
 Production Risk and Optimal Input
 Decisions
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 The paper examines the impact of production risk on a producer's optimal input
 decisions. Whether producers use more or fewer inputs in a yield-risky environment
 depends on the sign of the marginal risk premium, which is determined by risk
 preferences and technology. I present the weakest condition on technology that is
 sufficient to sign the marginal risk premium for all risk-averse preferences. If this
 condition fails to hold, the marginal risk premium is not of the same sign for all risk
 averters. Results are used to explore the properties of an estimated technology.
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 The principal question that this paper addresses
 is how does production uncertainty affect opti-
 mal input decisions? As is well known, risk-
 averse decision rules differ from risk neutral

 choices because of the existence of a marginal
 risk premium, which is the wedge between in-
 put cost and expected marginal product at the
 optimum level of input use. The sign of the mar-
 ginal risk premium indicates whether risk-averse
 producers use more or fewer inputs than risk-
 neutral producers. In general, the sign depends
 on risk preferences and technology. Because the
 latter is observable and often measurable, it is
 useful to work out the implications for optimal
 input choices using properties of the technol-
 ogy, while relying as little as possible on infor-
 mation about preferences. The present paper
 discovers the weakest condition on the technol-

 ogy sufficient to sign the marginal risk premium
 for all risk-averse preferences.

 Previous results (MacMinn and Holtmann,
 Pope and Kramer) have been obtained using
 production function representations. Output is a
 function of a single input and a random shock.
 In such a setup, the marginal risk premium is of
 the same sign as the covariance between mar-
 ginal utility and marginal product. Because mar-
 ginal utility is decreasing for risk-averse pref-
 erences, a sufficient condition for signing the
 marginal risk premium is monotonicity of the

 marginal product in the output shock. The suf-
 ficient condition on technology discovered here
 is weaker than such a monotonicity restriction
 and therefore applicable to a greater range of
 technologies. Moreover, it cannot be weakened
 any further as it is also a necessary condition
 for the marginal risk premium to be of the same
 sign for all concave utility functions.

 I also provide an economic interpretation of
 the above necessary and sufficient condition. The
 condition, it turns out, is equivalent to requiring
 that an input be either risk-increasing or risk-
 decreasing. My definition of risk-increasing and
 risk-decreasing inputs is derived from the
 Rothschild and Stiglitz definition of increasing
 risk and is therefore different from that of Pope
 and Kramer.

 My principal result thus proves that, for all
 risk averters, marginal risk premium is positive
 (negative) if and only if the input is risk-increas-
 ing (decreasing). It follows that, if the input is
 neither risk-increasing nor risk-decreasing, the
 marginal risk premium is not of the same sign
 for all risk averters. For such situations, the pa-
 per derives a sufficient condition on technology
 which signs the marginal risk premium for the
 restricted class of concave utility functions with
 convex marginal utility.

 Finally, I illustrate the use of the theoretical
 conditions in an empirical example. This is done
 with the help of the conditional distribution
 functions which Taylor estimated for corn and
 cotton on the basis of an experimental fertilizer
 response data set first used by Day. In this ex-
 ample, the monotonicity restrictions completely
 fail to sign the marginal risk premium, and it is
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 necessary to make use of the weaker condition
 discovered here. Even then, there are instances
 where the input fails to be risk-increasing or risk-
 decreasing. In such cases, the properties of the
 estimated technology are further examined for
 the purpose of signing the marginal risk pre-
 mium for risk averters with convex marginal
 utility.

 All proofs are collected together in the ap-
 pendix.

 Risk Aversion and Optimal Input Choice

 Output q is assumed to be a random variable
 with a conditional cumulative density function
 F(q, x), where x is a vector of inputs.' Let xi
 be the ith element of the input vector x. Here,
 F is assumed twice differentiable in xi and q and,
 in particular, the partial derivatives Fq, F,,, Fqq,
 and Fx,q exist. Also, it is assumed that for all
 input applications the support of the distribution
 function F is contained in a compact interval [qo,
 qm]; that is, F(qo, x) = 0 and F(q,, x) = 1 for
 all input vectors x. It follows that the gradient

 vectors Fx(qo, ") and Fx(qm, ") are each row vec-
 tors with zeros everywhere. For output levels
 between the two end points of q0 and qm, I as-
 sume Fx,(q, x) < 0, that is, increasing input use
 leads to a superior output distribution in the sense
 of first degree stochastic dominance.2

 If w is a vector of input prices and output price
 is normalized at unity, applying inputs x yields

 profit rr(q, x) = q - w'x. The optimal input
 vector is found by maximizing the expected util-
 ity of profit, where utility is assumed increasing
 and concave.

 Let RP be the risk premium that a risk-averse
 producer is willing to pay for removing all un-
 certainty in output. Because the output distri-
 bution is conditional on input use, RP is a func-
 tion of input vector x. Further, RP satisfies

 EU[rr(q, x)] = U [Err(q, x) - RP(x)]. Maxi-
 mizing expected utility is equivalent to maxi-
 mizing the certainty equivalent; namely, ex-
 pected profit net of the risk premium. Letting
 x* be the optimal input application, the first-
 order condition to the latter problem is

 (Err)x, - RPx,(x*) = 0

 or -Wi + f(q - w'x*)Fqx,(q, x*)dq = RPx,(x*)

 or frr(x*)Fqx,(q, x*)dq = wi + RPx,(x*).
 Here, RP,, known as the marginal risk premium
 for input i (Pope and Kramer, MacMinn and
 Holtmann) is the wedge between input cost and
 expected marginal product at the optimum level
 of input use. If the producer is risk-neutral, the
 marginal risk premium is zero. For risk-averse
 preferences, the marginal risk premium is non-
 zero and its sign is given by proposition 1 be-
 low.

 The following notation is useful for stating the
 result. Let t(q, x) = Fx,(q, x)/Fq(q, x) -

 E[Fx(q, x)/Fq(q, x)], and T(q, x) = fqqt(y,
 x)Fqdy.

 PROPOSITION 1: For all concave utility func-

 tions RPx,(x*) is strictly positive (negative) if and
 only if

 (1) T(q, x*) ? (-) Ofor all q E (qo, q,).

 Inequality (1) is a necessary and sufficient
 condition for the marginal risk premium to be
 of uniform sign for all risk-averse utility func-
 tions. Furthermore, because (1) represents a
 condition on the distribution function, it is the
 weakest condition on technology that signs the
 marginal risk premium for all risk-averse pref-
 erences.3 The next section considers an eco-
 nomic interpretation of (1) in terms of the im-
 pact of input use on output variability.

 Inequality (1) may be implied by stronger re-
 strictions on technology. It is useful to state one
 such restriction because of its value in empirical
 illustration and in allowing comparisons of (1)
 with earlier work.

 PROPOSITION 2: T (q, x) (-) 0 for all q, if t (q, x) has one root over its output domain (say,
 q1) such that

 t(q, x) = Fx, (q, x)/Fq(q, x)
 - E(Fx,(q, x)/Fq(q, x)) > (<) O for q E (q0, q1)

 and

 t(q, x) = Fx, (q, x)/Fq(q, x)
 - E(Fx,(q, x)/F,(q, x))

 < (>) 0 for q E (qi, qm).

 Notice that the above condition is always sat-

 1 For convenience, notation F(q; x) has been used instead of F(qlx)
 to denote the conditional distribution function. Because x is not a

 random variable, F(q, x) should not be interpreted as a joint dis-
 tribution.

 2 If the conditional distribution function F is induced by an un-
 derlying production function of the form z(x, 0), where 0 is the
 random shock, then Fx < 0 is equivalent to the assumption of pos-
 itive marginal productivity; that is, zx(, 0) > 0 for all 0.

 3 The exception is when optimal risk-averse input choice x* =
 0. Then the marginal risk premium is negative when T(q, x) 5 0
 for all q, but it could be of either sign if T(q, x) O0 for all q.
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 isfied if Fx,(q, x)/Fq(q, x) is monotonic decreas-
 ing (increasing) in q.

 Relationship to Earlier Findings

 The sufficiency part of proposition 1 generalizes
 earlier results. MacMinn and Holtmann, and Pope
 and Kramer have examined conditions sufficient

 to sign the marginal risk premium for risk-averse
 preferences. Both these papers use a production
 function representation of the stochastic tech-
 nology. Let q = z(x, 0), where z is the produc-
 tion function and 0 the random output shock.
 The principal result is the following. If z, , is
 positive (negative) for all 0 and for some range
 of input values containing the optimum, the
 marginal risk premium is positive (negative) for
 input i. In this way, knowledge of production
 function characteristics can be used to predict
 departures from risk-neutral input use. The re-
 sult is, however, a special case of proposition
 1, and the marginal risk premium can be signed
 in more general circumstances.

 It can be shown4 that if the conditional dis-
 tribution function F(q, x) is induced by a sto-
 chastic production function z(x, 0) with z, > 0,
 then F,,I/Fq - E[F,I/Fq] is greater than, equal

 to, or less than zero as zx, - E?[zj,] is less than,
 equal to, or greater than zero, where the super-
 script on E indicates the variable over which ex-
 pectations are taken. A stronger version of this
 result, which is also true, is that monotonicity

 of zx, in 0 implies monotonicity of Fx,/Fq in q
 but in the opposite direction. Now consider hy-
 pothetical figures 1 and 2 below. In figure 1,

 zx, is an increasing function of 0. This means
 Fx,/Fq is a decreasing function of q. But by
 proposition 2, T(q, x) > 0 for all q, and hence
 the marginal risk premium is positive. This is
 the result of MacMinn and Holtmann, and Pope
 and Kramer. In figure 2, on the other hand, it
 is not possible to sign the marginal risk pre-

 mium using a monotonicity condition on zx,. But
 because zx, - E?[zi] has one sign change from
 negative to positive, FxFq - Eq[Fx,/Fq] has also
 one sign change from positive to negative. This
 means, by proposition 2, that T(q, x) > 0 for
 all q, implying the marginal risk premium is
 positive. Proposition 2 can therefore sign the
 marginal risk premium in more instances than
 do the monotonicity conditions of earlier work.
 Of course, the sufficient condition of proposi-
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 Figure 1. Monotone marginal product

 tion 2 is in turn a stronger restriction than the
 condition in proposition 1.

 Inequality (1) cannot be weakened further ac-
 cording to the necessity part of proposition 1.
 This result has so far not been known or proved.
 The implication is that if T(q, x*) fails to be of
 uniform sign over its domain, the marginal risk
 premium is also not of uniform sign for all risk-
 averse utility functions. In other words, the sign
 of the marginal risk premium may change with
 the choice of the utility function even within the
 class of concave functions. This is a disturbing
 result for empirical work, which often assumes
 a specific utility functional form. One may
 therefore wish to discover subsets of the class

 of concave utility functions for which the mar-
 ginal risk premium is of uniform sign, even when
 condition (1) fails. The problem is considered
 below for an empirically important subclass of
 concave utility functions.
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 Figure 2. Nonmonotone marginal product 4 A proof is available from the author on request.
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 Risk-Increasing and Risk-Decreasing
 Inputs: An Interpretation

 This section advances a definition of risk-in-

 creasing and risk-decreasing inputs which, al-
 though different from the definition proposed by
 Pope and Kramer, is consistent with the notion
 of increasing risk discussed by Rotchschild and
 Stiglitz. It will then be seen that (1) is precisely
 the condition for an input to be risk increasing
 or risk decreasing.

 Following Rothschild and Stiglitz, the paper
 considers one output distribution to be more
 variable (riskier) than another if they have the
 same mean and if the riskier distribution has more

 weight in its tails. An increase in input use,
 however, increases mean output. To compare
 distributions with the same mean, consider the
 distribution of output deviation from its mean.
 If q(x) is mean output, let h = q - q(x). The
 output mean deviation h has zero mean at all
 input levels. However, because h is a linear
 transformation of q, its distribution is identical
 to that of q in all other respects. If F(h, x) is
 the cumulative density of h, then F(q, x) = F(h,
 x) for all q and x. An input is defined to be risk
 increasing (or risk decreasing) if it increases (or
 decreases) the variability of the deviations from
 output mean. More formally, we have the fol-
 lowing definition5:

 DEFINITION: The ith input is risk-increasing
 (decreasing) at x0 if

 (2) rf [ h(q, x0), xo]dq = 0
 qo

 and

 (3) ix,[h(y, x0), xo]ldy 2

 (5) 0 for all q E (qo, qm)

 where h(q, x) = q - q(x) and q(x) = fSJqFq(q,
 x)dq.

 The condition in (2), which requires that the
 expected value of h be invariant to changes in
 input level, is satisfied by construction. The
 definition essentially amounts to the second
 condition in (3), which states that an increase in
 input use always leads to a distribution of de-

 viations from output mean with more (or less)
 weight in its tails. We now show that (1) is merely
 another form of (3).

 Because F(q, x) = F(h, x) for all q and x,
 Fq(q, x) = Fh(h, x)hq(q, x) = Fh(h, x) and Fx,(q,
 x) = Fh(h, x)h,,(q, x) + Fx,(h, x). This implies

 (4) Fxi(h, x) = Fx,(q, x) - Fh(h, x)hk,(q, x)
 = Fx,(q, x) + Fq(q,x)qx,(x).

 But mean output is q = f qFq(q,x)dq. Inte-

 grating by parts, q = qm - fqo" F(q, x)dq. Hence

 = -fFx,(q, x)dq = -fq"[Fx,(q, x)/Fq(q,
 x)]Fq(q, x)dq = - E[Fxi/Fq].

 Substituting for tx, in (4) and substituting (4)
 into (3), an input is risk-increasing at x0 if

 (5) Fx,(y, x0)

 - Fq(y,xo)E[Fx,(q, Xo)/Fq(q, x0)]}dy
 ? (5) 0 for all q E (q0, qm)

 Using the notation of t(q, x) and T(q, x) intro-
 duced earlier, (5) becomes

 fqqot(y, xo)Fqdy ? (?) 0 for all q
 E (qo, qm) or T(q, xo) ? (5) 0 for all q,

 which is, of course, the condition in (1). Hence,
 a restatement of proposition 1 is

 PROPOSITION 1*: For all concave utility func-
 tions, the marginal risk premium for input i is
 strictly positive (or negative) if and only if input
 i is risk increasing (or risk decreasing) at the
 optimum level of input use.

 Thus, the definition of risk-increasing and risk-
 decreasing inputs proposed here provides an
 economic interpretation of proposition 1. The
 result is useful because it relates a purely tech-
 nological characteristic of inputs (as to how they
 affect output variability) to their use according
 to risk preferences. But proposition 1"* also proves
 the converse, namely that an input is risk in-
 creasing (decreasing) if the marginal risk pre-
 mium is positive (negative). In Pope and Kra-
 mer, on the other hand, an input is defined to
 be risk increasing (decreasing) if the marginal
 risk premium is positive (negative). Proposition
 1* can therefore be used as the basis for a Pope
 and Kramer definition if a primitive definition
 of risk-affecting inputs is in terms of the con-
 dition in (1).

 Finally, the condition in (1) admits of one more
 interpretation. If (1) is satisfied, it means that
 the distributions of deviations from output mean
 can be ranked in the sense of second degree sto-

 5 The Rothschild-Stiglitz definition of increasing risk compares
 two distributions. In this paper, however, x parameterizes a family
 of distributions F(q, x) and the definition is modified accordingly
 (see Diamond and Stiglitz).
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 chastic dominance. Increases in risk-increasing
 inputs lead to less preferred distributions while
 increases in risk-decreasing inputs lead to more
 preferred distributions.

 Further Assumptions on Preferences or
 Technology

 As noted earlier, if T(q, x) changes sign over
 its output domain, that is, if the input is neither
 risk-increasing nor risk-decreasing, the sign of
 the marginal risk premium depends on the util-
 ity function. However, the marginal risk pre-
 mium may still be of the same sign for a subset
 of the class of concave utility functions. An em-
 pirically important class of functions are those
 with convex marginal utility because they in-
 clude all decreasing and constant risk-averse
 utility functions.

 PROPOSITION 3: The marginal risk premium of
 input i is strictly positive (negative) for all risk-
 averse agents with convex marginal utility if

 (6)

 JOT(y, x*)dy 2 (-) Ofor all q in (qo, q,.

 Condition (6) is implied by (1) but the con-
 verse is not true. Thus, by restricting the set of
 utility functions, a weaker condition on tech-
 nology is obtained. If preferences are further re-
 stricted to satisfy linear marginal utility (namely,
 quadratic utility functions), the sufficient con-
 dition is even weaker than (6). In this case, the
 marginal risk premium is strictly positive (neg-
 ative) if f; T(q, x*)dq > (<) 0.

 An economic interpretation of (6) is that an
 increase in input use leads to a less preferred (or
 more preferred) output distribution according to
 third degree stochastic dominance. Seen this way,
 the relationship of (6) to (1) is obvious.

 Technology

 A functional form popular in the econometric
 estimation of production functions is to let q(x,
 0) = p(x) + o-(x)0, where 0 is normally dis-
 tributed with mean zero and unit variance (Just
 and Pope, Buccola and McCarl). This implies
 that output q is normally distributed with a mean

 ,u and variance 0", where both are conditional on x. In this case, verification of (1) is partic-
 ularly simple.

 Because the area under the normal curve is

 equal to the corresponding area under the stan-
 dard normal curve,

 F(q, x) = F(z, x)
 1 q- p(x)

 f _ exp(-k2/2)dk, where z =  o(x)

 and Fx,/Fq = [(1 /\ / )exp(-z2/2)z,,)]/
 [(1//V\) exp(-z2/2)] = z=,

 Now zx,= -[[o-x(x)(x)]/o - ox,[q - A(x)]/o

 = -(~xi + OZ)/l
 Hence t(q, x) = Fx,/Fq - E(Fx,/Fq)

 S-(A, + oXiZ)/o + xi/- = / --'iZ/

 and T(q, x) = -((x,/r) k_ exp(-k2/2)dk.

 But the quantity inside the integral has a max-
 imum value of zero when the upper limit is plus
 infinity. Hence T has the same sign as o-,. In
 other words, an input is risk increasing (or risk
 decreasing) if it increases (or decreases) the
 variance of output. This result can also be seen
 directly from the fact that the variance of de-
 viations from mean output is also the variance
 of output.

 An Empirical Illustration

 This section presents the results of an empirical
 investigation into the properties of certain esti-
 mated conditional distribution functions. My
 objective is to sign the marginal risk premium
 for the estimated technology. The exercise uses
 Taylor's estimates of conditional distribution
 functions for corn and cotton. Taylor employed
 a well known data set of experimental fertilizer
 response first used by Day to estimate the Pear-
 son system of yield probability density func-
 tions. Later, Just and Pope used the same data
 set to estimate the marginal effects of fertilizer
 use on output variance. The data consist of corn
 and cotton yield response to 7 levels of nitrogen
 application between 0 and 45 lbs per acre at in-
 tervals of 7.5. Experiments were carried out for
 37 years between 1921 and 1957 at the Delta
 Branch of the Mississippi Agricultural Experi-
 ment Station (Grissom and Spurgeon).

 Taylor estimated a conditional cumulative
 density of the following form: F(q, x) = 0.5 +
 0.5 tanh[P(x, q)], where P(x, q) is a polynomial
 in x and q and tanh is the hyperbolic tangent
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 given by tanh(u) = (eu" - e-u)/(eu + e-u). The
 functional forms of P, estimated by Taylor, are

 P(x, q) = Jp + 2q + 3q2 + 84q3 + _5X + 6X3

 for q = cotton yield and x = nitrogen applica-
 tion rate and

 P(x, q) = p1 + 3f2q + 3q2 + 04q3

 + Ps5 + f86qx + 87xq92

 for q = corn yield and x = nitrogen application
 rate.

 Here, Fx/Fq equals Px(x, q)/Pq(x, q) and is
 directly calculated given the parameter esti-
 mates, whereas E(Fx/Fq) is computed by nu-
 merical integration. The support of q is taken to
 be the interval between zero and the highest re-
 alization of q (for all input applications).6 Thus,
 we have t(q, x) = Fx/Fq - E[Fx/Fq] for each
 of the 7 levels of nitrogen application and for
 each of the two crops. In no case is Fx/Fq
 monotonic in q. Sufficient conditions discussed
 by MacMinn and Holtmann, and Pope and Kra-
 mer cannot therefore sign the marginal risk pre-
 mium.

 The next question is whether the technology,
 despite its nonmonotonicity, satisfies condition
 (1). We find that in the case of cotton, and for
 nitrogen applications up to 22.5 lbs per acre,

 o
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 Figure 3b. Effect of nitrogen use (37.5 lbs/
 acre) on the cumulative distribution of cotton
 output

 t(q, x) changes sign once from positive to neg-
 ative, as q increases from zero to its upper sup-
 port (see figure 3a). But this means T is non-
 negative for all q (proposition 2) and hence
 nitrogen is risk increasing. Beyond 22.5 lbs,
 however, t changes sign twice (figure 3b). It can
 be shown that this means the input is neither risk
 increasing nor risk decreasing; that is, T is not
 of the same sign over its output domain.7 The
 picture is reversed for corn. Here, at low levels
 of nitrogen the input is neither risk increasing
 nor risk reducing (figure 4a) while at higher rates
 (greater than or equal to 30 lbs) it becomes risk
 increasing (figure 4b). The input is risk increas-

 6 A reviewer has pointed out that the conclusions may be sen-
 sitive to this aspect of the empirical procedure.

 7 The relevant result (not proved here because of space con-
 straints) is that if t(q, x) has n finite roots over the interval (qo, q,,),
 n is necessarily odd whenever the input is risk-increasing or risk-
 decreasing.
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 Figure 3a. Effect of nitrogen use (15 lbs/
 acre) on the cumulative distribution of cotton
 output
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 Figure 4a. Effect of nitrogen use (15 lbs/
 acre) on the cumulative distribution of corn
 output
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 ing in half of the 14 cases considered and of
 indeterminate character in the rest of the cases.

 In situations where nitrogen is neither risk-in-
 creasing nor risk-decreasing, one may use prop-
 osition 3 and condition (6) to sign the marginal
 risk premium for risk-averse decision makers with
 convex or linear marginal utility. The results in-
 dicate that, except at low levels of input use in
 corn, increasing nitrogen use leads to less pre-
 ferred output distributions ordered by third de-
 gree stochastic dominance. Hence, if the opti-

 mal input level falls in these ranges, the marginal
 risk premium is positive for producers with con-
 vex marginal utility.

 The results of all these situations are sum-
 marized in tables 1 and 2.

 Concluding Remarks

 In the literature on output variability and input
 choice, two kinds of questions are frequently
 posed: (a) what is the impact of input applica-
 tion on output variability? and (b) how are risk-
 averse input choices different from risk-neutral
 decisions? The two questions are related: those
 analyzing the first question have looked for im-
 plications by answering the second question
 (Antle and Goodger; Love and Buccola; Rou-
 masset; Smith and Umali). In a survey of the
 literature on the impact of fertilizers on output
 variability, Roumasset et al. (pp. 227) are ex-
 plicit in connecting the two issues. "First, does
 use of fertilizer increase the variability of crop
 yields? Second, is the increase (if any) in vari-
 ability large enough relative to increases in
 expected yields from nitrogen use to reduce sub-
 stantially the optimal fertilizer use under risk-
 averse preferences relative to risk neutral opti-
 mal fertilizer use?"

 Surprisingly, however, the theoretical basis
 for the presumed link between the impact of in-
 put use on output variability and optimal input

 Table 1. Sign of the Marginal Risk Premium: Cotton

 U"<0 U"'<0
 Input level (lbs) U" < 0 and U'" > 0 and U'" = 0

 0.0 + + +

 7.5 + + +

 15.0 + + +

 22.5 + + +

 30.0 ? + +
 37.5 ? + +
 45.0 ? + +

 Table 2. Sign of the Marginal Risk Premium: Corn

 U"<0 U"<0

 Input level (lbs) U" < 0 and U"' > 0 and U"' = 0
 0.0 ? ?
 7.5

 15.0 + +
 22.5 ? + +
 30.0 + +
 37.5 + +
 45.0 + + +
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 level has not been fully explored. The present
 paper has filled that gap by presenting the only
 technological characteristics relevant in deter-
 mining the impact of production risk on input
 use.

 Implications for empirical research are two-
 fold. First, by weakening the sufficient condi-
 tions to the maximum extent possible, the qual-
 itative implications for a risk-averse producer's
 optimal input use can be inferred for all esti-
 mated technologies. If the estimated technology
 violates (1), the researcher can be sure that,
 without further information on preferences, it is
 impossible to predict departures from risk neu-
 tral input levels. Second, (1) is a robustness
 condition in empirical work which, if satisfied,
 guarantees the qualitative nature of the esti-
 mated magnitude (marginal risk premium) against
 misspecification of utility function within the class
 of concave functions. If the technology fails to
 satisfy (1), (6) serves as a robustness condition
 for risk averters with convex marginal utility.

 A promising direction for future work would
 be to consider in detail the interactions between

 multiple inputs in the production process. To take
 a specific example, fertilizers could be risk in-
 creasing in the absence of irrigation but risk de-
 creasing in the presence of irrigation. Discov-
 ering such aspects of the technology and the
 conditions under which they occur is important
 for deeper understanding of technology-driven
 choices.

 [Received January 1991; final revision
 received February 1992.]
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 Appendix

 Proof of Proposition 1

 Sufficiency: The marginal risk premium of input i is

 RPi= f 7r(x*)Fqx(q, x*)dq - wi.

 Integrating by parts and recognizing that Fxi(qm, x) = F?, (qo, x) = 0,

 (A1) RP, = - F (q, x*)dq - w

 where x* is the solution to the following problem
 qM

 max f U(q - w'x)Fq(q, x)dq.

 The first-order condition for an interior solution is

 U(7)Fqxi(q, x*)dq - w, U'(T)Fq(q, x*)dq= 0 or

 f U(7T)Fqxi(q, x*)dq] U'(T)Fq(q, x*)dq] = wi.

 The denominator is expected marginal utility. Integrating
 the numerator by parts, the first-order condition becomes

 -[ fU'()Fxi(q, x*)dq] EU'() = wi. L1 fO I/
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 Multiplying and dividing the numerator by F,

 -E[U'(Tr)(F,,/Fq)]/EU'(rT) = wi
 or

 -E(F,/Fq) - cov[U'(.rT), F,,I/Fq]/EU(T) = wi

 But E(F,,/Fq) = fom Fi(q, x*)dq. Substituting and using (Al),

 (A2) RP,,(x*) = cov[U'(iT), FjFq,]/EU'(Tr)

 Because the denominator is positive, the marginal risk pre-
 mium has the same sign as the numerator, which is equal
 to

 fq {Fx,(q, x*)/Fq(q, x*)
 - E[Fi(q, x*)/Fq(q,x*)]}U'(7T)Fq(q, x*)dq.

 = t(q, x*)U'(7T)F,(q, x*)dq

 = U'(7T) t(y, x*)Fq(y, x*)dyl

 - U"(Tr) t(y, x*)Fq(y, x*)dy dq
 qO

 = [U'(Tr)T(q, x*)l m - U"(ir)T(q, x*)dq

 and because T(qo, x) = T(qm, x) = 0, we get

 (A3) RP,(x*) = - [f "(i)T(q, x*)dq] EU'()

 which is positive for all risk averters if T(q, x*) - 0 for
 all q and negative for all risk averters if T(q, x*) - 0 for all q.

 Necessity: Suppose the marginal risk premium of input i
 is positive for all concave utility functions. Clearly, T can-
 not be negative for all q. If T is positive for all q, there is
 nothing more to prove. So suppose T(q, x*) assumes pos-
 itive and negative values over the domain of q. Then there
 exists an interval (q,, qj) such that

 (A4) f T(q, x*)dq < 0.

 But T(q, x*) also satisfies

 (A5) - Lf'"()T(q, x*)dq > 0

 for all concave U. For a quadratic utility function, this re-
 duces to

 (A6) T(q, x*)dq > 0

 Let V be a utility function such that

 (A7)

 SV, = a, + brr(q) - (c,/2)i(q) for q - qj
 V(T) = V2 = a2 + b27T(q) - (c2/2) (q) for qi q - q,

 V3 = a3 + b3rT(q) - (c3/2)i(q) for q - q,
 From (A3), the marginal risk premium for V is of the same
 sign as

 S V'()T(qx*)dq = c T(q, x*)dq
 - qj qm

 + c2 fT(q, x*)dq] + c3fT(q, x*)dq .

 Choosing c, = c3 = c, the above becomes

 (A8) - V"('T)T(q, x*)dq = c T(q, x*)dq

 + T(q, x*)dq + c2fi T(q, x*)dq

 where the integral in the second square brackets on the RHS
 is negative [from (A4)] and the quantity in in the first square
 brackets on the RHS is positive [because of (A4) and (A6)].
 So if we choose a small and positive c and a large enough
 and positive c2, the marginal risk premium will be negative.
 But if V is concave (to be shown below), this is a contra-
 diction. Therefore, T(q, x*) cannot be negative over any
 subinterval of (qo, qm).

 It remains to be seen that V is concave. This can be

 achieved by a suitable choice of parameters. Suppose that
 c and c2 have been chosen to make (A8) negative. With a
 possibly discontinuous second derivative (as c2 may not be
 equal to c), V is concave if it is differentiable such that V'
 is decreasing (Binmore, pp. 117).

 From (A7), it is clear that q,, and qj are the only two
 points where the utility function could be discontinuous and
 nondifferentiable. Thus, the V function is continuous every-

 where if V,[ir(q,)] = V2[ir(qi)] and V2[Tr(qj)] = V3[Tr(qj)].
 This is assured by choosing a = 0, a2 = (b, - b,)IT(q,) +
 (c2 - c) i(qi)/2 and a3 = a2 + (b2 - b3)r(qj) -+ (c -
 c2)7(qj)/2. As regards differentiability, the derivative of V
 within each of the subintervals is given by

 VI = b, - clr(q) for all q E (qo, qil
 V'(r) = V = b2 - c27(q) for all q E (q,, q,)

 V' = b3 - clr(q) for all q E [qj, qm).

 Here, V is differentiable at q, and qj (and hence differ-
 entiable everywhere) if V'(Ir) is continuous at q, and qj; i.e.,

 V'(-r(q,)) = V'(Ir(qj)) and V'(Ir(qj)) = V'(r(q.)). So, for the c and c2 which make (A8) negative, choose
 b3 > c1r(qm) and bi, b2 to satisfy

 (A9) b2 - c2Tr(qa) = b3 - cT(qj) b2
 = b3 + (c2- c)Tj(q1)

 and

 (A10) b1 - clT(q,) = b2- c27T(qi) Q b
 = b2 + (c - c2)T(qi).

 Notice that continuity and the fact that V' is decreasing in
 each subinterval mean that V' is decreasing on the entire
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 interval (qo, q,). Further, because b3 is picked to be greater

 than cir(qm), V' at q,. is positive. But that is the minimum
 value of V', and so V' is positive for all q.

 PROOF OF PROPOSITION 2: Suppose t(q, xo) has one root
 (say, q,) over the domain (qo, q,) such that t > 0 for q E

 (qo, q?) and t < 0 for q E (q,, q,). We need to show f?ot(y,
 xo)F, - 0 for all q. Clearly fqq't(y, xo)F, O0. But fomot(y, xo)Fq = 0. So if for any q > q,, fqot(y, xo)Fq : 0, then t
 must be positive beyond q, in order for the integral to rise
 to zero at q,. But that contradicts our supposition that t is

 negative for q > q,. Hence fqot(y, xo)Fq, 0 for all q. The

 proof is similar for the other case where t(q, x) changes
 sign from negative to positive.

 PROOF OF PROPOSITION 3: As shown by (A3), the marginal

 risk premium is of the same sign as -feo U"(iT)T(q, x*)dq. Integrating by parts, this quantity is

 -I "(T(q.)) T(q, x*)dq + U'"(,) T(y, x*)dy dq

 which is positive if fo T(y, x*)dy _ 0 for all q and negative
 if fqoT(y, x*)dy - 0 for all q.
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