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 Abstract

 Let {X(t), t T} be a continuous homogeneous stochastic process with
 independent increments. A review of the recent work on the characterization
 of Wiener and stable processes and connected results through stochastic
 integrals is presented. No proofs are given but appropriate references are
 mentioned.
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 0. Introduction

 Our aim in this paper is to review the recent work in the area of characteri-
 zation of stochastic processes by stochastic integrals. We have stated only the
 main theorems and indicated the references where the proofs of these results
 can be found. For an earlier survey paper in this area, see Lukacs (1970b).

 Section 1 contains some definitions. Stochastic integrals are discussed in
 Section 2. Characterizations for Wiener process and stable processes through
 identically distributed stochastic integrals are given in Section 3. Characteriza-
 tion theorems for the Wiener process taking values in a Hilbert space are also
 presented in this section. Section 4 contains characterization theorems for
 Wiener processes through the property of independence of two stochastic
 integrals. Characterizations through properties of the conditional distribution
 of one stochastic integral with respect to another like symmetry of the
 conditional distribution or linearity or constancy of the regression are studied
 in Section 5. Here characterization theorems for Wiener and stable processes
 are given. In Section 6, sufficient conditions for the determination of a
 stochastic process by stochastic integrals are developed.
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 1. Definitions

 Let T= [A, B]. A stochastic process {X(t), tE T} is said to be a homogene-
 ous process with independent increments if the distribution of the increment
 X(t+h)-X(t), t, t+heT depends only on h but not on t and if the
 increments over non-overlapping intervals are stochastically independent. The
 process is said to be continuous if X(t) converges in probability to X(s) as t
 tends to s for every s e T. Unless otherwise stated we shall only consider
 continuous homogeneous process with independent increments throughout this
 paper. If 0(u; h) denotes the characteristic function of X(t + h) - X(t), t, t + h E

 T, it is well known that 0(u; h) is infinitely divisible. In fact 0(u; h)= [O(u; 1)]h
 if t, t + 1 e T (cf. Lukacs (1975)).

 2. Stochastic integrals

 Let {X(t), t e T} be a continuous homogeneous process with independent
 increments. Suppose a(t) is a continuous function defined on [A, B] c T.
 Stochastic integrals of the form

 La(t) dX(t)

 can be defined either in the sense of convergence in probability or in the sense
 of quadratic mean depending on the properties of the process {X(t), t e T}. For
 details, see Lukacs (1975).

 Let b(t) and w(t) be functions defined on [A, B]c T= [0, oo) and w(t) be
 non-negative. Let

 D.: A = t,0o < tn, j< . . . < tn,n = B, n_-1
 be a sequence of subdivisions of the interval [A, B] such that

 lim max (tn,k-tn,k-1)=0.
 n--oo 1_k<n

 Select tn,k e [tk--1, tn,k] and construct the sum

 S = 1 b(t*,k)[X(w(t,)) - X(w(tn,k-1))]
 k=1

 If the sequence S, converges in probability to a random variable S and if this
 limit is independent of the choice of the subdivision and the points t*,k, then we
 say that S exists in probability and it is denoted by

 b b(t) dX(w(t)).
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 If the limit exists in quadratic mean, then the integral is said to exist in
 quadratic mean.

 These integrals were studied in Riedel (1980a). Ramachandran and Rao
 (1970) (cf. Kagan, Linnik and Rao (1973), Chapter 13) discussed similar
 integrals under slightly different conditions. We follow Riedel (1980a).

 Suppose w(t) is non-decreasing, non-negative and left continuous on
 [A, B]. Then it is known that there exists a finite Borel measure V on the real
 line such that

 0 if t<A

 V[(-oo, t)]= w(t) - w(A) if A - t <B
 w (B)- w (A) if t > B.

 Suppose further that b(t) is continuous on [A, B]. Define

 wb(t)= V[{s :b(s) t}].

 Then wb(t) is non-decreasing, non-negative and left continuous.
 The following theorem is due to Riedel (1980a).

 Theorem 2.1 (Riedel). Let b(t) be a continuous function on [A, B] and w(t)
 be a non-decreasing, non-negative and left-continuous function on [A, B].
 Define

 C= min b(t), D= max b(t).
 A5t:B Ast:B

 Then the integrals

 Y = b(t) dX(w(t)) and Z= t dX(wb(t))

 exist in the sense of convergence in probability and they are identically
 distributed. Furthermore the characteristic function 4 of the random variable

 Y is given by

 log 4(u)= J log &[ub(t)] dw(t)= log q(ut) dwb(t)

 where &p(u) is the logarithm of the characteristic function of X(t + 1) -
 X(t), t, t + 1 e [A, B].

 It is well known (cf. Lukacs (1970a)) that a characteristic function g is an
 infinitely divisible characteristic function if and only if it can be written in the
 form

 log g(u)= iau - u2+ r(u, x) dM(x)+ r(u, x) dN(x) 2 J.o+
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 where a is a real constant, ao 0, M and N are non-decreasing in the intervals
 (-00, 0) and (0, c) respectively with

 M(-oo)= N(oo) = 0,

 x2 dM(x) <~ and Jx2 dN(x) <w for every s > 0,

 and

 iux
 r(u, x) = e'"x -- 1 1+X2

 Riedel (1980a) obtained the above LIvy-Khintchin canonical representation
 for the characteristic function of the stochastic integral

 I t dX(w(t)).

 Theorem 2.2 (Riedel). Let w(t) be as in Theorem 2.1. Let the canonical
 representation for the characteristic function of X(t + 1)- X(t) be given by a,

 o-, M and N as defined above. Then the Lvy-Khintchin canonical representa-
 tion for the characteristic function of the stochastic integral

 J t dX(w(t))

 is given by aw, a,, Mw and N, where

 = ta+t(1-t2) ())( 2) d(M(-x)+N(x)) dw(t), f+(1 +(tx)2)( + 2)

 2 = o.2 t2 dw(t),

 M(x)= min - N dw(t) + ax(B, M ) dw(t), x <0, tin (AO) - ax(A,O)

 min(B,0) max(B,0)

 Nw(x)= - dw(t) + N( -)dw(t), x >0.
 Jmin(A,0) tmax(A,0) t

 Wang (1975) obtained sufficient conditions for the existence of double
 stochastic integrals of the form

 :ij'g(s, t)X(ds)X(dt)
 in the sense of convergence in quadratic mean. We shall briefly discuss his
 result. For i = 1, 2, let

 Di : A = trio< t < t - l < ti, = B
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 be a subdivision of [A, B] and define
 1 2 n2

 S(nl, n2)2= : g(ti, t*2I)X(At11z, At22)
 j1=1 j2=1

 where ti,-1, ( ti 1 ti and
 2

 X(Atlj, At22)= [X(ti)-X(tij,-1)J? i=1

 Suppose that n, - oo and n2 - oo such that

 max {FI(tih1- ti,_,)-0 11,12 i = 1

 and S(nl, n2) converges in probability (or in quadratic mean) to a limiting random variable S independent of the sequence of subdivisions Di, i = 1, 2 and

 the intermediate points {ti}. Then the limit S is called a double stochastic integral and it is denoted by

 : g(t, t2) dX(tl) dX(t2).

 The integral is said to exist in probability or in quadratic mean depending upon
 the type of convergence to S.

 A function y(tl, - ? , tE), 1 1 is said to be of bounded variation on [A, B] if
 there exists 0<M<oo independent of the subdivisions D1,... , Dr of [A, B]
 but possibly depending on [A, B] such that

 S...
 it=1 it=1

 where

 AT(t4-,0, ti,) =InlT(ti", ? ? ?, ti,)-T(ti,.'., tie 4l
 and the product is taken over all (i1,, " ", it,) such that exactly one coordinate

 of (ir,, ... , i ,) is equal to the corresponding one of (i - 1, , i - 1) and the
 other 1- 1 are equal to those of (i, - - - , it).

 Theorem 2.3 (Wang). Suppose g is continuous on [A, B] x [A, B] and the
 function y(t1, t2; S1, S2)= E[X(tl)X(t2)X()X()X(s2)] is of bounded variation on
 [A, B]. Then the stochastic integral

 I: I:g(t, t2) dX(tI) dX(t2)
 exists in quadratic mean.
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 In fact, if E IX(t)14 <oo, then under the conditions stated in Theorem 2.3, the
 double stochastic integral exists if and only if the Riemann-Stieltjes integral

 IA f0g(t, t2)g(s1, s2)y(dtl, dt2, dsl, dS2)
 exists. The reader is referred to Wang (1975) for the proof of Theorem 2.3.
 Wang (1975) proved the theorem for the k-dimensional stochastic integral,
 k ? 2. It is not known whether the double stochastic integral exists under weaker
 conditions in the sense of convergence in probability.

 Before we conclude this section, we introduce another stochastic integral
 where the integrand is also a random process.

 Suppose {R(t), t e T} is a random process with continuous sample paths and
 the process is independent of the process {X(t), t e T}. One can define stochas-
 tic integrals of the form

 S- R(t) dX(t)

 in the sense of convergence in probability through approximating sums as
 described above. It can be shown that the characteristic function of S when it is

 well defined is given by

 E[e'"S]= E[exp {A log qf(uR(t)) dt}]
 for u real, where q(u) is the characteristic function of X(t + 1) -X(t), t, t + 1 E
 T. For details, see Prakasa Rao (1982).

 3. Characterization through identical distribution of two stochastic integrals

 Let {X(t), t e T} be a continuous homogeneous process with independent
 increments. The process is called a Wiener process if the increments X(t) - X(s)

 are normally distributed with variance proportional to It - s. The process is
 called a stable process with exponent y if the increments of the process have
 stable distribution with exponent y (cf. Lukacs (1970a)). It is said to be
 symmetric stable if the increments have symmetric stable distributions.

 Characterization of the Wiener process

 Theorem 3.1 (Laha and Lukacs). Let T= [A, B]. Suppose the process
 {X(t), t e T} has moments of all orders and let a(t) and b(t) be two continuous
 functions on [A, B] such that

 max la(t)l max Ib(t)l. A~tB A~tB
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 Let BB

 Let Y= a(t) dX(t) and Z = Jb(t) dX(t)

 be two stochastic integrals defined as limits in quadratic mean. Then Y and Z
 are identically distributed if and only if (i) the process {X(t), te T} is a Wiener

 process with linear mean function, (ii) either J a(t) dt = Ji b(t) dt or the mean

 function is 0 and (iii) J a2(t) dt = fJ b2(t) dt.
 The following theorem can be proved relaxing the assumption on the exis-
 tence of moments of the process {X(t), t e T}.

 Theorem 3.2 (Laha and Lukacs). Let T = [A, B] and a(t) be continuous but
 not constant on [A, B]. Let a 0 be real such that either
 (a) maxAtB ja(t)K<Jal and B - A > 1 or
 (b) maxAtB ja(t)J > Jal and B -A < 1 holds. Let

 Y= a(t) dX(t)

 be defined in the sense of convergence in probability. Then {X(t), te T} is
 a Wiener process with linear mean function if and only if
 (i) Y is identically distributed as a [X(t + 1) - X(t)],
 (ii) either B a(t) dt = a or the mean function is 0, and

 (iii) J~ a2(t) dt = a2.
 Proofs of Theorem 3.1 and 3.2 are given in Lukacs (1975). Other characteri-
 zations of the Wiener process through identically distributed stochastic integrals
 have been studied by Laha and Lukacs (cf. Lukacs (1975), Chapter 7),
 Ramachandran and Rao (1970) (cf. Kagan, Linnik and Rao (1973), Chapter
 13) under slightly different conditions.

 Theorem 3.3 (Ramachandran and Rao). Let T= [A, B]. Let w(t) be a
 non-constant, non-decreasing, right-continuous function defined on a compact
 interval [a, b] with w(a) = A and w(b) = B. Let g(t) be continuous on [a, b]
 such that either (i) Ig(t)< 1 for all t in [a, b] and g has a finite number of zeros

 on [a, b] or (ii) Ig(t)>_- 1 for all t in [a, b]. Suppose

 Y=f g(t) dX(w(t))

 (defined in the sense of convergence in probability) has the same distribution as
 the sum of n independent random variables each distributed as X(t +(1/n))-

 X(t), A5 t < t + (1/n) -_ B for some n 1/(B - A). Then {X(t), t e [A, B]} is a Wiener process with linear mean function if and only if

 Ibg2(t) dw(t)=1
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 Further, in that case,

 I g(t) dw(t) = 1
 or the mean function is 0.

 Theorem 3.4 (Ramachandran and Rao). Let T= [A, B] and w(t) be as
 defined in Theorem 3.3 and g and h be continuous functions on [a, b] such that

 max Ig(t)I max Ih(t)l in [a, b]. Suppose the process {X(t), te T} has moments
 of all orders. Let

 Y= g(t) dX(w(t)) and Z= h(t) dX(w(t))

 be defined as limits in quadratic mean. Then Y and Z are identically distri-
 buted if and only if

 (i) the process {X(t), te [A,B]} is a Wiener process with linear mean
 function

 (ii) Jb g(t) dw(t) = bh(t) dw(t) or the mean function is 0, and

 (iii) Sbg2(t) dw(t)2 = J' h2(t) dw(t).

 For proofs of Theorems 3.3 and 3.4, see Ramachandran and Rao (1970) and
 Kagan, Linnik and Rao (1973), Chapter 13.

 Recently Riedel (1980b) obtained the following characterization theorems
 for the Wiener process as special cases of his general results for stable
 processes.

 Theorem 3.5 (Riedel). Let T = [0, oo). Let b,(t) be continuous on [Ai, Bi] and
 wi(t) be non-decreasing, non-negative and left continuous on [A,, Bj]c T,
 j= 1, 2. Suppose E[X(1)]2<oo. Then

 bl(t) dX(wl(t)) and JB2b2(t) dX(w2(t)) +q

 are identically distributed for some real q if and only if {X(t), t 0} is a Wiener
 process with linear mean function.

 Let bi(t) and wi(t), j = 1, 2 be as defined above. For Re (z) -0, define

 S(z) = J1 bi(t)Iz dwl(t) - 2 1b2(t)0z dw2(t)
 and

 S(z) = Ibi(t)zl bR(t) dw1(t)- b2( b2) d(t)

 where [A1, Bi] c T, j = 1, 2. Then S(z) and S(z) are analytic in Re (z) >0 and
 continuous in Re (z) 0.
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 Theorem 3.6 (Riedel). Define S(z) and S(z) as given above. Suppose that

 z =0 is not an accumulation point of zeros of S(.)S(.) and
 lim sup x loglS(x)A(x)l = 0

 x--*O+

 where z = x + iy. Then the properties (i) {X(t), t e T} is a Wiener process with
 linear mean function m(t) and

 (ii) bi(t) dX(wi(t)) and b2(t) dX(w2(t))
 are identically distributed are equivalent if and only if

 (a) S(2) = 0,

 (b) S(z) O for 0 < Re z < 2, Im z = 0,
 (c) S(1) = 0 or m(t) = 0.

 Characterization of stable processes

 Theorem 3.7 (Lukacs). Let T = [0, oo). Suppose the increments of the process

 have a symmetric distribution and X(O)= 0. Then the process {X(t), t - 0} is a symmetric stable process if and only if there exists a function t(y) such that (i)
 t(y) >0 for y > 0 and (ii) the stochastic integral

 o'(y - t) dX(t) has the same distribution as the random variable X(t(y)) for each y >0. (Here
 the stochastic integral is defined in the sense of convergence in probability.)

 The above theorem has been extended to stable processes in general in
 Lukacs (1969) and this characterization is given below.

 Theorem 3.8 (Lukacs). Let T= [0, oo). Suppose the distribution of X(t) is
 non-degenerate for every t > 0 and X(O) = 0. Then the process {X(t), tE 0} is a
 stable process if and only if there exist two function t(y) and s(y) such that (i)
 t(y) >0 for all y >0 and (ii) the stochastic integral

 J(y - t) dX(t)

 (defined in the sense of convergence in probability) has the same distribution as
 X(t(y)) + s(y) for all y > 0.

 The following theorem is due to Riedel (1980b).

 Theorem 3.9 (Riedel). Let T = [0, oo). Define S(.) and S(-) as given earlier.
 Suppose z =0 is not an accumulation point of zeros of S(.)S(.) and

 lim sup x log IS(x)S(x)I = 0
 x-O+
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 where z = x + iy. Then the properties (i) {X(t), t e T} is a stable process with
 exponent a and

 (ii) bl(t) dX(wx(t)) and b2(t) dX(w2(t))+q A A2

 are identically distributed for some real q are equivalent if and only if

 (a) there exists a unique real zero a of S(-), 0<a-52; in case a <2, its
 multiplicity is not higher than 2;

 (b) S(a)(2 - a) = 0;
 (c) if a < 2, then S(z)S(z) 0O for Re z = a, z # a.
 For a proof of this theorem and related results, see Riedel (1980b). This
 theorem generalizes Theorem 3.8.

 Theorem 3.10 (Prakasa Rao). Let T= [0, 1]. Suppose {X(t), tE T} is a sym-
 metric stable process with exponent a. Then

 S= R(t) dX(t) and X(1)-X(O)

 are identically distributed for every random process {R(t), O t 1} with
 non-negative continuous sample paths independent of {X(t), O? t ? 1} such

 that1
 IoR(t)a dt = 1 a.s.

 Conversely, suppose the increments of process {X(t), 0 _5t 5 1} have symmetric
 non-degenerate distributions. Then {X(t), 0O t 5 1} is a symmetric stable pro-
 cess with exponent a if and only if

 Jo(2t)1/ dX(t)
 and X(1) - X(0) are identically distributed.

 For a proof of this theorem, see Prakasa Rao (1982).

 Characterization of a Wiener process taking values in a Hilbert space

 Let A be the interval [0, 1] and R denote the ao-algebra of Borel subsets of
 [0, 1]. For each Ae B, let 4(A) be a random element taking values in a real
 separable Hilbert space H. Suppose 4(A) satisfies the following properties; (i) if

 A and A' are disjoint Borel subsets of [0, 1], then O(A) and 4(h') are indepen-
 dent and 4(A U A') = 4(A) + 4(A') (ii) 4(A) has stationary increments i.e., 4(A)
 and 4 (A') are identically distributed if A and A' have the same Lebesgue
 measure (iii) if E, denotes the probability measure of 4([0, t]), then Et
 converges weakly to the distribution degenerate at the origin as t - 0.



 Characterization of stochastic processes by stochastic integrals 91

 A process 4 on A with properties (i), (ii) and (iii) as stated above is said to be
 a homogeneous process with independent increments.

 A homogeneous process 4 on A with independent increments is said to be a

 Wiener process with mean 0 if the characteristic functional fit(y) of 4Q([0, t]) has
 the representation

 t,(y) = exp {-It(Sy, y)}

 where S is an S-operator.
 For more details on probability measures on a Hilbert space, the reader is

 referred to Parthasarathy (1967).
 Let 4) be a homogeneous process with independent increments on A with

 mean 0 and with E,[IIXI]2 < oo where gt is the distribution of X = 4([0, 1]). Let
 S denote the S-operator associated with 4. For any bounded linear operator
 A, define

 n(A) = [Tr (ASA')]- + [Tr (A'SA)]?.

 Then the set {A : n(A) = 0} is a linear semigroup in the linear group of all
 bounded linear operators A. The function n is a norm in the corresponding
 factor group. We shall not distinguish between a coset and the individual
 operator in the coset. In this sense, n is a norm in the linear set of all bounded
 linear operators. Let 4s denote the completion of this set in the norm n.
 Consider the space L2 = L2(A, 0, m, s) of functions A(-) with values in d5s
 which are strongly measurable and such that

 IA12= I n2(A(-))dm <oo

 where m is the Lebesgue measure on A. Vakhaniya and Kandelski (1967) have
 defined stochastic integrals of the form

 J=IA A(A)O(dA)
 for functions A(.) in L2. Under this setup, the following characterization
 theorem for the Wiener process taking values in a real separable Hilbert space H is
 proved in Prakasa Rao (1971).

 Theorem 3.11 (Prakasa Rao). Suppose (4 is a homogeneous process with
 independent increments on A with mean 0 and finite associated S-operator S.

 Let A(.) and B(.) be functions in L2 satisfying the following properties:
 (i) a =sup, IIA(A)))< ; b =sup, I)B(A)II< m;

 (ii) H = H = H for all A A where H2 denotes the subspace spanned by
 the operator A(A) etc.

 (iii) JA [IIA (A)xIV2-I2B(A)x12] dA
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 is either strictly greater than 0 or strictly less than 0 for all x H- - {0}. Then

 A A(A)4(dA) and f B(A)4(dA)
 are identically distributed if and only if 0 is a Wiener process and A(.) and
 B(*) satisfy the relation

 IA A(A)SA'(A) d =fA B(A)SB'(A) dA.
 Analogous results characterizing a Wiener process taking values in a Hilbert

 space are derived in Kannan (1972b) using the operator-valued stochastic
 integrals developed by Kannan and Bharucha-Reid (1971). We shall not
 discuss them here.

 4. Characterization through independence

 Let {X(t), t e T} be a continuous homogeneous process with independent
 increments. The following theorem gives a characterization of the Wiener process
 through independence of stochastic integrals.

 Theorem 4.1 (Skitovich). Let T =[A, B]. Suppose a(t) and b(t) are continu-
 ous functions defined in [A, B] which are not identically 0 in [A, B] such that
 for each t either a(t) or b(t) does not vanish in [A, B]. Let

 Y= a(t) dX(t) and Z= b(t) dX(t)

 be stochastic integrals defined in the sense of convergence in probability. Then
 {X(t), t e T} is a Wiener process with linear mean function if and only if

 (i) Y and Z are stochastically independent, and

 (ii) J" a(t)b(t) dt = 0.

 This theorem is a modified version of a theorem due to Skitovich (1956). For
 an indication of the proof of this theorem, see Lukacs (1975). A generalization
 of this theorem is given in Ramachandran and Rao (1970) (cf. Kagan, Linnik
 and Rao (1973), Chapter 13). We now state their result.

 Theorem 4.2 (Ramachandran and Rao). Let T= [A, B]. Let w(t) be a
 non-constant, non-decreasing, right-continuous function defined on a compact
 interval [a, b] with w(a) = A and w(b) = B. Let g and h be continuous
 functions on [a, b], at least one of them non-vanishing and the other non-
 vanishing on a set of positive w-measure (the measure induced by w(-) on
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 [a, b]). Then the stochastic integrals

 Y= g(t) dX(w(t)) and Z= h(t) dX(w(t))

 exist in the sense of convergence in probability and Y and Z are independent if
 and only if

 (i) {X(t), t e T} is a Wiener process with linear mean function, and
 (ii) Jb g(t)h(t) dw(t)=0 if X(t) is a non-degenerate process.

 5. Characterization through properties of conditional distribution of one
 stochastic integral with respect to another stochastic integral

 In this section we shall study characterizations of the Wiener process and
 stable processes in general either through regression of one stochastic integral
 with respect to another or through the symmetry of the conditional distribution
 of one stochastic integral with respect to the other.

 Characterization of the Wiener process

 Theorem 5.1 (Laha and Lukacs). Let T= [A, B]. Suppose {X(t), te T} is a
 second-order process and that its mean function and covariance function are of
 bounded variation in [A, B]. Suppose a(t) and b(t) are two continuous func-

 tions defined in [A, B] such that a(t)b(t) #O0 for te[A1, B1] where A:- A <
 B1:5-B and a(t) is not proportional to b(t). Let

 Y= a(t) dX(t) and Z = b(t) dX(t)

 be two stochastic integrals defined as limits in quadratic mean. Then the
 process {X(t), t E T} is a Wiener process with linear mean function if and only if
 Y has linear regression and constant scatter on Z (i.e. the regression of Y on Z
 is linear and homoscedastic).

 For a proof of this theorem, see Lukacs (1975). Lukacs (1977) studied the
 stability of the above characterization of the Wiener process. A slight generali-
 zation of Theorem 5.1 is due to Ramachandran and Rao (1970). We omit their
 result. The next theorem gives another characterization by constant regression
 of one stochastic integral on another stochastic integral.

 Theorem 5.2 (Prakasa Rao). Let T = [A, B]. Suppose the process
 {X(t), t e T} possesses moments of all orders, its mean function and covariance
 function are of bounded variation in [A, B] and the increments of the process
 have non-degenerate distributions. Let g(t) and h(t) be continuous functions
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 defined on [A, B] with the property that

 IJ g(t)h(t) dt = 0
 implies that

 I g(t)[h(t)]k dt# 0
 for all k > 1. Let

 Y= g(t) dX(t) and Z= Jh(t) dX(t)

 be stochastic integrals defined in quadratic mean. Then Y has constant regres-

 sion Z, that is E(Y 1 Z) = E(Z) a.e. if and only if the process {X(t), t e T} is a
 Wiener process with linear mean function and

 Jj g(t)h(t) dt=O.

 For a proof of this theorem, see Prakasa Rao (1970).
 The next theorem gives a characterization of the Wiener process based on

 the symmetry of the conditional distribution of one stochastic integral with
 respect to another stochastic integral.

 Theorem 5.3 (Prakasa Rao). Let T= [A, B]. Suppose the increments of the
 process {X(t), tE T} have non-degenerate distributions. Let g(t) and h(t) be
 continuous functions defined on [A, B] with the property that

 g. B h3(t) fAjh3(t)d
 JA g(t) dt =0 and h3(t) I dt < oo
 g (t)g (t)

 Let

 Y= Jg(t) dX(t) and Z = h(t) dX(t)

 be stochastic integrals defined in the sense of convergence in probability. Then
 the conditional distribution of Y given Z is symmetric if and only if the process
 {X(t), t e T} is a Wiener process with linear mean function m(t)= At and g(t)
 and h(t) satisfy the relation

 B B

 A g(t)dt = 0 and g(t)h(t) dt = O.

 Proof of Theorem 5.3 can be found in Prakasa Rao (1972). The following
 result gives a characterization of the Wiener process and it is based on the
 regression properties of one double stochastic integral on another stochastic
 integral.
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 Theorem 5.4 (Wang). Let T= [A, B] and {X(t), te T} be a second-order
 process with independent increments. Suppose the stochastic integrals

 Y = Jh(t) dX(t), Y2 = g(s, t) dX(s) dX(t)

 exist in the sense of convergence in quadratic mean. Then

 E(Y2 I Y)=3 *a.e.

 for some real 0 if and only if the process {X(t), t e T} is a Wiener process with
 linear mean function.

 See Wang (1975) for a proof of Theorem 5.4. For related results, see Wang
 (1974).

 Characterization of stable processes

 Theorem 5.5 (Prakasa Rao). Let T= [0, 1], X(O)=0, E[X(t)]= 0 for all t
 and the increments of the process {X(t), t e T} have non-degenerate symmetric
 distributions. Let

 Y= Jt dX(t)

 for any A > 0. Then Y, is defined in the sense of convergence in probability

 and the process {X(t), t e T} is a symmetric stable process with exponent y/> 1
 if and only if for some positive numbers A and pt, A # p,

 E ( Yx I Y, ) = 3 Y, a. e.

 for some real constant 0 depending on A and pt. Furthermore y, A, Pt and 0 are
 connected by the relation

 y + 1 = 3(A- ~ + ~y+ 1).

 For the proof of Theorem 5.5, see Prakasa Rao (1968).

 6. Determination of a stochastic process by stochastic integrals

 Let {X(t), t 0} be a continuous homogeneous process with independent
 increments as before. We now obtain conditions under which the stochastic

 integrals formed by the process {X(t), t e T} completely determine the process.
 It is clear that the process {X(t), t e T} is uniquely determined by the charac-
 teristic function of X(0) and the characteristic function of X(t + 1)- X(t). We
 say that process {X(t), te T} is determined up to shift if {Y(t), te T} is another
 stochastic process satisfying the same properties as the process {X(t), t e T},
 then X(t) = Y(t)+ ct a.s for some constant c independent of t and for all t. Such
 a process is said to be completely determined if c = 0.
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 The following theorem is due to Prakasa Rao (1975).

 Theorem 6.1 (Prakasa Rao). Let {X(t), t e T}, T = [A, D] be a continuous
 homogeneous process with independent increments. Suppose the process has
 moments of all orders and its mean function and covariance function are of

 bounded variation. Suppose a(t) and b(t) are continuous functions on [A, B]c
 T and [C, D] c T such that A < C< B < D. Further suppose that either

 J ak(t) dt for all k 2 or

 b k(t) dt 0 for all k 2. Let

 Y= a(t) dX(t) and Z = Jb(t) dX(t)

 be stochastic integrals defined in the sense of convergence in quadratic mean.
 Then, the joint distribution of (Y, Z) determines the process {X(t), te T} up to
 shift provided the characteristic function of X(t + 1) - X(t), t, t + 1 e T is entire.
 In such an event either

 B D

 Ja(t) dt = Cb(t) dt = 0

 or there is no shift.

 This theorem has been generalized recently by Riedel (1980c).
 Let b(t) be continuous and w(t) be a non-negative, non-decreasing and

 left-continuous function on [A, B], as defined in Section 2. For Re (z) 0,
 define

 B

 S(z)= lIb(t)lz dw(t)
 and

 B

 g(z) = Ib(t)Iz-1 b(t) dw(t)

 as in Section 3.

 Theorem 6.2 (Riedel). Suppose X(O) =0 and that E IX(1)< <oo for some
 0< A < 2. Then the stochastic integral

 Y- b(t) dX(w(t))
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 defined in the sense of convergence in probability determines the process
 {X(t), tE T} completely if and only if the following conditions are satisfied:

 (a) S(z) # O, A 5= Re z < 2,

 (b) S(z) # 0, A _ Re z < 2,
 (c) (1)# o.
 Theorem 6.3 (Riedel). Suppose EX(1)2 <oo. Then the stochastic integral Y

 given above determines the process {X(t), tE T} completely if and only if

 '(1)= b(t) dw(t) #0.

 For other versions of Theorems 6.2 and 6.3, see Riedel (1980c).

 7. Open problems

 Zinger and Linnik (1970) have extended the characterization theorems for
 the normal distribution through independent linear forms to linear forms with
 random coefficients. It would be interesting to find whether the Wiener process

 can be characterized by the independence of stochastic integrals having random
 processes as integrands and integrators. Such stochastic integrals can be defined
 under some conditions (for instance, see Section 2). In general, it seems to be
 hard to obtain the characteristic function of such a stochastic integral in a
 closed form. Theorem 5.5 gives a characterization of symmetric stable proces-
 ses. It is reasonable to ask whether this theorem can be extended to stochastic

 integrals of the type

 Y= a(t) dX(t) and Z= Jb(t) dX(t),

 where a(t) and b(t) are functions other than powers of t, using the recent work
 of Riedel (1980a). Recently several people have studied stable distributions on
 Hilbert spaces. It would be nice to obtain results generalizing the work of
 Lukacs (1969) and Prakasa Rao (1968), (1982) for stable processes taking
 values in a Hilbert space as was done for the Wiener process taking values in a
 Hilbert space by Prakasa Rao (1971) and Kannan (1972b). Stability of the
 characterization results discussed in this paper is of extreme interest. The only
 result in this direction is on a characterization for the Wiener process due to
 Lukacs (1977).
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