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 We consider a class of U-statistics type estimates for multivariate
 location. The estimates extend some R-estimates to multivariate data. In

 particular, the class of estimates includes the multivariate median consid-
 ered by Gini and Galvani (1929) and Haldane (1948) and a multivariate
 extension of the well-known Hodges-Lehmann (1963) estimate. We explore
 large sample behavior of these estimates by deriving a Bahadur type

 representation for them. In the process of developing these asymptotic
 results, we observe some interesting phenomena that closely resemble the

 famous shrinkage phenomenon observed by Stein (1956) in high dimen-

 sions. Interestingly, the phenomena that we observe here occur even in
 dimension d = 2.

 1. Introduction. The classical median and the Hodges-Lehmann esti-
 mate [defined as the median of pairwise averages by Hodges and Lehmann
 (1963)] are two very well-known and well-explored estimates of location in
 one-sample univariate problems. An extensive amount of research has been
 done and reported in the literature on both the estimates, and their properties
 have been thoroughly studied. Gini and Galvani (1929) and Haldane (1948)

 considered a multivariate extension of the median defined as a vector on that
 minimizes the sum E n= 1IX, - 01, where the Xi's are multivariate observations
 and I I is the usual Euclidean norm [see Reiss (1989) and Small (1990) for
 interesting historical reviews]. Gower (1974), who used the term mediancenter,
 discussed some of the properties of the bivariate median and gave an algorithm
 for its computation [see also Bedall and Zimmermann (1979]. These issues
 were further taken up by Brown (1983, 1988), who sketched a proof for the
 asymptotic normality of the bivariate median (or spatial median, as Brown
 called it) starting from the assumption that it is 4n-consistent. Subsequently,
 the asymptotic behavior of this multidimensional median has been studied by
 Pollard (1984). As noted by Brown (1983) and Pollard (1984), there is a gain in
 the asymptotic efficiency if one uses the aforesaid estimate that minimizes the
 sum of Euclidean distances from bivariate data points instead of using the
 usual median for each of the two univariate components of a bivariate data set.

 Surprisingly, both of them mentioned this phenomenon for the case when the
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 898 P. CHAUDHURI

 true distribution generating the data is bivariate normal with independent
 components each having unit variance! Brown (1983) computed the asymptotic
 relative efficiency of the multivariate median relative to the sample mean for

 d-dimensional (d > 2) spherically symmetric normal distributions with inde-
 pendent components and showed that it increases and converges to 1 as d
 tends to oo. Brown (1983) was further motivated by the fact that applying
 univariate methods to each variable in a multivariate data set is very inappro-
 priate when one is dealing with spatial data, where variables possess isometry

 and require statistical techniques that have rotational invariance. Another
 related application of the spatial median can be found in Ducharme and
 Milasevic (1987), who used it to analyze directional data and to construct an
 estimate for the modal direction of a distribution on the hypersphere (e.g., the
 von Mises-Fisher distribution).

 It is obvious that the multivariate median considered by Gini and Galvani

 (1929) and Haldane (1948) is equivariant under location transformations and
 rotations or orthogonal transformations. However, it is not equivariant under

 arbitrary affine transformations. While discussing a number of statistical
 procedures based on L1-norms, Rao (1988) defined generalized spatial median
 by modifying the usual spatial median so that the modified estimate becomes
 affine equivariant. Isogai (1985) in a recent paper has investigated the asymp-
 totic behavior of certain estimates that are M-estimates of multivariate loca-

 tion and extend Haldane's idea of multivariate median. Earlier work on the
 M-estimation of a multivariate location can be found in Gentleman (1965),
 Huber (1967), Maronna (1976), etc. These authors have explored both types of
 estimates-M-estimates that are affine equivariant and the ones that are not.

 Oja (1983) and Oja and Niinimaa (1985) investigated a class of estimates for
 multivariate location extending the classical median through a different ap-
 proach. In addition to being affine equivariant, such an estimate, which is now
 popularly known as Oja's simplex median, has many nice properties. However,
 the estimate minimizing the sum of Euclidean distances from data points
 possesses a bounded influence function and has 50% breakdown point [see
 Kemperman (1987) and Lopuhaa and Rousseeuw (1991)], whereas Oja's sim-
 plex median has 0% breakdown point [see Oja, Niinimaa and Tableman
 (1990)]. A discussion about this issue on breakdown properties can be found in
 Small (1990). Robust estimates of multivariate location with good breakdown
 properties have been studied by Donoho (1982), Stahel (1981), Rousseeuw
 (1985), Hampel, Ronchetti, Rousseeuw and Stahel (1986), Davies (1987),
 Jeyaratnam (1991) and others.

 In a classic paper, Barnett (1976) explored various possibilities regarding
 the ordering of multivariate data. On the other hand, a number of authors
 [e.g., Tukey (1975), Donoho and Gasko (1988), Liu (1990), etc.] have investi-
 gated various ways of defining the median for a multivariate data set through
 different notions of data depth in multidimension. As pointed out by Small
 (1990), many of these authors' ideas have their roots in a nice game theoretic
 interpretation of the median due to Hotelling (1929). Brown (1983, 1988)
 noted the potential of the multivariate median in playing a role in extending
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 various rank based procedures from univariate situations to multivariate
 problems. He mentioned and discussed the multivariate extension of the
 one-sample Hodges-Lehmann estimate and angle tests that are multivariate
 analogues of the univariate sign test. Earlier attempts to extend the sign test
 to a multivariate situation were made by Hodges (1955), Blumen (1958),
 Benett (1962), Chatterjee (1966) and so on. More recent efforts to construct
 multivariate analogues of sign tests and rank tests have been made by Brown
 and Hettmansperger (1987, 1989), Oja and Nyblom (1989), Randles (1989) and
 Peters and Randles (1990).

 Kemperman (1987) discussed the median a* of a finite measure A on an
 arbitrary Banach space. a* is defined as the minimizer of g(a) = J(lx - al -
 1xI)pi(dx). Note that the integral defining g always exists even if J IxI1(dx) is
 not finite. It is well-known [see, e.g., Kemperman (1987), Milasevick and
 Ducharme (1987)] that, whenever a Banach space is strictly convex, the
 median of a finite measure on that space is unique unless the measure is
 entirely supported on a line. In particular, this implies that, for a set of data
 points in Rd with d ? 2, the multivariate median computed following the idea
 of Gini and Galvani (1929) and Haldane (1948) will be unique unless all the
 observations fall on a straight line. It makes this multivariate median strik-
 ingly different from the univariate median, which is typically nonunique when
 there are an even number of observations. As we will gradually see in this
 paper, there are a few other aspects of the median that make it quite an
 interesting object to study in dimensions d ? 2. We will focus our attention on
 the large sample behavior of a class of U-statistics type estimates for multi-
 variate location. This class of estimates will include the multivariate median
 considered by Gini and Galvani (1929) and Haldane (1948) as a special case.
 Besides, these estimates extend the one-sample Hodges-Lehmann estimate to
 a multivariate setup, and their construction is linked to the idea of generalized
 order statistics explored by Choudhury and Serfling (1988) for univariate data.
 A major difficulty in studying the properties of such estimates is caused by
 their nonlinear nature when we view them as functions of the data. We will
 prove an asymptotic linearization theorem that can be used as an elegant tool
 to derive a number of useful and interesting results. While obtaining some of
 these results, we will come across some interesting phenomena, which closely
 resemble the famous Stein phenomenon [Stein (1956), James and Stein (1961)]
 that occurs in the estimation of the mean of a multivariate normal distribu-
 tion. However, unlike the usual shrinkage phenomenon, the phenomena that
 we will observe take their course right from dimension d = 2 (see Section 4).

 2. Notation and definitions. For two positive integers m and n such

 that 1 < m < n, let A(n) be the collection of all subsets of size m of the set
 {1, 2, ... , n). In other words,

 A(nm) = {ala C {1,2,...,n} and#(a) = m).

 Consider a set of n observations X1, X2,..., Xn in Rd, and for any aA c- kn ,
 define Xa = (1/m)EieaXi. Then the mth order Hodges-Lehmann estimate
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 n(m) is defined as

 , y a A (m) |=mnE |X
 nEa= A(m ad (x EA(nm)

 As noted in the previous section, in view of the strict convexity of Rd (d ? 2)
 equipped with the Euclidean norm, 0(m) will be uniquely defined unless the
 points Xa's form a single straight line. For m = 1, we get the multivariate
 median considered by Gini and Galvani (1929) and Haldane (1948), and when
 m = 2, we have a multivariate extension of the standard Hodges-Lehmann
 estimate used in univariate one-sample problems.

 From now on, unless specified otherwise, all vectors in this paper will be
 column vectors to make notation consistent and the superscript T will denote
 the transpose. For any x E Rd, we will write U(x) to denote the unit vector in
 the direction of x. So, U(x) = lx -'x for x * 0 and we will define U(0) = 0 for
 the sake of completeness. Note that U(x) is the gradient or the first order
 derivative of the function IxI when x # 0. Let P(x) denote the d x d Hessian
 matrix or the second order derivative of lxI. So, for x # 0, P(x) = IxI-'(Id -
 Ixl -2xxT), where Id is the d x d identity matrix. Once again, we will adopt
 the convention that P(0) = 0. Note here that when d = 1, U(x) becomes the
 sign of x and P(x) is identically equal to 0.

 Consider now a collection of i.i.d. random vectors X1, X2,.. ., Xm, and

 define 0(m) as the median of the distribution of Xm = (1/m)Em1 Xi if 0(m)
 minimizes the function defined as g(0) = E{iXm - 01 - IXml). Hence, if the
 common distribution of the Xi's is absolutely continuous with respect to the
 Lebesgue measure on Rd(d > 2), 0(m) will be uniquely defined. Further, in
 view of the fact that the function lxl is differentiable everywhere except at
 x = 0 with derivative U(x), the absolute continuity of the distribution of Xi
 implies that E{U(Xm - 0(m))) = 0. For the rest of the paper, without loss of
 generality, we will assume (by applying a location transformation to the Xi's if
 necessary) that 0(m) = 0. This is in order to keep our notation simple.

 Define D(m) = E{P( Xm)1. We will consider the issue of the existence of this
 expectation as a finite d-fold (d ? 2) Lebesgue integral in following sections.
 Let U(m)(Xj) = the conditional expectation E{U(Xm)iXi} and define D(m) -
 E{[U(m)(X1)][U(m)(X)]TV}. Note that, for m = 1, U(m)(X1) coincides with
 U(X1). When m > 2, there is another way of looking at D(m). Let W1, W2, W3
 be three independent random vectors such that W1 and W 2 have the same
 distribution as that of X1 + X2 + * +Xmi and the distribution of W3 is
 the same as that of X1. Then, if we define Z1 = (1/m)(W1 + W3) and Z2 =
 (1/m)(W2 + W3), we will have D(m) = E{[U(Z1)][U(Z2)]T}.

 3. Main results. Since the properties of the univariate median and the
 univariate Hodges-Lehmann type estimates are already well-documented in
 the literature, we will concentrate on cases when the dimension d ? 2 and
 state our results accordingly. From now on, m > 1 will be assumed to be a

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Wed, 29 Mar 2017 07:10:58 UTC
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 fixed integer and the number of observations n will be assumed to be larger
 than m.

 ASSUMPTION 3.1. X1, X2,..., Xn, ... are i.i.d. random vectors in Rd with
 an absolutely continuous (w.r.t. the Lebesgue measure) distribution having a
 density f such that the density of Xm is bounded on every bounded subset of
 Rd

 THEOREM 3.2. Under Assumption 3.1, D(m) is a positive definite matrix,
 and we have the following Bahadur type representation for the mth order
 Hodges-Lehmann estimate:

 &(m) m!(n-m)![D(m)]1 E U(mXa) Rn,
 a EcA(m)

 where, as n tends to ox, the remainder term Rn is almost surely O(log n/n) if
 d ? 3. When d = 2, Rn is almost surely o([log n/n]"l) as n tends to oo for any
 constant c such that 0 < c < 1.

 The following corollary is a consequence of the above theorem via the

 Cramer-Wold (1936) device [see Billingsley (1986), Serfling (1980)] and Theo-
 rem A on page 192 in Serfling (1980) [see also Chapter 3 in Sen (1981)].

 COROLLARY 3.3. Under Assumption 3.1, D(m) is a positive definite matrix
 and as n tends to oo, Vn 7^(m) converges weakly to a d-dimensional normal
 random vector with zero mean and the dispersion matrix = m2[D(m)]-{[D(2m)]
 [D(m)]-1

 We may note here that E aE A(.)U( Xa) can be used as a test statistic to test
 the null hypothesis that the origin is the center of symmetry for the observa-
 tions. When specialized to the cases m = 1 and 2, this test statistic yields naive
 multivariate extensions of the sign test and the signed rank test, respectively.

 If m = 1 and the common distribution of the Xi's is spherically symmetric,
 this statistic is distribution free under the null hypothesis.

 4. Remarks and discussion.

 REMARK 1. In order to get some insights into the implications of the
 results stated in the preceding section, it will be quite useful if we consider
 some special cases when the matrices D(m) and D(m) have nicely simplified
 forms. Consider a d x d diagonal matrix S with each diagonal entry either
 + 1 or - 1. When operated on a vector in Rd, S will change the sign of some
 of its coordinates and therefore we will call such a matrix a sign matrix. We
 define a random vector X E Rd to be symmetric around the origin if X and
 SX have the same distribution for any choice of the sign matrix S. When X
 has a density f(x), such a symmetry in the distribution of X implies that f(x)
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 is a function of the absolute values of the coordinates of x. It is very easy to
 see that this type of symmetry around the origin is preserved under the
 convolution of probability measures in Rd. In general, we can define X to be
 symmetric around 6 if X - 6 is symmetric around the origin. Other authors
 [e.g., Bickel (1964), Liu (1990)] have considered similar notions of symmetry
 while considering estimates of multivariate location. Now, whenever the com-
 mon distribution of the Xi's is symmetric around 0 e Rd, the matrices D(m)
 and D(m) will both be diagonal matrices because their off-diagonal elements
 will be expectations of random variables having symmetric distributions around
 0 E R. Hence, Corollary 3.3 implies that the components Of 0m) are asymptot-
 ically independently distributed. In addition to symmetry, if we assume the
 exchangeability of the coordinates of the random vector Xi, the limiting
 variance-covariance matrix of n&Om) will be of the form cId, where c is a
 positive scalar and Id is the d x d identity matrix.

 REMARK 2. Brown (1983) computed the asymptotic relative efficiency
 of the sample median relative to the sample mean for different values
 of the dimension d in the spherical multinormal distribution. Ducharme and
 Milasevic (1987) computed the same for the normalized sample median relative
 to the normalized sample mean in von Mises-Fisher distribution. By trans-
 forming d-dimensional Cartesian coordinates into d-dimensional polar coordi-
 nates, it is easy to see that, if the common distribution of the Xi's has
 spherical symmetry around the origin [i.e., if the density f(x) is a function of
 Ixl], the matrices D(1) and D(') have forms ClId and C2Id, respectively, where
 cl = c*[vf(d - 1)F{(d - 1)/21][dF(d/2)]-1 and C2- (l/d). Here F is the
 usual gamma function and c* is the marginal density of any real-valued
 component of Xi at 0 E R. Note that c* has to be positive as it can be
 obtained from a (d - 1)-fold integral of the spherically symmetric density f(x)
 after fixing one of the coordinates of x at 0 E R. A general normal distribu-
 tion, however, does not necessarily have spherical symmetry, but it always
 possesses elliptic symmetry. By an orthogonal transformation, we can convert
 any normal distribution into a distribution having independent components.
 Making such a transformation is actually equivalent to obtaining various
 principal components of the random vector. Now, the mth order Hodges-Leh-
 mann estimate defined in Section 2 is equivariant under orthogonal transfor-
 mations and, for x E Rd and an orthogonal matrix A, we have U(Ax) = AU(x)
 and P(Ax) = AP(x)AT. Hence, when the random vectors Xi's get trans-
 formed by the orthogonal matrix A, D(m) and D(m) get transformed as
 AD(,m)AT and AD(m)AT, respectively. Just as an example, let us consider the
 case of bivariate median OM when the underlying true distribution is bivariate
 normal with independent components each of which has zero mean and their
 variances are o2 and a22. A direct computation making use of the standard
 two-dimensional polar transformation yields D(1) as a diagonal matrix with
 diagonal entries ar1/(c1 + o2) and a2/(ol + oC2). On the other hand, D(1) turns
 out to be a diagonal matrix with diagonal entries that remain in integral forms
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 as

 (21 a2)-1 f27r[cos2 0] [o-2 COS2 0 + -2 sin2 o] -1/2 do

 and

 (2V' To12)' f2[sin2 0]][oi72 COS2 0 + o-2 sin2 ] -1/2 d.

 REMARK 3. Let us now focus our attention on {(m) with m ? 2. Consider
 the case when the Xi's are i.i.d. normal with zero mean and variance-covari-
 ance matrix Id. Then Xm defined in Section 2 is normal with zero mean and
 variance-covariance matrix (l/m)Id. So, in view of the spherical symmetry
 and the preceding remark, the matrix D(m) will have the form c1(d, m)Id,
 where c1(d, m) = [VS(d - 1)F{(d - 1)/2}][dr2F(d/2)V-'. In order to see how
 D(m) looks, consider i.i.d. observations (Y1, Z1), (Y2, Z2),..* , (Yd, Zd) from
 a bivariate normal distribution such that E(Y1) = E(Z1) = 0, var(Y1) =
 var(Z1) = 1 and the correlation coefficient between Y1 and Z1 is (1/m). Let
 r(d, m) be the uncentered sample correlation coefficient defined as

 d d -1/2 (d i-1/2
 r(d,m) Yi=Zi i V

 Then, in view of the definition of D(m) and the remark following it in Section
 2, D(m) will have the form c2(d, m)Id, where c2(d, m) = (1/d)E{r(d, m)}.
 Anderson (1984) (see problem 28 in Chapter 4) gave an infinite series expres-
 sion for E{r(d, m)) [see also Hotelling (1953)]. Using this infinite series
 together with Corollary 3.3 and the expression for c1(d, m), we get, after a
 straightforward simplification, that the asymptotic variance-covariance matrix

 of 48O(m) iS 2(d, m)Id, where o-2(d, m) is given as

 ao2(d,[m) = m1 - )

 x kL E 1k! (m 1 /1 [ 2 ] 2]

 On the other hand, the asymptotic variance of the normalized univariate mth
 order Hodges-Lehmann estimate can be computed using (2.5) in Choudhury
 and Serfling (1988). Under the assumption that the sample observations are
 i.i.d. random variables following the standard normal distribution, this vari-
 ance is o2(1, m) = (m/2)irE{r(1, m)) = (m/2)wrE{sign(Y1)sign(Z1)) =
 m sin - 1(1/m), where (Y1, Z1) is as defined before. The last equality follows
 from problem 13 in Chapter 3 in Feller (1971). It can be shown (see Proposi-
 tion 5.10 in Section 5) that, for any fixed m ? 2, o2(d, m) > u,2(d + 1, m) for
 all d ? 1. Hence, what was observed by Brown (1983) regarding the gain in
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 efficiency while considering the multivariate median is actually true for any
 mth order Hodges-Lehmann estimate with m 2 1. In a sense, here we are
 observing a Stein type phenomenon [Stein (1956), James and Stein (1961)] in
 dimensions d 2 2. This type of phenomenon has been noticed and compared
 with the Stein phenomenon by Bai, Chen, Miao and Rao (1990), who explored
 least Euclidean distances estimation in multivariate linear models. Also, it can
 be proved that, for any fixed d ? 1, or2(d, m) > u2(d, m + 1) for all m ? 2
 (see Proposition 5.10 in Section 5). In other words, for a multivariate spheri-
 cally symmetric normal distribution, the efficiency of the mth order
 Hodges-Lehmann estimate increases with the increase in the value of m. The

 power series expressions for o-2(d, m) for dimensions d = 1, 2 and 3, are given
 below:

 2(1,m) =1 + 6-) + 40 (-) + 51( + (
 6 m 40 m 112 mn) 1152m

 (X) 8 (m ) 64 ( m ) 1024 (m 16384 m

 1 1 )2 9 1 )4 5 1 )6 35 (1 )8 0 2(23 11(1)31 +- +~ 25 ~ + 24

 ~T2(3m)=1+i(i) 280(m) 336(m) 4224()

 REMARK 4. Let us now carefully consider Assumption 3.1 in the previous
 section. It is much weaker than the usual condition that is needed in deriving
 the asymptotic results for order statistics or generalized order statistics
 [Choudhury and Serfling (1988)] based on univariate data. We do not need the
 density of Xm to be positive in a neighborhood of its median, nor is it
 necessary for it to be smooth or continuous near the median. Such conditions
 are very crucial even for proving the consistency of the univariate median and
 a certain amount of smoothness in the density is necessary to derive a linear
 representation for it so that the remainder term can converge at an appropri-
 ate rate [see Bahadur (1966), Kiefer (1967), Ghosh (1971)]. What enables us to
 work with a weak condition like Assumption 3.1 is the fact that, in a sense, the
 function IxI is smoother in dimensions d 2 2 than when defined on the real
 line. Even more interestingly, the function Ix I- is finitely integrable in a
 neighborhood of 0 E Rd if 0< d3 < d. One way to see this is by considering the
 fact that the Jacobian determinant of the standard d-dimensional polar trans-
 formation includes the (d - 1)th power of the length of the radius vector. So, a
 choice of (3 satisfying (3 1 and making lxi - an integrable function in a
 d-dimensional neighborhood of the origin is possible provided that d ? 2. In
 particular, this ensures that the expectation defining D(m) will exist as a finite
 d-fold Lebesgue integral for d > 2 under Assumption 3.1. One may notice here
 the resemblance with a fact that plays a crucial role in the construction of the
 famous James-Stein estimate [Stein (1956), James and Stein (1961)]-it is the
 existence of an appropriate superharmonic function on Rd with d > 3.
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 REMARK 5. In view of some very precise results obtained by Kiefer (1967),

 the remainder term Rn in the Bahadur representation of the univariate
 median almost surely satisfies

 n3/4R n3/4R 23/4
 lim sup =/4 = 33/4l
 n -,m(log log n)3/4 n= limsupo- log n_3_4_ 33_4

 and n3/4Rn has a nondegenerate weak limit. The rate of convergence for the
 remainder term in our Theorem 3.2 is much faster than what was observed by
 Kiefer (1967) for the univariate median. The impact of the dimension d on the
 limiting behavior of the remainder term is quite interesting here, and it is
 critically related to the integrability of the function Ixl - with 0 < ,3 < d in a
 neighborhood of 0 E Rd as discussed in Remark 4 above. It will be appropriate
 to note here that the behavior (convergence or divergence) of the infinite series

 n=n -d /2 where d ? 1, is a key fact determining the behavior (transience or
 recurrence) of the standard symmetric random walk on lattice points in
 different dimensions d ? 1. In a very interesting paper, Brown (1971) explored
 the connections between the behavior of the standard Brownian motion in
 different dimensions (the Brownian motion is recurrent on the real line and on
 the Euclidean plane, but it is transient on Rd for any d 2 3) and the Stein
 phenomenon.

 REMARK 6. We conclude this section by pointing out a couple of important
 features that distinguish the phenomenon discussed in Remark 3 above from
 the usual Stein phenomenon in addition to the facts that the latter is a finite
 sample phenomenon and starts to occur from dimension d = 3. First, Remark
 3 above implies that there is shrinking in the asymptotic variance of each

 coordinate of nm) and not just an overall improvement that happens in the
 case of the James-Stein estimate improving the risk calculated from a total
 squared error loss. Second, as the dimension d gets larger, the James-Stein
 estimate moves further away from the usual least squares estimate (the
 sample mean), whereas the multivariate median considered in this paper
 seems to be getting closer to the usual least squares estimate as the dimension
 d increases in view of the fact that the asymptotic relative efficiency computed
 by Brown (1983) and discussed in Remark 2 above tends to 1 as d tends to c.

 Apparently, if we have i.i.d. observations X1, X2, . .., X.n from a normal distri-
 bution with unknown mean = 0 and known variance = 1, a fairly reasonable
 estimate like the sample median can be improved by throwing nothing but

 simple noise into the data! If we generate i.i.d. observations Y1, Y2,..., Yn
 from a standard normal distribution with zero mean and unit variance

 and compute the bivariate median based on (X1, Yd, (X2, Y2),... , (Xn, Yn),
 according to what we have seen here, we can get an estimate for 0 that

 asymptotically outperforms the sample median based on X1, X2 ..., Xn. The
 introduction of noise into the original data and allowing it to modify the
 sample median is giving rise to a more efficient estimate. Full implication of
 these observations and their significance are yet to be thoroughly explored.
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 5. Proofs of the results stated in Sections 3 and 4. The following
 probability inequality is a restatement of a theorem in Serfling (1980) (see
 Theorem A on page 201) following Hoeffding (1963).

 FACT 5.1. Let X1, X2,. .., X,X ... be an i.i.d. sequence of random elements

 in some arbitrary space and p(x1, x2,... , xm) be a symmetric real-valued
 kernel defined on the same space such that lp( )l < b, where b is a positive
 constant. Assume that the random variable p(X1, X2,.. ., Xm) has mean = 0
 and its variance = (J2. Define the U-statistic

 Un=m!(n - m)! PX i)
 n. 1 < i l < i 2 < ... <i m <n

 Then, for any t > 0 and n > m, we have

 Pr(j Un I 2 t) < 2 exp - [ n/m ]t2/{2o.2 + (2/3)bt}),

 where [n/m] is the integral part of n/m.

 We begin by proving the following lemma. A version of this lemma was
 proved by Pollard (1984) (see pages 28-29) for the multivariate median under

 the assumption that E(1X11) < m. Isogai (1985) also worked under a similar
 assumption. In fact, Isogai (1985) assumed that the parameter space is com-
 pact. However, such technical assumptions are a bit unreasonable when one
 has the issue of robustness in mind.

 LEMMA 5.2. Under Assumption 3.1, there is a constant K1 > 0 such that

 almost surely 16(m)l < K1 for all n sufficiently large.

 PROOF. Choose a 8 satisfying 0 < 8 < 1/6 and K1 > 0 such that

 Pr(Xm I> K1/4) =def P(m, K) <? .
 Let P{XaIl > K1/4) denote the 0-1 valued indicator function that takes
 value 1 if and only if IXaI > K1/4. Then, using Tt -} - P(m, K1) in place of
 the kernel p, Fact 5.1 above implies that there are constants a1 > 0 and
 b1 > 0 such that

 Pr( mE!(n inI )a $ }P(m, Kj) ? 8) < a, exp(-bln82).

 The constants a1 and b1 can be so chosen that they do not depend on K1 or 8,
 but they may depend on m. Now, by an application of the Borel-Cantelli
 lemma, almost surely, the event

 m!(n-m! E Tlya> I - P(m, K1) ?8

 will occur only for finitely many values on n. In other words, almost surely, we
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 will have

 m!(n - in)! (- K,'
 (1) n! aeA(m)i > ?2)

 for all n sufficiently large. On the other hand, for any 6 E Rd,

 m!(n - m)! , (|Xa- |-lXal)
 - a EA( )

 m= ( - m) E (Ily X- 01- XaI) )(l Xa < K,

 m!(n - mn)! gig x f i K1
 + n! E ( | a | a I)J I Xa I> 4A

 a EA,m)

 If (1) holds, the absolute value of the second term on the right-hand side is
 always smaller than 21018. Also, if 101 > K1, (1) implies that the first term on
 the right-hand side will be strictly greater than 161(l - 28)/2. Hence, when-
 ever (1) holds, for any 0 E Rd such that 101 > Kl, we must have

 E IXa - l I> E I Xa I
 aGA(n, aEA( m)

 Since nm) minimizes Ea E A(m,)Xa - 01, the proof of the lemma is now com-
 plete. O

 LEMMA 5.3. Let h be a probability density function on Rd that has its
 median at the origin and is bounded on every bounded subset of R d. Define a
 vector-valued function G on Rd as G(y) = fRdU(y+ x)h(x) dx. Then, for
 d ? 2, G is a differentiable function with a positive definite Jacobian matrix
 J(y) = fRdP(y + x)h(x) dx. Further, the equation G(y) = 0 has a unique root
 aty = 0, and for any M > 0, there is a constant q > 0 such that IG(y)l ? qlyl
 for all y satisfying IyI ? M.

 PROOF. Obviously, whenever x # 0, U(x) is differentiable in x with the
 Jacobian matrix P(x). Also, the triangle inequality implies that

 IU(x +y) - U(x)I ? 21yj/1xI

 for any x, y E Rd. Recall now Remark 4 in Section 4. In view of the bounded-
 ness of h on bounded subsets of Rd, for any ,3 satisfying 0 < f8 < d and any
 constant M > 0, we have

 (*) Msup hdIx+yI-h(x)dx< .
 Y: Iyl <M R
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 The differentiability of G with J as the Jacobian matrix is now immediate by
 noting the continuity of J(y) in y and the fact that, for any y, z E Rd,

 lim t-l{G(y + tz) - G(y)} = J(y)z.
 t-O+

 In view of (*) above, all the interchanges between limits and integrals that we
 need here are permissible by the uniform integrability of the integrands
 involved.

 For any nonzero u E Rd, consider

 uTJ(y)u = flY +xK-3{luI2lx +y12 - (Ky +x, u))2}h(x) dx,

 where ( , ) denotes the usual Euclidean inner product on Rd. The integrand
 above is always greater than or equal to 0 in view of the Cauchy-Schwarz
 inequality and it is equal to 0 if and only if x falls on the line that passes
 through (-y) and has the same direction as that of u. Since any line in Rd
 with d ? 2 has Lebesgue measure 0, the positive definiteness of J(y) for all
 y E Rd is proved.

 As noted in Section 2, since h has its median at the origin, G(O) = 0. If
 possible, let G(yo) = 0 for some yo # 0. Then, in view of the positive definite-
 ness of J(y), the function g(y) defined as g(y) = fRd(Ix + yI - lxl)h(x) dx
 must have a local minimum at yo. But the strict convexity of g excludes the
 possibility of any local minimum for g [see Kemperman (1987)]. Let q1 > 0 be

 the smallest eigenvalue of J(O). Then there is 81 > 0 such that IG(y)l > qjlyl/2
 for any y that satisfies IyI < 81. Since G vanishes only at 0, we can choose
 q2> 0 such that IG(y)I ? q21yI for all y with 0 < 81 < IYI < M. Here we
 are using the fact that the positive continuous function IG(y)I/IYI
 must have a positive minimum on the compact set yI0 < 1 < I ylI < M}. The
 proof of the lemma is now complete by taking q as the minimum of q1/2
 and q2. ?

 Note at this point that since G has a positive definite Jacobian matrix, it
 must be an open map (i.e., a function that maps open sets into open sets) from
 Rd into Rd. In particular, the range of G cannot be contained completely
 within a hyperplane in Rd. So, the arguments used in the proof of Lemma 5.3
 ensure the positive definiteness of both the matrices D(m) and D(m) under
 Assumption 3.1 in Section 3.

 LEMMA 5.4. Let Bn be the subset of Rd defined as

 Bn = {(vD, v2, ..., Vd) In4 Vi = an integer and Ivi I < K1 for 1 < i < d? ,

 and Assumption 3.1 holds. Here K1 is as defined in Lemma 5.2. Then there is
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 a constant K2 > 0 such that almost surely

 max m!(n - in)!_~ U(Xa, -0) - E{U(Xm- 6)1
 (2) OeBn n a eA(mn)

 < K2(0og n/n )112

 for all n sufficiently large. Also, if T denotes the 0-1 valued indicator function
 considered in the proof of Lemma 5.2, there is a constant K3 > 0 such that
 almost surely

 (3) max m!(n - in)! P{1 1 < n 2} <K lg
 n n a EA- )

 for all n sufficiently large.

 PROOF. First note that there is a constant y, > 0 depending only on K1
 and the dimension d such that #(Bn) < ylnn4d. Let En be the event defined in
 (2) above and EC denote the complementary event. Once again, using Fact 5.1,
 we can choose constants a2> 0 and b2> 0, which do not depend on K2I such
 that

 (4) Pr(En) < yln'da2 exp(-b2 K log n).
 Note that Fact 5.1 has been stated for a real-valued kernel p, whereas we are
 dealing with a vector-valued U-statistic here. However, we can apply Fact 5.1
 to each component of our U-statistic. Now, depending on d, K2 can be chosen
 appropriately large so that (4) ensures E :Pr(E') < oo. Hence, by the
 Borel-Cantelli lemma, almost surely, the event En can occur only for finitely
 many values of n. This proves the first assertion in the lemma.

 Define Fn to be the event described in (3) above. In view of Assumption 3.1,
 which states that the density of Xm is bounded on every bounded subset of

 Rd, there is a constant Y2> 0 such that Pr(IXm - oI < n-2) ?< y2n-2 for all
 0 e Bn. Therefore, as T{ } is a 0-1 valued random variable, we must have
 var(T'I{1Xm - 61 < n-2)) < y2n-2 for all 6 E Bn. Finally, another application
 of Fact 5.1 enables us to choose constants a3> 0 and b3 > 0 so that

 (5) Pr(Fn) < yy1n4da3 exp(-b3K3 log n).

 The second assertion in the lemma is now immediate from (5) by an appropri-
 ate choice of K3 and an application of the Borel-Cantelli lemma. O

 We will now state a fact, which is a consequence of an observation by

 Kemperman (1987) (see Section 4 and Theorem 4.11 there).

 FACT 5.5. Let X1, X2,..., Xn be a set of points in Rd such that the points
 Xa do not fall on a single straight line in Rd as a runs over A(m). Then

 l?a EA(m)U(Ja - AnM))I < 1.
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 PROPOSITION 5.6. Under Assumption 3.1, there is K4 > 0 such that almost

 surely On(m)j < K4(log n/n)172 for all n sufficiently large.

 PROOF. Fix a sample sequence X1, X2, ..., Xn, ... such that, for all n

 sufficiently large, we have on m)j < K1 as well as the occurrence of the events
 defined in (2) and (3) in Lemma 5.4. Clearly, the collection of all sample
 sequences satisfying these requirements will form a set of probability 1 in view
 of Lemmas 5.2 and 5.4. Let 0* be a point in Bn that is nearest to O(m). Here
 Bn is as defined in Lemma 5.4, and if there are several points in Bn that are
 closest to 0(m), take any one of them. So, along our chosen sample sequence,
 there is a constant Y3 > 0 which depends on the dimension d, such that

 On(m) - 0*1 < Y3n for all n sufficiently large. On the other hand, the triangle
 inequality implies that

 U(Xga _ A(M)) _ U(Xa _ 0*) <* n < 2
 whenever ln(m) - 8* I < Y3n -4 and lXa - * 1 > n-2. This together with Fact
 5.5 and (3) in Lemma 5.4 implies that

 m!n-m)!(n-i) !n-i) (6) a E A,A(,)

 2m!(n - i)! U(Xa _ *) _ U(g _ a(m) m!(n - m)!

 < !(nm! nE {IX -0*<n-2}+2y3n + n!

 K log n 2y3 m!(n - m)! log n
 3n n2n! 3n

 for all n sufficiently large along our chosen sample sequence.
 A consequence of Lemma 5.3 is that, for all n suitably large,

 I E{U(X,m - o)}j > qsK2(log n/n)1/2

 whenever 0 E B. satisfies 101 2 sK2(log n/n)1/2. Here s > 0 is a constant and
 we need to choose M in Lemma 5.3 appropriately depending on K1. (2) in
 Lemma 5.4 now implies via an application of the triangle inequality that, if
 s > 0 is so chosen that qs > 1, we will have

 min nt , U(,Y,, - H) 2 (qs - 1) K(n)
 1OI > sK2(log n/n)1/2 n

 along our chosen sample sequence for all n sufficiently large. Let us choose
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 K4 > sK2. Then the proof of the lemma is complete by comparing (6) and (7)
 and using our definition of 0*. El

 LEMMA 5.7. Let h, G and J be as in Lemma 5.3. Define a matrix valued
 function H on Rd as

 H(y) = f [U(x + y) - U(x)] [U(x + y) - U(x)]Th(x) dx.

 Assume that y takes its values in a bounded set containing the origin so that

 lYI < MO for some constant MO > 0. Assume that d = 2 and let co < 1 be a
 given positive constant. Then, there are constants M1 > 0 and M2 > 0, which
 may depend on CR, such that IH(y)l < M lYl2' and IJ(y) - J(O)I < M21Y1W. On
 the other hand, if d > 3, there are constants M* > 0 and M* > 0 such that

 IH(y)l ? M1y12 and IJ(y) - J(0)l < M2 lyl. Further, for d> 2, there is M3 >
 0 such that IG(Y)I < M31yl.

 PROOF. The triangle inequality implies that

 IU(x +y) - U(x)I < 21y1/lxI
 and

 IX +YKI -_ IXI-1 <IYIIXI-1IX +Y-1 <?IYI(IXI-2 +IX +Y 2).

 The existence of the constants M*, M* for dimensions d > 3 and that of M3
 for dimensions d ? 2 is now a consequence of (*) in the proof of Lemma 5.3
 and a straightforward algebra exploiting the expressions of the integrands that
 appear in the definitions of G, J and H.

 Next, for 0 < t3, < 1, consider the expression IyI"'IxI 11x + yj I. We will
 derive an upper bound for it. If IxI < IyI/2, we have, using the triangle
 inequality,

 IYlylllllx 1X + y Il1 < 20'lxl -ll1X + yl l-l- 1< 2,61(lxlol -2 + I X + y ll

 On the other hand, if lxI > IyI/2, we have

 I yl1x1-llx +yj-1 -< 281jxj'31-ljx +yj-1 -< 201(lxl"l -2 +IX +YI" 1-).

 Hence, in view of (*) in the proof of Lemma 5.3 and the definitions of J and
 H, we can conclude that, for d = 2,

 sup IYI'1-2IH(y)I < oo and sup IYI'1 IJ(Y) - J(O)I < c.
 y: IYI <MO y: IYI<Mo

 The existence of M1 now follows if we take 2 - 81 = 2cv and that of M2
 follows by taking 1 - 1 = w. El

 The following fact is a consequence of Lemmas 5.3 and 5.7 and a first order
 Taylor expansion of E{U(Xm - 0)} in 6 exploiting the mean value theorem of
 differential calculus.
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 FACT 5.8. Let Assumption 3.1 in Section 3 be true. For 6 E Rd, define

 A(0) = E{U(Xm -a) + DD(m)(0)

 and fix a constant M* > 0. Then, for d > 3, we have

 sup IA&(6) I = O(log n/n)
 6: If 6<M*(1og n/n)1/2

 as n tends to oo. On the other hand, if d = 2, we will have

 sup I A(O) =o([log n/n ](1 +w)/2)
 6: II < M* (log n/n)1/2

 as n tends to oX for any constant w such that 0 < w < 1.

 LEMMA 5.9. Redefine Bn (see Lemma 5.4) by retaining in it only those
 points (v1, V2, ... , Vd) for which Ivil < K4(0og n/n)1/2 for each i, 1 < i < d,
 and throwing away the rest of the points from it. Here K4 is as in Proposition

 5.6. Consider the random vector AM(o) defined as

 AM) = m!(n-m)! E {U(Xa)-U(Xa-9)} + E(U(Xa -)},
 n . a GEA(n.)

 where 6 E Bn. Let Assumption 3.1 stated in Section 3 be true. Then, if d 2 3,
 there is K5> 0 such that we have max OEB IAn(6)I < K5(log n/n) almost

 surely for all n sufficiently large. Also, if d = 2, we have maxoEB IAn(A)l =
 o([log n/n ]') almost surely as n tends to 00, where c is any constant satisfying
 O < C < 1.

 PROOF. First note that since the newly defined Bn is a subset of the
 original Bn defined in Lemma 5.4, we still have #(Bn) ? yln4 . Second, the
 definition of AM(8) ensures that E{An(6)} = 0 for all 6 E Bn. Let 6n(6) be
 the variance-covariance matrix of A(O). Then in view of Lemma 5.7 (note the
 behavior of H and G there), we have the following:

 (a) For d > 3, there is M4> 0 such that max0EB BInn()l < M4(log n/n).
 (b) For d = 2, maxoeBn ISn(6)1 = o([log n/n ]I) as n tends to 00, where L is

 any constant satisfying 0 < co < 1.

 The proof of the lemma now follows by a straightforward application of Fact
 5.1 via arguments that are essentially identical to the proof of (2) in Lemma
 5.4. E

 PROOF OF THEOREM 3.2. As in the proof of Proposition 5.6, fix a sample

 sequence X1, X2,..., Xn,... such that, for all n sufficiently large, we have
 I@(m)I ? K4(log n/n)'/2, and (6) in the proof of Proposition 5.6 holds. Assume
 further that the sample sequence is so chosen that 6* defined in Proposition

 5.6 is a member of newly defined Bn (i.e., as in Lemma 5.9) for all n
 sufficiently large. The collection of all sample sequences satisfying these
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 requirements will form a set of probability 1. At this point, we can write

 m!(n - m)! E(
 E U(Xa)

 a n

 m !( n - m) !_ E
 = An( f)) + Zl. n ! E U(Xa -?n*) An(f(n) + D am)On.

 The proof now follows from (6) that appears in the proof of Proposition 5.6,
 Fact 5.8, Lemma 5.9 and using the positive definiteness of D(m) together with
 the fact that lf6?m) - 061 is O(n-4) as n tends to oo along our chosen sample
 sequence. O

 PROPOSITION 5.10. For d > 2 and 0 < x < 1, let Z(d, x) be the function
 defined as

 Z(d, x) = (1 -X)d/2 1 + _ -]k [+ I + j

 Ford= 1,define

 00 Xk k

 Z(1, X) X - 1/2 sin- 1(X 1/2) = + E 1
 k-i !I (2k + 1)k! 2]

 Clearly, with these definitions, we have u2(d, m) = Z(d, m-2), where u2(d, m)
 is as defined in Remark 3 in Section 4. Then, for any fixed d > 1, Z(d, x) is
 monotonically strictly increasing in x, and for any fixed x > 0, Z(d, x) is
 monotonically strictly decreasing in d.

 PROOF. The proof is based on straightforward algebra using routine calcu-
 lations. Hence, we will only indicate the main steps instead of describing gory
 details. Clearly, Z(1, x) is monotonically strictly increasing in x. Also, it is easy
 to compute the coefficient of xk in the power series expansion of Z(2, x) for
 k = 0, 1, 2,... and compare that with the coefficient of xk in the expansion of
 Z(1) x). Such a comparison leads to the fact that Z(2, x) < Z(1, x) for all
 0 < x < 1. For d > 23 it is easy to compute the derivative of Z(d, x) with
 respect to x and show that it is the product of (1 - x)(d/2)-l and a power
 series in x with all the coefficients positive. Also, it can be shown that
 Z(d, x) - Z(d + 1, x) is the product of (1 - x)(d+ i)2 and a power series in x
 with positive coefficients for any d ? 2. The last assertion is based on direct
 algebraic computations making repeated use of the inequality

 [k + (d + 1)/2] 1[k + (d/2)]2 < [k + (d/2)] 1[k + (d - 1)/2]2 + (1/2)
 for k ? 1. o
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