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 An extension of the concept of quantiles in multidimensions that uses the geometry of multivariate data clouds has been considered.
 The approach is based on blending as well as generalization of the key ideas used in the construction of spatial median and
 regression quantiles, both of which have been extensively studied in the literature. These geometric quantiles are potentially
 useful in constructing trimmed multivariate means as well as many other L estimates of multivariate location, and they lead to a
 directional notion of central and extreme points in a multidimensional setup. Such quantiles can be defined as meaningful and natural
 objects even in infinite-dimensional Hilbert and Banach spaces, and they yield an effective generalization of quantile regression
 in multiresponse linear model problems. Desirable equivariance properties are shown to hold for these multivariate quantiles, and
 issues related to their computation for data in finite-dimensional spaces are discussed. nl/2 consistency and asymptotic normality
 of sample geometric quantiles estimating the corresponding population quantiles are established after deriving a Bahadur-type
 linear expansion. The sampling variation of geometric quantiles is carefully investigated, and estimates for dispersion matrices,
 which may be used in developing confidence ellipsoids, are constructed. In course of this development of sampling distributions
 and related statistical properties, we observe several interesting facts, some of which are quite counterintuitive. In particular, many
 of the intriguing properties of spatial medians documented in the literature appear to be inherited by geometric quantiles.

 KEY WORDS: Bahadur representation; Geometric quantiles; L estimation in multidimension; Multiresponse quantile regression;
 nl/2-consistent estimate; Spatial median; Trimmed multivariate mean.

 1. INTRODUCTION

 Quantiles of univariate data are frequently used in the
 construction of popular descriptive statistics like the me-
 dian, the interquartile range, and various measures of skew-
 ness and kurtosis based on percentiles. They are also poten-
 tially useful in robust estimation of location (e.g., in the con-
 struction of L estimates). Regression quantiles (see Efron
 1991 and Koenker and Bassett 1978), which are nothing
 but generalizations of quantiles in a regression setup with
 a univariate response, have been used in robust estimation
 of parameters in linear models (see Chaudhuri 1992b and
 Koenker and Portnoy 1987). Lack of objective basis for
 ordering multivariate observations is a major problem in
 extending the notion of quantiles in multidimensions. In
 a classic paper, Barnett (1976) surveyed several possible
 techniques for ordering multivariate observations (see also
 Plackett 1976 and Reiss 1989). In the last decade, Eddy
 (1982, 1983, 1985) proposed an approach for defining quan-
 tiles for multivariate data using certain nested sequence of
 sets, and Brown and Hettmansperger (1987, 1989) intro-
 duced a notion of bivariate quantiles based on Oja's crite-
 rion function that arises in the definition of Oja's simplex
 median (see Oja 1983). Very recently, Abdous and Theodor-
 escu (1992) and Kim (1992) have made some attempts to de-
 fine quantiles for random vectors, and Einmahl and Mason
 (1992) have extensively studied certain stochastic processes,
 which may be viewed as generalizations of the univariate
 quantile process (see also Pyke 1975, 1984, 1985).
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 All of these attempts are valuable contributions toward
 multidimensional generalization of univariate quantiles. But
 something that seems to have received either very little or
 almost no attention in the existing literature is a compre-
 hensive development of the statistical properties of sample
 multivariate quantiles that are relevant while using them to
 analyze data and in making statistical inference about pop-
 ulation quantiles. Often the authors (e.g., Abdous and The-
 odorescu 1992; Barnett 1975; Brown and Hettmansperger
 1987, 1989; Eddy 1982, 1983, 1985; Kim 1992) concen-
 trated on introducing certain descriptive statistics that gen-
 eralize the concept of univariate quantiles or order statistics
 in the multivariate setup, and they did not spend much ef-

 fort on exploring the sampling distributions and other prop-
 erties of multivariate quantiles viewed as estimates of their
 population analogues. The main emphasis of Einmahl and
 Mason (1992) and Pyke (1975, 1984, 1985) is on construct-

 ing certain stochastic processes and studying their limiting
 behavior. The processes considered by Einmahl and Mason
 (1992) are actually real valued in nature, as they are defined
 through certain real-valued set functions. The proposal of
 Brown and Hettmansperger (1987, 1989), as well as one of
 the suggestions of Kim (1992), are based on determinants
 of matrices formed by random vectors. As a result, their
 approaches are limited to finite-dimensional spaces and do
 not have any natural generalization for infinite-dimensional
 spaces. On the other hand, Abdous and Theodorescu (1992)
 and Babu and Rao (1988) have explored certain quantiles
 of random vectors that are defined through the coordinate
 variables. Consequently, these vectors lack some desirable
 geometric properties (e.g., they are not rotationally equi-
 variant). It will be appropriate to note here that Evans (1982)
 considered quantiles of a bivariate normal distribution, and
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 his quantiles are boundary surfaces of certain confidence

 ellipsoids centered at the mean of the distribution.

 The purpose of this article is to investigate a notion of

 quantiles based on the geometric configuration of multivari-
 ate data clouds. These geometric quantiles arise as natural

 generalizations of the multivariate spatial median consid-

 ered by Brown (1983), Gower (1974), Haldane (1948), and

 many others, who used the names "spatial median," "me-
 diancenter," and "geometrical median" to describe it (see

 Small 1990). Recently Dudley and Koltchinskii (1992) and

 Koltchinskii (1993) have considered an equivalent notion of
 quantiles in finite-dimensional Euclidean spaces. In Section
 2 we define geometric quantiles in multidimensional spaces

 and explore their basic properties. We indicate that these

 multivariate quantiles can be used to construct L estimates

 for multivariate location and to obtain a natural extension

 of regression quantiles in multiresponse linear model prob-
 lems. Also, we gradually expose that this geometric notion

 of quantiles extends to infinite-dimensional Hilbert and Ba-

 nach spaces in a very natural and interesting way. In Section

 3 we discuss large-sample behavior of multivariate quan-

 tiles. We establish a Bahadur-type linear representation and
 use it to derive asymptotic distributions of sample quan-
 tiles. We report several intriguing facts observed in course

 of the development of these large-sample results. Also, we

 investigate statistical variability of sample quantiles and the

 estimation of their dispersion matrices. We show that many

 of the surprising properties of multivariate spatial median,

 which were observed by Bose and Chaudhuri (1993) and
 Chaudhuri (1992a), are inherited by these geometric quan-
 tiles. In Section 4 we present some concluding remarks. We
 provide all technical proofs in the Appendix.

 2. GEOMETRIC QUANTILES: DEFINITION
 AND BASIC PROPERTIES

 It is a well-known fact that given any oa such that 0 < oa

 < 1 and u = 2a - 1, the sum E> { IXi - Q +?u(Xi - Q)}
 is minimized when Q = the sample oth quantile based

 on the real-valued observations Xi's (see, e.g., Ferguson
 1967). Koenker and Bassett (1978) used the loss function

 1(u, t) = ItI + ut as a substitute for the squared error loss
 to estimate the oth regression quantile in a linear regres-
 sion setup. The case oa = 1/2 (or, equivalently, u = 0)
 corresponds to sample median, and in this case the defi-

 nition of the function c(0, ) can be easily extended for a
 vector-valued second argument. For t E Rd, if we define

 1(0, t) = It , then we get the loss function used for defin-
 ing the multivariate spatial median (see, e.g., Small 1990).
 If we have data points X1, X2,... , Xn in Rd, where d > 2,
 then a natural question is how to extend the definition of

 the function 4(., ) so that it will lead to a multivariate
 generalization of quantiles. It was observed by Brown and
 Hettmansperger (1987, 1989) that geometrically it is quite
 meaningful for a multivariate quantile to have a direction

 in addition to a magnitude (see also Hettmansperger, Ny-

 blom, and Oja 1994). Observe that the factor u =o 2a- 1
 that appears in the second term in the definition of b(u, t)

 is a linear transformation of a eE (0,1) that maps the open
 unit interval (0, 1) onto the open interval (-1, 1) in a one-

 to-one way, and the a's corresponding to extreme quantiles

 are mapped to values close to +1 or -1, whereas those cor-
 responding to central quantiles are mapped to values close

 to zero. This leads to the idea of indexing d-dimensional

 multivariate quantiles by elements of the open unit ball

 B(d) - {ulu E Rd, |UI < 1}. For any u E B(d) and t E Rd,
 let us define 1(u,t) t I?t (u,t), where (., -) denotes the
 usual Euclidean inner product. Then the geometric quantile

 Qn (u) corresponding to u and based on d-dimensional data
 points XI, X2, ... , Xn is defined as

 n

 Qn(u))= arg mi D (u, Xi - Q).
 QCzRd

 Observe at this point that a u for which Iu is close to 1
 corresponds to an extreme quantile, whereas a u for which

 Jul is close to zero corresponds to a central quantile. As
 pointed out by Small (1990), Weber (1909) considered spa-

 tial median (which is just Qn(O)) as a solution to a problem
 in "location theory" in which X1, X2, .. ., Xn are the planar
 coordinates of n customers, who are served by a company

 that wants to find an optimal location for its warehouse. If

 the transportation cost happens to be proportional to the dis-

 tance, and all customers are equally important for the com-

 pany, one should try to locate the warehouse as close to the

 spatial median of the Xi's as possible, so that the average
 (or equivalently the total) transportation cost is minimized.

 On the other hand, for a nonzero u, its magnitude Jul mea-
 sures the extent of deviation of the quantile Qn (u) from the
 center of the data cloud formed by the Xi's. Because the
 vector u has a direction in addition to its magnitude, this
 immediately leads to a notion of directional outlyingness of

 a point with respect to the center of a cloud of observations
 based on the geometry of the cloud. (For other notions of
 outlyingness based on various concepts of "data depth," see
 Donoho and Gasko 1992; Liu 1990, 1992; Stahel 1981; and

 Tukey 1975).
 Notice that the preceding definition of multidimensional

 quantiles extends in a natural way when the observations lie
 in a Hilbert space, which may very well be infinite dimen-

 sional in nature. Any Hilbert space is equipped with an inner
 product, and the open unit ball around the origin is a well-
 defined concept there. Hence the definition of 4 (., ) extends
 naturally for data in a Hilbert space, where the quantiles
 continue to be indexed by vectors having norms smaller
 than 1. Kemperman (1987) introduced and extensively stud-
 ied a notion of median in Banach spaces. Observe that the
 second term in the definition of 4(u, t) can be viewed as a

 real-valued linear functional with norm =u I < 1. In a Ba-
 nach space, it is natural to replace the second term, which
 is currently defined as an inner product, by a real-valued
 linear functional with norm (i.e., functional norm) smaller
 than 1. In other words, geometric quantiles in a Banach
 space will be indexed by the elements of the open unit ball

 around the origin in the dual Banach space of real-valued

 linear functionals. This yields a generalization of Kemper-

 man's (1987) idea of median into a notion of quantiles in
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 Banach spaces. Recall at this point a well-known result in

 elementary functional analysis stating that the dual of a
 Hilbert space is isometrically isomorphic to the space itself.

 This is why geometric quantiles in a Hilbert space will be
 indexed by the elements of the open unit ball around the

 origin in the space itself. It will be appropriate to point out

 here that many multivariate versions of median proposed
 in the literature (e.g., Liu 1990; Oja 1983) are limited to
 only finite-dimensional spaces because of the very nature
 of their construction.

 2.1 Existence, Uniqueness and Computation

 Consider a set of observations XI, X2,... , X, in Rd
 We begin by addressing the issue of the existence of a min-

 imizer (with respect to Q) of = b(u, Xi - Q). Note
 that for any fixed u E B(d), the function 4(u, t) explodes

 to infinity as It I tends to infinity. Hence c> b(u, Xi -Q)
 must tend to infinity if IQI goes to infinity. In other words,
 the value of the sum will be arbitrarily large for a Q for

 which IQI is sufficiently large, and one must look for a min-
 imizer within a closed and bounded ball around the origin

 in Rd. In view of the continuity of c(u, t) as a function

 of t, which implies the continuity of Z D=1 b(u, Xi - Q)
 as a function of Q, there must be a minimizer Qn~(u) lo-
 cated at a finite distance from the origin in Rjd. Next comes
 the question of uniqueness. Because Rd equipped with Eu-
 clidean norm is a strictly convex Banach space for d > 2,

 and (u, t) is a linear function in t for every fixed u E BC ,
 it follows from theorem 2.17 of Kemperman (1987, p. 220)

 that unless all of the data points X1, X2, ... ., Xr, fall on a
 straight line in Rd, = @(u, Xi - Q) must be a strictly
 convex function of Q. This guarantees the uniqueness of

 the minimizer Qn(u) in jjd for any d ? 2 provided that the
 data points do not lie on a single straight line. Summarizing
 all these, we now have the following.

 Fact 2.1.1. For a set of observations X1, X2, ... ., X7n in
 Rd, the geometric quantile Qn (u) exists for any given u
 E B(d). Further, for d ? 2, it will be unique if the Xis are
 not all carried by a straight line in Rjd.

 As a matter of fact, a natural generalization of some of

 the results of Kemperman (1987) guarantees the unique-
 ness of geometric quantiles in any strictly convex Banach

 space unless the observations all lie on one straight line in
 that space. It is easy to extend some of the arguments used

 by Valadier (1984) to establish the existence of geometric

 quantiles for observations in any reflexive Banach space for
 which the dual Banach space is isometrically isomorphic to
 the original space (e.g., iead or any Hilbert space). But Leon
 and Masse (1992) pointed out that a spatial median (or L1
 median as they called it) may not exist in some nonreflexive
 Banach spaces.

 Efficient algorithms to compute spatial median minimiz-
 ing >>= lXi - Q,) when the Xi's are in Rd, have been
 extensively studied by Bedall and Zimmermann (1979) and
 Gower (1974). We next state a theorem that gives an im-
 portant characterization of a geometric quantile in terms of

 the data points from which it is computed.

 Theorem 2.1.2. Consider data points X1, X2,... X, in

 Rd and Qn, (u) computed from these observations. If Qn, (u)
 $ Xi for all 1 < i < n, then we will have

 n

 Z Xi- Qn(u)l {XXi- Qn(u)} + nu = 0.

 On the other hand, if Qn(u) = Xi for some 1 < i < n,
 then we will have

 S [IXi - Qnh(u) I l1{Xi - QnT(u)} + u]
 i:I<i<n;Xj=4n (u)

 < (1I+ |u|)[#{i: Xi = Qn (u)}]

 This crucial theorem implies that the algorithms of Bedall
 and Zimmermann (1979) and Gower (1974) can be modified
 to yield algorithms for computing geometric quantiles from

 multivariate observations. Specifically, one can use iterative

 methods like the "first-order method" (see Gower 1974) or
 a "Newton-Raphson-type method" (see Bedall and Zim-
 mermann 1979), with the latter usually being much faster
 than the former. We now describe the main steps involved

 in the computation of Qn (u), when X1, X2,... ,Xn are n
 distinct points in Rjd (d > 2) not lying on a single straight
 line (e.g., they may be iid observations with a common
 absolutely continuous distribution on Rjd) and a "Newton-
 Raphson-type iteration" is used. From now on, all vectors

 in this article are assumed to be column vectors unless spec-
 ified otherwise, and the superscript T is used to indicate the

 transpose of vectors and matrices.

 Step 1. For each 1 < i < n, one checks whether or not
 the degeneracy condition

 E {lXj -Xil-(X -Xi)} + (n-1)u
 j:l<j?n;j$i

 < (I+?uI)

 is satisfied. If the condition is satisfied for some 1 < i < n,
 then one sets Qn (u) = Xi. Otherwise, one moves to the
 next step and tries to solve the equation

 n

 Z Xi- Qn(u)l {Xi - Qn(u)}+ ?Iu = 0.
 i=l

 Step 2. One needs an initial approximation Q$l)(u) of

 Qn (u) to start the iteration, and this can be taken to be the
 vector of medians of real-valued components of the Xi's

 or some other suitable point in Rd. Let Qn$n)(u),. ,
 (u) be the successive approximations of Qn (u) obtained
 in consecutive iterations. Then $m+1) (u) is computed as
 follows. Let

 E lxi- Qn(m)l 1{Xi- Qnm) (u)} ? n =A
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 and define

 n

 S |- Q(m)(u)n -[Id- X _-Qm)(U)I
 t= 1

 x {Xi- - m(U)}Xi (m)(u)} T] = 4)

 where Id is the d x d identity matrix. Then unless the Xi's

 all lie on a straight line in RId, @ will be a positive definite

 matrix, and one sets nm+1) (u) = Q(m) (u) + 4-4A. Iter-
 ation is continued until two successive approximations of

 Qn(u) happen to be sufficiently close.
 It is easy to prepare a simple computer program to imple-

 ment the algorithm just described. A FORTRAN program

 was tried on several bivariate and trivariate data sets that

 were simulated on a VAX 8650 (with VMS operating sys-
 tem) using IMSL routines. The distributions tried included
 multivariate versions of Gaussian, Laplace, and Cauchy dis-

 tributions. In all cases, the algorithm converged after 5-10

 iterations, and the total time for running the program was

 only a few seconds in each case. Because of the unsmooth

 nature of the function En U ((u, Xi - Q) when Q is close
 to some of the data points, Brown (1985) suggested includ-
 ing an "escape hatch" in the "Newton-Raphson iteration"

 for computing spatial median. Although this is definitely a

 wise idea, for the sake of simplicity we did not build any
 such "escape hatch" into our program, and this did not have

 any serious effect on the program's performance. We close
 this section by pointing out that each of the multivariate

 versions of median proposed by Liu (1990), Tukey (1975),
 and Oja (1983) is fairly difficult to compute when d > 3, and
 this computational difficulty increases at a substantial rate

 as d increases. The iterative algorithm presented here for
 computing spatial median or any geometric quantile is easy
 to use even for high-dimensional data, as the only effect of

 dimension that one can feel while running the algorithm is
 during the inversion of the d x d matrix in Step 2.

 2.2 Properties and Applications

 It is obvious that our geometric quantiles are location

 equivariant in the sense that if Yi = Xi + a for all
 1 < i K n where a E Rd is a fixed vector, the geomet-
 ric quantile Q+ (u) corresponding to u c B(d) and based

 on Y1, Y2, ... , Yn will satisfy Q (u) = Qn (u) + a, where
 Qn(u) is the geometric quantile based on Xl, X2, ,Xn
 as before. One of Brown's (1983) main motivations in
 considering "spatial median" is its rotational equivariance,
 which is very desirable in the analysis of spatial data, where
 variables possess isometry. Small (1990) pointed out that a
 starting point for some of the early work on "spatial me-
 dian" was the twelfth census of the United States in 1900,
 when statisticians were interested in investigating the flow
 of population in the United States by observing the move-
 ment of a "geographical center" of the population over time.
 It was clearly recognized (see, e.g., Hayford 1902) that a
 median-like estimate of the center of a geographical dis-

 tribution is preferable to the centroid (i.e., the usual mul-

 tivariate average), as the centroid may be highly sensitive

 to the influence of probability masses at the extremes. In

 fact, one can argue (see Small 1990) that a death or a birth

 in the periphery of the country should not have more in-

 fluence on the center of the population than a similar event

 occurring at the central part of the country. Hayford (1902)
 proposed the vector of medians of orthogonal coordinates

 as the "geographical center" but explicitly noted the diffi-

 culty arising from the fact that such a multivariate median

 depends on the choice of the orthogonal coordinates and
 suffers from lack of equivariance under orthogonal trans-

 formations. Eventually, Scates (1933) used "spatial median"
 to locate the "geographical center" of the U.S. population

 and found it to be located at a place "15 miles northwest
 of Dayton, Ohio." Like the "spatial median," our geomet-
 ric quantiles also happen to be rotationally equivariant. In

 fact, we have the following in view of the way geometric
 quantiles are defined.

 Fact 2.2.1. As before let Qn(u) be the geomet-

 ric quantile corresponding to u E B(d) and based on
 X1, X2, ... , Xn in Rd. Let A be a d x d orthogonal matrix
 and let a be a fixed d-dimensional vector. Set v = Au so

 that lvl = Jul in view of the orthogonality of A. Suppose
 that Q(+(v) is the geometric quantile corresponding to v

 C B(d) and based on Yl,Y27...,Yn, where Yi = AXi
 ?afor all 1 < i < n. Then Q+(v) =Q+(Au) = A -(u)
 + a.

 Note that the preceding fact has been stated for data ob-

 served in finite-dimensional Euclidean spaces. But it can be

 easily generalized in an arbitrary Hilbert space, where one
 can have a concept of equivariance under location transfor-
 mations and norm-preserving linear transformations (i.e.,
 under any kind of rigid motion of points in the space). More
 generally, our geometric quantiles will be equivariant under
 any invertible and distance-preserving affine transformation

 on a Banach space.
 It is quite easy to see that geometric quantiles are equi-

 variant under any homogeneous scale transformation of the

 coordinates of the multivariate observations, as indicated
 next.

 Fact 2.2.2. If c > 0 is a fixed scalar, and Qn(u) is the
 geometric quantile corresponding to u E B(d) and based on
 X1, X27. . . , Xn in Rd, then cQn(u) will be the geometric
 quantile based on Y1, Y2,... , Yn where Yi = cXi for all
 1 <i<n.

 In connection with Fact 2.2.2, it may be appropriate to
 note that in some situations, one may need to standard-
 ize the coordinate variables appropriately before comput-
 ing the spatial median or any other geometric quantile for
 a multivariate data set (e.g., when the units of measure-
 ments for different coordinate variables happen to be dif-
 ferent). In an attempt to make Haldane's (1948) "geomet-
 rical median" affine equivariant, Rao (1988) recommended
 standardizing the observations using the square root of the
 variance-covariance matrix computed from the data. Such
 a standardization amounts to the replacement of the Eu-
 clidean distance by Mahalanobis's statistical distance (see

 Mahalanobis 1936). Alternatively, one may use "data-driven

 coordinate systems" (see Chaudhuri and Sengupta 1993)

 constructed from appropriately centered observations.
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 Chaudhuri and Sengupta (1993) introduced and used such
 invariant coordinate systems to construct affine-invariant

 sign tests in multidimensions, and recently Chakraborty and
 Chaudhuri (1994, 1995) used them to construct an affine-
 equivariant version of multivariate median.

 We conclude this section by indicating two potential ap-
 plications of geometric quantiles.

 a. Geometric quantiles can be used to extend the concept
 of quantile regression from univariate response prob-
 lems (see Efron 1991 and Koenker and Bassett 1978)
 to multiresponse linear model situations in the fol-

 lowing way. Let (Y1, Z1), (Y2 , Z2) ..., (Yn v Zn) be
 a set of observations satisfying the multivariate linear

 regression model Yi = rZi + Ei for all 1 < i < n.
 Here Yi is a d-dimensional response vector, Zi is a
 p-dimensional regressor vector, r is a d x p matrix of

 parameters, and Ei is a d-dimensional vector of unob-
 servable random errors. Then for u E B(d), one can
 try to estimate r by solving the minimization prob-

 lem minr En> b(u, Yi - rZi). If Ln (u) denotes a
 solution for this minimization problem, then we can
 identify it as a multiresponse regression quantile es-
 timate of r. As an extension of spatial median, Bai,
 Chen, Miao, and Rao (1990) have considered certain
 minimum Euclidean norm estimates of parameters in
 multiresponse linear model problems.

 b. It is possible to extend the concept of trimmed mean or
 any L estimate (see, e.g., Serfling 1980) of univariate
 location to a multivariate setup using geometric quan-
 tiles in a natural way. One just needs to form suitable
 weighted averages of Qn(u)'s as u varies over an ap-
 propriate subset of B(d), keeping in mind that for a

 u with Jul close to zero, we get a central quantile,
 whereas for a u with Iu close to 1, we get an extreme
 quantile. Specifically, if ,u is an appropriately chosen
 probability measure on B(d) supported on a subset S
 of B(d), then an L estimate of multivariate location

 will have the form fs Qn(u) u (du). If S happens to
 be the sphere with center at the origin and radius = r

 (i.e., S = {u u E Rld, IUI < r}), where r is a constant
 such that 0 < r < 1, and ,u is taken to be the uni-

 form probability measure on S, fs Qn(U))-u (du) is a
 version of the trimmed multivariate mean. Some re-
 cent attempts to construct and study various versions
 of the trimmed mean for multivariate location using
 different ideas include those of Donoho and Gasko
 (1992), Gordaliza (1991), and Nolan (1992). L esti-
 mates of parameters in linear models using regression
 quantiles have been studied extensively by Koenker
 and Portnoy (1987) (see also Bickel 1973, Chaudhuri
 1992b, Ruppert and Carroll 1980, and Welsh 1987a,b),
 who considered univariate response. rn (u)'s with u
 varying in B(d) defined previously can be utilized to
 carry the L estimation technique into the domain of
 multiresponse linear model problems.

 3. LARGE-SAMPLE STATISTICAL PROPERTIES

 We begin by defining geometric quantiles for a multivari-

 ate probability distribution. Let X be a random vector with
 a probability distribution on Rd. For u E B(d), the quantile
 Q(u) of the distribution of X is defined by

 Q(u) = arg mi E{ -(u, X-Q) - (u, X)}.

 Note that (u, X - Q) - N(u, X) will always have a fi-
 nite expectation even though the expectation of X may not
 always be finite. When X has a finite expectation, Q(u)
 becomes a minimizer of E{ (u, X - Q)}. Further, in view
 of our observations in Section 2.1, the existence and the
 uniqueness of Q(u) is guaranteed for any u E B(d) and
 d > 2, provided that the distribution of X is not supported
 on a single straight line. Hence uniqueness holds when-
 ever X has an absolutely continuous distribution on Rjd with

 d > 2, and in fact in this case Q(u) will be the unique solu-
 tion in Q of the equation E IXi -Q Q1j(X -Q)} + u = 0.
 For a univariate probability distribution (i.e., when d = 1), it
 is obvious that geometric quantiles of the distribution coin-

 cide with usual univariate quantiles indexed by the elements
 of the open interval B1 = (-1,1).

 3.1 Bahadur Representation and Asymptotic

 Distribution

 Clearly, if the observations X1, X2,.. -, Xn, are indepen-
 dent and identically distributed copies of X, then Qn(u)
 will act as an estimate of Q(u) based on those observations.
 Chaudhuri (1992a) derived a Bahadur-type representation
 for a class of multivariate location estimates that includes

 spatial median as a special case (see also Niemiro 1992).
 Our next theorem establishes a Bahadur-type representa-
 tion of geometric quantiles, and we use this result to derive
 the asymptotic distribution and related properties of Qn (u)
 to get useful insights into its behavior as an estimate of
 Q(u). But before stating the theorem, we introduce some
 notations. For any Q Ec Rd, define the d x d symmetric
 matrix

 D1(Q) = E[ X-Q l-{Id- X_Q -2(X-Q)(X_Q)T}],
 which will be positive definite unless the distribution of
 X is completely supported on a straight line in Rjd. Note
 that the expectation defining D1(Q) will exist finitely for
 d > 2 whenever X has a density bounded on compact sub-
 sets of Rd. This is a consequence of the fact that for any
 fixed y E Rd and a density f bounded on compact subsets
 of Rd, the integral fRd Ix - y f(x) dx is finite. This fact
 can be verified by using d-dimensional polar transformation
 for which the Jacobian determinant involves the (d - l)th
 power of the length of the radius vector (see proposition
 3.1 in Bose and Chaudhuri 1993, p. 546, and remark 4
 in Chaudhuri 1992a, p. 904). Also, for Q1,Q2 E Rd, and
 u,v E B(d), let us write D2(Ql,Q2,u,v) to denote the
 d x d matrix

 E[{ X- Q I-(X- Q) +u}{l X- Q2 1-(X- Q2) +V}T].
 Theorem 3.1.1. Assume that X1,X2,...,Xn,... is a

 sequence of independent and identically distributed d-
 dimensional random vectors with a common density, which
 is bounded on every bounded subset of Rjd. Then, for any
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 fixed u E B(d) we have the following Bahadur-type expan-
 sion:

 QOn(u) - Q(u)= n- [D1fQ(u)J]-

 n

 x E[JXi -Q(u)l-'fXi -Q(u)J + u] + Rn(U),
 i=l

 where as n tends to infinity, Rn (u) is almost surely
 O(logrn/n) if d > 3, and when d = 2,Rn(u) is almost
 surely o(n-r) for any fixed 3 such that 0 < 3 < 1.

 Observe that the condition assumed on the common den-

 sity of the Xi 's in the statement of Theorem 3.1.1 is
 much weaker than the condition needed to establish the
 Bahadur expansion of a univariate quantile, (see Bahadur
 1966, Ghosh 1971, Kiefer 1967, and Serfling 1980). Also,

 the convergence rates for the remainder term Rn(u) in the
 theorem is much faster than that for the remainder term

 in the Bahadur representation of a univariate quantile. Re-

 cently Koltchinskii (1993) obtained stronger results related

 to the asymptotic behavior of Rn(u) (see also Niemiro
 1992, who discussed a Bahadur expansion for spatial me-
 dian). All these demonstrate that geometric quantiles inherit
 some of the intriguing asymptotic properties of the spa-
 tial median (see remarks 4 and 5 in Chaudhuri 1992a, pp.

 904-905).

 We now state a theorem concerning the joint asymptotic
 distribution of several geometric quantiles.

 Theorem 3.1.2. Suppose that the condition assumed in

 Theorem 3.1.1 holds. Let u1,u2,... , uk be points in the
 open unit ball B(d), where k is a fixed positive integer. Then
 the joint asymptotic distribution of centered and normalized
 geometric quantiles

 n 1/2 {n(ul) - Q(ul)}, n1/2 {n(u2) -Q(U2)li v

 n1/2 n(Uk) - Q(Uk)}

 will be Gaussian with mean zero. Further, the asymp-

 totic covariance matrix between n1/2{Q n(ur) - Q(Ur)}

 and n1/2{Qn(us) - Q(us)}, where 1 < r, s < k (note that
 r and s may or may not be distinct), will be given by

 [Di{Q(Ur)}11 [D2{Q(Ur), Q(Us), Ur,us}][Di{Q(us)}V1.

 Clearly, the preceding theorem guarantees that the sam-
 ple geometric quantiles are consistent estimates of corre-
 sponding population quantiles, they converge at n-1/2 rate,
 and are asymptotically normally distributed. In fact, this
 theorem can be used to obtain the limiting distribution

 (which again will be normal) of multivariate L estimates
 (see Sec. 2.2) that are defined as weighted averages (i.e.,
 convex combinations) of finitely many geometric quantiles

 (i.e., if the set S appearing in fs Qn(u),u (du) is a finite set
 {uli, u2,.. ., u} so that the integral becomes a finite sum of

 the form >>.= Qn(ui),u({ui})). The multivariate stochastic
 process Qn (u) indexed by the vector parameter u E B(d)
 can be viewed as a generalization of the univariate quan-

 tile process. In view of Theorem 3.1.2, one can hope that

 the centered and normalized process n fQn(U) - Q(u)}
 with u varying in B(d) will converge weakly to a Gaussian

 process (which too will be parameterized by the elements

 of B(d)) under appropriate regularity conditions. Although

 we will not dig deeper into technical matters (e.g., the os-

 cillation of the sample path of the process and the tightness

 issues) related to the weak convergence of such a stochas-

 tic process, Theorem 3.1.2 can be helpful in identifying
 the nature of the limiting Gaussian process by utilizing the

 variance-covariance structure explicitly worked out there.

 3.2 Sampling Variation and Related Issues

 Theorem 3.1.2 can be used to construct large-sample
 confidence ellipsoids for Q(u), provided that we can con-

 struct a reasonable estimate of the limiting dispersion ma-

 trix of n'/2{Q n(u) - Q(u)} from the data. Estimation of
 the asymptotic variance of a univariate quantile has been
 studied extensively in the literature, and it has drawn at-

 tention from several leading statisticians. Efron (1982) ob-

 served that the standard "delete one jackknife" leads to an

 inconsistent estimate of the asymptotic variance of univari-

 ate median. Later, Shao and Wu (1989) established that
 "delete k jackknife" yields a consistent estimate of this
 variance if k is allowed to grow to infinity as the sam-

 ple size increases. But practical implementation of "delete

 k jackknife" will require prohibitively complex and expen-
 sive computation in the case of large data sets. On the other
 hand, it is well known that the "standard bootstrap," which
 resamples from the usual empirical distribution, produces a
 consistent estimate of the large-sample variance of a uni-
 variate quantile (see Babu 1986; Efron 1982; Ghosh, Parr,
 Singh, and Babu 1984; and Shao 1990) under suitable regu-
 larity conditions. But Hall and Martin (1988, 1991) showed
 that such a bootstrap variance estimate converges at an ex-

 tremely slow rate, namely n-1/4. Hall, DiCiccio, and Ro-
 mano (1989) pointed out that it is possible to improve this
 convergence rate substantially by resampling from appro-
 priate kernel density estimates rather than using the "stan-
 dard bootstrap" based on the unsmoothed empirical dis-
 tribution. Although the convergence rate always remains
 slower than n-1/2, these authors demonstrated that it can be
 brought arbitrarily close to n-1/2. But to actually achieve
 such an improvement, one may need to use higher-order
 kernels, which may lead to negative estimates of density
 and unnatural variance estimates. Surprisingly, these tech-
 nical complexities disappear as soon as we start dealing
 with multivariate observations.

 We next exhibit a very simple estimate of the limiting co-
 variance matrix between a pair of centered and normalized
 geometric quantiles with excellent asymptotic properties.
 To construct this estimate, we do not use any of the com-
 putationally intensive resampling techniques like the boot-
 strap (smoothed or unsmoothed) or "delete k jackknife."
 Bose and Chaudhuri (1993) observed a similar phenomenon
 while constructing the estimate for large-sample dispersion
 of multivariate spatial median.

 Let ,Fn be a subset of {1, 2, ... ., n} such that #Q:Fn) = fin
 Consider u, v E B(d) (here u and v may or may not be dis-
 tinct). Define Qn (u) and Qn (v) as the geometric quantiles
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 corresponding to u and v, based on the Xi's for which

 i c 7. In other words,

 Qn(u) arg mn E ( , Xi -Q)

 and

 Q*(v) = arg min E 'J(v,xi - Q).
 nQERd

 Next, we set

 A$i) (u,v) = [IXi- Q(u) I 1 {Xi - Qn(u)}+u1

 x [xi- Qn(u) {Xi - Qn(u) } + VIT

 and

 B$i)(u) = X- Qn(u) | 1 [Id - IXi - Qn(u)K

 {X i- Qn(U) I- QX(u)}i

 Then we have the following theorem, which describes the

 asymptotic behavior of Fn (u, v) = (n - fn) Ei EAnn

 (u, v) and G(u) =(n - fn) -I$EiEB()(u), where FnF
 is the set theoretic complement of Fn in {1, 2, ... , n}.

 Theorem 3.2.1. Suppose that both n-lfn and 1-n-lfn
 remain bounded away from zero as n tends to in-

 finity and that the condition assumed in Theorem

 3.1.1 holds. Then for d > 2, we have Fn(u,v) - D2
 {Q(u),Q(v),u,v} = Op(n-1/2) as n tends to infin-
 ity. Also, for d > 3, we have Gn(u) - DI{Q(u)}
 = Op(n-l/2) as n tends to infinity. But when d = 2, we

 have only Gn(u) - Di{Q(u)} = op(n-3) as n tends to
 infinity for any fixed constant 3 such that 0 < 3 < 1/2.

 In view of the positive definiteness of Dj{Q(u)}
 for any u E B(d), the foregoing theorem guaran-

 tees that {Gn(u)}I-Fn(u,v){Gn(v)}I- will be a consis-
 tent estimate of the limiting covariance matrix between

 n {Qn (U) - Q(u)} and n /2{Qn(v) - Q(v)}. Further,
 when d > 3, this estimate will converge at n-1/2 rate,
 whereas when d = 2, it will converge at a rate arbitrarily

 close to n-l/2. By taking u = v, we get an estimate for the

 limiting dispersion matrix of n1/2{Qn(u) - Q(u)}. It can
 be used to get an estimate for the large-sample "generalized
 variance" (see Wilks 1932) of geometric quantiles. Also,

 { Gn (u) } - 1 Fn (u, u) { Gn(u) } - 1 and Qn(u) can be utilized
 together to construct confidence ellipsoids for Q(u), and
 Theorems 3.1.2 and 3.2.1 will ensure the asymptotic accu-
 racy of such confidence sets.

 We conclude this section by noting that estimates

 Fn (u, v) and Gn (u) both depend on the choice of the set Fn
 in view of their construction, and as a result these estimates

 data points. One way of symmetrizing such an asymmetric
 function of the data is to form a simple average of various

 estimates corresponding to different possible choices of ZFn
 As a matter of fact, it is not difficult to see from the argu-

 ments used in the proofs given in the Appendix that such

 an averaging will not affect the asymptotic properties of

 the original estimates very much (see also remark (c), sec-

 tion 4, in Bose and Chaudhuri 1993, pp. 548-549). It will

 be appropriate to note here that Bai et al. (1990) proposed
 some estimate for the asymptotic dispersion of least Eu-

 clidean distances estimates of parameters in multiresponse
 linear models. But their estimate is known to be weakly

 consistent only, and it is not clear at what rate this estimate

 converges.

 4. SOME CONCLUDING REMARKS

 1. As we have already noted in several places, geomet-
 ric quantiles can be defined as meaningful and natural ob-
 jects for probability distributions (including empirical dis-
 tributions associated with data) supported on very general

 Banach spaces. In this connection, one interesting fact is
 that for a d-dimensional random vector X, the vector of

 marginal quantiles corresponding to different real-valued
 components of X (see, e.g., Abdous and Theodorescu 1992
 and Babu and Rao 1988) is also a version of a geometric
 quantile. When Rd is metrized using the 11-norm defined as

 IxIl = Xl? X+IX21+?. + Xdl for x= (Xl, X2,... , Xd) E XR
 we get a Banach space that is geometrically very different
 from the Hilbert space Rd metrized with the standard Eu-
 clidean metric. The dual space of Rd metrized using the

 11-norm can be identified with Rd having the l-norm de-

 fined as IxK = max<i<d IxiI. So the open unit ball around
 the origin in that dual space is the d-dimensional hypercube

 { uIu E Rd, IuI < 1}. This clearly demonstrates how one
 can view the vector of marginal quantiles of a d-dimensional

 random vector as a geometric quantile in Rd equipped with
 the 11-norm.

 2. We mentioned at the beginning of Section 1 that uni-

 variate quantiles are quite useful in constructing descriptive
 statistics such as interquartile range and various measures
 of skewness and kurtosis. One can use the d-dimensional

 Lebesgue measure of the set {QM(u)llul < .5} as a mul-
 tivariate analog of interquartile range based on geometric

 quantiles. In general, for fixed r E (0, 1), consider the set

 {Qn(u)J uJ < r}, which can be viewed as a quantile ball
 of radius r, and let A(r) denote the d-dimensional Lebesgue
 measure of this set. Then A(r) can be used as a measure of
 dispersion. Also, for suitable r, s E (0, 1) such that r < s,
 the ratio A(r)/A(s) can be used a measure of kurtosis in
 multidimension. Note that this generalizes quantile-based
 measures of kurtosis used in a univariate setup. It is easy
 to see that if a probability distribution is spherically sym-

 metric around a fixed point, then the quantile ball of ra-
 dius r associated with that distribution will be a sphere

 with the same center of symmetry for any r E (0, 1), and
 this is true even in general Banach spaces, where spherical
 symmetry of a probability measure is equivalent to its in-

 Therefore, one can use these quantile balls computed from
 the data to detect the possible presence (or evidence of de-

 viation from) spherical symmetry. Further, like some well-

 known quantile-based measures of skewness for univari-

 ate data, the quantity sPuillrlQn(u) ? Qn(-u) - 2QTh(0)1
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 { A(r)}1/'d can be used as a measure of multivariate skew-
 ness for some appropriate choice of r E (0, 1). Note that in
 the univariate case with r = .5, the foregoing becomes the

 standard quartile-based measure of skewness. The power

 -1/d of the volume A(r) of the quantile ball of radius r,
 which has been suggested by a referee, makes the skewness

 measure invariant under any homogeneous scale transfor-

 mation (i.e., scalar multiplication) of the multivariate data
 points.

 3. In the univariate case, quantiles can be obtained by

 inverting the cumulative distribution function. We have al-

 ready observed at the beginning of Section 3 that for a

 random vector X having an absolutely continuous distri-

 bution in IRd the equation EIX - Q(u)l-X- Q(u)}
 -u holds. In other words, Q(u) can be obtained by
 inverting the function (from Rd into Rd) that maps y

 E Rd into EIX -yl-(X -y) = -u (see also Dudley
 and Koltchinskii 1992 and Koltchinskii 1993). Recall from

 the statement of Theorem 2.1.2 that when Qn(u) =A Xi
 for all 1 < i < n, we have the equation n-r En I IXi
 -Qn (u) 1 {Xi -Qn (u)} =-u, which is the empirical or
 sample version of the previous equation.

 4. In a univariate setup, the concepts of ranks and quan-

 tiles are closely related. Recently, Jan and Randles (1994)

 and Mottonen and Oja (1995) considered some notions of
 multivariate signs and ranks that have some natural rela-
 tionships with our geometric quantiles. Note that the d-

 dimensional vector Ei:Xi=y Xi - yI- (Xi - y) can be
 viewed as a descriptive statistic that determines the geo-

 metric position of the point y E Rd with respect to the
 data cloud formed by the observations XI, X2, ... , Xn , and
 this leads to a concept of vector-valued ranks in multi-
 dimensions. On the other hand, it should be pointed out
 here that the direction vector associated with the notion of

 ranks arising from Oja's median (Oja 1983) used by Brown
 and Hettmansperger (1987, 1989) and Hettmansperger et
 al. (1994) is not (unlike the vector u associated with geo-
 metric quantiles) normalized to lie inside the open unit ball
 B(d), and it is not bounded in general. This is notewor-
 thy, as a normalized direction vector is more useful than an
 unbounded direction vector in judging the closeness to (or
 deviation from) the center of a multivariate data cloud.

 APPENDIX: PROOFS

 Proof of Theorem 2.1.2

 Clearly, for any x, h E Rd such that x 5$ 0, we have

 lim t-r1{(u, x + th- (u, x)} = (Ixl-lx + u, h),

 and for any h E Rd, we have

 lrn t-1{1(u, th) - (u, O)} = ghi + (u, h).

 Now, using the convexity of b(u, x) as a function of x, Q

 = Qn(u) minimizes > DL b(u, Xi - Q) if and only if

 n

 rim t (E {u, Xi -Qn (u) + th}
 t-40+

 Li=

 n

 - EZ {U, Xi Qn(u)} >0
 i=l

 for all h E Rd. In other words, we must have

 E {IXi - (n(U)-(Xi - Qn(u),h) + (u,h)}
 i:1<i<n;XijQn (U)

 + {lhl + (u,h)} > O
 i 1< i< n ;Xi=Qn (U)

 for all h E IRd. Note that we can replace h by -h in the pre-
 ceding inequality to obtain a second version of it. The proof of

 the theorem is now complete after observing that I hi ? (u, h)

 < (1 + juj)jhj.

 Proof of Theorem 3.1.1

 We assume that the reader is familiar with the arguments used

 in developing the main technical results of Chaudhuri (1992a). We

 split the proof into several paragraphs to clearly expose the key

 ideas and observations.

 First, note that 4(u,t) tends to infinity as Itl tends to infin-
 ity for any fixed u such that lul < 1. Then, arguing along the

 same line as in the proof of lemma 5.2 of Chaudhuri (1992a, pp.
 906-907), there exists a constant K1 > 0 such that almost surely

 >nI- ,(u, Xi - Q) > En=L 4(u, Xi) for all n sufficiently large
 if IQ - Q(u)I > Ki. In other words, because Qn(u) minimizes
 in= T (u, Xi - Q), we must have IQn(u) - Q(u)I < K, almost
 surely for all n sufficiently Iarge.

 Next consider fact 5.5 of Chaudhuri (1992a, p. 909) in the
 special case m = 1, which corresponds to the case of spa-

 tial median. Then our Theorem 2.1.2, which implies that the d-

 dimensional vector Zi-n lXi - Qn(u) 1- Xi - Qn(u)} + nu
 remains bounded in magnitude (adopt the convention that lx I-,x
 = 0 E Rd if x = 0 E Rd as in Chaudhuri 1992a, p. 900),
 can be viewed as an extension of this fact for arbitrary geo-

 metric quantiles. Consequently, an easy generalization of proposi-
 tion 5.6 of Chaudhuri (1992a, pp. 910-911) implies the existence

 of a constant K2 > 0 such that almost surely 1Qn(u) - Q(u)l
 < K2n-1/2((log n)1/2 for all n sufficiently large. Recall here that

 Q(u) satisfies E[IXi - Q(u)I-{Xi - Q(u)} + u] = 0, and lem-
 mas 5.3 and 5.4 of Chaudhuri (1992a, pp. 907-909) can be suitably
 modified to imply that the magnitude of the d-dimensional vector

 Zn=I lXi - QI-' (Xi - Q) + nu will explode to infinity almost
 surely as n tends to infinity, unless Q lies inside a ball in Rd with
 center at Q(u) and radius of the order O(n-1/2 [log n]1/2).

 Let g5 be the subset of Rd defined as

 5n = {WIW = (WI, W2,... ,Wd) E Rd, n Wi = an integer,

 and lwil < K2n-r/2 (log n)1/2 for all 1 < i < ni}.

 For W E gn, define

 An{Q(u), W + Q(u)}
 n

 = ril 5 [IX - Q(u)I-1{X - Q(u)} - IX%-Q(u) -W
 i=l

 x {Xi -Q(u)-W}?+E(IXi-Q(u) -Wl-
 x {Xi -Q(u) -W} + u)].
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 Then each term in the sum defining A,{Q(u), W + Q(u)} has
 mean zero for every W E gn. Further, if eS)n{Q(u), W + Q(u)}
 denotes the variance-covariance matrix of a term, then we have
 the following:

 a. For d > 3, maxwEgjl9n{Q(u), W + Q(u)}I = 0
 (n-'log n) as n tends to infinity.

 b. For d = 2, maxwgnIE)n{Q(u), W + Q(u)}I = o(n-8) as
 n tends to infinity for any fixed 3 such that 0 < 3 < 1.

 Observe that both a and b follow from a minor modification
 of the results stated in lemma 5.7 of Chaudhuri (1992a, p. 911).
 Then, arguing along the same line as in the proof of lemma 5.9
 of Chaudhuri (1992a, p. 912), we can conclude the following:

 a. When d > 3,maxwEnglAn{Q(u),W + Q(u)}I = 0
 (n-1logn) almost surely as n tends to infinity.

 b. When d = 2,maxwgn lAn{Q(u),W + Q(u)} = o(n-0)
 almost surely as n tends to infinity for any fixed 3 such that
 0< 3 < 1.

 At this point, let Qj (u) be a point in Rd such that Q* (u)
 -Q(u) E gn, and Q*j(u) is closest to Q4n(u) in the Euclidean
 distance. If there are several possible choices for such a Q*j(u),
 then we can choose any one of them. Then we can write

 n

 n-I S lXi - Q(u)-{Xi - Q(u)} + u]
 i=1

 = An{Q(u), Qn(u)} +n1

 n

 5 [IX% - Qt(u) 1{X% - Qn(u)} + u]
 i=1

 - E[IX - Q(u)I1{Xi - Qt(u)} + u].
 It is quite easy to verify (see the inequality (6) in the proof of
 proposition 5.6 in Chaudhuri 1992a, p. 910) that

 n

 n-l1E [IX, - Q-(u) Xi- Qt (u)} + U] = O(n-Ilog n)
 i=1

 almost surely as n tends to infinity. On the other hand, it is straight-
 forward to check (cf. fact 5.8 in Chaudhuri 1992, p. 912) the fol-
 lowing:

 a. For d > 3, we will have

 max IE(IXi - Q(u) - W-Xi- Q(u) - W} + u)

 +[Di{Q(u)}]WI = 0(nrl1ogn) as n - oo.

 b. For d = 2 and a fixed 3 such that 0 < 3 < 1, we will have

 max -E( X -Q(u) - WI-{Xi - Q(u) - W} + u)

 +[Di{Q(u)}]WI = o(nr5) as n - oo.

 The proof of the theorem is now complete, using the positive
 definiteness of the matrix Di{Q(u)} and the fact that Q*(u)
 - Qn(u) = 0(n4) in view of the definitions of gn and Q j(u).

 Proof of Theorem 3.1.2

 The proof follows by applying the Cramer-Wold (1936) device
 (see, e.g., Serfling 1980) and the central limit theorem to the linear
 term in the Bahadur expansion derived in Theorem 3.1.1.

 Proof of Theorem 3.2.1

 Because 1 - n-frf remains bounded away from zero as n
 tends to infinity, and A(') (u, v) is a bounded random matrix, it is
 obvious that

 Fn (u, v)- D2 {Qn (u), Qn (v)), u, v} = Op(n- 112)

 as n tends to infinity. Note that here we are using the fact that the
 Xi's with i E .Fn and the Xi's with i E .Fn form two independent
 subsamples. Also, when d > 2, some of the arguments used in the
 proof of the main theorem of Bose and Chaudhuri (1993) can be
 appropriately modified to establish the existence of a nonnegative
 random variable Zn such that Zn = Op (1) as n tends to infinity
 and

 ID2{Qn(u), Q*(v), u, v} - D2{Q(u), Q(v), u, v}I

 ? Zn{max(jQ(u) - Q(u)I, IQ(v) - Q(v)l}.
 Because n-rfn also remains bounded away from zero as n tends
 to infinity, Theorems 3.1.1 and 3.1.2 now guarantee that

 max(IQ* (u) - Q(U)I, IQ&(v) - Q(v)I) = Op(n-i/2)
 as n tends to infinity.

 Next, observe that for d > 3, Gn(u) - DI{Q(u)} is an aver-
 age of conditionally iid terms, each of which has zero conditional
 mean and finite conditional second moment given the X,'s for
 which i E .Fn (see the results in sec. 3 in Bose and Chaudhuri
 1993). Therefore, we must have

 Gn(u) - Di{Q*(u)} = Op(n-l/2)

 as n tends to infinity. But when d = 2, the conditional second
 moment may not be finite, and in that case a result of Bose and
 Chandra (1993) used in the proof of the main theorem of Bose
 and Chaudhuri (1993) (see the case d = 2 there) guarantee that

 Gn (u) - DI {Q (u)} = op (nr )

 as n tends to infinity, where 3 is any constant such that 0 < 3
 < 1/2. Finally, a straightforward application of some of the cru-
 cial observations made in course of the development of the proof
 of the main theorem of Bose and Chaudhuri (1993) yield the fol-
 lowing:

 a. If d > 3, then there exists a nonnegative random variable
 Vn such that Vn = Op (1) as n tends to infinity, and

 IDi{Q (u)} - Di{Q(u)}I < VnloQ(u) - Q(u)l.
 b. If d = 2 and 3 is any constant such that 0 < 3 < 1, then

 we will have

 ID, {Qn(u)} - DI {Q(u)}I HQn(u) - Q(u)K 1-3 = Op(l).
 The proof of the theorem is now complete, using the n'/2 consis-

 tency of Q0(u) as an estimate of Q(u).

 [Received August 1993. Revised October 1995.]
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