ON ROBUSTNESS OF DESIGNS AGAINST INCOMPLETE DATA

By SUBIR GHOSH

Indian Statistical Institute

SUMMARY. In this paper, we characterize the robustness property of designs against incomplete data in the sense that, when any t (a positive integer) observations are missing, all parameters are still estimable in the model assumed. We also present some examples of Srivastava-Chopra Optimum balanced resolution V plans for 2^m factorials which are robust against missing of any two observations.

1. INTRODUCTION

The robustness of designs against incomplete data in case of missing of any single observation was first considered in Ghosh (1978). This paper gives a characterization of robustness property in the general case of missing of any t observations. Some examples of designs robust against missing of any two observations are also presented.

2. ROBUST DESIGNS

Consider the ordinary linear model

$$E(\boldsymbol{y}) = A\boldsymbol{\xi} \qquad \dots \quad (1)$$

$$V(\boldsymbol{y}) = \sigma^2 \boldsymbol{I}_N \qquad \qquad \dots \quad (2)$$

$$\operatorname{Rank} \boldsymbol{A} = \boldsymbol{\nu} \qquad \qquad \dots \quad (3)$$

where $\boldsymbol{y}(N \times 1)$ is a vector of observations, $\boldsymbol{A}(N \times \nu)$ is a known matrix, $\boldsymbol{\xi}(\nu \times 1)$ is a vector of fixed unknown parameters and σ^2 is a constant which may or may not be known. Let T be the underlying design corresponding to \boldsymbol{y} .

Definition 1: A design under the model (1-3) is said to be robust against missing of any t (a positive integer) observations if the $(N-t\times\nu)$ matrix obtained from **A** by omitting any t rows has rank ν . It is clear from definition 1 that N must at least be $\nu+t$. Suppose $N = \nu+k$, where $k (\ge t)$ a positive integer. Clearly, there exist k linearly independent vectors $C'_i = (C_{i_1}, \ldots, C_{i_N})$, $i = 1, \ldots, k$, with real elements satisfying

$$C'_{\mathbf{i}}A = \mathbf{0} \qquad \dots \quad (4)$$

Consider the $(k \times N)$ matrix

$$C = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1t} & \dots & C_{1N} \\ C_{21} & C_{22} & \dots & C_{2t} & \dots & C_{2N} \\ C_{k1} & C_{k2} & \dots & C_{kt} & \dots & C_{kN} \end{bmatrix} \qquad \dots (5)$$

whose *i*-th row is C'_i and furthermore, Rank C = k. We now recall that a matrix **B** is said to have the property P_t if no t columns of B are linearly dependent. The following theorem characterizes the robustness property.

Theorem 1: Let T be a design under (1-3) with N = v+k observations, where $k \ge t$ a positive integer. Then, T is robust against missing of any t observations if and only if (iff) the matrix **C**, defined in (5), has the property P_t .

Proof: Suppose C has P_t . Let

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_1 \\ \dots \\ \boldsymbol{A}_2 \end{bmatrix}, \quad \boldsymbol{C} = [\boldsymbol{C}_1^* : \boldsymbol{C}_2^*], \qquad \dots \quad (6)$$

where $A_1(t \times \nu)$, $A_2(\overline{N-t} \times \nu)$, $C_1^{\bullet}(k \times t)$ and $C_2^{\bullet}(k \times \overline{N-t})$. We have, from (4),

$$C_1^*A_1 + C_2^*A_2 = 0.$$
 ... (7)

Suppose

$$C_{1}^{*} = \begin{bmatrix} C_{11}^{*} \\ C_{12}^{*} \end{bmatrix}, \quad C_{2}^{*} = \begin{bmatrix} C_{21}^{*} \\ C_{22}^{*} \end{bmatrix} \qquad \dots \quad (8)$$

where $C_{11}^*(t \times t)$, $C_{12}^*(\overline{k-t} \times t)$, $C_{21}^*(t \times \overline{N-t})$, and $C_{22}^*(\overline{k-t} \times \overline{N-t})$. Suppose, furthermore, Rank $(C_{11}^*) = t$. Thus, we get

$$C_{11}^*A_1 + C_{21}^*A_2 = 0. \qquad \dots \qquad (9)$$

Hence,

$$\boldsymbol{A}_{1} = -\boldsymbol{C}_{11}^{*-1} \boldsymbol{C}_{21}^{*} \boldsymbol{A}_{2}. \qquad \qquad \dots \quad (10)$$

Thus, the rows of A_1 are linear combinations of the rows in A_2 . Therefore, the matrix A_2 obtained from A by omitting t rows in A_1 , has rank ν . The argument is similar for any other set of t rows of A. Hence the design T is robust. Suppose the design T is robust against missing of t observations. Then, there is a $(t \times \overline{N-t})$ matrix **D** satisfying

$$\boldsymbol{A}_1 = \boldsymbol{D}\boldsymbol{A}_2 \qquad \qquad \dots \quad (11)$$

$$[\boldsymbol{I}_t:-\boldsymbol{D}]\begin{bmatrix}\boldsymbol{A}_1\\\boldsymbol{A}_2\end{bmatrix}=0.\qquad \qquad \dots \quad (12)$$

Considering (4), (6), and (9), it follows that there exists a $(t \times k)$ matrix U such that

$$UC_1^* = I_t, \quad UC_2^* = -D. \qquad \dots \qquad (13)$$

It is now easy to check that Rank $(C_1^*) = t$. Therefore C has P_t . This completes the proof of the theorem.

The following results are of practical importance.

Corollary 1: Suppose t = 1. The design T is robust against missing of any one observation iff $C(k \times N)$ has the property P_1 or, in other words,

$$(C_{1j}, C_{2j}, ..., C_{kj}) \neq (0, 0, ..., 0)$$
 for $(j = 1, ..., N)$

(i.e., none of the column vectors in C is a null vector).

Corollary 2: Suppose t = 2. The design T is robust against missing of any two observations iff $C(k \times N)$ has the property P_2 , or in other words,

- (i) $(C_{1j}, C_{2j}, ..., C_{kj}) \neq (0, 0, ..., 0)$ for (j = 1, ..., N),
- (ii) $(C_{1j}, C_{2j}, ..., C_{kj}) \neq w(C_{1j'}, C_{2j'}, ..., C_{kj'}),$

where $j \neq j'$, (j, j' = 1, ..., N), and w is a real constant.

It is to be remarked that the above results are also true in case $A(N \times M)$, $\xi(M \times 1)$ and Rank $(A) = \nu < \min(M, N)$.

3. EXAMPLES FROM 2^m FACTORIALS

Consider a 2^m factorial experiment. The treatments are denoted by $(x_1, x_2, ..., x_m)$, where $x_i = 0$ or 1. We denote a design with N treatments by a $(N \times m)$ matrix T whose rows are treatments. Optimal balanced resolution V plans for 2^m factorials, $4 \leq m \leq 8$, and for practical values of N, have been presented in the papers of Srivastava and/or Chopra.

By 'weight' of a vector, we mean the number of nonzero elements in it. Let S_i be the set of all $(1 \times m)$ vectors, with elements 0 and 1, of weight *i* (i = 0, 1, ..., m). Clearly the number of members in S_i is $\binom{m}{i}$.

Srivastava-Chopra designs are denoted by $\lambda' = (\lambda_0, \lambda_1, ..., \lambda_m)$ where λ_i is the number of times the set S_i occurs in the design. Thus $N = \sum_{i=0}^m \binom{m}{i} \lambda_i$. These optimum designs may or may not remain optimum or even resolution V plans when some observations are missing. We now present, as example, designs which are robust against missing of any t observations. These designs remain as resolution V plans when any t observations are missing.

Example 1: Consider m = 4, N = 15. Here, $\nu = 11$. Thus k = 4. The design is represented as $\lambda' = (1 \ 1 \ 1 \ 1 \ 0)$. The matrix C is given below

	ſ¹	-3	-3	-3	-3	2	2	2	2	2	2	-1	-1	-1	-1]	
<i>C</i> =	0	1	-1	1	-1	0	-2	0	0	2	0	1	-1	1	-1	
	0	1	-1	-1	1	0	0	-2	2	0	0	-1	1	1	-1	
	lo	1	1	1	1	-2	0	0	0	0	2	1	1	-1	-1	

It is easy to check that the above matrix has the property P_2 but not P_3 . Thus the present design is robust against missing of any two observations and not robust against missing of any three observations. Clearly for N = 16, the design $\lambda' = (1 \ 1 \ 1 \ 1 \ 1)$ is also robust against missing of two observations.

Example 2: Consider m = 5, N = 22a. We have $\nu = 16$ and thus (k = 6). The design is given by $\lambda' = (1 \ 1 \ 1 \ 0 \ 1 \ 1)$. We present the matrix C below

Observe that the above matrix has the property P_2 and, therefore, this design is robust against missing of any two observations. It is clear that the designs N = 23a, $\lambda' = (2 \ 1 \ 1 \ 0 \ 1 \ 1)$, N = 24a, $\lambda' = (2 \ 1 \ 1 \ 0 \ 1 \ 2)$, and N = 25a, $\lambda' = (3 \ 1 \ 1 \ 0 \ 1 \ 2)$ have the same property.

SUBIR GHOSH

References

- BOSE, R. C. (1947): Mathematical theory of symmetrical factorial designs. Sankhyā, 8, 107-66.
- Box, G. E. P. and DRAPER, N. R. (1975): Robust designs. Biometrika, 62, 2, 347-52.
- GHOSH, S. (1978): On robustness of optimal balanced resolution V plans. (Submitted for publication)
- HERZBERG, A. M. and ANDREWS, D. F. (1976): Some considerations in the optimal design of experiments in non-optimal situations. J. Roy. Stat. Soc. Ser. B, 3, 284-89.
- HUBER, P. (1975): Robustness and Designs. A Survey of Statistical Design and Linear Models (Ed: J. N. Srivastava), Amsterdam: North-Holland Publishing Company, 287-301.
- SRIVASTAVA, J. N. and CHOPRA, D. V. (1971): Balanced optimal 2^m fractional factorial designs of resolution V, m < 6. Technometrics, 13, 257-69.

Paper received : October, 1978. Revised : January, 1979.