, 632) (293, 522) (231, 258) (327, 463) (259, 330)

Passengers N̂ (s.e.) 249 (24.05) 195 (21.40) 180 (5.41) 227 (13.89) 191 (8.93)a

(0.40) C.I. (202, 296) (158, 225) (170, 191) (203, 255) (175, 210)

Pedestrians N̂ (s.e.) 1323 (31.90) 1415 (284.5) 1198 (14.54) 1338 (28.18) 1159 (13.53)b

(0.592) C.I. (1260, 1385) (1064, 1964) (1166, 1223) (1285, 1393) (1135, 1186)

aSmall ĉ suggests recapture aversion
bRecapture aversion is assumed

Table 4.5: Summary results of the proposed integrated likelihood estimates for Handloom
PES Data, with (WA) and without (WOA) the assumption on the directional knowledge onφ,
are presented. Lee’s full Bayes estimate and adjusted profile likelihood estimates (AdPL) with
δ= 1−4(1− ĉ )N −1 are also presented for comparison.

Population & N̂ S
t b N̂ S

t b
(Estimate ĉ ) N̂i nd Lee AdPL (W O A) (W A)

Ward 2 N̂ (s.e.) 159 (4.50) 151 (4.02) 166 (4.66) 160 (5.30) 164 (6.46)a

(0.675) C.I. (150, 167) (148, 162) (158, 175) (152, 172) (154, 178)

Ward 16 N̂ (s.e.) 270 (21.53) 245 (30.99) 206 (5.13) 250 (13.38) 210 (7.63)b

(0.382) C.I. (228, 312) (203, 320)) (197, 216) (223, 279) (197, 226)

amoderately high ĉ suggests recapture proneness
bsmall ĉ suggests recapture aversion
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5 Empirical Bayes Estimation: Missing

Data Approaches3

5.1 Introduction and Motivation

Estimation of human population size or number of vital events occurred during a given time

span is a very relevant statistical concern which includes a vast area of application in the

fields of census coverage error estimation, population studies and epidemiology. In chapter

1 it is shown that capture-recapture type data structure, which is known as Multiple-record

system, is formed in order to estimate the size of a given human population.

As stated in chapter 1, various frequentist and likelihood approaches under suitable assump-

tions are discussed in the literature (see Otis et al. (1978[71]), Seber (1986[83]), Chao et al.

(2001a[22])) covering most of the basic and complex models developed for Capture-recapture

system or equivalently, for Multiple-record system. In this context, a very simple and widely

used capture-recapture model is Mt (also known as Lincoln-Petersen Model) which accounts

for the time (t) variation effect (see section 1.4.1 for details). But this simple model often fails

miserably when the underlying independence assumption between capture probabilities

is violated. Many methodologists and practitioners (see El-Khorazaty, 2000[36]; Jarvis et al.,

2000[56]) argued that the independence assumption may not be justified. A brief review is

done by Brittain and Bö hning (2009[13]) of the various methods available by relaxing the

independence assumption in DRS context. Usually, independence is violated either due to

dependent behavioral response at the time of second survey or due to heterogeneity among

3 This chapter is based on Chatterjee, K., Mukherjee, D. (2016c[27]). On the estimation of homogeneous
population size from a complex dual-record system. Journal of Statistical Computation and Simulation 86,
3562-3581.
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individuals. ChandraSekar and Deming (1949[17]) suggests to apply the model for homoge-

neous sub-groups constructed by stratifying the whole population and their recommendation

is usually followed in practice for census undercount, epidemiological studies etc. Hence,

the only factor responsible for violation of the independence assumption is the behavioral

response variation dependent on the previous capturing. Thus, the model Mt b becomes most

relevant which successfully characterizes the possible list dependency through a parameter

φ (∈R+) and which denotes Behavioral Response Effect. For detail discussion on model Mt b ,

we refer to section 1.6 of chapter 1.

Appropriateness of Mt b is discussed in section 1.6 but unfortunately this model suffers from

identifiability problem (see Methodological issue no. M5 in section 1.8.2) in DRS due to the

unidentifiableφ. Different approaches using martingle theory (Lloyd, 1994), quasi-likelihood

inference (Chao et al., 2000) are proposed to solve the problem for number of counting efforts,

T ≥ 3 with the help of an assumption, but that assumption can not solve the problem in

DRS (i.e. when T = 2). Bayesian paradigm is found to be helpful to reasonably overcome

this non-identifiability burden with a minimum subjective choice. Lee and Chen (1998)

applied the Gibbs sampling idea to overcome the identifiability problem but they did not

use recapture data and estimates became unstable and prior sensitive (see Lee et al. (2003)).

Later, Lee et al. (2003) applied noninformative priors to all model parameters except φ,

for which prior was chosen by a trial-and-error method. Finally, they came up with a fully

Bayesian solution using MCMC, but, their empirical study as well as real data application

were exercised in the spirit of multiple lists (T > 3) problem which is common in animal

abundance, not for human population. Wang et al. (2015[100]) also proposed a hierarchical

Bayesian Mt b model for multiple lists with the assumption that the odds of recapture bears a

constant relationship to the odds of initial capture. However, we think that the potential of

the fully Bayesian method proposed by Lee et al. (2003) should be investigated in this present

complex DRS situation, which is not attempted earlier.

Lists of individuals available from different sources on the same population are framed in a

contingency table where one cell, referring to absence in all lists, is always missing. Thus, the

population size estimation from DRS can be viewed as missing data estimation (Bö hning and

Heijden, 2009). In section 1.8.2, Methodological issue no. M4 sketches the present problem

of N estimation in DRS as a missing data analysis. Hence, the present condition and scope

motivate us to develop competing efficient Bayesian inferential strategies for estimating N in

DRS framework under model Mt b . Two empirical Bayes approaches − EM-within-Gibbs and

stochastic EM-within Gibbs are proposed in section 5.3 in addition to a discussion of existing
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fully Bayesian method due to Lee et al.(2003) (in 5.2.1). Advantages and disadvantages of the

said approaches are discussed under the common roof of data augmentation strategies for

missing data analysis. In demographic context, usuallyφ > 1 occurs which implies population

is recapture prone. But for a population with sensitive characteristics, such as drug users,

population with Common Congenital Anomaly disease etc., φ < 1 and then one may call

that population as recapture averse. When such information onφ is available, one can hope

that performance of any suitable method should improve. Advantages of the availability

of directional knowledge is mentioned in methodological issue M6 in section 1.8.2. Thus,

we propose different sets of priors in our Bayesian methods to deal with the availability or

non-availability of the prior directional knowledge onφ.

Extensive simulation study for different population sizes, capture probabilities and a real

data application on death size estimation are presented in sections 5.4 and 5.5 respectively.

Finally in section 5.6, we summarize our findings and enumerate the best possible estimation

rule depending upon the availability of directional knowledge onφ.

5.2 Methods in Bayesian Framework: Preliminaries

Let us consider a typical missing data situation where the complete data can be classified

into observed (U o b s ) and missing (U mi s ) components. We may parameterize a relevant

model with interest parameter θ = (θ1,θ2, . . . ,θk ) and nuisance parameterψ (may also be

a vector). A subset θ S of θ denotes missing quantity U mi s and the rest part θ−S = θ \ θ S

is model parameter of interest. Here we reformulate the present N estimation problem as

estimation of missing data. In this section, we discuss different versions of Gibbs sampler as a

key algorithm for fitting hierarchical models with missing data. At first we discuss an existing

Gibbs sampler strategy (i) Data Augmentation [DA] (Tanner and Wong, 1987[93]), which

is a standard Bayesian approach in missing data context allowing priors to all unobserved

quantity (i.e. nuisance parameter ψ is empty). Then, we propose ourselves an empirical

Bayes approach, namely (ii) EM-within-Gibbs [EWiG], allowing priors to all unobserved

quantity in the model except the nuisance parameter ψ. This method can be treated an

expanded version of Monte Carlo Expectation-Maximization algorithm [MCEM] (Wei and

Tanner, 1990[101]). We also sketch another alternative empirical Bayes approach, which

we call (iii) Stochastic EM-within-Gibbs [SEMWiG], that possess certain advantages than

EWiG. Each of the two proposed approaches (ii) and (iii) has its own posterior of interest

depending upon whether non-emptyψ is considered to be random or not. We employ the

Gibbs sampler strategy proposed by Lee et al. (2003[62]) exactly to workout this DA strategy

101



Chapter 5. Empirical Bayes Estimation: Missing Data Approaches3

and consider this method as a competing approach to our proposed methods. In the current

article, our intension is not to account any external subjectiveness in prior selection so that

posterior would not be sensitive to the choice of priors. Since, data generation in DRS falls

under the finite population sampling, convergence of posterior density can be studied as the

population size, N →∞ (refer methodological issue M7 in section 1.8.2).

5.2.1 Data Augmentation [DA-Lee]

Data augmentation refers to strategies for constructing iterative optimization or sampling

algorithms for all the unknown quantities in model. An existing Bayesian treatment in

literature will be discussed here as a data augmentation method in a platform of missing data

analysis, considering all the unknown quantities (θ ,ψ) to be random. Posterior samples can

be drawn iteratively through a suitable Gibbs sampling strategy. Tanner and Wong (1987[93])

developed this stochastic version of data augmentation (DA) to make simulation simple and

straightforward. If π(ψ|θ ,U o b s ) and π(θi |θ−i ,ψ,U o b s ), for i = 1,2, . . . , k , are the resultant

conditional posterior distributions, then Gibbs sampler is obtained from the following DA

strategy:

Step 1 : Set t = 0 and initialize θ (0).

Step 2 : Generateψ and θi from π(ψ|θ (t ),U o b s ) and π(θi |θ̂
(t )
−i ,ψ,U o b s ).

Step 3 : Update θ (t ) with θ (t+1) = {θi ; i = 1, 2, . . . , k}.

Step 4 : Repeat the last two steps until convergence of {θ (t )}t≥0.

Finally, samples after burn-in period are considered to be generated from the targeted poste-

rior π(θ |U o b s ). To implement this DA strategy, prior selection for all the unknown quantities

(θ ,ψ) and burn-in choice are made following Lee et al. (2003[62]) thoroughly. Henceforth,

the above strategy is named as DA-Lee. This method has two-fold aim to be considered in this

article. Firstly, we want to investigate the performance of this existing approach developed

by Lee et al. (2003[62]) in particular to the present complex DRS model. Secondly, it will be

used as a competing method in order to evaluate the two proposed methods, discussed in

the next subsections.
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Implementation. Following Lee et al. (2003[62]), we take θ S = N , θ−S = (p1·,φ, p ) as ψ

remains empty. In full Bayesian analysis, if priors are assigned independently i.e. π(θ ) =

π(θ S ,θ−S ) = π(N )π(p1·)π(φ)π(p ), hence conditional posterior densities for given data x =

(x1·, x·1, x11) are

π(N − x0|, p1·, p , x) ∝
N !

(N − x0)!
((1−p )(1−p1·))

Nπ(N ), (5.1)

π(p1·|N , x) ∝ p
x1·

1· (1−p1·)
N−x1·π(p1·), (5.2)

π(φ|N , p , x) ∝ φx11 (1−φp )x10π(φ), (5.3)

π(p |N ,φ, x) ∝ p x·1 (1−p )N−x0 (1−φp )x10π(p ). (5.4)

All the prior specifications and required tools to construct posterior distribution through DA-

Lee strategy is governed by Lee et al. (2003 [62]). It suggests flat non-informative priors for p1·

and p as π(p1·) =π(p )∼Unif(0, 1) and Jeffrey’s prior, π(N )∝N −1, which is improper. Again a

flat priorπ(φ) =Unif(α,β ) is chosen though this is no longer non-informative as specification

of its range [α, β ] is needed. Hence, the resulting joint posterior for θ = (N , p1·,φ, p ) is

πt b (θ |x) =
(N −1)!

(N − x0)!(β −α)
φx11 p

x1·
1· p x·1 (1−p1·)

N−x1· (1−p )N−x0 (1−φp )x10 . (5.5)

In the following theorem, we explicitly establish the posterior properness of (5.5), which is

required in order to use the resulting posterior for further Bayesian analysis.

Theorem 5.2.1 Joint posterior in (5.5) is proper for any finite quantities α and β with α<β .

Proof. Joint posterior πt b (θ |x), in (5.5), can be rewritten as

πt b (θ |x) =
(N −1)!

(N − x0)!(β −α)
[(1−p1·)(1−p )]N−x0φx11 p

x1·
1· p x·1 (1−p1·)

x01 (1−φp )x10

∝ f(N − x0|x0,µ)
1

(β −α)
φx11 p

x1·
1· p x·1 (1−p1·)

x01 (1−φp )x10µ−x0 , (5.6)

with N ≥ x0, α < φ < β , 0 < p1·, p < 1 and f (·|·) is a Negative Binomial pmf of (N − x0) with

known parameter x0 and unknown probabilityµ= 1−(1−p1·)(1−p ), for given the data x. Now,

if we take the sum over (N − x0) on its domain 0,1,2, . . .∞, then
∑

N≥x0
f(N − x0|x0,µ) = 1.
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Therefore, in next step, integrating πt b (φ, p1·, p |x)w.r.t. φ we have

πt b (p1·, p |x) =
∫ β

α

πt b (φ, p1·, p |x)∂ φ

=
p

x1·
1· p x·1 (1−p1·)x01

[1− (1−p1·)(1−p )]x0 (β −α)

∫ β

α

φx11 (1−φp )x10∂ φ. (5.7)

It is clear that integrand in (5.7) is bounded above by (β −α). Thus, in order to prove that the

joint posterior is proper for any pair of α and β , it is sufficient to prove that

p
x1·

1· p x·1 (1−p1·)x01

[1− (1−p1·)(1−p )]x0

is bounded above by some finite quantity.

Let us consider ep =mi n (p1·, p ) ∈ (0, 1) and therefore, take M such that

M > ep−x0 ∈ (1,∞), which implies

ep >M −1/x0 = ε> 0.

Given x0, ε can be made small by taking M large enough. Therefore,

(1− ep ) < 1−M −1/x0

⇒ (1−p )(1−p1·) < 1−M −1/x0

⇔ [1− (1−p )(1−p1·)]
x0 > M −1

⇒
p

x1·
1· p x·1 (1−p1·)x01

[1− (1−p1·)(1−p )]x0
< M .

This completes the proof. �

Henceforth, conditional posterior densities from (5.1), (5.2), (5.3) and (5.4) are as follows:

π(N − x0|, p1·, p , x) ∝ Neg. Binomial(x0,µ), (5.8)

π(p1·|N , x) ∝ B e t a (x1·+1, N − x1·+1), (5.9)

π(p |N ,φ, x) ∝ p x·1 (1−p )N−x0 (1−φp )x10 , (5.10)

π(φ|N , p , x) ∝ Gen.Beta-I(x11+1, x10+1, 1, p )×I[α,β ](φ), (5.11)
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where µ = 1− ((1−p )(1−p1·)) and I[α,β ](φ) is an indicator function for φ ∈ Φ, the domain

of φ. Gibbs sampler provides samples on N and θ−S using (5.8), (5.9), (5.11) and (5.10) at

convergent posterior. But samples cannot be drawn directly from (5.10). As per Lee et al.

(2003[62]) suggestion, adaptive rejection sampling technique is used to generate p from

(5.10) and R̂ 1/2 technique, suggested by Gelman (1996[41]), for fixing the burn-in period.

If no other information on φ is available, then choosing suitable (α,β ) is not at all easy as

the result of DA-Lee would be dependent on the choice of the prior distributions. We also

adopt a trial-and-error procedure following Lee at al. (2003[62]) who opted for such α and β

values for which the range of the posterior credible interval for φ is not too close to either

side of the prior limits. Finally, iterations will ultimately yield draws from the true marginal

posterior distributions after certain burn-in period. They admitted that this trial-and-error

procedure works well when there is a large amount of recapture information and (α, β ) can

be chosen from the experts’ experience. Usually for human population, moderate or high

capture probabilities may be attained but number of samples is usually very small (not more

than three). No investigation on the performance of Lee et al. (2003[62]) strategy has been

carried out separately for given recapture-averse (i.e. φ < 1) and recapture-prone (i.e. φ > 1)

populations. Here, we are also interested in the situation when directional knowledge onφ is

available, so we use (α= 0, β = 1) for recapture-averse and (α= 1, β = 2 or 3) for recapture-

prone population and compare the performance of DA-Lee as a competing method with the

next two proposed approaches.

5.3 Proposed Methodologies

5.3.1 EM-within-Gibbs [EMWiG]

Instead of using full Bayesian method, if some model parameters are restricted to be updated

by any consistent likelihood or frequentist method, then it may reduce the variance of the

generated sequence. Boonstra et al. (2013[11]) presents a generic approach by expanding

the MCEM (developed by Wei and Tanner (1990[101])) in the context of a prediction prob-

lem of fitting linear regression in the presence of an unknown nuisance hyperparameter.

Considering the same idea, a novel empirical Bayes version is sketched out first-time in

capture-recapture context where prior densities are assigned on the interest parameter θ

only and nuisance parameter ψ (may also be a vector) remains to be estimated by non-

Bayesian approach, such as mle. We also call this strategy as EM-within-Gibbs [EWiG]. Let

us denote the likelihood and its logarithmic version by [U o b s |.] and `[U o b s |.] respectively,

for given data U o b s . For a given point estimate ψ̂, say MLE, Gibbs sampler generates B
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draws from π(θ |ψ̂,U o b s ). To obtain the MLE, computation of marginal [U o b s |ψ] is required,

which may include high-dimensional integration. However, one can write the marginal

likelihood for ψ as [U o b s |ψ] = [θ ,U o b s |ψ]/[θ |ψ,U o b s ]. EM algorithm can automatically

produce the marginal MLE ofψ after taking expectation on `[U o b s |ψ] or equivalently, on

`[θ ,U o b s |ψ]with respect to [θ |ψ,U o b s ]. E-step nicely engaged the conditional posterior of

θ , π(θ |ψ,U o b s ) and then at M-step, E (`[θ ,U o b s |ψ]) or its empirical version is maximized

with respect toψ. A monte carlo treatment for calculating the empirical EM is

ψ̂= argmax
ψ∈Ψ

(

B−1
B
∑

j=1

`(θ ( j ),U o b s |ψ)

)

. (5.12)

Now we sketch the algorithm as follows to produce Gibbs sampler in order to obtain the

posterior densities.

Step 1 : Set t = 0 and initializeψ(0).

Step 2 : Generate {θ ( j ) =
�

θ S ( j ),θ
( j )
−S

�

; j = 1(1)B } by iteratively simulating from

π(θ S |θ−S ,ψ(t ),U o b s ) and π(θ−S |θ S ,ψ(t ),U o b s ).

Step 3 : Expectation and Maximization. Obtainψ(t+1) by updatingψ(t ) using (5.12).

Step 4 : Repeat above two steps until the convergence of {ψ(t )}t≥0.

Since, the nuisance parameterψ is estimated by EM, the sequence {ψ(t )} converges to the

mle of ψ. At the convergent {ψ(t )} at ψ̂, the final sample {θ ( j ) = (θ S ( j ),θ
( j )
−S ); j = 1(1)B } is

drawn following Step 2. From this final sample we would thus obtain the estimate of posterior

density π(θ−S |ψ,U o b s ) and π(θ S |ψ,U o b s ) respectively as

π̂(θ−S |ψ̂,U o b s ) = B−1
B
∑

j=1

π(θS−|θ S ( j ),ψ̂,U o b s ) (5.13)

and π̂(θ S |ψ̂,U o b s )= B−1
∑B

j=1π(θ
S |θ ( j )−S ,ψ̂,U o b s ). (5.14)

In any such empirical Bayes procedure, a fundamental concern is that how one can con-

sider π̂(θ−S |ψ̂,U o b s ) and π̂(θ S |ψ̂,U o b s ) as estimates of π(θ−S |ψ,U o b s ) and π(θ S |ψ,U o b s )

respectively. The following theorem gives us the conditions under which the acceptability of

π̂(θ ′|ψ̂,U o b s ) as an estimate of π(θ ′|ψ,U o b s ) for θ ′ = {θ−S ,θ S } are established. The proof is
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explicitly stated in Appendix.

Theorem 5.3.1 If ψ̂N
a .e .→ ψ as N →∞with respect to the marginal density m (U o b s |ψ) and

π(θ ′|ψ,U o b s ) is continuous inψ for θ ′ = {θ−S ,θ S }, then

1.
∫

Θ−S
| B−1

∑B
j=1π(θ−S |θ S ( j ),ψ̂,U o b s )−π(θ−S |ψ,U o b s ) | dθ−S

a .e .→ 0,

2.
∫

ΘS | B−1
∑B

j=1π(θ
S |θ ( j )−S ,ψ̂,U o b s )−π(θ S |ψ,U o b s ) | dθ S a .e .→ 0,

as B , N →∞.

Proof. Prior to prove this theorem, here we present two Lemmas in general form and associ-

ated preliminary setup with notations.

In the general Bayesian setup (section 5.2), our model of interest, treated as a missing data

model, presents the hierarchy as

U o b s ∼ f (x |θ ,ψ),θ = (θ S ,θ−S ),

θ S ∼ π(θ S |ψ,γ), (5.15)

θ−S ∼ π(θ−S |ψ).

In EWiG, the estimate of posterior density of θ−S and θ S are given in (5.13) and (5.14) respec-

tively. Here, we are interested in the limiting behavior of these estimates as B and N →∞.

Let us define

g (ψ;ψ′) =

∫

ΘS

π(θ−S |θ S ,ψ,U o b s )π(θ S |ψ′,U o b s )dθ S ,

ĝ (ψ;ψ′) = B−1
B
∑

j=1

π(θ−S |θ S ( j ),ψ,U o b s ),

where θ S ( j ) ∼ π(θ S |θ ( j )−S ,ψ′,U o b s ). Since, our present study belongs to finite population

statistics, hence the estimator ψ̂N of nuisance parameter ψ depends on N. Now, the fol-

lowing lemma presents the conditions on which almost everywhere (a.e.) convergence of

π̂(θ−S |ψ̂,U o b s ) to π(θ−S |ψ,U o b s ) can be built.
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Lemma 5.3.2 Let us considerψ0 as a true value ofψ. Under the following assumptions along

with ergodicity of EM generated Markov chain:

A1. ψ̂N →ψ0 almost everywhere,

A2. g (ψ;ψ′) is continuous function ofψ andψ′,

A3. ĝ (ψ;ψ′) is continuous inψ and stochastically equicontinuous inψ′,

∃ a sequence BN 3 BN →∞ as N →∞, for which

| ĝ (ψ̂N ;ψ̂N )− g (ψ0;ψ0) |
a .e .→ 0 as N →∞. (5.16)

Proof of the Lemma. By triangle inequality we can write

| ĝ (ψ̂N ;ψ̂N )− g (ψ0;ψ0) |≤| ĝ (ψ̂N ;ψ̂N )− ĝ (ψ0;ψ0) |+ | ĝ (ψ0;ψ0)− g (ψ0;ψ0) | .

By Ergodic property, second term on right hand side converges to 0. For any given N, choose

B (1)N so that | ĝ (ψ0;ψ0)− g (ψ0;ψ0) |≤ ε/3. For first term, again by triangle inequality,

| ĝ (ψ̂N ;ψ̂N )− ĝ (ψ0;ψ0) |≤| ĝ (ψ̂N ;ψ̂N )− ĝ (ψ0;ψ̂N ) |+ | ĝ (ψ0;ψ̂N )− ĝ (ψ0;ψ0) | .

From assumption A3, the first term on right hand side in the above inequality tends to 0

as N →∞. Since ψ̂N →ψ0 a.e. by assumption A1, we can choose N large enough so that

| ψ̂N →ψ0 |<δ, except on a set with probability less than ε/2. Assumption A3 also says that

ĝ (ψ;ψ′) is stochastically equicontinuous inψ′ which means, for given ε> 0, one can find a

δ(>0) 3 | ĝ (ψ;ψ′1)− ĝ (ψ;ψ′2) |< ε ∀ |ψ
′
1−ψ

′
2 |< δ except on a set with g-measure 0. Hence,

we can choose B (2)N so that | ĝ (ψ0;ψ′)− ĝ (ψ0;ψ0) |≤ ε/3 ∀ |ψ′−ψ0 |<δ, except on a set with

g-measure less than ε/2. Hence, the second term in the right side is bounded as follows

| ĝ (ψ0;ψ̂N )− ĝ (ψ0;ψ0) |≤ sup
ψ′:|ψ′−ψ0|<δ

| ĝ (ψ0;ψ′)− ĝ (ψ0;ψ0) |≤ ε/3.

Thus, for any arbitrary ε > 0, we can choose a large N and BN =ma x (B (1)N , B (2)N ). Therefore,

| ĝ (ψ̂N ;ψ̂N )− g (ψ0;ψ0) |≤ ε, except a set with probability less than ε/2+ε/2= ε. �

Lemma 5.3.3 (Scheffé’s Lemma.) If fn is a sequence of integrable functions on a measure space

(X ,Ω,µ) that converges almost everywhere to another integrable function f, then,

∫

| fn (y )− f (y ) | dµ→ 0 if and only if
∫

| fn | dµ→
∫

| f | dµ for n→ 0.

108



5.3. Proposed Methodologies

Proof of Theorem 5.3.1. Both the Lemma 5.3.1 and Lemma 5.3.3 together imply the Theorem

5.3.1(1) as fn = ĝN and f = g both are density and hence positive. Theorem 5.3.1(2) can be

proved following the same way just by exchanging π̂(θ−S |ψ̂,U o b s ) andπ(θ−S |ψ,U o b s ) in their

places and defining

g (ψ;ψ′) =

∫

Θ−S

π(θ S |θ−S ,ψ,U o b s )π(θ−S |ψ′,U o b s )dθ−S ,

ĝ (ψ;ψ′) = B−1
B
∑

j=1

π(θ S |θ ( j )−S ,ψ,U o b s ),

where θ
( j )
−S ∼π(θ−S |θ S ( j ),ψ′,U o b s ). �

If θ refers to the missing and/or unobserved quantity only andψ includes the rest of all the

model parameters then our sketched EWiG reduces to original MCEM.

Implementation. Here we take θ S =N , θ−S = (p1·,φ) andψ= p . With this consideration of

θ−S andψ, we call this method as EWiG-I. Priors on N and p1· are assigned as stated earlier

in case of DA-Lee (section 3.1). Same flat prior Unif(α,β ) is chosen forφ, but here we give a

plan to assign these prior limits strategically. When the population is recapture averse, α= c

and β = 1 will be the automatic choice. Since c =φp < φ and φp = c < 1⇔φ < p−1, we

suggest α to 1 and β = p−1 for recapture-prone population. So in both the cases, natural

bounds are incorporated for the limits in Unif(α,β ) depending upon the availability of di-

rectional knowledge onφ. Hence, step 2 is performed between the conditional posteriors

(5.8), (5.9) and (5.11). In practice, c is replaced by its mle ĉ = x11/x1·. Using updated sample

{θ ( j ) = (N ( j ), p
( j )
1· ,φ( j )); j = 1(1)B }, p is estimated by maximizing the empirical average of

log-likelihoods `(p |θ ( j ), x) for j = 1(1)B following (11).

When no directional knowledge onφ is available, we use conjugate priorπ(φ|p )=Generalised

Beta Type-I (u , v , r a t e = p ) which results

π(φ|p , x)∝GB-I (x11+u , x10+ v , 1, rate = p) (5.17)

and therefore, corresponding log-likelihood for p becomes l n [p x·1 (1−p )N−x0 (1−φp )x10+v−1].

If we take non-informative prior with (u, v)=(0, 0), that leads to eliminate the influential

terms in (14) and conditional log-likelihood for p . If we take (u, v)=(1, 1), prior π(φ|p ) simply

reduces to constant density I(0,1/p )(φ) on natural domain (0, p−1) ofφ.
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Another strategy can be adopted which allow to considerψ= {p ,φ}, that means θ−S includes

p1· only. Thus, unlikely to EWiG-I, here do not consider any prior on φ in addition to p .

To update p , Step 3 is followed as usual but φ is updated by the relation ĉ /p , for given p .

However, We name this new variant as EWiG-II and it can be noted that it is very close to the

original MCEM approach as samples from posterior density (8) will eventually converge to

its mle due to the flat prior π(p1·|p ) =Unif(0, 1).

For both the EWiG-I and EWiG-II method, consistency conditions for p andφ in Theorem

5.3.1 holds as p̂N = x01/(N − x1·)→ p01/(1−p1·) = p and φ̂N = ĉ /p̂N → c /p =φ for N →∞.

However in this application, θ S is equivalent to N which is also the index in the asymptotic

result in finite population inference. Hence, the Theorem 5.3.1(2) does not hold here exactly.

Therefore, we have following theorem (proved in Appendix) about the tail convergence of

π̂(N |p̂ , x) to π(N |p0, x) for the true value p0 of p which suffices for the posterior convergence

on N when it is large enough.

Theorem 5.3.4 Since p̂N
a .e .→ p0 as N →∞ with respect to the marginal density m (x|p ) and

π(N |p , x) is continuous in p , then π̂(N |p̂ , x) is right tail equivalent to the marginal posterior

π(N |p0, x) for sufficiently large B .

Proof. Two density functions F and G are said to be right tail equivalent if they have the same

right endpointsω (≤∞) and lim
x↑ω

1−F (x )
1−G (x ) = c , for some constant 0< c <∞.

Consider θ S = N − x0, θ−S = (p1·,φ) and ψ = p , hence for large N and M →∞, Lemma

produces

π̂(N |p̂ , x) = B−1
B
∑

j=1

π(N |p ( j )1· ,φ( j ), p̂ , x)
a .e .→ π(N |p0, x).�

Note that Theorem 5.3.4 also holds for EWiG-II.

5.3.2 Stochastic EM-within-Gibbs [SEMWiG]

Constructing data augmentation schemes that result in both simple, quicker as well as

efficient algorithms is a matter of art and also depends greatly on the underlying models.

We now propose a very interesting alternative Gibbs sampling technique which is simpler,

computationally easier and encompasses certain advantages over EWiG. This method is a

stochastic extension of EM within Gibbs and hence, we name it as Stochastic EM-within-Gibbs
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[SEMWiG]. If we put M=1 in original MCEM (Wei and Tanner, 1990 [101]), then we would have

Stochastic Expectation-Maximization (SEM) procedure. Though the connection between

SEM and MCEM seems very simple but their underlying philosophy is totally different. In

SEM, stochastic imputation is done for the unobserved missing quantity θ S and therefore,

θ−S is estimated from the complete data log-likelihood. However, MCEM replaces intractable

computation of the conditional expectation of the log-likelihood of the complete data using

a monte carlo approximation. Several evidences on the preference of SEM over EM are in

the literature. SEM algorithm may accelerate the converegence (Celeux, 1985 [16]) and it

is known to be more robust to poorly specified starting values (Gilks et al., 1996 [43]) than

EM. SEM provides estimate of posterior density for θ S but point estimates for other model

parameters. However, SEMWiG is so designed with flexibility that one can have posterior

density estimate also for θ−S by suitably modifying the iteration steps. The whole Gibbs

sampler including SEM step proceeds as follows:

Step 1 : Set t = 0 and initializeψ(0) and θ (0)−S .

Step 2 : Stochastic Imputation. Generate pseudo-complete data by simulating θ S from

π(θ S |θ (t )−S ,ψ(t ),U o b s ) and then simulate θ−S from π(θ−S |θ S ,ψ(t ),U o b s ).

Step 3 : Maximization. Updateψ(t ) by usingψ(t+1) = argmax
ψ∈Ψ

�

`(ψ|θ S ,θ−S ,U o b s )
	

.

Step 4 : Repeat above steps until the convergence of {θ S (t ),θ (t )−S }t≥0.

Finally, ψ̂ is calculated by averaging over a sufficient numbersψ(t ) after reaching its stationary

regime. Equivalent result as in Theorem 5.3.1 can be proved also for SEMWiG under the

assumption of ergodicity of SEM generated homogeneous Markov chain and consistency of

ψ̂. Application of SEM algorithm does not result in a single value for a parameter estimate.

Instead, there is built-in variation induced by the simulated data around the estimate.

Implementation. To implement SEMWiG, here also we consider θ S =N , θ−S = (φ, p1·) and

ψ= p . Same priors are consider for N, p1· andφ as previously discussed in EWiG-I, depending

upon the availability of the directional knowledge on φ. The initial value of θ may come

from a wide range of choices, so it might become unstable at the beginning of the process.

We produce a Gibbs sequence {(p (t )1· ,φ(t ), N (t )); t = 1, 2, 3, ...} and hence choose the burn-in

period following the same R̂ 1/2 technique (Gelman, 1996 [41]) as like DA-Lee method.
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5.4 Simulation Results

In this section we study the comparative performance of two proposed variants of Gibbs

sampler (EWiG and SEMWiG) and one existing Gibbs sampler (DA-Lee) following Lee et

al. (2003) in DRS under the model Mt b . We consider four artificial populations as in first

paragraph of section 3.3.2 characterized by different values of capture probabilities (p1·,

p·1) and the value of N = 500 and φ = 1.25 and 0.80. These for populations for each φ are

presented in Table 3.1. 200 data sets on (x11, x01, x10) were generated from each population.

To compute Bayes estimates proposed by Lee et al. (2003[62]), we follow Lee et al. (2003[62],

pp. 482) to implement ARS for DA-Lee only. Let Sn = {a1, a2,. . . , an}, where a1 < a2 < . . .< an ,

denote a current set of abscissa in the range (0, 1). Considering n = 5, the initial value of a3

(middle component of the set of abscissa, Sn for n = 5) is chosen as (ĉ /φ) from the relation

E (x11) = pφE (x1·), since ĉ = pφ and ĉ = x11/x1·. DA-Lee and SEMWiG are designed in a

way so that convergence of their Gibbs sampler can be examine through R̂ 1/2. To compute

R̂ 1/2 in multiple chain method, we take 5 independent parallel chains and hence burn-in

period is fixed at a value h for which R̂ 1/2 becomes smaller than 1.1. Convergence of EWiG

methods is judged by plotting N (h ) against h . After fixing the burn-in h , next h number of

samples are used to construct the estimate of posterior densities for all approaches. Estimate

of N is calculated as posterior mean. The whole estimation task is replicated 200 times and

therefore, final estimate of N is presented just by averaging over 200 replicated estimates.

Based on those 200 estimates, the sample RMSE (Root Mean Square Error) for the estimators

are also calculated. Besides this, 95% credible interval (C.I.) is obtained based on sample

quantile of the marginal posterior distribution of N for each replicate. Then final C.I. is

obtained by averaging over those 200 replicated credible intervals. We also find the coverage

probability of true N for each method. All the results for different variants of Gibbs samplers

are summarized in Table 5.1 for N = 500. Based on availability of directional knowledge,

priors onφ are assigned to all methods according to the respective recommendations, except

for EWiG-II. In EWiG-II method, under the assumption of φ > 1, p is maximised over the

equivalent domain (0, ĉ ) and for φ < 1, p is maximised over (ĉ , 1). Computations of all

the algorithms of four methods (considering EWiG-I and EWiG-II separately) are exercised

through latest R-packages.

When the knowledgeφ > 1 is available (left-top panel of Table 5.1), all other methods perform

relatively better than EWiG-II. It is also noted that overall SEMWiG estimates are most efficient

in terms of rmse and coverage. DA-Lee with prior U(1,3) produces almost same result as

U(1,2) but it has larger confidence length. Length of DA-Lee is too wide for small capture
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probabilities (P5 and P6). In larger capture probability situations (particularly, P2 and P3),

DA-Lee, EWiG-I and SEMWiG are closely comparable. For small capture probabilities, EWiG-I

performed consistently better.

When the correct knowledge ofφ > 1 is not available (left-bottom panel of Table 5.1), EWiG-I

performed better in case of relatively low capture probability and p1· < p·1 (for P1 and P5). On

the other hand, when p1· > p·1 and low capture probabilities, EWiG-II is better. In general,

SEMWiG stands a little bit higher in terms of performance than EWiG-I and can be considered

as the most efficient, except for coverage where Lee performs better, due to the too wide

confidence interval.

In right-top panel of Table 5.1, when the knowledgeφ < 1 is available, SEMWiG works better

than all other methods for all moderate and large capture probabilities (i.e. P7-P10) in terms

of all criteria. Both the methods in EWiG perform satisfactorily better than DA-Lee, except

population P9 and P11. It is noted that the EWiG methods overestimate the population size

for all populations except the very low capture probabilities (P7-P10). Again here DA-Lee

fails to generate Gibbs samples in most of the cases when available directional knowledge

φ < 1 is being used. Therefore, we follow the same remedy as done for N = 200.

When data is generated from the populations with φ < 1 and the knowledge φ < 1 is not

available (i.e. right-bottom panel of Table 5.1), DA-Lee produces estimates with very wide

confidence intervals like earlier situations and that results in high coverage except for low

capture situation P11. In terms of coverage and rmse, SEMWiG works efficiently except for

P12. SEMWiG may be the overall choice for its better efficiency, smaller rmse, more and

substantial amount of coverage than EWiG methods.

Graphical Comparison between DA-Lee & SEMWiG

Figure 5.1 shows that R̂ 1/2
k stabilizes very fast (k ≥ 150) for all populations in case of DA-Lee.

However, estimates are ultimately converging at far above (or distant from) the true value

of N (= 500), approximately for h = 150, 200. This is because the non-informative priors

for all model parameters could not help completely to get rid of the present complexity of

the model in case of DA-Lee method. Moreover, use of directional knowledge onφ (φ < 1,

when actually it is), may mislead us, which is of course a negative feature of this method.

Whereas convergence of SEMWiG estimates (from Figure 5.2) are better and less fluctuating

except in the case of very low capture probabilities. Clearly, the figure shows a good parity of

113



Chapter 5. Empirical Bayes Estimation: Missing Data Approaches3

the SEMWiG estimates with the stabilization of R̂ 1/2 values. Reason behind this is SEMWiG

avoids the identifiability problem, existing in likelihood, relatively better than DA-Lee as it

successfully incorporates constant prior on the system-driven precise domain knowledge on

φ.

5.5 Real Data Application: Malawi Death Data

Greenfield (1975) reports a DRS data on birth, death and migration obtained from a Population

Change Survey conducted by the National Statistical Office in Malawi between 1970 and

1972. The sample was stratified into five strata. To illustrate the application of the two

methods proposed in earlier sections and also to investigate the performance of the existing

DA-Lee approach in literature, we choose the Malawi data on death records (see section

1.8.1 of chapter 1) only for two strata - Lilongwe (ĉ = 0.593, x10 > x01) and Other urban areas

(ĉ = 0.839, x10 < x01) due to its different ĉ values and opposite nature of x10 and x01 values.

Significantly lower ĉ value helps to anticipate that the people of Lilongwe are less keen to

give the information on deaths again in survey time than that of Other urban areas people.

Nour (1982) estimated the death sizes as 378 and 3046 for Lilongwe and Other urban areas

respectively, considering the assumption that two data sources are positively correlated in

human demographic study which is equivalent toφ > 1. Table 5.2 summarizes the results

from three methods discussed earlier. Under both the consideration of unrestrictedφ (i.e.

φ > 0) and restrictedφ (i.e. φ > 1), 200 parallel chains for N are generated for different initial

values. For DA-Lee, burn-in period k is fixed at 100 for Lilongwe and 2500 for Other urban

areas after observing the plot of R̂ 1/2. Similarly for SEMWiG method, burn-in period is fixed

at 1100 for Lilongwe and 9000 for Other urban areas.

For φ > 0, DA-Lee says that the estimated number of deaths in Lilongwe is 360 (with 95%

credible interval (348, 390)) and in Other urban areas is around 3280 (with 95% CI (2865,

3700)). DA-Lee with prior U (0.5,3) gives larger estimate but confidence intervals become

too wide. SEMWiG produces the estimates as 356 and 2845. When recapture proneness is

assumed (i.e. φ > 1), DA-Lee estimates increases to 373 (with 95% CI (357, 397)) for Lilongwe

and 3286 (with 95% CI (3005, 3647)) for Other urban areas. For large population, DA-Lee

is larger than Nour’s(1982[68]). EWiG-I says that 370 and 3200 deaths occurred in Lilongwe

and Other urban areas respectively. When we also consider behavioral effectφ as another

nuisance parameter, then the estimates from relevant method EWiG-II for Lilongwe and

Other urban areas are around 365 and 3200 respectively. For both the populations, estimates

from SEMWiG are slightly smaller than that of Nour (1982[68]) and gives around 372 and 2980
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respectively.

In summary, for large population (Other urban areas), estimates from EWiG-I and EWiG-II

are coincident. Use of directional knowledge improves the efficiency for all the estimates

basically for small population. SEMWiG produces the lowest s.e. and hence smaller length of

confidence interval when directional knowledge of recapture proneness is assumed. When

we do not use the recapture proneness knowledge, all three methods agree that Lilongwe

might not be recapture prone.

5.6 Conclusion

Motivated by the extensive use of Dual-record system (DRS) in various real life practices, we

consider the problem of homogeneous population size estimation in Mt b -DRS framework

based on Bayesian techniques. The present model Mt b suffers from non-identifiability of

behavioral response effect,φ and hence, suitable Bayesian methods are thought to have the

potential to overcome that burden to some extent. Moreover, we think that incorporation of

correct prior knowledge on directional nature of φ, if available, helps in producing better

estimates. Later in Chapter 7, we deal with the problem of classifying the directional nature of

behavioral effectφ and propose an efficient workable strategy. In this chapter, we develop two

empirical Bayes approaches conditionally and unconditionally on the directional knowledge

available onφ under a common roof of missing data analysis and compare them with one of

a few existing full Bayes methods in literature. Performance of the existing approach DA-Lee

(Lee et al., 2003 [62]), which was designed in the spirit of multiple list problem, is investigated

in DRS situation. As per our knowledge, it is the first attempt to make inference for this

complex DRS situation via Bayesian methodologies. We have restricted ourselves to the use

of non-informative or minimum informative constant priors so that subjectiveness can be

reduced in the prior selection which makes the inference robust.

In general it has been found that SEMWiG is overall the most efficient method (both in

terms of RMSE and s.e.). On the other hand, DA-Lee provides wide credible interval than

any other method but also it possesses lower efficiency in most situations than SEMWiG.

When applied to the present Mt b -DRS setup, using directional knowledge on φ, DA-Lee

sometimes encounters problem of drawing samples from its highly dispersed conditional

posterior densities. Moreover, the trial-and-error approach in DA-Lee may take a long time

to discover a suitable range for uniform prior for φ and DA-Lee estimates ultimately may

converge around a highly overestimated value in long run (see Figure 5.1). Coming to the
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EWiG methods, EWiG-I performs better than EWiG-II in terms of efficiency when prior

directional information on φ is known. Beside the advantage of less computational time

and complexity, SEMWiG is easier than EWiGs to explain to the practitioners. Thus Bayesian

analysis along with likelihood estimates (for nuisance parameters) helps to maintain small

variability and converges around a reasonably good value. Thus after all kind of inspections,

we find that empirical Bayes method is useful to construct an efficient strategy, such as

SEMWiG, for population size estimation in this complex DRS depending upon the various

possible practical situations. Though the proposed empirical Bayes methods consume little

more computational time than the full Bayes DA-Lee (Lee et al., 2003 [62]) method, they also

help successfully to get rid of the present identifiability problem efficiently and specifically,

SEMWiG produce either comparable or more efficient estimates than the fully Bayes method.
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Table 5.1: Summary results of all the discussed Gibbs sampling approaches applied to the
populations P1-P8 with N=500.
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Chapter 5. Empirical Bayes Estimation: Missing Data Approaches3

Figure 5.1: Plot of N̂ (in 1st and 3rd row) and R̂ 1/2 (in 2nd and 4th row) against the index h
for DA-Lee method. True value of N and suggested threshold value for R̂ 1/2 are indicated at
500 and 1.1 respectively. First two rows correspond populations P1-P4 and last two rows for
P5-P8. Plots in Left panel refers the situations of available directional knowledge onφ and
right panel plots represent the situations with unavailable knowledge.
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5.6. Conclusion

Figure 5.2: Plot of N̂ (in 1st and 3rd row) and R̂ 1/2 (in 2nd and 4th row) against the index h for
SEMWiG method. True value of N and suggested threshold value for R̂ 1/2 are indicated at
500 and 1.1 respectively. First two rows correspond populations P1-P4 and last two rows for
P5-P8. Plots in Left panel refers the situations of available directional knowledge onφ and
right panel plots represent the situations with unavailable knowledge.
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Chapter 5. Empirical Bayes Estimation: Missing Data Approaches3

Table 5.2: Bayes and Empirical Bayes estimates with summary analyses for Malawi Death
data, separately based on available or non-available directional knowledge on φ. s.e. is
computed based on sample posterior distribution and the 95% posterior credible intervals
for N andφ is determined based on percentile method.

Available 95% CI 95% CI
knowledge Method π(φ) N̂ (s.e.) of N φ̂ ofφ

Lilongwe

φ > 0 DA-Leea U(0.5, 2) 359(12.51) (348, 389) 0.86 (0.57, 1.62)
U(0.5, 3) 362(12.84) (348, 389) 0.92 (0.57, 1.62)

EWiG-I π(φ)∝ 1 377(8.08) (362, 394) 1.29 (1.11, 1.43)
EWiG-II − 351(2.03) (348, 356) 0.67 -
SEMWiG π(φ)∝ 1 356(4.08) (352, 362) 0.79 (0.68, 0.92)

φ > 1 DA-Leea U(1, 2) 373(10.98) (357, 397) 1.22 (1.01, 1.59)
U(1, 3) 373(9.65) (357, 394) 1.22 (1.01, 1.64)

EWiG-I U(1, 1/p ) 370(6.35) (359, 383) 1.12 (1.01, 1.22)
EWiG-II − 365(5.22) (356, 376) 1.01 -
SEMWiG U(1, 1/p ) 372(1.30) (370, 375) 1.16 (1.11, 1.20)

Other urban areas

φ > 0 DA-Leea U(0.5, 2) 3276(218.75) (2865, 3695) 1.37 (0.95, 1.79)
U(0.5, 3) 3367(311.96) (2898, 4184) 1.46 (0.98, 2.32)

EWiG-I π(φ)∝ 1 3199(26.80) (3149, 3251) 1.29 (1.26, 1.32)
EWiG-II − 3198(25.50) (3150, 3249) 1.29 -
SEMWiG π(φ)∝ 1a 2847(26.03) (2818, 2885) 0.93 (0.89, 0.96)

φ > 1 DA-Leea U(1, 2) 3286(172.31) (3005, 3647) 1.38 (1.09, 1.75)
U(1, 3) 3360(254.19) (3008, 3986) 1.46 (1.09, 2.10)

EWiG-I U(1, 1/p ) 3199(25.56) (3151, 3247) 1.29 (1.27, 1.32)
EWiG-II − 3196(25.44) (3149, 3250) 1.29 -
SEMWiG U(1, 1/p ) 2981(13.37) (2970, 3001) 1.06 (1.05, 1.09)
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6 Empirical Bayes method with Func-

tionally Dependent Prior

6.1 Introduction and Motivation

DSE N̂i nd doesn′t work satisfactorily as the violation of the underlying causal independence

assumption often occurs between the capture probabilities. Chapter 1 shows that, for a

homogeneous population, the capture probabilities might become correlated due to list

dependence and it occurs when capture probability at the time of second survey depends on

whether he/she is captured in first time. This behavioral dependency is driven by a parameter

φ (∈R+), called Behavioral Response Effect, incorporated in the model Mt b , in order to extend

the model Mt . Thus, model Mt b has a strong relevance in practice and it acts as a generic

model for a group of homogeneous individuals when the sample lists are not thought to

be independent, or, at least when experimenter doesn’t have assured knowledge that the

given dual system is causally independent. A serious weakness of the model is that it suffers

from nonidentifiability problem, which has been addressed in Otis et al. (1978[71]) not only

for DRS, but also for the number of capture occasions more than two. For details about

model Mt b , its nonidentifiability and associated review of few literature, readers are referred

to sections 1.6 and 5.1. Keeping in mind the flexibility of Bayesian techniques and some

successful Bayesian methods developed in this context, here also our basic aim is to develop

some other suitable methodology for estimating N in Mt b -DRS context for homogeneous

human population size (N ) estimation as an alternative or supplement to the very few existing

approaches where behavioral effect plays a key role along with time variation effect.

All of the few existing Bayesian techniques are proposed in the spirit of multiple capture-

recapture model useful for wildlife population, where number of capture occasions are

usually more than three. So, they require some assumptions, such as, recapture probabilities
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Chapter 6. Empirical Bayes method with Functionally Dependent Prior

bear a constant relationship to initial capture probabilities or behavioral response effects (φ)

remain same for all recapture stages. These assumptions purposefully avoid nonidentifiability

problem and makes the model Mt b simpler. However, it is clear from the nature of the

present Mt b -DRS model that no such assumptions is possible as here, only one recapture

occasion is performed. Chapter 5 developed two strategic empirical Bayes approaches with

minimum informative prior on the key parameter φ. Thus, from the nature of underlying

model and its associated literature, it is clear that without the help of informative prior, it is

not possible to have a reasonably good Bayesian solution. It is evident from chapter 5 that if

the true directional knowledge onφ (i.e. whetherφ > 1 or < 1) is available, then expectedly,

improved inference can be obtained. In a DRS framework, Nour (1982 [68]) proposed an

estimator assuming the directional knowledge of recapture proneness (i.e. φ > 1) in human

demographic studies. Another possibility of recapture aversion (i.e. φ < 1) might take place in

some situations, e.g. drug abused population size estimation. In this chapter, we purposefully

design a Gibbs sampling strategy using flat prior on suggested bound forφ when directional

behavioral knowledge is available and a suitable informative prior on another nonidentifiable

parameter p based on a functional constraint. On the other hand, by understanding a need to

develop an approach when no such directional knowledge onφ is available (i.e. whenφ > 0),

the proposed Gibbs sampling strategy is modified based on a informative conjugate prior on

φ. In both situations, priors specification using the available domain knowledge, if available,

preserve some characteristics of the underlying system and use minimal information so that

efficient solutions could be obtained using simple Gibbs sampling techniques.

Both the strategies are presented along with their numerical evaluation over different simu-

lated populations in sections 6.2 and 6.3. The full Bayes strategy as developed by Lee et al.

(2003[62]) is also presented with or without the consideration of said directional knowledge.

Section 6.4 examines a real DRS data on death records as an illustrative example. Finally in

the last section, we summarize our findings and provide the best possible estimation rule

depending upon the availability (or non-availability) of the directional knowledge onφ.

6.2 When Directional Knowledge onφ is Available

6.2.1 Proposed Methodology (AB-Flat)

In this section, we suggest a Gibbs sampling Bayesian strategy and propose associated com-

putation technique so that the unidentifiability burden can be successfully overcome for

estimating N with noninformative flat prior depending upon the available directional knowl-
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6.2. When Directional Knowledge onφ is Available

edge onφ. In (1.16),φ and p both are not identifiable but their product c (=φp ) is identifiable

and well estimated by ĉml e = (x11/x1·), where E (ĉml e )≈
p11
p1·
= c even for moderately large N .

Hence, for given c , we consider p as a function ofφ only, i.e. p = p (φ|c ) = c /φ. Thus, there

is a functional constraint (i.e. p =φ/c ) that should be abided by any inferential strategy. We

assign independent priors on Θ = (N ,φ, p1·) as π(Θ) = π(p1·)π(φ)π(N ) except p . For p , we

assign a degenerated prior givenφ, asπ(p |φ) = 1 for p = ĉ /φ. The prime rationale behind the

consideration of such informative prior is to maintain the functional dependence between

two nonidentifiable parameters φ and p in the inferential process. Moreover, it helps to

exercise the Bayesian strategy for such a complex model with a notable amount of lesser

computational labour. Now, separate conditional posterior distributions for Θ are as follows

π(p1·|N ) ∝ p
x1·

1· (1−p1·)
N−x1·π(p1·), (6.1)

π(φ|N , p ) ∝ φx11 (1−φp )x10π(φ), (6.2)

π(N − x0|p1·, p ) ∝
N !

(N − x0)!
((1−p1·)(1−p ))Nπ(N ), (6.3)

We consider the noninformative prior for p1· as π(p1·) =Unif(0, 1). Like Lee et al. (2003[62]), a

flat prior density π(φ) =Unif(α,β ) is chosen forφ. It follows that (6.1) and (6.2) reduce to

π(p1·|N ) ∝ B e t a (x1·+1, N − x1·+1), (6.4)

π(φ|p ) ∝ GB-I(x11+1, x10+1, 1, r a t e = p )×I[α,β ](φ), (6.5)

where I[α,β ](φ) is an indicator function forφ ∈ [α,β ] and GB-I refers Generalized Beta Type-I

density. Now, the hyperparameters α and β are to be chosen.

In addition to (6.1)-(6.3), Lee et al. (2003 [62]) also takes into account a prior on p ; so they

have identified known conditional posterior densities for N, p1·,φ and employed adaptive

rejection sampling to generate p since explicit conditional posteriors for p was not available.

For the choice of priors in (6.1)-(6.3) and also for p , readers are referred to section 5.2.1 of

previous chapter.

If no other information onφ is available then choosing prior distribution is not at all easy.

Lee et al. (2003[62]) proposed a trial-and-error procedure for this. They opt for such α and β

for which the range of the posterior credible interval forφ is not too close to either side of

the prior limits. They mentioned that this procedure seems to work well only when there is a
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Chapter 6. Empirical Bayes method with Functionally Dependent Prior

large amount of recapture information. They also agreed that such kind of trial-and-error

method has no theoretical justification and this judgement is highly subjective. For human

population, high capture probabilities may be attained but number of samples is too small,

usually, T=2. Now, we propose a model-driven prior limits for π(φ), or can say it is rather

an automatic choice. Since c = φp < φ, c is a good choice for the lower limit α. Hence,

our selected objective prior is π(φ) =Unif(c ,1)when we knowφ < 1. If it is known that the

population is recapture prone (i.e. φ > 1), we recommend to set α to 1 and upper limit β = 2

or 3 is suitable for the analysis of human population. When directional knowledge is not

at all available, α= c and β = 2 or 3 is a safe choice. Thus, π(φ)would be non-informative

irrespective of the availability of directional knowledge onφ. Now, two different priors on N

are considered as follows:

I. Poisson prior: π(N ) = Poi(λ), then conditional posterior (6.3) becomes

π(N − x0|p1·, p )∝ P o i (λ(1−p1·)(1−p )) and

II. Jeffrey’s prior: π(N )∝ 1/N , then conditional posterior (6.3) follows negative binomial

distribution as

π(N − x0|p1·, p )∝NB(x0,µ),

where, µ=1− (1−p1·)(1−p ) and p = c /φ, from definition of φ. For poisson prior, we can

use empirical estimate of λ, as stated in George and Robert (1992 [42]). Here, we replace λ

by N̂Mb
, the likelihood estimate from model Mb (see section 1.5). Jeffrey’s prior on N is also

equivalent to the prior π(N ) = Poi(λ)with π(λ)∝ 1/λ. For the caseφ > 1, we also judge the

performance of λ= N̂N o u r , where N̂N o u r is the estimate of N based on Nour(1982 [68]).

At first we fix initial values N (0) andφ(0). Then the initial value p (0) is obtained easily from the

parametric relation p = ĉ /φ as ĉ is consistent estimate for c . One can generate p (0)1· from the

conditional posterior (6.4) replacing N by N (0). Thereafter, Gibbs sampler proceeds to obtain

a posterior adjusted by a functional dependence constraint, especially for N .

Thus, the above approach produces a Gibbs sequence {N (h ),φ(h ), p (h ), p (h )1· ; h = 1, 2, 3,...} by

repeating this process 2k (k > 0, is to be specified) times. The initial value for Θ and therefore

also for p comes from a wide range of choices, so it is generally unstable at beginning of the

process. To avoid the influence of the starting value, we discard the first k iterative values

as under the burn-in period and consider the remaining consecutive values to construct
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6.2. When Directional Knowledge onφ is Available

Step 1 : Simulateφ(1) from π(φ|p (0)), in (6.5).

Step 2 : Simulate N (1) from π(N − x0|p
(0)
1· ,φ(1)) and obtain p (1) = ĉ /φ(1).

Step 3 : Generate p (1)1· from π(p1·|N (1)), in (6.4).

Step 4 : Repeat the above three steps until the convergence.

posterior distributions for the model parameters. Here, conditioned onφ, the density π(p |φ)

is considered to be the prior on p whose mean is empirically estimated by ĉ /φ and flat prior

choice onφ is made based on available domain knowledge. Therefore, we call this strategy

as empirical Bayes and denote it as AB-Flat. In addition to that, to maintain the functional

relation between φ and p , we consider π(p |φ) as degenerate density (or equivalently, a

point-mass prior) at p = ĉ /φ, conditional on φ. We believe that such kind of functionally

dependent restricted prior satisfying a structural relation, will help to get rid of the model

complexity, especially when one tries to avoid subjective prior on the usual domain (0,1)

for p . Hence, The above approach is presented as a potential alternative to N estimation

problem under the model Mt b when only two samples are available. Advantage of AB-Flat

over Lee et al. (2003 [62]) is that the computational burden can be successfully overcome

in order to generate Gibbs samples for p . Another advantage is that we don’t need to setup

prior limits forφ by trial-and-error method. Another relation, p = x01/(N − x1·), suggested by

Llyod (1994 [65]), can also be used in Step 2 in lieu of p = ĉ /φ(1). Though, by this method we

loose some information contained in the likelihood Mt b , but we can successfully overcome

the model complexity and produce efficient estimates of N through a simpler computational

involvement. Method AB-Flat can be implemented in practice for estimation with simple

computation and maintenance of structural relation of underlying process. There are many

methods available for diagnostic checking of posterior convergence in literature. In this study,

we use the iterative simulation technique using multiple sequence method (see Gelman, 1996

[41]) and compute R̂ 1/2 exactly following Lee et al. (2003 [62], p.p. 483).

6.2.2 Numerical Illustrations

In this section we evaluate the performance of our approach proposed in last section and

understand its efficiency in order to apply the method when directional knowledge on φ

is available. Let us simulate eight hypothetical populations corresponding to four pairs of
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Chapter 6. Empirical Bayes method with Functionally Dependent Prior

capture probabilities (p1·, p·1)={(0.50, 0.65), (0.60, 0.70), (0.80, 0.70), (0.70, 0.55)} in each case

of recapture prone (represented byφ = 1.25) and recapture averse (represented byφ = 0.80)

situations. All the populations are truly of size N = 500. Thus, here also we consider the

identical populations incorporated in the earlier chapters. The results associated to the

populations P1, P2, P3 and P4 are presented in Table 6.1, whereas associated results to other

four populations P5, P6, P7 and P8 are shown in Table 6.2. The hyper-parameters α and β for

π(φ)∝U (α,β ) are taken as

(α,β )=(1, 2) for prior domain knowledgeφ > 1 and

(α,β )=(ĉ , 1) for prior domain knowledgeφ < 1.

The above priors are chosen depending upon the available true directional knowledge onφ.

In addition to that, if no directional information on φ is available, another prior U (ĉ ,2) is

chosen assuming φ < 2. 200 data sets on (x1·, x·1, x11) are generated from each of the eight

populations. Our AB-Flat estimates have been obtained through simple Gibbs sampling

from five independent parallel chains. Burn-in period is fixed at k = 2000 in general, after

observing the performance of R̂ 1/2. Finally, estimate of N is obtained by averaging over

200 posterior means. Based on those 200 estimates, the bootstrap sample s.e. and sample

RMSE (Root Mean Square Error) are calculated. We also compute the 95% credible interval

(C.I.) based on sample quantile of the posterior distribution of N. In addition to that, we

compute the similar statistics from the DA-Lee and SEMWiG methods. However, the DA-Lee

method was illustrated originally in the context of animal capture-recapture experiment

by Lee et al.(2003[62]) where large number of sampling occasions are typically considered.

Their detailed computation strategy, particularly for DRS, can be found in section 5.2.1 of

chapter 5. SEMWiG method and its computation details also can be found in chapter 5.

Nour’s (1982[68]) estimates are also calculated only for φ = 1.25 cases as, Nour (1982[68])

deduced his approach for recapture prone situation. Their estimates as well as its S.E., RMSE,

95% confidence interval are computed over 200 generated datasets and present them as

average estimate, sample SE, sample RMSE, 95% CI respectively in Table 6.1. When it is

known that underlyingφ > 1, we also evaluate the performance of our AB-Flat approach with

π(N )∝ P o i (λ= N̂N o u r ) (see section 1.6.1).

Population P1 and P2 in Table 6.1 demonstrate populations with p1· < p·1. Here we evaluate

the performance of our proposed approach with Jeffrey’s prior (in first row), poisson prior

with λ= N̂Mb
(in second row) on N corresponding to each of the four priors onφ previously
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6.2. When Directional Knowledge onφ is Available

mentioned. Estimates from priors U (1,2) or U (1,3) on φ are compared with the available

Nour’s (1982[68]) estimator. Results suggest that when one has the information thatφ > 1,

the uniform priors U (1,2) or U (1,3) for φ is recommended for use. Another estimator is

produced with prior Poi(λ= N̂N o u r ) (in third row) for N, where N̂N o u r is the estimate of N due

to Nour (1982 [68]). Tables show that the proposed approach from these two recommended

priors are significantly better than the Nour’s estimate based on RMSE and tighter confidence

intervals around the true N. Results from Jeffrey’s or Poi(λ= N̂N o u r ) prior on N is better than

that from Poi(λ= N̂Mb
). Overall, our proposed empirical Bayes solution, AB-Flat, based on

flat uniform prior on φ and functionally dependent prior on p performs well and shows

improvement over both the Lee’s and Nour’s approach, which is available only forφ > 1.

Now we turn to the recapture averse cases and associated results are presented in Table 6.2.

Population P5 and P6 in Table 6.2 demonstrates a case of recapture averse population with

p1· < p·1. For P5, Bayes estimate corresponding to Jeffrey’s prior performs moderately for

U (ĉ , 1) and if it is not known thatφ is less than 1, then the other priors U (ĉ , 2)overestimate the

N due to low capture probabilities. Poisson prior with λ= N̂Mb
also misdirect the estimator

due to same reason. In case of moderately high capture probabilities with p1· < p·1 in P6, our

proposed strategy with U (ĉ , 1) performs very well and other two estimates are also reasonably

good. With the availability of the knowledge thatφ is less than 1, Jeffrey’s prior is relatively a

better choice than poisson. Population P7 considers high capture probabilities with p1· > p·1.

Estimate corresponding to the prior limit (ĉ , 1) is better than other two priors. Though these

other two estimates can be considered as good if we ignore their slight overestimation. For

population P8 also, prior U (ĉ , 1) with Jeffrey’s prior on N produces reasonably good estimate

whereas the other two priors are highly overestimates as the second capture probability is

very small. For the situation when p1· > p·1, we recommend the use of poisson prior when

no directional information on φ is available. Overall results from Table 6.2 indicate that

our empirical Bayes estimate with prior U (ĉ ,1) for φ works very well but one can use this

range only when it is known thatφ < 1. Suppose the directional knowledge on the behavioral

response effect is not available but we continue to use the AB-Flat method with the same

uniform prior over the extended region (ĉ , 2). These results are presented in the lower panels

of both the Tables 6.1 and 6.2. For populations P1-P4, AB-Flat performs not well unless the

probability of capture in List 1, p1·, is very high. This happens as U (ĉ , 2) extends the constant

prior below 1 up to ĉ , so the estimates may become biased downwards. On the other hand,

for populations P5-P8, other two priors can be employed with poisson prior for N. The results

in these four tables also tell us that proposed approach, from other two prior limits, works

as results for these two cases are qualitatively similar, only present then for U (1, 2)
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Table 6.1: Summary results reflecting the performances of the proposed approach AB-Flat
and other relevant methods applied to the populations P1-P4. Upper panel refers to the
situation when the knowledge,φ > 1, is available. Lower panel when nothing is available on
φ.

Population Prior Average Sample Sample
(E(x0)) Method: π(φ) π(N ) Estimate SE RMSE 95%C I

when it is known thatφ > 1
P1(394) Nour - 479 14.84 25.49 (452, 509)

Lee: U(1,2) Jeffrey 472 18.94 34.11 (438, 518)
SEMWiG: U(1, p−1) Jeffrey 484 - 23.92 (451, 522)
AB-Flat: U(1,2) Jeffrey 497 20.51 20.89 (459, 539)

Poi(N̂Mb
) 520 29.73 35.92 (469, 582)

Poi(N̂N o u r ) 489 17.99 21.04 (456, 526)

P2(422) Nour - 487 13.18 18.47 (461, 512)
Lee: U(1,2) Jeffrey 478 11.04 24.33 (451, 519)
SEMWiG: U(1, p−1) Jeffrey 485 - 21.25 (456, 511)
AB-Flat: U(1,2) Jeffrey 491 15.36 17.97 (460, 521)

Poi(N̂Mb
) 492 15.84 17.77 (460, 524)

Poi(N̂N o u r ) 488 14.57 18.78 (459, 517)

P3(458) Nour - 499 8.74 8.76 (481, 516)
Lee: U(1,2) Jeffrey 490 7.55 12.02 (473, 515)
SEMWiG: U(1, p−1) Jeffrey 495 - 9.87 (477, 512)
AB-Flat: U(1,2) Jeffrey 499 9.06 9.08 (481, 517)

Poi(N̂Mb
) 495 8.15 9.61 (478, 511)

Poi(N̂N o u r ) 499 8.86 8.98 (480, 516)

P4(420) Nour - 499 13.53 13.55 (473, 523)
Lee: U(1,2) Jeffrey 488 12.38 17.03 (457, 531)
SEMWiG: U(1, p−1) Jeffrey 502 - 16.32 (474, 532)
AB-Flat: U(1,2) Jeffrey 511 17.20 20.50 (481, 543)

Poi(N̂Mb
) 489 12.81 16.84 (463, 511)

Poi(N̂N o u r ) 505 15.47 16.32 (478, 533)

when no directional knowledge onφ is available
P1 SEMWiG: π(φ|p )∝ 1 Jeffrey 459 - 43.57 (431, 483)

AB-Flat: U(ĉ ,2) Jeffrey 433 12.57 67.88 (410, 459)
Poi(N̂Mb

) 447 16.33 55.68 (416, 481)

P2 SEMWiG: π(φ|p )∝ 1 Jeffrey 487 - 19.03 (459, 513)
AB-Flat: U(ĉ ,2) Jeffrey 448 10.24 53.38 (428, 466)

Poi(N̂Mb
) 450 10.68 51.28 (428, 470)

P3 SEMWiG: π(φ|p )∝ 1 Jeffrey 496 - 8.81 (481, 510)
AB-Flat: U(ĉ ,2) Jeffrey 474 6.63 26.67 (460, 486)

Poi(N̂Mb
) 473 6.52 27.64 (459, 485)

P4 SEMWiG: π(φ|p )∝ 1 Jeffrey 458 - 44.42 (438, 477)
AB-Flat: U(ĉ ,2) Jeffrey 458 10.56 43.66 (436, 477)

Poi(N̂Mb
) 452 9.75 49.07 (432, 470)
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reasonably good for high capture probabilities. It is also noted that estimates from prior

Poi(λ = N̂Mb
) have smaller RMSE than that of Jeffrey’s for high List-1 capture probability.

Prior π(φ) =U (ĉ ,2) performs satisfactorily only for large p1·, without considering the fact

thatφ < 1 and in that situation, π(N ) = Poi(N̂Mb
) works better than Jeffrey’s.

Table 6.2: Summary results reflecting the performances of the proposed approach AB-Flat
and other relevant methods applied to the populations P5-P8. Upper panel refers to the
situation when the knowledge,φ < 1, is available. Lower panel refers when nothing is available
onφ.

Population Prior Average Sample Sample
(E(x0)) Method: π(φ) π(N ) Estimate SE RMSE 95%C I

when it is known thatφ < 1
P5(430) Lee: U(0.2,1.4)a Jeffrey 456 18.80 47.88 (432, 505)

SEMWiG: U(ĉ , 1) Jeffrey 478 - 25.27 (455, 507)
AB-Flat: U(ĉ ,1) Jeffrey 482 12.39 21.62 (461, 508)

Poi(N̂Mb
) 542 69.93 81.45 (488, 676)

P6(459) Lee: U(0.2,1.4)a Jeffrey 481 7.40 20.51 (460, 528)
SEMWiG: U(ĉ , 1) Jeffrey 492 - 11.74 (477, 510)
AB-Flat: U(ĉ ,1) Jeffrey 495 8.38 9.98 (480, 510)

Poi(N̂Mb
) 504 11.38 12.03 (485, 526)

P7(483) Lee: U(0.2,1.4)a Jeffrey 504 6.90 7.69 (484, 535)
SEMWiG: U(ĉ , 1) Jeffrey 498 - 5.28 (489, 508)
AB-Flat: U(ĉ ,1) Jeffrey 500 5.00 5.01 (490, 508)

Poi(N̂Mb
) 499 4.97 5.07 (489, 508)

P8(446) Lee: U(0.2,1.4)a Jeffrey 523 20.26 30.73 (466, 589)
SEMWiG: U(ĉ , 1) Jeffrey 484 - 19.34 (465, 506)
AB-Flat: U(ĉ ,1) Jeffrey 483 8.72 19.31 (468, 498)

Poi(N̂Mb
) 481 8.90 21.08 (466, 497)

when no directional knowledge onφ is available
P5 SEMWiG: π(φ|p )∝ 1 Jeffrey 474 - 27.75 (454, 497)

AB-Flat: U(ĉ ,2) Jeffrey 534 21.25 40.33 (497, 581)
Poi(N̂Mb

) 609 108.33 153.77 (523, 823)
P6 SEMWiG: π(φ|p )∝ 1 Jeffrey 512 - 15.27 (494, 525)

AB-Flat: U(ĉ ,2) Jeffrey 526 13.56 28.98 (502, 550)
Poi(N̂Mb

) 529 16.80 33.54 (495, 539)
P7 SEMWiG: π(φ|p )∝ 1 Jeffrey 510 - 12.60 (498, 526)

AB-Flat: U(ĉ ,2) Jeffrey 513 6.50 14.61 (501, 525)
Poi(N̂Mb

) 507 5.92 9.29 (497, 518)
P8 SEMWiG: π(φ|p )∝ 1 Jeffrey 487 - 18.30 (466, 517)

AB-Flat: U(ĉ ,2) Jeffrey 522 20.17 29.77 (494, 562)
Poi(N̂Mb

) 504 16.51 17.07 (481, 538)

aThis prior is used as Lee et al.’s strategy fails to generate samples from U(0.2, 1), whenφ > 1

This analysis suggests that when directional information onφ is unavailable, it is not possible

to have reasonably good estimate for N from flat objective prior onφ except in case of x1· > x·1

underφ < 1. Moreover, subjectiveness makes an estimate prior sensitive which is not at all
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desirable. This motivates us to formulate a modified approach for unavailable directional

knowledge ofφ in the next section.

6.3 When Directional Knowledge onφ is Unavailable

6.3.1 Proposed Methodology (AB-Con)

In earlier section it is observed that when directional information onφ is not available, the

reasonable choice [α,β ]=[ĉ , 2] generally outperforms other methods for human population,

if one uses constant or unform prior onφ. In practice, for human population, demographic

or any other beneficiary type survey reflects a recapture prone nature among the individuals.

But, if no such information is available, can we modify our earlier proposed strategy (in

section 6.2.1) considering suitably minimum subjectiveness in prior selection onφ so that

reasonably good estimate can be obtained? In this section we try to set a conjugate prior

on φ and therefore investigate how our Bayes estimates, based on different potential loss

functions, perform if hyperparameters are empirically estimated.

Unlike the previous case, we suggest that prior onφ is dependent on N and therefore, joint

prior distribution becomes π(Θ) = π(p1·)π(φ|N )π(N ). We support the argument made by

Lee et al. (2003[62]) that, in practice, it is necessary to restrict the range ofφ to be between

some α and β . Let us restrict φ ∈ [α,β ] and consider a conjugate prior on φ as π(φ) =

GB-I(a , b ,1, rate = 1/β ), for given a, b and β . Hence, π(φ|α,β , a , b )∝φa−1(1−φ/β )b−1 ×

I[α,β ](φ). Since, c =φp and c < 1, then p−1 might be thought as a good choice for the upper

limit ofφ, hence β = p−1. In practice, ĉ is taken as a good choice for α and p can be obtained

using the relation p = x01/(N − x1·), suggested by Llyod(1994[65]). This suggestion leads to a

conditional posterior ofφ as a well-known probability density function from which one can

directly generate Gibbs samples. The conditional posterior density will be

π(φ|N , a , b ) ∝ GB-I(x11+a , x10+ b , 1, rate= 1/β )×I[ĉ ,β ](φ), (6.6)

where β = p−1 = (N − x1·)/x01 and a and b are chosen by equating Eπ(φ|α,β , a , b ) with

c /p = cβ to maintain the inter-relationships among model parameters in prior selection.

Since, Eπ(φ|α,β , a , b ) =βa (a + b )−1 which implies a (a + b )−1 = c . We choose a = t (x11/x0)

and q = t (x10/x0)where t (> 0) is a tuning parameter that regulates the variance of the prior

density such that Vπ(φ) = O(t −1). Remaining parameters in Θ, i.e. p1· and N , have same
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prior setup as mentioned in section 6.2.1. Hence, we can perform a simple Gibbs sampling

MCMC technique with conditional posterior ofφ in (6.6) and other two conditional posterior

densities π(N − x0|φ, p1·) and π(p1·|N ) exactly same as in section 6.2.1. Here also the hyper-

parameter λ is replaced by N̂Mb
as before for poisson prior. Firstly, we fix initial values p (0)1·

and p (0) and the prior variance tuning parameter t . φ(0) is simulated from conjugate prior

GB-I with initial β (0) = 1/p (0). Then generate N (0) from its posterior π(N − x0|p1·, p ) replacing

p1· and p by p (0)1· and p (0) respectively. Then, subsequent steps in Gibbs sampling is carried

out as follows.

Step 1 : Simulate p (1)1· andφ(1) from π(p1·|N (0)) and π(φ|N (0), a , b ),
in (6.6) respectively, where β = 1/p (0).

Step 2 : Obtain p (1) = ĉ /φ(1).

Step 3 : Generate N from π(N − x0|p
(1)
1· ,φ(1)).

Step 4 : Repeat the above three steps until the convergence is reached.

Hence, the values {N (h ) : k < h ≤ 2k}, where k is the chosen burn-in period, are believed to be

a very large sample from the resulting posterior distribution π(N |x). k is chosen based on the

performance of R̂ 1/2 as stated earlier. To obtain estimate of true population size (N) from the

resultant posterior, we consider some potential loss functions, such as squared error, absolute

error and maximum a posteriori (MAP) loss functions which produce estimators respectively

as posterior mean (N̂M E AN ), median (N̂M E D ) and mode (N̂M AP ). Casella (1986) suggested

another estimate obtained by minimizing the squared relative error loss function L (N , N̂ ) =
�

N−N̂
N

�2
, and the corresponding estimate is N̂SR E = Eπ(N |D )(N −1)/Eπ(N |D )(N −2). In practice,

N̂SR E is obtained using the ratio of
∑

1/N (h ) and
∑

1/[N (h )]2 from posterior sample {N (h ) :

k < h ≤ 2k}. One feature of this setup is that though it uses informative prior but the hyper-

parameters (a, b, λ) are taken as functions of data for given the variance tuning parameter t.

In the next section, we numerically evaluate the performance of aforesaid MCMC algorithm

in order to estimate N when directional knowledge on φ is absent, equivalently, domain

knowledge isφ > 0. We call this method as AB-Con method since conjugated subjective prior

choice is made forφ when directional knowledge onφ is unavailable.

131



Chapter 6. Empirical Bayes method with Functionally Dependent Prior

6.3.2 Numerical Illustration

Let us consider all the simulated populations discussed in section 6.2.2 in order to illustrate the

AB-Con method and also to suggest efficient priors under different loss functions considered.

Prior belief on φ is considered with a reasonable value of t = 20. Hence, we observe the

performance of R̂ 1/2 for all populations and fix a general k at 7000. Resulting posteriors from

AB-Con method using Jeffrey’s and Poisson priors on N are shown in Figure 6.1 along with

posteriors from Lee et al. (2003[62]). Burn-in for Lee’s(2003[62]) method is set at 150. Figure

6.1 shows that Lee’s method produces tighter posteriors than AB-Con but it is bimodal in

nature for almost all cases. Posterior from Jeffrey’s prior in AB-Con method is almost similar

with poisson prior across populations but it has larger variability than poisson. In some cases,

Lee’s(2003[62]) estimate is better in terms of squared error or maximum-a-posteriori loss, but

for bimodal posteriors the higher mode is not close to the true value (as here, true N is 500).

Final Estimates of N are obtained by averaging over 200 posterior replications for each loss

function. S.E. of each estimate is computed over 200 replicated estimates. It is clear from

Table 6.3 that poisson and Jeffrey’s prior performs better respectively in case of squared error

and absolute error loss. Specifically when x1· < x·1, Jeffrey’s prior performs better for both

the loss functions. MAP-based estimator significantly underestimates N for recapture prone

populations. Under this loss function, poisson prior is generally better than Jeffrey’s. In

particular for x1· > x·1, both the priors have similar performance. N̂SR E would be effective in

general with Jeffrey’s prior for N . Indeed,φ > 1 corresponds to the most likely case in human

demographic studies. For example, a specialised survey is conducted following a large census

count, e.g. Post Enumeration Survey (PES), x1· < x·1 is often experienced. For sensitive dual

survey, e.g. estimation of drug abused population size, x1· > x·1 is usually observed for time

ordered samples. Hence, in order to find an estimator when no information onφ is available,

Poi(λ= N̂Mb
) is suggested as a reasonably good selection for π(N ) if maximum-a-posteriori

loss function is the objective of choice. Otherwise, for posterior median and Casella (1986[14])

suggested loss function squared relative error (SRE), Jeffrey’s non-informative prior on N is

preferred.

6.4 Real Data Application: Malawi Death Data

To illustrate the methods developed in earlier sections of this current chapter, we consider

the Malawi Death data (for details, see section 1.8.1 of chapter 1) again. Nour (1982[68])

estimated these death sizes as 378 and 3046 for Lilongwe and Other urban areas respectively
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Table 6.3: Summary results for estimating N with associated s.e. in ( ) by the proposed
AB-Con method from different loss functions and Lee’s(2003[62]) method for all simulated
populations, when directional knowledge onφ is NOT available.

Prior
Popln. π(N ) Leea N̂M E AN N̂M AP N̂M E D N̂SR E

P1 Jeffrey 468 (20.56) 483 (13.92) 410 (10.52) 467 (12.90) 467 (12.51)
P(N̂Mb

) - 499 (23.34) 419 (13.52) 494 (22.77) 483 (18.67)

P2 Jeffrey 483 (18.45) 493 (12.04) 433 (9.66) 481 (11.13) 483 (10.98)
P(N̂Mb

) - 489 (13.12) 438(13.22) 486 (12.87) 482 (12.02)

P3 Jeffrey 485 (6.61) 495 (7.40) 464 (6.45) 488 (6.90) 492 (7.06)
P(N̂Mb

) - 490 (6.94) 463 (6.17) 486 (6.81) 488 (6.69)

P4 Jeffrey 471 (8.11) 473 (10.81) 429 (8.61) 461 (9.85) 466 (9.94)
P(N̂Mb

) - 463 (9.91) 429 (8.62) 458 (9.69) 458 (9.57)

P5 Jeffrey 474 (20.80) 566 (14.85) 454 (10.33) 533 (12.13) 530 (11.30)
P(N̂Mb

) - 660 (18.50) 498(10.12) 646(17.36) 595(9.45)

P6 Jeffrey 512 (15.76) 558 (11.57) 478 (7.63) 544 (9.55) 544 (8.97)
P(N̂Mb

) - 570 (19.89) 490 (14.12) 561 (18.96) 553 (15.09)

P7 Jeffrey 516 (6.17) 539 (7.62) 492 (5.45) 526 (6.67) 532 (6.72)
P(N̂Mb

) - 528 (6.86) 493 (5.16) 524 (6.55) 525 (6.36)

P8 Jeffrey 517 (13.02) 525 (10.58) 460 (7.36) 505 (9.16) 510 (8.98)
P(N̂Mb

) - 507 (9.45) 462 (8.13) 501 (9.35) 501 (8.83)

aPrior π(φ) =U (0.5,2) is chosen by the trial-and-error method discussed in Lee et al.
(2003[62])

assuming the fact that two data sources are positively correlated (i.e. φ > 1) in a human

demographic study. To implement both our methods, 200 parallel chains are generated from

different randomly selected starting points for all the competitive Gibbs samplers suggested

in AB-Flat, AB-Con and Lee’s(2003[62]) methods. Therefore, we compute R̂ 1/2 (with respect

to N) to determine the burn-in period k. In Table 6.4, upper and lower panels respectively

represent the results corresponding to Lilongwe and Other Urban Area.

At first, we analyse the data assuming that the two populations are recapture prone as in

human demographic study, positive list-dependence occurs often. So, we also use the poisson

prior with λ= N̂N o u r in addition to other two priors - Jeffrey’s and Poi(λ= N̂Mb
), for method

AB-Flat. In the first half of both panels of the Table 6.4, for the prior U(1, 2) onφ, first, second

and third row correspond to the Jeffrey’s, Poi(λ= N̂Mb
) and Poi(λ= N̂N o u r ) priors respectively.

We fix burn-in k generally at 500 for Lilongwe and 3000 for Other urban areas (see Figure 6.2)
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and record the remaining k values in each of 200 chains. Proposed AB-Flat approach with

any suitable prior gives very close and efficient results in comparison to Nour’s(1982[68]).

Moreover, it is also found that in Lilongwe, peoples are more keen to capture the death

records again than that of survey time compared to Other urban areas. Our estimate with the

assumptionφ > 1 indicates that around 380 deaths occurred in Lilongwe and around 3030

deaths occurred in Other urban areas. As N becomes large, we also notice that effect of a

choice of larger β for π(φ) on the estimate becomes less.

Bottom half of both the panels in Table 6.4 present the results for both the strata when no

information is available on the nature of behavioral response effect, i.e. AB-Con method. We

fix burn-in k generally at 2000 for Lilongwe and 15000 for Other urban areas (see Figure 6.2).

Figure 6.2 also suggests that burn-in period k in Lee’s method is 100 and 3000 respectively

for the two strata. For poisson prior on N , the hyper-parameter λ is replaced by N̂Mb
. Prior

U(ĉ , 2) in AB-Flat method says that the estimated number of deaths in Lilongwe is 360 with a

95% credible interval (357, 365) and in Other urban areas is around 2856 with a 95% credible

interval (2828, 2929), which are both underestimation than respective Nour’s estimates. These

results disagree with the recapture proneness of the population assumed by Nour (1982[68]).

Without considering any directional knowledge on φ (i.e. AB-Con method) the posterior

mean, median and SRE estimates suggest that number of deaths in Lilongwe is around 363

and contradict the assumption made by Nour(1982[68]) that this population is recapture

prone. For Other urban areas, our analysis agrees that this population is recapture prone asφ

is around 1.20 and corresponding estimate of N is nearly 3130, which is greater than Nour’s.

For both strata, our MAP based Bayes estimates provide lower estimates. Lee(2003) highly

overestimates the death size in Other urban areas than all the proposed estimates including

Nour’s.

6.5 Conclusions

In this chapter, we have presented another two empirical Bayes approaches under a general

framework for dual-record system (DRS) where behaviour response effect might play a signif-

icant role along with time variation effect. Here we suggest efficient Bayesian computation

strategies conditionally and unconditionally on the directional knowledge available on φ.

The first one is formulated with uniform prior onφ whereas the second one depends on sub-

jective conjugate prior based on structural relationships among the underlying parameters.

Both strategies implement the functional relation between two nonidentifiable parameters

through a suitable empirically estimated prior. Some features of the first approach with
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uniform prior on behaviour effect (φ) are: noninformative prior for N and p1· is used and a

reasonable range forφ is always available with or without the help of the available directional

information onφ. Whenφ < 1, specification of the lower bound ofφ by ĉ works successfully.

But when φ > 1, our study concludes that estimate with π(φ)∝ U(1,2) and π(N )∝ N −1

is expected to be superior than Nour’s estimate in terms of smaller RMSE and reasonably

better CI. Moreover, the upper limit β is not at all influential if the nature of φ is correctly

known. It is found that estimates from poisson prior with λ = N̂Mb
are less efficient than

Jeffrey’s. Hence, we conclude that the first empirical Bayes approach (discussed in section

6.2.1) performs very well based on the information on the possible range of underlying φ,

when available. In practice, experts can usually judge whether the specified population is

either recapture prone (i.e. φ > 1) or averse (i.e. φ < 1) from past studies. If so, our strategy

with noninformative prior onφ has significant improvement over Nour (1982 [68]) in terms

of efficiency.

An alternative Bayes approach (discussed in section 6.3.1) with informative generalised beta

prior is also proposed when there is no reliable information available onφ. Some features

of this empirical type Bayes approach are the following: For φ < 1, MAP-based estimates

are very efficient (compared to other loss functions) when the capture probabilities are

high. In contrast, the other two estimates, N̂M E D and N̂SR E , with Jeffrey’s prior or π(N ) ≡

Poi(λ= N̂N o u r ) perform relatively better than N̂M AP forφ > 1. When directional information

is not available, N̂M AP obtained fromπ(N )≡ P(λ= N̂Mb
) would be a unique choice among the

two approaches. It is also found that the second approach improves over the performance

of the first approach for known information of φ > 1. For recapture averse population

(φ < 1), the first approach is little better because of its relatively tighter prior domain. Hence,

our proposed methods can be used to have a better and easily computable estimate of

population size from this complex dual system. Apart from the computational advantage,

these methods are transparent and relatively easy to explain to the practitioner. Though our

methods incorporate subjective elements through the choice of priors, as necessary, but

this subjectiveness helps the underlying model to successfully get rid of the identifiability

problem.
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Figure 6.1: Posterior distributions of N based on AB-Con method (Black and Red lines respec-
tively for Jeffrey’s and Poi(N̂Mb

) priors for N ) and Lee’s method (Green line).
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Figure 6.2: Plot of R̂ 1/2 against burn-in period k for MCMC with Jeffrey’s prior for N in each
of AB-Flat, AB-Con and Lee’s methods. First and second rows are for Lilongwe and Other
urban areas respectively. Horizontal line presents the threshold value 1.1 for R̂ 1/2.
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Table 6.4: Bayesian estimates of total number of deaths using AB-Flat, AB-Con and Lee’s
methods. s.e. is computed based on sample posterior distribution and the 95% posterior
credible intervals for N andφ is determined based on percentile method.

95% CI 95% CI
Method π(φ) π(N ) N̂ s.e.(N̂ ) of N φ̂ ofφ

Lilongwe

Considerφ > 1
AB-Flat U(1, 2) Jeffrey 380 3.91 (373, 388) 1.35 (1.19, 1.54)

P(N̂Mb
) 374 2.57 (370, 380) 1.35 (1.20, 1.53)

P(N̂N o u r ) 379 3.12 (373, 385) 1.35 (1.20, 1.54)

Considerφ > 0a

AB-Flat U(ĉ , 2) Jeffrey 362 5.25 (355, 374) 0.94 (0.75, 1.22)
P(N̂Mb

) 361 4.03 (354, 369) 0.94 (0.75, 1.19)
Lee U(0.5, 2)b Jeffrey 354 5.80 (348, 370) 0.74 (0.57, 1.14)
AB-Con MEAN Jeffrey 366 4.90 (357, 375) 1.03 (0.82, 1.24)

P(N̂Mb
) 363 3.81 (357, 371) 1.03 (0.82, 1.24)

MED Jeffrey 362 5.37 (354, 372) 0.95 (0.75, 1.22)
P(N̂Mb

) 361 4.61 (355, 371) 0.95 (0.75, 1.25)
MAP Jeffrey 352 5.25 (348, 366) 1.04 (0.62, 1.87)

P(N̂Mb
) 353 5.93 (348, 372) 1.04 (0.62, 1.87)

SRE Jeffrey 365 4.56 (357, 373) 0.86 (0.75, 1.01)
P(N̂Mb

) 363 3.65 (357, 370) 0.86 (0.75, 1.04)

Other urban areas

Considerφ > 1
AB-Flat U(1, 2) Jeffrey 3030 51 (2973, 3172) 1.12 (1.06, 1.26)

P(N̂Mb
) 3056 46 (3000, 3180) 1.12 (1.06, 1.22)

P(N̂N o u r ) 3027 40 (2978, 3133) 1.16 (1.06, 1.28)

Considerφ > 0a

AB-Flat U(ĉ , 2) Jeffrey 2860 41 (2816, 2967) 0.94 (0.89, 1.05)
P(N̂Mb

) 2873 43 (2826, 2985) 0.94 (0.89, 1.05)
Lee U(0.5, 2)b Jeffrey 3455 223 (3096, 3870) 1.55 (1.19, 1.97)
AB-Con MEAN Jeffrey 3152 119 (2951, 3381) 1.24 (1.03, 1.49)

P(N̂Mb
) 3146 101 (2972, 3348) 1.24 (1.04, 1.49)

MED Jeffrey 3109 149 (2907, 3441) 1.20 (0.99, 1.54)
P(N̂Mb

) 3131 135 (2932, 3416) 1.20 (0.99, 1.55)
MAP Jeffrey 2953 215 (2774, 3491) 1.29 (0.86, 1.95)

P(N̂Mb
) 3056 263 (2780, 3580) 1.28 (0.86, 1.94)

SRE Jeffrey 3109 109 (2935, 3344) 1.13 (1.00, 1.37)
P(N̂Mb

) 3113 97 (2956, 3320) 1.14 (0.99, 1.37)

aφ > 0 refers natural domain ofφ, as no directional knowledge is considered
bThis prior is chosen based on trial-and-error method discussed in Lee et al. (2003[62])
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7 Classification of the Nature of Be-

havioural Dependence

7.1 Introduction and Motivation

Assumption of causal independence (A4 in section 1.3.1) in the popular Lincoln-Petersen

(or Mt ) model may seriously mislead us in many situations for human population, specially

when capture probabilities may vary with behavioral response (Chandrasekar and Deming,

1949[17]). Many methodologists and practitioners (see El-Khorazaty, 2000[36]; Jarvis et al.,

2000[56]) argued that the independence assumption may not be justified in reality. When

both the time variation effect (t) and behavior response effect (b) acts together, model Mt b

is appropriate for homogeneous population. Moreover, this model can be treated as the

most general and relevant statistical model for capture-recapture data under homogeneity.

The underlying behavior response effect,φ ( > 0 ) classifies a given population as recapture

prone or recapture averse whenφ > 1 orφ < 1, respectively. However, Otis et al. (1978[71])

addressed a non-identifiability problem related to this model asφ is not estimable in Mt b .

Details on the model Mt b is found in section 1.6. Several authors tried to solve the non-

identifiability problem for number of capturing occasions (T ) strictly more than two (i.e.

T ≥ 3) or three (i.e. T ≥ 4), which are mainly focused for analysing the wildlife populations.

In recent past, some Bayesian approaches (Lee and Chen, 1998[61]; Lee et al., 2003[62]; Wang

et al., 2015[100]) has been proposed and that can be applied when T ≥ 2. But derivation of

efficient estimate is hardly possible from this weak model likelihood unless some additional

information is available. Particularly, if underlyingφ for any population is correctly known

to be greater than 1 or less than 1, then, uncertainty on the domain ofφ will be reduced to

(1,∞) or (c , 1), respectively. Hence, any one can expect that inference would be better using

that available knowledge. This issue has been addressed in M6 of section 1.8.2.
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Few methodologies are proposed in literature that estimate N better, presuming the direc-

tional knowledge on φ, i.e. either φ > 1 or < 1. As evident from earlier literature (Nour,

1982[68]) and also from the work presented in chapters 5 and 6, one can say that the avail-

ability of knowledge on the nature of behavioral dependency certainly helps to infer N better

in Mt b -DRS context. Apparently, one may suggest that a given population is recapture prone

if ĉ is very close to 1. On the other hand, if it is very close to 0, then associated population

would be recapture averse with high probability. But giving idea about the possible direction

ofφ is always a challenging job if ĉ is neither close to 1, nor close to 0. As per our knowledge,

no strategy has been developed to understand the directional nature of φ from the given

data alone. Therefore, motivated by the issue M6 in section 1.8.2, our aim in this chapter

is to develop some competing classification strategies for the given population in order to

identify the underlying directional nature ofφ that regulates the causal dependency between

two sources in DRS.

In the next section we formulate three classification strategies and therefore, in section 7.3

we illustrate our proposed strategies and evaluate their performance through an extensive

simulation study. In section 7.4 we apply our proposed strategies in order to classify the

underlying dependency nature of the given populations associated with all real datasets

(mentioned in section 1.8.1) considered for applications throughout the thesis. Finally, in

concluding section, we discuss the implication, advantages and limitation of the proposed

classification strategies.

7.2 Proposed Classification Strategies

In this section, we formulate a strategy for classification of the population in terms of the

directional nature ofφ, using observed data only. Let us assume that p > 1/3, which implies

3c −φ > 0 as c = pφ. The mle ĉ = (x11/x1·) is consistent and efficient estimate of c . Hence,

in terms of data we can approximately write thatφ = ĉ p−1 for sufficiently large N . Therefore,

φ =
x11

x1·

N − x1·

x01
>

x11

x1·
o r, (x1·φ− x11) > 0,
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since N − x1· > x01. Thus, for constructing a classification strategy for φ, consider the in-

equality

(3ĉ −φ)(x1·φ− x11)
x·1φ

> k ,

where k is some nonnegative real number. Hence the above inequality may be expressed as

φ2+φ k x·1−4x11
x1·

+3ĉ 2 < 0 (7.1)

o r, (φ−φ0)(φ−φ1) < 0, (7.2)

whereφ0 andφ1 are two real roots of the quadratic equation (7.1) when equality holds and

satisfy φ0φ1 = 3ĉ 2 and φ0+φ1 = (4x11−k x10)/x1· and φ0 <φ <φ1. Since, A.M. ¾ G.M. for

the two rootsφ0 andφ1, then

k ¶ (4−2
p

3)x11/x·1,

equality holds only when φ0 = φ1 = φ =
p

3ĉ . In addition, as k ≥ 0 holds under the as-

sumption that p > 1/3, which usually holds for human population, the values ofφ0 andφ1

corresponding to this lower bound are ĉ and 3ĉ respectively. Furthermore, the rootφ0 is a

monotonically increasing function, while φ1 is a monotonically decreasing function, of k .

This implies ĉ ≤φ0 ≤
p

3ĉ and
p

3ĉ ≤φ1 ≤ 3ĉ .

Now, for givenφ0 andφ1, ∃ someξ ∈ (0, 1) such that (7.2) may be written asφ = ξφ1+(1−ξ)φ0,

which implies ξ= (φφ0−φ2
0 )/(3ĉ 2−φ2

0 ) using the relation φ0φ1 = 3ĉ 2. Considering ξ as a

function of φ0, it is noted that for given φ and data, φ∗0 is a point at which ξ is maximum,

where

φ∗0 =
3ĉ 2

φ
−

3ĉ 2

φ

√

√

1−
φ2

3ĉ 2

and that the corresponding value of ξ is ξ∗ such that

ξ∗ =
1

2

�

1−

√

√

1−
φ2

3ĉ 2

�

andφ∗1 = 3ĉ 2/φ∗0.

Now by definition, the value φ0 = φ∗0 is a lower bound for φ, i.e. φ > φ∗0 which implies
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φ <
p

3ĉ . This is also a necessary condition for bothφ∗0 and ξ∗ to be real-valued.

It is in the nature of the current problem that additional information is required in order to

obtain exact inference forφ. Making the additional assumption that for a fixedφ and a fixed

ĉ ,φ∗0 has the same range of values given toφ0 under the present structure. Thus,

ĉ ≤φ∗0 ≤
p

3ĉ ,

from which,

3ĉ /2≤φ ≤
p

3ĉ . (7.3)

Alternatively, the bound onφ∗1 (i.e.
p

3ĉ ≤φ∗1 ≤ 3ĉ ) also leads to (7.3). Thus, we have a more

tight bound for possible domain ofφ under some mild assumptions. The assumption that

φ∗0 has the same range of values as that assumed forφ0, need to be validated. The inequality

φ∗0 ≤
p

3ĉ is always valid since allφ0’s, includingφ∗0, have
p

3ĉ as the maximum. On the other

hand, the inequalityφ∗0 ≥ ĉ does not necessarily hold for allφ0’s.

Now we present three classification rules for inferring about the type of behavioural depen-

dency for a given population.

Rule I. Taking cue from Nour’s argument (1982[68]), it is proposed that the lower bound

in (7.3), which results from setting φ∗0 = ĉ , be taken as a threshold for suggesting the type

of behavioral nature. So, if 3ĉ /2 is more than 1, i.e. if ĉ > 0.667, we say the population is

recapture prone, otherwise it is recapture averse. We find that Nour’s technique is rather

conservative as it has a tendency towards recapture aversion.

Rule II. Admitting the conservativeness of the previous classification rule, a second rule is

set at the mid-value of the range ofφ in (7.3). If mean of the upper and lower limits in (7.3),

i.e. 1.616ĉ , is above 1 (ĉ > 0.619), then we call the population recapture prone, otherwise it

will be recapture averse. This rule increases the chance of inferring a population as recapture

prone and therefore, reduces the bias in Rule I.

Rule III. Here we propose a randomized rule to identify the direction of the underlying

behavioural dependency. The probability functionψ(ĉ ) behind the decision about the given
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population to be recapture prone is

ψ(ĉ ) =















1 if 3ĉ
2 ≥ 1

0 if
p

3ĉ ≤ 1

δ if 1p
3
< ĉ < 2

3 ,

where δ =
�

ĉ − 1p
3

�

�

�

2
3 −

1p
3

�

. Thus, if observed ĉ ∈
�

1p
3

, 2
3

�

, one has to perform a bernoulli

experiment with probability of recapture proneness is equal to δ, in order to decide whether

the given population is recapture prone or averse.

Numerical illustration for the above three classification rules is presented in the next two

sections in terms of simulation and real data analyses.

7.3 Evaluation through Simulation

We consider 16 artificial populations characterized by different values of capture probabilities

(p1·, p·1) and the value N = 500; for one instance each of the two possible situations of

behavioral effect - (i) recapture prone represented by φ = 1.50 and (ii) recapture averse

represented by φ = 0.60 . These 16 simulated populations for each of the two behavioral

situations encompass all possible combinations that are presented in following Table 7.1.

The true value of the parameter c is also presented for each population.

The following Table 7.2 presents the performance evaluation of the developed classification

strategies in section 7.2, in terms of correct classification rate (CCR) of the underlying direc-

tional nature ofφ. CCR is presented in percentage (%) after computing the number of correct

classification out of 5000 replications for each simulated population.

Empirical evaluation of classification Rule I (columns 2 & 6 in Table 7.2) shows that this

classification strategy works efficiently except for the truly recapture prone populations P5-P6,

P10 and P15-P16 as well as for the truly recapture averse populations A3-A4, A8 and A13.

Performance of the second strategy, presented in columns 3 & 7 in Table 7.2 is also efficient,

except for a lesser number of situations (P6, P10, P15-P16 and A3-A4, A8, A13), where it

fails. Indeed, Rule II produces improvements over Rule I towards the correct classification in

almost all cases. So far it can be observed that both the two classification rules fail for those

recapture prone populations which represents too small recapture probabilities (p·1). On

the other hand, both of them fail for those recapture averse populations in which recapture

probabilities are large. Lastly, further improvements have been established in columns 4 & 8
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Table 7.1: Hypothetical populations considered for simulation study for N = 500

.

Population φ p1· p·1 c Population φ p1· p·1 c

P1 1.50 0.50 0.60 0.72 A1 0.60 0.50 0.60 0.45
P2 1.50 0.60 0.70 0.81 A2 0.60 0.60 0.70 0.55
P3 1.50 0.70 0.80 0.89 A3 0.60 0.70 0.80 0.67
P4 1.50 0.80 0.70 0.75 A4 0.60 0.80 0.70 0.62
P5 1.50 0.70 0.60 0.67 A5 0.60 0.70 0.60 0.50
P6 1.50 0.60 0.50 0.58 A6 0.60 0.60 0.50 0.39

P7 1.50 0.55 0.70 0.823 A7 0.60 0.55 0.70 0.538
P8 1.50 0.65 0.80 0.905 A8 0.60 0.65 0.80 0.649
P9 1.50 0.80 0.65 0.611 A9 0.60 0.80 0.65 0.458

P10 1.50 0.70 0.55 0.696 A10 0.60 0.70 0.55 0.574

P11 1.50 0.50 0.70 0.840 A11 0.60 0.50 0.70 0.525
P12 1.50 0.55 0.75 0.882 A12 0.60 0.55 0.75 0.577
P13 1.50 0.65 0.85 0.996 A13 0.60 0.65 0.85 0.689
P14 1.50 0.85 0.65 0.684 A14 0.60 0.85 0.65 0.590
P15 1.50 0.75 0.55 0.600 A15 0.60 0.75 0.55 0.471
P16 1.50 0.70 0.50 0.556 A16 0.60 0.70 0.50 0.417

of Table 7.2, as Rule III increases the rate of correct classification, specially for those situations

where Rules I and II completely failed. These notable betterment helps us to make correct

inference on classification for recapture averse populations (see results for populations A3-A4,

A8 & A13).

7.4 Real Data Illustration

In this section we illustrate the three strategies proposed in section 7.2 through the application

to the populations associated with all the real datasets discussed in section 1.8.1 of chapter 1.

The following Table 7.3 presents the value of the key statistic ĉ = x11/x1· and the classification

result (i.e. either recapture proneness or aversion) from all the three classification rules.

Note that Lee et al. (2003[62]) in addition with all the inferential methodologies proposed in

Chapters 5 and 6, without any assumption on directional knowledge ofφ, produce some idea

about the possible direction on the behavioral nature of the given populations in real data

analyses. Inference on the directional nature of the behavioral dependence drawn in earlier

chapters for all the data sets may not match with the conclusions of this present classification

strategy chapter. However, in the light of the current findings, it seems quite plausible that

actually these data sets, except the population Ward No. 2 and Other Urban Areas, are more
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Table 7.2: Evaluation of the classification strategy of directional nature ofφ in Mt b -DRS.

Rule I Rule II Rule III Rule I Rule II Rule III
Population CCR CCR CCR Population CCR CCR CCR

P1 96.80 100.00 99.56 A1 100.00 100.00 100.00
P2 100.00 100.00 100.00 A2 100.00 98.94 96.24
P3 100.00 100.00 100.00 A3 0.00 0.00 96.24
P4 99.98 100.00 100.00 A4 0.02 0.00 96.12
P5 49.44 97.26 98.50 A5 100.00 100.00 99.98
P6 00.02 7.12 12.74 A6 99.98 100.00 100.00

P7 100.00 100.00 100.00 A7 100.00 99.52 98.43
P8 100.00 100.00 100.00 A8 0.00 0.00 98.47
P9 89.40 99.92 98.78 A9 99.98 96.20 90.78

P10 1.46 38.14 39.42 A10 100.00 100.00 100.00

P11 100.00 100.00 100.00 A11 100.00 99.84 99.20
P12 100.00 100.00 100.00 A12 99.78 92.10 86.36
P13 100.00 100.00 100.00 A13 0.00 0.00 86.35
P14 78.08 99.72 96.64 A14 99.96 87.26 80.44
P15 0.32 23.30 28.34 A15 100.00 100.00 100.00
P16 0.00 0.74 3.66 A16 100.00 100.00 100.00

appropriately classified as recapture-averse. These other two populations have high chance

to be recapture-prone for their relatively large value of ĉ . Inference for the population Ward

No. 2 drawn from Rule I is found to be opposite than that from Rule II and III.

7.5 Conclusion

From the extensive literature on capture-recapture data analysis on human population, it

is quite clear that list-independence or assumption of causal independence does not hold

satisfactorily in many instances. As far as homogeneous human population size estimation

is concerned, two-sample capture-recapture experiment is appropriate along with Mt b

modelling. But this model seriously suffers from the non-identifiability problem and analyses

in previous chapters suggest that the availability of the knowledge on nature of behavioral

dependency could improve the inference to a great extent. Eliciting such information is

crucial, but such methodologies are absent in the literature. To address this gap, we develop

three comparable strategies for classification of the given population (i.e. whether it is

recapture prone or averse) under some mild and realistic assumptions in the context of human

population. All the three classification rules are derived based on different threshold value for

ĉ . The second (Rule II) and third (Rule III) classification strategies are quite appealing in order

145



Chapter 7. Classification of the Nature of Behavioural Dependence

Table 7.3: Application of proposed classification strategies forφ to four real datasets

Nature Classified by

Data Population ĉ Rule I Rule II Rule III

Malawi Death Lilongwe 0.593 Averse Averse Averse*

Other Urban Areas 0.839 Prone Prone Prone

Injection Drug User Greater Victoria** 0.075 Averse Averse Averse

Children Injury Cyclists 0.254 Averse Averse Averse
Passengers 0.402 Averse Averse Averse
Pedestrians 0.592 Averse Averse Averse*

Handloom Ward No. 2 0.657 Averse Prone Prone*

Ward No. 16 0.382 Averse Averse Averse
*decision taken by randomization
**in British Columbia, Canada

to develop more efficient inference in the context of Mt b -DRS. Moreover, third strategy is

more accurate than second one and it produces nearly 100% success rate except for particular

situations with too small recapture probabilities.

A limitation of the proposed classification strategy in order to identify the directional nature

ofφ is that one should have time-ordered DRS, that means List 1 is prepared before List 2 or

vice versa. Details on the issue of time-ordered DRS can be found in chapter 8. Modifications

by relaxing the assumptions and extension of this behavioral classification method may be

possible for higher order capture occasions (i.e. when T ≥ 3).
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8 Overall Discussion & Future Works

8.1 Overview

Estimation of size of a given population is an important statistical issue which has a vast

application in the field of Government statistics, demography and epidemiology. In practice,

it is mostly impossible to count all the individuals in the population accurately by a census,

specially when population is large enough and/or very hard to reach the individuals. As a

remedy, more than one attempt is carried out independently, near to the census operation,

and the population size (say, N ) is estimated by matching the available lists (two or more) of

information. This kind of data structure by matching lists is known as Multiple-record system

and this is equivalent to the capture-recapture system, popularly relevant in biological or

epidemiological studies.

In the context of closed human population, more than two sources of information is hardly

found. When two attempts has been made to obtain N in capture-recapture format, then

such data structure is known as Dual-record System (DRS). In section 1.3, details of DRS is

described with all possible underlying assumptions. We have remained particular in the use

of DRS for this whole project. Moreover, we have confined ourselves to the analysis of homo-

geneous human population. Different combinations of assumptions will lead to different

models. Possible heterogeneity among individuals in the population can be factored out with

the proposal given by Chandrasekar and Deming (1949[17]), which is widely implemented in

practice. After forming several mutually exclusive post-strata following Chandrasekar and

Deming (1949[17]), which are within homogeneous but between heterogeneous, statistical

models relevant for homogeneous population (discussed in sections 1.4-1.6) can be analysed

for each of those post-strata. Model Mt has received much attention in practice, greatly
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because of its model simplicity. But it is often misleading as the assumption of causal inde-

pendence does not work in many instances. Dependence can be caused by the presence of

variation in behavioral response at the time of preparing List 2. This feature is incorporated

in model Mt b and that makes the model most general for this population. Relevancy as

well as associated parameter non-identifiability problem for model Mt b motivated us to

consider the inferential analysis of the model as a prime goal of this dissertation work. Extent

of inaccuracy in the estimate N̂i nd as well as its robustness against possible departures from

the basic causal independence assumption have also been studied.

Extent of coverage error in census can be obtained by estimating the omission rate which is

equivalent to the problem of estimating size of the given population. In chapter 2, we briefly

discuss the statistical methodology to estimate omission rate in Indian census. Extent of

correlation bias (pointed out in section 1.8.2) and its consequences in estimating omission

rate (equivalently, N ) is illustrated. A new potential source for bias in the estimate is identified

and demonstrated through examples. A flexible approach has been formulated so that it

can achieve minimum variance under a controlled bias limits. Our proposed estimator can

efficiently overcome the potential bias by achieving the desired degree of accuracy (almost

unbiased) with relatively higher efficiency. Overall improvements in the results are explored

through simulation study on different populations.

For model Mt b , available and proposed methods are mostly developed in Bayesian paradigm

due to the non-identifiability of the model Mt b under DRS. Chapter 3 investigates the usage

of profile likelihood, explicitly for both the models Mt and Mt b . Therefore, an adjustment

over profile likelihood is proposed for model Mt b . The proposed method is evaluated in

terms of performance and compared with available Bayes estimate and N̂t through extensive

simulation study. We also analyse the effect of possible model mis-specification, due to the

use of model Mt , in terms of efficiency and robustness. Finally two real life examples with

different characteristics are presented for illustration.

In chapter 4, an improved integrated likelihood has been formulated for model Mt based

on a suitably constructed weight function using non-informative priors only. A comparative

ordering is established among several likelihood and pseudo-likelihood based estimates from

Mt . The resulting likelihood has several desirable properties. We have also implemented

the same integrated likelihood approach to our interest model Mt b but informative prior on

φ has been used depending upon the availability of the directional behavioral knowledge.

Simulation studies have been carried out to explore the performance of the proposed method

for both the models separately. Empirical results along with real data analysis demonstrating
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efficiency and usefulness have been reported.

As mentioned in the literature, parameter identifiability problem in model Mt b has been

encountered with Bayesian treatments. Indeed, Bayesian inference might have the potential

to conquer this problem simply by using suitable priors. In chapter 5, some problems in full

Bayes method particularly in DRS, with flat non-informative prior by Lee et al. (2003[62]),

are addressed. Considering N estimation in DRS as a missing data problem, two empirical

Bayes approaches are proposed along with a reformulation of an existing Bayes treatment

given by Lee et al. (2003[62]). Some features and associated posterior convergence for these

methods have been discussed. Extensive simulation study established that our proposed

approaches are comparably favourable to the existing Bayes approach. A real-data example

has been given to illustrate the methods.

In chapter 6, we have proposed two other empirical Bayes approaches for the same problem

but in different way where estimates have been obtained using very simple Gibbs sampling

strategies through functional relation among parameters characterizing the model of interest

Mt b . Two approaches correspond to two situations viz. when direction of behavioral depen-

dence is available and when it is not. Simulation study has been carried out to evaluate their

performance and compare with existing full Bayes approaches by Lee et al. (2003[62]) and

the method proposed in chapter 5. Illustration for both the situations was given through a

real data application.

Taking consideration of the issue M 6 addressed in section 1.8.2 and the evaluation studies

of the proposed methods in Chapters 5 and 6, we propose three strategies in Chapter 7 to

identify the directional nature of underlying behavioral dependency of individuals. This

classification strategy has been found appealing to improve the inference from this complex

model. Simulation studies and application on all the real life data sets (thought to be fit for

model Mt b ) are carried out to explore the performance of this strategy.

Finally, in this current chapter, we give direction of some future research plans originating

from this thesis dissertation. Now, we address some important interesting issues that ei-

ther have been evolved from the previous chapters or remain interesting in the context of

population size estimation based on homogeneous DRS.
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8.2 Future Directions

8.2.1 Dependent Dual-record Systems

From several instances of census counting, it is usually observed that two or more mutually

exclusive subgroups of the population, though residing in the same neighbourhood, may be

correlated in terms of the probability of inclusion in census or any other counting attempts.

Consider the following examples,

Example 1. Consider a locality where there are some houses, inhabited by either (i) owners

or (ii) rent payers, along with some slum areas where we have, principally, a (iii) squatter

population. If we conduct a post enumeration survey (PES) following a census operation

here, the capture probabilities in both the systems for each of the sub-populations will be

correlated, due to proximity and surveyor dependent factors. But there will also be some

difference due to the status as mentioned. We believe that this situation can be properly

modelled using a multivariate probability structure.

Example 2. In the data set named as Handloom Data described in section 1.8.1, the aim

was to count all the persons attached with the Handloom industry in Gangarampur Town,

South Dinajpur District, West Bengal, India. Here, two subgroups (i) Loom-owner and (ii)

Loom-worker are supposed to be dependent due to same place of work, attachment to same

business and also due to surveyor dependent factors but simultaneously, they are somehow

different in terms of capture probabilities due to the different economic status, place of

residence, etc.

Thus, the dependency between these two or more dual-record systems through suitable

model is an important problem from statistical point of view. Estimating size of the popula-

tion consisting of two or more such dependent subgroups is not a problem that has been

tried by researchers. If the present underlying dependency is understood correctly and mod-

elled properly, then resulting estimates for N would be more efficient. We will take up this

interesting problem as one of our important future works.

8.2.2 Simpson’s Paradox

In many countries like India, at first DRS is constructed for k-th small administrative unit (say,

Enumeration Block) under h-th post-stratum (say, Rural-Female population) as the following

2×2 table (equivalent to the inner four cells of Table 1.1)
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x11k h x10k h

x01k h x̂00k h

where x̂00k h is obtained from the relation (8.1) derived from the causal independence assump-

tion A4 in DRS

x11k h .x̂00k h = x10k h .x01k h∀k &h . (8.1)

Therefore, the estimate for h-th post-stratum is obtained by adding the entries of 2×2 tables

over all administrative units. The issue is that for the added entries over all administrative

units, causal independence does not hold any more. This incident is called Simpson’s Paradox

and implication of this result is that if we apply causal independence at small administrative

unit level, it does not work at the next post-stratum level. However, results are published at

post-stratum levels.

Simpson’s Paradox (Mittal, 1991[67]) occurs when and only when

x11h .x00h = x10h .x01h∀h

or, θh =
x11h .x00h

x10h .x01h
= 1 ∀h (8.2)

But
�∑

h x11h

� �∑

h x00h

�

6=
�∑

h x10h

� �∑

h x01h

�

. (8.3)

In Figure 8.1, Simpson’s paradox says that even if a vector
−→
b1 (in blue in the figure) has a

Figure 8.1: Geometric View of Simpson’s Paradox
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smaller slope than another vector −→r1 (in red), and
−→
b2 has a smaller slope than −→r2 , the sum of

the two vectors
−→
b1 +

−→
b2 (indicated by "+" in the figure) can still have a larger slope than the

sum of the two vectors −→r1 +
−→r2 .

This paradox warns us that if we stratify our population into several subpopulations and

estimate the 4th unknown cell assuming causal independence for each subpopulation and

then combine all the subpopulations to get result for overall population, the independence

assumption may be violated. A foremost aim is to find out the necessary and sufficient

condition for this paradox to occur in the context of DRS. Therefrom, try to suggest a remedy

or give a thoughtful discussion to tackle this issue in practice.

8.2.3 Unordered Captures

Unordered captures means when the two capture attempts are not exercised one after another

or in sequential manner. In Indian Sample Registration System (SRS), one list is made from the

continuous recording system, called Civil Registration System and another list is made from

the retrospective survey carried out every six months. This kind of DRS is clearly constructed

from two unordered capture attempts and its implication lies in the usage of dataset. User

can assume any of these two data collection systems as List 1. Therefore, natural interest is

that whether any useable estimator is affected by the listing order. Technically, an estimator

T (x1·, x·1, x11) based on (x1·, x·1, x11) should not differ if x1· (List 1 count) and x·1 (List 1 count)

interchange their positions in T . If we review the estimators N̂i nd = (x1·x·1)/x11 and N̂SRS = x0,

both are unaffected by the listing order. But Nour’s estimator (see last paragraph of section

1.6.1) does not. Thus, if the DRS data in hand is collected from two time-unordered attempts

or systems, then estimators should be used with a caution. In wildlife application, this issue

is not relevant as counting attempts are usually time-ordered; as in case of some instances

for human population, like undercount estimation in census etc., dual listing is also made on

the basis of time-ordered attempts.

As mentioned in section 7.5, classification problem of the directional nature of behavioral

dependency in DRS would be more challenging if the capture instances are time-unordered.

Therefore, we will try to develop an efficient strategy for this problem and that will be worth-

while for many real applications.
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