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 ABSTRACT. Let Y= {1, 2, ..., N} and for each i, 1 -i-k, let -Pi= {P,y, 1 -j-N} denote a
 probability distribution on S?. Let Xi denote a random variable with the distribution -1)i. For
 k=2 and 3, we present here simple algorithms which yield a joint probability distribution for
 random variables (Xl, ..., Xk) with the prescribed marginal distributions such that the
 expectation of the number of distinct values among (Xl, X2, ..., Xk) is minimized.
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 1. Introduction

 The problem of optimal integration of surveys has its origin in multiple surveys, sampling

 over successive occasions and to a lesser extent in certain problems of controlled selection

 in stratified sampling. For two surveys, this problem has been studied in some detail by

 Keyfitz (1951), Lahiri (1954), Raj (1957) and others, while Pathak & Maczynski (1980)

 have recently studied the more general problem of integration of k surveys with k>2. The

 object of this paper is to furnish an algorithm which provides a complete solution of the

 problem of optimal integration of k=2 or 3 surveys.

 Briefly the problem of optimal integration of surveys can be described as follows. At the

 outset, we have a population consisting of N units serially numbered 1, 2, ..., N. Let Y
 denote the set of the first N integers. It is proposed to carry out k separate surveys on this

 population. The ith survey corresponds to a random variable Xi having a preassigned

 probability distribution 5Pi= {P,j, lfje<N} on Y, 1 ri-k. (Thus for each i, 1 ik,
 P(Xi=j)=Pij, I-j<N, with XjPij= 1.) An integrated survey with marginals 1, ..., Ok is a
 joint probability distribution Y' on the kth cartesian power of Ywhich realizes for each i the

 marginal distribution g3i. Let x=(xI, x2, ... , Xk) be the observed sample in the integrated
 survey and v=v(x) denote the number of distinct units represented in the sample x. An

 integrated survey is called optimal (for the given marginals) if it minimizes E[v(X)]. For
 any given marginal surveys I 1<i<k, an optimal integrated survey always exists, it is,

 however, not unique (cf. Maczynski & Pathak (1980)). We shall describe here algorithms

 for deriving optimal integrated surveys for k=2 and 3.

 To begin with consider the kxN array of the P,j's, which will be called a configuration.
 A configuration in general is an arrangement of kN nonnegative numbers in k rows and N

 columns such that the row totals are all equal. Consider the initial configuration of the P,1's

 and let the smallest entry in Column j be denoted by P(I)p, the next smallest by P(2)1 and
 so on. We let

 -i= Ej P(ij. (. 1)

 We consider a partition of the Nk points in 91" as follows. Let

 Yu"={x:v(x)=u}, 1<u k. (1.2)
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 Clearly the 9",'s are disjoint sets and

 Y1 U Y2 ... U 50k = Y*. (1.3)

 2. Algorithm for k=2

 Stage 1. Assign a probability of P(I)j to the pair (i,j) in YS, 1sj-N, and replace Pij by
 Pij=Pij-P(I)j. In the resulting configuration of the Pij's, at least one entry in each column
 is equal to zero, and the two row sums are equal to 1-01, where O0=XjP(1)j.

 Stage 2. Assume without any loss of generality that P5a's have the following configuration

 0 0 ... 0 J51,M+1 I 1 ? ? *@- ? Pl M+I *-* PIN (2. 1)
 P21 P22 .. P2M ? ... O.

 We also assume without any loss of generality that P5,M+I is the smallest positive entry
 in the configuration of the Pij's. (If necessary this can be achieved by permuting the rows
 and the columns of the configuration in (2.1).) Clearly P1,M+11P21. Assign a probability
 of PI,M+I to the pair (M+1,1) in Y2 and replace Pl5M+I by zero and P21 by
 P2I=P21-PI,M+I. The resulting configuration has one less positive entry and at most
 (N- 1) repetitions of this step may be necessary to zero out all the entries in (2.1) and thus

 reach the complete specification of an integrated survey, which in fact is optimal.

 Note that for the suggested survey a probability of 01 is assigned to 9f and (1-01) to
 9S2. Hence

 Ev= 1 01+2(1-01)= 02, (2.2)

 since in this case 01+02=2.

 Proof of optimality: Let Ij be the indicator variable which assumes the value 1 if unit j is
 included in the survey and the value zero otherwise. Then v=I1+...+IN, so that

 Ev = X -P(Ij = 1) = ( { )

 >, j max P-j = -Y P(k)j = ok (2.3)

 The optimality of our algorithm clearly follows from (2.3). Observe that in our case k=2.

 3. Algorithm for k=3

 Stage 1. This is parallel to that for the case k=2 in that a probability of

 P(I)j=min (P1j, P21. P3j) is assigned to the point (j,j,j) in S1f and Pij is replaced by
 Pij=Pij-P(l)j for eachj, I,js,N.

 Stage 2. Assume without any loss of generality that P11=min(P1,P2I,P31), so that
 P11 =0, and let P(2)j=P(2)j-P(1)j be the second smallest entry in Column j. Assume
 further that it is possible to remove nonnegative reals c?, 62, 6IA, 6N from
 P1,1P12, ... ,PIN respectively without affecting the numerical values of the second small-
 est entries in the respective columns and that the 6's add up to P(2)1. (Note that in this
 case 61=0.) Assign a probability 6j to the point (j, 1, 1), j=1,2, ...,N, and replace P1, by
 Pi1=Pi1-P(2)I, i=2,3, Plj by P1j=Pj-6j, lIj-N, and P11=Pij for all other pairs (i,j).
 The object of this operation is to "zero out" the second smallest entry, P(), from
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 Column 1 without affecting the second smallest entries in other columns. Thus after this

 operation Column 1 has at most one nonzero entry. Carry out analogous operations of

 zeroing out second smallest entries as far as possible for all the N columns. A systematic
 way of doing this would be to first zero out all columns of the form (0, b, c), then all

 columns of the form (a, 0, c), and finally all columns of the form (a, b, 0). For example if

 Column 2 has the configuration (a, b, 0), then this operation would involve assigning

 probabilities bt to points of the form (2, 2, k), where k= 1, 3, ..., N.
 If in the configuration {P?J} that will finally emerge, each column has at most one

 nonzero entry then go to Stage 3, otherwise we are in Stage 2* described below.

 Stage 3. The nonzero entries in {P:J} can be zeroed out through steps similar to Stage 2 for

 the case k=2 by putting the remaining probability on Y3.

 The constructed survey assigns a probability of 61 to Y', a probability of 02-61 to Y2
 and thus a probability of (1-02) to Y3. Hence

 Ev= 1 01+2(02-01)+3(1-02)= 3-01-02= 03 (3.1)

 From (2.3) it follows that the suggested algorithm then does yield an optimal integrated

 survey.

 Note that the possibility of carrying out the above construction entails that 026 1.

 Stage 2*. If the required operations get blocked during Stage 2, it will be because either all
 the nonzero entries in one of the rows are also the second smallest column entries in their

 respective columns, or that it is not possible to remove the stipulated amount of probabil-
 ity from this row without lowering the magnitude of the second smallest column entries.

 For example, if it is the first row which reaches this configuration during Stage 2, then
 either each nonzero entry in the first row is the second smallest column entry in the

 respective column, or zeroing out of the second smallest entry from any column of the

 form (0, b, c) cannot be accomplished without affecting the magnitude of the second
 smallest entries in other columns; if so, then we can and do zero out a column of the form

 (0, b, c) in such a way that all nonzero entries in the first row turn into second smallest
 column entries. From this stage go to Stage 3*.

 Stage 3*. In Stage 3*, the positive entries in the configuration are zeroed out by distribut-
 ing the probability mass suitably in Y2. We assume without any loss of generality that the

 configuration at this stage has the appearance of Table 1, in which a,+ Isb,+1, ..., au-bu,
 au+ ,-cu+ 1., aN-CN-

 It is important to note here that for reasons of notational simplicity we now denote the

 entries in any configuration by generic symbols a, b and c in the three rows respectively.
 Thus entries in a new configuration are not necessarily the same as that of the preceding

 tables from which they may have been derived, and their meanings depend very much on

 the context in which they are being used; the only exception to this rule is when a given

 entry has been zeroed out.

 Table 1

 0 0 .0 0 0 .0 0 ... 0 a,+ ... au a"+ ... aN
 bi b2 ... br ? 0 .0 bs+l ... b, b,+1 ... bu 0 ... 0
 00 .0 Cr+ Cr+2 C C . C 0 .. . 0 c I . . C
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 Since EN+ aj= E bj+E' I bj and aj- bj forj=t+ l.., u, we have
 N t

 >ja,j bj. (3.2)
 u+1 I

 Consequently we can choose nonnegative numbers 6u+1:au+l ... 96N<aN such that

 EUNI bj=bl. Since aj1cj for j=u+l, ...,N, it follows that 6u+1!Cu+I, ..., 6NCN. Now
 define OP(XI =j, X2= 1, X3 =j)=6 for j=u+ 1, ..., N. Removing the probability mass b1 =E

 from this assignment, zeroes out the first cell in the second row, the entries aj in the first

 row are replaced by aj=aj-51 and the entries in the third row are replaced by ej=cj-6j for
 j=u+ 1, ..., N. Note that this operation leaves the structure of the configuration intact in

 that the new aj's continue to be the second smallest entries in their respective columns.
 The new configuration now has the appearance of Table 2. The entries b2, ..., bt in Table 2
 are zeroed out in a similar fashion by assigning suitable probabilities to the cells (j, k,j) for
 k=2,... , r, s+ 1, ..., t and j=u+ 1, ...,N and keeping the structure of the first row intact.
 After these operations, the configuration assumes the appearance of Table 3. The entries

 Cr+ 1 -... , C in Table 3 are now zeroed out one-by-one in a similar fashion by assigning

 suitable probabilities to the cells (j,j, k) for j=t+1, ..., u and k=r+1, ..., t. As a result of
 this operation, the configuration that emerges has the appearance of Table 4.

 We now zero out the entry at+ 1 in the first row of Table 4. We note that
 E' I aj= EN 1 (cj-aj). Therefore

 N

 at+l I ,!E (cj -aj). (3-3)
 u+1

 Consequently there exist nonnegative numbers 6j<(cj-aj), j=u+ 1,...,N, such that
 N

 at+1= E 6. (3.4)
 u+l

 Table 2

 0 0 ... 0 0 ... 0 0 ... 0 a,+1 ... au adU+ ... aN
 0 b2 * br 0 ... 0 bs+1 ... b, b,+1 ... bu 0 .
 O O ... 0 Cr+ I ... Cs Cs+1 .. Ct O . .. 0 C,u+I ... CN

 Table 3

 0 0 ... 0 0 ... 0 a,+, ... aU au+5 ... aN
 0 0 ... 0 0 ... 0 b,t+ ... bU 0 ... 0
 0 0 ... O cr+ I ... ct 0 ... 0 cu+1 ... CN

 Table 4

 o . .. o at,+ ...* au a"+1 ...* aN

 0... 0 b,+1 ... bU 0 ... 0
 0 .0.. 0 .0 Cu+1 ... CN
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 Now define ^(X1=t+l, X2=t+l, X3=j)=Qj for j=u+l,...,N. Removing these probabil-
 ities leads to the configuration given by Table 5 in which bt+i=bt+i-at+l and ej=cj-Qj
 forj=u+1, ...,N.

 Table 5 is easily seen to have the structure of Table 3. The entry bt,I of Table 5 can be
 zeroed in a manner similar to that of Table 3. The configuration that emerges now is like

 that of Table 4 in which the (t+ l)st column has now been zeroed out. We repeat this

 procedure until all the entries in Columns (t+ 1) through u have been zeroed out. The final

 configuration that now emerges must necessarily be of the form of Table 6. By assumption
 the three row sums of Table 6 are all equal and so all the a's and c's in the final

 configuration must be zero.

 It is easily seen that in this case, our algorithm assigns a probability of 01 to &'j, a
 probability of 1-01 to 52 and zero probability to 93. Hence

 Ev= 1 01+2(1-01) = 2-01l. (3.5)

 Proof of optimality. To prove the optimality in this last case, we observe that for any
 integrated survey

 Ev f ^Y1) +2[l -OP(YI )] = 2-g?(Y9 ). (3.6)

 Since YV)S01, it follows that we must always have

 Ev >-2 -01. (3.7)

 Since for our algorithm the equality in (3.7) is attained, it is necessarily optimal.

 It is worth noting that the quantity 02 plays a crucial role in the preceding algorithm. The

 algorithm shows that if 02>1 then the given algorithm must get blocked at Stage 2 so that

 the achieved optimal solution must have its support in Y5 U 92.

 4. Remark

 It is perhaps natural to speculate that the optimality of the integrated surveys worked out
 in Section 3 would go through if apart from possibly a constant term, the cost instead of
 being proportional to the number of distinct units, is actually a monotonic increasing
 function thereof. The following counterexample for N=3 sets at rest any such specula-
 tion.

 Table 5

 0 . 0 a,+2 ... au aU+1 ... aN
 0... ? + I bt+2 bu ? ?
 O ... 0 0 0 ... 0 Cu+1 CN

 Table 6

 O ... 0 au+1 ... aN
 O ... OO ... O
 0 ... 0 C..1 ... CN
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 Example 4.1. Let N=3 and consider the problem of integrating three surveys. Let C(v)

 denote the cost of selecting an integrated sample with v distinct units and suppose that

 C(l)= 1, C(2)=2 and C(3)= 10. Further suppose that the marginal probabilities of selection

 for the three surveys are given by the entries in Table 7.

 An optimally integrated survey based on the algorithm of Section 3 is given in Table 8.

 The integrated survey of Table 8 yields the following distribution for the number of distinct

 units in the sample: ^(v=l)=0.6, $A(v=2)=0.3, gAv=3)=0.l so that EC(v)=2.2. On the
 other hand the integrated survey given in Table 9 assigns all the probability exclusively to

 Y2 and therefore has a lower expected cost EC(v)=2.0.

 5. Integrating four or more surveys

 The algorithm described in this paper cannot be extended to four or more surveys in a

 routine manner. Consider the marginal probabilities of selection for four units in four

 surveys as given by the entries in Table 10. Applying a routine extension of the algorithm

 in Section 3, one arrives at the following plan for an integrated survey

 Table 7. Stochastic matrix for three surveys

 i Pil Pi2 Pi3
 1 .2 .3 .5

 2 .5 .2 .3

 3 .3 .5 .2

 Table 8. Plan for an optimally integrated survey (Section 3): values of Pijk

 P1jk P2jk P3jk

 (j,k) 1 2 3 1 2 3 1 2 3

 1 .2 0 0 .1 0 0 0 0 0
 2 0 0 0 0 .2 0 0 0 0

 3 0 0 0 .1 .1 0 .1 0 .2

 Table 9. Plan for an alternative integrated survey: values of Pijk

 150Pljk 15OP2jk 15OP3jk

 (j,k) 1 2 3 1 2 3 1 2 3

 1 0 9 0 17 5 0 5 0 9
 2 2 0 0 17 0 2 0 9 0

 3 17 0 2 0 17 17 17 5 0

 Table 10. Stochastic matrix for four surveys

 i Pil Pi2 Pi3 Pi
 1 1/3 0 1/3 1/3
 2 1 0 0 0

 3 1/3 1/3 0 1/3

 4 1/3 1/3 1/3 0
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 Pi111= 1/3, P3122= 1/3, P4143= 1/3

 with an expected number of distinct units E(v)= 1/3. The following alternative plan

 however assigns probability 1 to sample points with two distinct units

 P1122 = 1/3, P3113 = 1/3, P4141 = 7/3

 which points out the nonoptimality of the plan arrived via Section 3. One also faces

 difficulty of another type. Sample points in 9'2 are seen to have two different structures of

 the type (1, 1, 2, 2) or (1, 2, 2, 2). In Stage 2 one is thus occasionally unable to decide which

 path to proceed to eliminate the second largest entry in each column.
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