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 On Loss of Power Under Additional

 Infonnation-An Example

 ASHIS SENGUPTA

 Indian Statistical Institute, Calcutta

 ABSTRACT. When additional information is available, the original problem in many cases
 reduces to that in a curved exponential family, where a LMP test is expected to perform "weDl" for

 statistical curvature less than 1/8. The effect, asymptotically, of additional information for Ho or
 H1 alone on appropriate LRTs is known but not when information is available simultaneously on

 both Ho and H1. Consider the important and widely used standard symmetric multivariate normal
 model (Sampson, 1976, 1978) with intraclass correlation coefficient p. We exhibit, through exact

 numerical comparison, quite strikingly, that with additional information on both Ho and H1 and
 even with curvature much less than 1/8, the LMPU test for p is uniformly dominated (except,
 "very" locally), by the corresponding much simpler "robust" LMPU test which does not utilize the
 additional information.

 Key words: additional information, curved exponential family, locally most powerful unbiased
 similar test, standard symmetric multivariate normal distribution

 1. Introduction

 Statistical estimation for problems under additional information has received quite some atten-

 tion, notably due to the substantial contributions by Professor Olkin and his students (Olkin &

 Sylvan, 1977; Sampson, 1976, 1978). However, the exact optimal testing in such a set-up has

 met with little success, mainly due to difficulties that arise because of this very additional

 information. In many cases there does not exist a UMP test or an ancillary statistic and the

 likelihood ratio test is cumbersome both for theoretical and practical purposes. Many of these

 problems can be viewed as from the curved exponential family. In such a context the locally

 most powerful (LMP) test can be an attractive choice. However, as Efron (1975) points out as a
 working rule, the statistical curvature should be less than 1/8 to expect reasonably good

 performance of the LMP test. Brown (1971) has studied the usefulness of additional informa-

 tion on the null (Ho) and alternative (H1) hypotheses, separately on appropriate likelihood
 ratio tests through their asymptotic non-local performances. He points out that in such cases,

 additional information on Ho should always be used and on H1 should never. However, no
 result (Brown, 1971, p. 1235) is known when information is available on both Ho and H1.

 In this paper we present an example where additional information is available on both Ho
 and H1 in the form of a restriction on the parameter space. We demonstrate through exact
 comparisons that with this additional information, even with curvature much less than 1/8, the

 LMP test is uniformly dominated (except, of course "very" locally) by the corresponding much

 simpler "robust" LMP test which does not utilize the additional information. Further, "the
 smaller the curvature, the more superior" is the latter test. This points out that other conditions

 need be applied in addition to the curvature being less than 1/8 for an encouraging per-

 formance of the LMP test. It also serves to complement, through numerical comparison,

 Brown's results, since information on both Ho and H1 are used and since LMP test can be
 considered as an approximation to the likelihood ratio test. Finally, in line with Olkin's

 comments on the difficulties imposed on estimation by using additional information, one has to
 seriously evaluate when such information is really going to be worthwhile for testing purposes.
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 2. Standard symmetric multivariate normal distribution: an example

 A random vector X will be said to follow a s{tandard symmetric multivariate normal distribu-

 tion if it follows a symmetric multivariate normal distribution (Rao, 1973, p. 196) with the
 additional information that the parameter space is restricted by the common marginal mean

 and variance being zero and one respectively. The common correlation coefficient, p, between

 any two components is termed the intraclass, equi-, uniform or familial correlation. This

 distribution has wide applications, e.g. in time series analysis (Sampson, 1976, 1978), analysis of

 missing observations, psychometry, generalized canonical variable analysis (SenGupta, 1983),

 etc. Though the literature on the estimation of p is quite extensive, no exact optimal test for p is

 known for the standard symmetric multivariate normal distribution.

 Let '3/= (- oc, oo)), A = Lebesgue measure, the original parameter space * = {(Y, a 2p),
 -oo < i < oo, a > O,-1/(k-1) < p < 1}, the reduced parameter space 0 = {(Y ,a2, p), u=, = a= 1,
 - 1/(k -1) <p < 1} and f(., 0), 0 e 0* the symmetric multivariate normal density, NJ(il, a2 )
 where

 p ...1

 Then f(., 0), 0 e 0 is the standard symmetric multivariate normal density NJ(O, Xp), which for

 MP >0 , can be written as,

 f(Y;p) = I2)~ i 1exp - 1 yi)+ {1+i.j;_p)J
 )(2X 111/2 exp{@(l-p) {1+(k-l)p}(l-P)

 -oo<yj<oo; i=1,...,k; -1/(k-1)<p<1 (2.1)

 We will compare the performances of locally optimal tests for Ho: p = 0 with and without the
 additional information ju = 0 and a2 = 1. It is demonstrated that the latter dominates the former
 almost globally under H1: p > 0. This "gives a precise way of discussing how it pays to work in

 the full exponential model without using the restrictions on the parameter space".

 3. Remarks on NJ(O, Ep) and tests for p

 3.1. Additional information

 Let Y - F, 0 E0 * and we want to test Ho: 0 E 0* versus H1: 0 Ec 0*, where 0* u 0O* '0 *. By
 additional or extra information we mean information which limits the parameter space to a set

 0 smaller than 0*, 0 c0C * where O represents the closure of 0. Define, O 3C= @C *,

 i=0, 1. Extending Brown's (1971) definitions, we say that we have extra or additional informa-

 tion about both Ho and H1 if 0c p 0" for both i = 0 and i = 1.

 Consider NJ(O,I ) of (2.1) and the corresponding parameter space 0 of section 2. Let
 00={(u,a2,p)e0;p=0} and e1={(y,ey2,p)e0;p>0}. Note that 0i,g0 for both i=0 and
 i= 1, i.e. we have additional information on both Ho and H1 simultaneously.

 3.2. Curved exponentialfamily, statistical curvature and LMP test

 A one-parameter exponential family constrained by the parameter, 0, to be of lower dimension

 than its sufficient statistic, T, has been termed a curved exponential family by Efron (1975, p.

 1192). Efron (p. 1193) suggested the statistical curvature, yo, as a measure to quantify how
 "nearly exponential" these families are. Also, if for such a family an exact ancillary statistic
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 exists, then for purposes of inferences regarding 0, the principle of conditionality is often used.

 However, if an exact ancillary statistic does not exist, even then it would be desirable to utilize

 T. If a UMP test does not exist then the LMP test can be an attractive choice, particularly if it

 utilizes all the components of T. However, in a nonregular exponential family there are specific

 examples (e.g. Chernoff, 1951) which demonstrate that the choice of the LMP test can be

 disastrous.

 Consider the LMP test for Ho: 0 = 00 against one-sided alternatives. Efron suggests that a
 value of y2 < 1/8 is not "large" and one can expect linear methods to work "well" in such a case.

 In repeated sampling situations, the curvature myoo, based on m observations, satisfies mYoO=
 yo2/m, and hence one can determine the sample size which reduces the curvature below 1/8.

 Observe that Nk(O, sp) can be regarded as a curved exponential family. We next compute its
 statistical curvature. Let,

 T-(T1, T2)'= - 1/2{1YV, ( iY)2}',tC(p)=j[(1 -p)1, -p[{1 +(k-l)p}(1 -p)]-1I'.

 Then,

 8(p) = T(1 _ p) -2, - {I + (k - )p2j[{1 +(k- j)p}(j -p)] - 2

 from which it follows easily that

 8(O) = [2, 2(k -2)]'.

 Further,

 var (T1) = (k/4){var (Y') + (k-1) cov (y2, Y2)}

 T2= -Z2/2, Z - N[O, k{1 + (k-1)p}]

 cov (T1, T2)=- icov{y, ()2}
 4

 1 ~~~~~1) COV(y2, y1 y2) (k -lXk -2) 2
 - [var (Yi2) + 2k{(k- 2 cov(1, Y2 Y3)}]
 42

 Now recall (Anderson, 1984) that,

 E(Uj Ui Uk Ul) = 'ijUkl + 'Tikofjl + ilajk, where U- Np{O, I

 After some simplifications, we get,

 kk2
 var (T1)= - { 1 + (k )p2}, var (T2)= {1 +(k- 1)p}2
 2 2

 cov (T1, T2) =- {1 + 2(k- )p + (k-l)2p2}.
 2

 Then, from (2.3) of Efron (1975),

 0 [-2(k -2) 4{(k -1) + (k -2)21]|{(-)2 /

 Hence, 1y2(k) decreases with increase in the dimension k. Further, note that for a sample of size
 m, by Efron's rule, we would need mk > 64 to reduce the curvature below the "worrisome point"

 of 1/8.
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 4. Optimal tests for p

 4.1. LMP and LMP similar testsfor p

 Consider testing Ho: p = 0 against H1: p >0. For Nk(O, p) (y and a2 are known), note that
 there does not exist an UMP test nor an exact ancillary statistic for p and following the

 discussions in section 3.2 we obtain the LMP test. For Nk(l, u2 p) where p and a2 are both

 unknown, the relevant comparable test is the LMP similar (invariant) test derived below.

 Let a random sample of size m be available from each of the densities Nk(O, p) and
 NJAIll C 2ip).

 Theorem 1

 Consider testing Ho: p = 0 against H1: p > 0.
 (a) Let Yfollow a standard symmetric multivariate normal distribution. Then the LMP test is

 given by

 Reject Ho iffp = , Yij Yi/mk(k - 1) > c.
 i?i, j

 (b) Let Xfollow a symmetric multivariate normal distribution. Then the LMP similar test is

 given by

 Reject Ho iffr = (kB - T)/{(k - I)T} > ro,

 where,

 m m k

 B =k , (x;-X_ )2, W= E E: (Xij _i) 2, T=B+W
 j=1 j=l i=1

 and c and rO are constants to be determined to give the desired level of significance.
 (c) Both the tests are globally unbiased against one-sided alternatives.

 Proof. (a) follows from definition of LMP test while (b) follows with an additional application

 of Basu's theorem. (c) follows by applications of stochastic orderings.

 Note that p is based on the minimal sufficient statistic and by virtue of the Rao-Blackwell
 theorem, is the best natural unbiased estimator (BNUE) of p in the class of natural estimators
 of the form

 Laj E Yij Yi,j./k(k -1)}

 Also, r is the sample intraclass correlation coefficient (Rao, 1973, p. 199).

 4.2. Exact distributions of the test statistics

 The exact (null and non-null) distribution of p is that of the weighted difference of two indepen-
 dent x2 variables with different weights and possibly different degrees of freedom. Historically,

 this problem was discussed by Pearson et al. (1932, p. 341), encountered also by Anderson
 (1963, p. 139) and only partly solved by Pachares (1952). The distribution is presented in terms

 of Kummer's function in SenGupta (1982) and percentage points are available from Gokhale &
 SenGupta (1986).
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 Note that,

 P =( E YiYi, )/{mk(k - 1)}

 = VI/mk - V2/{mk(k - 1)}

 where,

 m m k k

 V1=k i(j.)2, V2= E (Yi_Y.J)2, (with Yj= E Y,j/k)
 j=1 j=li=l i=1

 are jointly (minimal) sufficient statistics for p. Also, by the reduction to the canonical form

 (Rao, 1973) for Nk(O, p, there exists an orthogonal transformation Y-*Z, such that IYi =

 MV and Z1 = YJA.lk where Zi, i= 1,.. , k are all independent. It follows that Z1 N{O, 1
 + (k-1)p} and Z1 - N(O, 1-p), j = 2,. . . , k. Further, V1 - {1 + (k-1I)p}JX V2 2(1-p)xm(k-
 and V1 and V2 are independent.

 The exact distribution of p, as mentioned above, is available in terms of Kummer's function.
 For computational purposes, however, a simpler representation given below is quite useful.

 Note that, ,=a1x2_-a2X2, where a1={I+(k-1)p}/mk, a2=(1-p)/{mk(k-1)}, X12 and X2 are
 independent x2 variables with d.f. v1 = m and v2 = m(k -1) respectively. Then, for the p-test, note
 that for a1, a2> 0, X2 and X2 independent

 P(a 12 -a2x2 <c)2 = FX2{(c+a2U)/al}fX22(u)du (4.1)
 v

 where v = max (0,, - c/a2) and F.2 (-) andf.2 (.) represent the c.d.f. and the p.d.f. of a x2 random
 variable respectively. Under Ho the constant c in (4.1) is obtained through iteration. FX2 ( ) is
 available from the program MDGAM in the IMSL package and the integral in (4.1) is evalu-

 ated through use of Gauss-Laguerre quadrature formula or alternatively through tabulated
 values of Kummer's function and standard numerical integration techniques. The powers can
 be evaluated similarly.

 The exact distribution of r can be related to a beta distribution.

 The exact null and non-null distributions of r are available from Rao (1973, p. 200). For
 computational purposes observe that,

 p,(r > ro) = p,(/3 </p), 3 B{m(k - 1)/2, (m - 1)/2}

 and

 X 1 + ((k -i)(-r) -)(1 +(k-)P)

 Under Ho, ,Bp _ P3o is the lower cut-off point of the beta distribution. The cut-off points and the
 powers for the r-test are obtained through standard packages for computing incomplete beta
 integrals.

 5. Comparison of the p- and r-tests

 It is natural to compare the p- and r-tests, both being LMPU tests for p. The r-test being
 location and scale invariant, ignores the additional information regarding the known values of

 m and a2, whereas the p-test is constructed so as to use this very additional information. It is
 thus expected that the p-test will dominate the r-test, not only locally but over most of the
 parameter space under H1-if not globally. However, quite strikingly, the contrary situation is
 exhibited in Table 1.
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 Table 1. Comparison of powers of p- and r-tests (a = 0.05)

 m=15, k=5 m=20, k=5 m=30, k=5

 p p r r r

 0.02 0.084 0.082 0.090 0.088 0.183 0.180

 0.04 0.128 0.125 0.144 0.141 0.385 0.379

 0.06 0.182 0.177 0.210 0.206 0.589 0.586

 0.08 0.242 0.237 0.285 0.281 0.751 0.750

 0.10 0.308 0.302 0.366 0.363 0.859 0.860

 0.12 0.375 0.371 0.447 0.447 0.924 0.926

 0.14 0.442 0.442 0.526 0.530 0.960 0.963

 0.16 0.508 0.510 0.600 0.608 0.980 0.982

 0.18 0.569 0.576 0.667 0.679 0.990 0.991

 0.20 0.627 0.638 0.727 0.741 0.995 0.996

 0.30 0.835 0.861 0.912 0.931 1.000 1.000

 0.40 0.936 0.959 0.976 0.987 1.000 1.000

 0.60 0.992 0.998 0.999 1.000 1.000 1.000

 0.80 0.999 1.000 1.000 1.000 1.000 1.000

 It may seem from columns 2 and 3 of Table 1, that the inferiority of the p-test is attributable
 to the curvature 8/75 being close to 1/8. However, the situation is just the contrary as is

 exhibited by columns 4-5 and 6-7 with curvature 8/100 and 8/150 respectively. (Of course, with

 decrease in curvature, the performance of the p-test on its own becomes better.) The relative

 superiority of the p-test over the r-test decreases as curvature decreases. The latter starts

 dominating the former with values of the alternative, p, even closer to the null, e.g. with p

 exceeding 0.14, 0.12 and 0.09 with curvature 8/75, 8/100 and 8/150 respectively. This dominance

 then extends globally over the entire range of alternatives. For practical purposes, it is impor-

 tant to note that the r-test out-performs the p-test starting with quite close alternatives, e.g. as

 close an alternative as 0.09 with m = 30, k = 5. Hence, the use of additional information here is

 to be seriously questioned in view of the robustness, superior power performance and the

 simplicity of obtaining the distributions and cut-off points of the r-test as compared with the

 optimal (with additional information) p3-test.

 It will also be interesting to study how such comparisons as above are influenced by the

 increase in the dimension of 0. One may still consider a multiparameter curved exponential

 family and multiparameter LMP tests (SenGupta & Vermeire, 1986) there.
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