AN EFFECTIVE SELECTION THEOREM

ASHOK MAITRA

§1. Introduction. A recent result of J.P. Burgess [1] states:
Theorem 0. Let F be a multifunction from an analytic subset T of a Polish space to a Polish space X. If F is Borel measurable, $\operatorname{Graph}(F)$ is coanalytic in $T \times X$ and $F(t)$ is nonmeager in its closure $\overline{F(t)}$ for each $t \in T$, then F admits a Borel measurable selector.

The above result unifies and significantly extends earlier results of H . Sarbadhikari [8], S.M. Srivastava [9] and G. Debs (unpublished). The reader is referred to [1] for details.

The aim of this article is to give an effective version of Theorem 0 . We do this by proving a basis theorem for Π_{1}^{1} sets which are nonmeager in their closure and satisfy a local version of the measurability condition in Theorem 0. Our basis theorem generalizes a well-known result of P.G. Hinman [4] and S.K. Thomason [10] (see also [5] and [7, 4F.20]). Our methods are similar to those used by A. Louveau to prove that a Σ_{1}^{1}, σ-compact set is contained in a Δ_{1}^{1}, σ-compact set (see [7, 4F.18]).

The paper is organized as follows. $\S 2$ is devoted to preliminaries. In §3, we prove the basis theorem and deduce as a consequence an effective version of Theorem 0 . We show in $\S 4$ how our methods can be used to give alternative proofs of some known results.

Discussions with R. Barua, B.V. Rao and V.V. Srivatsa are gratefully acknowledged. I am indebted to J.P. Burgess for drawing my attention to an error in an earlier draft of this paper.
§2. Preliminaries. The effective results will be established for the space $\left(\omega^{\omega}\right)^{k} \times \omega^{1}$, where $k \geq 1$. Since such a space is recursively isomorphic to ω^{ω}, we shall work in ω^{ω}. It should be mentioned that the results could be formulated and proved for the recursively presentable Polish spaces of Moschovakis [7], but we have not done so in order to keep the exposition simple.

We fix a base N_{s} for the topology of ω^{ω}, where

$$
N_{s}=\left\{\alpha \in \omega^{\omega}: \bar{\alpha}(\operatorname{lh}(s))=s\right\}, \quad s \in \omega
$$

If s and t are sequence numbers, we write $s<t$ if $s=t \upharpoonright i$ for some i less than $1 \mathrm{~h}(t)$; we write $s \leq t$ if $s<t$ or $s=t$. A tree on ω is identified with the set of sequence numbers of its elements. We say that $\alpha \in \omega^{\omega}$ is a code for a tree T on ω if $(\forall s)(\alpha(s)=0 \leftrightarrow s \in T)$. Plainly, a tree T (as a subset of ω) is Δ_{1}^{1} iff it has a Δ_{1}^{1} code.

[^0]If T is a tree on ω, then [T], the body of T, is closed in ω^{ω}; conversely, if F is closed in ω^{ω}, then $F=[T]$ for some tree T on ω. If $B \subset \omega^{\omega} \times \omega^{\omega}$, we denote the projection of B to the first coordinate by $\pi[B]$.

Towards localizing the measurability condition in Theorem 0 , we make the following definition.

Definition. Let Γ be a pointclass. A set $A \subset \omega^{\omega}$ is Γ-normal if R_{A}, as a subset of ω, is in Γ, where

$$
R_{A}(s) \leftrightarrow A \cap N_{s} \neq \varnothing
$$

We state some easily verifiable facts about Γ-normal sets, where Γ is the pointclass Δ_{1}^{1} or the pointclass $\Delta_{1}^{1}(\alpha)$.
(a) P is Γ-normal iff \bar{P}, the closure of P, is Γ-normal.
(b) If P is Γ-normal, then \bar{P} is in Γ.
(c) Any dense set is Γ-normal.
(d) Any open set in Γ is Γ-normal.
(e) Any σ-compact set in Γ is Γ-normal.
(f) There exist Π_{1}^{0} sets which are not Δ_{1}^{1}-normal.

Our notation and terminology will closely follow [7]. The only result which we will use and which is not explicitly stated in [7] is the following observation of Louveau [6].

Selection Lemma. Let P be a Π_{1}^{1} subset of $\omega^{\omega} \times \omega^{\omega}$. Let $B=\left\{\alpha \in \omega^{\omega}:(\exists \beta \in\right.$ $\left.\left.\Delta_{1}^{1}(\alpha)\right) P(\alpha, \beta)\right\}$. If A is Σ_{1}^{1} and $A \subset B$, then there exists a Δ_{1}^{1}-recursive function f : $\omega^{\omega} \rightarrow \omega^{\omega}$ such that $(\forall \alpha \in A) P(\alpha, f(\alpha))$.

Here and in the sequel Δ_{1}^{1}-recursive functions are assumed to be total functions. We can do this because a partial function is Δ_{1}^{1}-recursive iff it is the restriction of a Δ_{1}^{1}-recursive total function to a Δ_{1}^{1} set.

Relativized versions of our results will not be stated as they are easy to formulate and can be proved just like the absolute versions.
§3. Basis and selection theorems. In this section, E will be a fixed closed, Δ_{1}^{1}-normal subset of ω^{ω}. It follows by (b) of $\S 2$ that E is then a Δ_{1}^{1} set. Also fix a Π_{1}^{1}-recursive partial function $d: \omega \rightarrow \omega^{\omega}$ which parametrizes points in $\Delta_{1}^{1} \cap \omega^{\omega}$. This can be done by [7, 4D.2].

We next define some relations.

$$
\begin{aligned}
& S_{1}(\alpha) \stackrel{\text { def }}{\longleftrightarrow} \alpha \text { codes some tree on } \omega \\
& \longleftrightarrow(\forall s)[\alpha(s)=0 \rightarrow(\operatorname{Seq}(s) \&(\forall t)(\operatorname{Seq}(t) \& t \leq s \\
&\rightarrow \alpha(t)=0))], \\
& S_{2}(\alpha, \beta) \stackrel{\text { def }}{\longleftrightarrow}(\forall n)(\alpha(\bar{\beta}(n))=0), \\
& S_{3}(\alpha) \stackrel{\text { def }}{\longleftrightarrow} \alpha \text { codes some tree } T \text { on } \omega \text { such that }[T] \subset E \text { and } \\
& {[T] \text { is nowhere dense in } E } \\
& \longleftrightarrow S_{1}(\alpha) \&(\forall \beta)\left(S_{2}(\alpha, \beta) \rightarrow \beta \in E\right) \\
& \&(\forall s)\left(R_{E}(s) \rightarrow(\exists t)\left(R_{E}(t) \& s \leq t \&(\forall \beta)\left(S_{2}(\alpha, \beta) \rightarrow \beta \notin N_{t}\right)\right)\right) .
\end{aligned}
$$

Plainly, S_{1} and S_{2} are Π_{1}^{0}, while S_{3} is Π_{1}^{1}.

Lemma 1. Suppose A is Σ_{1}^{1}, B is Π_{1}^{1}, M is closed, nowhere dense in E and $A \subset M \subset$ $B \subset E$. Then there is a Δ_{1}^{1} tree T^{*} on ω such that $\left[T^{*}\right]$ is nowhere dense in E and $A \subset\left[T^{*}\right] \subset B$.

Proof. By arguing as in the proof of [7, 4F.14], one can prove that there is $\partial \in \Delta_{1}^{1} \cap \omega^{\omega}$ and a set F in $\Pi_{1}^{0}(\partial)$ such that $\bar{A} \subset F \subset B$. Now, by a relativized version of [7, 4A.1], there is a set $R \subset \omega$ such that R is recursive in ∂, Seq $(s) \&$ $\operatorname{Seq}(t) \& s<t \& R(t) \rightarrow R(s)$, and

$$
\alpha \in F \leftrightarrow(\forall m) R(\bar{\alpha}(m)) .
$$

We define a tree T on ω by

$$
T(s) \leftrightarrow \operatorname{Seq}(s) \& R(s)
$$

Plainly, T is Δ_{1}^{1} and $F=[T]$.
Next define

$$
S(s, t) \leftrightarrow \neg R_{E}(s) \vee\left[\operatorname{Seq}(s) \& R_{E}(t) \& s<t \& \bar{A} \cap N_{t}=\varnothing\right] .
$$

Then S is Π_{1}^{1}. Moreover $(\forall s)(\exists t) S(s, t)$, since \bar{A} is nowhere dense in E. Hence, by the Δ-selection principle [7, 4B.5], there is a Δ_{1}^{1}-recursive function $g: \omega \rightarrow \omega$ such that $(\forall s) S(s, g(s))$. Define

$$
T^{*}(t) \leftrightarrow T(t) \& \neg(\exists u)(\exists v)\left(R_{E}(u) \& g(u)=v \& v \leq t\right)
$$

Clearly, T^{*} is a Δ_{1}^{1} tree on ω and $\bar{A} \subset\left[T^{*}\right] \subset[T] \subset B$. It remains only to argue that $\left[T^{*}\right]$ is nowhere dense in E. So assume $R_{E}(s)$ and put $t=g(s)$. Then $R_{E}(t)$, $s<t$ and $t \notin T^{*}$. It follows that [$\left.T^{*}\right] \cap N_{t}=\varnothing$, which shows that [T^{*}] is nowhere dense in E. This completes the proof.

Lemma 2. If R is $\Sigma_{1}^{1}, R \subset E$ and R is meager in E, then
$R(\alpha) \rightarrow(\exists T)\left(T\right.$ is a Δ_{1}^{1} tree on $\omega,[T] \subset E,[T]$ is nowhere dense in $\left.E \& \alpha \in[T]\right)$.
Proof. Fix a recursive function $F: \omega^{\omega} \rightarrow \omega^{\omega}$ and a Π_{1}^{0} set $A \subset \omega^{\omega}$ such that $F(A)=R$. Define

$$
\begin{aligned}
& A^{*}=\left\{\alpha \in \omega^{\omega}:(\exists s)\left(\alpha \in N _ { s } \& (\forall \beta) \left(\beta \in A \cap N_{s} \rightarrow\right.\right.\right. \\
& (\exists T)\left(T \text { is a } \Delta_{1}^{1} \text { tree on } \omega,[T] \subset E,[T]\right. \text { is } \\
& \text { nowhere dense in } E \& F(\beta) \in[T])))\} .
\end{aligned}
$$

Plainly, A^{*} is open. To see that A^{*} is Π_{1}^{1}, rewrite A^{*} :

$$
\begin{aligned}
\alpha \in A^{*} \leftrightarrow & (\exists s)\left(\alpha \in N _ { s } \& (\forall \beta) \left(\beta \in A \cap N_{s} \rightarrow(\exists n)(d(n) \downarrow\right.\right. \\
& \left.\left.\left.\& S_{3}(d(n)) \& S_{2}(d(n), F(\beta))\right)\right)\right) .
\end{aligned}
$$

To complete the proof, we need only show that $A \subset A^{*}$. Assume towards a contradiction that $B=A-A^{*} \neq \varnothing$. Note that B is closed and Σ_{1}^{1}. Since R is meager in E, there exist sets $K_{n} \subset E$ such that K_{n} is closed, nowhere dense in E and $R \subset \bigcup_{n} K_{n}$. It follows that $\varnothing \neq F(B) \subset \bigcup_{n} K_{n}$. Hence, by Kunugui's lemma [7, 4F.13], there exist $s_{0} \in \omega$ and $n \in \omega$ such that $\varnothing \neq F\left(B \cap N_{s_{0}}\right) \subset K_{n}$. Since $F\left(B \cap N_{s_{0}}\right)$ is a Σ_{1}^{1} set, it follows from Lemma 1 that there is a Δ_{1}^{1} tree T on ω such
that $F\left(B \cap N_{s_{0}}\right) \subset[T] \subset E$ and $[T]$ is nowhere dense in E. Now fix $\alpha \in B \cap N_{s_{0}}$ and let $\beta \in A \cap N_{s_{0}}$. We now consider two cases: $\beta \in A^{*}$ and $\beta \notin A^{*}$. In either case, there is a Δ_{1}^{1} tree T^{*} on ω such that $\left[T^{*}\right] \subset E,\left[T^{*}\right]$ is nowhere dense in E and $F(\beta) \in\left[T^{*}\right]$. In the first case, this follows from the fact that $\beta \in A$ and the definition of A^{*}; in the second case, this follows from the fact that $\beta \in B \cap N_{s_{0}}$ and our previous observation about $F\left(B \cap N_{s_{0}}\right)$. Consequently, s_{0} witnesses that $\alpha \in A^{*}$. But this contradicts $\alpha \in B$. This concludes the proof.

Lemma 3. If R is $\Sigma_{1}^{1}, R \subset E$ and R is meager in E, then there is $Q \subset \omega \times \omega^{\omega}$ such that Q is Δ_{1}^{1}, each n-section Q_{n} of Q is closed, nowhere dense in E and $(\forall \alpha)(R(\alpha) \rightarrow(\exists n) Q(n, \alpha))$.

Proof. Define

$$
Q^{\prime}(n, \alpha) \leftrightarrow d(n) \downarrow \& S_{3}(d(n)) \& S_{2}(d(n), \alpha)
$$

and $R_{1}(\alpha) \leftrightarrow(\exists n) Q^{\prime}(n, \alpha)$. Then Q^{\prime} and R_{1} are Π_{1}^{1} sets. Now Lemma 2 implies that $R \subset R_{1}$. Hence, by the separation property of Σ_{1}^{1} sets [7, 4B.11], there is a Δ_{1}^{1} set R_{2} with $R \subset R_{2} \subset R_{1}$. Clearly $\left(\forall \alpha \in R_{2}\right)(\exists n) Q^{\prime}(n, \alpha)$. So by the Δ-selection principle [7, 4B.5], there is a Δ_{1}^{1}-recursive function $g: \omega^{\omega} \rightarrow \omega$ such that $\left(\forall \alpha \in R_{2}\right)$ $Q^{\prime}(g(\alpha), \alpha)$. Next define

$$
\begin{aligned}
& A_{1}(n) \leftrightarrow(\exists \alpha \in R)(g(\alpha)=n), \\
& A_{2}(n) \leftrightarrow d(n) \downarrow \& S_{3}(d(n))
\end{aligned}
$$

Then A_{1} is Σ_{1}^{1}, A_{2} is Π_{1}^{1} and $A_{1} \subset A_{2}$. Again by the separation property of Σ_{1}^{1} sets, we can find a Δ_{1}^{1} set A with $A_{1} \subset A \subset A_{2}$. Finally, define

$$
Q(n, \alpha) \leftrightarrow n \in A \& d(n) \downarrow \& S_{2}(d(n), \alpha)
$$

Compute

$$
\neg Q(n, \alpha) \leftrightarrow(n \notin A) \vee\left(d(n) \downarrow \& \neg S_{2}(d(n), \alpha)\right) .
$$

It follows that Q is Δ_{1}^{1}. The remaining assertions about Q made in the statement of Lemma 3 are now easy to verify. This completes the proof.

Kechris [5, Corollary 4.2.4] proved Lemma 3 above when $E=\omega^{\omega}$. However, his methods are quite different from ours.

Lemma 4. Assume that $E \neq \varnothing, R$ is $\Sigma_{1}^{1}, R \subset E$ and R is meager in E. Then $E-R$ contains a Δ_{1}^{1} point.

Proof. Let Q satisfy the assertion of Lemma 3. To exhibit a Δ_{1}^{1} point in $E-R$ one need only give an effective proof of the Baire category theorem. So define

$$
\begin{aligned}
S(n, s, t) \leftrightarrow \neg R_{E}(s) \vee & {[}
\end{aligned} \operatorname{Seq}(s) \& R_{E}(t) \& s<t,
$$

Then S is Π_{1}^{1}, and since each Q_{n} is nowhere dense in E, we have: $(\forall n)(\forall s)(\exists t)$ $S(n, s, t)$. By the Δ-selection principle [7, 4B.5], there exists a Δ_{1}^{1}-recursive function $g: \omega \times \omega \rightarrow \omega$ such that $(\forall n)(\forall s) S(n, s, g(n, s))$. We define $f: \omega \rightarrow \omega$ by primitive recursion: $f(0)=g(0,1)$ (recall 1 is the sequence number of the empty sequence) $f(n+1)=g(n+1, f(n))$. According to [7, 7A.3], f is Π_{1}^{1}-recursive. Since f is a total function, it follows that f must be Δ_{1}^{1}-recursive.

Clearly, $\bigcap_{n=0}^{\infty} N_{f(n)}$ is a singleton, say $\left\{\alpha^{*}\right\}$, and $\alpha^{*} \in E$. Since $R \subset \bigcup_{n} Q_{n}$, $\alpha^{*} \notin R$. Finally,

$$
\begin{aligned}
s \in \mathscr{U}\left(\alpha^{*}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} \alpha^{*} \in N_{s} \\
& \longleftrightarrow(\exists n)(\operatorname{Seq}(s) \& s \leq f(n)) .
\end{aligned}
$$

It follows that α^{*} is a Δ_{1}^{1} point in $E-R$. This completes the proof.
We now formulate our basis theorem.
Theorem 1. Let $P \subset \omega^{\omega}$ be a Π_{1}^{1} set. If there exists $s_{0} \in \omega$ such that $P \cap N_{s_{0}}$ is nonempty, Δ_{1}^{1}-normal and comeager in $\bar{P} \cap N_{s_{0}}$, then P contains a Δ_{1}^{1} point.

Proof. In Lemma 4, take $E=\overline{P \cap N_{s_{0}}}=\bar{P} \cap N_{s_{0}}$ and $R=E-\left(P \cap N_{s_{0}}\right)$. The theorem now easily falls out of Lemma 4.

An immediate consequence of Theorem 1 is the following result of Hinman and Thomason which we mentioned in the introduction.

Corollary 1. If $P \subset \omega^{\omega}$ is Π_{1}^{1} and nonmeager, then P contains a Δ_{1}^{1} point.
Proof. Since P satisfies the Baire property, there is $s_{0} \in \omega$ such that $P \cap N_{s_{0}}$ is comeager in $N_{s_{0}}$. Now apply Theorem 1.

We now use Theorem 1 to deduce an effective selection theorem.
Theorem 2. Let $P \subset \omega^{\omega} \times \omega^{\omega}$ be a Π_{1}^{1} set. Let A be Σ_{1}^{1} and suppose that $A \subset \pi[P]$. Assume that
$(\forall \alpha \in A)(\exists s)\left(P_{\alpha} \cap N_{s}\right.$ is nonempty, $\Delta_{1}^{1}(\alpha)$-normal and comeager in $\left.\bar{P}_{\alpha} \cap N_{s}\right)$.
Then there is a Δ_{1}^{1}-recursive function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $(\forall \alpha \in A) P(\alpha, f(\alpha))$.
Proof. Let $B=\left\{\alpha \in \omega^{\omega}:\left(\exists \beta \in \Delta_{1}^{1}(\alpha)\right) P(\alpha, \beta)\right\}$ In view of the hypotheses, a relativization of Theorem 1 implies that $A \subset B$. The selection lemma in $\S 2$ now does the rest.

Some of the more interesting consequences of Theorem 2 are incorporated in the next corollary.

Corollary 2. Let $P \subset \omega^{\omega} \times \omega^{\omega}$ be a Π_{1}^{1} set. Let A be Σ_{1}^{1} and assume that $A \subset$ $\pi[P]$. Suppose that one of the following conditions holds:
(i) $(\forall \alpha \in A)\left(P_{\alpha}\right.$ is $\Delta_{1}^{1}(\alpha)$-normal and nonmeager in $\left.\bar{P}_{\alpha}\right)$.
(ii) $(\forall \alpha \in A)\left(P_{\alpha}\right.$ is $\Delta_{1}^{1}(\alpha)$-normal and $\left.\Pi_{2}^{0}\right)$.
(iii) $(\forall \alpha \in A)\left(P_{\alpha}\right.$ is nonmeager $)$.

Then there is a Δ_{1}^{1}-recursive function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $(\forall \alpha \in A) P(\alpha, f(\alpha))$.
The deduction of Corollary 2 from Theorem 2 is straightforward and is omitted. Corollary 2 (under condition (i)) can be viewed as an effective version of Theorem 0.

We conclude the section by deducing Theorem 0 from Corollary 2. Since any uncountable Polish space is Borel isomorphic to ω^{ω}, without loss of generality we may assume $T \subset \omega^{\omega}$. Since any Polish space is a continuous, open image of ω^{ω}, without loss of generality we may assume $X=\omega^{\omega}$. Let $P^{1}=\operatorname{Graph}(F)$. Find a Π_{1}^{1} set $P \subset \omega^{\omega} \times \omega^{\omega}$ such that $P^{1}=P \cap\left(T \times \omega^{\omega}\right)$. As F is Borel measurable on T, for each $s \in \omega$, the set $H_{s}^{1}=\left\{\alpha \in T: P_{\alpha}^{1} \cap N_{s} \neq \varnothing\right\}$ is Borel in T, so there is a Δ_{1}^{1} set $H_{s} \subset \omega^{\omega}$ such that $H_{s}^{1}=H_{s} \cap T$. Define $H(\alpha, s) \leftrightarrow \alpha \in H_{s}$. It is easy to see that H is a Δ_{1}^{1} subset of $\omega^{\omega} \times \omega$. Find z such that P is $\Pi_{1}^{1}(z), T$ is $\Sigma_{1}^{1}(z)$ and H is $\Delta_{1}^{1}(z)$. Now, for each $\alpha \in T$,

$$
\begin{aligned}
R_{P_{\alpha}}(s) & \leftrightarrow P_{\alpha} \dot{\cap} N_{s} \neq \varnothing \\
& \leftrightarrow P_{\alpha}^{1} \cap N_{s} \neq \varnothing \\
& \leftrightarrow \alpha \in H_{s}^{1} \\
& \leftrightarrow H(\alpha, s) .
\end{aligned}
$$

Consequently, $R_{P_{\alpha}}$ is $\Delta_{1}^{1}(z, \alpha)$, hence P_{α} is $\Delta_{1}^{1}(z, \alpha)$-normal for $\alpha \in T$. Furthermore, P_{α} is nonmeager in \bar{P}_{α}. So a relativized version of Corollary 2 applies to yield a $\Delta_{1}^{1}(z)$-recursive function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $(\forall \alpha \in T)(f(\alpha) \in F(\alpha))$. The restriction of f to T is a Borel selector for F.
§4. Further results. In this last section we show that the methods of $\S 3$ can be used to give alternative proofs of known results. Throughout this section, the set E fixed at the beginning of $\S 3$ will be taken to be ω^{ω}. The relations S_{1}, S_{2}, S_{3} defined in $\S 3$ have the same meaning as before except that S_{3} is defined with respect to ω^{ω}. Then as before S_{1}, S_{2} are Π_{1}^{0} sets, while S_{3} is Π_{1}^{1}. By [7, 4D.2], we fix a Π_{1}^{1}-recursive partial function $d^{*}: \omega \times \omega^{\omega} \rightarrow \omega^{\omega}$ which parametrizes points in $\Delta_{1}^{1}(\alpha) \cap \omega^{\omega}$.

The next result was first proved by Kechris [5]; Vaught [11] independently proved the boldface version of the result. See also [7, 4F.19] and [2].

Theorem 3. Let $P \subset \omega^{\omega} \times \omega^{\omega}$. If P is $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$, then $\left\{\alpha \in \omega^{\omega}: P_{\alpha}\right.$ is nonmeager $\}$ is $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$. Similarly, if P is $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$, then $\left\{\alpha \in \omega^{\omega}: P_{\alpha}\right.$ is comeager $\}$ is $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$.

Proof. Let P be Σ_{1}^{1}. By a relativization of Lemma 2, we have:

$$
\begin{aligned}
& P_{\alpha} \text { is meager } \leftrightarrow(\forall \beta)[P(\alpha, \beta) \rightarrow(\exists n)\left(d^{*}(n, \alpha) \downarrow\right. \\
&\left.\left.\& S_{3}\left(d^{*}(n, \alpha)\right) \& S_{2}\left(d^{*}(n, \alpha), \beta\right)\right)\right] .
\end{aligned}
$$

It follows that $\left\{\alpha \in \omega^{\omega}: P_{\alpha}\right.$ is nonmeager $\}$ is Σ_{1}^{1}.
Suppose next that P is Π_{1}^{1}. Since each P_{α} satisfies the Baire property, we have:

$$
P_{\alpha} \text { is nonmeager } \leftrightarrow(\exists s)\left(N_{s}-P_{\alpha} \text { is meager }\right)
$$

It follows from what we have just proved for Σ_{1}^{1} sets that $\left\{\alpha \in \omega^{\omega}: P_{\alpha}\right.$ is nonmeager $\}$ is Π_{1}^{1}.

The second assertion follows from the first.
Theorem 4. If $P \subset \omega^{\omega} \times \omega^{\omega}, P$ is Σ_{1}^{1} and P_{α} is meager for each α, then there is $Q \subset \omega \times \omega^{\omega} \times \omega^{\omega}$ such that Q is Δ_{1}^{1}, each (n, α)-section $Q_{n, \alpha}$ of Q is closed, nowhere dense and

$$
(\forall \alpha)(\forall \beta)(P(\alpha, \beta) \rightarrow(\exists n) Q(n, \alpha, \beta))
$$

Proof. We have only to rewrite the proof of Lemma 3 uniformly in α. Define

$$
\begin{gathered}
Q^{\prime}(n, \alpha, \beta) \leftrightarrow d^{*}(n, \alpha) \downarrow \& S_{3}\left(d^{*}(n, \alpha)\right) \& S_{2}\left(d^{*}(n, \alpha), \beta\right), \\
P_{1}(\alpha, \beta) \leftrightarrow(\exists n) Q^{\prime}(n, \alpha, \beta)
\end{gathered}
$$

Then Q^{\prime} and P_{1} are Π_{1}. Moreover, by a relativization of Lemma 2, $P \subset P_{1}$. Arguing as in the proof of Lemma 3, we get a Δ_{1}^{1}-recursive function $f: \omega^{\omega} \times \omega^{\omega} \rightarrow \omega$ such that $(\forall(\alpha, \beta) \in P) Q^{\prime}(f(\alpha, \beta), \alpha, \beta)$. Next define

$$
R_{1}(n, \alpha) \leftrightarrow(\exists \beta)(P(\alpha, \beta) \& f(\alpha, \beta)=n)
$$

$$
R_{2}(n, \alpha) \leftrightarrow d^{*}(n, \alpha) \downarrow \& S_{3}\left(d^{*}(n, \alpha)\right)
$$

Then R_{1} is Σ_{1}^{1}, R_{2} is Π_{1}^{1} and $R_{1} \subset R_{2}$. By the separation property of Σ_{1}^{1} sets, there is a Δ_{1}^{1} set R such that $R_{1} \subset R \subset R_{2}$. We now define

$$
Q(n, \alpha, \beta) \leftrightarrow R(n, \alpha) \& d^{*}(n, \alpha) \downarrow \& S_{2}\left(d^{*}(n, \alpha), \beta\right)
$$

It is easy to verify that Q has the desired properties. This completes the proof.
A boldface version of Theorem 4 has been obtained independently by Cenzer and Mauldin [2] and Hillard [3].

REFERENCES

[1] J. P. Burgess, Careful choices: A last word on Borel selectors, preprint, 1979.
[2] D. Cenzer and R. D. Mauldin, Inductive definability: Measure and category, Advances in Mathematics, vol. 38 (1980), pp. 55-90.
[3] G. Hillard, Une généralization du théorème de Saint-Raymond sur les boréliens à coupes K_{σ}, Comptes Rendues Hebdomadaires des Séances de l'Académie des Sciences. Séries A. (Paris), no. 288 (1979), pp. 749-751.
[4] P. G. Hinman, Some applications of forcing to hierarchy problems in arithmetic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 341-352.
[5] A. S. Kechris, Measure and category in effective descriptive set theory, Annals of Mathematical Logic, vol. 5 (1973), pp. 337-384.
[6] A. Louveau, Recursivity and compactness, Proceedings of the Oberwolfach Conference, April 1977, Springer-Verlag, Berlin and New York, 1978.
[7] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980.
[8] H. Sarbadhikari, Some uniformization results, Fundamenta Mathematicae, vol. 97 (1977), pp. 209-214.
[9] S. M. Srivastava, Selection theorems for G_{∂}-valued multifunctions, Transactions of the American Mathematical Society, vol. 254 (1979), pp. 283-193.
[10] S. K. Thomason, The forcing method and the upper semi-lattice of hyperdegrees, Transactions of the American Mathematical Society, vol. 129 (1967), pp. 38-57.
[11] R. L. VaUGHt, Invariant sets in topology and logic, Fundamenta Mathematicae, vol. 82 (1974), pp. 269-294.

[^0]: Received March 1, 1980.

