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 RANA BARUA

 ABSTRACT. We prove some category theoretic results for R-sets much in the spirit of
 Vaught and Burgess. Since the proofs entail many results on R-sets and the

 R-operator, we have studied them in some detail and have formulated many results
 appropriate for our purpose in, perhaps, a more unified manner than is available in
 the literature. Our main theorem is the following: Any R-set in the product of two
 Polish spaces can be approximated, in category, uniformly over all sections, by sets

 generated by rectangles with one side an R-set and the other a Borel set. In fact, we
 prove a levelwise version of this result. For C-sets, this has been proved by V. V.
 Srivatsa.

 1. Introduction and preliminaries. The theory of R-sets and the R-operator,

 introduced by Kolmogorov almost half a century ago, has been studied extensively

 by Russian mathematicians [10, 12, 13] and most of the basic properties have been

 deduced by them. However, it is only very recently that interest in the theory has

 been revived due mainly to the work of Hinman [7, 91 who developed the effective
 counterpart and showed that the effective hierarchies have deep interconnections

 with recursion-theoretic hierarchies. The introduction of Borel-programmable (BP)

 sets by Blackwell added a new dimension to the theory, and since then it has been

 shown by Burgess and Lockhart that the hierarchy obtained from BP-sets by

 iteration gives precisely the R-sets [6]. That two seemingly different definitions yield

 the same class of sets suggests that the R-sets form a natural class of subsets of the

 reals. Burgess has also obtained a different characterization for R-sets. He has

 proved that the entire hierarchy of R-sets can be obtained by applying the game

 quantifier to the "difference hierarchy" (of Y3) obtained from sequences of G,-sets
 [3]. Hinman (and also independently Aczel and Vaught, for the first level) first

 observed that the theory of inductive definability and games can be effectively used

 to study the hierarchy of R-sets [8, 1, 19]. These are the major tools employed by
 Burgess to prove most of his results on R-sets [3, 4]. In this paper, to obtain our

 main result, viz. the approximation theorem, we have taken recourse to these
 methods.

 R-sets in X x Y, the product of two Polish spaces, are in general complicated sets

 and cannot be related to any reasonable product a-field. For instance, as observed

 by B. V. Rao [16], C-sets in R x R need not belong to Y(R) ? Y(R), the product of
 the a-fields of Lebesgue measurable sets. However, as shown by V. V. Srivatsa [17],
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 C-sets in X x Y can be "approximated" sectionwise, in the sense of measure and

 category, by sets in product a-fields. His methods do not seem to generalize to

 R-sets. In this paper, we have shown that R-sets can be similarly approximated, in
 category, by sets in product a-fields. This incidentally gives the selection theorem of
 Burgess (cf. [3]).

 To obtain the approximation theorem, it is necessary to reprove some of Burgess'
 results in a more rigorous, accessible and, perhaps, transparent style. Our paper,
 therefore, serves a two-fold purpose.

 The paper is organized as follows. Positive analytical operations and 8 - s

 operations are introduced in ?2, and some of their elementary properties are

 discussed there. The papers of Kantorovitch and Livenson [10] give a detailed
 exposition of these operations. In ?3, we have studied the operator R of Kolmogorov

 and the more general operator ff. In this section, we have also shown how
 inductive definability and games arise in the context of these operations. The theory
 of R-sets, studied in great detail by Lyapunov [12, 13], is treated in ?4. In this

 section, we have given a proof of the pre-well-ordering property enjoyed by the
 classes c?P2 (p < wo) via the comparison of indices lemma. The proof of this lemma
 is much along the lines of the Kunen-Aczel theorem (cf. [14]). The comparison of
 indices lemma is crucial for our purpose since it helps in computing the complexity

 of the winning strategy for the existential player in the game associated with the
 operator R. This is done in ?5. Here we have also obtained a decomposition of

 E* = {x: EX is comeager} for sets E E 2'*, analogous to the one obtained by
 Vaught for analytic sets [19] and for X'-sets obtained by Burgess and Miller [5]. This
 immediately gives us the transfer theorem (cf. 5.4), which essentially computes E*
 when E is computed by R4N whenever the computation for F* for sets F computed
 by ?N is known. ?6 deals with a few applications of the transfer theorem, viz. the
 computation of E* for R-sets E. It is worth mentioning here that although our

 methods for computing E* are implicit in Burgess' proof for the same (cf. [51), he
 computes E* only for 1'-sets E, as any computation for higher levels using his
 methods will involve great notational complexities. By restricting ourselves to certain

 games of length X and isolating the "'core" of his proof (viz. the transfer theorem) we

 have been able to compute E* for all levels of the hierarchy of R-sets by a simple
 inductive argument. These computations yield sets in product a-fields which "ap-
 proximate" sectionwise (in the sense of category) R-sets in two dimensions. This is

 done in ?7. Incidentally, in this section, we have proved a slightly stronger version of
 the Game Formula of Kechris (cf. [11]) needed for our purpose.

 For our notation and terrminology we shall mainly follow Moschovakis [15]. The
 letter w will denote the set of natural numbers and ww the set of all sequences of
 natural numbers equipped with the product of discrete topologies. Letters a, f,, y,

 6,. . . will serve as variables over ww and rq, (,. . . as variables over 2 w. Seq will denote
 the set of sequence numbers of all finite sequences of natural numbers. We will

 mainly use s, t, u, v to denote sequence numbers. We fix a base L(s) for the
 topology of w-, where
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 If s and t are sequence numbers, we write s -< t if s = t r i for some i < lh(s); s * t

 or st is the catenation of s and t. If s = (ao.0. , ak 1), then (s), = a, for i < k. e or
 < ) will denote the empty sequence as well as its code.

 If Yis a collection of subsets of X, then a(Jv) denotes the a-field generated by 5w.

 If - and Ware a-fields on T and X, respectively, a 0 W denotes the product a-field.

 For X a separable metric, Rx denotes its Borel a-field.
 Given a monotone set relation F(w, x, A), where w varies over W and A varies

 over subsets of W, F, denotes the induced set operation

 Fx(A) = {w E= W: F(w, x, A)); x E= X.

 XF denotes the ,ith iterate, viz.

 FX1 = r(I U F:_ )
 p<

 We define

 U= UF

 and put

 we X< (3i < t[wE E ]

 The fixed point of F is

 FM = {(w, x): w E F)

 and is called the relation built up by F. We shall use elementary facts on inductive

 definability and games as found in [151. Note that all unexplained notation and

 terminology is from Moschovakis [151.
 The author wishes to express his gratitude to Professor Ashok Maitra for introduc-

 ing R-sets to him and for general guidance at every stage in the preparation of this

 paper. He is also grateful to V. V. Srivatsa for innumerable discussions. The

 influence of J. P. Burgess is evident on every page.

 2. Positive analytical operations. In this section, we shall discuss positive analytical

 operations and some of their properties needed for our purpose.

 Let X be a nonempty set and N c w'. Let ( En: n E w) be a sequence of subsets
 of X.

 DEFINITION 2.1. The 6 - s operation with base N is defined by

 4N({ Enf nE )) U nfE(k).
 aE=-V Ak=O

 In most cases we shall take the base set N c 2(0 so that

 mN((En: ne( )) U = nEn1.
 iEvN neil

 To avoid trivialities, we shall always assume 0 * N and N * 0.

 EXAMPLES. If N = { Xnai(n): a Eo w'}, then (N = operationW. If

 N = { a E w'Range(a) is infinite).

 then 4DN = lim sup. If N = {( n, n,... )In EC w,} then (, = U (countable).
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 An operation over Xis a function 4): 52(x)@ - (x).
 DEFINITION 2.2. An operation over X is said to be a positive analytical operation

 if

 (a) 4) is nonconstant and

 (b) x E 4)({ En: n E t)) &y Z ?(( Fn( : n c w)) -+ (3n)(x E En&y Z Fn)
 Clearly, U, sl, lim sup are positive analytical operations. A positive analytical
 operation on constant sequences takes on the constant value and is isotone i.e. for

 any families { F: n E w) and { Gn: n E w), if (Vn)(Fn C Gn), then 4(( F{J; n E W))
 c (D(( Gn: n E- w)).

 Given a positive analytical operation 4) over X, one can define a positive

 analytical operation 4' over any set Y as follows. For any family { Fn: n E W} of
 subsets of Y and y E Y, put

 y E 4)'(( Fn: n E w) ) thereisafamily( En: n E ) of subsetsof X

 and x E A Xsuch that x E 4)({ En: n E w))

 and (Vn)(x En -+ Y E Fn).

 It is easy to check that 4' is positive analytical and 4' = 4) when Y- X. The
 operation 4' is called the extension of 4) over Y. Henceforth we shall use the same

 symbol 4) to denote a positive analytical operation together with all its extensions.
 Notice that a 6 - s operation is a positive analytical operation (over any set X).

 The converse is true and follows from the following.

 PROPOSITION. Let 4) be a positive analytical operation over X. Then 4) = 4)N for
 some N C 2' (N C

 PROOF. Let

 D,I E= 2"i er i), or,
 = { a Ew li E Range(a)), i E W.

 Put N = 4({ D,: i e w)). It is easy to check that N) = 4N The set N obtained above

 is called the canonical base for 4).

 DEFINITION 2.3. A base N c w' is complete if N = 4N({ Dn: n E w)), when Dn is
 defined as in the Proposition. Thus the canonical base for a positive analytical
 operation is complete.

 Equivalently, a base N c 2" is complete if

 rj E N & r c '' c X -q' E N.

 If N = 4)N({ Dn: n E w)), then N is complete (called the completion of N) and,
 moreover, - = ,,

 DEFINITION 2.4. For any operation 4), the dual 4) is defined by

 Do({ En: n E w) ) = [4)N( Enc: n E) })]

 e.g. U 0 = n, (lim sup)0 = lim inf, -? = F, where

 F({ En: n E w) ) = ( x: (Va)(3n)(x EE( EJ(n))}
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 If 1N, is a 6 - s operation with base N C 2", then the canonical base No of its

 dual is given by

 (1) N0={i7N2": rrni'Z 0 foreveryq'eN)
 - { E 2'': i' Z N)} ifNiscomplete.

 Plainly, N0 is always complete. Thus, for any family { E,,: n E W)}

 (2) (371 E- N? )(n E t1)[x - Enl (V71 E N)(3n E 1)[x ( En].
 If N is complete, No' = N and hence

 (3) (V-q E- N?)(3n E -tq)[x E- En] (3 (q E- N)(Vln E 71q)[x E- En]*

 3. The R-operator. Although the R-operator was first introduced by Kolmogorov,

 the first published account of the theory appeared in [101 and further results
 obtained in [12, 131. Lyapunov also studied the hierarchies of R-sets (cf. ?4) and
 obtained most of their properties. The interconnection between R-operators and

 games was first noticed by Hinman [8] (and also independently by Aczel [1]).
 Hinman also developed the effective theory and did most of the groundwork. Much

 of the material in this section is adapted from these sources.

 DEFINITION 3.1. Let X= { Np c 2w: p e w) be a sequence of nonempty bases.
 6 c w is called an X-chain if

 (a) e E ,

 (b) s E 6 and t -< s -t E 6,
 (c) s E- *( n : s (n ) E e 0 E Ns.

 Put @, = { 6: 6 is an X-chain).
 ,. is the set operation defined by

 ._A({ En: n Ew)= ) u l Es.
 6e,4- SEO

 Clearly, M,* is a 6 - s operation with base 3

 If Np = N for each p, then M. is denoted by R(PN and its base by RN. An
 A'-chain will then be called an N-chain.

 EXAMPLES. Let N = {{ n) : n e o} so that 1%N = U and put X= { N). Clearly,
 an X-chain is any set of the form { i7(n): n E o). Thus R U = RPN = -/. If
 N = { }), then MN = n (countable) and the only X-chain is W, so R n = n.

 DEFINITION 3.2. Let 4?N and 4M be two 6 - s operations with bases N, M c 2".

 The composed operation ' is gven by

 P((1: n E? )= 4N(({4f({ F<Pfl)n E?(D): p E?0}).

 I is sometimes denoted by 4yNDM. By the characterization lemma, ' is a 6 - s
 operation whose canonical base we shall denote by NM. Thus 'P = 4N4M = 4NM
 and  71 E NM (3iql E N)(Vnl E q1l)(341 E M)(Vml E (,)[(n1, ml) E if.
 Henceforth, for simplicity, we shall take X -= ?" or (?w" )k x ?01, although most of the
 results hold for a general Polish space.
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 DEFINITION 3.3. For any operation 4D, let Z' be the class of relations of the form

 4'({ Fn: n E w}) with all Fn clopen, Hm the class of complements of such relations,

 and =, -: n H'. Then I'= 2 ?and 2" = 2
 If ) = M)N, then define V* = R4)NNo.

 The next two lemmas show a close connection between R-operators, inductive

 definability and games.

 LEMMA 3.4. (a) Suppose F = R'DN({ Fn: n E ow}). Then

 x e F- (3710 E N)(Vno E q 1)(3,ql E N)(Vn1 Em l)
 (*)~~~~~~~~~~~~ . (Vk)[x E- F< no t,njn -7 1)

 (b) If E = 4>({ En: n E w}), then

 x E E (3710 E N)(Vno E %)(V e0 E N)(3mO e 0 0)(37 j E N)(Vn1 E j)

 (Vj1 E(= N)(3m, E (1) . (Vk) [x e E((fn,rn). ...<nA,_ ,nA _)) ]

 (The right-hand side of each equivalence is interpreted in terms of games between two

 players V and 3.)

 PROOF. Clearly (b) follows from (a) and the fact that

 ,q E- NNO?- (3-1l E- N)(nl E= qj)(Vj(=-E N)(3m, e (,)[<nj, m,> (= q].
 To prove the first assertion, fix x and suppose x E F. Get an N-chain 0 E RN such

 that (Vs E O)[x E Fs]. Now, consider the following strategy for 3. As his first move

 3 plays o = { n: Kn) E 0) which is clearly in N. Any response no E i o by V gives a
 set ql = { n: (no, n) E 0) E N and 3 should play ml as his next move. If V then
 plays n1 E 1j, we still have (no, nl) E 0 and 3 responds with '12 = ( n: (no, nl, n)
 E 0). If 3 follows this strategy, then clearly for any k, (no, nl,..., nk 1) E 0 and
 so x E F<n() nA , Hence it is a winning strategy for 3 in the game ( * )

 For the converse implication suppose a is a winning strategy for 3. Let 0 be the set

 of sequences no,...,nk 1) of first k possible moves of player V when 3 follows this
 strategy a. Clearly 0 is an N-chain and since a is a winning strategy for 3,

 (Vk)[Kno, k-1) E X E= F<nP,n,...,nP, l )

 Hence x E R 4N({ Fn: n E o)) = F.
 REMARK. It follows from Lemma 3.4 that our definition of P* is equivalent (cf.

 Definition 3.9) to that introduced in [8, V. 4].

 The next result is due to Hinman [8].

 THEOREM 3.5. For any positive analytical operation 4) and any E c (o@)A x ow in
 HJL0*, there exists a (monotone) inductive operator F such that for all x

 E(x) 4 e E17 o.

 PROOF. Let { Es: s E w) be a family of clopen subsets of (ww)k x wl such that

 x e E x E 4F*({ Es: s E })
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 Let N c 2w be the canonical base for (. Then 4* = R?FNNO. Define a set relation

 operative on w as follows:

 (4)

 s e Frx() x e E, v (Vi E= N)(3n E T)(3 E N)(V m e ()[s((n, m)) E A].
 Clearly, F(s, x, A) is a monotone set relation. Put Es = (P*({ Es* : E W)). One
 can easily see that Ee = EC and Es c E_ We claim that for all s,

 (5) X e ES s E Fr

 and the result follows by putting s = ( ). We shall prove the implication ( ) by

 induction. If s E Fo, then x e Es D Es. Now suppose s E Fr, ,u > 0. Then

 x i Es V (Vq E N)(3n E iq)(34 E N)(Vm E )[s * ((n, mi)) E ' Fj'].

 If x e E., we are done; otherwise by induction hypothesis

 (V,q E- N)(3n E rlq)(34 Ei N)('Vm Ei ()[x e Es *<<n, 'n>>

 which by Lemma 3.4 (and determinacy) implies

 ('Vi E N)(3n e i1)(3J e N)('Vm e (){(V- E N)(3n1 E -

 (3(1 E N)('Vml E 41) (3k)[x e Es*((nm)) * (<n.mi)....(m))I 1

 This clearly implies

 (V,qo0 E N)(3nO E 710)(3o E N)(Vmo E= t)(V-ql E N)(3n1 E 71)

 (341 E- N )(Vml E- 41 ) ... (3k ) X x 4 Es * ((no,mo) ,. - . ,nA - ,m,A _ I>)]

 and thus x e RFNNo({ Es * t; t Et w)) = Es, by Lemma 3.4 again.
 Conversely, let s r Fl. We shall show that x e Es i.e.,

 (* *) (371o e N)(Vno E no)(Vto E N)(3mi0 40)(3Jl E N)(Vnl e 1q)

 (Vtl EE N )(3ml E 41 ) ... (dk ) [x (= Es * (<no,mo),. <nk- - 1,mA -- ,))]

 Since s 0 r r) by definition of F, x e Es and moreover,

 (3,q E N)(Vno E e)(Vlo e N)(3mO Ee (0)[s*((no, mo)) 0 r7 ]

 Now, 3 can win the game (* *) by adopting the following strategy. He picks o E N
 such that for any choice of no E qo and 40 e N, there is an mo Ee 4 such that
 s * ((no, mo)) ? F' = F (Fr). Thus x E E5s. (<,?,no.) and

 (3ql E- N)(Vnl E t1)- t E- N)(3ml E- (,)[s *((no,mo), nl, ml)) ]

 3 then picks - e N such that for any choice of n, e qh and 4l e N made by V,
 there is an ml - 4l (and 3 plays such an ml) such that s * ((no, mo), Knl, ml)) e
 I". Proceeding this way, 3 has a strategy which ensures that for all k, x E

 Es* <(no, mo),i.. (fnn- 1 mk-,>> and so 3 wins the game (* *). Consequently, x - Es.
 REMARK. If E is such that x Z E +-* x E RFN({ Es: s E w)), then the inductive

 operator takes a simpler form, viz.,

 (6) s E F, (A) -*x e E, v (Vq ii- N)(3n Ei q)[s * <n) E A].
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 More generally, if X= { Np: p E w} is a sequence of bases and

 E'= ?((E E,: s E=- ).
 then we take the following inductive operator

 (7) s E Fx(A) x 1 Es V (V1 E- Nj)(3n E ii)[s*s n) E Al,
 and the conclusion of the above theorem-still holds.

 The inductive operator (4) (or (6) or (7)) is called the canonical inductive operator

 associated with { Es s E w) and N (or X).
 The above characterization theorem yields a decomposition of sets in HIm (Z:)

 into simpler sets as is evident from the next theorem.

 DEFINITION 3.6. For any operation (P. V((?) is the smallest class of relations
 containing clopen relations and closed under (P and V?.

 Thus v( U ) = V( n ) = s1.
 Let E E I: and suppose E = (P*({ Es: s E w4). Let N and F be as above. Then

 by 3.5, E(x) e 4 1r. Set

 E,= {x:s F r1).
 Then E = n <E. Now define

 TA U ( Ef - EA+'
 .s C w

 It is easy to prove by induction on ,u that for all ji < ws 5 E w, E, and T" are in
 V((P). Then we have

 THEOREM 3.7. E = U < (EA - TA) = n Ef.

 PROOF. Let x E E. Define

 B(s ) ( /least ordinal p such that x e EP if (3p)(x e E)
 O otherwise.

 Let o > p0 > ,8(s), Vs. Then (Vs)[x E EPo " x E EPO+'J. Consequently, x e TP(
 and thus x E EPo - TPo.

 Conversely, suppose for some po < wl, x E EP( - TPo. Then

 (Vs)[x E EsP X E EP0
 One can check by induction that

 (Vp > po)(Vs)rx E EvP x E EPj.

 So in particular,x E=- np Eep = n EP = E.
 Standard arguments using the above decomposition and the countable chain

 condition yield the following (cf. [8]).

 THEOREM 3.8. If (P preserves measurability (preserves the Baire property), then so
 does (P*.

 DEFINITION 3.9. For any two operations (P and I, (P subsumes I ((P) t 4) if there
 is a function f: w -- w such that for any family { Fn: n E w),

 I({ Fn: n e w)) = ()({ Fj(,): n E w)
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 (F and I are said to be equivalent (ID - t) if ( >' t and I >, (. For example, Y
 subsumes both U and n(.

 DEFINITION 3.10. A positive analytical operation (F is said to be normal if there is

 a function g such that for any family { Jn: n E },

 ?(D(~ ?(D F<r q) : q E=- ): p E= ) ) = ?(D Fg(,) : n E- w)

 We shall omit the proof of the next lemma which can be found in [7, 9].

 LEMMA 3.11. For any operations (D and '

 (a) (D' = (D;
 (b) (F >? I -* (D)o > 4,0;
 (c)(o (D0 o> ( (Fo;
 (d) R( > (F;

 (e) (D >, -- R(D >, R;
 (f) R (D >' I and R (> ,0 R* > '4+'0;
 (g) R(D - RR;
 (h) R(F is normal.

 4. The R-sets. We shall first construct a sequence { Rp: p < wl) of positive
 analytical operations by induction as follows. Put R0 = Wand having defined Rp,
 put

 R +1 =R*

 If A is the limit, choose a sequence Pi T A and set, for any family { En: n e c),

 x

 (F({ En: n E ) w}) n Q N, (FN({ (,~E mE } )

 where Np is the canonical base for R p. Then define

 R= (*

 Note that any other sequence p T A gives rise to an equivalent operation by Lemma
 3.11. Also, it is easy to check that Rp > Rp if p > p'.

 For each p < w, let Mfp = ':RP and B - ARp. Let P be the least class
 containing clopen relations and closed under Rp and complementation. Thus, for
 instance, M = 21, B?' = A and 4? = C-sets of Selivanovskii. Finally, set

 M= U P.
 p <K6

 Members of M are known classically as the R-sets. It is not difficult to see that for

 each p,

 MP c ,P C BMP c MP +

 In fact, the inclusions can be shown to be strict (cf. [12, 13]).
 The following is immediate.

 LEMMA 4.1. For every p, R is normal and RR R
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 For each p, the class P can be decomposed into a hierarchy just as in the case
 of the Borel class. Suppose RP = F*. We set A' M P and take

 [(= R4U B)] B ={ E: E, E E )

 P is the smallest class containing P and closed under P and complementation.
 It is immediate that these classes are included in 4 and indeed that -q =

 U C.) IM. As above we have, for each p, ,t < W.
 , P c qA" C B-qA+ I C U+1

 We shall now show that each class c-JP = IInv has the pre-well-ordering property.
 The key to this is the following lemma.

 If E = M<({ En: n E o)), where A= ( Np: p E o) and F the canonical induc-
 tive operator asociated with ( En) and A, then we have x 0 E " e c F0. Put

 I(s, X)IF - least p such that s c fP if such p exists,
 I(s,x)j = sucherexists

 Thus I(e, x)jp <( w, x 0 E.

 LEMMA 4.2 (COMPARISON OF INDICES). Let 4= { En: n c o) andY= ( Fn: n c c)

 be two families of subsets of X and further assume that J is regular, i.e., F, C F, if
 s -< t. Let A= ( Np : p E c)l, A = ( Mp: p c }) be two sequences of bases. Define a
 sequence of bases ( K : s E c) as follows. If s = KKno, mi0). nk, ik)) then Ks
 is the canonical base for the positive analytical operation ? defined by

 ?(( Gnf n E ())) 4 to,( )Nno (( G<n m): n E )) )m M ).

 Otherwise, Ks = { ). Let
 A-= ( Ks: s E ? }

 H n= <in0n.) u F inmo k-;n) if s = K(no, mo),. (nk, Mk)).
 X otherwise.

 Suppose F is the canonical inductive operator associated with 6and A; A the inductive
 operator associated with YandJl. Then,

 { x: I(e, x)Iv < j(e, x)I,) = ! Hs: s e ) ).

 PROOF. First note that

 E7 - K((n0,m0).--n,j .m, 1))

 3 M (3T1 E M<m( m (V E 1 (31 1 E N <no,- -n,-,))(Vn E= r")[<n, m) e q].

 The operators F and A are as follows.

 s c F(A) +-* x t Es V (V1 E Ns)(3n E ri)[s *n) E A],
 s c Ax(A) x 0 Fs V (Vq E Ms)(3n E ri)[s*Kn) E A].
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 To obtain the result look at the canonical inductive operator associated with rand

 -X'= { H, : s E :

 s e Ax(A) x 0 Hs V (Vi E Ks)(3n Ef 'q)[s *(n> E A].

 We claim that for all x E X and no, mo,..*, ni-1. M -I

 (8) I((no . n,1, x)Ir < (iMO, ..., min1), x)jA

 (no moi). ni,-1, mn,-)) e Ax
 and the result follows by taking i = 0.

 We shall prove the implication (-b) by induction on 1(Kno,..., n,_1), x)Il. Sup-
 pose

 p = I((no,..., n,1-), X)Ir < (Mo0,..., ml-), x)LA

 and assume, to the contrary, ((n0, miO>, . . , (ni - 1, m1 - I ) ) Z A . Then

 (i) x E E<nn)u F<cm m) &(3ii E K<<n s ).K <nli. m,i))

 (Vs e )r[(no, moi),..., (ni_1, mj_1)) * (s) 4 Vx0
 Now, (imo...im ) e A and so

 XeFmO ,nt, I) (3,' E M<mo. .,m, ))(VM E? i,')[(mO...,1, m) M
 This implies

 (ii) XE F<mo mI-) &

 (3 e E M<mo .._m 1))(VM e i, )[p < K((Moi..., Mi 1, m), x)IJ.

 Clearly from (i) and (ii), x E E( n o.n and since (n0,..., ni -> e r,

 (VII" e N<.- -,n,))(3n E ri")[(nno, n,, n) E r<P]
 which gives

 (iii) (Vq" e N<no.. _n,_j))(3n E 7 [(- o*- ni-1, n), X)lr- <

 p = 1((no, n, 1), x)jr]-

 Fix q E K?nomo) <n i)) to satisfy (i). Getq' e MO m 9such that

 (iv) ('Vm E , ')(3ii" E N<no ._n,_1)(Vn E q")[(n, m) E q].

 Clearly, (ii) and (1) of ?2 yield m* e i,' such that

 p < ((mO ,..., min1, m*>, x)lA

 By (iv) corresponding to m* get " E N<no .n,-) such that (Vn E i,")[(n, m*) E q,].
 By (iii) get n* E 71" such that K(no..., ni n*), x)Ip < p. Clearly, (n*, m*) E i,
 and

 .((no..., ni- , n*>, x)Ip < p 1 ((mo,. in, M 1, m*), x)IA

 and by the induction hypothesis this implies

 ((nO, i0). , (n,-1, mi,-1), (n*, m*)> c A7,
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 This clearly contradicts our choice of 'q. Hence ((no, in)O, n m,1 i - 1 A.
 To prove the other implication, set

 A*= ((nO, M *),., (n1, mi>1))

 I((ni,..., ni 1), x)Ir < 1((mO. , m ), x)I)

 u ( t: t is not of the form ((no, MO),..., (mKi1, mi - 1))}

 We shall show that A,(A*) c A*, from which it will follow that Ax c A*.
 So let

 (v) ((no .MO), - , (ni - 1 , mi - 1 >> E- AxY (A*) .

 We will have to show that

 I((no,..., n, 1), X)ir < (Kmoi,..,, mi,1), X)Ia.

 Assume to the contrary that

 1((MOI ..., IMi-,), x)ji, < 1((no,?... ni-1>, X)lr-
 From (v) we have

 x E E'0 1,n, -) n F.I.m_, ,m_,) V (VTq e K((n,mo),,n,m ,)))(35 e 1)

 I((nO, miOn ,., (n- 1, min, s) E A*].

 If x e E<n n ) (97<m0.m, n)' then 1((nO,* .., n,1), x)l 0 and
 i((MO,..., mi 1), X)jI > 0

 and we are done. So assume

 (vi) x E (E(,.., ) U Fc,.0.,m, 1)) & (Vi K(('0 mo).' .(n in E 71)
 I((no, MO),. K (nj , mi-,), s) E A*].

 If x E F7m() ,m l) then by regulan'ty x C F('mo rn,m) for all mi, and hence

 (Vm)l((mKOm. .i,1 m , m), x)l = 0]. But this is not possible by (vi). Therefore,

 (vii) x E (E(n *n, -) n F(m i, 1))

 & (V71 c K((no, mo),...,<n, - 1 m, 1),)(3s GE71

 ((no, M0).s 11 (ni1- 1). s) E A*].

 Case 1. I((n O,. , nI-1), x)lr = l. In this case (nKO., nI-1) F F` and hence

 (31" e N<n(_ _n, ))(Vn e 71)[I((n , n, 1' n), x)lr = w1

 Fix such an q e N<n(,fl .n, Pick anyq ' MPmO .m ) and put
 71* = {(n, m>): n e i" & mi E'e .
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 Clearly ij- e K((nomo)n. n,- 1, m, 1)) and, moreover,

 (VKn, m) e j*)[I((mo,..., m1, l m), x)IA < w = 1((no,..., n1_1, n), x)lr]-
 This contradicts (vii).

 Case 2. I(Kn0. . . n,1), x)lr = p < 1. Here we have, by our assumption,

 (mO. m . , E1) AP and since x E F .mo- ,m, 1)

 (VT,' M(nmo.m,..i))(3m E 7j')[I((m0 ..., m , in m), x)jA < p]

 which implies by (2) that

 (371 e MO(mo -m-l) )(Vm E T,')[1((m0,. m1, im), x)lIA < p] hence,

 (371 ( M< ,m, I(Vm e T')[(n0,..., n, 1> ) nm, m)x)L]

 Consequently,

 31' E Mm. m1))(Vm E 71 )(371e Nn(- -n, 1))(Vn E 7

 [I((mo, ..., in,l1 M), x)L < I(Kno.., nJ n), x)lr].

 This clearly contradicts (vii). Thus in either case we have a contradiction and so

 A'(A*) c A*. Thus Ax C A*. This proves the other implication of (8).
 The following trick is due to Lyapunov.

 LEMMA 4.3 (INCREASING THE INDEX BY 1). Let F be the canonical inductive operator

 associated with 4 = { Ep: p e o) and A= { Nk: k E o). Define

 E<*) = X;

 *= (nl ...,nk) if s = Ki, n .nk),
 0 otherwise.

 Put

 N*) = ((1)

 fN<n.n) if s = K1, n1,.. ., k

 = n} n E w} otherwise.

 if X*={ NA k E * }, then

 9-.*({ Es*: s E }) -- Q Es: s e })
 and 1( e, x r= I e, x )I r + 1, where F* is the inductive operator associated with

 0* = ( Es*: s E ,} andX*.

 PROOF. We shall prove by induction on p that

 1,n . .. nk)E kE nl .n ... * * n
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 Now,

 nl, n...f nk) E- Fx*P X+ x E<ln.--n* V

 (Vi, EC N<*jnj,,,nj )(3n E q)[(1, nj,..., nk, n) >

 + X . E(nl,--,nk) V

 (V, 71 N(nl),.-.nk,n)(3n E i)[nl,..., nk, n) E Cx<P]

 ( nl,..., n*) E rP.
 e C * E 4*+ (Vq E N*)(3n E n )[Pn) E r,]

 4* Ki)E eFX*P

 + e E FP.

 Hence ,x(d{ E>: s E o)) = R{(( Es: s E w)) and I(e, x)lr. = I(e, x)Ir + 1.
 The following lemma follows from above. One has only to observe that for any

 positive analytical operation 4F, R(F is normal, R4&?(D - R(F&)? and if

 X-= (Ns{ :s (= ,)
 is a family of bases such that (F >, 4? for each s, then RD >, .

 LEMMA 4.4. Let 4 > U be a positive analytical operation and A= { N,: s E o)}
 A - {M,: s EC } be two families of bases such that for each s, 4* subsumes 4)N and
 4?fo. Suppose { Es: s E o } is a family of sets in I` and { Fs: s E c } a regular family
 in H . Let F be the canonical inductive operator associated with = { Es: s E o } and

 X, and A that associated with Y= { FsI: s E w } and X. Put Al (x) = I(e, x)Ir and
 32(X) = Ke, x)ja. Then

 (a){ x: fl(x) < /2(X)) EC I
 (b) {x: Al(x) < w1 &I(x) < 832(X)) E IC

 PROOF. The first assertion follows from the comparison of indices lemma and the

 observations made above. The second assertion follows from the first by increasing

 the index of A by 1.

 By slightly modifying the inductive operator A in the proof of Lemma 4.2, one
 can obtain the following

 COROLLARY 4.5. Let F, as, ( be as in 4.4. Then

 {(s, t, x): I(s, X)j < 1(t, x)A) EC H .
 THEOREM 4.6. For any positive analytical operation F > U, HI has the pre-well-

 ordering property.

 PROOF. Let E EC H and suppose

 EC = 4D*({ As: s E w) with { A) clopen and regular.

 Let ,8(x) be the norm on E induced by the canonical inductive operator. Let N be

 the canonical base for (F and put X = { NN0), X = ( NN?}. For each s, set

 Es=As X X, Fs =X x As
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 and let /3l(x, y), /32(x, y) be the norms induced by the inductive operators associ-
 ated with { Es: s E w), A' and { Fs; s E w}, At. Since all the hypotheses of Lemma
 4.4 are satisfied, the sets {( x, y): f31(x, y) < 132(X, y)} and

 (X (x ) y:J8 ,(Xs Iy) < W 1 &J81(X I Y) -<' #2(X I Y)}

 are in H". But

 (X, Y): 1l(X, Y) < 12(X Y)} =((X Y): P(x) < ,(y)}

 and

 {(x, y): j(XI y) < Wl & 91(XI Y) -<' 92(XI Y)}

 = {(X, y): f(X) < I &f3(x) - :3(y)}.
 Consequently, HII is normed.

 COROLLARY 4.7. For each p < l, ctWP has the pre-well-ordering property.

 5. Complexity of winning strategies and the transfer property of the R-operator.

 THEOREM 5.1. Let 4P be a positive analytical operation which subsumes both

 (countable) U and nl. Let V be the a-field generated by, 14*. Let E E 14 be such
 that

 (i) x EEE E - E 0NN)(Vn0 e 1o)(37h E NN0)(Vn1 E q1)

 * (Vk)[x E En(,_ .nA,>]

 N being the canonical base for 4P. Then, there is a v-measurable function x - aX such
 that ar is a winning strategy for the player 3, whenever x E E.

 PROOF. Let F be the canonical inductive operator associated with NN0 and

 (Es: s e w} and put NN? = M. Define

 /3(s, x) - [least p such that s E- FP if s E F`
 '' otherwise.

 Now suppose x E E. So 3 wins the game (i).

 If 710, 711, ... Ik- 1 and n0, n1,. .nkl - are the first k relevant moves of 3 and V,
 notice that 3 goes on to win the game (i), i.e., he is in a winning position iff
 (no,.* n c i.e., iff 1((no,..., n), x) = . In such a case, 3 has to
 play an i Ee M such that (Vn E f)[f((noK .- .. nk-1, n), x) = of]. We, therefore,
 define for each x, the strategy ox for 3 as follows:

 p E ax(S) - f3(S, x) < 1(s * (p), x).

 Clearly by 4.5, the map x - ox is v-measurable. We shall now show that if x E E,
 then ao is a winning strategy for 3 in the game (i). Suppose qj, no, qj, nl, .. k-

 -1 are the first k moves of 3 and V and assume that 3 has not yet lost the game i.e.
 he is in a winning position. Consequently, we have (f((no, nl,..., nk1), x) = l
 and hence (n0,...I nk-1) o Fx. Therefore,

 (ii) (3r1 E M)(Vn E q)[/3((no, nl. k- n), x) = @j
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 By definition,

 ax ((nO .... n k -1)) = p: /((no, nk-1), x) < 1((Kno. nk1, p), x)}

 = { p: /((no,..., nk-l1 P)> x) = wl}
 Hence, by (ii) and the completeness of M,

 a((n)?o,... nk-l)) = e M,

 and moreover, Vp E q, I((no,..., nk_1, p), x) = wi, so that 3 is still in a winning
 position.

 REMARK. Notice that

 (iii)

 x 1 E (V710 E M)(3no E 710)(Vq,1 E M)(3n, E ... (3k)[x % E< .flAl)]

 (3710 E M0)(Vno E 10).. (3k)4x e E<no .,nA,lj]

 Here also we can have a definable winning strategy for 3 whenever x f E. Unlike

 the game (i), here 3 has to play such that at each stage the value of ,B is decreased.

 The following will give a V-measurable winning strategy for 3 in the game (iii)

 whenever x e E:

 p E ox(s) + x e Es V (13(s * (p), x) < f(s, x)).
 DEFINITION 5.2. A set E C X x Y is said to be normal if for each x c X,

 EX = { y: (x, y) e E) has the Baire property. If E is normal and U c Y is open,
 then define

 E u= {x E X: EX is comeager in U).

 If U = Y, we write E* instead of E*U.

 LEMMA 5.3. Let 4) be a positive analytical operation which preserves the Baire

 property and let E = 4)*({ E,: s E w), with each E c w' X w' normal. Define EA
 and T" as in 3.6. Then for any s E w,

 E n [E]* U [E/1 TAi](s).
 A<W1 A<W1

 PROOF. As in Theorem 3.8, one can easily check that EL and T" are normal for

 each 1t. Since E = fl , E", it follows that

 (i) E~(s)~ * q(s) c n [E]
 J< WI

 Next, suppose x E [EA] .Y(s) for all IL < w1. For each p E w, (( Ep4)X ,u < WI) is a
 decreasing sequence of sets with Baire property. Hence by the countable chain

 condition, 3/3(p) < w1 such that

 (Vp > B( p )) [(E(P) - EPP ) is meager].

 Choose po such that ,B(p) < po < wo, for all p. Then (Vp)[(EPo - EP+)X is
 meager] and hence (TPo)X is meager. Since x e [ELP?oI (s), (EPo)X is comeager in
 1(s). Therefore, (EPO)X - (TPO)X is comeager in E(s) and so x E [EPO - TPol* (s).
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 Thus,

 (ii) Q) [ E] c U [Er- TAI
 JI<WI JI<W1

 Finally, since (EA - TI) C E for each ,A,

 (iii) U [EA - TAY] (s) c E

 The result now follows from (i)-(iii).

 TRANSFER THEOREM 5.4. Let 4) and I be two positive analytical operations such that

 F? preserves the Baire property and I is normal and subsumes both (countable) U and

 n. Suppose, moreover, that there are functions f and g such that for any normal family

 (JEp: p c w) of subsets of w" x w' with E = 4(( Ep: p c wD,

 E * u(s) - f(( E ;s( B( P)): p E w} ).

 Then for any normal family ( Fp: p e w) of subsets of w' x w',

 (a) F = (o(( Fp: p e w)) implies that

 F * l(s) = NY (( F* 7( P));p E -} ),

 for suitable functions y and 6 (independent of the family ( Fp)).

 (b) F = 4PF&({ Fp: p e *o}) implies

 F - (( F ( I(P ;p e } ),

 where

 a(s)== (f (n), y(m)) if s = (n, m),
 arbitrary otherwise;

 /3(s) = fg(n) 6(m) if s = (n, m),
 arbitrary otherwise.

 (c)F= F I*(( Fp: p Eo w)) implies

 F * I(s) = q*( F7*(Sg(p)) p E } \kf(P) S ,I

 where

 j(S) (a(nO) ..., a(nk-l)) if s = (no,..., nk-1)'
 arbitrary otherwise;

 -(S) J13(no)3l(nj) [3(nk_1) if s = (no,.... n.-I)'
 arbitrary otherwise.

 PROOF. Let N and M be the canonical bases for 4) and 1, respectively.

 (a) Set G = FC and Gp = Fpc for each p.

 Then G = 4)(( GP: p E w)); and since F preserves the Baire property, each GX has
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 the Baire property. Therefore,

 GX is nonmeager in 2 (s)

 (3 u) [GX is comeager in E (s7u)]

 (3 u)(3Tq E M)(Vm E q) [?G;Gm ) is comeager in Y. (s'u'g(m))] by hypothesis

 (3 u)(3i E= M)(Vm e 71)(Vv) [G;Xm) is nonmeager in (s ug(m) v)

 (3i E- M)(V m E q)[GyXm)is nonmeagerin E(s6(m))],

 for some functions y and 6, as (M,> fl, U and is normal. Hence,

 Fx is comeager in E(s) Gx is meager in I(s)

 (Vn Ee M)(3m E n)[Gyx,f1) is meager in Y:(s6(m))]

 ('Vq E M)(3m E 71)[Fx,,,) is comeager in Y(s76(m))]

 (3r E M 0)(V m E 71)[Fy'Xm) is comeager in Y( s ( m

 This proves (a).

 To prove (b), observe that

 F is comeager in E4s)

 4P({ 4D?(( F<p,q>: q E w) ):p C= W) )]is comeager in Y. (s)

 (3rl E M)(Vn Er- )[(4'0({ F<f(n),q): q E @ ))x is comeager in E(ig(n))]

 (by hypothesis),

 (371 re M)(Vn e q )(3e ( M?)(Vm e

 [Ff(n),y(m) > iscomeager in E(sg(n)~6(m))] (by(a)).

 Setting a((n, m)) = Kf(n), y(m)), 1((n, m)) = g(n)6(m), we get (b).
 (c) Since F - (*(( Fp: p E w)), the canonical inductive operator 1 is given by

 p E r-(A) - z e Fp V (V-q E N)(3n E 71)(3J E N)(Vm e ,)

 [ p * ((n, mi)) e A]; z E -w x wd.

 Define z e Fp" p - 17r. Then by Lemma 5.3,

 (i) ~~~~~F * l(s) =n [Fe] 2(s)

 Define a set relation A operative on o as follows:

 t E Ax (A) F(x is not comeager in I((t)) v
 ('Vij E M)(3n E ij)(3J E M)(Vm E -

 W((t)o ((f (n), y(m))), (t)h9 (n)ta(m)) t A
 We shall show that
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 To prove (ii) we shall show by induction on ,i that

 x 0 [ F,]L :(s) St > GE AtL
 This is clearly true for ,i = 0, so assume , > 0. Now,

 x 0 [FtL] s() F (F,)x is not comeagerin E(s)

 F, is not comeager in (s) v [Ov(N n F,^<P p E)

 is not comeager in I (s)

 F,- is not comeager in 1(s) v (V1 Ee M)(3n E ri)(3J E M)(Vm E -

 f(n) y()) is not comea(by(b))

 J2,xis not comeager in L(s) v (Vij e M)(3n e 71)(34 e M)(Vm e (

 iS not comeagerin n (sg(n) (m))]

 ,F is not comeager in I(s) V (V1 E M)(3n e q)(34 E M)(Vm E (

 (3 A < u) [(t ((f (n), IY(m)>)), s'g(n) 6(m)) E- SA,,]
 by the induction hypothesis

 (t, S) E APs.

 Hence, putting t = ( ) and using (i), we obtain (ii). Therefore,

 Fx is comeager in 2s(s) x E F* (s) - 'e, s) e Ax by (ii)

 e(3Nn E M)(Vno E eo)(Vto E M)(3mn E (0)

 (Vk) [Fx( (f(no),'y(mo)) ... (f(n-,). Y(m&_ ))) is comeager in

 2(s'g( nOf)6( mO )' - *g( nk- 1) .6(Mk -1))]

 Define f and g as follows:

 / (a(no). a(nk- 1)) if s = (no,..., nk -. 1>)
 f(s) = arbitrary otherwise;

 OS5) = (,(noffl(nj)' - l](n.-,) if s = (no- nk- 1),
 arbitrary otherwise.

 The result now follows immediately.

 REMARK 5.4.1. The import of the Transfer Theorem is that if a set E computed by

 4' is such that E*x(s) is computed by ', then for any set Fcomputed by V, F*'('
 is computed by t*

 REMARK 5.4.2. It is clear from the proof of 5.4(c) that, under the hypothesis of the

 theorem, for any normal family { FP) of subsets of o"' x o' with F = R! (I({ F,4),

 F*(s) = R'FM({ Ff,2(s g'(P)) p E o
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 where

 f'((n ,O.. nk - 1)) = ((f no),..., f (nk - 1 ),

 g'((nO*... , nk l)) = g(n) )g(nj) **g(nk - 1)-
 Here, normality of ' = iM is not required.

 6. Applications. We shall now apply the Transfer Theorem to deduce Vaught's

 Formula for E* (cf. [19, Theorem 1.61) and the Category Formula of Burgess [3].

 THEOREM 6.1 (VAUGHT). Assume E = 5W(( En: n e w}), with each En C "' X wJ
 normal. Then x E E * s(s) if and only if

 (Vuo E Seq)(3vo E Seq)(3ko)(Vul e Seq)(3v1 E Seq)(3k1) ...

 (Vi4) [E is comeager in Y (suovuo u: _ Iv)i 1 .

 PROOF. Let N = { n}: n E- w} so that mN = U. Suppose F = 4?N({ Fn: n E w)&
 = U n, Fn, where each Fn is a normal subset of wS x w'. Then,

 F`t is comeager in s (s) (V u e Seq) [ Fx is nonmeager in I (s u)]

 (V u E Seq) (3k )[ F,x is nonmeager in 5( su)]

 (Vu E Seq)(3k)(3v E Seq)[Fj,' is comeager in (s`'uvu)].

 Let 4M be a 8 - s operation such that for any family { A n),

 mM({ An: n E w))= n U UA(u.<k,u))'
 ueSeq v'cSeq k <uw

 Hence,

 F is comeager in ( s)

 (3r1 E M)(Vn E q1)[F(x) is comeager in E(S(n)o(n)1)]

 (3T71 E M)(Vn E )[F(n) is comeager in I(sg(n))],

 wheref(n) = (n)1.o and g(n) = (n)0(n)11. Since

 E = V(En: n E=e c))= RPN({Eln))

 the Transfer Theorem immediately gives

 E * u(s) = RFM({ E('sg( p) P . )E

 where

 g(.n S nk-)) = g( n ) g( n) * n I g( nk1)

 and f((n . *, nk - l )) = ( fnO )n 0,. f f(nk - )). Therefore,

 EX is comeager in E (s )

 (3,qo e M)(,Vno (= 710)(3,ql E- M)(Vnl E- 71j)..

 (Vi)[E(fl) (n )> iscomeagerinI(s;g(no)'- ^g(>n. ))]

 (Vuo E Seq)(3vo E Seq)(3ko)(Vul E Seq)(3vu E Seq)(3k,) ...

 (Vi)[E<k0 *k,_I) is comeagerin (suovo ... Ul- 1Ul -- 01)
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 DEFINITION 6.2. Define an operation < as follows.

 xe ({En: n E ))

 (VU0 e Seq)(3vu e Seq)(3ko)(Vul E Seq)(3vu e Seq)(3k,)

 * (Vi)[x E EKKUo'KA0ox o))-U s< kA I,a, ,M

 Clearly t is positive analytical and ~- S. Call t the Vaught operation.

 Define a sequence of positive analytical operations { Sp: p < wl) by the induction

 So = SP +1 = SP*

 If A is limit, choose pi T A and set for any family { En),

 ({ En n ) D = MO, MpO( (( E(<,,m )m E )

 where M is the canonical base for SP,. Then define S. = **. It is easy to check by
 induction that for each p, RP - SP and hence RP = 1 p = I lsp.

 We shall now deduce the Category Formula of Burgess by showing that if E is in

 MP, then E* is computed by Sp.

 THEOREM 6.3. Let E C o' X o' be a set in #P. Then E? v -{x: E-' is comeager

 in E(s)) is also in P.

 PROOF. We shall prove the theorem by induction. Let Np and Mp denote the
 canonical bases for Rp and Sp, respectively.

 Assume that for all v < p there are functionsf, and g, such that if

 F = R,,({ Fn: n E })

 with each Fn C dw x dw" normal, then

 F (s)- Ff*(sg(n)) n E ).

 We shall then show that if E = Rp(( En)), then E* S is similarly computed by Sp.
 The result then follows by observing that for each clopen En, En* is also clopen.

 Case 1. p = v + 1. In this case, E = R*(( En: n E w)). Hence by the Transfer
 Theorem,

 EX is comeager in E(s) - (3%ib e Mo)(Vno E % M0)(3m E )

 (VI)[E((nOmO) m iS comeager in

 (sg,.(((nv. mo)., (n,_, mn- ))))j

 wherefi and g, are related tof,, and g, as in 5.4. Settingfp = f, and gp = g we get

 EY(s) -ss( F gn n E .} ).

 Case 2. p is limit. Choose a sequence P, T p and for any normal family { Hn: n e w)
 set
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 Then,

 H' is comeager in E(s) (Vi)[( 4N,No({ H(l.m): m ) is comeager in(s)

 (Vi)(3rn E M, )(Vn Ez r)(Vt E Mp )(3m E =

 [H<,,-x ,m) is comeager in (s jB((n, ))

 (by the Transfer Theorem),

 where al and 13, are obtained as in 5.4(b). Therefore,

 H * f z +( Hf* sg(m)) : m }
 H*~(s) - f( m) (~

 where ' is the operation in 6.2 and

 f ((i, n)) = (i, a, (n)), g((i, n)) = /3(n)-

 Since E = (*(( E,n}), by applying the Transfer Theorem again we obtain the result
 as in Case 1.

 As the R-sets have the Baire property the next result follows immediately.

 COROLLARY 6.4. If E E c5qP, then E *(s) is also in cMP.

 By repeatedly applying the Transfer Theorem and 6.3 to every level of the

 hierarchy of -qMP-sets one obtains

 COROLLARY 6.5. If E E _p ( [,p < ,1 ), then E()is also in &49.
 In particular, putting p = 0, one has Jor anv C-set E, E* is also a C-set.

 7. The approximation theorem.

 LEMMA 7.1. For p < wl let Rp = = R fP,V\O. As in the proof of 6.3 there are
 functions f and g such that for any normal familv { En) with E = Rp({ En)),

 E' is comeager (3 (r z kE )(Vn E q)[Ef(n) is comeagerin Y2(k(n))]

 (3m1 E M)(Vno E ...

 (Vk )[E' (v )
 .< m (K nA i,mA I))) is comeager in

 Y (/3((no, mO)) * - ((nX mal

 wheref g and a, / are related as in 5.4(c) and (D - 4P and K = RMM(.

 Then, one can choose K such that for anyn E K, U n ET21 (g (n)) is dense in ww.

 In fact, k mav be taken to be the canonical base for S. with the property that for any
 c K and s E Seq there is an n E ij such that A( n) extends s.

 PROOF. We shall prove this by induction on p. For p = 0. 4% is the Vaught
 operation YF. Taking K to be the canonical base for W it is easy to check the

 assertion of the above theorem.

 So assume p > 0 and the assertion holds for all v < p.

 Case 1. p = v + 1. Then (DN = Rv. Let i1 e KC = RMM'(, where M has been
 chosen to satisfy the assertion of the theorem for the operation R,.
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 Fix a basic clopen set l(t). We have to show that there is n E i such that g(n) is
 consistent with t (in fact, extends t).

 Since q E RMM?,

 (3,qo e M)(Vno e 710)(Vto E M)(3mo e )...

 ... ('Vk)[((nO, mO) ... Kk-1 mk k-1)) e

 Fix 7i0 E M such that for each no E 71,

 (VE,0 E M)(3mO E- e0)(3nj E M)(Vnl E inj)(Vj1 E M)(3m, E 41)

 (Vk)[((nO. mo),.(*, nk-_1 mk -1)) E 71]

 By the induction hypothesis, there is an n* EC qO such that g(n*) extends t. Now pick

 a Eo E M such that for some m* E 40,

 (3n0 E M)(Vno E 'qo)(Vto E M)(3mo e (0)

 (Vk)[((no, mo) (nk-1' mA-l)) 7]

 Clearly, n = ((n*, m*)) E r1 and g(n) = g(n*)8(m*) (cf. 5.4). Thus g(n) extends t.

 Case 2. p is limit. Let p1 T p. Then Rp = = RFNNo, where PN is the operation
 given by

 (,v (( Fn}) = In D,p,Np(2 FI<,m): mEE @}) and N, = Rp .

 In this case, if E = ,N(( En)), then

 EX is comeager (3q z ' N)(V n e 'q)[ n) is coreager in E((n)

 (Vi)(3 E Mp )(Vn EE q)(34 c MpO)(Vm E )

 [Ex(Knm)) is comeager in (f3((n, m)))]

 (cf. 6.3, Case 2).

 In view of Case 1, it suffices to show that for any i e N and for any Y2(t), there is

 an n E 11 such that g( n) extends t.
 Now, N may be chosen such that

 1 e NC (Vi)(311' E Mp )(Vn E e')(3 ' c Mp?)(m E ')[ n)m)
 where each Mp has been chosen to satisfy the assertion of the theorem.

 Let r1 - N and fix any i* E w. Get 11* E AfP,. such that for each n E rq

 (34' E Mp? )(Vm e n )[<i*, nm)) E i].

 Since r* E Mp., by the induction hypothesis, there is an n* E q* such that gd.(n*)
 extends t. Get 4' E Mp? and m* E 4' such that Ki*, Kn*, m*)) e q. Take n
 Ki*, (n*, m*)). Then

 g(n) = f3i((n* m*)) = gi.(n*) 8.(m*)
 (cf. 6.3) and hence g(n) extends t.
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 LEMMA 7.2. Let $Fbe a a-field closed under operation siand let M,w denote the Borel

 a-field on o'. Let E c w' x '. Suppose there is a family ( An,) such that
 (a) A =I-({ An)),
 (b)A c E,

 (c) each A n E Y?,FO Mw
 (d) A` is comeager whenever E' is comeager.

 Then there is a set B E Y?S ,, such that B c E and BX is comeager whenever EX is
 comeager.

 PROOF. Let I1 w -* w'S be the characteristic function of a generator for a
 countably generated sub-a-field ,w of Ysuch that each An E J X . Let I(ww)=

 D. Then, as is well known, I is a bimeasurable function between F and MD, the
 Borel a-field on D. Set

 A,, = {(I(a), /3):(a, /3) EAn A= {(I(a), /3):(a, 3) E A}.

 Clearly, A4, E XqD ? - and A* = V({ A,, 4). Hence A is an analytic set in D x wo.
 Get an analytic set C c tow x w' such that

 A = C n) (D x w').

 Then by 1.6 of [17], get B E X , where C is the analytic a-field on ww, such
 that B c C and BX is comeager whenever c' is comeager. Put

 B = ( (a, 1): (I(a), /) E B).

 Since 5is closed under operation X', clearly B E Y? X and moreover, B c E and
 B' is comeager whenever E? is comeager.

 We have adapted the proof of the Category Formula [2] in the next lemma.

 LEMMA 7.3. Suppose we have

 (VS() )(3tO )(Vs1 )(3t1 ) ... { (Vao )(3bO )(Va1 )(3bl) ... P(a, )>

 (Vso)(Vao)(3to)(3bo )(Vsl )(Val )(3t, )(3b,) ... P(a, ),

 where a = (ao, bo, al, bl,. . . ), ai, b, E o, and/3 = sotos0 t .t ; sO t, E Seq.
 If 3 wins the second game, then he may do so by means of a strategy a* such that, to

 every complete play so, ao, to, bo,... consistent with a*, there corresponds a complete
 pla s', t', sj. tf.... consistent with a winning strategy for 3 in the first game such that

 stosl tl = t S t

 PROOF. Let w 1, wO WI, w2,. . . be an enumeration of o'w such that w is the
 empty sequence and if w, is an initial segment of wj, then i <j. For s E o<' its
 code, denoted by Isl, is its position in the enumeration.

 Suppose 3 wins the second game with strategy a. We shall now construct a
 winning strategy T for player II in the first (Banach-Mazur) game. T will be defined
 (by induction) in such a way that every partial play consistent with T corresponds to a

 partial play consistent with a.

 Suppose sO, to..., Sn -- 1 tn- 1 have been defined consistent with T and

 T(SO to- t0. Sn-- 1, tn-,1, s)
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 has not been defined. Let n be the code of (ao, ..., aml, a) and let -(a0. am)I n*. Clearly, n* < n. Let the partial play (consistent with a) corresponding to
 (SO, to, Sn*, tn*) be (ao, uo,..., am.l, Umi , bmi , Vm- 1) such that soto * sn0tn*

 UO V0 U* -1 m - Put

 U = S *+lt * *.* . . lt s.

 Let

 a(ao, uo; bo o; .. ;bm-i, Cmil, a, u) = (b, tu).

 Then

 T(SO, to** Sn- 1 tn- 1, S) V'

 and the partial play associated with

 s to Sn- , tn- , S V

 is

 ao, uo; bo, vo,. b.. , - 1 vm1 -; a, u; b, vc.

 We shall now show that T is a winning strategy for player II in the Banach-Mazur
 game. Let

 So, to, Si, 1 tl 2, t2,...

 be a complete play consistent with . We shall have to show that

 (Vao)(3bo)(Val)(3bl) ...P(a )

 where

 a = (ao, bo, al, bl,...) and B = sotos t ..

 So let V play ao. Suppose (ao)I = no. By definition of , the partial play (consistent
 with a) corresponding to so, to, sno, tn( is

 a,sOtO Sn(';botn(0

 for some bo E w. 3 replies with bo. Next suppose V plays a, and let l(ao, al)l = nl.
 By definition of T, the partial play (consistent with ac) corresponding to

 so, to , Sno, tno ... Snl tn

 is

 ao, soto *Sno; bo, tn( = vo; a1, Sn(+itno+l ... SnI; bl, tni =i
 U0 U1

 3 replies with b1 and the play proceeds as described. Since the play a., va); bo, C0o;
 al, ul; b1, v;... is consistent with a, we have

 P(a, uOCuICu ).

 But /3 - u0 CU .C1 Hence P(a,B). Consequently, T is a winning strategy for II
 in the Banach-Mazur game.

 We shall now modify a to a* such that any complete play consistent with o*
 corresponds to a complete play consistent with T.



 150 RANA BARUA

 DEFINITION OF a*. Let V play ao, so and suppose I(ao)I = no. Simulate the
 following partial play in the Banach-Mazur game, where II plays with strategy T, e*

 being a fixed sequence number:

 I so s =e* s = . . * * * s e* 1l ~~~t0 tl t2 . tno. 2'

 According to the definition of T, a(ao, so? tos t . Sno) = (bo, tn), for some
 bo E w. Define a*(ao, so) = (b0, ts t ... sotno). Next suppose V plays a,, s' and
 let l(ao, al)l = nl. Consider the following partial play consistent with :

 I so s1 =e' . . . e* S. .n0+ 1 n Sno+2 e S

 / /N

 11to ti . . . . . . . . . .tno tno+ Itn

 By definition of T, a(ao, so to ... sno; bo, tn,,; a, sn,,0Itn(,+ S) = (b1, t,l),
 b E w. Define

 a*(aO, s ; bo, t'sl *. s'tn ; a1, SI) = (bl, tn)+ lSn n+ t

 and so on. We shall show that a* is a winning strategy for 3 in the second game.

 First observe that any complete play

 ao, uo, bo, vo, a,, u1, bl, vj,...

 consistent with a* corresponds to a complete play

 so, to, Si, tl,.-

 consistent with T such that

 sosto1 = ut ovu1v1 * * .

 say. To prove that c* is a winning strategy, we have to show P(a, /), where

 a = (ao, bo, a,, bl,... ). Next observe that any play consistent with a* is of the form

 (V)I ao, s? a,, s' = ... 0~

 (3)11 b0, t0'1st1 S-'t n b1. 1n0+1 Sn tn.

 such that

 (v)I aO, O? t 0 Sno 1. Sno+ ltno+I...Sn

 (3)11 bo t, bl,

 is consistent with a. Consequently, we have

 Paa, sohte nSeotoso+ P(. /3

 and hence P(a, ,B)
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 REMARK 7.3.1. The definition of 0* is highly constructive and can be effected by a
 Borel function from the space of strategies to the space of strategies i.e., the map
 a a* is Borel.

 Using the above result, one immediately has the following.

 COROLLARY 7.4. If the second game in 7.3 is determined, then

 (3s0)(Vt0)(3s1)(Vtj) ... ( (3a0)(Vb0)(3aj)(Vbj) - * * P(a, /)}

 (3s0)(3a0 )(Vt0 )(Vbo0)(3s1 )(3a, )(Vtl )(Vbl<) P(a, /3),
 and the conclusion of 7.3 also holds here.

 REMARK. Lemma 7.3 and Corollary 7.4 yield a constructive proof of a particular

 case of the Game Formula of Kechris 1111.

 LEMMA 7.5. Suppose E C wo be a set in P, p < w1 and let RP = R4N. Assume
 E = RP(( En)), where each En is clopen. Then,

 E is comeager * (3o E M)(Vno e E 1)(3Jl Ee M)(Vnl E? 11)

 (Vk ) E<f(no) f(nk- )> is comeager in .( g( ng ) g( n )I g n. k - I

 where f and g are some suitable functions and 1M - 4N. Moreover, f and g can be
 chosen such that, with any winning strategy a for 3 one can associate a winning strategy

 o* such that for any run 1o, no, 11, nj,... consistent with 0*, the sequence /B =
 g(n0)g(n.) is in E.

 PROOF. The first assertion follows immediately from the proof of Theorem 6.3.

 Moreover, by Lemma 7.1, M may be chosen such that for any q E M and s there is
 n E -j such that g( n) extends s. Therefore, we have

 (3 E1 M)(Vno E qO) ... (Vk )[E<f(n,O- -f(nA I)) is comeager in

 Y:(g(no)'g(nl)- *-- -g(nk- 1))|

 (3 7o E M)(Vno E=- q) - (Vk) [/ E E<f(no)...f(nA - 1]

 where /B = g(n0)^g(n1) .... Hence,

 (i) E is comeager*-* (3%0 E M )(IVn 0 e 0)(3 j1 E M )(Vn I ET) ..

 (IVk )[g ( nO ) g ( n I )' * * * E E(f(no), .- f(n k -- 1)>

 We shall prove the second assertion only for p = 1, since for higher levels the proof

 involves similar ideas, although notationally cumbersome.

 First observe that if F = .d({ Fn)), with each Fn clopen, then by the Category
 Formula [21, we have

 F is meager - (Vko)(Vs0)(3to)(Vk1)(Vsj)(3tj) ...
 * (3i)| F< 0 .k ,>) is meager in E(st * *
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 Therefore, whenever G = F({ Gn}), where F =

 G is comeager *- (Vko) (Vs0) (3 to) (Vkl) (Vs) (3 tl) ...

 (3i) [G<ko ,kj-1> iscomeagerinE( so to sig ti-1)

 Since E = RF({ En)), by 5.4.2 we have

 (ii) E is comeager "(Vk? ) (Vs? ) (3 t ? ) (Vk ? ) (Vs 0 ) (3 t? ) (3 io )

 (Vk' (Vs' (3t ) (kl)(Vs')(3t) ... (3ij)
 (Vk 2) (S2 )(3 t 2 )(Vk 2)(VS2 )(3 t2 )... (32 ... (Vi)

 [E<<k,k ,...,k0.<k-,...,ki- ) is comeager in

 L:(so to? ... Sio? _I ti ...** Soj toj ...* siJ- I_ ^tj - I j-

 Now, E is comeager " II wins the game G**(EC) (Vso)(3tO)(Vs1)(3t1) ...
 [/3 E E], where /3 = sotosl t, .... Hence (using (i)), the equivalence in (ii) reduces to

 (iii) (Vs0)(3tO)(Vs1)(3tj) ... (Va0)(3nO)(Va1)(3nI) ...

 (Vj) i E<a-0(n0),-. ** -,?t (nj-1)>]

 (Vk0)(.Ysg)(3to)(Vk0)(Vs0)(3t?) ... (3 io)

 (Vkl )(Vslo)(33 4)(Vk)(Vs1)(3) ... ... (Vj)
 [s 1" g ... A ' OA 1 I . A .. soO to? ***Si'o_ ti?o_lso to .. **si- ltill-1

 E k E<k ,k0.k_>,. <kj n,.,kj-1

 As in [3, ?11], we shall define a game G' of length w such that 3 wins G' iff 3 wins
 the second game in (iii). The game G' is as follows. Though its total length is X we
 think of it as consisting of potentially infinite sequence of subgames each consisting
 of potentially infinite sequence of rounds. If in any play of G' the jth subgame
 actually goes through infinitely many rounds, then the (j + I)th subgame never gets
 started. This keeps the total length within bounds.

 In thejth subgame the two players play the rounds of that subgame. The lth such
 round opens with 3 signalling (by a choice of 0 or 1) either a challenge or a pass. If
 he challenges, the whole jth subgame ends at once and the players proceed to the

 (j + I)th subgame; in this case we record uj = Kk4.. ., kf.1) and

 v = sJ tj s/i1t _.

 formed from the moves. If 3 passes, V chooses kJ E o and a sequence number s-
 and 3 replies with t/ E Seq; then the players proceed to the (1 + I)th round.

 If some jth subgame goes on forever because 3 fails to challenge on any round, 3
 forfeits the game. If this provision does not apply, then a sequence (uO, vo;
 u1, VI, .1... ) will have been generated. 3 wins iff for all j

 v0VIV2 ... / A E(<U0, U0...,Uj- >
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 Thus the game G' is essentially of the form

 (Vs0 )(Vao )(3t0 )(3bo )('Vsl )(Val)(3t, )(3b, ) M( a!: ),

 where the condition M is Borel (in fact G, cf. [3, ?11]). We shall now make a few

 observations. First, observe that each subgame in the second game of (iii) is a

 Banach-Mazur game interlaced with operation F (which may be looked upon as a

 game!). Secondly, the condition within [ ] is the same as the condition in the first

 game. Consequently, any reduction of the second game of (iii) involves the interlac-
 ing of a Banach-Mazur game with an ordinary game of length w which is obtained

 by the corresponding reduction of the operation R1. Therefore, reducing the RI
 operation within ( } in the first game of (iii) as above, we observe that the

 equivalence (iii) is equivalent to the following:

 (iv) (Vs0)(3to)(Vs1)(3tj) .{ (Vao)(3bo) M(a, 3))

 +- (Vso)(Vao)(3to)(3b0 .. M(a ,)

 Now, if 3 wins the second game in (iii), he also wins G', the second game in (iv). By

 Lemma 7.3, 3 wins with a strategy a such that for any complete play so, a(, to, bo0. ...
 consistent with a, = s0 t ... corresponds to a complete play of the Banach-Mazur
 game in (iv). Moreover, the strategy a gives rise to a strategy a* in the second game

 of (iii) such that, if so, t, ko...,i0; sl, t, kt.. .. is a complete run

 consistent with a*, then the sequence so = s ... s- t s0 to is also
 produced by a complete run of the game G', when 3 plays with a. Consequently, /
 satisfies the condition within ( } in (iv) and as observed above, E E.

 REMARK. For sets E at the higher level we have an equivalence similar to (iii). On

 the left side of the equivalence we have a Banach-Mazur game followed by the

 corresponding R-operation, and on the right side we have Banach-Mazur games

 "interlaced" with the operation (regarded as a game played on W) with dummy

 moves, if necessary. As in the proof above, the second game can be reduced to a

 game of length X (see [3]) and the proof proceeds exactly as above.

 REMARKS 7.6 (ON THE A - TRANSFORM). We shall now look at the dual of the

 *-transform and obtain some analogous results. The proofs being very similar to
 what we have already done, we shall omit the details.

 Fora set E c X x Yand U c Y, put E"U= x E X: E' is nonmeager in U).
 Note that A is the dual of the *-transform in the sense that EA' = [(E' )* The

 A-transform behaves very much like the *-transform and we have the counterpart of
 Lemma 5.3:

 With notation as in Lemma 5.3, we have

 Et (s) n [E]A - U [E- T8]-(".

 This decomposition of the set ?' suggests, as in the case of E*, that (EA )" may be
 obtained as a fixed point of an inductive operator. Indeed we have the following

 counterpart of Theorem 5.4.
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 THEOREM. Let 4)N and 4)M be two 8 - s operations such that 4) , preserves the Baire
 property and 4M is normal and subsumes both (countable) U and n. Suppose there

 are functions f1 and g, such that for any normal family { EP) of subsets of w' x w' with
 E = 4)N(( Ep)),

 EAM(s) = M ( g EA'( )) : P } )E .

 Then for any regular normal family { Fp), if F = R ,,N(( Fp)) then

 FX is nonmeager in I (s)

 (3710 e M')(Vn0 E 71)(3i1 e M')(n1 e n.1

 (Vk ) [ F<t` no A1>is nonmeager in I ( s g'( no )^ ^g'(>nk 1))

 where f' and g' are suitable functions (independent of { Fp}) and 4, - 4)M U n .

 PROOF. First observe that for any regular family { Fp), F, c F, if t -< s. As in
 Theorem 5.4(c) we define a set relation operative on w as follows:

 t eX(A)4 FxA F,x is meagerin ((t)l) v

 (V,q E- M )(3n E- q )(Vu )(3v) [(( t ) ( f ( n ) ) ( t ) g, ( n ) uv) (- A|.

 To obtain the result, one then shows that x E FAT(s) *- (e, s) 0 rx . As in 6.3. this
 theorem immediately implies that for a set E E P, if E = R4!N(( En)) then

 (9) x E EA (30 E M)(Vno E 710)(371, E M)(Vnl E 711) -

 (Vk) [EL7(n-, .f("k - is nonmeager in I ( g'( n 0 ) ^g'( n

 for suitable M, f', g'. Moreover, one can choose M such that

 ij E M0&s E Seq -- (3n E q)(g'(n) extends s).
 Finally, observe that by (9) we have for E c ww

 (v) Eis meager + (3710 E M0)(Vn0 E 710)(371e e M0)(n e V ) *

 (3k)[g ( no)9 ( nj) - E<f'(no), ..'(nk 1)>]

 Arguing as in Lemma 7.5 and invoking Corollary 7.4, we may show that 3 can win

 the game (v) (if he does so) by a strategy a** such that if 7n0, no , nj,... is a
 complete play consistent with a* *, then /3 = g'(n0 )^g'(n ... is not in E.

 The next theorem is the first step towards our approximation theorem.

 THEOREM 7.7. Let E c w' x w be a set in ?P(p > 0). Then there is a set
 B e VP 9 -^ such that B c E and BX is comeager on E*.

 PROOF. Let RP= R 4)N and assume E = R4)N(( En)), with each En clopen. As in
 6.3, there are functionsf and g such that

 (i) x c- E* + (3Vo E= M)(Vno E- o is3comeagerin((n0) g(EnA j ..1))

 (Vk ) [Extn),k1) is comeager in ( g( nof )^ g( n ))]
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 where M is such that 'M (N. Further, by Theorem 5.1, there is a RRP-measur-
 able function x - Tx such that whenever xE E *, Tx is a winning strategy for the
 player 3 in the game (i). Moreover, by Lemma 7.5 and Remark 7.3.1, we may assume

 that the function x - Tx is such that for any complete play m, no, q, n1,...
 agreeing with Tx the sequence ,B = g(n0)g(n1)g(n2) *. is in EX, and that the base
 M has been chosen as in Lemma 7.1. Define for each k > 1,

 Wk (s, X) +*Seq(s) &lh(s). = k & (Vi < lh(s)) [(S)s iE TJ(S r i)];
 i.e., Wx consists of the codes of the first k possible moves of V when the existential

 player plays according to the strategy Tx. Clearly, Wk E RR. Define

 C(x, y) * (3a)(Vk)[Wk(ot(k), x)&y E 2(g(a (O)).. .'g(a(k - 1)))] &x E E*.
 Plainly, C is the result of operation -Son sets in R P .. We shall show that
 (a) C C E and (b) Cx is comeager on E*.

 If (x, y) E C then x E E* and 3 wins the game (i). Further, there is a sequence

 (nk k E} w such that no, nl, n2,... are the moves of V when 3 plays according to
 i, and y = g(n0)g(n1)* -. Consequently, y E EX. To prove (b), fix an x such that
 E? is comeager. Then

 cx ={yj(3at)(V1k)[Wk(od(k)9 x)&y E- 2(g(at(O))^- -^g(a((k -1)))]).
 Define

 A. = nJ(g(no)g(nj g(nk-1)) if Wk(no,..., nk-l), x),
 0 otherwise.

 Then, CX = V(( A)). Hence to show Cx is comeager, it is enough to show (by
 Vaught's Formula) that

 (Vs0)(3ko)(3to)(Vsj)(3kj)(3tj) ...

 (Vi) [A<ko.,kj) iscomeagerin (soto 5. . ti-1)

 So let V play so. By Lemma 7.1, pick ko E Tx(K )) such that g(ko) extends so.
 Then 3 replies with ko and a sequence number to such that so to = g(ko). Next when

 V plays s1, 3 plays k, E TX(Kko)) such that g(kl) extends s, and then plays t1 such
 that s t1 = g(kl), and so on. By -adopting this strategy, 3 ensures that for each i,

 A<k0 . .,k 15 ,> iS comeager in E (s to ... s, t 1).

 Thus, Cx is comeager. An application of Lemma 7.2 gives the required set B.
 The next lemma is the counterpart of Theorem 7.7.

 LEMMA 7.8. Let E C wo X w' be a set in aP. Let E4 = { x: EX is meager). Then

 E* E cRP and there is a set C E RP X gRJS (in fact, in a(RP) ? R,,-) such that
 E c C and CX is meager on E#.

 PROOF. Plainly, E4 E c5P, by Corollary 6.4. Let f, g, N, M, { En) be as in
 Remark 7.6 with ( En) regular. Then, by (v) of Remark 7.6,

 (i) Ex is meager*+* (3 7o E M?)(Vno E 'q)(3 7l EC M?)(Vnl EC 7j )
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 Further, by Remark 5.1.1 there is a a(RP)-measurable function x - T, such that T

 is a winning strategy for 3 in the above game whenever xE EE. Moreover, T, can be

 chosen as in Remark 7.6. Call u = (no. .., n ) good with respect to and , if
 extends g(nO) g(nk-1) and no0. nkI are the first k possible moves of V
 when 3 plays with strategy T,. Define

 T(u, x ,) Seq(u) &(Vi < Ih(u)) [(U)E= T \(U i)]
 & A E (g((U)o) g((U)i)> * ((U)h(.)- ))

 & (Vn E T'r(U))[f q (g((U)o) g((U)1) g((U)2) - ((U)Ih(u )

 In other words, for each x, ,3, the section Tx1 consists of all maximal good sequences

 with respect to T. and ,B. Clearly, T E a(RP) ? ,,, and, moreover, Tu" is closed
 nowhere-dense for each good sequence u and x. Now define

 C'(x, 1) x E E & (3u)T(u, x, ).

 Set

 C = C' u E`) x cw.

 Since E' c c P C E a( 9P) ? ( and to conclude the proof we shall show that
 E c C. So let (x, /3) e E. If x e E', then we are done. So assume x E Et.

 Therefore, 3 wins the game (i) with strategy Tx. Now, suppose when 3 plays the game

 (i) according to Tx, V is able to play no, n1, n2,. a . such that for each k, (no,. .., nk-l)
 is a good sequence with respect to Tx and /3. Then

 /3-,g(no)g(nl) ...

 and hence, by Remark 7.6, /B Z Ex. Consequently, since we have 3 e E-, V is able

 to play no, nl,... 'consistent' with /3 only up to a finite stage. Let u be the code of
 the maximal sequence. Then T( u, x, /3) and hence (x, /3) e C.

 The following gives the approximation at the first level.

 LEMMA 7.9. Let E c wS X w' be a set in 5PP (p > 0). Then there are sets B, C in

 5qR P ,, such that B C E C C and Cx - Bx is meager for each x.

 PROOF. Let Ts = E? E(S"; s E Seq. As E` satisfies the Baire property for each x,

 U T, = { x: Ex is nonmeager) .

 Since each L(s) is a (recursive) homeomorphic copy of ww, we can apply Theorem

 7.7 to get B, as in the theorem. Put

 B = UBs n (T x w).

 Clearly, B c E, B E 54R X ,, and for each x, E' - B` is meager.
 To get the set C, work with E" and argue as above using Lemma 7.8.

 REmARK. Lemmas 7.7-7.9 are the analogues of Lemmas 1.3, 1.5 and 1.6 of

 Srivatsa for C-sets [17]. Naturally, from now on it is going to be a repetition of

 Srivatsa's techniques.
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 APPROXIMATION THEOREM 7.10. Let A be an q4 subset of w' x w' (p > 0,
 p, IL < o,). Then there are sets B and C in ? X,, such that B c A C C and
 C ' - B ' is meager for each x.

 Moreover, if A e RR;,, then one can find B, C in X with the above
 properties.

 PROOF. We shall prove this by induction on M. When u = 0, this is just Lemma

 7.9. So suppose IL > 0 and that the result is true for all ' < I. Let A E MP and let
 o RN'. Then A is the result of operation Rp on a family { An) of sets from

 c[ U ,, ] By the induction hypothesis, for each n we have B,, and Cn both in
 U _q ,6 ? . such that Bn C An CCn and Cn' - Bn' is meager for each x. Let

 B = Rp(( Bn}) and C=RX((QC).

 Then, B c A c C and for each x, c' - Bx c U _(C,,' - B,-,), and hence meager. To
 complete the proof it is enough to get B C B and C D C such that B and C are in

 Y-It'? X Bx _ i' is meager and Cx cx is meager for each x. We will show
 how to obtain B; C can be obtained similarly.

 Let Y be the a-field generated by U,,<,, , Then B = Rp({ B, )) with each B,,
 in Y? <o,. Thus, one can obtain a countably generated sub-a-field 9ofJWsuch that
 each Bn E: $9 , Fix a countable generator of 9 and let f: (w'X , ) - w' be its

 characteristic function. Put M = f(w). Then (X@, C) and (M, _q.) are Borel
 isomorphic. For each n, let B,' = {(f(x), y): (x, y) E B,, ). Then B, E , , for
 each n. Let D = {(f(x), y): (x, y) E B). Then D = Rp({ B,)}). Hence, there is a set
 E c w" x &" in RP such that E (n (M x ww) = D. Apply 7.9 and get E c E such

 that E E 4 Pe X X , and E - (E)' is meager for each x. Letf: w x w& ww X
 w' be the map

 Ax, y) = (f(x). y).

 Put B = (f)-(E). Note that sincef is a bimeasurable map of ('X, C) and (M, SM)'

 f -l (gP r ww) C ( A c ww: A is the result of operation R p on sets in C} c 4?

 Consequently,f'(f I w') C _ . Thus B E ?P X and clearly. B' - BX
 is meager for each x.

 The second assertion follows from the first by observing that the class of all sets

 for which the result holds is closed under 4'N and complementation.

 The next proposition is quite well known and follows from the Von Neumann
 selection theorem.

 PROPOSITION. Let (T, A1) be a measurable space, A' being a a-field closed under

 operation _W, and let Y be a Polish space. Let B E A' e > , have nonemptv vertical
 sections. Then B has an A-measurable selection.

 As a consequence of the approximation theorem we have the following

 THEOREM 7.11. Suppose A c wY' X d is a -fi set (p > 0) such that A' is

 nonmeager for each x. Then A has a 54R.17-measurable selection.
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 PROOF. By Theorem 7.10, get B E ?, X ,q, such that B c A and AX BX is
 meager for each x. Bx is then nonempty for each x, and the above proposition yields

 the result.

 The next selection theorem is due to Burgess (3].

 THEOREM 7.12. Let F: w' --k w' be a multifunction such that F(x) is nonmeager in
 its closure cl( F(x)). If F is -4'IP-measurable and its graph Gr( F) EE then F has
 a ??,45JPe-measurable selection.

 PROOF. Define G by G(x) = cl(F(x)). Then G is a closed-valued, 64P-measura-

 ble multifunction. Hence there is a map g: ;" X w' x w' such that g is P X

 ,^,-measurable and g(x, ) is continuous, open and onto G(x), for each x (cf. [18]).
 Define G' c @ x w' by

 G' ={(x, y) :g(x, y) E F(x)) .

 As Gr(F) E 4P and g is 4P ? ,^,-measurable, G' is in P. Also, as the
 inverse image of a nonmeager set under a continuous open map is nonmeager, G'

 has nonmeager sections. By Theorem 7.11, G' has a 9PP-measurable selection g'.

 Then f(x) = g(x, g'(x)) is a R6W-measurable selection for F.
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