
 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 92, Number 1, September 1984

 BOREL MEASURABLE IMAGES OF POLISH SPACES

 SANDRO LEVI AND ASHOK MAITRA

 ABSTRACT. We determine the Borel class of the image of a Polish space under
 a Borel measurable function of class q which maps open sets in the Polish space
 to Borel sets of additive class ( in the range, under a mild restriction on the
 inverse images of singleton sets. Our computation is based on a selection
 theorem proved in this article.

 1. Introduction. Our point of departure in this article is a result of Srivastava
 [8] which states the following: if Z is a Polish space, X a separable metric spl ce
 and f a Borel measurable function of class 1 on Z onto X such that f maps cpen
 sets of Z to Borel sets in X, then X is an absolute Borel set (that is, a Borel
 set in its completion). Suppose now that in fact f maps open sets of Z to Borel
 sets of additive class ( in X. The present article is the result of our efforts to
 determine the Borel class of X in its completion. It turns out that if ( > 0 then
 X is of multiplicative class ( + 1 in its completion. Our proof of the result rests
 on a refinement of a selection theorem of Burgess [1]; the refinement consists of an
 evaluation of the Borel class of the selector. Indeed, using our selection theorem,
 we are able to evaluate the Borel class of the image of a Polish space under a
 Borel measurable function of class r which maps open sets in the Polish space to
 Borel sets of additive class ( in the range, provided that the inverse image of each
 singleton set is comeager in its closure. This result in turn yields a theorem of
 Miller [7] about the Borel class of a selector for a partition of a Polish space into
 G6 sets.

 The paper is organized as follows. ?2 is devoted to definitions and notation. In
 ?3 we prove the selection theorem, and in ?4 we evaluate the Borel class of the image
 of a Polish space under a function of the type described in the previous paragraph.
 Miller's theorem on measurable selectors is deduced in ?5.

 2. Definitions and notation. Our usage regarding Borel classes of sets and
 functions is standard and can be found in Kuratowski [4]. We drop the appellation
 "Borel" when referring to a Borel function of a particular class or a Borel set of
 a particular class. Thus we write "function of class (" and "set of additive class
 1" etc. If Z, X are metric spaces, a function f on Z onto X is said to be a (r, ()-
 function if the inverse image of each open set in X is a set of additive class r in Z
 (that is, f is a function of class r) and the image of each open set in Z is of additive
 class ( in X. Thus a continuous, open function on Z onto X is a (0, 0)-function.
 If a (, ()-function f is one-one, we shall call f a homeomorphism of class r, ( in
 conformity with [4].
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 A multifunction F on Z to X is a function that takes points of Z to nonempty

 subsets of X. If F is a multifunction on Z to X, the set {(z, x) E Z x X: x E F(z)}
 is called the graph of F and denoted by Gr(F). If V is a subset of X, the set

 {z E Z: F(z) n V $8 0} will be denoted by F-'(V). The multifunction F is said
 to be of class ( if F-'(V) is of additive class ( in Z for every open set V in X.
 The multifunction z -> cl(F(z)) is denoted by F, where cl abbreviates closure. A
 selector for F is a function f: Z -* X such that f (z) E F(z) for each z E Z.

 If II is a partition of a metric space Z and V C Z, the set U{P E II: P n v # 0}

 is called the 11-saturation of V and denoted by V*. A selector for II is a function

 f: Z -* Z such that f is constant on each member of II and f (P) C P for each
 P E II. A transversal for II is a set S C Z such that S meets each member of II in
 exactly one point.

 If r is an ordinal greater than 0, we set 7 = ( if r = l + 1, and Y7 = r if r is a
 limit ordinal.

 3. A selection theorem. In this section we prove a selection theorem which

 will play a key role in the sequel. We need the following computation.

 LEMMA 1. Let X be a separable metric space, Z a Polish space and F a multi-

 function of class , on X to Z. For each W C X x Z, let W+ = {x E X: Wx n F(x)
 is nonmeager in F(x)}, where Wx is the x-section of W. If W is of additive class
 r in X x Z, then W+ is of additive class ( + r in X.

 PROOF. We prove the lemma by induction on r. Suppose first that r = 0, so

 that W is open in X x Z. Hence we may write W = Un>o COn x Dn, where CO7 is
 open in X and Dn open in Z. Since, for each x E X, F(x) is Polish, it follows by
 the Baire category theorem that

 x E w+ wx n F(x) $8 0 *-+ (3n)(x ECOn nF' l (Dn))

 so that W+= Un>0 Cn noF-'(DIl). Consequently W+ is of additive class (.
 Suppose now that r > 0 and that the lemma is true for all subsets of X x Z

 of additive class ' < r. Fix ' < r and let W be a set of multiplicative class ' in
 X x Z. For each x E X, Wx n F(x) is a Borel subset of the Polish space F(x), and
 hence Wx n F(x) has the Baire property in F(x). Consequently, if Vn, n > 0, is a
 countable base for the topology of Z, then

 x E W + (3n)(x E F ((Vn)&wx, n V, n 0F(x) is meager in F(x))

 (3n)(x E F-'(Vn)&x ? (w, n (x x vn))+),
 hence

 w+= U [F-l(vn) n (X\(Wc n (X x Vn))+)]x
 n>O

 Now wc n (x x Vn) is a set of additive class ' in X x Z, so by induction hypothesis
 (WC n (x x Vn))+ is of additive class ( + ' in X. Hence the set within square
 brackets is of additive class ( + ' + 1, so W+ is of additive class ( + ' + 1 in X.

 Finally, let W be of additive class r in X x Z. So there exist sets Wn of multiplica-

 tive class 'n (<r) in X x Z such that W = Un>O Wn. But then W+ = Un>O Wjt
 By the preceding paragraph, Wn+ is of additive class ( + qn + 1 (< ( + r) in X, so
 W+ is of additive class ( + r in X. This completes the proof.
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 The special case of the above lemma when F(x) _ Z was proved by Vaught [9].
 The above proof closely follows Vaught's.

 The selection theorem can now be proved.

 THEOREM 1. Let X be a separable metric space and Z a Polish space. Suppose

 F is a multifunction of class E on X to Z such that Gr(F) is of multiplicative class

 r+ 1 in X x Z and F(x) is comeager in F(x) for each x E X. If ( + q > 0 (or if
 = 0 = r and X is 0-dimensional), then there is a selector for F of class ( + r.

 PROOF. Let X be the completion of X and B be a set of multiplicative class
 + 1 in X x Z such that Gr(F) = B n (xx Z). By a known result there is a

 (0, r)-function g on Ww, the space of irrationals, onto B.

 At this point we follow the proof of the theorem in [6], refining it as we go
 along. We also use the notation of [6]. First specialize the theorem of [6] to the

 case where Jx = {E C F(x): E is a meager Borel set in F(x)}. Note that the only
 properties of g used in the proof in [6] are that g is continuous and that g(N(s))
 is Borel in B. The refinement that is needed here is to observe that when the
 hypotheses of our present theorem are in force we can define the sets T(s, t) to be
 of additive class ( + r in X instead of just being Borel in X as was done in [6].
 To see that this can be achieved, we note that g(N(s)) n (x x V(t)) is of additive
 class r in Gr(F). So we can find a set W of additive class r in X x Z such that
 g(N(s)) n (x x V(t)) = W n Gr(F). It follows that

 W+= {x E X: (g(N(s)) n (X x V(t)))x ? Jx},

 since F(x)\F(x) is meager in F(x) for each x E X. Hence, in the notation of [6],
 the sets (g(N(s)) n (x x y))*V(t) are of additive class ( + r in X by virtue of
 Lemma 1 of the present paper. We can now proceed to define the sets T(s, t) as
 in [6]. For the inductive step we define the set T' (m, n) as in [6], noting here that
 the sets T' (m, n) are of additive class ( + r in X. The disjointification of the sets
 T'(m,n) is achieved by appealing to the Reduction Principle for sets of additive
 class +rq ([4, p. 350] when ( +rq > 0; [4, p. 279], when = 0 = r and X is
 0-dimensional). This yields sets T"1 (m, n) of additive class ( + r in X, and we set
 T(sm, tn) = T"1(m, n). The rest of the proof is just as in [6], yielding a selector
 f: X -* Z for F of class ( + r. This completes the proof.

 The selection theorem extends a result of Miller [7] in several directions.

 4. Images of (r, ()-functions. We now use the selection theorem to determine
 the Borel class of the image of a Polish space under a (r, ()-function. The main
 result of this section follows.

 THEOREM 2. Let f be a (rq, E)-function on a Polish space Z onto a separable
 metric space X such that f-1({x}) is comeager in cl(f-'{x}) for each x E X. If
 r > 1 and E + - > 0 (or if r = 1, E = 0 and X is 0-dimensional) then

 (i) there is a function g: X -* Z of class E + r1 such that f (g(x)) = x for each
 x E X, and

 (ii) X is of multiplicative class ( + n7 + r in its completion.

 PROOF. Define a multifunction F on X to Z by setting F(x) = f-1({x}). Then

 F is of class (, Gr(F) is of multiplicative class i7+ 1 [4, p. 384] and F(x) is comeager
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 in F(x) for each x E X. So Theorem 1 applies to give a selector g for F of class
 ( + Th. The function g obviously satisfies the relation f (g(x)) = x for each x E X.

 To prove the second statement, use an extension theorem [4, p. 434] to find a

 set X* of multiplicative class ( + - + 1 in X, the completion of X, and a function

 -X* Z of class ( + 7 such that g on X. It follows that X = {x E
 X*: f(g(x)) = x}, so that if V1, n > 0, is a countable base for the topology of X*,
 we have

 X* \X = U [9'(f (Vn)) n (X \vn)]I
 n>O

 so X* \X is of additive class ( + 71 +r in X* [4, p. 376]. Hence X is of multiplicative
 class ( + n7 + r in X*, so of multiplicative class + + - + r in X. This completes the
 proof.

 Recalling that the inverse image of a singleton set under a function of class 1
 is a G6 and that each G6 set is comeager in its closure, we get as an immediate
 consequence of Theorem 2 the following:

 COROLLARY. Let f be a (1, &)-function on a Polish space Z onto a separable
 metric space X. If , > 0 (or if , = 0 and X is 0-dimensional), then X is of
 multiplicative class ( + 1 in its completion.

 We conclude this section with a couple of remarks. First, the assumption in
 Theorem 2 that f-1({x}) is comeager in cl(f-1({x})) for each x E X cannot be
 dropped. Indeed, there is a (2, 0)-function on a Polish space onto an analytic non-
 Borel set. To see this, fix an analytic non-Borel subset A of Ww, the space of
 irrationals, such that A C N(O), the set of elements of wW that start with 0. By

 an old result of Keldysh [3], there is a F, subset B of wW x ww such that II, the
 projection to the first coordinate, when restricted to B is an open mapping onto A.
 Let q$ be a homeomorphism of (wW x wW)\B and a closed subset D of N(1), the set
 of elements of wW that start with 1. Define a function f: Ww x w + W by setting

 f = H on B and f = 0 on (ww x ww)\B. Then f is a (2, 0)-function on Ww x ww
 onto A U D, which is analytic non-Borel.

 Second, the result of the Corollary is sharp. For if X is separable metric of
 multiplicative class ( + 1 in its completion, then there is a homeomorphism of class
 0, ( on a Polish space onto X [4, p. 450]. When ( = 0 and X is a separable metric
 space, not necessarily 0-dimensional, our corollary implies that X is a F,6 in its
 completion. However, the following argument, due to S. M. Srivastava, shows that
 X must be a G6 in its completion. For if X is the completion of X and G the
 graph of the function f, then G is a G6 in Z x X. Moreover, as f is open, if Xr is
 the projection to the second coordinate, then ir restricted to G is an open function
 from G onto X. Consequently, X is a continuous, open image of a G6 subset of a
 Polish space, and so, by a well-known result of Hausdorff [2], X is a G6 in X.

 5. Partitions of Polish spaces. In this section we shall use Theorem 2 to
 deduce a result of Miller regarding the Borel class of selectors and transversals for
 a partition of a Polish space.

 We begin with a lemma of Miller [7], where the interested reader will find a
 proof.
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 LEMMA 2. Suppose H is a partition of a Polish space Z into sets which are

 comeager in their closures. Let V7, n > 0, be a countable base for the topology of
 Z. Then the sets Vn,* n > 0, separate the members of H.

 What follows is Miller's result on selectors. Miller actually assumes that the
 members of the partition II are Baire spaces, besides assuming the same condition
 as in Theorem 3 below on the 11-saturations Vn* of the basic open sets V1, n > 0.
 Now, according to Lemma 3.3 in [7], the first condition implies that the members

 of II are separated by Vn*, n > 0. Consequently, in virtue of the second condition,
 each member of II is Borel in Z. But for a Borel subset A of a Polish space X, it
 can be proved, (see [5]), that A is a Baire space iff A is comeager in cl(A). It is
 thus seen that Miller's hypotheses are equivalent to ours.

 THEOREM 3. Let Z be a Polish space and H a partition of Z into sets which
 are comeager in their closures. Let Vl, n > 0, be a countable base for the topology
 of Z and assume that for each n the H-saturation Vn* of V7n is of ambiguous class

 r1 > 0. Then there exist a selector for H of class r + ij and a transversal for II of
 multiplicative class r + iy in Z.

 PROOF. Define a function f: Z -* 2W, the Cantor set, by

 f (z) = (Iv; (z), IV2* (z),..),

 where IK. is the characteristic function of Vi*. Let X = f(Z). Since X C 2W,
 X is 0-dimensional. Furthermore, it is easy to see that f is a (r, 0)-function on
 Z onto X. Next observe that, by virtue of Lemma 2, the sets of constancy of f

 are precisely the members of II, so that f'({x}) is comeager in cl(f'({x})) for
 each x E X. Hence by Theorem 2 there is a function g: X -* Z of class rj such
 that f(g(x)) = x for each x E X. Then the function h = g o f is a selector for II

 of class r + ij. Moreover the set S = {z E Z: h(z) = z} is a transversal for II of
 multiplicative class r + Y7 in Z, because Z\S = Un>0[h-'(Vn) n (Z\vn)], so z\s
 is a set of additive class r + y in Z. This terminates the proof.
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