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 A real n by n matrix A is called an N(P)-matrix of exact order k, if the principal minors
 of A of order 1 through (n - k) are negative (positive) and (n - k + 1) through n are
 positive (negative). In this paper the properties of exact order 1 and 2 matrices are
 investigated, using the linear complementarity problem LCP(q, A) for each q E R". A
 complete characterization of the class of exact order 1 based on the number of solutions to
 the LCP(q, A) for each q E R" is presented. In the last section we consider the problem of
 computing a solution to the LCP(q, A) when A is a matrix of exact order 1 or 2.

 0. Notation. Euclidean n-space is denoted by Rn and its nonnegative orthant by
 R+. By R"xn, we denote the space of all real n by n matrices. We use I to denote
 the identity matrix of appropriate order. A vector is regarded as a column and
 superscript t is used to denote transposition. We say that a vector x e R" is
 unisigned, if either xi > 0 for all 1 < i < n, or xi < 0 for all 1 < i < n. Let A e Rnxn.
 For subsets J, K c {1, 2,..., n}, we denote by A,K and AJK, the submatrices of A
 and A- respectively, with rows and columns corresponding to the index sets J and
 K. The (i, j)th entry of A and A- are denoted by aij and a'j respectively. For
 J = {1,2,..., n}, AJK is written for simplicity as A.K. The ith column of A is
 denoted by A.i and the jth row by Aj., A'" and Aj' similarly denote the ith column
 and the jth row of A-~, respectively. Finally, for any J c {1, 2,..., n}, J denotes the
 set {1,2,...,n} \J.

 1. Introduction. For a given n-vector q and A E Rnxn, the linear complemen-
 tarity problem, denoted by LCP(q, A), is that of finding nonnegative vectors w e R",
 z E Rn such that

 (1.1) w -Az = q, wtz = 0.

 It is well known (Mohan and Sridhar 1992) that LCP(q, A) has a unique solution for
 every q ; 0 and has exactly three solutions for every q > 0, if and only if A is an
 N-matrix of the first category (i.e., all the principal minors of A are negative and at
 least one entry of A is positive). N-matrices have been considered in game theory
 (Parthasarathy and Revindran 1990), in the theory of global univalence of functions
 (Parthasarathy 1983) and in the literature on the linear complementarity problem
 (Saigal 1972). In Parthasarathy and Ravindran (1990) prove some characterization
 theorems for N-matrices of the second category (i.e., all principal minors negative,
 with A < 0).
 As a sequel to the classes of N-matrices and P-matrices (i.e., matrices whose

 principal minors are all positive), the classes of almost N and almost P were
 introduced by Olech, Parthasarathy and Ravindran (1989, 1991). Using game theo-
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 THE LINEAR COMPLIMENTARITY PROBLEM

 retic aspects, they studied these classes of matrices extensively, for their significance
 in the theory of global univalence and the linear complementarity problem.

 We now introduce the definition of exact order k matrices, which generalizes the
 above mentioned classes of matrices.

 DEFINITION 1.1. A matrix A e R"Xn is called an N-matrix (P-matrix) of exact
 order k, 1 < k < n, if every principal submatrix of order (n - k) is an N-matrix
 (P-matrix) and if every principal minor of order r, n - k < r < n, is positive
 (negative). A is called a matrix of exact order k, if it is either a P-matrix or an
 N-matrix of exact order k.

 Thus, an N(P)-matrix, is an N(P)-matrix of exact order 0, and an almost N
 (almost P)-matrix is an N(P)-matrix of exact order 1. The following is an example of
 an exact order k matrix, for any n and k, k < n.

 EXAMPLE 2.1. Let A be an n by n matrix of the form,

 1 x x ...

 (1.2) A= x 1 x .
 x x 1 ...

 For x 0 1, det(A) = (1 - x)ny-(1 + (n - l)x). When - l/(n - k) < x < - l/(n -
 k + 1), A is a P-matrix of exact order k. Note also that this is a matrix whose
 off-diagonal entries are nonpositive. Such a matrix is called a Z-matrix and has been
 well studied in the literature. See for example Chandrasekaran (1970), Fiedler and
 Ptak (1962), Mohan (1976), Ramamurthy (1986), and Saigal (1971). Z-matrices arise
 in a number of applications in operations research and also in the linear complemen-
 tarity formulations of some engineering applications. See Tamir (1976) and Cryer
 (1971). Further, as we shall see later in ?4, the inverses of certain N-matrices of exact
 order 2 turn out to be Z-matrices. Our results in this paper will therefore have
 relevance to these areas of applications. In addition, our result on the global
 univalence of differentiable functions (to be presented elsewhere) may be relevant to
 problems in the area of factor price equilibrium in international trade. See Inada
 (1971).

 In the following sections we present some characterization theorems for matrices
 of exact order 1 and 2, and mention a few results for the general exact order k. We
 shall be mainly studying only the exact order 1 and 2 matrices. A lot of difficulties
 crop us as we go to the general exact order k matrices. We shall briefly mention
 about these. Examples of N-matrices of exact order 2 are given in ?4.

 ?2 consists of the definitions and the results that we require subsequently. In ?3 we
 consider the linear complementarity problem with a matrix of exact order 1, and give
 a complete characterization of this class based on the number of solutions to the
 LCP(q, A) for every q e Rn. Section 4 elaborates on matrices of exact order 2.
 Finally, in ?5 some results are presented on the already known algorithms that would
 process the LCP(q, A), when A is a matrix of exact order k. We also have a result on
 the global univalence of a function whose Jacobian at any point x in the domain of its
 definition is an N-matrix of exact order 2. This result which generalizes a similar
 result of Ravindran (1986) for n = 3 and builds upon the proofs of the global
 univalence theorems of Gale-Nikaidio (1965), Inada (1971) and Olech et al. (1989,
 1991) will be presented elsewhere.

 2. Preliminaries. We call a diagonal matrix S of order n, a signature matrix if
 sii = ?1, for all 1 < i < n. We need the following lemma, proved in Mohan and
 Sridhar (1992).
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 LEMMA 2.1. Let A E R Xn, n > 3 with its principal minors of order 3 or less being
 negative. Then there is a signature matrix S such that SAS < 0.

 Let 4 : J c {1, 2,..., n} be defined as J = {i: si = 1}. Then S induces a partition
 in A which can be written as (if necessary, after a principal rearrangement of its rows
 and columns)

 A11 Ajj
 (2.1) A= A

 Ajj Ajj

 with Ajj < 0, Ajj < 0 and Ajj, Ajj > 0. Thus if n > k + 3 and A is an N-matrix of
 exact order k, then A has the sign pattern given in (2.1) where we can assume
 without loss of generality that J 4 4). Further, J - 4, unless A < 0.

 Sign reversal property of matrices plays a key role in the theory of linear comple-
 mentarity. We say that a matrix A reverses the sign of a vector x E Rn, if xi(Ax)i < 0,
 for all 1 < i < n. For P- and N-matrices we have the following theorems already
 known, on their sign reversal nature.

 THEOREM 2.1 (GALE AND NIKAIDO [5]). Let A E R"Xn. A is a P-matrix if and only
 if A does not reverse the sign of any nonzero vector x E Rn.

 THEOREM 2.2 (SEE MOHAN AND SRIDHAR 1992, PARTHASARATHY AND RAVINDRAN
 (1990). Let A E Rnxn have the partitioned form as in (2.1), for some ( - J c
 {1, 2,..., n}. A is an N-matrix if and only if A reverses the sign of only those vectors of
 the form xj > O, xj < 0 or xj > O, xj < O. (If J = 4(, then A < 0 and is an N-matrix if
 and only if A reverses the sign only of the unsigned vectors.)

 We require the following notions from the theory of linear complementarity.
 Let D(A) = {q E R": LCP(q, A) has a solution). We say that A is a Q-matrix if

 D(A) = R". It is well-known that the class of P-matrices (Murty 1972, Samelson, et
 al. 1958) and the class of N-matrices with A 4 0 (Saigal 1972) are Q-matrices.

 Consider [I: -A]. A pair of column vectors {I.j, -A.j} from [I: -A] is called a
 complementary pair. A matrix B E R"xk, with B.j the jth column of B being either
 I.j or -A.j for 1 <j < n, is called a complementary matrix of [I: -A]. The
 nonegative cone generated by B is denoted by pos(B). When B is a square matrix of
 order n, pos(B) is called a complementary cone of [I: -A]. Hence if the LCP(q, A)
 has a solution, for a q E Rn, then there exists a complementary cone pos(B) of
 [I: -A] such that q e pos(B). We use the notation q E (pos(B))c to mean that
 q 4 pos(B). A q E Rn is said to be nondegenerate with respect to A, if every
 solution (w, z) of LCP(q, A), has exactly n nonzero coordinates. We call A = B-'B,
 the principal pivot transform of A with respect to the nonsingular complementary
 square matrix B of [I: -A], where B is the matrix having columns of [I: -A] that
 are not in B. For more details on principal pivot transforms, see Mohan and Sridhar
 (1992), Murty (1972).

 In the theory of linear complementarity, it has been of special interest to character-
 ize a class of matrices based on the number of solutions the LCP(q, A) has for each
 q E R". We denote by m(q), the number of solutions the LCP(q, A) has for a given
 q E R. P- and N-matrices have the following characterizations in terms of the
 number of solutions to the LCP(q, A):

 THEOREM 2.3 (SAMELSON, THRALL AND WESLER 1958). A is a P-matrix if and only
 if m(q) = 1 for all q e Rn.

 THEOREM 2.4 (PARTHASARATHY AND RAVINDRAN 1990). Let A < O. A is an
 N-matrix of the second category if and only if m(q) = 2, for all q > 0.
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 THEOREM 2.5 (MOHAN AND SRIDHAR 1992). Let A 4 0 have the partitioned form
 as in (2.1) for some J c {1, 2,..., n}. A is an N-matrix of the first category if and only if
 m(q) = 1 for any q ; O and m(q) = 3 for any q > 0.

 Consider a submatrix C of order n x (n - 1), of [I: -A] which is a complemen-
 tary matrix. We call pos(C) an (n - 1) face of [I: -A] if rank(C) = n - 1. Let
 F = pos(C) be an (n - 1) face of [I: -A]. A complementary cone pos(B) is said to
 be incident on F if the columns of C are also columns of B. Thus, for any
 (n - 1)-face F, there are exactly two complementary cones incident on it. If we
 assume that the matrix A is nondegenerate (i.e., none of the principal minors is
 zero), then it is valid to say that any n X (n - 1) complementary matrix of [I: -A] is
 an (n - 1) face of [I: -A]. Further the subspace generated by such an (n - 1)-face
 will be a hyperplane in R". We say that the two complementary cones incident on an
 (n - 1)-face F are properly situated if they lie on opposite sides of the hyperplane
 generated by F. F is called a proper face, if either F lies on the boundary of D(A) or
 the two complementary cones incident on it are properly situated. The above notions
 have been introduced by Saigal (1972). He also proves a lemma which we require in
 the subsequent sections.

 LEMMA 2.2. Let A E Rnxn. Let F be an (n - 1)-face of [I: -A], with the two
 complementary cones incident on it being pos(B) and pos(B'). Let det(B) = O. F is
 proper if and only if

 det(B')/det(B) < 0.

 We frequently make use of the notions of value and optimal strategies in a matrix
 game and the results pertaining to completely mixed games. For these results the
 reader may refer to Kaplansky (1945) and Olech, Parthasarathy and Ravindran
 (1991). In what follows we collect some of these results for ready reference. We
 denote the minimax value of a matrix game with a pay-off matrix A, by v(A). We
 assume that the column player is the maximizer and the row player, the minimizer. A
 mixed strategy for a player is a probability vector with which the player chooses his
 rows or columns. We call a mixed strategy x completely mixed if x > 0 (that is, every
 coordinate of x is positive). We say that the game is completely mixed if every optimal
 strategy of either player is completely mixed.

 THEOREM 2.6 (KAPLANSKY 1945). Let A denote the pay-off matrix of order m x n,
 of a two person zero-sum game. We then have the following:

 (1) If player 1 has a completely mixed optimal strategy then any optimal strategy
 q = (ql, q2,1 . . , qn) for player 2 satisfies Ea,ijqj = u(A) for all 1 < i < m.

 (2) If m = n and the game is not completely mixed then both the players have optimal
 strategies that are not completely mixed.

 (3) A game with v(A) = 0 is completely mixed if and only if (a) m = n and the
 rank(A) = n - 1 and (b) all the cofactors Aij of A are different from 0 and have the
 same sign.

 (4) Suppose A is a completely mixed game. Then v(A) = det(A)/EEAij where Aij's
 denote the cofactors of A.

 (5) Let V = (Vij) denote the matrix of order m x n where Vij is the value of a game
 whose pay-off matrix is obtained from A by omitting its ith row and jth column. Then the
 game with payoff matrix A is not completely mixed if and only if the game with pay-off
 matrix V has a pure saddle point, that is, if and only if there exists a pair (io, jI) such
 that

 vi( .< v.i( . < vi( vi
 and vi,, = v(A).
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 PROOF. For a proof of the above theorem see Kaplansky (1945).
 REMARK 2.1. If the game with pay-off matrix A is completely mixed then the

 game with pay-off At (transpose of A) is also completely mixed and moreover from
 Theorem 2.6 it is clear that u(A) = v(At).

 REMARK 2.2. If A is a nonsingular matrix then v(A) and v(A-') keep the same
 sign. Furthermore if A-~ > 0 (or A-~ < 0), then the game with pay-off matrix A is
 completely mixed. See Olech, Parthasarathy and Ravindran (1991) for more details.

 The concept of degree of a map has been used in linear complementarity theory.
 For degree theory, see Lloyd (1973). For the use of this concept in linear complemen-
 tarity, we refer to Cottle, Pang and Stone (1992), Howe and Stone (1983), Morris
 (1990) and Gowda (1991).

 Given the LCP(q, A), define a piecewise linear map PA as,

 PA(I.-j) = I., PA(-Lj) = -A.j, 1 < j < n,
 and

 PA(X) - EXPPA(I.j) + EX PA(-Ij)'
 J J

 for any x E R", where x+= max(0, xi) and x = -min(0, xi). Then it is clear that
 LCP(q, A) is equivalent to finding x E Rn such that PA(x) = q.
 Let A E R"Xn be a nondegenerate matrix and x E Rn be a point in the interior of
 an orthant of Rn. Define the index of PA by ind PA(x) = +1 or -1 depending on
 whether det JA(x) is positive or negative, where JA(x) stands for the Jacobian of the
 map PA at x. As shown in Cottle, Pang and Stone (1992) the quantity

 E ind P(x)
 xE PAl(q)

 is the same for all nondegenerate q E Rn, is called the degree of PA, and is denoted
 by deg PA. As there exists an x E R" corresponding to each solution of the LCP(q, A)
 such that PA(x) = q, we can rewrite the degree of PA as

 deg PA = sgndet( A )
 J: qE pos(Bj)

 where q e Rn is nondegenerate with respect to A and

 -AJJ 0

 j -AJJ Ijj

 is a complementary matrix of [I: -A]. The assumptions of nondegeneracy of the
 vector q E R" with respect to A and of the matrix A made in defining the degree of
 the map PA may be relaxed. See Gowda (1991) for more details.

 The following result based on the degree of PA, is well known in linear complemen-
 tarity.

 THEOREM 2.7. Let A E R"nn be such that LCP(O, A) has a unique solution. If
 degP4 0, then A e Q.

 We present below a lemma that is useful in proving results on exact order 2, in ?4.

 LEMMA 2.3. Let A E Rnx" be a nondegenerate matrix and A be its principal pivot
 transform of A. If deg PA is r, then deg PA- is +r.

 For a proof of this see Theorem 6.6.23 of Cottle, Pang and Stone (1992).
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 3. Matrices of exact order one. At first, we would categorize the matrices of
 exact order 1 as follows. (As mentioned earlier, these matrices are known as almost
 N- and almost P-matrices, in the literature.)

 DEFINITION 3.1. An N-matrix A E RnX" of exact order 1, for n > 4, is said to be
 of the first category if both A and A-' contain at least one positive entry each;
 otherwise, it is called an N-matrix of exact order 1 of the second category.

 From the definition, it is clear that if A E R"Xn is an N-matrix of exact order 1,
 then so is A-'. Also if A E RnXn for n > 4 is of the first category then in the
 representation of A as in (2.1) J # 4) and J - 0.

 DEFINITION 3.2. A P-matrix of exact order 1, A E Rnxn, is said to be of the first
 category, if A -' has a positive entry; otherwise it is said to be of the second category.

 The characterization of P-matrices of exact order 1, in terms of the number of
 solutions LCP(q, A) has for each q E Rn, become easier, due to the fact that a
 P-matrix of exact order 1 is the inverse of an N-matrix. As one can easily deduce
 these results from Theorems 2.4 and 2.5, we would not mention them here.

 We therefore restrict ourselves to N-matrices of exact order 1 in this section and
 obtain characterization results for this class of matrices.

 REMARK 3.1. In the statements of the theorems and lemmas that follow we

 assume that the matrix A is a square matrix of order n > 4. There are two reasons
 for this. (i) In the proofs of the statements we use the sign pattern given by Lemma
 2.1 which requires that all the principal minors of order up to 3 be negative. This
 means that for an N-matrix A of exact order 1, in order to invoke this lemma, A has
 to be of order at least 4. (ii) Some of the theorems that follow may not hold for 3 X 3
 matrices. For similar reasons, we assume in ?4 that the order of the matrix A
 considered there is at least 5.

 To start with we prove a lemma which plays a crucial role in the results that follow.

 LEMMA 3.1. Let A E R "X be an N-matrix of exact order 1 with n > 4. If
 LCP(q, A) for q E Rn has two solutions (w1, z') and (w2, z2) with w w7 = 2= O, for
 some i = 1, 2,..., n then q E pos(-A).

 PROOF. Without loss of generality, assume that i = 1, i.e., wI = 2 = 0. We
 consider two cases:

 Case (i): A-' < 0. Since LCP(q, A) has a solution (wl, z1), considering the system

 (3.1) z -A- w =-A -q,

 z > 0, w > 0, ztw = 0,

 we see that the LCP( -A q, A -), has a solution (z1, w). As A - < 0 we note that
 -A -q > 0 and hence q E pos(-A).
 Case (ii): A-1 has a positive entry. We notice that (zl,wl) and (2, W2) are two

 solutions to (3.1) with wl = w = 0. Let A be the principal submatrix of A-1 got by
 omitting its first row and first column. Extracting the system

 (3.2) z - A q

 obtained by dropping the first entry of (-A-lq) in (3.1), we note that all principal
 minors of A are negative and the reduced LCP(q, A) has two solutions. Let them be
 denoted as (w1, z1) and (W2, z2) As A is an N-matrix, this implies that > 0, i.e.,
 (-A~ q)i > 0, for i= 2,..., n. See Mohan and Sridhar (1992), Parthasarathy and
 Ravindran (1990).
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 If (-A -q)l > 0, then q E pos(-A) and Lemma 3.1 follows. On the contrary let
 (-A- q)1 < 0. From (3.1) we note that

 (3.3) z - aljw z - aljwj = (-A-q)l < 0.
 j=1 j=2

 Similarly,

 n

 2 - E a'jW2 -(-A-'q) < O.
 j=2

 It follows from (3.3) that there exist indices j and k, 1 < j, k < n such that,

 (3.4) Wj > 0, alj > 0

 and

 wk > 0, a > 0.

 If in (3.4), j = k, then by complementarity, zj = zj2 = 0 and this violates Lemma 3.1
 of Kojima and Saigal (1979) when applied to LCP(q, A). Hence j # k and the
 following must hold:

 (3.5) w > 0, zJ = 0; W2 =0, z2> 0

 w > 0, z1 w=0; w = 0, zk > 0.

 Note that A reverses the sign of (w1 - w2) which is not unisigned, in view of (3.5).
 Hence by Theorem 2 of Olech, Parthasarathy and Ravindran (1991) A is not an
 N-matrix of the second category, and A should have at least one positive entry. By
 Lemma 2.1, there is a 4) - J c {1,..., n} such that (w1 - W2) < 0 and (il1 - 2) >
 0. Further, j E J and k E J, by (3.5). Hence we have

 aiiaik < 0 for all 2 < i < n.

 The partitioned form of A-' is as given in (2.1),

 A LL ALL
 A-`_

 ALL ALL

 where either L = J u {1}, L = J or L = J, L = J u {1}. In either case using
 Lemma 3.2 of Mohan and Sridhar (1992) we get alJalk < 0, a contradiction to (3.4).
 Hence q E pos(-A) and the proof is complete. 1

 The following theorems present the number of solutions LCP(q, A) has, for each
 q E Rn, when A is an N-matrix of exact order 1.

 THEOREM 3.1. LetA < O, A E Rnxn be an N-matrix of exact order 1 of the second
 category. Then

 (i) m(q) = 4 for q E int[pos(-A)];
 (ii) m(q) = 2 for q > 0, q - pos(-A).

 PROOF. Since A < 0, we have D(A) = R+ and it is sufficient to show that if
 m(q) > 2, then q E pos(-A), and m(q)= 4. Observe that LCP(q, A) has at least

 624
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 two solutions for q > 0, due to a result on parity of solutions by Murty (1972).
 Suppose for some q > 0, there exist two solutions for LCP(q, A), other than the
 trivial solution, w = q, z = 0. Let (wl, zl) and (w2, z2) be two solutions such that
 z1 # z2 0. Note that A reverses the sign of the nonzero vector (z1 - z2). Now by
 Theorem 3.1 of Olech, Parthasarathy and Ravindran (1991) either (z' - z2) is
 unisigned or there is a signature matrix S(0 : +I, such that So(z - z2) is unisigned
 and S0,A -'S < 0.
 Suppose (zl - z2) is unisigned. Without loss of generality, we can assume that

 (z1 - z2) > 0. Since z2 = 0, there exists an index i, 1 < i < n, such that z2 > 0 and
 zI > 0. Hence w = w2 = 0, and by applying Lemma 3.1, we have q c pos(-A). If
 So(z1 - 2) were unisigned, we have S(A-'So < 0 and let the partition of A-~
 induced by S0 be

 - AJ AJ A-l=
 AJJ AJJ

 Further, we have (z1 - z2)j > 0 and (zl - z2)j < 0. If there is an index i such that
 zJ > 0 and z2 > 0, 1 < i < n, we are done as in the previous paragraph. Otherwise,
 we have

 J > 0; z = 0,

 Z = 0; z > 0.

 In this case we notice that

 -AJJwJ = (-A-lq)j > O, -AJJW2 = (-A-lq) > 0O,

 and hence -A-lq > 0 or in other words, q E pos(-A). Hence if LCP(q, A) for
 q > 0 has more than two solutions, then q E pos(-A).

 To complete the proof, we note from Lemma 3.2 of Olech, Parthasarathy and
 Ravindran (1991) that LCP(q, A-1) has exactly 4 solutions if q > 0. As there is a
 one-to-one correspondence between the complementary cones of [I: -A] and that of
 [I: -A-1] (see Saigal 1972), it follows that m(q) = 4, if q E int[pos( -A)]. The proof
 follows. F

 As has been pointed out by one of the referees, if we use degree theory, this
 theorem follows immediately. This is so because as A < 0, deg PA = 0 and the only
 complementary bases of positive index are I and -A.

 REMARK 3.2. From Theorem 3.1 and Lemma 3.2 of Olech, Parthasarathy and
 Ravindran (1991) it follows that if A > 0, A E R"Xn is an N-matrix of exact order 1
 of the second category, then m(q) = 4 for q > 0 and m(q) = 2, for q E int[D(A) n
 pos(I)C].

 REMARK 3.3. For A 4 0, A E R"Xn, n > 4, an N-matrix of exact order 1 of the
 second category, one can easily check that LCP(q, A) has exactly 1 or 2 solutions, for
 q > 0, with qi = 0, for at least one i, 1 < i < n, depending on the sign pattern of A.
 The proof is similar to the one given in Theorem 3.1 of Mohan and Sridhar (1992).

 THEOREM 3.2. A e Rnxn be an N-matrix of exact order 1 of the first category with
 n > 4. Then

 (i) m(q) = 3 if q E int[pos(-A)] or int[pos(I)];
 (ii) m(q) = 1 if q c [pos(I) U pos(-A)]C.
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 PROOF. It is clear from Lemma 3.3 of Olech, Parthasarthy and Ravindran (1991)
 that m(q) = 3, if q > 0. As A-1 is also an N-matrix of exact order 1 of the first
 category, it follows that if q E int[pos(-A)], then m(q) = 3.

 Since we know that A is a Q-matrix using Lemma 3.3 of Olech, Parthasarathy and
 Ravindran (1991), we need to prove that if m(q) > 1, then either q E pos(-A) or
 q E pos(I).

 Suppose that LCP(q,A) has two distinct solutions (w, z1) and (w2, z2) with
 z1 = z2. Then A reverses the sign of the vector x = (z - z2). This implies that there
 exist signature matrices So, SI, such that either S0x is unisigned or Slx is unisigned,
 where SO, S # +?I and SoASo < 0, SIA- 'S < 0.

 Suppose S0x is unisigned. Since SoASo < 0, the signature matrix So induces a
 partition as in Lemma 2.1 for some O # J c {1, 2,..., n} with J 4 4 and we have
 (z1 - z2), > 0 (z1 _ z2)- < 0. If there is an index i such that z] > z > 0 or
 z2 > z' > 0 for 1 < i < n, then as in the proof of Theorem 3.1 it follows that
 q E pos(-A). Otherwise, we have

 z >0; z> = 0,

 ZJ = 0; > 0.

 From the sign pattern of the partitioned form as in Lemma 2.1, it follows that qj > 0
 and qj > 0. Hence q e pos(I). We can proceed similarly in the case of SIx being
 unisigned, where the signature matrix Si is such that S,A- 'S < 0, using A-~. Then
 we would arrive at the fact that q E pos(-A). Hence, the theorem follows. O
 REMARK 3.4. The above theorem does not hold for n = 3. The following example

 due to Olech, Parthasarathy and Ravindran (1991) illustrates this.
 EXAMPLE 3.1. Let

 -1 2 -2

 A= 2 -3 -2.
 -4 -5 -3

 It is easy to see that this is an N-matrix of exact order 1 of the first category. But
 A Q. If we take qt = (1, 1, -10), the LCP(q, A) does not have a solution.
 One of the referees has pointed out to us that the following well-known example of

 a 3 x 3 matrix due to Murty (1972) is also an N-matrix of exact order 1 of the first
 category and is a Q-matrix with an even number of solutions to each nondegenerate
 q, and thus a counterexample to the above theorem for n = 3.

 EXAMPLE 3.2. Let

 -1 2 2

 A= 2 -1 2.
 2 2 -1

 The following theorems establish the converse of Theorems 3.1 and 3.2, respectively.

 THEOREM 3.3. Let A < 0 be a square matrix of order n > 4. Suppose m(q) satisfies
 the following conditions:
 (i) m(q) < oo for all q c R";
 (ii) m(q) > 2 if q e int(pos(-A)],
 (iii) m(q) < 2, if q q pos(-A).

 Then A is an N-matrix of exact order 1 of the second category.
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 PROOF. Since m(q) < oo, for all q E R", none of the principal minors of A is
 zero. We shall show that if F is an (n - 1)-face of [I: -A], which is not a face of
 pos(I) or pos(-A), then F is proper. Let F be an (n - 1)-face generated by k
 columns of I and (n - k) columns of -A, 1 < k < (n - 1), such that the two
 complementary cones pos(B) and pos(B') incident on it are not properly situated.

 Without loss of generality, let us assume that

 F- =pos(I1,..., I. k -Ak+2,..., -A.n)

 with {I.k +, -Ak+ } as the left out complementary pair. Since A < 0, it is easy to see
 that the vector

 k n

 q-= , I.r + (- s) F
 r=1 s=k+2

 is not contained in pos(-A) for 8 sufficiently small and q > 0. As F is not proper,
 there exists an e > 0 such that

 q + e(I.k +) q Pos(-A) and

 q + e(I.k+l) e pos(B) n pos(B').

 We then find the LCP(q + E(I.k+l), A) has at least 3 solutions, contrary to our
 hypothesis. Hence our claim that F, which is not a face of pos(I) or pos(-A), is
 proper, follows.

 Now by Lemma 2.5 of Mohan and Sridhar (1992) it follows that all the proper
 principal minors of A have the same sign. Since A < 0, all the proper principal
 minors are negative. If det(A) < 0, A will be an N-matrix. This however contradicts
 Theorem 2.4.

 Therefore, det(A) > 0 and A is an N-matrix of exact order 1. Since A < 0, it
 follows that A is an N-matrix of exact order 1 of the second category. D

 THEOREM 3.4. Suppose A E RnXn, with n > 4 and suppose we have the following:
 (i) m(q) < co for all q c Rn;
 (ii) rn(q) = 2 or 0 if q R+;
 (iii) m(q) > 2 for all q > 0.

 Also suppose that pos(I) c int[pos( -A)]. Then A is an N-matrix of exact order 1 of the
 second category.

 PROOF. Since m(q) < oo, for all q E R", none of the principal minors of A is
 zero. Notice that as pos(I) c int[pos(-A)], pos( -A- ) c int[pos(I)]. Therefore A-1
 < 0 and A- satisfies all the conditions of Theorem 3.3 and the conclusion follows.

 THEOREM 3.5. Let A E RnXn be such that each of the columns of A as well as A -
 contains a positive entry and suppose that A satisfies the following:

 (i) m(q) < oo for all q E R";
 (ii) m(q) = 1, if q 0 [pos(I) U pos(-A)];
 (iii) m(q) > 1 for q E int[pos(I)] or q E int[pos(-A)].

 Then A is an N-matrix of exact order 1 of the first category.

 PROOF. For n = 1 or n = 2, it is easy to verify that there are no matrices
 satisfying all the hypotheses of the theorem and hence it holds vacuously. In what
 follows we shall assume that n > 3.

 627

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Mon, 24 Apr 2017 06:43:10 UTC



 S. R. MOHAN, T. PARTHASARATHY AND R. SRIDHAR

 Since m(q) < oo for all q E Rn, it follows that none of the principal minors of A is
 zero. We now claim that if F is an (n - 1)-face of [I: -A], which is not a face of
 pos(I) or pos(-A), then F is proper. Suppose this is not true. Then there exists a k,
 1 < k < (n - 1), and an (n - 1)-face F, generated by k columns of I and (n - k - 1)
 columns of -A, such that the two complementary cones that are incident on F lie on
 the same side of it. Without loss of generality let us assume that

 F = pos(I. 1,..., .k, -A.k2,..., -A.n).

 We now construct a q E Rn, contained in the relative interior of F which is neither
 in pos(I) nor in pos(-A). First note that, for any j, 1 < j < n, I.J e pos(-A), for
 otherwise -A' e pos(I), contradicting our hypothesis about A~. By hypothesis,
 A.k+2 contains a positive entry, i.e., 3 an index r, such that ar(k+2) > 0. Consider for
 A > 0, s V r, q = -A.k2 + AI.s, 0, where 1 < s < k, and s # r. Hence q 4
 pos(I).

 Also, as 1.s - pos(-A), there exists a Ao > 0 such that

 -A.k+2 + AOI.s pos(-A).

 Let q = -A .k+2 + AoI. + SE~=I.j + SEj =k3(-A.j) E F. For sufficiently small S,
 q is neither contained in pos(I) nor in pos(-A). Now, we note that there exists an
 e > 0 such that LCP(q + E(-A.k+ ), A) has at least two solutions and q +
 E(-A.k+, ) 0 pos(I) or pos(-A), which contradicts our hypothesis.

 The rest of the proof follows in similar lines as that of Theorem 3.3. 1

 4. Matrices of exact order two. In this section, we study the properties of
 matrices of exact order 2. Characterizing these matrices, regarding their Q-nature,
 forms the main result of this section.

 We start with some examples.
 EXAMPLE 4.1. Consider the matrix

 -.9 -2 -2 2 -2

 -1 -.9 -3 3 -1

 A= -1 -3 -.9 3 -1
 1 3 3 -.9 1

 -2 -2 -2 2 -.9

 One can directly verify that every principal minor of order 1, 2 or 3 of A is negative
 and principal minors of order 4 and the determinant of A are positive. Hence A is an
 N-matrix of exact order 2.

 EXAMPLE 4.2.

 1 2 0 1.453378 0

 1 4.989 1 1.368317 1

 B= 0 2 1.2 1.168878 0

 1 2.6 1 2.842317 1.41

 0 2 0 1.168878 1.2

 As before, by looking at the principal minors of B, one can see that B is a P-matrix
 of exact order 2.

 The following notation is followed in this section only. Given a square matrix
 A E Rnxn, Bi E R(n"-)X(1"- ), 1 < i < n, will denote the principal submatrix of A,
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 got by deleting the ith row and the ith column of A. By vij, 1 < i, j < n, we mean
 the value of the game with the pay-off matrix as the submatrix of A obtained by
 deleting its ith row and jth column. In the statements of many theorems and lemmas
 that follow in this section we may require that A be of order at least 5 for the reason
 stated in Remark 3.1. This is specified in the statements of the relevant theorems and
 lemmas.

 We notice that if A is of exact order k, then Bi, 1 < i < n, are matrices of exact
 order (k - 1).

 Depending on the categories of the exact order 1 matrices in A, we classify a
 matrix of exact order 2, into three categories.

 DEFINITION 4.1. We say that a matrix A (A ? 0) of exact order 2, is of the first
 category if there exists at most one index k, 1 < k < n such that the (n - 1) x (n - 1)
 exact order 1 principal submatrix Bk is nonpositive and every (n - 1) x (n - 1)
 principal submatrix Bi which is - 0, 1 < i < n, is exact order 1 of the first category.
 We say that it is of the second category, if all Bi's are of the second category. It is of
 the third category, if there are indices, i, j E {1,..., n}, such that Bi is of the first
 category and Bj ? 0 is of the second category. (It must be noted here that if there are
 more than one index i for which Bi < 0, then A < 0 and by definition A is of the
 second category.)

 The matrix given in Example 4.1 is an N-matrix of the exact order 2 of the third
 category. In Example 4.2 we have a P-matrix of exact order 2 which is of the first
 category.

 We observe the following about the principal minors of A-~ if A is of exact
 order 2.

 LEMMA 4.1. If A is an N(P)-matrix of exact order 2, then A- I has diagonal entries
 positive, all proper principal minors of order > 2 negative and the det(A) > 0 (< 0).

 In general we observe the following relationship between the classes of P of exact
 order r and N of exact order r. We omit the proof as it is simple.

 LEMMA 4.2. Let A E Rnxn, n > r, for some positive integer r.
 (i) Let A be an N-matrix of exact order r and D be a principal submatrix of A- of

 order k, n > k > r + 1. Then D- is a P-matrix of exact order r.
 (ii) Let A be a P-matrix of exact order r and D be a principal submatrix of A - of

 order k, n > k > r + 1. Then D - is a P-matrix of exact order r.

 We now prove some game theoretic results for these classes of matrices.

 LEMMA 4.3. Let A E RX"n be a matrix of exact order 2, where n > 5. Then
 v(A) O 0.

 PROOF. Suppose v(A)= 0. Then there exists a probability vector y, such that
 y A < 0. If y > 0 from Theorem 2.6 it follows that there is a probability vector z such
 that Az = 0, which contradicts the hypothesis about A. Therefore assume that
 Y = (Yl, Y2, .., Y,n-, 0)t. If Bn < 0 (which may occur, only if A is an N-matrix of
 exact order 2) from the fact that ytA < 0 and the sign pattern of A, it follows that
 A < 0, contradicting our assumption that v(A) = 0.

 Now, it follows from Lemma 3.1 of Olech, Parthasarathy and Ravindran (1991)
 (which holds true for P-matrices of exact order 1, also) that y = (yl, y2,..., Y,n-)t >
 0. Thus (Az)t = (0,..., , a) for any optimal strategy z of the maximizer, where a is
 a positive scalar.
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 This implies

 0

 Ol

 Z =A-' I aAn
 0

 a

 where A ' denotes the nth column of A-'. By Lemma 4.1, since every 2 by 2
 principal minor is negative, it follows that A ' > 0 as a > 0. Thus v(A-1) > 0. From
 Remark 2.2, it follows that v(A) > 0, contradicting our assumption. This completes
 the proof. O1

 Lemma 4.3 can be restated as a theorem of the alternatives as follows.

 THEOREM 4.1. LetA E Rnxn be a matrix of exact order 2, with n > 5. Then exactly
 one of the following holds.

 (i) There exists a y > 0 such that yA < 0.
 (ii) There exists an x > 0 such that Ax > 0.

 It is well-known that v(A) and u(At) keep the same sign whenever A is a matrix of
 exact order 1 or 0. This result, for matrices of exact order 2, is proved next, in
 Theorem 4.2. We first prove two lemmas.

 LEMMA 4.4. Let A be a matrix of exact order 2. If all Bi, 1 < i < n, are of the same
 category, then u(A) and v(At) have the same sign.

 PROOF. If the matrix game A is completely mixed, then it is known from our
 Remark 2.1 (see Kaplansky 1945) that v(A) = v(At). Otherwise, from Theorem 2.6
 (Kaplansky 1945) it follows that there exist indices io, j0, {1,..., n}, such that

 (4.1) vi,, < v(A) < vij? for all 1 < i, j < n.

 Similarly, there exist iI, ji E {1,..., n}, such that

 (4.2) vJt < v(A)t < vt for all 1 < i, < n,

 where by vij we mean the value of the subgame whose pay-off matrix is obtained
 from At by deleting its ith row and the jth column.

 Suppose v(A) > 0 and v(At) < 0. From (4.1), (4.2) and Lemma 3.1 of Olech,
 Parthasarathy and Ravindran (1991) (which holds for a P-matrix of exact order 1
 also), we conclude that Bj, is of the first category and Bi, is of the second category
 contrary to our hypothesis. This concludes the proof. 1

 Now we prove our desired theorem.

 THEOREM 4.2. Let A be a matrix of exact order 2. Then v(A) and v(At) have the
 same sign.

 PROOF. If A is either of the first category, or of the second category, the theorem
 follows from Lemma 4.3.

 So, let A be an exact order 2 matrix of the third category. Then there exists an
 i e {1,..., n} such that Bi < 0 is of the second category. Assume, without loss of
 generality, that B, - 0. Let us also assume that v(A) < 0.

 By Lemma 4.1, A-~ has no zero entry, with the diagonal entries being positive.
 Suppose the first row of A -, i.e., Al > 0. Then as the 2 x 2 principal minors of A-
 are negative, it follows that A ' > 0, and hence v(A-)) > 0.
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 This contradicts our assumption that v(A) < 0 by Remark 2.2. Hence A' contains
 a negative entry. Thus, there is a k E {2,..., n} such that alk < 0.
 Define the vector w E R?-l by taking

 wi 0, if i zk;

 Wk = -1.

 Let y = Bi'w. As B1 < 0, y > 0.
 By taking u = ]as an n-vector, we have Au = where x is a real number.

 Li w

 Hence A1[ j= . Now x can be determined from the equation
 w y

 a lx + a k( 1) =0.

 Thus x < 0. We have Au " < 0, or uA < 0.
 w

 This with Lemma 4.3 implies that we have v(At) < 0. Similarly, one can prove the
 theorem when v(A) > 0.

 This completes the proof of the theorem. D
 We now present some results on the linear complementarity problem with matrices

 of exact order 2. To start with we prove a general theorem.

 THEOREM 4.3. Let A E Rnn", with n > 2. Let v(Bi) < 0, for 1 < i < n. Then the
 following are equivalent.

 (i) v(A)> 0;
 (ii) A E Q;
 (iii) A is nonsingular and A - > 0.

 PROOF. (i) = (ii): We shall show that for a q e R", LCP(q, A) has a unique
 solution (w = 0; z > 0), which is also nondegenerate. Let v = v(A) > 0, and v =
 v(Bi), for 1 < i < n.

 Consider the vector q -ve, where e is the n-vector of l's. Since v > 0, and
 ui < 0, for all 1 < i < n, it follows that the game is completely mixed. See Theorem
 2.6. Hence, there exists a z > 0, z E Rn such that Az = ve, or (0, z) solves LCP(q, A).

 Suppose (w', z') is another solution to LCP(q, A). We then have the following
 equations:

 (4.3) Az + q =0

 and

 (4.4) Az' + q= w'.

 If w' = 0, then z = z', since the game is completely mixed. So assume that w' s 0.
 Suppose the first coordinate w' > 0. Then z' = 0. We note that

 (4.5) B12' + q w'

 where for any x E R", x denotes an (n - 1)-vector obtained from x by omitting its
 first coordinate.

 Equation (4.5) implies that v(B) = v- > 0, contradicting our hypothesis. Thus
 (0, z) is the only solution to the LCP(q, A). Similarly, we can show that (0, 0) is the
 only solution to LCP(0, A).
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 It now follows from Corollary 3.2 of Saigal (1972), that A is a Q-matrix.
 (ii) = (iii): Take q = -ei, for i {1, . . ., n}, where ei is the ith column vector of I.

 Since A E Q, LCP(q, A) should have a solution.
 We can observe, as in the previous case, that LCP(q, A) has a unique solution,

 (0, z), with z > 0.
 In other words, -ei E pos(-A), for 1 < i < n.
 This implies, pos(-I) c int[pos(--A)], and hence A-1 > 0.
 (iii) = (i): This follows from Lemma 2.1 of Olech, Parthasarathy and Ravindran

 (1991). O
 As a consequence of Theorems 4.2 and 4.3, for the first category matrices we have

 the following:

 COROLLARY 4.1. Let A be a matrix of exact order 2. If it is of the first category,
 then v(A) and v(At) are positive.

 REMARK 4.1. If v(A) > 0 and A is a second category matrix of exact order 2, it
 follows from Theorem 4.3 that A-' > 0 and consequently LCP(q, A) will have an
 odd number of solutions for any nondegenerate q. This result follows from a theorem
 of Murty on the constant parity property. See Murty (1972).

 Our next theorem, however, demonstrates that the value of a second category
 matrix is always negative.

 THEOREM 4.4. Let A E RnX" be a matrix of exact order 2, with n > 5. If A is of
 the second category, then v(A) < 0.

 PROOF. Let A be matrix of exact order 2. Let us assume that A has at least one

 positive entry, as otherwise there is nothing to prove.
 Suppose on the contrary, v(A) > 0. By Theorem 4.3 we note that A-~ > 0. So, for

 q > 0, LCP(q, A-1) has a unique solution and hence, by Lemma 2.3, deg PA-1 = 1.
 We first consider the case Bi st 0, V i = 1,..., n. (If A is a P-matrix of exact order

 2 then there is no index i, 1 < i < n, such that Bi < 0. If A is an N-matrix of exact
 order 2 then there is at most one i for which Bi < 0.)

 Since B1 t 0 is of the second category, it follows that Bi 1 < 0. Consider any
 q E Rxn, q > 0. Let qt = (ql, qt) where q E Rn-1. Let y = -B 1(q). Note that
 y > 0. Now consider

 -0o Ealjyj
 y -q

 We now claim that Ea:jyj > 0. For otherwise, v(At) < 0, which contradicts our
 hypothesis that v(A)> 0, in view of Theorem 4.2. Thus we obtain a solution to
 LCP(q, A) by taking

 Wl = EaljjY + ql, z1 = 0,

 wi = 0, zi =- , 2 < i < n.

 Thus in a similar manner, with each Bi, Bi st 0, we obtain a distinct solution to
 LCP(q, A). In calculating the degree of PA we consider two cases, based on A being
 a P- or an N-matrix of exact order 2.

 Case (i): A is a P-matrix of exact order 2 of the second category. From the previous
 paragraph, we notice that for a q E R", q > 0, LCP(q, A) has n + 1 solutions and all
 of them are nondegenerate. It is clear that LCP(q, A) has no other solution, as every
 other principal submatrix of A is a P-matrix. Using such a q > 0 nondegenerate with
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 respect to A, we calculate the degree of A as

 deg PA= E sgndet( Aj)
 J: q EPOS(Bl)

 n

 - sgndet Bi + 1 = -n + 1,
 i =1

 which implies that deg PA is at most -4 for n > 5. As deg PA-I = 1, this contradicts
 Lemma 2.3. Hence v(A) < 0; and using Lemma 4.3, we conclude that v(A) < 0.

 Case (ii): Suppose now that A is an N-matrix of exact order 2. By Lemma 2.1 there

 is a O = J c {1, 2,..., n} such that J 4 0 and A has the partition A =
 A j A j

 where AJJ and Ajj are negative and the other two blocks are positive.
 Clearly, for q > 0, LCP(q, A) has n + 1 distinct solutions, viz., the trivial solution

 and as noted earlier in the proof, n other distinct solutions each one produced using
 a principal submatrix Bi, Bi st 0, i = 1,..., n of exact order 1 of the second category.
 We note that (from the known results of N-matrices of exact orders 0 and 1), along
 with these n + 1 solutions, for the LCP(q, A) there are exactly two more solutions,
 whose complementary matrices have principal subdeterminants negative. Hence by
 choosing a q > 0 nondegenerate with respect to A, we notice that

 n

 deg P = sgndet B + 1 - 2 = n - 1.
 i= 1l

 As before, deg P,A- = n - 1, which is not equal to 1 for n > 5 and this leads to a
 contradiction. Hence v(A) < 0.

 Suppose now there exists a Bi < 0 for some i E {1,..., n}. This occurs only when
 A is an N-matrix of exact order 2. Let us choose a vector 4 E Rn-, q > 0
 nondegenerate with respect to Bi such that q 0 pos(-Bi). Then from Theorem 3.1,
 LCP(q, B,) has exactly two solutions which can be extended to the problem LCP(q, A)
 where q is chosen to be qi > 0 and qj = qj, Vj i. Now, we can proceed as in case
 (ii), concluding that LCP(q, A) has exactly n more solutions, viz., the trivial solution
 and a distinct solution produced using each principal submatrix Bj, j 4 i, j = 1,..., n.
 Thus, we can see that the degree of PA is n - 2 which leads to a contradiction when
 n > 5, for deg PA-i is 1. This completes the proof. [

 We now have a result on the Q-nature of the exact order 2 matrices of the first
 category.

 THEOREM 4.5. Let A E RnXn be a matrix of exact order 2 of the first category with
 n > 5. Then A e Q.

 PROOF. Since A is nondegenerate, (0, A) has a unique solution (Murty 1972). We
 treat P- and N-matrices of exact order 2 separately below.

 Suppose A is a P-matrix of exact order 2 of the first category. Consider a q e R",
 q > 0. We claim that LCP(q, A) has a unique solution w = q, z = 0.

 Let there exist a solution (w1, zl) for LCP(q, A) with z1 : 0. The solution can be
 written in the matrix form, for some 4 4 J c {1,...., n} as

 -Ajj 0 z. qj
 (4.6) I. z ~ -
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 i.e., the system,

 (4.7) - Asz, >0, z, > 0

 has a solution, which implies that v(Aj ) < 0. We know that both v(Ajj) and v(Asj)
 are positive, for J c {1, ..., n}, for a P-matrix of exact order 2 of the first category,
 using Corollary 4.1. Hence (4.7) is impossible and LCP(q, A) has a unique solution
 for q > 0. By Corollary 3.2 of Saigal (1972), we have A E Q.
 Suppose now, A is an N-matrix of exact order 2 of the first category. Two cases

 arise.

 Case (i): There is an i0, 1 < io < n, such that Bi, < 0 (by definition, there may exist
 one such index). We may assume, without loss of generality, that i0 = 1. The sign
 pattern of A can be written as

 - + + ... +

 A= + Bl a,, d (say)
 c B1

 +

 with B1 < 0. Consider a q > 0, whose partitioned form is q = (q1, q)t, where q E
 R"n-. Choose q E R'-l such that q E int[pos(-B1)]. Since B, is an N-matrix of
 exact order 1 of the second category, and q E int[pos(B,)], by Theorem 3.1 it follows
 that the LCP(q, B1) has exactly four solutions. Also, if (w, z) solves LCP(cq, B1), then
 the pair (w, z), w E Rn, z E Rn, defined by

 W1 = ql + dtz; z1 = 0,

 wi = W_i; zi = z_i, 2< j < n.

 solves LCP(q, A). Thus we obtain 4 solutions to LCP(q, A). We construct another
 solution as follows: Take

 z = q,/(-a,,); wI = 0,

 z/ = O; w- = ,qi- + za,,.

 Then (wl, z) solves LCP(q, A) and (wl, z1) is different from the four solutions
 constructed before. Thus we have 5 solutions to LCP(q, A) for a q nondegenerate
 with respect to A, by our construction. Now for this q E R+, we proceed to prove
 that LCP(q, A) has no other solution.

 Suppose (u, v) is a solution to LCP(q, A) distinct from the 5 listed above. Let

 L = {i: i > 0).

 Then since (u, v) is different from the aforesaid 5 solutions, it follows that,

 the index 1 e L and L n {2,..., n} 0.

 Now the equation u - Av = q, leads us to ALLVL < 0 where either ALL is an
 N-matrix of exact order 1 or 0 of the first category, or L = {1,..., n}. But this gives
 rise to a contradiction to the property of an N-matrix of exact order 1 or 0, or if
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 L = {1, 2,..., n}, to our assumption about v(A). This shows that there are exactly 5
 solutions to LCP(q, A), and by our choice of q E int[pos(-B,)], q is nondegenerate
 with respect to A. This along with (0, A) having a unique solution implies (by
 Corollary 3.2 of Saigal (1972) that A is a Q-matrix.

 Case (ii): Ai0, such that Bi( < 0. A can be written in the partitioned form, for
 some) 0 J c {1,..., n} as

 A- JJ JJ Ajj Ajj

 where AJJ < 0, Ajj < 0 and Ajj, Aj > 0 with 1 < IJI < n - 1. Note that AJJ and
 Ajj are N-matrices. Choose a q > 0 in RX such that q is nondegenerate with respect
 to A and, further, qJ and qj are nondegenerate with respect to Ajj and AJj,
 respectively. Now from Theorem 2.4 it follows that the subproblems LCP(qj, Ajj)
 and LCP(qj, Ajj) have two solutions each, one of which is the trivial solution. These
 solutions give rise to exactly 3 solutions to the LCP(q, A) and no more. The result
 now follows from Corollary 3.2 of Saigal (1972). This completes the proof of the
 theorem. n

 It can be seen that if A is an N-matrix of exact order 1 or 0 of the second category,
 or a P-matrix of exact order 1 of the second category, then -A E Q. In view of this,
 one may consider the following question:

 Question 4.1. Let A be a matrix of exact order 2 of the second category. Is -A, a
 Q-matrix?

 Our Theorem 4.7, that follows will provide an affirmative answer to this question.
 To do this, we need the following results.

 LEMMA 4.5. LetA e Rnxn be a matrix of exact order 2. Let Bl and B2 be matrices
 of exact order 1 of the second category, with Bi k 0, i = 1,2. Suppose that v(A) < 0.
 Then a12, the (1, 2)th entry of A- is negative.

 PROOF. By hypothesis, B1 < 0. Let y = (w, 0,...,0)t E R l, where w2 < 0.
 Then 3 a z E R"-1, f > 0 such that y = Blz. Let z = (0, f)t R". We note that

 WI

 W2

 Az= 0

 0

 or

 (4.8) z=A-lw.

 From Lemma 4.1, the diagonal entries of A- are positive, and its 2 by 2 principal
 minors, negative. Hence a12 = 0. From (4.8) we have the equation

 (4.9) allw + a12w2 = 0.

 Now suppose a12 > 0. It then follows from (4.9), that w1 > 0. As B2 is also of the
 second category, B2 4 0, we have B2 1 < 0.
 Let x = (-w, 0,..., 0)t E Rn-, where w1 is determined from (4.9). Then there

 exists a vector v E Rn - , i > 0 such that
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 Let v E R' be defined by

 vi = , for i E {1) U {3,4,...,n},

 V2 =

 Note from (4.10) that

 -Wi

 W2

 Av = 0 for some w*.

 0

 This implies that

 0

 w~* W2

 A(v + z) = 0 where w* = w2 + w2.

 0

 Let u = z + v. As u > 0, and v(A) < 0, we see that wH* < 0. On the other hand,
 the first coordinate of u, i.e.,

 U1 = (A- Au)l = al2wi* < 0,

 a contradiction. Hence a12 < 0, and this concludes the proof. D
 We say that A is a Z-matrix, if aj < 0, V i + j. For details about Z-matrices, see

 Fiedler and Ptak (1962).

 THEOREM 4.6. Let A E Rnxn, n > 5 be a matrix of exact order 2. A-1 E Z if and
 only if v(A) < 0 and A is of the second category with each Bi t 0.

 PROOF. The "if" part follows from Lemma 4.5.
 Conversely, let A- be a Z-matrix. By Lemma 4.1 the principal minors of order

 2 < r < n, are negative. Hence for a 0 0 z > 0, z e R", we have z A-' < 0. See
 Fiedler and Ptak (1962). Hence v(A-~) < 0. By Lemma 4.2, we conclude that
 u(A) < 0. We shall show that B1 is of the second category. This will complete the
 proof.

 B, is either an N-matrix of exact order 1 or a P-matrix of exact order 1 depending
 on whether A is an N- or P-matrix of exact order 2. In either case, if Bi is of the first
 category then there exists a vector y E R"- ', > 0 such that

 (4.11) B,y > 0.

 See Lemma 3.1 of Olech, Parthasarathy and Ravindran (1991).

 Let y E Rn be defined as y =
 y

 Note that A .y < 0, for otherwise, Ay > 0 and hence v(A) > 0, contradictory to
 our earlier conclusion. Now,

 y- (A-'Ay) =0.
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 However, we also note that (A-ly) (Ay) = < from (4.11), (4.12) and the
 fact that a'i < 0, for j = 1, which contradicts (4.13). This contradiction implies that
 B, is of the second category. This concludes the proof of the theorem. O

 We now state a theorem that answers Questions 4.1 partially.

 THEOREM 4.7. Let n > 5 and A c Rn Xn be a matrix of exact order 2 of the second
 category with B1 ? 0 for 1 < i < n. Then -A is a Q-matrix.

 PROOF. Let M = -A -. Under the hypothesis of the theorem, A - is a Z-matrix
 and M has the sign pattern

 - + + + + +

 + - + ...... +

 SignM = + + - ... . +

 + + +

 We shall show that the degree of the map associated with the LCP(q, M) is -n + 1
 and conclude from here that M, and hence -A, is a Q-matrix.
 Note that LCP(0, M) has a unique solution as no principal minor of it is zero.
 Hence the degree of the map PM, associated with the LCP(q, M) is well defined.
 Let q > 0. Then LCP(q, M) has the following (n + 1) solutions (w', zi):

 wi =0, z = qi/mii, 1 < i < n

 wl qj + mjizi; z =0, for ji, i {1,2,... n}

 ej {1,2,...,n}

 and

 w+l = q; z+ O=0, for j {1,..., n}.

 where mji denotes the (j, i)th entry of M. Since q > 0, q is nondegenerate with
 respect to M, from the solutions we have constructed. Thus LCP(q, M) has (n + 1)
 solutions as mentioned above. We now show that LCP(q, M) has no other solution.
 Suppose there is another solution (w, z) to LCP(q, M); let

 L {i:zi>0}.

 Then clearly, ILI > 2, as z is distinct from each z', 1 < i < n + 1. The solution (w, z)
 can be written as

 --MLL 0 ZL qL (4.14)
 -M-L I WL qL

 which implies that -MLLZL > 0 for zL > 0, or -MLL is a P-matrix by Theorem 4.3
 of Fiedler and Ptak (1962). This contradicts the result about the sign of the principal
 minors of A- 1 (Lemma 4.2). Thus it follows that the only solutions to LCP(q, M) are
 the (n + 1) ones listed above.
 We can now calculate the degree of the PM associated with the M as -n + 1. As

 the degree of the map associated with M is nonzero, it follows from Theorem 2.7 that
 M is a Q-matrix. This concludes the proof. O
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 REMARK 4.2. The use of degree theory in the above proof has been suggested to
 us by an unknown referee. Some details about the concepts of degree theory have
 been sent to us by Professor M. S. Gowda. Our original proof was long and consisted
 of using Murty's result on the constant parity property when n is even and of showing
 that there is a principal pivot transform of M which satisfies the conditions of Todd
 (1976) for any n. In the latter case, one can then apply Lemke's algorithm to the
 LCP(q, M), where M is an appropriate principal pivot transform of M, and construc-
 tively show that M, and hence -A, is a Q-matrix.

 Now we turn our attention to matrices of exact order 2 of the third category.
 Before we proceed to give a characterization theorem on their Q-nature, we present
 a few lemmas for the class of matrices of exact order 2.

 LEMMA 4.6. Let A E RnX" be a matrix of exact order 2, with n > 5 and v(A) > 0.
 Suppose B, - 0 is a matrix of exact order 1 of the second category. Then A 1 > 0 and
 A1'> 0.

 PROOF. That a'1 # 0, for all 1 < i, j < n, is clear from Lemma 4.1
 Suppose a12 < 0. Taking w = (w2, 0,..., 0) E R"- for some w2 < 0, there exists a

 > 0, ERn-l, such that

 W2

 0
 Bly = .

 0

 Let y E R' be defined as y = (0; y)t. Consider A1.y. Suppose A1.y < 0. This implies
 that yA' < 0 which shows that v(At) < 0. By our Theorem 4.2 and Lemma 4.3 it
 follows that v(A) < 0, contrary to our hypothesis. Hence A .y > 0. Now

 (A-lAy) = 0 or

 all(A,.y) + a'2w2 = 0.

 However, we note that, with A,.y > 0, a11 > 0, a12 < 0, w2 < 0,

 a"(Ai.y) + a12w2 > 0,

 a contradiction. Hence a12 > 0. This completes the proof. O

 LEMMA 4.7. Let A E Rnx" be a matrix of exact order 2, with n > 5 and v(A) < 0.
 If B, is of the first category, then A' (as well as A' ) has

 ali < 0 aji < , alk > 0, akl > 0, forsome j, k E {2,..., n}.

 PROOF. By our Remark 2.2, Lemma 4.3 and Theorem 4.2 it follows that v(A-~),
 v(A') and v((At)-1) are negative. This shows that the first row and first column of
 A - cannot consist only of nonnegative entries. Hence there is a j such that alj < 0.
 Now from Lemma 4.1 it follows that the diagonal entries of A-' are positive and its
 2 x 2 principal minors are negative. Thus it follows that j I 1 and aj1 < 0. To
 conclude the proof we proceed as follows. Note that B, is either a P- or an N-matrix
 of exact order 1. In either case there is a y E R"n-, y > 0 such that B Iy = z > 0.
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 See Lemma 3.1 of Olech, Parthasarathy and Ravindran (1991). Take z = ( . Now

 look at Az = (). As y > 0 and v(A) < 0, it follows that a < 0. Let us look at the

 equation A ( =) z which leads to the equation

 aloI + EaliY i = 0.

 This is possible only if there is a k such that alk > 0, as a11 > 0, a < 0 and i > 0.
 This concludes the proof. O

 The next lemma characterizes the first category matrices through the sign pattern
 of A-'

 LEMMA 4.8. Let A E RnX" be a matrix of exact order 2, with n > 5 and v(A) > 0.
 If every row (or column) of A - has a negative entry, then A c Q.

 PROOF. Suppose a12 < 0. We will prove either that B1 and B2 are of the first
 category, or Bi < 0, for some i E {1,2}. Suppose B2 t 0 is of the second category.
 Consider (w2, 0,..., 0) E R"- , with w2 < 0. Then there exists a y > 0, e R"-1,

 W2

 0
 B1y= .

 0

 By taking y = (0, y)t in R" as before, we have

 (A-1Ay) = 0

 which implies

 al(A,.y) + a12w2 = 0.

 It is clear that A .y < 0 and hence Ay < 0, for y > 0. It follows from here that
 v(At) < 0 and from Theorem 4.2 and Lemma 4.3 it now follows that v(A) < 0.

 This contradicts our assumption that v(A) > 0. Hence all Bi's are of the first
 category except possibly for one i, for which Bi < 0. Thus A is a matrix of exact
 order 2 of the first category and by Theorem 4.4, A e Q. OD

 The next theorem gives a characterization of exact order 2 matrices of the third
 category.

 THEOREM 4.8. Let A E Rnxn, n > 5, be a matrix of exact order 2 of the third
 category, with v(A) > 0. Define

 L = {i: Bi - 0, Bi is of the second category, 1 < i < n}

 A is a Q-matrix iff the cardinality of L is 2.

 PROOF. First we observe that, since A is a matrix of exact order 2 of the third
 category, there exists an i E {1,..., n}, such that Bi < 0 and B I < 0. Therefore the
 index set L is nonempty.
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 (IF): Suppose ILI, the cardinality of L is 2. As in the proof of Theorem 4.5, by
 considering a q nondegenerate with respect to A, q > 0 we note that

 deg PA = 1 if A is a P-matrix of the exact order 2,
 - 1 if A is an N-matrix of the exact order 2.

 In either case, deg PA - 0. Hence, using Theorem 2.7, A E Q.
 (ONLY IF): Let A be a Q-matrix and ILl = r where r is a positive integer.
 Let us assume without loss of generality that B <- 0 is a matrix of the second

 category in A.
 Since v(A) > 0, using Lemma 4.6, A-~ can be written as

 + + ... +

 A-1 D D

 where D E R(e"-)x(n- ). Since A' > 0, for q = I.~, LCP(q, A-~) has a unique
 solution. This, along with A E Q implies that D E Q. See 4.9 of Murty (1972).

 In a similar manner, for every i E L, we have A'" > 0. Hence, by removing the ith
 row and the ith column for all i E L from A-~, we would arrive at the fact that the

 principal submatrix D is a Q-matrix.
 If D has any more row (and its corresponding column) of positive entries, we

 repeat this argument, until we get a principal submatrix F = AJ, for b # J c
 {1,..., n}, IJI = k, 2 < k < n, such that F E Q and every row of F has a negative
 entry. We first note that k = 2 is not possible. This is because, if k = 2, then F is a
 Z-matrix with negative determinant and such a matrix cannot be a Q-matrix.

 It follows from Lemma 4.2 that F-1 is a P-matrix of exact order 2, when k > 3.
 Since F E Q, it follows that v(F) > 0 and IF- is a P-matrix of exact order 2 of the
 first category. For q E Rk, LCP(q, F-1) has a unique solution from the proof of
 Theorem 4.5, which is given by (w = q, z = 0).

 Now, define a vector q E R" as

 qi {(-Fq)i if iEJ,
 = ((Fi0 otherwise.

 LCP(q, A-1) has a solution, which is as follows:

 Wi = 0; zi = qi for i e J,

 wi= la'izj; Zi=0, for i J.
 J

 As a'j > 0, for i e J, j E J, (w, z) is a solution, to LCP(q, A-l). We claim that
 LCP(q, A-1) has no other solution. Suppose LCP(q, A-1) has a solution (w1,z1)
 which can be written as

 -ALL 0 L qL

 -ALL IL WL qz

 where + L L c {1,..., n), with L n J I= /, and L + J.
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 But qL has a zero entry, corresponding to which ALL has a row of positive entries;
 thus there does not exist a vector

 z > 0 such that -ALZZ = qL.

 Hence, LCP(q, A-~) has a unique solution, which is nondegenerate. This implies that
 deg PA-1 and in turn, deg PA is +1.

 But as in the proof of Theorem 4.4, by considering the principal subdeterminants
 of the solutions of LCP(q, A) for a q > 0, q nondegenerate with respect to A, we see
 that

 deg p J -r + 1 if A is a P-matrix of the exact order 2,
 A r - 1 if A is an N-matrix of the exact order 2,

 where ILl = r.
 As r > 1, deg PA is +1 only when r = 2, that is ILI = 2. This completes the proof

 of the theorem. l

 Now, a complete characterization of the matrices of exact order 2 regarding their
 Q-nature can be stated as follows:

 THEOREM 4.9. Let A E Rnxn, n > 5 be a matrix of exact order 2 with v(A) > 0.
 Then A E Q if and only if either L = &, or the cardinality of the set L is 2, where

 L = i: Bi t 0, Bi is of the second category, 1 < i n}.

 Finally we present two examples to illustrate some of the results proved in this
 section.

 EXAMPLE 4.3. Let

 - 5.3846 1.5385 1.5385 1.5385 - 20
 1.5385 -0.1538 -0.6538 -0.6538 .1

 A = 1.5385 -0.6538 -0.1538 -0.6538 1
 1.5385 -0.6538 -0.6538 -0.1538 .7
 -30 2 2 4 -1

 In this example of an N-matrix of exact order 2, B1 is of the first category, while B,,
 for 2 < i < 5, is of the second category. We find that

 0.0025 -0.1439 -0.1439 0.0418 -0.0464

 -0.5732 0.3918 -1.6032 -1.4688 -0.0348

 A- = -0.5732 -1.6082 0.3918 -1.4688 -0.0348
 0.5685 -0.4941 -0.4941 1.7564 -0.0626

 -0.0951 -0.0928 -0.0928 -0.1021 0.0023

 Note that v(A) < 0; Now since Bi ? 0 are of the second category, for 2 < i < 5, we
 find that aij < 0, for i # j, 2 < i, j < 5, as anticipated by Lemma 4.5. Also, as
 asserted by Lemma 4.7, the first two and first column of A-', each contains a positive
 entry.

 Now take D E R4X4 to be the principal submatrix of A-', leaving the first row and
 first column. Clearly, D is a Z-matrix, and it can be verified that D-1 is a P-matrix of
 exact order 2 of the second category, with v(D) < 0, as stated in Theorem 4.5.
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 EXAMPLE 4.4. Consider the matrix

 I +E 2 3 4 5
 6 7 + 8 9.1 10

 A- = 110 120 130 + 140 150
 16 17.1 18 19 + 20

 21 22 23 24 25 + e

 where E is taken to be 0.0795766.

 Now A = (A -)-, can be verified to be an N-matrix of exact order 2. In A, B,
 and B5 are of the second category, while B2, B3, B4 are of the first category. Note
 that v(A) > 0, as A-' > 0.

 This example shows that the converse of Lemma 4.6 is not true. We notice that
 though A ' > 0 and A`'> 0, B, is of the second category.

 5. Algorithms and concluding remarks. In this section, we consider the question
 of finding an algorithm to compute a solution to LCP(q, A) where A is a matrix of
 exact order 0, 1,.. ., 2. Algorithms for some of the subclasses are already known. In
 this section we sum up the known results and present some results new to the
 literature.

 It is known that Lemke's algorithm (Lemke 1974) will find a solution to the
 LCP(q, A) for any q e Rn when A is a P-matrix. See Murty (1972). It is also known
 that a solution to LCP(q, A) can be obtained from a solution to LCP(-A- q, A-1)
 computed by Lemke's algorithm when A is an N-matrix of the first category. We
 refer to Saigal (1972). This result also takes care of the case where A is a P-matrix of
 exact order 1 of the first category since such a matrix is just the inverse of an
 N-matrix of the first category.

 For N-matrices exact order 1 of the first category we have the following result.

 THEOREM 5.1. Let A be an N-matrix of exact order 1 of the first category. Let the
 rth coordinate of A., be positive and let d = A,(-A.,) + EisI.j + I).s where
 1 < s < n, s 0 r, A, is a fixed number such that A,(- a,) + 1 < 0 and zL is sufficiently
 large. Then Lemke's algorithm initiated with the vector d in the complementary cone
 pos(B) where B = ((-A.,, . , 2 < s < n)) computes a solution to LCP(q, A) for any
 qcR~. q e. R.

 PROOF. Notice that the rth coordinate of d, dr, is negative for any iu > 0. Thus
 d e pos(I), for any L > 0; Also, since I.1 pos(-A), it follows that there is a
 ,o0 > 0 such that for ,L > /fi, d q pos(-A): Thus for L sufficiently large by Theorem
 3.3, LCP(d, A) has a unique solution and the theorem follows. O

 REMARK 5.1. Using standard methodology and the above theorem, we can de-
 velop a computational scheme for computing a solution to LCP(q, A) whenever A is
 an N-matrix of exact order 1 of the first category.

 The following result can be easily seen for P-matrices of exact order 1 of the first
 category.

 THEOREM 5.2. Let A be a P-matrix of exact order 1 of the first category. Then for
 any q E Rn, solution to LCP(q, A) can be computed by using Lemke's algorithm
 initiating it with any positive vector d.

 PROOF. This follows from Theorem 2.5, as the inverse of an N-matrix is a
 P-matrix of exact order 1. [l

 We now consider matrices of exact order 2.
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 THEOREM 5.3. Let A be a P-matrix of exact order 2 of the first category. Then a
 solution to LCP(q, A) can be computed by applying Lemke's algorithm, initiating it
 with any positive vector d.

 PROOF. This follows from the proof of Theorem 4.5. n

 THEOREM 5.4. Suppose A is a matrix of exact order 2 of the second category with
 Bl ? 0, for 1 < i < n. Then a solution to LCP(q, A) if one exists, can be computed by
 obtaining a solution to LCP(-A 'q, A- ), in at most n steps.

 PROOF. AS v(A) < 0 from Theorem 4.6, it follows that A-' E Z. Now there are
 a number of methods to solve (-A - 'q, A -') which will produce a solution if it exists,
 or show that there is no solution in at most n steps. See Chandrasekaran (1970),
 Saigal (1971), Mohan (1976) and Ramamurthy (1986).
 When A is of exact order 2 of the second category, we proved in Theorem 4.7 that

 -A is a Q-matrix. For this class of matrices we can notice that for each q E R", q
 nondegenerate with respect to A, the LCP(q, -A) has more than one solution; this
 asserts the fact that Saigal's result and Todd's condition for proving Q-nature of a
 matrix are improvements over the earlier known results.
 As we go up the hierarchy in the classes of exact order matrices, the results we

 derived here require more calculations. In a similar manner as done in ?4, one can
 classify the exact order k matrices into three different categories, based on the exact
 order 1 principal submatrices present in them. Then it is easily seen that exact order
 k matrices of the first category are Q-matrices. As the size of the matrices under
 consideration needs to be > (k + 3), the task of studying the classes of exact order k
 matrices becomes difficult. In fact, the problems we looked at in this paper, remain
 open for the general exact order k matrices.
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