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 SCATTERING OF WATER WAVES BY A SUBMERGED NEARLY

 VERTICAL PLATE*

 B. N. MANDALt AND P. K. KUNDUt

 Abstract. Some new results concerning the scattering of surface water waves by a nearly vertical plate,

 completely submerged in deep water, have been deduced employing two mathematical methods. The first

 method concerns an integral equation formulation of the problem obtained by a suitable use of Green's

 integral theorem in the fluid region, while the second method concerns a simple and straightforward

 perturbational analysis along with the application of Green's integral theorem. The two methods produce

 the same result for the first order corrections to the reflection and transmission coefficients. Considering

 some particular shapes of the curved plate, numerical calculations are also performed.

 Key words. water waves, linearised theory, nearly vertical plate, integral equation, perturbational

 technique, reflection and transmission coefficients

 AMS(MOS) subject classification. 76B

 1. Introduction. Using linear theory, water wave scattering problems involving

 obstacles admit exact solutions only when the obstacles are in the form of thin plane

 barriers in deep water, when the motion is two-dimensional, and when the barriers

 are either vertical (cf. Ursell [8], Evans [1]) or inclined at special angles (cf. John [3]).
 The scattering problem involving a partially immersed nearly vertical barrier was

 considered by Shaw [6], wherein he employed an integral equation formulation and
 obtained the first-order corrections to the reflection and transmission coefficients-in

 terms of the shape function of the barrier. Recently, exploiting the idea of Evans [2],

 along with an appropriately designed perturbational anlysis, Mandal and Chakrabarti

 [4] deduced the analytical expressions for the first order corrections to the reflection

 and transmission coefficients of surface waves scattered by a fixed nearly vertical barrier

 for both cases when (i) the barrier is partially immersed and (ii) the barrier is completely

 submerged.

 The present investigation is concerned with the scattering of surface water waves

 by a nearly vertical submerged fixed plate in deep water. The corresponding plane

 vertical plate problem was considered by Evans [1] for a normally incident wave train

 and by Mandal and Goswami [5] for an obliquely incident wave train. The problem

 under consideration is attacked for solution by two different mathematical techniques.

 In the first technique, an integral equation formulation similar to Shaw [6] is employed,

 while in the other method a suitable exploitation of Evans' [2] idea, along with an

 appropriately designed perturbational technique used recently by Mandal and Chak-

 rabarti [4], is invoked. Both methods result in the same analytical expression for the
 first-order correction to the reflection and transmission coefficients. It is verified that,

 when the depth of the upper edge of the plate tends to zero, known results for a

 partially immersed nearly vertical barrier given by Shaw [6], as well as by Mandal and
 Chakrabarti [4], are recovered.
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 2. Statement of the problem. We consider the motion of a fluid of infinite depth,

 which is inviscid, incompressible, and homogeneous of density p under the action of

 gravity only. We choose a rectangular coordinate system in which the y-axis is taken

 vertically downwards into the fluid medium so that the plane y = 0 is the undisturbed
 free surface of the fluid and the position of the submerged fixed nearly vertical plate

 of arbitrary shape is given by S: x = sc(y), a < y < b, where E is a small nondimensional
 number and c(y) is bounded for a <y < b with c(a) = 0. Assuming the motion of the
 fluid to be irrotational and simple harmonic in time with circular frequency o- and of
 small amplitude, there exists a velocity potential which can be expressed as
 Re [f (x, y) exp (- it)]. Then p(x, y) satisfies the two-dimensional Laplace's equation

 (2.1) V2q = 0 in the fluid region,

 the linearized free surface condition

 (2.2) Kp+?-=o ony=O,
 Iay

 with K = o-2/g, g being the acceleration due to gravity,

 (2.3) -= O on S,
 an

 where n denotes the outward drawn normal to the surface of the curved plate, the
 edge condition

 (2.4) r1/2Vf is bounded as r -0,

 where r is the distance from the two sharp edges of the curved plate, the infinity
 requirements

 (2.5) p,V --O as y-oo.

 Further, we assume that

 p(x,y)-p'(x,y)+Rp'(-x,y) as x--oo.

 (2.6)(x,y)- TfP(x,y) as x-o+00,

 where f i(x, y) = exp (-Ky + iKx) is a train of surface waves incident on the curved
 plate S from negative infinity, and R and T are the (complex) reflection and trans-
 mission coefficients to be determined.

 3. Integral equation formulation. In this case the total field p(x, y) is given by

 (3.1) q (x, y) = q i(x, y) + ?(x, y)

 where 'F(x, y) is the scattered velocity potential and satisfies the Laplace's equation
 in the fluid region, the linearized free surface condition (2.2), the edge condition (2.4),
 the infinity requirements (2.5), the condition on the plate as

 ___ a ~O
 (3.2) u-= a on S,

 an dn

 and the radiation condition

 3F(x,y)-(T-1)exp(-Ky+iKx) as x-?+oo,
 (F(x, y) - R exp (-Ky - iKx) as x - -oo.

 In view of (3.3), ?(x, y) represents an outgoing wave at infinity.
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 By an appropriate use of Green's integral theorem in the fluid medium we obtain

 (3.4) 2-gt(e, q)= f (s)aG(o, y; e, q)| ds
 where 0/On denotes the outward normal derivative on S, f(s) is the difference of the

 velocity potential across the plate, and G(x, y; e, ?7) is the usual Green's function (cf.
 Thorne [7]) for water waves defined by

 (35)G(x, y, ,, 1)= 2 { (k cos ky - K sin ky)(k cos kq - K sin k7-)

 * exp {-klx - el} dk + 2li exp {-K(y + rq) + iKjx - el}.

 Now we consider perturbations to the vertical plate solution (see Appendix A)

 for small values of ? > 0 and assume that

 (3.6) f(s)-=((C(y)+ o, y)-F(C(y)-o,y)
 =fo(y) + rf1(y) + 0(? 2)

 Utilizing (3.2) into (3.4) and using (3.6) we finally obtain the integral equations for

 fo(y) and f1(y) as

 (3.7) fo(y) df (o, y; o, -q) dy = -2IgiK exp (-K7)) a < Kq < b,

 and

 rb a2G

 Jfi (Y) ~(o, Y; 0, 7)) dy
 b ~~~2 02

 J~~~~~~~ a a dx

 (3.8) Jaf[(y){ CO 2 -c(17) - + - C(Y) 2-C'(y) _} d ]
 aJaL ~ 7)j Ox Ox ay JO-J

 d
 G(o, y; o, e) dy-2 2TK-{c(7)) exp (-K-q)} a < Kq < b,

 dr17

 respectively. The solution of the integral equation (3.7) is given by (see Mandal and

 Goswami [5])

 (3.9) fo(y) = exp (-Ky) TO(u) exp (Ku) du a
 where

 20d -y2)
 (3.10) P0(Y) = (y2-a2)1/2(b2-y2)1/2 aKyKb.

 Here the constants Do and d2, are given by

 (3.11) Do = 2i/Ao

 and

 (3.12) { (do j )j exp (Ku) du =0

 where AO is given in (3.21) below.
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 Using arguments similar to Shaw [6] (also see Appendix B) the integral equation

 (3.8) can be reduced to

 d b" aG d
 (3.13) - f1(y) -(o, y; o, r/) dy = -2,TK- {c( r) exp (-k7q)} a < q < b.

 d7) Ja a7 d

 This implies that the first order correction f1(y) to f(y) is independent of the vertical
 plate solution fo (y).

 Now, (3.13) can be reduced to

 Cb 2y
 (3.14) J TP(Y) 2 _ 2dy=KAI-2ITKc'('q)exp(-K'q) a < q < b,

 with

 (3.15) T1(y) = Kf(y) +?f(y)

 and the integral is in the sense of Cauchy principal value and A1 is an arbitrary

 constant. Thus

 (3.16) f1(y) = exp (-Ky) T I (u) exp (Ku) du
 a

 where

 2 )4K DI(d-_y2)?+ S(y)

 (3.17) T1(Y) = (y2 a2)1/2(b2 -y2)1/2 a y < b,

 with D =-KA1/IT,

 (3.18) S(y) b (1 2 a 2)1/2(b - t2) tc'(6t) exp (-Kt) dt, a <y < b.

 Expression (3.17) involves the arbitrary constants D1 and d I. Since f1(b) = 0, it follows
 from (3.16) and (3.17) that

 D (d2-u2) +4K S(u)
 (3.19) Ja a2)1/2(b2- 2exp (Ku) du = 0

 J (U2_a 12 b2 _-2)/

 giving one equation to determine D1 and d 2. The other equation is obtained from the

 original integral equation (3.13) after substituting f1(u) (obtained from (3.17) through
 (3.16)) and evaluating the different integrals resulting in a factor exp (-K7)) in both
 sides. Thus we obtain

 4Kb
 (3.20) DIAI A2-2K c'(y) exp (-2Ky) dy =0

 T a

 where

 (3.21) A, = (a,-f31- iy,)
 ra FI(u)

 a -a (a2 _ u2)1/2(b2-u2)1/2 du,

 (3.22) - = (u2-a2)1/2(u2 - du,

 Y Tab (u2 _ a2)/2(Ab2 - U2)1/2 du, j =0, 1, 2 with
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 (d'-u ) exp (-Ku) for j = 0,
 (3.23) Fj(u) = (d'- u2) exp (-Ku) for j = 1,

 S(u) exp (-Ku) for ] = 2.

 Equations (3.19) and (3.20) determine the constants D1 and d .

 To determine the reflection and transmission coefficients we assume

 (3.24) R = Ro + ER1 + o(E2) T= T? +T1 +(E2)

 Making +oo and -oo, respectively, in (3.4) after using (3.3) and (3.5) we find

 Ro = -P1,

 To = 1 + Po,
 (3.25)

 RI = PI + Ql ,

 T, = PI -Q1 ,

 where

 rb

 Po = K }o(Y) exp (-Ky) dy,
 a

 (3.26) PI = iK fo (Y) + { c (y) exp (-Ky)} dy,

 rb

 Q= -K }fi(Y) exp (-Ky) dy.
 a

 Po can be evaluated and we find that

 (3.27) Ro=iyo/Ao
 and

 (3.28) To = (ao - f3)/Ao.

 These expressions have already been obtained by Evans [1]. Similarly, utilizing (3.9),
 (3.10), and the condition thatfo(b)=0, we find P1 as

 P =-iKDo[K c(y) exp (-2Ky){} (d0-u2)exp(Ku) du dy
 (3.29) a (U2 - a2)1/2(b2 - U2)1/2

 (do u )c(u) exp (-Ku) ? du I
 a (U 2 _a2)1/2(b2 _ u2)1/2 d .

 Also using (3.16), (3.17), and fi(b) = 0, the expression for Q1 given by (3.26) reduces
 to

 (3.30) Q1 =-2(DIyl+4KY2.

 Now we invoke the argument used by Shaw [6] that the transmission coefficient
 T remains unaltered when a scattering body is reversed but the incident field is left

 unchanged. We obtain, replacing sc(y) by -Ec(y),

 T= T- T1 + O(E2)
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 This gives T, = 0, so that P, = Ql. Hence R1 = 2PI, and utilizing (3.29), we find in this
 case

 R = -2iKDO [K { c(y) exp (-2Ky){{ ( d-u2)ex2 (Ku)d } dy

 (3.31) b (d2-U2)c(u)exp(-Ku) d
 Ja (U 2_ a2)1/2 (b 2 _ 2)1/2 _uJ.

 However, it is difficult to prove P, = Q, directly from their integral forms. For the
 corresponding immersed barrier problem, Shaw [6] also mentioned that a direct proof
 of this is "very hard" to find.

 It can be easily shown that as "a," the depth of the upper edge of the curved
 plate, approaches the free surface while "b," the depth of the lower edge, is kept fixed
 (cf. Evans [1]),

 __>0 0 O o O -bK I(Kb), yo -> bwI, (Kb).

 Thus

 Do = 2 i/ b{K1 (Kb) - ivII (Kb)}.

 Substituting these values into (3.27) and (3.28) we obtain

 Ro -iirlI(Kb)/{K1(Kb)- i7TI1 (Kb)}

 To= K1 (Kb)/{K1 (Kb) - iTI1 (Kb)},

 respectively, which were obtained by Ursell [8] for a partially immersed vertical barrier.

 Similarly, utilizing the approximations of d 2, ao, f30, y0 and Do as ,t (=a/b) 0
 (b fixed) in (3.31), we obtain

 4K F fb

 I b KI(Kb)-iTI, (Kb)} [-K J c(y) exp (-2Ky)
 (3.32) ub uexp(Ku) b yc(y) exp (-Ky)

 which in the notation of Shaw [5] becomes

 = 4Kb Kb Ct 2K tT u exp (-Kbu)d}d

 RI=K(Kb) -iiTI1(Kb)-Kb X C(t)exp (2Kbt)i (1 -U2)1/2 du}dt
 (t) t exp (Kbt)d]

 J 1 (1 t2,1/2 d]

 where C(t) = c(-bt)/b.

 4. Solution by a perturbational analysis. For a nearly vertical plate we can assume
 E to be very small. Thus neglecting O(E2) terms, the boundary condition (2.3) can be
 expressed as (cf. Shaw [6])

 (4.1) x (?o, Y) -e { C(Y) -y (? l, y)j = 0 a <y < b.

 This suggests an expansion for Sp(x, y) as

 (4.2) q (x, y, ?) = 9O(X y) + r9I(x, y) + 0(E 2),
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 and a similar type of expansion for R and T given by (3.24). Here we confine our

 attention to determining the constants R,, TI, RI, and T1 only, as we are interested
 in evaluating only the first-order corrections to the reflection and transmission

 coefficients. Utilizing the expansions given by (4.2) and (3.24) in (2.1), (2.2), (4.1),

 (2.4), (2.5), and (2.6), after equating coefficients of sE and E from both sides of the

 results derived thus, we obtain that the functions 9p and 9p must be the solution of

 the following two independent mixed boundary value problems given by PO and P1,
 respectively.

 Problem PO. The problem is to determine the function po(x, y) satisfying

 v2fo = 0 in the fluid region,

 K<p,,+ ( =0 on y=O,
 ay

 a=O on x=O, a<y<b,
 ax

 r1/2VpO is bounded as r - 0, where r is the distance from (o, a) and (o, b)

 (O,V0o--O asy-oo,

 'o--exp(-Ky+iKx)+Roexp(-Ky-iKx) as x--oo,

 00-To0exp(-Ky+iKx) asx-?c+oo.

 Problem P1. The problem is to determine the function 91(x, y) satisfying

 (P1.1) V2p =0 in the fluid region,

 (P1.2) K p1 + = 0 on y = 0,
 ay

 (P1.3) x (o, Y) c {C(y) dy (i?,Y) on x=O, a<y<b
 ax ay ay Yj0, ayb

 (P1.4) r 12Vf1 is bounded as r -0,

 (P1.5) 1,V(1 0 O as y - oo,

 (P. 16) pj1 - R1 exp (-Ky - iKx) as x - -oo
 9p -T1 exp (-Ky + iKx) as x - +oo.

 The function po(x, y), which is the solution of the problem PO, is a discontinuous
 function on x = 0, a < y < b, and therefore the boundary condition (P1.3) must be used
 carefully on the two sides x = o+ and x = o- of the line x = 0.

 The explicit solution ,0(x, y) of the problem Po is given in Appendix A. To find
 the first order corrections to the reflection and transmission coefficients, the explicit

 solution f1(x, y) to the problem P1 is not necessary. These can be obtained in the
 following manner using a technique similar to that used by Evans [2]. For this we

 apply Green's integral theorem to the harmonic functions 9. and pj in the region
 bounded by the lines

 y=O, -X'x_X; x=-X, 0'y_ Y; y= Y, -X'x'X;

 x=X, 0iy_ Y; x=O+, aKyKb; x=O-, a<y<b,
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 and circles C1 and C2 of small radius 8 with centers at (o, b) and (o, a), and we
 ultimately make X, Y tend to infinity and 8 -- 0. Using the same arguments similar to
 Evans [2], we obtain in this case

 iRI =fX [(+o, Y) ? {c(y) o( ' Y)1

 )-Po (-0, Y) { c (y) a (-o, y)}] dy,

 in which we have made use of the condition (P1.3).

 From (4.3), using the solutions for po(+?o, y) (see Appendix A), we obtain the
 analytical expression for the first order correction R1 to the reflection coefficient as

 R=4 [K F c(y) exp (-2KY)J V d(d-u2)e 22 dy
 AO Ja y J U u2_- a2)1/2 (b2 _ U2)1/ J

 (4.4) b (d2 _ U2)c(u) exp (-Ku) d
 a (u2 _ a2)1/2(b2 _ U2)1/2 -.

 This is in fact the same expression given by (3.31) obtained by using an integral
 equation formulation.

 Next, in order to obtain the first order correction T1 to the transmission coefficient,
 we again utilize Evans' [2] idea, along with the application of Green's integral theorem
 to the harmonic functions TO(x, y) and 'P(x, y) in the region mentioned earlier, where
 To(x, y) = 'po(-x, y) to finally obtain

 iTi=f [To(+ Y) {c(Y) y (+? Y)}
 (4.5)aay y

 -Apo(-0, y)-{ c(y) (-o yY) dy
 ay ay

 in which the relations (P1.3) have been used. Utilizing To(+o, y) = 'poQFo, y) in (4.5),
 integrating by parts, this produces

 iT = [ c(y) { P (- oY) a p0 (+ o, y) - p (+ o, y) a0 (- o, y) b
 ay ay y,=a~a

 and this vanishes after using (A.5). Thus T1 = 0. This result also holds for a partially
 immersed or completely submerged nearly vertical barrier, as was shown recently by
 Mandal and Chakrabarti [4] and earlier by Shaw [6] (for the case of a partially
 immersed plate). Shaw [6], however, used an argument based on symmetry to derive
 this result for the partially immersed plate, while Mandal and Chakrabarti [4] proved
 this analytically.

 5. Discussion. An analytical expression for the first order correction to the reflec-

 tion coefficient is obtained here for a surface water wave train incident on a fully
 submerged fixed nearly vertical plate whose upper and lower edges are at a depth "a"
 and "b," respectively, below the mean free surface. The problem is attacked for solution
 by using two methods, one method being based on an integral equation formulation

 of the problem and the other being a perturbational analysis. The second method
 seems to be rather simple compared to the first, as the desired results are obtained

 relatively easily and fairly quickly. The known results for a partially immersed plate
 are recovered as a special case.
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 For numerical illustrations we have considered three typical forms of c(y), namely,

 (i) a fixed vertical sinusoidal plate given by x = Eb sin to(y - a), (a < y < b); (ii) a fixed

 slightly curved plate given by x = s(y - a) exp (-cwy), (a < y < b); and (iii) a fixed

 slightly inclined straight plate given by x = Eb(y - a)/(b - a), a < y < b. The reflection

 coefficient IRI (=IRO + ERI1) is computed correct up to six decimal places for different
 values of the various parameters, e.g., Kb = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0,
 7.0, 9.0; E = 0.001, 0.005; cob = 5, 10, 15, 20, and ,u (=a/b) = 0.01, 0.05, 0.25, 0.50, 0.75
 for each particular type of submerged plate. Some representative numerical results are

 given in Tables 1 and 2. It is observed that the various values of IRI for most cases
 differ from IR,OI (i.e., the vertical plate result) only in the sixth decimal place. As terms
 of the order of E2 are neglected in the analysis, this indicates that the influence of ?
 is not of much significance for these types of nearly vertical plates.

 Appendix A. The explicit form of *p(x, y) can be derived from the general result

 given by Evans [1]. However, we deduce it here from the result given by Mandal and
 Goswami [5] in the form

 (A.1) qp0(x, y) = exp (-Ky + iKx) + 0(x, y)

 where

 1 rb
 (A.2) XO(X, Y) =- f f0(7)G(0o, q; x, y) dql,

 2iT a

 TABLE 1

 x =Ebsinw(y-a), a<y<b

 IRI=|RO+?R1i

 E = 0.001 E 0.005

 Kb /= a/b IROI wb = 5.0 wb = 15.0 wb =5.0 wb =15.0

 0.4 0.01 0.131075 0.131077 0.131075 0.131113 0.131077
 0.4 0.05 0.098837 0.098838 0.098837 0.098874 0.098838
 i.5 0.01 0.647357 0.647365 0.647362 0.647554 0.647481
 1.5 0.05 0.464928 0.464937 0.464932 0.465137 0.465031
 5.0 0.01 0.666440 0.666468 0.666502 0.667147 0.667985
 5.0 0.05 0.407773 0.407799 0.407818 0.408421 0.408898

 TABLE 2

 RI j=R? + eR1

 ? =0.001 ?=0.005

 x= e(y-a) exp (-wy) x= (y-a) exp(-wy)

 a<y<b Eb(y-a) a<y<b b(y_-a)
 (b-a) (b - a)

 Kb ,u=a/b tb=5.0 wbb=15.0 a<y<b cab=5.0 wb=15.0 a<y<b

 0.01 0.131075 0.131075 0.131076 0.131075 0.131075 0.131087
 0.4 0.05 0.098837 0.098837 0.098837 0.098837 0.098837 0.098846

 0.01 0.647357 0.647357 0.647357 0.647358 0.647357 0.647357
 1.5 0.05 0.464928 0.464928 0.646928 0.464929 0.464928 0.464928

 0.01 0.666440 0.666440 0.666442 0.666449 0.666441 0.666482
 0.05 0.407774 0.407773 0.407775 0.407779 0.407774 0.407817
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 G, f0(y) being the same as given in ?? 3 and 4, respectively. Using G(o, -q; x, y) given
 by (3.5) in (A.2), we can calculate po(x, y) explicitly for x> 0 as well as for x <0.
 (A.2) involves two integrals which can be simplified. One integral is

 2K Jafo(y) exp (-Ky) dy, and this is 2iyo/Ao, and the other is a 0 (Q) X
 (k cos kq - K sin k?) dq, which is simplified to -(2i/AO)J(k) where

 r"k (d -02) sin kY7 J(k)= J ( 2 _a2)12(b2 -2)i"2 dm

 Hence we finally obtain

 0(x, y)= ?- exp (-Ky+iKx)
 AO

 (A.3) _2i J J(k) (kcosky-K sin ky)exp(-kx)dk forx>0
 ,7Ao o k2+K 2

 and

 po(x, y) = exp (-Ky + iKx) - I exp (-Ky - iKx)
 (A.4)

 2i r J(k)(k cos ky-K sin ky) exp (kx)
 + J A 0 k2+K2 dk for x < 0.

 From (A.3) and (A.4) it can be shown that

 fexp(-Ky) ya,

 (A5) (o,y)= exp(-Ky)? iexp(-Ky) (do 2)22p /2 du a<y<b,

 exp (-Ky) y_ b.

 Appendix B. It can be shown that

 (B.1) -a(, Y; o, 7 =-- ( o, Y; o, ii).
 ax

 We proceed as in Shaw [6] to note that

 (B.2) aG __2_+_(y__ ,6_(y_- as e-0, ax X= ,y)

 where 8 is the Dirac delta function. Thus using (B.1) we find

 (B.3) aG | _ -, -5(y - -q) as g 0.
 df X=O

 The kernel in the first integral in the right-hand side of (3.8) can be written as

 - 7+C7 077 0+ GYoy2 (Yy OyJO

 Utilizing (B.2) and (B.3), this reduces to

 ar a] a a]
 -'7T{c(q77)2+c'(i)j 8(y-77)- { c(Y)2 (Y d)

 = 4T{C(y) - C(77)}"(y - B) +{c'(77) + c'(y)}8'(y -71)]-
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 After using the properties of the delta function and by integration by parts we find

 that the first integral in the right-hand side of (3.8) is zero.
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