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 EFFECTIVITY FUNCTIONS AND ACCEPTABLE GAME FORMS

 BY BHASKAR DUTTAI

 A game form is acceptable if for every preference profile, a Nash equilibrium exists and
 the outcomes corresponding to Nash equilibria are Pareto efficient. A game form is
 strongly consistent if the set of strong Nash equilibria is always nonempty. The paper shows
 that no game form can be both acceptable and strongly consistent. The set of game forms
 which are both acceptable and dominance-solvable is also characterized in terms of the
 effectivity functions of game forms.

 1. INTRODUCTION

 THE MAIN FOCUS of the literature on implementation is on rules by which a group
 of individuals arrives at a choice among available alternatives. Such a rule, called
 a game form, specifies the permissible strategies for each individual and asso-
 ciates with each combination of permissible strategies a particular element out of
 the set of alternatives.

 The result of Gibbard [2] and Satterthwaite [13] demonstrates that when there

 are more than two alternatives, there is no nondictatorial game form with
 dominant strategies for all individual preference profiles. In a noncooperative

 framework, if agents do not have dominant strategies, then it is no longer
 possible to determine unambiguously the outcome selected by the agents. In
 order to predict the outcome(s) selected by the agents, one has to first describe
 the strategic behavior of agents, or in other words, to select an equilibrium
 concept for games in strategic form.

 In the noncooperative framework, the main equilibrium concepts analyzed
 have been Nash equilibrium and sophisticated behavior (see [1]), the latter being

 closely related to the notion of perfect equilibrium. Moulin [6, 7] presents several
 interesting results on dominance solvable game forms, which are game forms

 under which sophisticated behavior of the agents leads to a single outcome for all
 preference profiles. Hurwicz and Schmeidler [3] show that there are several game
 forms with the property that all Nash equilibria are Pareto-efficient and the set of

 Nash equilibria is always nonempty. (Such game forms are called acceptable.)
 In the cooperative context, Maskin [5] shows that when there are more than

 two alternatives, only dictatorial game forms possess the property that the
 outcome set corresponding to strong equilibria is a singleton. However, the class
 of strongly consistent game forms, i.e., game forms under which the set of strong
 equilibria is always nonempty, has been characterized by Moulin and Peleg [9] in
 terms of effectivity functions. (An effectivity function is a representation of the
 distribution of power in the game form.)

 Clearly, these results dispel to some extent the pessimism created by the
 Gibbard-Satterthwaite result. If the planner knows which concept of equilibrium

 'I am most grateful to two anonymous referees for remarkably detailed comments on an earlier
 draft of the paper.
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 is the best description of the individual's strategic behavior, then he can construct

 a suitable game form which performs reasonably under that notion of equilib-
 rium. However, suppose the planner believes that equilibrium of type a is the
 relevant concept and based on this belief he specifies the game form g*. His

 belief may be wrong in the sense that the informational framework and other

 structural characteristics lead agents to select outcomes which correspond to
 equilibria of type j8. Since g* may be an "undesirable" mechanism under

 equilibrium of type /{, the planner should choose mechanisms which perform well
 under several equilibrium concepts.

 The main focus of this paper is on the possibility of constructing acceptable

 game forms which are also strongly consistent and/or dominance-solvable. The
 effectivity function of a strongly consistent or dominance-solvable game form is
 maximal. We show that if the effectivity function of a game form is maximal,
 then the game form is acceptable only if its effectivity function is that of a strong,
 proper simple game. This immediately implies that no game form can be both

 acceptable and strongly consistent. However, we characterize the class of accept-
 able and dominance-solvable game forms. It turns out that for every strong,
 proper, simple game, there is an acceptable and dominance-solvable game form
 whose effectivity function coincides with that of the given simple game.

 2. THE FRAMEWORK

 Let N = {1, 2, . . ., n} be a set of voters or players, with n > 3. A is a set of

 alternatives with {A I > 3. We denote by L the set of all linear orderings2 over A.
 For every i E N, RI E L is the preference relation of i on the outcome space A. A
 special choice correspondence (SCC) summarizes the ethical norms guiding socie-
 ty's choice out of A.

 DEFINITION 2.1: An SCC3 is a function H: LNN 2A

 We note that in our notation for any set B, 2B represents the set of all
 non-empty subsets of B. So, for any preference profile RN E LN, H(R N) repre-
 sents the set of "best" outcomes for society, given the ethical considerations
 underlying H. In this paper, we will restrict attention to those SCC's satisfying
 the well-known Pareto criterion. For any RN E LN, let Q(RN) = {a & A I for no
 b & A, bR1a for all i ( N}.

 DEFINITION 2.2: An SCC H is Paretian iff for all RN E LN, H(RN) C Q(R N).

 2A binary relation B defined over a set Y is a linear ordering iff it satisfies: (i) Connectedness: For
 all distinct x, y E Y, (xBy or yBx). (ii) Transitivity: For all x, y, z E Y, [(xBy and yBz) -- (xBz)].
 (iii) Antisymmetry: For all distinct x, y E Y, (xBy -- -yBx).

 31f for all preference profiles, the SCC is single-valued, then it is called a social choice function
 (SCF).
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 In view of the fact that SCC's do not induce truthful revelation of preferences,

 SCC's cannot in general be used as the actual aggregation mechanism. In order

 to "implement" a given SCC, the planner may have to take recourse to more

 abstract aggregation mechanisms.

 DEFINITION 2.3: A game form g is a (n + 1)-tuple g = (Xl, i E N; 7) where (i)

 Xi is the strategy set (or message space) of individual i, (ii) v is a single valued
 mapping from XN = X iENXi onto A.

 The mapping v describes the decision rule, if for all i, agent i chooses strategy

 xi, the resulting strategy n-tuple is denoted x (xi)iEN and the decision rule v
 forces the outcome 7(x) E A.

 For any T E 2 - {N), XT = (XA)ieT; X T = (Xi)IEN-T. Thus, a strategy n-
 tuple x will often be represented as (XT,X-T)* When T is a singleton, we will

 simply write x_i instead of x- (i, etc. A game form g is nondictatorial iff there
 does not exist i E N such that for all a E A, there is xi E Xi with v (xi, x_,) = a
 for all x -i E X _. Since dictatorial game forms represent an extremely arbitrary
 distribution of power, we only consider nondictatorial game forms.

 Suppose the planner specifies a particular game form g to the set of players. In
 order to "predict" the outcome(s) selected by the agents, the planner must first

 know the strategic behavior of the agents. This amounts to selecting an equilib-

 rium concept for games in strategic form. Each equilibrium reflects the informa-
 tion that each individual has about the others' preferences and strategic behavior,
 etc. In this paper, we will be concerned with three concepts of equilibrium
 behavior.

 DEFINITION 2.4: Given a game form g = (Xi, i E N; 7), and a profile R N
 E LN, x E XN is a Nash equilibrium of g at RN iff:

 for all i E N,for allyi EXi, .7(yi,x-,) ,~1-7T (x) ,~1-7T (x)Ri7(yi,X-i)-

 We denote by NE(g, RN) the possibly empty set of Nash equilibria of g at R N.

 In order to introduce our next notion of equilibrium-sophisticated behavior,
 we need some further notation. Let the game form g be given, and R N be a fixed

 profile. For any subsets Yi C Xi, and any agent j E N, we denote by Dj(Rj; Yi,
 i E N) the set of agent j's undominated strategies when the strategy spaces are

 restricted to YZ, i E N. Hence xj belongs to Dj(Rj; Yi, i E N) iff xj E Yj and there
 is no y1 E Y1 such that:

 for all x _j E Y_j: -7T(xj , x _j) =,- 7T r(yj , x _j) -- -7T(yj , x _j) Rj (xj , x _j)

 and there isx _1 E Y_1: r (Xj , x _} ) #7T r (yj , x _j).

 The successive elimination of dominated strategies is the following N-tuple of
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 decreasing sequences: Xjt, j E N, t E N:

 I I X DJ (R ;X, i E N) c XjtI
 Let for all integers t, Xt = X iENXit.

 DEFINITION 2.5: g is dominance solvable iff for all R N E LN, there is an integer
 t such that (Xt) is a singleton.

 In this case, X.t is called the set of sophisticated strategies of player i, and will
 be denoted by Ds (g, Ri). Let Ds (g, R N) = X il ND s(g, R).

 The behavioral assumptions underlying the concept of sophisticated behavior
 are complete information and noncooperation. Each agent is aware of the whole
 preference profile, and eliminates his dominated strategies on the assumption
 that others are also doing so. A game form is dominance-solvable if the
 successive elimination of dominated strategies reduces the strategy space to Xt
 and v is constant over Xt.

 While both Nash equilibrium and sophisticated behavior do not require
 collusion amongst agents, the concept of strong equilibrium assumes the possibil-
 ity of collusion among agents.

 DEFINITION 2.6: Let g = (Xi, i C N; 7) be a given game form. x C XN is a
 strong equilibrium of g at R N iff there is no T c 2N and XT C XT such that
 7(XT+,x_T)RjT(x) for all i c T.

 Let SE(g, RN) denote the set of strong equilibria of g at R N. So, if x c SE(g,
 R N), then no coalition T can deviate from x and make everyone in T better off.
 Clearly, SE(g, R N) C NE(g, R N).

 Armed with these notions of equilibrium, we can now make precise the
 concept of implementation. An SCC H is implementable via equilibrium of type
 a iff there is a game form g such that for each profile, the set of outcomes
 associated with equilibria of type a under g coincides with the set of best
 outcomes under H. The underlying motivation for this definition is that whatever
 the individuals' preferences might be, and provided their strategic behavior is
 adequately described by equilibria of type a, the individuals will eventually select
 the outcomes recommended by H.

 DEFINITION 2.7: (i) An SCC H is Nash implementable if f there is a game form g
 such that for all R N C LN, H(R N) = 7(NE(g,R N)).

 (ii) An SCC H is strongly implementable iff there is a game form g such that for
 all RN c LN, H(RN) = 7(SE(g, R N))

 (iii) An SCC H is implementable via sophisticated equilibrium iff there is a
 dominance-solvable game form g such that for all RN C LN, H(RN) = T(DS(g,
 RN)).
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 Note that if H is implementable via sophisticated equilibrium, then H(R N) iS
 always a singleton, i.e., H is a social choice function (SCF).

 Suppose H is Nash implementable by the game form g, and moreover H is

 Paretian. Then, g has the property that -T(NE(g, R N)) c Q(R N) and NE(g, R N)
 7 0 for all RN C LN. Following Hurwicz and Schmeidler [3], such game forms
 will be called acceptable. Similarly, if an SCC h is strongly implementable by a
 game form g, then for all profiles RN L N, SE(g,RN) R 0. (Of course, out-
 comes associated with strong equilibria must necessarily be Pareto efficient.)
 Such game forms will be called strongly consistent, a terminology due to Moulin
 and Peleg [9].

 3. THE INCOMPATIBILITY OF STRONG CONSISTENCY AND ACCEPTABILITY

 The main result of this section is to show that no game form can be both
 acceptable as well as strongly consistent. As we have remarked earlier, the
 literature on implementation4 has provided several interesting positive results.
 For instance, the results of Maskin [4, 5], Moulin and Peleg [9], and Moulin [6, 7]
 show that a large class of SCC's is implementable under all three notions of
 equilibrium mentioned above. So, if the planner knows which concept of equilib-
 rium is the best description of agents' strategic behavior, then he can construct a
 suitable game form implementing a reasonable SCC. However, suppose the
 planner believes that strong equilibrium is the relevant concept, and based on
 this belief, he specifies the strongly consistent game form g* which strongly
 implements the desired SCC H*. However, it may not be possible for agents to
 collude, and there may be many Nash equilibria of g* whose outcomes are not
 elements of H*. In particular, some Nash equilibria may not even be Pareto
 efficient. Faced with this possibility, the planner may well want to search for
 game forms which are both strongly consistent as well as acceptable. Our result
 shows that this is not possible.

 This result may seem somewhat counter-intuitive since there are game forms
 which are both strongly consistent as well as dominance-solvable. Maskin [4] had
 shown that when IA I > IN I,' a strongly consistent game form must endow at least
 some agent with "veto power," i.e., the power to eliminate alternatives unilater-
 ally. Following this insightful result, Moulin and Peleg [9] identified the set of
 strongly consistent game forms; it turns out that Mueller's [10] "voting by veto"
 is the principal element of this set.6 Voting by veto game forms are of course also
 dominance-solvable.

 To understand the nature of the voting by veto game forms, it is simplest to

 consider the case where IAI =p > n = IN . Choose nonnegative integers pi,

 4Moulin [8] and Peleg [12] give very lucid surveys of the recent results in this area.
 5Actually, Maskin [4] overlooked the restriction on the relative cardinalities of A and N. This error

 was later corrected by Moulin and Peleg [9].
 6Moulin [7] contains an extensive discussion on the merits of the voting by veto mechanism.
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 P21 ... ** Pnp such that

 (3.1) Pi + P2 + ***+ Pn = p-1

 Given the vector (PI I P21 ... I Pn), let

 player 1 veto the first p I outcomes among A, say A 1,

 player 2 veto the first P2 outcomes among A-A I , say A2,

 player n veto finally pn outcomes among A = Un- 'Ai, say An.
 From (3.1), only one element will remain not vetoed by any player, and this will
 be the outcome of the voting by veto game form.

 Unfortunately, while this game form has great strategic appeal particularly in
 the cooperative context, it is not acceptable. The following example illustrates.

 EXAMPLE 3.1: Let N = {1,2}, A = {x,y,z}, and pI =P2 = 1. Suppose the two
 agents unanimously prefer x to y to z. Consider the following pair of strategies in
 the voting by veto game form:

 agent 1 eliminates x,

 agent 2 eliminates z when 1 eliminates x; otherwise 2 eliminates x.

 Clearly, the outcome will be y; the specified pair of strategies will be a Nash
 equilibrium, although x is the only Pareto optimal element.

 In a sense, our result showing the incompatibility of strong consistency and

 acceptability "generalizes" this example. In a heuristic sense, while strong consis-
 tency requires veto power, thus giving even "losing" coalitions the power to veto
 some alternatives, acceptable game forms entail a much sharper distribution of

 power in which "winning" coalitions usurp all the power.

 In order to prove the result, we provide a partial characterization of acceptable

 game forms in terms of their effectivity functions. An effectivity function is a

 representation of the distribution of power in the given game form.

 Let T E 2N, B E 2A, and g = (XN, 7) be a given game form. Then, T is effective
 for B in g iff:

 (3.2) there is XT E XT such that 7r(XT,XN-T) E B for all XN-T XN-T.

 If T is effective for B in g, this will be denoted as TeffgB.

 DEFINITION 3.2.: The effectivity function of g is a function E( g) from 2N to 2A
 such that for all T - 2N, E(g, T) = {B 2A/TeffgB}.
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 An effectivity function is maximal iff

 (3.3) for all B E 2A, for all T E 2N,

 [B X E(g, T)] -*[(A - B) E E(g,N - T)].

 The following results due respectively to Moulin [7] and Moulin and Peleg [9]

 will be used in the sequel.

 LEMMA 3.3: (i) If g is dominance-solvable, then E(g) is maximal. (ii) If g is

 strongly consistent, then E(g) is maximal.

 Given a game form g, a coalition T is winning in g iff

 (3.4) for all a E A, Teffg{a}.

 In other words, a coalition T is winning if it can enforce the choice of any
 element in A.

 A simple game is an ordered pair G = (N, W) where W is the set of winning
 coalitions satisfying the monotonicity property:

 (3.5) TE W and TC T'-T' W.

 DEFINITION 3.4: Let G = (N, W) be a simple game. G is a strong, proper simple

 game iff for all T E 2N, T E W"-(N - T) e W.

 Thus, in a strong, proper simple game, a coalition is not winning iff its
 complement in N is winning. Simple games embody a particularly sharp distribu-
 tion of power since only winning coalitions have any power. If G is a simple
 game, then its effectivity function E(G) is:

 (3.6) for all B E 2A and all T E 2&N

 [B EE(G,T)] iff [TE WorB=A].

 We are now ready for our first result.

 THEOREM 3.5: Let g be an acceptable game form. If E(g) is maximal, then
 E(g) = E(G), where G is a strong, proper simple game.

 PROOF: Let g be any game form such that E(g) is maximal. Suppose E(g) is
 not the associated effectivity function of any strong, proper simple game. Then,

 there is a coalition T such that neither T nor its complement is winning under g.
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 Hence, there is T E 2N, and a*, b* E A such that

 (3.7) . Teffg{ a*},

 (3.8) -(N- T)effg{ b*}.

 Since E(g) is maximal, (3.3), (3.7), and (3.8) imply

 (3.9) (N- T)effg(A-{ a*-),

 (3.10) Teffg(A - b* } ).

 There are two possibilities:

 (i) Teffg(A-{ a*-),
 (ii) - Teffg(A - {a*}).

 CASE (i): Suppose Teffg(A - {a*}). Then, there is XT such that

 (3.11) for allXN-T: 7 (XT ,XN-T )E (A {a*}).

 Similarly, (3.9) implies that there is x*- T such that

 (3.12) for all XT, 7r(XT,XN*-T)E A - a*}.

 Let X* = (xT,xN_T), and suppose 7(x*) = b E (A - {a*}). Consider the profile
 RN such that:

 (3.13) for all i E N: a*RibRiy for all y E A - {a*,b}.

 We show that x* E NE(g, R N). Suppose that x* is not a Nash equilibrium. Then,
 there is i E N and xi E Xi such that 7(xi, x*i)Rib. Given the specification of R N,
 we must have 7 (xi, x i) = a*. However, (3.11) and (3.12) together imply that for
 all i E N, 7 (xi, x *) a* for any xi E Xi. Hence, x* E NE(g, R N). Since .7T(x*)
 = b and a*Ri(b) for all i E N, g is not acceptable.

 CASE (ii): Suppose Teffg(A - {a*}). Since E(g) is maximal,

 (3.14) (N- T)effg{ a*}.

 So, there is x*-T such that

 (3.15) for all XT E XT: 7r(XTXN*-T)=a*.

 Also, (3.10) implies that there is X4 such that

 (3.16) forall XN-TEXN-T: (XT IXN-T) E A {b*}.

 Let_* = (x ,x -T). Clearly J(x*)x= a*. Consider RN such that

 (3.17) for all i E N, b*R a*Riy for all y E A - {a*,b*}.
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 Suppose x* is not a Nash equilibrium of g at RN. Then, there is i E N and
 xi E Xi such that Tr(xi,x*i)Ria*. From (3.17), we must have 7r(xi,x*) = b*.
 However, (3.15) and (3.16) together imply that for all i E N, for all xi E Xi,
 7q(xi,X* 1) 7 b*.
 Hence, x* NE(g,RN). Since 7r(x*)= a* and b*Ria* for all i E N, g is not

 acceptable. This completes the proof of the theorem.

 The main result of this section now follows from Lemma 3.3 and Theorem 3.5.

 THEOREM 3.6: Let g be any nondictatorial and acceptable game form. Then, g is
 not strongly consistent.

 PROOF: If g is strongly consistent, then by Lemma 3.3, E(g) is maximal. If g is
 also acceptable, then E(g) = E(G), where G = (N, W) is a strong, proper simple
 game.

 Let T* be a minimal winning coalition, i.e. T G W and for all i E T*,
 (T* - {i}) _ W. Since G is strong, for all i E T*, ((N - T*)U{i}) W. With-
 out loss of generality, let T* = {1,2, . . ., k), where k > 2 since g (and hence G)
 is nondictatorial. Let T, = {1, k + 1, k + 2, . . ., n}, and T2 = {2,k + 1, . . ., n)}.
 Then, {T*, Tl, T2} C W. Clearly, since E(g) = E(G), T*, T1 and T2 are also
 winning coalitions in g.

 Since A I > 3, let B = {a,b,c} c A. Consider the following RN:

 for alli =2,3,. . ., k: aRibRicRid for all d A -B,

 for all i = k + 1,k + 2, . . ., n: bRicRiaRid for alld A - B,

 cR1aRlbRld for all d E A - B.

 Obviously, if x E SE(g, R N), then 7r(x) E B. Suppose r(x') = a. Then individuals
 in T1 (a winning coalition) can switch their strategies to enforce the outcome c,
 which they all prefer to a. Hence, x' is not a strong equilibrium of g at R N. For
 exactly analogous reasons, if r(x) = b or r(x) = c, then x E SE(g, RN).

 Hence, SE(g,R N) = 0, and g is not strongly consistent.

 REMARK 3.6: Theorem 3.5 could also be proved with the help of results from
 Moulin and Peleg [9] and Nakamura [11]. The "direct" proof economizes on
 additional definitions.

 4. STRONG PROPER SIMPLE GAMES AND ACCEPTABLE GAME FORMS

 Theorem 3.5 and Lemma 3.3 also suggest that the search for dominance-
 solvable game forms which are also acceptable must be restricted to those whose
 effectivity functions correspond to that of some strong proper simple game. It is
 trivial to show that such game forms exist, the direct kingmaker game form (see
 [3]) being an obvious example. However, in this section, we prove that the
 converse is also true; if G is a strong, proper simple game, then it is always
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 possible to construct a game form g which is both dominance-solvable and
 acceptable with E(G) = E(g). So, this provides a complete characterization in
 terms of effectivity functions of game forms which are dominance-solvable and
 acceptable.

 4.1. Tree-based Game Forms

 We make a brief digression on game forms derived from finite game trees. A
 finite tree is a pair F = (M, a) where M is a finite set of nodes, and a associates to
 each node its nearby predecessor. We require that a satisfy the following
 properties: (i) There is a unique node mi, the origin of F, with a(m1) = mi1.
 (ii) There is an integer k such that ak(m)= mI for all m E M. A node m such
 that a- `(m) = 0 is called a terminal node of F, and their set is denoted Z. For a
 nonterminal node m, a - 1(m) is the set of successor nodes of m. A path is a
 sequence of nodes from ml to a terminal node such that if p = {m, M2, ... I, mO}
 is a path, then mk is a terminal node and ml = a(mi+1) for all i = 1,2, . . . , k -

 1. If p = {m1,m2, . . ., mO) is a path, thenp(mi, +) is the subset of p from mi to
 Mk, and p(mi, -) is the subset of p from ml to mi. Hence, for any path p,
 p (mi, + ) n p (mi, -) = { mi} and p (mi, + ) U p (mi, -) = p. In what follows, it
 will sometimes be useful to consider the following partition of M. Let M,
 = {ml}, and for k > 1, Mk= UmEMk_aI(m). For all k > 1, Mk will be called
 nodes of order k.

 Given a set B of outcomes, we construct a game form on B by assigning to
 each terminal node an element of B, and to each nonterminal node a game form
 bearing on its successor nodes. Formally, let 9 be a mapping from Z onto B, and
 for all m E M - Z, let g(m) = (Xi(m), i E N; 'w(m)) be a game form on a- I(m).
 Then, the game form associated to (F; 9; gm, m E M - Z) is: (i) A strategy xi of
 player i associates to each nonterminal node m E M - Z an element xi(m)
 E Xi(m). Their set is denoted Xi. (ii) For each strategy n-tuple x, we define
 7(x) = 9(mT) where mT is the first terminal node of the sequence

 mj, ... ., Mt+ = (MXX(Mt)) where x(m) = (xi(m), i E N).

 Voting by veto is a tree-based game form. Another example of a tree-based
 game form is the kingmaker game form. In this game form, a player (say agent 1)
 selects the "king for a day," dictatorially out of the set {2, 3, . . . , n}. The person
 so selected dictates the final choice out of A. Note that at each nonterminal node

 m, g(m) is dictatorial-agent 1 being the dictator in g(m,), and each of the
 potential "kings for a day" being dictators at corresponding nodes of order 2.
 Hence, Moulin's [6] result implies that the game form is dominance-solvable;
 Hurwicz and Schmeidler [3] have shown that direct kingmaker game forms are
 acceptable.

 Also, note that the effectivity function of the direct kingmaker game form is
 indeed that of a strong proper simple game. Agent 1 together with any other
 agent i forms a winning coalition since 1 can enforce the choice of i as the king
 for a day, and i once selected can choose any element out of A. Conversely,
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 (N - { 1}), the set of potential kings for a day, is also a winning coalition. Thus,

 when N contains more than 3 members, the distribution of power is very

 asymmetric, with agent 1 being all-powerful. Fortunately, we show in Section 4.2,

 that indirect kingmaker procedures can be constructed whose effectivity func-

 tions coincide with that of any prespecified strong proper simple game.

 4.2. Constructing Kingmaker Procedures

 with Prespecified Effectivity Function

 Let G = (N, W) be any strong proper simple game which is fixed for the rest of

 this section. In this section, we will show that an indirect kingmaker game form

 g* can be constructed such that E(g*) = E(G).
 In a general or indirect kingmaker game form, the king for a day is chosen by

 an elective process which is not necessarily dictatorial. Thus, for n > 3, let

 N = N1U N2, with INII > 1, and IN21 > 2. Each member of N1 "votes" for his
 choice of king for a day from among members N2, and if i* E N2 is elected, then

 i* chooses an element from A dictatorially. So, let g = (Si, i E N1; 7) be an
 auxiliary game form with the set of players N1 and the set of outcomes N2; hence

 7T: X iGN,Si- N2' Then the kingmaker game form g = (Xi, i e N; T) on A is
 defined as follows:

 forall i E N1- N2: X,= S,

 forall iE N2- N,: Xi= A,

 for all i E N, n N2: Xi= SIXA.

 For an arbitrary list of strategies

 x =((yi), i N - N2;(zi),iE N2- N1;(yi,zi),i N n N2)

 we have T(x) = z;, wherej = 7((yj), i E N,) is the elected king for a day.
 In the particular kingmaker game that we will construct, the auxiliary game

 form itself will be derived from a finite tree. First, construct a "universal" tree
 r* = (M*, a) in the following manner. For each k = 1,2, . .. , n - 2, for all

 m E Mk*, Ia-1(m)I = n - k, and Mn*_1 = Z is the set of terminal nodes. Note
 that in r*, each path will consist of exactly (n - 1) nodes. Also, IM* = n - 1,
 IM*1 = (n - 1)(n - 2), and so on. Now define a function y from M* to N as
 follows: (i) A(mI) = 1; and for all k, < k < n - 1, (ii) for all m E Mk*,(m)
 - [N - (U k-la i(M))]; (iii) for all m, m' M*,(m)= a(m') - (m)c #(m').
 Note that (ii) and (iii) imply that for any m E Mk*,k > 1,

 M[al(m)] = (N - Ky U ai(m) U {m}1).

 This in turn implies that for all k > 1, pi(Mk*) = (N - {1}).
 Then, the tree based on G, denoted 1(G), is constructed out of r* in the
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 following way. In 1(G), each path p in r* is "terminated" at the first node m
 where p(p(m, -)) E W. So, if m is a terminal node in 1(G), then m satisfies two

 conditions: (i) [,[Uk-a1(m) U {m}] C W; (ii) for all m' #& m; if m' E p(m, -)
 then ti(p(m', -)) E W. Clearly, some nonterminal nodes of r* will become
 terminal nodes in 1(G),7 so that the set of nodes in r(G), M(G) C M*.
 Henceforth, all references to a tree will pertain to 1(G).

 Our aim is to construct a kingmaker game form g* whose effectivity function

 will coincide with that of G. We construct g* such that the auxiliary game form g

 of g* is derived from (1(G), A). At each nonterminal node m of 1(G), ,u(m) is the
 dictator of 7T(m), and his strategy set is simply a - 'I(m), i.e., a strategy consists of
 selecting a successor node. Given our earlier discussion of game forms derived
 from trees and kingmaker game forms, this completes the description of g*. Note

 that N2, the set of potential "kings for a day," is 1[Z(G)] C (N- {1}). The
 reader can check that if every individual i E (N - { 1 }) belongs to some minimal

 winning coalition, then N2 will in fact coincide with (N- { 1}).
 We want to show that the set of winning coalitions in g* is indeed W. Before

 proving this proposition formally, we give an example in order to make the

 nature of our construction clearer.

 EXAMPLE 4.1: Let n = 5. Let G = (N, W) be the majority game in which every

 3-member coalition is winning. Then, in the corresponding "universal" tree 1*,
 the set of terminal nodes will be nodes of order 4. 1(G), from which the auxiliary
 game is derived, will have as terminal nodes all nodes of order 3. 1(G) is shown
 in Figure 1.

 3 4 .5 2 4 5 2 3 5 2 3 4

 The integers are the values of pi(m) at each node m.

 FIGURE 1.

 7Thus, given n, the universal tree is uniquely defined. (G), on the other hand, will depend on the
 specification of G.
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 Figure 1 represents an indirect kingmaker procedure. Agent 1 is the indirect

 kingmaker, and can select a direct kingmaker out of the set {2, 3, 4, 5}. If agent 1

 selects i as the direct kingmaker, then the latter can select an element of
 (N - { 1, i}) as the king for a day. It is easy to see why agent 1 together with any
 two other agents forms a winning coalition; agent 1 selects i as the direct

 kingmaker, and i in turn selects j as the king for a day. Moreover, any 3
 individuals out of {2,3,4,5} also form a winning coalition; they can ensure that

 one of them is finally elected as king foir a day. Hence, in this simple case, W
 would indeed be the set of winning coalitions in this procedure.

 The formal proof for the arbitrary game G runs along similar lines.

 THEOREM 4.2: Let g* be the kingmaker game form in which the auxiliary game

 form g is derived from r(G). Then, E(g*) = E(G).

 PROOF: Since G is strong, so that only winning coalitions have any "power," it
 is enough to show that the set of winning coalitions in g* is W.

 STEP 1: Let T C W. If 1 c T, then from the construction of 1(G), it is clear

 that there is a path p C -1(T).
 Suppose 1 E T. Then, since (N - T) : W and 1 c (N - T), there is no path p

 which is wholly contained in A-1(N - T). Hence for any path p*, p* n -1(T)
 # 0. Let m be the first element of p* such that p(m) c T, i.e. ti(p*(m,-))
 C (N - T) U M(m)

 Choose T c T such that:

 (4.1) S= p(p*(m,-)) U T and S E W,

 (4.2) for no i E T, (S-{ i}))E W.

 Such T exists since T c ti(p*(m, -)) U T and T E W. Since S C W and 1 C S,
 there is a path p^ such that

 (4.3) p*n A=p*(m-)

 and

 (4.4) Ap(m, +) c ti (T) c ti -(T).

 Hence, if T C W, for every path p, the following is true:

 (4.5) there is m C p and a path p such that

 m cp^ np andp^(m, +) C -'(T)

 STEP 2: Pick any a* c A. For all i c T, for all m c M(G), if i = p(m), let

 (4.6) xA(m) = a* if m E Z(G),

 (4.7) xp(m) = a-1(m) n M-1(T) if m C M(G) - Z(G).

 Equation (4.6) means that all individuals in T pick a* if elected king for a day.
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 (4.7) implies that at all nonterminal nodes of 1(G) where individuals in T are
 dictators, the successor node will also be in y - '(T). In view of (4.5), it is obvious

 that if individuals use strategies according to (4.7) the elected king for a day will
 be a member of T. From (4.6), Teffg*{a*}. Since this is true for all a E A, T is
 winning in g*.

 STEP 3: Now, suppose T E W. Since G is strong, (N - T) E W. From Steps 1
 and 2, (N- T) is winning in g*, and hence T is not winning in g*.

 Hence, the set of winning coalitions in g* is W, so that E(g*) = E(G).

 4.3. Acceptability of g*

 Notice that g* is derived from a finite tree such that at each node m, 'i(m) is
 dictatorial. Hence, from Moulin [6], g* is dominance-solvable. We now show that
 g* is also acceptable.

 THEOREM 4.3: g* is acceptable.

 PROOF: Suppose x _ NE(g*, RN), and T(x) = b. Then, b must be the Ri-
 maximal element of the king for a day, and hence b E Q(R N).

 Hence, g* is acceptable if NE(g*,RN) # 0 for all RN E LN. Let mi Z(G),
 andp^ be the path in 1(G) containing m7. Let i = [(m-), and a* be the Ri-maximal
 element in A. Consider any x satisfying:

 (4.8) for all m E Z(G), for all j E N,

 if j= (m), then xj(m)= a*;

 (4.9) for all m cp- -Z(G), for all j E N,

 if j= (m), then xj(m) = a-(m) n .

 Note that (4.8) implies that all potential kings for a day nominate a*, while (4.9)
 implies that at all nonterminal nodes in p^, the dictator chooses a successor node
 belonging to p^.

 We show that any x satisfying (4.8) and (4.9) is a Nash equilibrium by showing
 that:

 (4.10) for all j - i, for all A AXi, g(xA,X1j)=a*.

 Since a* is Ri-maximal in A, i has no interest in switching his strategy, and hence
 (4.10) ensures that x is a Nash equilibrium.

 Clearly, (4.11) is true for allj i t( A). Supposej = ti(m) and m C-$. Given the
 specification of y and 1(G), individual j by changing his strategy can at most
 select as king for a day some individual k E [N - p(p(m, -))]. In particular, j
 cannot get himself elected. Thus, (4.8) implies that (4.10) is true.

 So, g* is acceptable.
 Gathering our previous results, we are now able to state the main result of this

 section.
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 THEOREM 4.4: Let eff* be an effectivity function. Then, there is a game form g

 which is acceptable and dominance-solvable with E( g) = eff* iff eff* is the effectiv-
 ity function of a strong, proper simple game.

 The following result is also interesting-.

 THEOREM 4.5: Let eff* be a maximal effectivity function. Then, there is an
 acceptable game form g with E( g) = eff* iff eff* is the effectivity function of a

 strong, proper simple game.

 REMARK 4.6: Theorem 4.5 is not a complete characterization of acceptable

 game forms in terms of effectivity functions since there are acceptable game
 forms whose effectivity functions are not maximal. See Moulin [7] for an

 example.

 REMARK 4.7: Let eff* be the effectivity function of a strong, proper simple

 game, and E(g) = eff*. Theorem 4.5 does not assert that g is acceptable.

 5. CONCLUDING REMARKS

 The existing literature on implementation analyzes the strategic properties of
 game forms under several concepts of equilibrium. As these equilibrium concepts
 are quite different, the present paper looks for game forms which could possibly
 combine acceptability, dominance solvability, and strong consistency. Our first
 result shows that no nondictatorial game form is both strongly consistent and
 acceptable. The second result shows that kingmaker procedures play a central
 role in the family of game forms which are together acceptable and dominance-
 solvable; the effectivity function of such game forms is that of a strong proper
 simple game, and an explicit kingmaker procedure can be constructed of which
 the effectivity function is that of any given strong proper simple game.

 We conclude with a comment on the differences between Nash implementabil-
 ity and implementability via sophisticated equilibrium. Suppose the kingmaker
 game form g* is used as the aggregation mechanism. Then, the SCC H imple-
 mented via sophisticated equilibrium will in fact be single-valued, i.e., H will be a
 SCF. Moreover, the effectivity function of H will coincide with that of g*. On the
 other hand, the SCC H' which is Nash-implemented by g* will be the following:

 H'(RN ) = {a I a is Ri-maximal for some i c N2}.

 The validity of this assertion will be clear from the proof given to show that
 NE(g*, R N) #& 0 for all R N C LN in Theorem 4.3. Notice that not only is H* not
 single-valued, but also the effectivity function of H' will not coincide with that of
 g*. For instance, in H', individuals in (N - N2) are "dummies" since their
 preferences do not count. Of course, individuals in (N - N2) are not dummies in
 g*. However, it is easy to show that H(RN) C H'(RN) for all RN C LN. So, the
 planner who specifies a kingmaker game form g* will ensure that if individuals
 cannot collude, then at least the "minimal" requirement of Pareto efficiency will
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 be satisfied; if in addition, the agents behave sophisticatedly, then the planner
 can also "predict" the outcome that will be selected by the players. We view this

 as a powerful justification for the use of kingmaker game forms.

 Indian Statistical Institute

 Manuscript received March, 1983; final revision received January, 1984.
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