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 if and only if some member of v contains all the others. But one can immediately

 see that this is false since any vector space with dimension at least two is the union

 of its subspaces with codimension 1 and none of these can contain the others. So

 we raise the question: can we impose some reasonable restrictions on the cardinal-

 ities of / and F and the dimensions of the subspaces in v to make the
 conjecture true? The answer is, indeed, yes. For example, the conjecture is known

 to be true if v is assumed to be finite and F infinite, see Problem 21, p. 177 of [2]

 or Theorem 1 below. In this note we present other reasonable conditions under

 which the conjecture is true. We also study the existence of a common complement

 for a family of subspaces, which turns out to be related to the above problem, and

 deduce a result of Lord [4].
 To set up the notation let V be a (not necessarily finite dimensional) vector

 space over a (not necessarily infinite) field F. We will use JAl to denote the
 cardinality of set A. For a subspace S, dim(S) denotes the dimension of S while
 cod(S) denotes the codimension of S. It may be noted that cod(S) is the dimension
 of any complement of S and equals dim(V/S). Sp(X) will denote the linear span

 of the set X of vectors.

 To start with we will show that for any vector space V over F with dimension at

 least 2, we must have IIl < IFl + 1 for the conjecture to have any chance of
 holding. To see this, fix a basis {xi: i c I} of V and two distinct elements j and k
 of I. Consider the IFI + 1 subspaces WJ, = Sp({x1 + axk} U {xi: i # j, k}) for all
 a c F and WO = Sp({xi: i # j}). It is easy to check that these are distinct subspaces
 with codimension 1 (so none of them can contain the others) and that their union
 is V.

 However, IlI < IFl + 1 alone is not sufficient: consider the vector space V of all
 polynomials over fR and the subspaces SO, SI, S2, ... where Si consists of all
 polynomials with degree at most i-clearly no Si contains all the others though
 their union is V. Thus, to prove the conjecture, we have to make some further

 assumption: for example, the family is finite or the subspaces are of bounded
 dimension. We now proceed to prove the conjecture under each of these assump-
 tions.

 THEOREM 1. Let S1, S2, ..., Sk be finitely many subspaces of V with k < IFI + 1.

 Then S, U S2 U ... U Sk is a subspace if and only if some Si contains the others.

 Proof The "if" part of the theorem is obvious. We prove the other part by
 induction on k. The case k = 1 is trivial. We now assume the result for k - 1 and

 prove it for k. So let S1 U U Sk be a subspace and k < IFI + 1. If

 S1 S2 U U Sk, we are through. So let SI 7/ S2 u U Sk. We shall show
 that S1 c S2 U U Sk. To this end, fix a y c (S2 u U Sk) - S1 and let
 x c S,. Then for every scalar a, ax + y - S,. Since S, U ... U Sk is a subspace,
 ax + y c S2 U U Sk. Since ax + y ,8x + y whenever a 0f and IFI > k, it
 follows that there exist j with 2 < j < k and a 0 / in F such that ax + y and
 ,3x + y are in Sj. Then x c Sj. Thus Sl c S2 U U Sk. Now the result follows
 from the induction hypothesis. U

 We now consider the case of a finite-dimensional vector space before going on
 to subspaces with bounded dimension in an infinite-dimensional vector space. We

 state only the non-trivial part in the remaining theorems.
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 THEOREM 2. Let {Si: i E I} be a family of subspaces of a finite-dimensional
 vector space V with III < IFI + 1. If S =U iEISi is a subspace then S = Si for
 some i E I.

 Proof. We prove the theorem by induction on n, the dimension of S. For n = 1
 the result is easy to prove. Next assume the result for n - 1 and let n > 2.

 Suppose that no Si equals S. If H is any subspace of S with dimension n - 1,

 H = H S = H n (US)= U (H n S),
 iEl i I

 so by the induction hypothesis, H = H n Si for some i E I. Then H c Sj and Sj is
 a proper subspace of S. Since dim(H) = dim(S) - 1 it follows that H = Sj. Thus
 every subspace of S with dimension n - 1 is one of the S1's. Since, as we saw in
 the first example before Theorem 1, there are at least IFI + 1 such subspaces of S,
 we get III > IFI + 1, a contradiction which proves the theorem. U

 For a denumerable family Theorem 2 was proved earlier by Byrd [1].
 We now deduce the result for a family of subspaces with bounded dimension.

 THEOREM 3. Let {Si: i E I} be a family of subspaces of V with III < IFI + 1. Also
 let m be a positive integer such that dim(Si) < m for all i E I. If S U= U iSi is a
 subspace then S = Si for some i c I.

 Proof. We first show that dim(S) < m. Suppose not. Then there exists a
 subspace W of S with dimension m + 1. Applying Theorem 2 to the family

 {W n Si: i E I} of subspaces of W, we get W = W rn Si for some i E I, a contra-
 diction since dim(W) = m + 1 and dim(Si) < m. Now an application of Theorem
 2 to the family {Si: i E I) of subspaces of S yields the present theorem. U

 We now use the above results to give conditions under which a family of
 subspaces of a vector space has a common complement.

 Observe that if the S1's have a common complement then they must have the
 same dimension and the same codimension. We restrict our attention to families of
 subspaces with common finite dimension or common finite codimension and we
 start with the latter case which happens to be easier.

 THEOREM 4. Let {Si: i {i I} be a family of subspaces of V with II| < IFI + 1. If
 the Si's have a common finite codimension p and either I is finite or V is finite-dimen-
 sional, then the Si's have a common complement.

 Proof. We prove the theorem by induction on p. If p = 0, {0} is a common
 complement of the S's. Next assume the result for codimension p - 1 and let

 cod(Si) = p for all i E I, where p > 1. Then by Theorems 1 and 2, Ui Si #s V. Fix
 an x in V - Ui Si and consider Ti = Sp(Si U {x}) for all i E I. Clearly cod(Ti) =
 p - 1 for all i, so by the induction hypothesis, the Ti's have a common complement
 W. Sp(W U {x}) is then a common complement of the S,'s. U

 COROLLARY 5 (Lord [4]). Let V be an n-dimensional vector space over Ra or C
 and let {Si: i EJ N} be a countable family of subspaces of V each having the same
 dimension. Then the Si's have a common complement.

 The proof of Corollary 5 essentially appears in Byrd [1].
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 THEOREM 6. Let {Si: i E I} be a family of subspaces of V with II| < IF| + 1. If
 the Si's have a common finite dimension, they have a common complement.

 Proof. If V is finite-dimensional, this follows from Theorem 4. Otherwise,

 applying Zorn's lemma to the family 57 of all subspaces T of V with the property

 T n Si = {o} for all i gives a maximal element To of S7. We now prove that To is a
 common complement of the Si's. Suppose To is not a complement of Sj. Let sv be
 the natural homomorphism from V to V/To. Since T n Si = {o} it follows that
 dim(p(Si)) = dim(Si) = m (say) for all i E I. Since To is not a complement of Sj it
 follows that (p(Sj) is a proper subspace of V/To, so dim(V/T0) > m. So by
 Theorem 3, Ui P(Si) 0 V/To. Hence, there is a 1-dimensional subspace X of
 V/TO such that X n sD(Si) = {o} for all i. Now sv - 1(X) is a member of 57 properly
 containing To, a contradiction which proves that To is a common complement of
 the Si's. 1

 We now show that when dim(V) > 2, the condition III < IFI + 1 cannot be
 dropped in Theorems 4 and 6. Regarding Theorem 4 it is enough to consider

 (again) IFI + 1 subspaces of V with codimension 1 and union V. Regarding
 Theorem 6 we first choose a subspace Y of V with dimension 2. Then we consider

 a family {Si: i E I} of IFI + 1 subspaces of Y with common dimension 1 and union
 Y. Suppose the S 's have a common complement T in V. Then Si + (T n Y) =

 (Si + T) n Y = Y for all i, so T n Y is a common complement of the Si's in Y, an
 impossibility which proves that the Si's cannot have a common complement in V.

 It is easy to see that the condition "either I is finite or V is finite dimensional"

 in Theorem 4 cannot be dropped. For this, take a basis B = {xj: jE J} of an
 infinite-dimensional vector space V and consider {Sp(B - {xi}): i I} for any
 countably infinite subset I of J. Indeed, the same example also shows that
 'tdimension" in Theorem 6 cannot be replaced by "codimension."

 We end this note by answering the problems raised in [3] and [4]. In [3] the
 problem was raised as to what are the results analogous to Corollary 5 which hold

 for vector spaces over finite fields. The answer is provided by our Theorems 4
 and 6.

 The problem raised in [4] was what is the maximum number of distinct
 m-dimensional subspaces of an n-dimensional vector space V over a finite field F
 that have a common complement? The answer is the number of distinct comple-
 ments of an (n - m)-dimensional subspace T since this number is the same for all
 T. To find this number, fix an ordered basis B of T. Any complement of T can be
 obtained as Sp(C) where B U C is an extension of B to a basis of V. This
 extension can be done in

 (IFIn - IF In-m)(IF In - IFI n-m+1 ) ... (IFIn- IF In-1)

 ways. But different C's can give rise to the same complement of T. The number of
 C's giving rise to the same complement is the same as the number of bases of an

 m-dimensional subspace and this is (lFlm - 1)(lFlm - IFI) ... (IFIm - IFlml )
 Thus the required number is

 (IFI IF InF m)(lFln IFIn-m+l) ... (IFIn- IFIn-') nm.

 (IFIm - 1)(lFlm IFI) ... (IFIm - IFIm-l)
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 The Generation of All Rational Orthogonal Matrices

 HANS LIEBECK AND ANTHONY OSBORNE

 Department of Mathematics, University of Keele, Staffordshire, ST5 5BG, England

 In a letter to this MONTHLY [1] John Cremona shows how to generate all 3 x 3

 orthogonal matrices with rational coefficients. His method is based on the real

 algebra of quaternions. By a further application of quaternions one can obtain
 4 x 4 rational orthogonal matrices. (See du Val [2].)

 In this note we show how to generate all n x n rational orthogonal matrices
 and hence all orthonormal bases of the rational vector space Qnf. At the same time
 we obtain all real orthogonal matrices and all complex unitary matrices. Our

 method is based on a further piece of mathematics from the last century-Cayley's
 formula for orthogonal matrices.

 Preliminaries. Let A and B be n x n matrices. We shall say that B is

 equivalent to A, and write B A, if and only if there exists a diagonal matrix D
 with diagonal entries selected from the set {-1, 1)such that B = DA. Clearly B is

 equivalent to A if and only if, for each i = 1,..., n, the ith row of B is, +ith row
 of A. The relation is an equivalence relation on the set of n X n matrices, and
 the equivalence class e(A) which contains A has at most 2" members.

 LEMMA. Let A be an n x n matrix over a field of characteristic 0 2. Then at
 least one of the matrices in e(A) does not have eigenvalue 1.

 Proof. By induction on n. For n = 1 the result is true, since the 1 x 1 matrices
 A and -A cannot both be [1] over a field of characteristic 0 2. Proceeding by way
 of contradiction let n be the least order for which the lemma is false. Then there

 exists an n X n matrix A such that all matrices in e(A) have eigenvalue 1. Thus
 for any matrix DA E ie(A), there exists x 0 0 such that DAx = x. Hence Ax =
 Dx, and so the matrix A - D is singular. Consider the determinant function

 d(t, * **, tn ) = det(A - diag(tl, ... , tn ))

 We have that d(t1, . . ., tn) = 0 for all 2' choices of ti = + 1, i = 1, ... , n.
 Expanding d(t1, . .., tn) according to the first row, we obtain

 d(t1, ***, t,n) = (a1 - t1)d*(t2, ... ., tn) + terms independent of t1. (1)


