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 THE DISTANCE BETWEEN THE EIGENVALUES

 OF HERMITIAN MATRICES

 RAJENDRA BHATIA

 ABSTRACT. It is shown that the minmax principle of Ky Fan leads to a quick

 simple derivation of a recent inequality of V. S. Sunder giving a lower bound

 for the spectral distance between two Hermitian matrices. This brings out a

 striking parallel between this result and an earlier-known upper bound for the

 spectral distance due to L. Mirsky.

 Let A be a Hermitian matrix of order n and let )A (A) denote the vector in Rn

 whose coordinates are the eigenvalues of A arranged as A[i](A) > ... > A[n](A).
 Let A(1) (A) < ... < A(n)(A) be the increasing rearrangement of these eigenvalues
 and A1(A) the vector with coordinates A(J) (A), j = 1,2,..., n. The same symbols
 A (A) and At (A) will also denote the diagonal matrices which have as their diagonal
 entries the components of the vectors A) (A) and AT (A), respectively. Let fl denote
 any unitarily invariant norm on the space of matrices. (See [4].)

 This note is concerned with the following result:

 THEOREM. Let A and B be Hermitian matrices. Then for every unitarily in-
 variant norm we have

 (1) IlAt(A) - At(B)II < IIA - BIJ < IlAt(A) - AT(B)II.
 The first inequality in (1) appeared in a paper of Mirsky [4], who used a famous

 result of Lidskii and Wielandt to derive it. The second is proved in a recent paper
 of Sunder [5]. I give here another proof of the second inequality which has two
 attractive features: It is very short and it proceeds on exactly the same lines as
 the well-known proof of Lidskii, Wielandt and Mirsky for the first inequality. For
 illumination, I indicate how both inequalities follow from the same principle.

 It is an easy consequence of the minmax principle of Wielandt that for any choice

 1 il < < ik < n of k indices we have
 k k k

 (2) E: A[i,](A + B) < E: A[j] (A) + E: A[ij] (B)
 j=1 j=1 j=1

 for all k = 1, 2,... , n, with equality holding for k = n. (See [3, p. 242].)
 Writing x -C y to mean that the vector x is majorised by the vector y in Rn (see

 [3]), we get from inequalities (2)

 (3) At(A + B) - At(B) -< At(A).

 With a change of variables, this gives

 At(A) - At(B) -< At(A - B).
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 Now the first part of the Theorem follows using standard characterisations of ma-

 jorisation together with properties of symmetric gauge functions and unitarily in-
 variant norms. This is the well-known proof of Mirsky [4].

 Now note that from (2) we can also conclude

 (4) At (A + B) -< At (A) + At (B).

 In fact, for this conclusion the full force of (2) is not needed. It suffices to use

 the special case (il.... , ik) = (1,.. , k) which is much easier to prove using the
 minmax principle of Ky Fan [2].

 Replace B by -B in (4) and note that At(-B) -At(B). This gives

 At (A - B) < At (A) - At (B).

 But this implies

 (S) (IA[l](A -B)II .. I A[n] (A B)I)
 --w (|A[l](A)-A(l)(B)I,.., ]A[n] (A)-A(n) (B)I)

 where -<w stands for weak majorisation [3, p. 116].
 Let s[j] (A) denote the jth singular value of A. Let IIA||k s[j] (A) A- + S[k] (A)

 for k = 1, 2, ..., n. Then (5) can be restated as II A- Bllk < ? At(A) - AT (B)Ilk, k=
 1, 2, ... , n. So the second inequality in (1) holds for this special class of norms and
 hence, by a well-known theorem of Ky Fan, for every unitarily invariant norm. (See

 [4].)
 It should be remarked that Sunder's paper contains a stronger result in that it

 also establishes an analogue of the second inequality in (1) for the case when A, B
 and 4 - B are all normal. Under these conditions an analogue of the first inequality
 in (1) has been established in [1].
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