CONSTRUCTION OF FACTORIAL DESIGNS WITH ALL MAIN EFFECTS BALANCED

By RAHUL MUKERJEE
University of Calcutta

Abstract

$S U M M A R Y$. The concept of difference array has been introduced to construct connected two-factor designs, symmetric and asymmetric, ensuring inter-effect-orthogonality, balancing main effects and retaining full information on at least one main effect. Two methods for constructing two-factor designs retaining full information on both main effects have been presented. Extensions to multifactor designs have been considered. The methods described cover almost all cases of factorial designs and require, in most cases, a smaller number of replications than any of the existing methods.

1. Introduction

Consider a factorial experiment involving m factors $F_{1}, F_{2}, \ldots, F_{m}$, the j-th factor being at $s_{j}(\geqslant 2)$ levels, $1 \leqslant j \leqslant m$. A particular selection of levels $i=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ will be termed the i-th level combination. Throughout this paper the $v=\prod_{j=1}^{m} s_{j}$ level combinations will be lexicographically ordered (cf. Kurkjian and Zelen, 1963). Let the v level combinations be arranged in a block design with b blocks and incidence matrix $\boldsymbol{N}^{(v \times b)}=\left(n_{i h}\right)$. The fixed effects intrablock model with no block-treatment interaction and with a constant error variance is assumed.

In such a design inter-effect orthogonality holds if best linear estimates of estimable treatment contrasts belonging to different factorial effects are orthogonal (i.e. uncorrelated). Any factorial effect is called balanced if all normalised contrasts belonging to that effect are estimated with the same variance. In the equireplicate case full information is retained on an effect if the effect be balanced and there is no loss of information on any contrast belonging to that effect (relative to the comparable complete block design).

Before presenting the main results, we introduce some notations, definitions and preliminary results. Let for $1 \leqslant j \leqslant m, \mathbf{1}_{j}^{\left(\varepsilon_{j} \times 1\right)}=(1,1, \ldots, 1)^{\prime}$, $\boldsymbol{E}_{j}=\mathbf{1}_{j} \mathbf{1}_{j}^{\prime}, \quad \boldsymbol{I}_{\boldsymbol{j}}=\boldsymbol{I}^{\left(\boldsymbol{\delta}_{j} \times \boldsymbol{\delta}_{\boldsymbol{j}}\right)} . \quad \boldsymbol{P}_{\boldsymbol{j}}=$ an $\left(s_{j}-1\right) \times s_{j}$ matrix such that $\left(s_{\boldsymbol{j}}^{-1 / 2} \mathbf{1}_{j}, \boldsymbol{P}_{j}^{\prime}\right)$ is orthogonal. For any $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right), \quad x_{j}=0,1, \forall j, \quad \boldsymbol{x} \neq \mathbf{0}$, let $\boldsymbol{P}^{\boldsymbol{x}}=\boldsymbol{P}_{1}^{x} \times \ldots \times \boldsymbol{P}_{m}^{x_{m}}, \boldsymbol{\varepsilon}^{\boldsymbol{x}}=\boldsymbol{\varepsilon}_{1}^{x} \times \ldots \times \boldsymbol{\varepsilon}_{m}^{x}$, where

$$
\underset{\boldsymbol{z} \mathbb{E}_{j}^{\boldsymbol{P}_{\boldsymbol{j}}}}{ }\left\{\begin{array} { l l }
{ s _ { \boldsymbol { j } } ^ { - \mathbf { 1 / 2 } } \mathbf { 1 } _ { \boldsymbol { j } } ^ { \prime } } & { \text { if } x _ { \boldsymbol { j } } = 0 , } \\
{ \boldsymbol { P } _ { \boldsymbol { j } } } & { \text { if } x _ { \boldsymbol { j } } = 1 }
\end{array} \quad \boldsymbol { \varepsilon } _ { \boldsymbol { j } } ^ { \boldsymbol { \varepsilon } _ { \boldsymbol { j } } } \left\{\begin{array}{ll}
\mathbf{1}_{\boldsymbol{j}} & \text { if } x_{\boldsymbol{j}}=0 \\
\boldsymbol{I}_{\boldsymbol{j}} & \text { if } x_{\boldsymbol{j}}=1
\end{array}\right.\right.
$$

Definition 1.1: A proper matrix is a square matrix with all row sums and all column sums equal.

Definition 1.2: A $v \times v$ matrix \boldsymbol{A}, where $v=\prod_{j=1}^{m} s_{j}\left(s_{j} \geqslant 2, \forall j\right)$ is said to have structure K if it be expressible as a linear combinatiom of Kronecker products of proper matrices of orders $s_{1}, \ldots, s_{\boldsymbol{m}}$ (taken in that order), i.e., if

$$
\begin{equation*}
\boldsymbol{A}=\sum_{\boldsymbol{g}=1}^{w} \xi_{g}\left(\boldsymbol{V}_{g_{1}} \times \ldots \times \boldsymbol{V}_{\boldsymbol{g m}}\right), \tag{1.1}
\end{equation*}
$$

where w is a positive integer, ξ_{1}, \ldots, ξ_{w} are some real numbers and for each g, $\boldsymbol{V}_{g j}$ is some proper matrix of order $s_{j}, l \leqslant j \leqslant m$. Structure K will always be with respect to a particular factorisation $v=\Pi_{s j}$ with the factors occurring in a particular order.

For an equireplicate factorial experiment in a block design with common replication number r, constant block size k and incidence matrix \boldsymbol{N}, the following theorems were proved by Mukerjee (1979, 1980a, 1980b) :

Theorem 1.1: A sufficient condition for inter-effect-orthogonality to hold is that the matrix $\boldsymbol{N} \boldsymbol{N}^{\prime}$ has structure K. In the connected case this is also a necessary condition for inter-effect-orthogonality.

Theorem 1.2: Given that $\mathbf{N N}^{\prime}$ has structure K, any main effect $\boldsymbol{F}_{j}(\mathbf{1} \leqslant j \leqslant m)$ is balanced if and only if $\varepsilon^{\boldsymbol{x}^{\prime}} \boldsymbol{N} \boldsymbol{N}^{\prime} \boldsymbol{\varepsilon}^{\boldsymbol{x}}=u_{1} \boldsymbol{I}_{\boldsymbol{j}}+u_{2} \boldsymbol{E}_{j}$, where $u_{1}, u_{\mathbf{2}}$ are real numbers and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right), x_{j}=1, x_{j^{\prime}}=0 \forall j^{\prime} \neq j$. In this case the loss of information on F_{j} is given by $L\left(F_{j}\right)=(r k v)^{-1} s_{j} u_{1}$.

Theorem 1.3: Full information is retained on any main effect if and only if in each block the levels of the corresponding factor occur equal number of times.

Theorem 1.4: Given that $\boldsymbol{N} \mathbf{N}^{\prime}$ has structure K and the design is connected, the average loss of information on a complete set of orthonormal contrasts belonging to any factorial effect

$$
F_{1}^{x}{ }^{x} F_{2}^{x} \ldots F_{m}^{x}\left(x_{j}=0,1, \forall j, \boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \neq \mathbf{0}\right)
$$

is given by

$$
1-r^{-1}\left(\Pi\left(s_{j}-1\right)^{x_{j}}\right)\left[\text { Trace }\left(\boldsymbol{P}^{\boldsymbol{x}} \boldsymbol{C} \boldsymbol{P}^{x^{\prime}}\right)^{-1}\right]^{-1}
$$

where \boldsymbol{C} is the \boldsymbol{C} matrix of the design.
Earlier Kurkjian and Zelen (1963) and Kshirsagar (1966) considered a property of $\boldsymbol{N} \boldsymbol{N}^{\prime}$, which they called property A. $\boldsymbol{N} \boldsymbol{N}^{\prime}$ has property A if it be of the form (1.1) with $\boldsymbol{V}_{\boldsymbol{g} \boldsymbol{j}}=\boldsymbol{I}_{j}$ or $\boldsymbol{E}_{j} \forall g, j$.

Obviously property A of $\boldsymbol{N} \boldsymbol{N}^{\prime}$ is a special case of structure K. For equireplicate factorial designs with constant block size, property A of $\boldsymbol{N} \boldsymbol{N}^{\prime}$ is necessary and sufficient for inter-effect-orthogonality with all factorial effects balanced while structure K of $\boldsymbol{N} \boldsymbol{N}^{\prime}$ is necessary and sufficient for inter-effectorthogonality alone.

In the present paper Theorems 1.1-1.3 will be utilised to construct connected factorial designs for which inter-effect-orthogonality holds with all main effects balanced, retaining full information on at least one main effcet. The methods described are applicable to a very wide variety of cases and require, in most cases, a smaller number of replicates than any of the existing methods. In many cases the smaller size of the design has been achieved at the cost of balancing of interactions. This, however, poses no problem since the analysis of the proposed designs can be done using formulae given by Mukerjee (1979). Also the properties of the proposed designs with respect to interactions may be explored using Theorem 1.4.

2. Construction of two-factor designs from varietal designs

Consider the problem of constructing an $s_{1} \times s_{2}$ design in two factors F_{1}, F_{2}. For $j=1,2$, the levels of F_{j} will be denoted by $0,1, \ldots, s_{j}-1$. Restricting ourselves to equireplicate block designs if we want to retain full information on main effect F_{1}, by Theorem 1.3, block size must be a multiple of s_{1} so that minimum block size will be s_{1}. In the following subsections the actual method of construction will be described.
2.1. Difference array. Let $\gamma_{i_{2} i_{2}}^{(\alpha)}, 1 \leqslant \alpha \leqslant s_{1}-1,0 \leqslant i_{2}, i_{2}^{\prime} \leqslant s_{2}-1$, be given nonnegative integers such that for each $\alpha, \Gamma^{(\alpha)}=\left(\gamma_{i_{2} i_{2}}^{(\alpha)}\right)$ is a proper matrix with each row sum and each column sum equal to the same positive integer r. Let \boldsymbol{M} be an $s_{1} \times\left(r s_{2}\right)$ matrix whose rows are serially numbered $0,1, \ldots, s_{1}-1$ and whose entries are chosen from the set $\left\{0,1, \ldots, s_{2}-1\right\}$ such that for any $i_{1}, i_{1}^{\prime}\left(i_{1} \neq i_{1}^{\prime}, 0 \leqslant i_{1}, i_{1}^{\prime} \leqslant s_{1}-1\right)$ if $i_{1}^{\prime}-i_{1}=\alpha\left(\bmod s_{1}\right)$ then in the $2 \times\left(r s_{2}\right)$ matrix $\boldsymbol{M}_{i_{1} i_{1}}$ formed by taking the i_{1}-th and i_{1}-th rows of \boldsymbol{M} as first and second rows respectively the ordered pair $\binom{i_{2}}{i_{2}^{\prime}}$ occurs as a column vector $\gamma_{i_{2} i_{2}^{\prime}}^{(\alpha)}$ times, $1 \leqslant \alpha \leqslant s_{1}-1,0 \leqslant i_{2}, i_{2}^{\prime} \leqslant s_{2}-1$. Then \boldsymbol{M} is defined as a difference array $\left[r s_{2}, s_{1}, s_{2}, 2, \Gamma^{(\alpha)}, 1 \leqslant \alpha \leqslant s_{1}-1\right]$ with $r s_{2}$ assemblies, s_{1} constraints, s_{2} levels, strength 2 and index parameters $\boldsymbol{\Gamma}^{(\alpha)}, 1 \leqslant \alpha \leqslant s_{1}-1$. Obviously $\gamma_{i_{2} i_{2}^{\prime}}^{(\alpha)}=\gamma_{i_{2} i_{2}}^{(-\alpha)}$, where $(-\alpha)$ is reduced $\bmod s_{1}$ and in each row of \boldsymbol{M} each symbol is repeated r times.

If $\gamma_{i_{2} i_{2}^{\prime}}^{(\alpha)}=\gamma_{i_{2} i_{2}}^{(\alpha)}=\psi_{i_{2} i_{\mathbf{2}}^{\prime}}$ (say), $\forall \alpha, \forall i_{2}, i_{\mathbf{2}}^{\prime}$, then the difference array reduces to a balanced array of strength 2. If $\gamma_{i_{\mathbf{2}}^{i}}^{(a)}=$ constant $=\gamma$ (say), $\forall \alpha, \forall i_{2}, i_{2}$, then $r=\gamma s_{2}$ and the difference array reduces to an orthogonal array $\left[\gamma s_{2}^{2}, s_{1}, s_{2}, 2\right]$.

If a difference array \boldsymbol{M} as described above exists, taking its entries as levels of F_{2}, associating its rows with the levels of F_{1} and taking its columns as blocks, one gets an $s_{1} \times s_{2}$ design in $r s_{2} s_{1}$-plot blocks with common replication number r for which the following theorem holds :

Theorem 2.1.1: In an $s_{1} \times s_{2}$ factorial design constructed as above from a difference array $\left[r s_{2}, s_{1}, s_{2}, 2, \Gamma^{(\alpha)}, \quad 1 \leqslant \alpha \leqslant s_{1}-1\right]$, (i) inter-effect-orthogonality holds and (ii) full information is retained on main effect F_{1}. Further, main effect F_{2} is also balanced if and only if $\sum_{\alpha=1}^{\boldsymbol{s}_{1}-\mathbf{1}} \boldsymbol{\Gamma}^{(\alpha)}=g_{1} \boldsymbol{I}_{2}+g_{2} \boldsymbol{E}_{2}$, for some numbers g_{1}, g_{2}, and in that case, $L\left(F_{2}\right)=\left(r s_{1}\right)^{-1}\left(r+g_{1}\right)$.

Proof : (i) For $0 \leqslant \alpha \leqslant s_{1}-1$, let \boldsymbol{R}_{α} be $\left(s_{1} \times s_{1}\right)$ matrices such that the (β, β^{\prime})-th cell of $\boldsymbol{R}_{\boldsymbol{a}}$ is filled by 1 if $\beta^{\prime}=\beta+\alpha\left(\bmod s_{1}\right)$ and by 0 otherwise, $0 \leqslant \beta, \beta^{\prime} \leqslant s_{1}-1$. Obviously $\boldsymbol{R}_{0}=\boldsymbol{I}_{1}$ and $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{\boldsymbol{s}_{1}-1}$ are permutation matrices. Observing that two distinct level combinations $\left(i_{1}, i_{2}\right),\left(i_{1}^{\prime}, i_{2}^{\prime}\right)$ occur together in no block if $i_{1}=i_{1}^{i}$ and in $\gamma_{i_{2} i_{2}^{\prime}}^{(\alpha)}$ blocks if $i_{1}^{i}-i_{1}=\alpha\left(\bmod s_{1}\right)$, $1 \leqslant \alpha \leqslant s_{1}-1$, for the factorial design under consideration

$$
\begin{equation*}
\boldsymbol{N} \boldsymbol{N}^{\prime}=r\left(\boldsymbol{I}_{1} \times \boldsymbol{I}_{2}\right)+\sum_{\alpha=1}^{s_{1}-1} \boldsymbol{R}_{\alpha} \times \boldsymbol{\Gamma}^{(\alpha)} \tag{2.1.1}
\end{equation*}
$$

Since $\Gamma^{(\alpha)}{ }^{\prime} s$ are proper matrices, $\boldsymbol{N} \boldsymbol{N}^{\prime}$ has structure K and inter-effect-orthogonality holds by Theorem 1.1.
(ii) Obvious by Theorem 1.3.

From (2.1.1) it is easily seen that

$$
\boldsymbol{\varepsilon}^{01} \boldsymbol{N} \boldsymbol{N}^{\prime} \varepsilon^{01}=r s_{1} \boldsymbol{I}_{2}+s_{1} \sum_{\alpha=1}^{s_{1}-1} \Gamma^{(\alpha)}
$$

Hence by Theorem 1.2, main effect F_{2} is balanced if and only if ${ }_{\boldsymbol{a}=1}^{\boldsymbol{s}_{1}-\mathbf{1}} \boldsymbol{\Gamma}^{(\alpha)}=g_{1} \boldsymbol{I}_{2}+g_{2} \boldsymbol{E}_{2}, \quad$ for some numbers g_{1}, g_{2}, \quad in which event (with $u_{1}=s_{1}\left(r+g_{1}\right), u_{2}=s_{1} g_{2}$ in Theorem 1.2) $L\left(F_{2}\right)=\left(r s_{1}\right)^{-1}\left(r+g_{1}\right)$. Q.E.D.
2.2. The method of cyclic rotation. A method for generating difference arrays from varietal designs will be described now. Consider an $s_{1} \times d$ matrix $\boldsymbol{A}_{0}=\left(a_{i_{1} h}\right), a_{i_{1} h} \in\left\{0,1, \ldots, s_{2}-1\right\}, 0 \leqslant i_{1} \leqslant s_{1}-1,0 \leqslant h \leqslant d-1$. This can be looked upon as a varietal (possibly non-binary) design in s_{2} varieties laid out in d blocks (columns) and s_{1} rows. Let \boldsymbol{A}_{0}^{*} be an $s_{1} \times\left(d s_{1}\right)$ matrix such that

$$
\begin{equation*}
\boldsymbol{A}_{\boldsymbol{\theta}}^{*}=\left[\boldsymbol{A}_{0}, \boldsymbol{R}_{1} \boldsymbol{A}_{0}, \ldots, \boldsymbol{R}_{\boldsymbol{s}_{1}-1} \boldsymbol{A}_{0}\right] \tag{2.2.1}
\end{equation*}
$$

where \boldsymbol{R}_{i} 's are as defined in the proof of Theorem 2.1.1.
Theorem 2.2.1: If \boldsymbol{A}_{0} represents an equireplicate varietal design then \boldsymbol{A}_{0}^{*} given by (2.2.1) forms a difference array.

Proof: Let r be the common replication number in \boldsymbol{A}_{0}. Since $r s_{2}=d s_{1}$, \boldsymbol{A}_{0}^{*} is evidently an $s_{1} \times\left(r s_{2}\right)$ matrix in symbols $0,1, \ldots, s_{2}-1$. In any tworowed submatrix of \boldsymbol{A}_{0}^{*} consisting of, say, the i_{1}-th and i_{1}^{\prime}-th rows $\left(0 \leqslant i_{1} \neq i_{1}^{\prime} \leqslant s_{1}-1, i_{1}^{\prime}-i=\alpha\left(\bmod s_{1}\right)\right)$ number of times the ordered pair $\binom{i_{2}}{i_{2}}$ occurs as a column vector is equel to the number of times in \boldsymbol{A}_{0} the symbols i_{2} and i_{2}^{\prime} are at some β-th and β^{\prime}-th positions in a column where β, β^{\prime} satisfy $\beta^{\prime}-\beta=\alpha\left(\bmod s_{1}\right)$ (i.e., this number depends on i_{1}, i_{1}^{*} only through α). Let this number be $\gamma_{i_{2} i_{2}}^{(\alpha)}$. For any $i_{2}, \alpha, 0 \leqslant i_{2} \leqslant s_{2}-\mathbf{i}, 1 \leqslant \alpha \leqslant s_{1}-1$, $s_{2}-1$
$\sum_{i_{2}^{\prime}=0}^{\delta_{2}-1} \gamma_{i=2}^{(\alpha)} \boldsymbol{\gamma}_{\mathbf{2}}^{(\alpha)}=$ number of times the symbol i_{2} occurs in $\boldsymbol{A}_{0}=r$. Similarly for any
 is a difference array $\left[r s_{2}, s_{1}, s_{2}, 2, \boldsymbol{\Gamma}^{(\alpha)}, \quad 1 \leqslant \alpha \leqslant s_{1}-1\right]$. Q.E.D.

The above method of generating difference arrays starting from an \boldsymbol{A}_{0} will be called the metnod of cyclic rotation. The two-factor design that can be constructed from such a difference array as described in subsection 2.1 will be called a derived factorial design.

John (1973) describes a method of construction of cyclic two-factor designs starting from some initial blocks or subsets of level combinations. Further blocks are developed (possibly discarding repeated blocks) by adding to each member of each initial block the $s_{1} s_{2}$ level combinations (i_{1}, i_{2}) $\left(0 \leqslant i_{j} \leqslant s_{j}-1 ; j=1,2\right)$ addition being $\bmod s_{j}$ for the levels of the j-th factor, $j=1,2$. The present method of construction of difference array and the $s_{1} \times s_{2}$ factorial amounts to starting from the d initial subsets $\left\{\left(0, a_{0 h}\right),\left(1, a_{1}\right), \ldots,\left(s_{1}-1, a_{s_{1}-1, h}\right)\right\}, 0 \leqslant h \leqslant d-1$ and developing blocks by
the addition of only the s_{1} level combinations $\left(i_{1}, 0\right), 0 \leqslant i_{1} \leqslant s_{1}-1$. Thus the resulting design is not a cyclic design in John's sense. Actually we are starting from a larger number of initial blocks and using a sort of curtailed cycle while John's intention seems to be to start from a smaller number of initial blocks and develop the full cycle.
2.3. Use of balanced block designs : Definition 2.3.1: An equireplicate varietal design (possibly non-binary) in s_{2} varieties laid out in d blocks each of size s_{1}, with incidence matrix \boldsymbol{N}^{*} will be called a balanced block design (BBD) if $\boldsymbol{N}^{*} \boldsymbol{N}^{* \prime}=\left(r^{*}-\lambda^{*}\right) \boldsymbol{I}_{2}+\lambda^{*} \boldsymbol{E}_{2}$, for some integers r^{*}, λ^{*}.

Theorem 2.3.1: (i) For the difference array (2.2.1) based on the equireplicate varietal design \boldsymbol{A}_{0} with common replication number r, $\sum_{\boldsymbol{a}=1}^{\boldsymbol{s}_{\mathbf{1}}-\mathbf{1}} \boldsymbol{\Gamma}^{(\alpha)}=g_{1} \boldsymbol{I}_{2}+g_{2} \boldsymbol{E}_{\mathbf{2}}$ for some numbers g_{1}, g_{2} if and only if \boldsymbol{A}_{0}, when looked upon as a block design with columns as blocks, forms a BBD.
(ii) If \boldsymbol{A}_{0}, when looked upon as a block design, forms a BBD with incidence matrix \boldsymbol{N}^{*} and $\boldsymbol{N}^{*} \boldsymbol{N}^{* \prime}=\left(r^{*}-\lambda^{*}\right) \boldsymbol{I}_{2}+\lambda^{*} \boldsymbol{E}_{2}$, then in the derived factorial design main effect F_{2} is balanced with $L\left(F_{2}\right)=\left(r s_{1}\right)^{-1}\left(r^{*}-\lambda^{*}\right)$.

Proof: (i) Let the design represented by the columns of \boldsymbol{A}_{0} have incidence $\operatorname{matrix} \boldsymbol{N}^{*}=\left(n_{i_{2}}^{*}\right), 0 \leqslant i_{2} \leqslant s_{2}-1,0 \leqslant h \leqslant d-1$. For the difference array (2.2.1) based on \boldsymbol{A}_{0}, for any $i_{2}, i_{2}^{\prime}, 0 \leqslant i_{2}, i_{2}^{\prime} \leqslant s_{2}-1$,

$$
\begin{align*}
& \sum_{a=1}^{\delta_{1}-1} \gamma_{2_{2}^{\prime}}^{(\alpha)}=\sum_{a=1}^{s_{1}^{-1}} \text { \{number of times the symbols } i_{2}, i_{2}^{\prime} \text { occur } \\
& \text { together at some } \beta \text {-th and } \beta^{\prime} \text {-th positions in a } \\
& \text { column of } \left.A_{0} \text { where } \beta, \beta^{\prime} \text { satisfy } \beta^{\prime}-\beta=\alpha\left(\bmod s_{1}\right)\right\} \\
& = \begin{cases}\sum_{h=0}^{d-1} n_{i_{2} h}^{*}\left(n_{i_{2} h}^{*}-1\right) & \text { if } i_{2}=i_{2}^{\prime} \\
\sum_{h=0}^{d_{-1}} n_{i_{2} h}^{*} n_{i_{2}^{\prime} h}^{*} & \text { if } i_{2} \neq i_{2}^{\prime}\end{cases} \tag{2.3.1}
\end{align*}
$$

Since $r=\sum_{h=0}^{d-1} n_{i_{2} h}{ }^{*} \forall i_{2}$, by (2.3.1),

$$
\begin{equation*}
\sum_{\alpha=1}^{8_{1}^{-1}} \boldsymbol{\Gamma}^{(\alpha)}=\boldsymbol{N}^{*} \boldsymbol{N}^{* \prime}-r \boldsymbol{I}_{2} \tag{2.3.2}
\end{equation*}
$$

whence (i) follows at once by the definition of BBD.
(ii) In this case by (2.3.2), for the difference array (2.2.1), $\sum_{a=1}^{\boldsymbol{s}_{1}-\mathbf{1}} \mathbf{\Gamma}^{(\alpha)}=g_{1} \boldsymbol{I}_{2}+g_{2} \boldsymbol{E}_{2}$, where $g_{1}=r^{*}-\lambda^{*}-r, g_{2}=\lambda^{*}$, whence by Theorem 2.1.1 the result follows. Q.E.D,

The above theorem, together with Theorems 2.1.1, 2.2.1, gives a systematic method for constructing two-factor designs ensuring inter-effect-orthogonality, balancing main effects and retaining full information on at least one main effect (viz., main effect F_{1}). Since for every integral $s_{1}, s_{2}(\geqslant 2)$ a BBD for s_{2} varieties in blocks of size s_{1} exists, the method has very wide applicability.
(I) In particular, if $s_{1}<s_{2}$ one may use a balanced incomplete block design (BIBD), with usual parameters r, λ. In this case for the derived factorial design (DFD), $L\left(F_{2}\right)=\left(r s_{1}\right)^{-1}(r-\lambda)$.
(II) If $s_{1}=s_{2}$ one may use a randomised block design (RBD). In this case by Theorem 1.3 it is easy to check that in the DFD full information is retained on main cffect F_{2} as well.
(III) If $s_{1}>s_{2}$ one may start with a BBD with incidence matrix $\boldsymbol{N}^{*}{ }^{\left(\boldsymbol{\delta}_{2} \times \boldsymbol{\delta}_{\mathbf{2}}\right)}=\left(n_{i_{2} h}^{*}\right)$, where $n_{i_{2} h}^{*}=x^{*}$ whenever $i_{2}=h$ and $n_{i_{2} h}^{*}=y^{*}$ whenever $i_{2} \neq h$, where x^{*}, y^{*} are positive integers such that $x^{*}+\left(s_{2}-1\right) y^{*}=s_{1}$. Writing $\boldsymbol{N}^{*} \boldsymbol{N}^{\boldsymbol{*}}$ explicitly and applying Theorem 2.3.1, it can be seen that in this case for the DFD, $L\left(F_{2}\right)=s_{1}^{-2}\left(x^{*}-y^{*}\right)^{2} . L\left(F_{2}\right)=0$ if and only if $x^{*}=y^{*}$. But $x^{*}=y^{*} \Longrightarrow s_{1}=x^{*}+\left(s_{2}-1\right) x^{*}=s_{2} x^{*}$. Hence unless $s_{1}\left(>s_{2}\right)$ is an integral multiple of s_{2} full information cannot be retained on main effect F_{2}. As a working rule, in order to minimise $L\left(F_{2}\right),\left|x^{*}-y^{*}\right|$ should be as small as possible.

In cases (I) and (III) above it can be shown that there always exists an arrangement of varieties within the blocks of the BIBD or BBD under use such that the method of cyclic rotation applied to the corresponding matrix \boldsymbol{A}_{0} leads to a connected DFD. The same can be said also for case (II) provided $s_{1}=s_{2}>2$ and the RBD used involves at least two blocks (cf. Mukerjee, 1980b).

Before concluding this section we compare the method described with that due to Nair and Rao (1948) who used orthogonal arrays [$\left.s_{2}^{\mathbf{2}}, s_{1}, s_{2}, 2\right]$ for constructing $s_{1} \times s_{2}$ balanced confounded designs in blocks of size s_{1} with $L\left(F_{1}\right)=0$. In many cases our method will give designs with smaller number of replicates e.g. if $s_{1}=3, s_{2}=7$, starting with the symmetric BIBD $s_{2}=d=7, r=s_{1}=3,=1$, our method will give a design in only three
replicates while that due to Nair and Rao will require at least as many as $\left(s_{2}-1=\right) 6$ replicates. Again in some cases (e.g., if $s_{1}=5, s_{2}=6$) the method by Nair and Rao fails as the required orthogonal arrays are nonexistent. However, in our method a 5×6 design can be constructed from the symmetric BIBD $s_{2}=d=6, r=s_{1}=5, \lambda=4$. For $s_{1}=2, s_{2} \geqslant 2$, it can be checked that our method gives a balanced confounded design and is equivalent to that due to Nair and Rao.

The following example serves as an illustration :
Example 2.3.1: If $s_{1}=5, s_{2}=3$, starting from a BBD (blocks are written as columns) :

2	0	1
0	1	2
1	2	0
1	2	0
0	1	2

we can get a 5×3 design in five replicates with the desired properties and with $L\left(F_{2}\right)=1 / 25$. Incidentally, this 5×3 design is a balanced confounded design in the sense of Nair and Rao and interaction $F_{1} F_{2}$ is also balanced in it. Such a design cannot, however, be obtained by the method of Nair and Rao since an orthogonal array [$3^{2}, 5,3,2$] does not exist. Muller (1966) gave a 5×3 balanced confounded design in blocks of size 5 with $L\left(F_{1}\right)=0$, $L\left(F_{2}\right)=1 / 25$. But his design required as many as ten replicates.

3. Retaining full information on both main effeots

For an $s_{1} \times s_{2}$ design with $s_{1}=s_{2}$ or $s_{1}>s_{2}$ and an integral multiple of s_{2}, this problem has already been considered in subsection 2.3. Here we present a general method applicable for $s_{1} \neq s_{2}$. If $s_{1} \neq s_{2}$ to retain full information on both the main effects in an equireplicate block design, block size must be a multiple of both s_{1} and s_{2} by Theorem 1.3. If s_{1} and s_{2} be prime to each other it is, therefore, impossible to retain full information on both main effects in an incomplete block design. Hence we consider only the case when s_{1}, s_{2} are not prime to each other. In this case let $f(>1)$ be their highest common factor and let $s_{1}=f_{1} f, s_{2}=f_{2} f, f_{1}, f_{2} \geqslant 1, f_{1} \neq f_{2}$. Minimum possible block size is $f_{1} f_{2} f$. Without loss of generality let $s_{1}>s_{2}$.

Let θ be an $f_{1} s_{2}$ component vector such that $\boldsymbol{\theta}^{\prime}=(0,0, \ldots, 0,1,1, \ldots$, $\left.1, \ldots, s_{2}-1, s_{2}-1, \ldots, s_{2}-1\right)$, where in $\boldsymbol{\theta}$ each symbol $0,1, \ldots, s_{2}-1$ is repeated f_{1} times. Let $\boldsymbol{R}_{\alpha}^{*}\left(0 \leqslant \alpha \leqslant f_{1} s_{2}-1\right)$ be permutation matrices of
order $f_{1} s_{2}$ similarly defined as before. Let $\boldsymbol{B}=\left[\boldsymbol{\theta}, \boldsymbol{R}_{1}^{*} \boldsymbol{\theta}, \ldots, \boldsymbol{R}_{\boldsymbol{\varepsilon}_{1}-1}^{*} \boldsymbol{\theta}\right]$. \boldsymbol{B} has $f_{1} s_{2}=f_{2} s_{1}$ rows. Associate the first s_{1} rows of \boldsymbol{B} with the levels of F_{1} in the order $0,1, \ldots, s_{1}-1$, the next s_{1} rows with the levels of F_{1} in the same order and so on till all the rows are exhausted. Identify the elements of \boldsymbol{B} with the levels of F_{2} and form one block from each column.

The above method of constructing an $s_{1} \times s_{2}$ design in s_{1} blocks each of $f_{1} f_{2} f$ plots actually amounts to starting from. an initial block $\left\{\left(g f_{1}+g^{\prime}, g+g^{\prime \prime} f\right)\right.$, $\left.0 \leqslant g \leqslant f-1,0 \leqslant g^{\prime} \leqslant f_{1}-1,0 \leqslant g^{\prime \prime} \leqslant f_{2}-1\right\}$ and developing ($s_{1}-1$) further blocks by adding to each member of the initial block the level combinations $\left(i_{1}, 0\right), s_{1} \geqslant i_{1} \geqslant 1$, addition being $\bmod s_{1}$ for the levels of F_{1}.

For the above $s_{1} \times s_{2}$ design which is easily seen to be connected and equireplicate (with common replication number f_{1}) the following theorem. holds :

Theorem 3.1: (i) Inter-effect-orthogonality holds, (ii) $L\left(F_{1}\right)=L\left(F_{2}\right)=0$.
Proof: (i) For $0 \leqslant i_{2} \leqslant s_{2}-1=f_{2} f-1$, let $\boldsymbol{e}_{\boldsymbol{i}_{2}}$ be an s_{2}-component vector having 1 at the i_{2}-th position and 0 at every other position. For each $g, 0 \leqslant g \leqslant f-1$, let

$$
\begin{gathered}
\boldsymbol{e}_{g}^{*}=\boldsymbol{e}_{g}+\boldsymbol{e}_{f+\boldsymbol{g}}+\ldots+\boldsymbol{e}_{(f-1) f+\boldsymbol{g}}, \\
\boldsymbol{T}_{\boldsymbol{g}}^{\left(f_{1} \boldsymbol{q}_{2} \times f_{1}\right)}=\left[\left.\begin{array}{cccc}
\boldsymbol{e}_{g}^{*} \boldsymbol{e}_{g}^{*} & \ldots & \boldsymbol{e}_{g}^{*} \boldsymbol{e}_{g}^{*} \\
\boldsymbol{e}_{g}^{*} \boldsymbol{e}_{g}^{*} & \ldots & \boldsymbol{e}_{g}^{*} \boldsymbol{e}_{g+1}^{*} \\
\ldots & \ldots & \ldots \\
\boldsymbol{e}_{g}^{*} \boldsymbol{e}_{g}^{*} & \ldots & \boldsymbol{e}_{\boldsymbol{g}+1}^{*} \boldsymbol{e}_{g+1}^{*} \\
\boldsymbol{e}_{g}^{*} \boldsymbol{e}_{\boldsymbol{g}+1}^{*} \ldots & \boldsymbol{e}_{g+1}^{*} & \boldsymbol{e}_{g+1}^{*}
\end{array} \right\rvert\,\right.
\end{gathered}
$$

where $(g+1)$ in \boldsymbol{T}_{g} is reduced $\bmod f$. Then it can be seen that the incidence matrix \boldsymbol{N} of the $s_{1} \times s_{2}$ design is given by

$$
\boldsymbol{N}^{\left(\delta_{1} \delta_{2} \times{ }_{8}{ }_{1}\right)}=\left[\begin{array}{cccc}
\boldsymbol{T}_{0} & \boldsymbol{T}_{1} & \ldots & \boldsymbol{T}_{f-1} \\
\boldsymbol{T}_{1} & \boldsymbol{T}_{2} & \ldots & \boldsymbol{T}_{0} \\
\ldots & \ldots & \ldots \\
\boldsymbol{T}_{f-1} \boldsymbol{T}_{0} & \ldots & \boldsymbol{T}_{f-2}
\end{array}\right],
$$

whence, writing \boldsymbol{N} in full, after some simplification

$$
\begin{equation*}
\boldsymbol{N} \boldsymbol{N}^{\prime}=\sum_{g=0}^{f-1} \sum_{g^{\prime}=0}^{f^{1}-1} \boldsymbol{R}_{g f_{1}+g^{\prime}} \times \boldsymbol{Z}_{g g^{\prime}} \tag{3.2}
\end{equation*}
$$

where $\boldsymbol{R}_{\alpha}\left(0 \leqslant \alpha \leqslant s_{1}-1=f_{1} f-1\right)$ are as defined in subsection 2.1 and for $0 \leqslant g \leqslant f-1,0 \leqslant g^{\prime} \leqslant f_{1}-1$,

$$
\begin{equation*}
\boldsymbol{Z}_{g g^{\prime}}=\left(f_{1}-g^{\prime}\right) \sum_{a=0}^{f-1} e_{a}^{*} e_{a+g}^{* \prime}+g^{\prime} \sum_{a=0}^{f-1} e_{a}^{*} e_{a+g+1}^{* \prime} \tag{3.3}
\end{equation*}
$$

where $(a+g)$ and $(a+g+1)$ are reduced $\bmod f$. From (3.1) for $0 \leqslant a \leqslant f-1$, $\boldsymbol{e}_{a}^{* \prime} \mathbf{1}_{2}=f_{2} . \quad$ Hence from (3.3)

$$
\boldsymbol{Z}_{g g^{\prime}} \mathbf{1}_{2}=f_{2}\left(f_{1}-g^{\prime}\right) \sum_{a=0}^{f-\mathbf{1}} \boldsymbol{e}_{a}^{*}+f_{2} g^{\prime} \sum_{a=0}^{\boldsymbol{f}-\mathbf{1}} \boldsymbol{e}_{a}^{*}=f_{1} f_{2} \mathbf{1}_{2}
$$

Similarly $\mathbf{1}_{2}^{\prime} \boldsymbol{Z}_{g g^{\prime}}=f_{1} f_{2} \mathbf{1}_{\mathbf{2}}^{\prime}$. Hence $\boldsymbol{Z}_{g g^{\prime}}$'s are proper matrices and from (3.2) applying Theorem 1.1, it follows that inter-effect-orthogonality holds.
(ii) Since in each block each level of F_{1} occurs f_{2} times and each level of F_{2} occurs f_{1} times, this is obvious by Theorem 1.3. Q.E.D.

A formula for the average loss of information on the two-factor interaction in such designs will be derived in the Appendix.

Example 3.1: A 6×4 design in three replications constructed by the above method is shown below. Blocks are written as rows. Here $f=\mathbf{2}$, $f_{1}=3, f_{2}=2, \boldsymbol{\theta}^{\prime}=(0,0,0,1,1,1,2,2,2,3,3,3)$

level of F_{1}	0	1	2	3	4	5	0	1	2	3	4	5	5
level of F_{2}	0	0	0	1	1	1	2	2	2	3	3		3
	0	0	1	1	1	2	2	2	3	3	3	0	0
	0	1	1	1	2	2	2	3	3	3	0		0
	1	1	1	2	2	2	3	3	3	0	0		0
	1	1	2	2	2	3	3	3	0	0	0		1
	1	2	2	2	3	3	3	0	0	0	1		1

Another method for constructing two-factor designs with $L\left(F_{1}\right)=$ $L\left(F_{2}\right)=0$ will be described in Section 4.

4. Extension to multifactor designs

Multifactor designs with desirable properties can be constructed as Kronecker products of simpler designs. This method was used to a limited extent by Tyagi (1971) for constructing a $2 \times 5 \times 6$ balanced confounded design.

For $1 \leqslant t \leqslant n$, let $D_{\boldsymbol{t}}$ be a factorial design in $m_{\boldsymbol{t}}\left(\geqslant 1\right.$, if $m_{\boldsymbol{t}}=1, D_{\boldsymbol{t}}$ is a varietal design) factors $F_{t j}, 1 \leqslant j \leqslant m_{t}$, such that (a) D_{t} is equireplicate with common replication number r_{t} and constant block size k_{t}, (b) D_{t} is connected, (c) inter-effect-orthogonality holds for D_{t}, and (d) each main ϵ ffect in D_{t} is balanced with $L\left(F_{t j}\right)=q_{t j}(\geqslant 0), \quad 1 \leqslant j \leqslant m_{t}$. Then D, the Kronecker product of D_{1}, \ldots, D_{n} will be a design in $m_{(}=\Sigma m_{t}$) factors which, by known results, will be connected, will have a common replication number Πr_{t} and a constant block size Πk_{t}. We assume that in D, D_{1}, \ldots, D_{n} the rows of the corresponding incidence matrices are associated with the relevant level combinations in lexicographic order. The following theorem can be proved easily using Theorems 1.1, 1.2 :

Theorem 4.1: (i) For D inter-effect-orthogonality holds. (ii) In D each main effect is balanced with $L\left(F_{t j}\right)=q_{t j}, 1 \leqslant j \leqslant m_{t}, 1 \leqslant t \leqslant n$.

As an interesting application of the above result we present an alternative method for constructing $s_{1} \times s_{2}$ designs retaining full information on both main effects.

Using the notations of Section 3, let $f>2$. Introducing pseudofactors $G_{1}, G_{2}, G_{3}, G_{4}$ with f, f, f_{1}, f_{2} levels respectively the $f_{1} f\left(f_{2} f\right)$ level combinations of G_{3} and $G_{1}\left(G_{4}\right.$ and $\left.G_{2}\right)$ are identified with the $f_{1} f\left(f_{2} f\right)$ levels of $F_{1}\left(F_{2}\right)$. Let $D_{1}=$ connected $f \times f$ design in G_{1}, G_{2} in two replicates retaining full information on both main effects obtained as described in subsection $2.3 ; D_{2}=$ single replicate randomised block design (RBD) in levels of $G_{3} ; D_{3}=$ single replicate RBD in levels of G_{4}. Here $r_{1}=2, r_{2}=r_{3}=1, k_{1}=f, k_{2}={ }_{1}, k_{3}=f_{2}$. Let $D=D_{1} \times D_{2} \times D_{3}$. In D interpreting the level combinations of G_{1}, G_{2}, G_{3}, G_{4} in terms of the level combinations of F_{1}, F_{2}, by Theorem 4.1, it easily follows that the resulting two-factor design (i) is equireplicate with only two replications, (ii) has constant block size $f f_{1} f_{2}$, (iii) is connected, (iv) satisfies inter-effect-orthogonality, and (v) ensures $L\left(F_{1}\right)=L\left(F_{2}\right)=0$. If $f>2$, $f_{1}>2$ (e.g., when $s_{1}=9, s_{2}=6$) this alterntative method will be more economic (in terms of the number of replicates) than that described in Section 3.

Appendix

A general formula for the average loss of information on different factorial effects for the designs considered in this paper was presented in Theorem 1.4. For the designs considered in Section 3 which retain full information on main effects, we shall derive here a still simpler formula for the average loss of information on the two factor interaction.

By (3.2),

$$
\begin{equation*}
\boldsymbol{C}=f_{1}\left(\boldsymbol{I}_{1} \times \boldsymbol{I}_{2}\right)-\left(f_{1} f_{2} f\right)^{-1} \sum_{\boldsymbol{g}=0}^{\boldsymbol{f}^{-1}} \sum_{\boldsymbol{g}^{\prime}=0}^{\boldsymbol{f}_{1}-1} \boldsymbol{R}_{g f_{1}+\boldsymbol{g}^{\prime}} \times \boldsymbol{Z}_{g g^{\prime}} \tag{A.1}
\end{equation*}
$$

where for $0 \leqslant g \leqslant f-1,0 \leqslant g^{\prime} \leqslant f_{1}-1, \boldsymbol{R}_{g f_{1}+\boldsymbol{g}^{\prime}}$ and $\boldsymbol{Z}_{g g^{\prime}}$ as defined earlier are circulant matrices. Denoting by $w_{0}=1, w_{1}, \ldots, w_{8_{1}-1}$ the distinct s_{1}-th roots and by $z_{0}=1, z_{1}, \ldots, z_{s_{2}-1}$ the distunct s_{2}-th roots of unity, by (A.1) the eigenvalues of \boldsymbol{C} are

$$
\begin{align*}
\lambda_{i_{1} i_{2}} & =f_{1}-\left(f_{1} f_{2} f\right)^{-1} \sum_{g=0}^{f-1} \sum_{g^{\prime}=0}^{f_{1}^{-1}} w_{i_{1}}^{g f_{1}+g^{\prime}} z_{i_{2}}^{f}\left(f_{1}-g^{\prime}+g^{\prime} z_{i_{2}}\right) \\
& \times\left\{1+\left(z_{i}^{f}\right)+\ldots+\left(z_{i_{2}}^{\prime}\right)^{f_{2}^{-1}}\right\}, \tag{A.2}
\end{align*}
$$

with respective eigenvectors $\quad W_{i_{1}} \times \boldsymbol{Z}_{i_{2}}$, where $\quad W_{i_{1}}=\left(1, w_{i_{1}}, \ldots, w_{i_{1}}^{\boldsymbol{i}_{1}^{-1}}\right)^{\prime}$, $\boldsymbol{Z}_{i_{2}}=\left(1, z_{i_{2}}, \ldots, z_{i_{2}}^{s_{2}-1}\right)^{\prime}, 0 \leqslant i_{1} \leqslant s_{1} \cdots 1,0 \leqslant i_{2} \leqslant s_{2}-1$.

Let $\boldsymbol{M}_{1}^{\left(\boldsymbol{g}_{1}-1 \times_{1}\right)}, \quad \boldsymbol{M}_{2}^{\left(\boldsymbol{g}_{2}-\mathbf{1 \times \delta _ { 2 }}\right)}$ be such that $\boldsymbol{M}_{1}^{\prime}=\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\boldsymbol{z}_{1}-1}\right)$, $\boldsymbol{M}_{\mathbf{2}}^{\prime}=\left(\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{\boldsymbol{Z}_{\mathbf{2}}-1}\right) . \quad$ Since
row space $\left(\boldsymbol{P}^{11}\right) \equiv$ row space $\left(\boldsymbol{M}_{1} \times \boldsymbol{M}_{2}\right)$,
it follows that Trace $\left(\boldsymbol{P}^{11} \boldsymbol{C} \boldsymbol{P}^{11^{\prime}}\right)^{-1}=\sum_{i_{1}=1}^{\boldsymbol{s}_{1}-1} \sum_{i_{2}=1}^{\boldsymbol{s}_{2}-1} \lambda_{i_{1} i_{2}}^{-1}$. Hence by Theorem 1.4 and (A.2), after some simplification,
average loss of information on $\boldsymbol{F}_{\mathbf{1}} \boldsymbol{F}_{\mathbf{2}}$

$$
\begin{equation*}
=1-f_{1}^{-1}\left(s_{1}-1\right)\left(s_{2}-1\right)\left[f_{1}^{-1}\left\{\left(s_{1}-1\right)\left(s_{2}-1\right)-f_{1}(f-1)\right\}+\Delta\right]^{-1}, \quad \ldots \tag{A.3}
\end{equation*}
$$

where

$$
\Delta=\sum_{g=1}^{\boldsymbol{f}-1} \sum_{l=1}^{f_{1}}\left[f_{1}-f_{1}^{-1}\left\{1-\cos 2 \pi g f^{-1}\right\}\left\{1-\cos 2 \pi(l f-g) s_{1}^{-1}\right\}^{-1}\right]^{-1} .
$$

Using the above, the average loss of information on $F_{1} F_{2}$ in the design in Example 3.1 is $\cdot 103$.

The above treatment is possible for the designs considered in Section 3 since the matrices involved in the right-hand side of (3.2) are not only proper but also circulant. This is not, however, necessarily true for the designs considered in other sections. Hence for such designs it is difficult to obtain an algebraic reduction like (A.3) of Theorem 1.4, though for any particular design with a numerically known \boldsymbol{C} matrix, it is straightforward to apply Theorem 1.4 directly.

Acknowledgement. The author is grateful to Professor S. K. Chatterjee, Department of Statistics, University of Calcutta, for his kind guidance throughout the work. Thanks are also due to the referee for his constructive suggestions.

References

Jofin, J. A. (1973) : Generalised cyclic designs in factorial experiments. Biometrika, 60, 55-63.
Kshirsagar, A. M. (1966) : Balanced factorial designs. J. Roy. Statist. Soc., Ser. B, 28, 559-569.
Kurijian, B. and Zelen, M. (1963) : Applications of the calculus of factorial arrangements I. Block and direct product designs. Biometrika, 50, 63-73.
MUKERJEE, R. (1979) : Inter-effect-orthogonality in factorial experiments. Calcutta Statist. Assoc. Bull., 28, 83-108.
—_ (1980a) : Further results on the anaysis of factorial experiments. Calcutta Statist. Assoc. Bull., 29, 1-26.
—__ (1980b) : Asymmetric factorial designs and allied problems. Unpublished Ph.D. thesis submitted to the University of Calcutta.

Muller, E. R. (1966) : Balanced confounding in factorial experiments. Biometrika, 53, 507-524.
Nair, K. R. and Rao, C. R. (1948) : Confounding in asymmetric factorial experiments. J. Roy. Statist. Soc., Ser. B, 10, 109-131.
Tyagi, B. N. (1971) : Confounded asymmetric factorial designs. Biometrics, 27, 229-232.

Paper received : May, 1980.
Revised: June, 1981.

