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 SUMMARY. For the mult i var?ate normal mean model when the parameter is restricted
 to a positively homogeneous cone, Stein-rule or shrinkage versions of restricted maximum
 likelihood estimators RSMLE are considered, and under suitable quadratic loss, their dominance
 properties are studied systematically. Some applications to linear models are also considered.

 1. INTRODUCTION

 The past three decades have witnessed a phenomenal growth of research
 on improved estimation (under quadratic loss) based on Stein-rule (or
 shrinkage) estimators (SRE). Consider a p( ;> 3)-variate normal distribution
 with mean vector 8 e 0 where 8 is a restricted subset of Rv. In the unres

 tricted case (i.e., for 0 = Rp), the SRE of 8 dominate the usual maximum
 likelihood estimators (MLE). In the restricted case, the pivot (80) on which
 a SRE is based may not be an inner point of 0, and hence, the relative domi
 nance picture can be quite different. In fact, restricted (R) MLE (derived
 under the parameter restraints) may not possess all the asymptotic optimality
 properties of the classical MLE (although the RMLE generally perform better
 than the MLE when 8 e 0). One may theorefore wonder whether the RMLE
 can be dominated in quadratic risk by suitable SRE in the same manner as
 the unrestricted (U)MLE is dominated by a SRE ? A comprehensive study
 of this dominance picture needs to focus on the risk of all the UMLE, RMLE,
 SRE and their restricted versions (RSRE). The object of the present investi
 gation is to present a systematic and unified account of this relative dominance
 picture in a variety of restricted models.

 To motivate, we may mention some typical problems where the RMLE
 are advocated.
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 (i) Orthant alternative problem. Here 0 = { 8 e IP : 6 ^ 60}, for some
 specified QQeRp ; translating the observations by 80, we may set 00 = 0.

 (ii) Ordered alternative problem. Here 0 = {6 e Rp : dx <... < 6P} so that
 the pivot (or null hypothesis) relates to the line of equality : 8 ? 01, 6 eR.

 Other models include the so called umbrella alternatives, tree alternatives,

 loop alternatives, etc., and we may refer to Robertson et al. (1988) for some
 details. The RMLE computed under the restricted setup are often termed

 the isotonic MLE (viz., Barlow et al. (1972). Kudo (1963), Nuesch (1966),
 Perlman (1969) and others have studied various properties of the usual RMLE
 for some of these models. In this context, one may introduce a positively
 homogeneous cone 0 by setting that 6 e 0 implies that for every M>0, MBeQ,
 so that 0 is a proper subset of Rp, restricted by some inequalities. Generally,
 a RSMLE on a positively homogeneous cone 0 performs better than the usual
 UMLE, although an opposite picture may emerge on the complementary
 space Rp\Q. In the simplest orthant model (when the covariance matrix is
 assumed to be diagonal and known), Chang (1981. 1982) has proposed some
 shrinkage estimators. His formulation has mostly been on heuristic grounds,
 and the full impact of shrinkage has not been incorporated in the estimators
 considered by him. Further, the formulation becomes ineffective when the
 covariance matrix is not diagonal. For the case of a single inequality con
 straint, Judge and Yancey (1986) have considered some SRE ; their formula
 tion also encounters considerable difficulties in the case of multiple constraints

 when the covariance matrix is arbitrary. For both the cases, for a completely
 arbitrary covariance matrix, or in general, for a positively homogeneous cone
 0, an explicit formulation of the RMLE is a precursor for the construction of
 suitable RSMLE which would have better dominance properties. With
 this objective in mind, we shall consider here a formulation of RMLE and
 RSMLE in a unified manner, and then incorporate them in our desired domi
 nance picture study.

 In Section 2 we start with an explicit formulation of the RMLE, and this
 in turn provides a clear motivation for the construction of the RSMLE, treated
 in Section 3. The dominance of the RSMLE over the RMLE is established

 in Section 4 ; a general class of restricted minimax estimators is also consi
 dered there. Section 5 deal? with some restricted parameter spaces in some
 common linear models. Section 6 is devoted to the relative risk picture for
 the proposed estimators, and the concluding section deals with some general
 comments with special attention to the estimators considered by Chang
 (1981, 1982) and others.
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 2. Preliminary motions

 We shall see in Section 5 that a general class of restricted alternative
 models can be reduced to the positive orthant model for which

 0 = 0+ = {8 e RP : 8 > 0, ||8|| > 0} = R+p. ... (2.1)
 Hence, for the sake of simplicity, in Sections 2 through 4, we shall consider
 specifically the case of an orthant restriction model with an arbitrary cova
 riance matrix. Let Xx, ..., Xn be n independent and identically distributed
 (i.i.d.) random vectors (r.v.) having a p-variate normal distribution with mean
 vector 8 and dispersion matrix S assumed to be positive definite (p.d.). Let
 us denote by

 Xn = n-i S Xi and ?fn == S (Xt-XJiXi-XJ ; ?n = (n-l)-^.

 Then Xn is the UMLE of 8 ; it is unbiased for 8 but not admissible for p > 3
 The formulation of the RMLE of 8 (restricted to 0+) is due to Nuesch (1966).
 We shall find it convenient to express this in the following compact form.
 Later on, we also provide suitable simplifications in some special cases.

 For every p > 1, let Np = {1, ...,#}. By a Q Np, we mean a subset of
 Np ordered by natural ordering, \a\ stands for the cardinality of a, and
 of = Np\a stands for the complement of a. For a ^-vector x, we define
 for each a?LNv,xa as the |a|?vector consisting of the components with
 indices iea \x^ = 0, conventionally. For a pXp p.d. matrix Q and for
 every a ?. Np, b C Np, let

 ^a,b(Q) = Xa-QabQbbxb and Qa,b = Qaa-QabQ7?Qba, ... (2.3)

 where Qab denotes the |a| X \b\ submatrix of Q consisting of the rows in a
 and columns in b ;Qaa and Qw are defined analogously. Let then

 ?Ca(Q) = {xeRP = Q^xa' < 0, xa:a>(Q) > 0}, 0 C aQNp. ... (2.4)

 Then [viz., Kudo (1963)] the ?Ca(Q), aeNp are disjoint and (J ?Ca(Q) = #p.
 aeNp

 Finally, for every a ?! Np, such that \a\ = r (0 ^ r < p), if u and v are r- and
 (p?r)?vectors respectively, we denote by

 [^a(u, v)]i = ^ or v\ according as i e a or i e a'. ... (2.5)

 The RMLE of 8 (restricted to 0+) is given by

 *ht = 2 ^(Xna:a'(Sn), 0) 1 (Xn ?Ca(Sn)), ... (2.6)
 {0_C?CATp}

 A 3-18
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 where 1(A) stands for the indicator function of the set A. If S is known, in

 (2.6) we replace Sn by 2, and this RMLE is denoted by Qmi. We may further

 note that only one of the 2v indicators functions l(Xn e ?Ca(Sn))> aeNp is
 non-null, so that (2.6) is actually expressible in terms of a single (random)

 term in this closed form. We may remark that whereas the UMLE Xn is
 equivariant under any nonsingular transformation of the X% the restricted
 space 0+ is not invariant with respect to such transformations, and also the

 RMLE in (2.6) may not enjoy this equivariance property in a general setup.
 If however, S is a diagonal matrix, we may need only the diagonal terms of
 Sn to estimate it (denote this diagonal matrix by S2), then the RMLE in (2.6)
 with Sn replaced by S? remains equivariant under any coordinatewise scalar

 transformation. In such a case, a is'the set of all'coordinates of Xn having
 positive elements (easy to determine instantly), and that simply yields the

 unique partition a (eNp) for which l(Xn e ?Ca(SD) = 1- This simplification
 is not generally tenable for an arbitrary 2 (even when it is known) For p
 not so large, the computational algothithm for (2.6) has been discussed in
 various places (viz., Robertson et al. (1988)), although as p increases, the task
 becomes highly laborious. However, in actual practice, generally p is not
 large, and hence, (2.6) does not pose any threatening tapk for its computation.
 The beauty of (2.6) is that it provides a natural motivation for the SRE which
 we consider in the next section. However, to study the related dominance
 results, we need to introduce the relavant risk function. For this, consider
 the quadratic loss function (for an estimator T of 8) :

 L(T, 8) == (T-8)' E-J(T-e) = ||T-8|||, ... (2.7)
 so that the risk is given by

 R(T, 8) == EqL(T, 8) = Tr^E^T-B) (T-8)'], 8 e 0+. ... (2.8)

 We may recall that an estimator T* dominantes another one (T) in quadratic
 risk if

 R(T\ 8) < R(T, 8), Y 6 e 0+, with strict inequality, for some 8. ... (2.9)

 3. The RSMLE for ?+
 Note that {?Ca(Sn) ; <?> ?. a Q Np} is a partitioning of Rp into 2v disjoint

 subsets. Also, on ?Ea(&n)> ^e problem of estimating 6 under the constraint
 that 8 > 0 essentially reduces to that of estimating Qa under the constraint
 9at s 0, and the RMLE coincides with the UMLE on this | a \ -dimensional
 subspace. This suggests that while adopting the James and Stein (1961)
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 shrinkage methodology, it may be wiser to adapt it to the particular subset
 (i.e., ?Ca(Sn)) where the sample statistic belongs to. Thus, we allow the
 shrinkage factor to be dependent on the (random) subset a '(?>?.a?^Np,
 and propose the following RSMLE of 8(on 0+) :

 ?^sm = 2 UXn e &a(Sn)) {1-ftiWlfeM \\% )-*} fen, ... (3.1)

 where the RMLE ?rM is defined by (2.6), so that

 IlMk ?[*??:a'(Sw)r S;ly(Xna^(Sn)]on?ea(Sn),<?>QaQNP?... (3.2)

 and the shrinkage factors ca, <?> (Z a Q Np are nonnegative and they satisfy :

 0 < ca < 2(|a|?2)+/(rc?# ! 2) where g+ = max (0, q), for real g. ... (3.3)

 It may be remarked that Sn follows the Wishart distribution W(p, %?1, 2)
 with n?\ degrees of freedom (DF). In general if 8 were W(p, m, 2), indepen

 dently of Xn, then in (3.1) and (3.2), we would have replaced Sn by S, and in
 (3.3), for the upper bound of ca, n?p+2 by (m?p+3), a(ZNp. Also, if

 2 = (tW, V known, and if there exists an S2, independent of Xn, such that

 mS2/cr2 ~ A^, f?r some m ^ *> then letting s2 = m(m-f2)-1?2 and S = s2V,

 in (3.1)?(3.2), we would replace Sn by 2 and in (3.3), the upper bound for
 ca would be simply 2(\a\ ?2)+, a?ZNp. In particular, if 2 is known, then

 A

 we may further replace S by 2 without any further change in the upper bound

 for ca, a ?Z Np. For the case of a diagonal 2, the computation of (3.1) becomes
 much simpler (vide Section 2 for the corresponding RMLE). In this case,
 Chang (1981, 1982) has considered some albernaive SRE where the shrinkage
 factor is not made to depend on the particular (random) set a for which

 Xne?Ca(I)- We shall make a detailed comparison of our proposed estimators
 and the ones by Chang (1981,1982) in Section 7. In passing, however, we may
 remark that (3.1) besides being applicable in a more general situation is also
 more efficient than the Chang estimators when 2 = o*2/.

 9SSm= 2 l(X*e???(SJ){l-^^ ... (3.4)

 Here also, the (lower) turneation of the shrinkage factor is made to depend on

 the partitioning ?Ca (Sn), 0 C a ? Np. Some analogues of the Baranchik
 (1970) and Strawderman (1971) estimators for the restricted parameter space
 under consideration will be considered in the next section.
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 4. Dominance results for the RSMLE

 Our main contention is to prove the following :

 Theorem 4.1. Under the quadratic loss in (2,7), for every p ^ 3,

 *(??bid 8) < R(^m, 8) < R($lM, 8), Y 6 e 0+, ... (4.1)

 wliere strict inequality holds in a neighborlwod of the pivot 0 (e 0+). Thus, the
 positive rule RSMLE dominates the RSMLE which in turn dominates the RMLE
 when d is restricted to the positive orthant space 0+.

 The proof of this theorem and some related lemmas is relegated to the
 Appendix.

 Remarks. First, we may note that in adapting ca to 1he set ?Ca(Sn),
 a e Np, maximal gain is achieved when ca = ( | a | ? 2)+, a e Nv. This is very
 similar to 1hat in the unrestricted case. Secondly, as expected, the risk-reduc
 tion due to shrinkage is a maximum at the pivot (i.e., 8 = 0). Thirdly, in
 the unrestricted case, the shrinkage factor is cp while in our case, it depends
 on the ca,ae Np. Since the ca are generally montone increasing in | a |, and
 our risk reduction involves an average of the reductions over the variaous
 sectors ??a(Sn), aeNp, we would have a comparatively smaller reduction of
 the risk of the RSMLE over RMLE than in the unrestricted case (i.e., SMLE
 over UMLE). This is not surprising, as the RMLE are themselves adjusted
 estimators with due considerations on the set restraints. This raises the

 issue of comparing the SMLE and RSMLE, and this will be addressed in
 Section 6. Fourthly, for any 8^0, the reduction in the risk due to shrinkage
 depends on the sample size n through the noncentralities n* Qa,aeNp. It
 is also known [viz., Sen (1984)] that in the unrestricted case, as the noncentra
 lity parameter increases, the risk-reduction becomes smaller, and in the asymp
 totic case, it achieves the value 0. A similar situation holds here. As n
 increases, the risk-reduction of the RSMLE over the RMLE becomes smaller

 and approaces the asymptote 0 as n-*co. For this reason, in the asymp
 totic case, it has been suggested [Sen(1984)] that one should use Pitman alter
 natives (i.e., 8 = n~* X, X e8+), for which we would have the same picture as
 in Theorem 4.1 where 8 has to be replaced by X. Finally, the relative domi
 nance picture in Theorem 4.1 is adapted to the particular loss function in
 (2.7). If instead of S_1 we use an arbitrary W (p.d.) then (4.1) may not hold.
 This situation is quite comparable to the unrestricted case where the domi
 nance of the SMLE rests on the adoptation of a particular loss function, and
 for different loss functions, shrinkage estimators having the rlesirecl dominance
 property may differ.
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 Motivated by the positive-rule shrinkage estimators and a general class
 of minimax estimators (in the unrestricted case) introduced by Baranchik
 (1970) and Strawderman (1971), we consider here some more general minimax
 estimators in the restricted case. In the unrestricted case, the MLE and
 its shrinkage versions are all equivariant under nonsingular transformations

 X -? Y = BX, B nonsingular. However, this equivariance is not generally
 true for 0+ (when 2 is arbitrary p.d.) or for a positively homogeneous cone in
 Rp. This makes it difficult to use a canonical reduction (on 8, E) to establish
 the desired results for an arbitrary 2. However, under an additional condi
 tion on (8, S), such a general dominance result may be obtained. Let us
 define

 < x, y > s = x' S"1 y, < x, x > s = Il x \\ | ; ... (4.2)

 ijrm (8, S) = (2n)V* IS|-i'? J ... J ||*||-*< 6,* >s exp ( -- ||s|||\ dz, m> O?
 ... (4.3)

 ?; = (8 e 0+ : x?rm (6a:a,, 2,:a.) > 0, V m > 0 and a Q Np}. ... (4.4)

 Note that a sufficient condition for 0+ to be non-empty is that E?) a> 8a . a*> 0,

 for every a e N*p (= {a e Np : \ a | > 2}), p > 3, and this is true in particular
 when S is diagonal. Thus, the results to follow hold for 0_?_ when S is diagonal
 and p > 3.

 For every a^C^C Np, let ta(y) : ?+-> (0, 2( | a | ?2)+) be a nonde
 decreasing, non-negative and bounded function of y, and for p > 3, let
 X^NP(Q,Z),

 ?*= S l(Xe^a(Z))\l~l(\a\>2)[y~%(y)] , ,2 }^M, ... (4.5)

 where 6rM refers to the RMLE in the case of known E (and n = 1). Note that
 the positive-rule estimator in (3.4) [with Sn replaced by 2] is a member of this
 class.

 Theorem 4.2. Let X ~ NP(d, 2) where 2 is such that 8 e 0+. Also assume
 that ta(y) is nonnegative, monotone nondecreeasing and and bounded from above

 by 2(|a|?2), for every aQiV*. Then, for p > 3, any estimator of the form
 (4.5) dominates ?rM (over 0+), and hence, is minimax (over 0+).

 The proof of the theorem is sketched in the Appendix. In passing, we
 may remark that when 2 is diagonal, the ?Ca{?) = ?Ca(I) and ?RM do not

 depend on 2, but the factor [y~\(y)]r\\? i?2 may depend on 2, and hence,
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 (4.5) depends on 2, even if it is diagonal. However, for a diagonal 2, 0+ = 0+,
 and the conclusion holds for the entire domain 0+. This may hold for some
 non-diagonal 2 too, and some of these casos will be treated in the nexf section.

 5. Some extensions and important applications

 An extension of the positive orthant model is considered here and some
 specific applications in linear models are presented along with.

 5.1. Sub-orthant model. As an extension of (2.1), we consider the
 following :

 X(m+p -vector) - (X[, X2)' ~ Nm+P{B, 2) ; 8 = (/i[, fi2)' ... (5.1)

 where /ix and fi2 are m and ^-vectors respectively, and 2 is a (m-\-p)x(m-\-p)
 matrix (p.d.). In this setup, fix is unrestricted while fi2 belongs to the positive
 orthanl R+p, i.e.,

 ?o ={6 = (^!,^a) :fixeRm and fi2eR+P}, ... <5.2)
 and the pivot for fi2 is 0. We denote by N$ = {m+l, ..,, ra-fp} and for every
 a : $ C a C N$9 the complemetnary subset (a') as well as the Xx.a (2), Xa.a>
 (2) and S etc.. are defined as in earlier sections. It can be shown (viz., a : a'

 Sengupta and Sen (1987)) that for this sub-orthanfc model, the RMLE of 8 is
 given by

 ?AM = 2 *>N a(XX:a? Xa:a.,0) l(2;4^a^<0, Xaia>>0), ... (5.3)

 where Nm ?{1, ..., m}. Actually, for the case of unknown 2, whenever we
 have a Wishart matrix S (with M DF), independent of X, the RMLE of 8
 is also given by (5.3) provided in the definition of the X1:a, Xa:a' etc., we
 replace 2 by S.

 Motivated by the RMLE in (5.3) and the Stein-rule estimators in Sec
 tions 3 and 4, we consider the following theorem on improved estimation for
 this sub-orthant model.

 Theorem 5.1. The shrinkage estimator

 ?rsm - S l(X2 e (?Ca (S,)) {1 -ca||?RM||s} ?BM ... (5.4) ?czaCNO

 dominates the RMLE in (5.3) [over 0?] whenever p+m^ 3 and

 0 < Ca < 2(|a| +m? 2)+,for every a:<?>(ZaQN$. ... (6.B)
 The proof is relegated to the Appendix.
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 For the case of unknown 2, under the provision of a Wishart matrix
 S ~ W(m+p, M, 2), in (5.4), we need to replace 2 by S, while in (5.5), the
 upper bound for ca is to be taken as 2 (\a\ -^m?2)?(M?m?p+Vj, for a :
 ^?? C!^. With these changes, the dominance result in Theorem 5.1 remains
 in tact. In passing, we may remark that a particular case of Theorem 5.1
 [viz., p = 1] dealing with a single inequality restraint has been considered in
 Judge and Yancey (1986) [see also Chang (1982)]. However, their heuristic
 approach may run into considerable difficulties in the non-orthogonal case
 (where 2 may not be diagonal), while in the orthogonal case, under (4.4),

 we have a more general class of estimators (which also extends readily for
 this sub-orthant model). We may also remark that the modifications for the
 case of 2 = <rW, F known, can be made as in after (3.2)?(3.3) : If ?2/cr2 is

 ~#2, independently of X, then letting s2 = (M+2)~1MS2 and 2 = s2V,
 we may allow 0 < ca < 2 ( | a \ -\-m~~ 2)+, V a> '-<f> ? ? ? N$. This special case
 is of considerable importance in the context of some useful linear models.

 5.2. Ordered alternative model. Suppose that X{j,j = l,...,nt are
 i.i.d.r.v.'s with the normal distribution N (?i\, <r2), % ? 1, ..., r ; all these r
 samples being independent. The ordered alternative model relates to the
 following positively homogeneous subsepace of Rr : 0> = {([ix, ..., /ir)
 g Rr :/^! < ... < fir), so that the pivot is the line of equality ftt ~ ... ? fir
 = fix e R. If we write

 fit = fafovi = land/?? = fh+?^+...+?u i = 2, ...,r ; ?2 = (?2,...,?rY>
 ... (5.6)

 then 8 = (fiv ?2) relates to the sub-orthant model with m = 1 and p = r? 1.
 We may also consider a two-waj^ layout : Xfj = fii+Tj+ey, 1 < j < n,
 i = 1, ..., n and characterize the order alternative model for the treatment

 effects rv...,Tr as a sub-orthant model. Since these are both particular
 cases of some linear models, we consider the latter in details.

 5.3. RSMLE for univariate linear models. Consider the usual linear
 model

 Xn = (Xv ..., X?y = C? + e? ; e? ^N?(0, o*In), 0 < a* < co; ... (5.7)

 where O is a known matrix (of order nxp*) of regression constants, ?' =
 (?i> ?2)' is a #*-vector of unknown resression parameters, ?^ is a ^-vector,

 j = 1, 2, and <r2 is unknown. We consider the following sub-orthant model :

 ? 6 0> ? {? : ?x e RP\?zeR+P}, p2 = p and p* = px+p2. ... (5.8)
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 Without any loss of generality (and allowing reparameterization if necessary),
 we may assume that C is of full rank p* < n, and we desire to construct im
 proved estimators of ? under the set of restraints on ?2 in (5.8). This model
 includes the iT-sample location model as a special case of p ? K? 1.

 Note that the classical MLE for (?, a2) are

 ? = (?i, ?2)' = (C'C)-*C'XH and ?2 - (n~p*)-i\\Xn-C?\\2, ... (5.9)

 and these are jointly sufficient for (?, a2). Moreover, ? and 62 are independent
 with

 ? ^ N(f>, a2(C'C-i) and (n-p^jcr2 ~ xl-**- - (5.10)

 In this case, the RMLE of ? is denoted by ?]RM and is defined by (5.3) with

 X =- ? and 2 - 62(C'C)-\ and as in Theorem 5.1, we obtain the RSMLE as

 *r?m = S l(?ae ??fl(W'C^ (5.11)
 where

 ()<ca^2(\a\+p1-2)+(n-p)l(n~p+2),Y a :<f>Qa?NQp. ... (5.12)

 Then, under the quadratic error loss (F??)' (C'C) (F? ?)/<72, we have

 ?(paM, ?) < ?(Pbm, ?), V P eRPlxR+P. ... (5.13)

 We may also consider a positive-rule version of the RSMLE (as in (3.4) with
 the obvious modifications) and verify that (4.1) holds as well in this model.
 Parallel dominance results hold for a general class of multivariate linear models
 too.

 6. Relative risk picture of the proposed estimators

 Inspite of having some similarity, there is a basic difference in the SMLE
 and RSMLE. For the normal mean problem, positive orthant model, the
 SMLE is invariant under orthogonal transformations : X-> F = UX, U'U = I,
 but the RSMLE is not so. Thus the risk function of the SMLE is constant

 on the countours S ? S^^S, and this characterization can be incorporated
 in the simplification of the risk picture of the SMLE. The risk function of
 of the RMLE and RSMLE may depend on the unknown 8 in a much
 more involved manner. This picture may actually depend on whether 8
 belongs to the interior of 0^ or to its lower dimensional faces (edges). In
 Section 6.1, we shall study the differential picture of the risk of RSMLE in
 different subspaces of 0r and incorporate this in the next sub-section to draw
 the relative picture for the SMLE and RSMLE.
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 6.1. Directional variation of the risk of the RSMLE and RMLE over
 subspaces of 0+. We may observe that at the pivot 8 = 0,

 -R(?Rms, 6) = p?2-(p~?)l2-2-P(p+2) = 2-(p+2)l2v. ... (6.1)

 The growth of the risk of the RSMLE (or RMLE) is very much dependent on
 the direction of deviation of 8 from the pivot. To study this directional
 variation, we proceed in two steps. First, we study the directional variation
 of the risk of the RMLE. Then by using (A. 11), we draw the picture for
 the RSMLE. Also, for simplicity, we consider the model X ~ iV(6, J),
 8 e ?H with the pivot 0, so that

 ?(6RM, 6) = S [Pe{Xa> < 0}EB{\\Xa-6a\\2 l(Xa > 0)}
 (fiCaCNp

 +PQ{Xa > 0}PQ{Xa. < 0}. ||ea.||2]. ... (6.2)
 Let <!?(x) and $(x) be respectively the standard normal d.f. and p.d.f. Then,

 P*iXa' < 0} = n *(-0,), Pe{Xa > 0} = II <D(0 ), 0 C ? ? #? ... (6.3) jea' jea ?

 EJ\\Xa-f)a\\n(Xa > 0)} = PQ{Xa > 0} 2 {1-^(?;)/0(?;)}; ... (6.4) jea

 for every a : c/> ? a 5z Np, so that by (6.2), (6.3) and (6.4), we have

 /?(0RM!6)= S 2 n *(0,)*{-?,)}|a|- S 0^(0,)/*^)+ S ?,2}. (p^ZaCZNp jea lea' jea leaf
 ... (6.5)

 It is clear from (6.5) that the risk of the RMLE depends on the individual

 0V ..., 0V in an involved manner (and not simply on ||8||2). For the case
 of the SMLE or the classical MLE. by virtue of the canonical reduction, it
 sufficies to consider the case where 6 = (d, 0, ..., 0)' and S2 =z ||8||2. Hence,

 we study first the risk of the RMLE in this case (relating to a one dimensional
 face of 0 *.). In this case, letting 8? -- (S. 0')', we obtain from (6.5) by some
 routine steps that

 (??Eireo) = pl2+mS)-ll2]-{8(f>(?)-d2[l-Q>(S)]}. ... (6.6)
 Note that by virtue of the Mill's ratio, S(j>(S)?82[l?<fid)] is nonnegative for
 every d > 0 and it converges to 0 as ?->oo. Thus, at 8 = 0, (6.6) is equal
 to p\2 and it is bounded away from above by (f>+l)/2, for every S > 0 ; the
 upper bound is attained as ??>oo. By virtue of (A.11) and (6.6), we have no
 letting ca = ( | a | ?2)+, for a : <?> ? a C Np, that under 8?,

 R(Km^)--R(^v e?)-2ae^;(|a\ -2)2EB?{l(Xa>0, Xa,<6)\\Xa\\2}.
 ... (6.7)

 A 3-19
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 Note that if {1} j a,

 E^{\{Xa > 6, Xa. < 0)||Xa\n = <D(-?)2-P+M I a | -2)~\ ... (6.8)

 while on letting gm(v) he *ne centra] chi square p.d.f. with m DF, we have for
 {1} e a,

 EMXa>0, Xa, <0)||Xo||2}=2-3>+i f f (v+y*)-i <t>{y-8)gXa[^{v)dvdy
 0 ? ... (6.9)

 Therefore, from (6.6) through (6.9), we obtain that

 R(hm,*?)= pl2+[^(S)-ll2]-{??(?)-m-^(S))} - (6.10)

 _2-<P-i?[0)(-i) I (r-2) (P~ \ r=3 \ r I

 - I (r-2)2 Z2*"1) J f (y2+v)^gr^(v)4(y-S)dvdy]. r=3 \r?1 / o o

 It may be noted that by the usual expansion of <j)(y?8) in a Taylor series
 expansion in d and identifying the Hermite polynomials in y in these successive
 terms, we may as well use Lemma A.l to provide a power series representa
 tion for the last term in (6.10) in S with the coefficients depending on the
 ftm(B?, 1). However, for intended brevity, we refrain ourself from this for
 midable task.

 Next, we consider another extreme case where 8 = 61, 6 > 0, so that
 A = pd2. Thus, here 8 lies on the line of equality 6X= ... = 0V and is an
 interior point of 0+. If we let a = O(?), ? = l-0??(0)/O(0) and y=0(?0)/ 0(0)
 (so that a(l-f-y) = 1), then (6.5) simplifies to

 ocP{p(l-?) (l+y)p-i+p d2y(l+y)P-i}

 -?){?>(0)-0<D(0)+02[l-?4(0)]. ... (6.11)
 In passing, we may remark that the SMLE has the risk equal to 2 at 8 = 0,
 while for any 8 ^ 0, this risk is greater than 2 (but bounded from above by p).
 Also, we may note that at 8 = 0, both (6.6) and (6.11) reduce to p/2. Thus,
 for p > 5, the RMLE may not perform better than the SMLE (particularly
 near the pivot). Given this discouraging feature of the RMLE, the need
 for RSMLE ir felt even more for larger values of p. Next, to compare (6.6)
 and (6.11), we set h(x) = p{Q>(x)?x(j)(x)+x2[l ?<S>(x)]}?[<S>(x\/p) ?x\/pcj)(x<\/p)\
 +px\l?Q>(x^/p)[, and note that

 fa(x) = 2 ^/px[<S>(x \/p)?0(.t)] > 0, for every x > 0. ... (6.12)
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 Thus, corresponding to a given A ( = 82 in Case (i) and pd2 in Case (ii)), the
 diffeienence between (6.11) and (6.6) is equal to 0 a1 A = 0 ard is a monotone
 nondecreasing function of A with the upper asymptote equal to (p?1)/2( > 1).
 This clearly indicates the non-uniformity of the risk of the RMLE over the
 A-contours : The risk is smaller on the boundaries of 0+ while it may be con
 siderably larger as 8 moves away to the interior. By setting ca=( \ a \ ? 2)+, for

 0 C a C Np and using (A.l), we may simplify the right hand side of (A. 11) to

 S (P \(r-2)2[Of-?)p-?,(exp{-(r/2)?2}){ 2 (k l)-^-1"2

 MO lr, /r)r((r + fc-l)/2)/r((f/2))}, ... (6.13)
 where lr and Jr stand for the r-dimensional vector (1, ..., 1), and identity
 matrix, respectively. Thus, for 8 = 8= = 0 lp, A = pO2, we have

 r=3 \ r I

 {(exp {-{rim 2 (* !)-12<*-?/V*(?lr,/r) r((r+Jfc-l)/2)/r((r/2)}.

 ... (6.14)

 Note that by (4.3), for 8 - 8= \?rk(6\r, Ir) is dk 0* = dk Wjp*12, where the dk
 are positive constants depending on the k and hence the second termon the
 right hand side of (6.14) can equivalently be expressed as a sole function of A,
 although in an infinite series form.

 In a similar manner, we may consider a lower dimensional face of 0+ by
 setting

 8-8(S) = (A/*)*(i;, 0;_,)' ; A > 0,for5= l,...,p. ... (6.15)

 Simplification of (6.5) is indeed possible under (6.15), and it would then be a
 function of A. It can be shown that for A > 0, the risk of the RMLE under

 (6.15) is a monotone nondecreasing function of s(Q < s < p). This picture
 reveals that the performance of the RMLE is not uniform over the A-contours;

 rather the more 8 is close to the boundary of 0+> the better may be the per
 formance. Also, using (A.l), under (6.15), Ihe right hand side of (A.11) may
 also be expressed in a form (somewhat) similar to that in (6.13), although
 for s < p, the form will be more complicated. Actually, for an arbitrary
 8 e 0+, we may use (A.l) to express a typical term in (A.ll) [when S = Ip] in
 terms of homogeneous functions of 8 of degrees k ; k > 0.

 6.2. Dominance properties of the RSMLE. By virtue of the discussions
 made in Section 6.1., we draw the following conclusions :
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 For p = 3, if 8 = (?, 0, 0)', the RMLE dominates the SMLE, and hence, by
 Theorem 4.1, the RSMLE dominates the SMLE. In this context observe
 that by (6.6), i?(?SM, 8) = 2 for 8 = 8?, and it monotonically increases as
 S( ? 8'2~18) increases, and finally, its upper asymptote is equal to p ( = 3)
 (viz., James and Stein, 1961).

 Therefore, in the sequel, we confine ourselves to the case of p ^ 4.

 Theorem 6.1. Let X~NP(B, I) where p > 3 and 8 e 0+. Then

 ?(?bsm> ?) < R$m, 6),/or all 8 e W'dex ; S > 0 }, ... (6.16)

 where ex = (I, 0, ..., 0) is the basis vector and S = S^^B.

 Proof. Note that the relevance of {\Z8ev S > 0} follows from 1he invari
 ance of the risk of the SMLE under rotation, although other choices may be

 important for the RSMLE. We only consider the case of p > 4, as for
 p = 3, the result has already been proved earlier.

 First, consider the case of p = 4. Since i?(?SM, 8) = p ~(p?^fE(xfi6),
 by (A.ll) and (6.6), we obtain that

 i?iSSM, ej-B??BMs, 8) =i>/2-(p-2)? JB(^)H0W^

 + 2 ^\a\-2)2EB{l(Xe??a)\\Xa\\-2} ... (6.17)

 The right hand side of (6.17) reduces to

 2-4?(XA)-[^**)-i**#(*?)+(l-#(*?))]+ S % ( | a | -2)22?e{l(X eXa)\\S0at2}
 aCZNp

 = ?4(*)+?4(*), say. ... (6.18)
 Note that i?4(?) is nonnegative for all ? > 0. Hence, it suffices to show that
 A?d) is > 0, for every # > 0. For this, note that

 E(Xi2) = exp(-*/2) S (*/2)'(r !)-1(2+2r)"1J for every 5 > 0. ... (6.19) r2?0

 Also,
 [1-<&(*>)] < *-ty(**) = (2?t*)-* exp(-?/2), Y?>0, ... (6.20)

 while, by standard results,

 4B(X6-J) = exp(-*/2) 2 (*/2)'(r !)-14/[(2+2r) (4+2r)] >? exp(-*/2), S > 0.
 ... (6.21)

 Hence, by (6.19), (6.20) and (6.21), we have

 ?4(0) = 0, ... (6.22)
 (a/5?)?4(?)|?-? = 40(X?jMl-*(?*)]>O, Y *>(2/7T) (** 0.636). ... (6.23)
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 At S = 0, (6.23) is equal to 0, while for 0 < S < 2/tt, we note that

 (3/30) WXjTJMl-*(*?)]} = W)-16a*tf(tf8-5)

 = exp(-*/2) {(2tt)-*? S (*/2)r(r !)"1[(2+2r) (4+2r) (6+2r)]-i **} r ^0

 >oxp(-*/2){(27r)-J-(**3) 2 (*/2)f(r !)-i}

 - 0(**) {l-(2?r)*(**/3) exp (5/2)}

 > 0(i*) {l-(2/3) exp (O} > 0, 0 < 8 < (2/tt), ... (6.24)

 as ** exp (5/2) < (2/tt) exp (tt"1) and exp (rr-1) < 3/2. Thus, (6.23) is > 0,
 for all 0 < 8 < (2/tt), and hence, (6.23) and (6.24) imply that AA(8) is > 0,
 for every 8 > 0. Hence for p = 4, the RSMLE dominates the SMLE.

 Consider now the general case of p > 5. Note that we have here
 Xx ~ N(S*,1) and X$ ~ N(0, 1), foi i = 2, ...,p. We denote the last term on
 the right hand side of (6.17) by Gp(8) and write it as

 Gp(8)= 2 (\a\-2)2Ed{l(Xe&a) ||Z?||?I(1 * a)} a CA7*
 __ p

 + 2 (\a\-2)2E0{l(Xe a) \\Xa\\* 1(1 e a) o CAT*
 ? p

 = CP(?)+CW(8), say. ... (6.25)
 Now, by direct evaluation, it follows that

 Cp(?) = <!>(-Sl){(p-5)l2 + (p+l)2-P+i}; ... (6.26)
 (7<2>(0) = (2)-3)/4+2-P and Gp{0) = (p-4)/2+(p+2)2-P. ... (6.27)

 For every r > 2, let us denote by

 Ar(8) = ^{(Xf+...+Z?)-i 1(X, > 0, j == 1, ..., r)}. ... (6.28)

 Then, we may write

 <?2)(*)= I Z^- )2-<i>-^(r-2)2^f(i). ... (6.29) r-2 W' ? 1 /

 Noting that the joint density of Xv ..., Xr is given by <j>(x?8*)<?>(x2) ... <j>(xr),
 we obtain that

 (djdu)Ar(v) | ?., - (2<^2)~i ^{(Z^^HXrir2 l(Xr > 0)}, r > 2. ... (6.30)
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 Since in (6.30) Xx is confined to R+, the derivative is positive at 8 = 0 and
 it continues to be positive for all 8 > 8(J\ for some ?<f) > 0, while it may be
 negative for 8 > StfK Moreover, by (6.30), we obtain that even for
 8 > 8* = min dg>, r > z

 (d/du) Ar(u)\u=? > - l2 Ar(d), ... (6.31)

 and actually, (6.31) holds for all 8 > 0. Hence, (6.29) and (6.31) ensure that

 (djd8)Cf\8) > ?i Gf\8), for all 8, ... (6.32)

 which in turn implies that

 Of (8) > exp(-i/2)C<?>(0), for all 8 > 0. ... (6.33)

 Thus, by (6.25), (6.26), (6.27) and (6.33), we have

 Op(8) > O(-**){(p-5)/2+(p+l)2-i?+i}+-exp(--i/2){(p-3)/2+2-P},Y*>0.
 ... (6.34)

 Consequently, the right hand sidejof (6.17) is bounded from below by

 (p/2Mp-2)?J0(fr-^

 {(:p-3V2 + (^+l)2-^1}+exp(-?/2{(?>-3)/2 + 2-^},V * > 0. ... (6.35)

 At 8 = 0, (6.35) reduces to (p+2)/2P > 0, and proceeding as in (6.19) through
 (6.21) but replacing 4 by p], it follows that the derivative of (6.35) with res
 pect to 8 is indeed nonnegative for all 8, and hence, (6.35) is nonnegative for
 all 8 > 0. This completes the proof of the theorem.

 Let us now consider the relative risk picture in the least favourable
 direction : B = 8* I where 1 = (1, ..., 1)' and 8 > 0. In this case, (4.4)
 reduces to

 ilP) (r-2f[?(-V)]?-rA?r(?) = C;(?), say, ... (6.36)
 where

 A?r(S) = J" ... J ||?C||-211 <f>(xj-?*)dw, for r = 3, ...,p. ... (6.37)

 Proceeding as in (6.30) and (6.31), we obtain that for every S > 0,

 {dldu)A%n)\u-a > -W2) A?r(d) > {-~p?2) A?t(S), for r = 3, ...,p. ... (6.38)
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 Consequently, proceeding as in (6.32) through (6.33), me obtain from (6.36)?
 (6.38) that

 C'p(S) > exv(~p?l2)C;(0) = exp(-^/2) {(i,-4)/2+(p+2)2-*}, Y 8 > 0.
 ... (6.39)

 As such, noting that for 8 = #*1,

 fi(?SM, 6)-J?(oBSM. 6) = p-(p-2)*E{X;fplt)-p{<t>(d*)-8*ftti)

 +[i-<i>(8i)]}+c;(?),

 we obtain by using (6.39) and similar manipulations as in the proof of Theorem
 6.1 that the following result holds.

 Theorem 6.2. If 8 = 8*1, 8 > 0, the RSMLE dominates the SMLE for
 p = 3 and 4.. i^or p > 5, ?Ae sawre conclusion holds at least for large values
 of 8.

 We may refer to Sengupta and Sen (1987) for the proof of Theorem 6.2
 and some other related results.

 7. Comparison with the change estimatobs

 We have mentioned earlier that Chang (1981, 1982) has considered some
 versions of restricted shrinkage estimators. If X~iV(/?, 1), jli > 0, the
 Katz (1961) showed that

 fi(X)=X+UX);<j>Q(x)=e*v(-Yx2)/{ Uxv(~?U2)du}>*e:R'-' t7-1)
 is an admissible estimator of /?. State by side, consider the model X ~ ^(8, /)'
 Chang (1982) considered a Katz-type estimator 82 = (82, ..., 82)' where

 SftX) = Xi+^XO-c^+^ZOJ/m^+^X;))2}, ? = l, ...,p, ... (7.2)

 where 0 < c < 2(p?2) and p > 3 ; here also 8 e @+. Under quadratic error
 loss, 82 dominates the classical MLE (X). Further, defining t(.) as in (4.5),

 we may also introduce the other restricted shrinkage estimator due to Chang

 (1982, 1982), which is denoted by 8X = (8\, ..., 8?),. Here

 8}(Xi) = Xi+t(Xi)-cXil(J:X5), if all the X} are > 0, ... (7.3)

 and Xi+t(Xt), otherwise, for i = 1, ...,p.

 Let us also introduce 80 = (8\, ...,&%) where

 80(Xi) ^ Xi+t(Xt), i=l,...,p. ... (7.4)
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 Then Chang (1982) has shown that for the simultaneous estimation of 0 e 0+),
 under the quadratic error loss, (7.3) dominates (7.4). However, we may
 remark that it is possible to construct alternative estimators (similar to those
 in Section 3) which dominate (7.3) and/or (7.4). Corresponding to (7.3),
 our proposed estimator is

 8{'(X) = Xi+HX?-Ca Xf\\Xat2 on ??a(I), aQNp. ... (7.5)
 Note then

 B(?1(X),e)-i?(8?(X),e)= s eJ s (z,+?(z,)-?,)s
 (p?a?LN ? iEa

 - S (Xt+m-CaX?WXaW-i-et)*}. l(Xe??a(I))) ??a

 . e 2 S caXi{Xi+t(Xi)-ei)-<%\X\\-*\ \(Xe?3a{I))) Ua aCZN
 P

 = S E?l(Xe?Ca(I))\\X\\-2]>0, ... (7.6) a (IN*
 ? p

 where the penultimate step follows from the nonnegativity of t(.) and Theorem
 4.1. In a similar manner, corresponding to &2(X) in (7.2), we introduce the
 following :

 CXi+MXti-CaiXt+MXiMX (Xj+MX,))*]-*, iea
 *J*(Ji)=^ ita ... (7.7)

 [^Xi+^Xi), if i ? a,
 on ?Ca(I), for every a?^Nv. Here, ca e[0, 2(\a\ ? 2)+], for every a Q JVp.
 Then proceeding as in Chang (1982) but employing the results developed in
 this paper, it follows that

 i?(80(X), 9)-B(bl(X)9 8) > 0, Y 8 e 0+, ... (7.8)
 so that (7.7) dominates (7.4). It can also be shown that both 82 and SJ are
 equivalent when 8 moves away from the pivot 0 (inside 0+) and their diffe
 rence in risk is exponentially in ||8|| negligible. For small departures from
 the pivot, the relative risk picture of these two estimators depend very much
 on the direction of the shift, and no general conclusion for their relative supe

 riority can be drawn. However, from the motivational point of view, looking
 at our earlier sections, we are more in favor of h*2 than 82. We conclude this
 section with a remark that for the single inequality contraint alternative,
 Judge and Yancey (1986) ha,ve considered some RSMLE, although their
 findings rest on a restrictive regularity condition which is not generally met
 in the case of a positively homogeneous subset of Rv, and hence, ma}^ not be
 applicable here.
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 Appendix
 Proofs of Theorems 4.1, 4.2 and 5.1

 We need a basic lemma in these derivations, and this is presented first.

 Lemma A.l. Let X ~ Np(6, S), S p.d. Then, for every (r, s) : s > 0,
 p+r+s > 0.

 #e{ll*lfs < ^ e >s l(x > ?)} = (exp{?inetif.}) S (k i)-Y*+ft?. Z).

 2^+^)/2r((r+5+?:+J?)/r(i>/2). ... (A.l)

 Proof of Lemma A.l. Note that the left hand side of (A.l) is equal to

 f.? iixiisf<x,e>^exp{-i|ie|iis+<e>z>s-i-iiziij,)dx.... (A.2)
 By the use of the Cauchy-Schwarz inequality (on < X, 6 >s) and the Domi
 nated Convergence Theorem, it can be shown that (A.2) is finite if s > 0 and
 r+s+p > 0. Also, the left hand side of (A.l) may be written as

 (exp{-l||8|?} )^ (k l)-i J.. JUJKTH^. < X, 8 >?+* exp{-l||i|| j} ?X

 = (exp{-i||e|||,}) ^ (fc !)-i ^0fSl|X||? < X,e > ,+* 1(X>0)}, ... (A.3)
 where ??0 s denotes the expectation under NP(Q, S). Now, it is known that

 under Nv (0, 2), (||X||-2Z, 1(X > 0)) is (jointly) independent of ||X||S so that

 the right hand side of (4.5) can be written as

 (exp{-~||8|||})s,$5o(? l)-1^s[||Z||?-(*+')< Ze > |,+ *. 1(X > 0)]

 = (exp{l||8||2}l 2 (* !)-Y^(e,E)2<i^^^

 where the last identity follows from (4.3) and the central moments of

 ||Z||S Q.B.D.
 Let us now return to the proof of Theorem 4.1. For simplicity of presen

 tation, we shall consider only the case of 2 being known ; a similar but more
 complicated proof works out as well for the case of totally unknown 2 or the
 case of 2 = cr2V with V known, and for these details, we may refer to Sengupta

 a 3-20
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 and Sen (1987). Note that by virtue of (3.1) [with Sn replaced by 2] and
 (2.7)-(2.8), for every #> 3,

 ?(?rsm. 8) = S ^eill?BM-8-^^^-^^,!)"^!^ UX e?Ca (S))}

 = i*(?RM,0)-2 2 EB{cal(Xe?Ca(^)) aCZN*
 ? P

 A ??

 +2 S EQ lpa\(Xe?CaV)) <I1L7>S1+ S ^0{l|OkMll?2l(X^a(S^
 where JC stands for Xn and by an appeal to the sufficiency of Xni we may
 set, without any loss of generality, n = 1. Thus, it suffices to show that for
 every 8 e 0, the net contribution of the last three terms in (A.5) is negative.
 Towards this, note that

 2 EB{cal(Xae?C(2))}= 2 ^{^'(2) > 0, SjV**' < 0} aCZN* aCZN*

 = 2 Pe{Xaja'(?) > 0}. Pe{2^Xa'< 0}, ... (A.6)
 ? I?

 as Xa:a'(E) and Xa, are mutually independent, for every aQ^Np. Thus,
 by (A.l), reduces to ... (A.6)

 2 CaPe{ ?U. < 0}. (exp [~ \Pa:am\h }) aCiVj \ 1 J "aw) I
 [ 2 2*/2(^!)~1^(8a^(2), 2fl:a0rp+|a|)/2)/r((|a|)/2)]. ... (A.7)

 Similarly, using the identities that 2^ == 2~V and Za'a = ? 2",V 2fl>a 2aa

 along with (3.2) (with 8n and Jfw being replaced by 2 and X respectively),
 we have

 < e, ?RM > s =(e;? 2?"+e;, z*'*)xd:a, (2) = e;.#z&. xa:, (2),... (a.s)
 so that

 = S ca#e{l(Xa;a,(2)>0, 2^a^a-<0)<8,?RM>2. ||0BM||?2}

 = S caPe{ Sa,a,Xa, < 0}. (exp {?i||e*:a, (2)||a? }).
 [ S (k\)-^-^fk+1(Qa:a,(Z), Za:o'(r((k+\a\)l2)?r((\a\)l2)]

 Jfc^O

 = |^ ca Pe {S?"1,, *., < 0}. (exp { -~\\9a:a, (ftlfc.,/})
 [ S ib(i!)-42?-*)/V>(i>:a/(S))fSB:?.)r((i-2+|a|)/2)/r(|a|)/2)]. ... (A.6)
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 Similarly, using (A.6) (with 5 = 0 and r = ?2, p = \a\), the last term in
 (A.5) reduces to

 S , clP^-}a, Xai < 0}. (exp {-ylie?:?^)?^}).

 [ 2 (?!)-*2<*-2>/2^^ ... (A.10)

 Therefore, from (A.5) through (A.10), we obtain that

 -S(8?m>8)?J?(?b,sm? 8)

 = 2 Ca Pffiz\, Xa, < 0}. (exp { -i-||6fl:fl, (Z)IILV)1

 {UQa'-a> (S), Za:?0[2-0.r((|a|)/2-l)/(2r((|a|)/2))]

 + 2 (ib !)-i !**( * (S), S^raO [2*'2/r(( | a | )/2)]

 [2r?t+ | a | )/2)-tr((*-2+ I a | )/2)-(ca/2) ((t+ | a | ?2)/2)B

 - S ca(2(\a\ -2)^ca)Pe{2a-V *r < 0}. (exp {-~||ea:a, (S)|| A ).

 [ 2 fa(Ba:a. (2), Za v)(? \)-12?-2>'*r((k-2+ \a| )/2)/r? |a |)/2)]

 = 2 c.(2(|a|-2)-cA)AJl(X6^(Z))||?IIJ|??}>0f ... (A.ll)
 ? j?

 as on Np, \ a \ > 2 and 0 < ca < 2( | a | ? 2). This proves the second inequality
 in (4.1). To establish the first inequality (i.e., the dominance of the positive

 rule RSME), we may write {l-ca||?RM||-?}+ = 1( ||?RM||| > ca){l-ca ||0RMll?2}

 and virtually repeat the same proof as in (A.5) thiough (A.ll). Hence, for
 intended brievity, we omit the details. This completes the proof of
 Theorem 4.1.

 Consider next the proof of Theorem 4.2. We very much follow the lines
 of the proof of Theorem 4.1. Parallel to (A.5), we have here

 R(6*, 8) = i?(?BM, 8)-2(J)+2(/J)+(///), ... (A.12)

 where compared to (A.6), (A.9) and (A.10), we have here

 ? p

 ( Sq I fk{%.A, Z.,?.)EJi \\Xa..a>\\hw. MlP^a-lg^)]), -. (A.13)
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 (//) =2 P9P&>X*> < 0}[ exp {-1 \%?a, (S)||a;a.}]. ? p

 ( So 1 fa{ba..a> ^ala')E0[\\Xa:a'\^aJa\\Xa..a^aJ]), (A.U)

 (///) = s ^pe {s?i, x? < o}[ exp {-i-iie^m^,}].

 ( s l^e8iB',sa!..)i?o[iix.ia'ii*-,ss,.?l|3r?:??ll,s, - (A.i?)

 Thus, from (A.12) through (A.15), we obtain that

 R($RM,B)-R(?*,B) = S^P0{2"4<av< 0} [exp {--1 || 6? :?'||Z. ,.<}]. - v

 .[ S ?^(e0!a%2a:00^o[Uy){2^2-2%^-i-2/^-i?a(2/)}]^||Xo:o'|P 1
 ... (A.16)

 Now, under 6 = 0, \\Xa, a;f Sa.fly ~ -Xf0), for every a :<?>QaQ Np,m that
 writing U = PLa.a'P!?.?', we obtain that for every a?ffJ and k > 0,

 -#o{M# ) [2C/*/2_2??7*/2-i_ ?7*/2-ifa([7)]}

 = |2^|a| r(i-|o|) }_1 J e~jUvJW~\ta(u){2uk'2-2ku^-1-u^-1ta{u)}]du

 = {2??r[i(|a|+*-2)]/r[5-|a|]}
 J?{?B(A?,,.l4*-*)[2^,.,4*^ -2*-?. (X?o|+*-2)]}

 >{2**-ir[i(|o|+*-a]/r[i|?|]}
 ^ (?.Ofian*-,) [2*Vn*-,-2( I a I +?-2)]} (A.17)

 as ta{u) < 2( |a | ?2). Now, ta{y) and 2y?2( | a | +&?2) are both monotone /*
 in y and JS/^= q, V- ? > 0. Therefore, the right hand side of (A.17) greater
 than, or equal to

 {2*/*-ir(( | a | +?-2)/2)/r(( I a | )/2)}. J^Wi?^)}

 E0{2x2\a\k-2-2( \a\ +k-2)]} = 0, V * > 0 and a C #;. .' ... (A.18)

 Finally, by (4.4), the fa (6a;a? Zo.0,) are all nonnegative, and hence, by
 (A.?3) through (A.18), we conclude that (A.12) ia nonnegative. Q.E.D.
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 Finally, we consider the proof of Theorem 5.1. Note that Lemma A.l
 extends directly to the case where the positive orthant is replaced by any
 positively homogeneous cone, and hence, we may virtually repeat the proof
 of Theorem 4.1 where we need to replace (3.2) by (5.3). For intended brevity,
 the details are therefore omitted.

 Acknowlegements. The authors are grateful to the Co-editor and the
 referees for their useful comments on the manuscript.
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