ON ROBUSTNESS OF DESIGNS AGAINST INCOMPLETE DATA

By SUBIR GHOSH
Indian Statistical Institute

Abstract

SUMMARY. In this paper, we characterize the robustness property of designs against incomplete data in the sense that, when any t (a positive integer) observations are missing, all parameters are still estimable in the model assumed. We also present some examples of Srivastava-Chopra Optimum balanced resolution V plans for 2^{m} factorials which are robust against missing of any two observations.

1. Introduction

The robustness of designs against incomplete data in case of missing of any single observation was first considered in Ghosh (1978). This paper gives a characterization of robustness property in the general case of missing of any t observations. Some examples of designs robust against missing of any two observations are also presented.

2. Robust designs

Consider the ordinary linear model

$$
\begin{align*}
& E(\boldsymbol{y})=A \boldsymbol{\xi} \tag{1}\\
& V(\boldsymbol{y})=\sigma^{2} I_{N} \tag{2}\\
& \operatorname{Rank} \boldsymbol{A}=\nu \tag{3}
\end{align*}
$$

where $\boldsymbol{y}(N \times 1)$ is a vector of observations, $\boldsymbol{A}(N \times \nu)$ is a known matrix, $\boldsymbol{\xi}(\nu \times 1)$ is a vector of fixed unknown parameters and σ^{2} is a constant which may or may not be known. Let T be the underlying design corresponding to \boldsymbol{y}.

Definition 1: A design under the model (1-3) is said to be robust against missing of any t (a positive integer) observations if the ($N-t \times \nu$) matrix obtained from \boldsymbol{A} by omitting any t rows has rank ν. It is clear from definition 1 that N must at least be $\nu+t$. Suppose $N=\nu+k$, where $k(\geqslant t)$ a positive integer. Clearly, there exist k linearly independent vectors $\boldsymbol{C}_{\boldsymbol{i}}^{\prime}=\left(C_{i_{1}}, \ldots, C_{\mathbf{i N}_{N}}\right)$, $i=1, \ldots, k$, with real elements satisfying

$$
\begin{equation*}
C_{i}^{\prime} A=0 \tag{4}
\end{equation*}
$$

Consider the $(k \times N)$ matrix

$$
\boldsymbol{C}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & \ldots & C_{1 t} & \ldots & C_{1 N} \tag{5}\\
C_{21} & C_{22} & \ldots & C_{2 t} & \ldots & C_{2 N} \\
C_{k 1} & C_{k 2} & \ldots & C_{k t} & & \ldots
\end{array} C_{k N} .\right]
$$

whose i-th row is $\boldsymbol{C}_{\boldsymbol{i}}^{\prime}$ and furthermore, Rank $\boldsymbol{C}=k$. We now recall that a matrix \boldsymbol{B} is said to have the property P_{t} if no t columns of B are linearly dependent. The following theorem characterizes the robustness property.

Theorem 1: Let T be a design under (1-3) with $N=v+k$ observations, where $k(\geqslant t)$ a positive integer. Then, T is robust against missing of any t observations if and only if (iff) the matrix \boldsymbol{C}, defined in (5), has the property $P_{\boldsymbol{t}}$.

Proof: Suppose \boldsymbol{C} has $\boldsymbol{P}_{\boldsymbol{t}}$. Let

$$
A=\left[\begin{array}{c}
\boldsymbol{A}_{1} \tag{6}\\
\dddot{\boldsymbol{A}_{2}}
\end{array}\right], \quad \boldsymbol{C}=\left[\boldsymbol{C}_{\mathbf{1}}^{*}: \boldsymbol{C}_{\mathbf{2}}^{*}\right],
$$

where $\boldsymbol{A}_{1}(t \times \nu), \boldsymbol{A}_{\mathbf{2}}(\overline{N-t} \times \nu), \boldsymbol{C}_{\mathbf{1}}^{*}(k \times t)$ and $\boldsymbol{C}_{\mathbf{2}}^{*}(k \times \overline{N-t})$.
We have, from (4),

$$
\begin{equation*}
\boldsymbol{C}_{1}^{*} \boldsymbol{A}_{1}+\boldsymbol{C}_{2}^{*} \boldsymbol{A}_{2}=0 \tag{7}
\end{equation*}
$$

Suppose

$$
C_{1}^{*}=\left[\begin{array}{l}
C_{11}^{*} \tag{8}\\
C_{12}^{*}
\end{array}\right], \quad C_{2}^{*}=\left[\begin{array}{l}
C_{21}^{*} \\
C_{\Sigma 2}^{*}
\end{array}\right]
$$

where $\boldsymbol{C}_{11}^{*}(t \times t), \quad \boldsymbol{C}_{12}^{*}(\overline{k-t} \times t), \boldsymbol{C}_{21}^{*}(t \times \overline{N-t})$, and $\boldsymbol{C}_{22}^{*}(\overline{k-t} \times \overline{N-t})$; Suppose, furthermore, Rank $\left(C_{11}^{*}\right)=t$. Thus, we get

$$
\begin{equation*}
\boldsymbol{C}_{11}^{*} \boldsymbol{A}_{1}+\boldsymbol{C}_{21}^{*} \boldsymbol{A}_{2}=0 \tag{9}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
A_{1}=-C_{11}^{*-1} C_{21}^{*} A_{2} \tag{10}
\end{equation*}
$$

Thus, the rows of \boldsymbol{A}_{1} are linear combinations of the rows in \boldsymbol{A}_{2}. Therefore, the matrix \boldsymbol{A}_{2} obtained from \boldsymbol{A} by omitting t rows in \boldsymbol{A}_{1}, has rank ν. The argument is similar for any other set of t rows of A. Hence the design T is robust.

Suppose the design T is robust against missing of t observations. Then, there is a $(t \times \overline{N-t})$ matrix \boldsymbol{D} satisfying

$$
\begin{equation*}
\boldsymbol{A}_{1}=\boldsymbol{D} \boldsymbol{A}_{2} \tag{l1}
\end{equation*}
$$

i.e.,

$$
\left[\boldsymbol{I}_{t}:-\boldsymbol{D}\right]\left[\begin{array}{l}
\boldsymbol{A}_{1} \tag{12}\\
\boldsymbol{A}_{2}
\end{array}\right]=0
$$

Considering (4), (6), and (9), it follows that there exists a $(t \times k)$ matrix \boldsymbol{U} such that

$$
\begin{equation*}
\boldsymbol{U} C_{1}^{*}=\boldsymbol{I}_{t}, \quad \boldsymbol{U} \boldsymbol{C}_{2}^{*}=-\boldsymbol{D} \tag{13}
\end{equation*}
$$

It is now easy to check that $\operatorname{Rank}\left(\boldsymbol{C}_{1}^{*}\right)=t$. Therefore \boldsymbol{C} has \boldsymbol{P}_{t}. This completes the proof of the theorem.

The following results are of practical importance.
Corollary 1: Suppose $t=1$. The design T is robust against missing of any one observation iff $\boldsymbol{C}(k \times N)$ has the property P_{1} or, in other words,

$$
\left\langle C_{1 j}, C_{2 j}, \ldots, C_{k j}\right) \neq(0,0, \ldots, 0) \text { for }(j=1, \ldots, N)
$$

(i.e., none of the column vectors in C is a null vector).

Corollary 2: Suppose $t=2$. The design T is robust against missing of any two observations iff $\boldsymbol{C}(k \times N)$ has the property P_{2}, or in other words,
(i) $\quad\left(C_{1 j}, C_{2 j}, \ldots, C_{k j}\right) \neq(0,0, \ldots, 0)$ for $(j=1, \ldots, N)$,
(ii) $\quad\left(C_{1 j}, C_{2 j}, \ldots, C_{k j}\right) \neq w\left(C_{1 j^{\prime}}, C_{2 j^{\prime}}, \ldots, C_{k j^{\prime}}\right)$,
where $j \neq j^{\prime},\left(j, j^{\prime}=1, \ldots, N\right)$, and w is a real constant .
It is to be remarked that the above results are also true in case $\boldsymbol{A}(N \times M)$, $\xi(M \times 1)$ and $\operatorname{Rank}(\boldsymbol{A})=\nu<\min (M, N)$.

3. EXAMPLES FROM 2^{m} factorials

Consider a 2^{m} factorial experiment. The treatments are denoted by $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where $x_{i}=0$ or 1 . We denote a design with N treatments by a $(N \times m)$ matrix \boldsymbol{T} whose rows are treatments. Optimal balanced resolution V plans for 2^{m} factorials, $4 \leqslant m \leqslant 8$, and for practical values of N, have been presented in the papers of Srivastava and/or Chopra.

By 'weight' of a vector, we mean the number of nonzero elements in it. Let S_{i} be the set of all $(1 \times m)$ vectors, with elements 0 and 1 , of weight i $(i=0,1, \ldots, m) . \quad$ Clearly the number of members in S_{i} is $\binom{m}{i}$.

Srivastava-Chopra designs are denoted by $\boldsymbol{\lambda}^{\prime}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ where λ_{i} is the number of times the set S_{i} occurs in the design. Thus $N=\sum_{i=0}^{m}\binom{m}{i} \lambda_{i}$. These optimum designs may or may not remain optimum or even resolution V plans when some observations are missing. We now present, as example, designs which are robust against missing of any t observations. These designs remain as resolution V plans when any t observations are missing.

Example 1: Consider $m=4, N=15$. Here, $\nu=11$. Thus $k=4$. The design is represented as $\boldsymbol{\lambda}^{\prime}=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}\right)$. The matrix \boldsymbol{C} is given below

$$
\boldsymbol{C}=\left[\begin{array}{rrrrrrrrrrrrrrr}
1 & -3 & -3 & -3 & -3 & 2 & 2 & 2 & 2 & 2 & 2 & -1 & -1 & -1 & -1 \\
0 & 1 & -1 & 1 & -1 & 0 & -2 & 0 & 0 & 2 & 0 & 1 & -1 & 1 & -1 \\
0 & 1 & -1 & -1 & 1 & 0 & 0 & -2 & 2 & 0 & 0 & -1 & 1 & 1 & -1 \\
0 & 1 & 1 & 1 & -1 & -2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & -1 & -1
\end{array}\right)
$$

It is easy to check that the above matrix has the property P_{2} but not P_{3}. Thus the present design is robust against missing of any two observations and not robust against missing of any three observations. Clearly for $N=16$, the design $\boldsymbol{\lambda}^{\prime}=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)$ is also robust against missing of two observations.

Example 2: Consider $m=5, N=22 a$. We have $\nu=16$ and thus $(k=6)$. The design is given by $\boldsymbol{\lambda}^{\prime}=\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1\end{array}\right)$. We present the matrix C below

$$
\boldsymbol{C}=\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrr}
3 & -3 & -3 & -3 & -3 & -3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -3 & -3 & -3 & -3 & -3 \\
-3 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 \\
0 & -2 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & -2 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & -2 & 0 & 0 & 2 & 0 & 1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & -1 & 1 & 0 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 1 & 0 & 0 & 0 & -1
\end{array} 00\right\}
$$

Obsorve that the above matrix has the property P_{2} and, therefore, this design is robust against missing of any two observations. It is clear that the designs $\quad N=23 a, \quad \lambda^{\prime}=\left(\begin{array}{lllll}2 & 1 & 1 & 1\end{array}\right), \quad N=24 a, \lambda^{\prime}=\left(\begin{array}{llll}2 & 1 & 1 & 0\end{array}\right.$ 12), and $N=25 a, \lambda^{\prime}=\left(\begin{array}{lllll}3 & 1 & 1 & 0 & 1\end{array} 2\right)$ have the same property.

Refereinces

Bose, R. C. (1947): Mathematical theory of symmetrical factorial designs. Sankhyā, 8, 107.66. Box, G. E. P. and Draprr, N. R. (1975) : Robust designs. Biometrika, 62, 2, 347-52.
Gzose, S. (1978) : On robustness of optimal balanced resolution V plans. (Submitted for publication)
Herzberg, A. M. and Andrews, D. F. (1976): Some considerations in the optimal design of experiments in non-optimal situations. J. Roy. Stat. Soc. Ser. B, 3, 284-89.
Huber, P. (1975): Robustness and Designs. A Survey of Statistical Design and Linear Models (Ed: J. N. Srivastava), Amsterdam : North-Holland Publishing Company, 287-301.
Srivastava, J. N. and Chopra, D. V. (1971) : Balanced optimal 2^{m} fractional factorial designs of resolution $V, m<6$. Technometrics, 13, 257-69.

Paper received: October, 1978.
Revised: January, 1979.

