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 SUMMARY. We propose kernel type estimators for the density function of non negative random

 variables, where the kernel function is a probability density function on (0, oo). Properties of these

 estimators are discussed. A kernel, that minimizes the integrated mean square error is obtained. It is

 shown, however, that any reasonable kernel gives almost the same mean square error. On the basis of

 simulation studies the use of exponential kernels is recommended.

 1. Introduction

 Silverman (1986) used two data sets to illustrate various techniques of density
 estimation where the random variables take only positive values. Since the random
 variable of interest is positive its density function has support on (0, oo). Hence, an
 estimate of the density should have support on (0, oo).

 The most commonly used density estimator is the kernel estimator, which
 has been extensively studied (see, for example, Rosenblatt (1956), Parzen (1962),
 Prakasa Rao (1983), Silverman (1986)). The kernel estimator based on a random
 sample Xi, X<?,..., Xn from a population with density function / is defined by

 Aw-?t*'(^r)-v?* ...o.?
 where hn is called the bandwidth and K* is the kernel function. In practice, {hn}
 is chosen so that hn ? 0 as n ? oo and the kernel function K*(-) itself is a
 symmetric probability density function on the entire real line. If K* is continuous
 and differentiable then fn(x) will also be continuous and differentiable. But fn(%)
 might take positive values even for x (?oo, 0], which is not desirable when the
 random variable is positive. Silverman (1986) mentions some adaptations of the
 existing methods when the support of the density to be estimated is not the whole
 real line.
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 KERNEL TYPE DENSITY ESTIMATES  57

 Here, we propose and discuss the properties of kernel estimators for densities
 with support on the positive half of the real line. We use them to estimate the
 density function for a data set considered by Silverman (1986). Finally, some sim
 ulation studies are performed to compare the density estimates with the original
 density functions.

 2. Kernel estimation

 2.1 Preliminaries. Let X\> X^ .. -, Xn be a random sample of size n from a
 population with density function / with support on (0,oo). Further, let K(-) be a
 bounded density function with support on (0, oo), satisfying the condition

 / OO

 / x2K(x)dx < oo. ...(2.1) JO

 Here, we propose a kernel type estimator for f(x) given by

 where {hn} is a sequence chosen such that hn ?* 0 and nhn ?* oo as n ? oo.
 It can be easily seen that fn(x) is a probability density function with support

 on (0,oo). The only difference between fn(x) and fn(x) is that fn(x) is based on a
 kernel possibly with support extending beyond (0,oo).

 The estimator fn(x) can also be written in the form

 ?^?f>(^)
 where X^ < X(2) < < X^ ai!re tne ordered observations. Thus, it is easily seen
 that for x such that X^ < x < X(r+1), only the first r order statistics contribute
 to the value of the estimator fn(x) of the density function f(x).

 Assume that / is twice continuously differentiable on (0,oo). Then, following
 Parzen (1962),

 E[fn(x)} ~ /(*) - W'(*)7i + y/"(*)72, - -. (2.3)
 where 7? = J0?? x (x)dx} j = 1,2.

 Hence, the bias is

 Bn(x) ~ -h?/'(*hl + ^/"(*)72. (2.4)
 Furthermore, the variance of /n(x) is

 Vn(x) ~ -L{f(x)?0-hnf'(x)?, + ^f"(x)?2} nnn ?

 - i[B?(x) + /(x)]2 ...(2.5) n
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 where, ?j = J0?? xjK2(x)dx, j = 0,1,2.

 Therefore,

 Vn{x)~?f{x)?o + o(?y ...(2.6)
 From (2.3) and (2.6) it follows that E[fn(x)\ -> f(x) and Vn(x) -+ 0 when

 hn ? 0 and nhn ?> oo as n ? oo. Thus /n(#), like the usual kernel estimator /n(^),
 is asymptotically unbiased and weakly consistent for f(x). It is easy to see that
 [fn(x)?E(fn(x))]/[Vn(x)]? is asymptotically normally distributed, (see for example,

 Prakasa Rao, 1983, p. 61).
 The mean square error (MSE) of /n(x), denoted by Mn(x), is given by

 Mn(x) ~ ?/(*)A> + hlU\x))Wu .(2-7)
 and the integrated mean square error (IMSE) of fn(x) is

 / OO

 Qn(x) = / Mn(x)dx Jo
 /?oo

 ?7?/ (/W JO ?A. + ^7?/ (/'(x))2<ir. -..(2.8)
 2.2 Optimal bandwidth and optimal kernel. Here we consider the optimal

 choice of the sequence hn and the kernel K(-)) the one which minimizes the IMSE.
 Let hn = kn^.a > 0,jfc > 0. Then, following Prakasa Rao (1983, 34-35), we get
 that IMSE is minimized when a = 1/3 and the optimal choice of k is

 fe,= (27?/o00(/Wdx) (2-9)
 With the above choice of k* and a, the optimal value of hn is

 and the minimum IMSE is given by
 / oo

 2-"/33n-2/3/302/37f[/ tfWfdc]. ...(2.11) Jo

 It is interesting to note that hn(opt.) and hence minimum IMSE depend on the
 unknown density function, which is also true for ft* (opt.) for /n(x). The usual
 approach is to choose ft* with reference to some standard density. The normal
 density is often chosen leading to the kernel K*(x) in the cases discussed by Silver
 man (1986). One could similarly choose the exponential density when the data is
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 restricted to the positive half of the real line for determining /i?. Another approach
 is to make a data driven choice for hn as in the classical density estimation case
 discussed by Duin (1976) and Stone (1984) among others. Or, as a referee has
 suggested, one could first estimate the terms in hn(opt.) consistently and then by
 weak convergence arguments get an efficient estimator. These approaches need to
 be investigated.

 The optimal choice of the kernel K(x) can be found as in Epanenchnikov (1969).
 Minimize

 c(K) = (7lA,)2/3
 roo roo

 = [ zK(z)dz}2/3[ K\z)dzf3 Jo Jo  ...(2.12)

 subject to 7i = a (prefixed) where K satisfies (2.1). Then, by calculus of variations,
 the optimal kernel is

 ^optOc) =  3a
 0

 2x
 90?

 Consider the following kernels

 KE{x) =

 and

 Ku(x) = \ Ta '

 if 0 < x < 3a,
 otherwise.

 x> 0,
 otherwise,

 . (2.13)

 0 < x < 2a,
 otherwise.

 Then / K*(x)dx = ? and / K%(x)dx = / Kf,(x)dx = ?. Jo 9a J0 J0 2a
 Therefore, the relative efficiency is

 J0??Kl(x)dx J0??KUx)dx
 ?K^^dx CK^(x)dx

 Hence, Kopt(x) is optimal in the above sense but Ke(x) and Ku(x) are almost
 as good.

 2.3 Comparison between fn(x) and fn(x). It would be interesting to compare
 /in(opt.) corresponding to fn(x) and hn(opt.) for fn(x). Observe that /in(opt.)
 given by (2.10) is of order n-1/3 and h*(opt.) for fn(x) is of order n-1/5 (see, Prakasa
 Rao, 1983, page 67). If a kernel K(x) with support contained in (0, oo) is used, then
 it ensures that fn(x) has its support on (0, oo) and is also a probabilty density. This
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 is not the case if one uses K*(x) whose support extends possibly beyond (0, oo). It
 should be noted that the rate of convergence can always be improved if one does
 not insist on non-negative kernels (Prakasa Rao (1983)).

 Further, it is well known that (see, Prakasa Rao (1983)) var(/n(a:)) ~
 ^rJ{x)iT00K1t2(y)dy. Then the ratio of Mn(x), the MSE (/?(x)) to var(/?(x)) is
 given by

 Mnix) =fr+ nhl(r(x))W^ (2 l4) var(/n(x)) oo /(a>o
 where fn(x) is computed using kernel K and fn(x) is computed using kernel K*
 and the same bandwidth {ftn} is used. Here,

 /oo

 K*\y)dy.
 OO

 For the optimal choice of K(x) given in (2.13), that of K*(x) given by Epanech
 nikov (1969) and ftn given by (2.10), we can see that

 Mn(x) _20y/5i (/'(x))2 ]
 var(/?(x)) 27a \ + 2/(x)/~ (/'(*) )W "^- ;

 3. An example

 Here we consider a data set used by Silverman ((1986), page 8) to exhibit the
 performance of the optimum kernel function Kopt(x) and the standard exponential
 kernel function Kse(x)> The data set consists of lengths of 86 spells of psychiatric
 treatment undergone by patients used as controls in a study of the relationship
 between suicide risk and time under treatment. A spell of treatment refers to a
 period of continous contact with the psychiatric services, including times at which
 the patient is in the community and attending out-patient appointments. Many of
 the patients had more than one spell of treatment. The data is given below (see
 Silverman (1986)).

 Table 3.1. Length of treatment spells (in days)
 OF CONTROL PATIENTS IN SUICIDE STUDY

 1 1 1 5 7 8 8 13 14 14 17
 18 21 21 22 25 27 27 30 30 31 31
 32 34 35 36 37 38 39 39 40 49 49
 54 56 56 62 63 65 65 67 75 76 79
 82 83 84 84 84 90 91 92 93 93 103
 103 111 112 119 122 123 126 129 134 144 147
 153 163 167 175 228 231 235 242 256 256 257
 311 314 322 369 415 573 608 640 737
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 Fig.3.1 Kernel estimates for suicide study data. Bandwidth :
 (a) 20 (b) 60
 (Both aie figures have been taken from Silverman (1986) )
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 Fig.3,2 Kernel estimates for suicide study data with optimal
 kernel function. Bandwidth (a) 20 (b) 60
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 Fig. 3.3 kernel estimates for suicide study data with standard
 exponential kernel function. Bandwidth (a) 20; (b) 60.
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 Fig. 4.1 Exponential density function (f(x)) with mean a (...) and
 its kernei estim?t f (x) with optimal kernel function (? n

 Sample Size (a) n ? 50, (b) n = 100.
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 Fig. 4.2 Exponential density function (f(x)) with mean a (...) and its
 kernel estimate f (x) with optimal kernel function (?) n

 Sample Size (c) n = 5 00, (d) n = 100O.
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 Figure 3.1 (taken from Silverman (1986), page 18) shows the density estimator
 fn(x). Figures 3.2 and 3.3 give fn(x) for the suicide data with the bandwidth hn
 as 20 and 60 and kernel function Kopt(x) and Kse(x) (Ke(%) with a = 1, i.e.
 the standard exponential kernel).Comparing fn(x) with fn(x) we see that the shape
 of fn(x) is essentially like that of fn(x). If hn is too small, then some additional
 peaks are observed, where as when hn is too large then the density curve is smooth.

 Observe that the optimum kernel Kopt(x) involves the parameter a which is also
 the mean of the distribution with density Kopt(x). The value of a can be chosen by
 estimating the mean from the data. Note that there are quite a few observations
 close to the origin which result in some under smoothing near the origin. However,
 the essential difference between fn(x) and fn(x) is that there is no loss of area when
 /?(#) is used, whereas some area under the curve fn(x) lies to the left of the origin.
 This is not desirable as density estimators for positive valued random variables
 should have support (0, oo). But, if one ignores the area to the left of the origin,
 then fn(x) would not integrate out to 1.

 4. Simulation results

 It would be interesting to compare fn(x) using the optimal kernel function with
 the actual density function f(x). Random samples of size n were generated from

 f(x)= - exp
 ?x

 a  ,x >0,a> 0, ... (4.1)

 for various choices of mean a. The density fn(x) was computed using the optimal
 kernel function with mean a and hn = o(n-1/3). Both the curves f(x) and fn(x) were
 plotted on the same graph. The computer program is available from the authors.

 The graphs with a = 3 and n = 50,100, 500 and 1,000 are given below. See Fig.
 4.1 and 4.2. The kernel type density estimator fn(x) looks like the original density
 function /(#), and it gets closer and closer to f(x) as the sample size increases.

 5. Concluding section

 Thus, when one is restricted to lifetimes or related data in reliability and survival
 analysis, one would recommend the use of the optimal kernel given by (2.13) or the
 standard exponential kernel function for estimating the density.

 However, there are several other ways of handling positive data. For instance,
 one could use the usual kernel estimate, truncate at zero and rescale the density
 for the positive part; or one could transform the original data, say, by a logarith
 mic transformation, and then retransform the estimated density back. Relative
 merits and demerits of these techniques with the one suggested by us need to be
 investigated.
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