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PROCESSES
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SUMMARY. Consider a stochastic process {X;,¢t > 0} whose distributions depend on an
unknown parameter (v, 8). A locally asymptotically most powerful test, for testing the composite
hypothesis Hy : v = o against H| : 7 # o in the presence of a nuisance parameter 6 is developed
following the concept of C(a)-tests introduced by Neyman. Results are illustrated by means of
example of process {X(t),t > 0} satisfying the linear stochastic differential equation dX(t) =

(vX(t) + 0)dt + dW(t),t > 0.
1. INTRODUCTION

Neyman (1959) developed the notion of C(a)-tests for testing composite
statistical hypotheses. He suggested a method by which a locally asymptot-
ically most powerful test can be constructed for testing a composite hypoth-
esis Hy : v = v, against the alternative H; : v # o when the observations
{Xk,1 < k < n} are independent and identically distributed whose distribu-
tions F(z;~, 0) depending on an unknown scalar parameter y and an unknown
nuisance parameter vector . Neyman (1979) gave an extensive review of C(a)-
tests and their use. These results were extended to other types of probability
structures such as when the observations are independent but not identically
distributed in Bartoo and Puri (1967). Sarma (1968) studied the case when
the observations are made on a stationary Markov process. Bhat and Kulka-
rni (1972) generalized the results to discrete time stochastic processes. For an
exposition of some of these results, see Basawa and Prakasa Rao (1980).

Our aim in this paper is to develop optimal asymptotic tests of composite
hypotheses for continuous time stochastic processes. The problem is formulated
in Section 2. Martingale test statistics useful in constructing asymptotic tests
of hypotheses are discussed in Section 3. The asymptotic power of such tests is
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investigated in Section 4. Optimality of these tests in a special case is studied
in Section 5. Results are illustrated by deriving an optimal asymptotic test for
testing the hypotheses Hy : v = 7o against H; : v # 7 in a linear stochastic
differential equation

dX(t) = (X () + 0)dt + dW(t),t >0

where {W (t),t > 0)} is the standard Wiener processes, X(0) = 0,y and 6 € R.
Here 0 is the nuisance parameter.

2. FORMULATION OF THE PROBLEM

Let T’ be an open interval containing the origin and © be an open set con-
tained in R and let ( = T’ x ©. For every (v,8) € ¢, let {X;(7,0), t > 0} be
a stochastic process defined on a probability space (2, F, P). Let P ) be the
probability measure induced by the process Xr(7,0) = {X:(7,0),0 < t<T}
on a suitable function space X7 with an associated o-algebra Br. Suppose
Pg) < puT where uT is a probability measure on (X1, Br). We assume that Xz
is independent of (v,0) € ¢ and that the o-algebras By are nested.

The problem of interest is to construct an optimal asymptotic test of the
hypothesis Hy : v = 7 € T against the alternative Hy : v # 7. Here optimality
is in a suitable sense to be defined later. We now define what we mean by an
asymptotic test of the hypothesis Hy against H;.

Definition 2.1. Let 0 < a < 1. Let {Rr} be a family of measurable subsets
of {Xr} for T > 0. The family is said to define an asymptotic test of level
of the hypothesis Hy : v = v against H; : v # o if

hm P‘fog[Xt('yo,O) €ERr|=a

for all 6 € ©.

Let K () be a class of asymptotic level « tests of the hypothesis Ho : v = 0.
Let v* = {yr} be a collection in I' converging to v as T'— oc. Let D denote a
family of such collections v* and {R%.} € K ().

Definition 2.2. An asymptotic level o test {R}.} € K (a) is optimal within
the class K(a) if for any collection {yr} € D and for any § € © -

lim PO X(%0,6) € Rr]— P{3[X1(vr,6) € Rrl} 20

for all {Rr} € K(a).
Suppose the process {Xi(v,6),t >0} is ]-}—a,dapted for every t > 0 and for

every (v,60) € (. Let {0,} be an F;—adapted process. #; may or may not be a
function of {X,, (7,0),0 < s <t}.



10 B. L. S. PRAKASA RAO

Definition 2.3. Consider an Fi-adapted proccess {v{,t > 0} possibly de-
pendent on (v, 8) such that v oo as t — oo under Pv(g' 6, is said to be locally
v®_consistent estimator of @ if there exists A; # 0 such that

o 1650~ 0, A(v = %) |= (1), 1< j < k

under {P,f‘g} for all v and 6. If A; = 0 for 1 < j < k, then 6, is called a
v_consistent estimator of 0.

In the following, we shall denote the probability measure induced by the
process {X;(v,8),t > 0} by P,,.

3. MARTINGALE TEST STATISTICS

Suppose {fi(X(7,6);8),t > 0} is an F-adapted stochastic process such
that

{f(X:(7,6);0),t > 0}

is zero mean square integrable martingale under P, 4. From the definition of a
square integrable martingale, it follows that

sup E-y,,,a[ft(xt(")’m0);8)]2 < oo.
0<t<oo

Suppose the function f;(z; ) is differentiable thrice with respect to 8;,1 < j < k.
Let f;; denote the first partial derivative of f, with respect to 6, and f;;; denote
the second partial derivative with respect to 8; and 6 respectively. We assume
that fjlt = fljt- Let

a}(6;T) =< fr(X:(70,6);0) >1

where < Y > denotes the quadratic variation of a square integrable martingale
{¥r}.
Suppose that

Jr(X1(%,6);6) ¢

N(0,1) as T — oo

where (g, 0) is the true parameter. Sufficient conditions ensuring this asymp-
totic behaviour are given in Helland (1982). If @ is known, then Z7((Y0,9);8)
can be used as a test statistic for testing Hy : v = 7o against Hi : v # 0. Since
Zr depends on the unknown parameter 8, Zr((vo,8);0) is not computable.We
now study sufficient conditions on f under which the asymptotic behaviour
of Zr((7,8); (1) is the same as that of Zr((y0,8);0) where 07 is a suitable
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Fr -adapted estimator of @. It is clear that {Zr((y0,8);07)} is a well defined
Fr-adapted process.

For notational convenience, we write f;’") for fr(Xr(v0,8);0) and oy for
07(60;T) in the following discussion. Assume that the following conditions hold:

(1)
(A0) !}”— is twice continuously differentiable in 8;

(A1) 07 is v(D-consistent for @ as 7' — oo under (7o, 8) in the sense of
Definition 2.3;

(A2) (i) E.,e[;g(,,,n <el<isk

(i) {27 - Bnalr (208 T = o0

underP()for1<J<k
(iii) for every @ € O, there exists a neighbourhood Us(7) of 8 such that

p | o L (< 4D
96(’0(‘70) 00; 00, o
where
Enolh(X1(20,8)/ min({",o{")] = 0(1),1 < j,L < k3
and

(iv) {min(v,(T),vJ(T))}‘l{hg) - E.,og[h(T)]}—>0 as T — oo. under P{" 3
Here hg) stands for hg)(X T(:m,O)).
Let us expand Zr((vo,8); @) around the point , under the conditions (A0)

to (A2). Then
Zr((%,8);01) — Zr((v0,0);6)
Lo gvra [o 49 o [£7
= ]§=:1(01T - BJ)UJ ;](ﬂ 3—91 o - E'To,a 6—9; o
~ ()
+E51(8r = 6))v] 1 {E‘yoﬁ (a% [%} ) }
1
k kA ~ T T 52 f('ll)) .
+%j§1 Z.0ir = 0;)(0rr ~ Br)o{" v} )—(ﬂ_m'uj lo, {'—ao,aa, {-}f; |6=6
where || 8 — 8" ||<|| @ — 6r || and hence

Zr((0,8);01) — Zr((70,8); 8)

(0)
= 2 0,,(1)0,.(1) + 2 Op(l)Evoﬁ (60 [f ])

UfT

1k & 1 )
+2 % £0,(1)0,(1) ——m—7e—h!
2;=u=1 P10 )[Irlirl(v,(T>»vl(T))]2 g
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under the assumptions (A0) to (A2). It can be checked that the above expression
is 0p(1) as T — oo provided

) ’I(:’o)
— = <3<
E‘Y()ye(aoj [ 0fT )] 0’ 1 —_ ] —_ k)

since min(v
sult.

Theorem 3.1. Suppose the conditions (A0) to (A2) hold for a zero mean
square integrable martingale {f;(X:(7,0);8),t > 0}. Define

fr(X1(%,0);8)

](-T), vt(T))—Pwo under ng—measure. Hence we have the following re-

;8) = (3.
ZT((’YO,G),G) O'f(e,T) ( 1)
where
03(8,T) =< fr(X1(7,8);6) >r .
Then
PN P
ZT((’YO) 0)’0T) - ZT((70) 0)10)—')0 as T — oo
under {ng} provided
6 7(“70)
—— | L = <1<k. (3.
E»,o,e 60] UIT 011 S7= k ( 2)

In particular, if

ZT(('YO’O);O)_C"N(O, 1) as T — oo under {P,y(z,z}
then

Zr((70,8);87)5N(0,1) as T — o0 under {P{7)}

under the conditions (A0) to (A2) provided (3.2) holds.
Ezample 3.1. Consider the stochastic process { X;} defined by the stochastic
differential equation

dXt = b(Xg,’Y,O)dt + O'(Xt)de,t Z 0, Xo =0

where @ is the nuisance parameter and we would like to test the hypothesis Hp :
4 = 70. It is known that, under some smoothness conditions, the loglikelihood
function given the observation {X,,0 < s < t} is given by

tb(Xs;7, 0 1 ¥ (Xs;n, 0
£(v,0) = /0 —%T%s)—)dxs—a /0 -—(-ﬁxls)—)ds. ...(3.3)
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Using the Ito’s formula, it can be seen that (cf. Lanska (1979)),

t
4(7,0) = H(Xy;7,60) — H(Xo;7,0) +/ h(X;~,0)ds .- (3.4)
0
where
* b(y;7,0)
H(z;~,8 =/ a2 M RS W)
(z;7,0) oy W
and

1 b*(z;7,0) | 0b(z; 1.6), , Xz 6) £
o%(z) Oz a(m)
Let £,(y,0) denote the derivative of £,(7y,8) with respect to . Then

h(z;v,0) =

t
£(v,8) = H(Xi3v,0) — H'(Xo; 7, 6) + / H(X.; 7, 6)ds ..(35)
0

/ b (X;,0) V(Xein,0) f ¥(Xs:7,0)6(X;37,6) .. (3.6)

T o2(X,) o?(X;)

It is important to note that the expression (3.5) does not involve any stochas-
tic integral and {£(v,0);t > 0} forms a martingale with respect to the natural
family of o-algebras {#,} from (3.6). Hence, if {é,,t > 0} is F;—adapted, then
the process {£;(, ét);t > 0} process is well defined and one can expand it via
Taylor’s expansion using {3.4) as was done in Lanska (1979). This gives an exam-
ple of a martingale test statistic obtained from the martingale {£;(v, );t > 0}.
One can construct a similar class of martingale statistics by choosing suitable
Fi—adapted processes G and g so that

t
G'(Xt;7,0) — G'(Xo;7,0) + f g (Xs;7,0)ds,s >0
0

forms a F;-adapted martingale from which martingale test statistics can be
formed.

4. ASYMPTOTIC POWER

Define {f:(X:(v,0);8)} as in Section 3 and suppose the Conditions (A0)
to (A2) hold. Further assume that the equation (3.2) holds. We would like to
study the asymptotic behaviour of Zr((vr, 8); BT) as T' — oo where {vyr} is an
arbitrary collection in I' converging to 7o and @7 is a v(T)—consistent estimator.
Here
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fT(XT(:YTy 0)§éT).
os(0r;T)

Zr((vr,0);07) =
and

fr(Xr(yr, 0);6)

Let us write fq(:’) for fr(Xr(v,6);0) and o for 04(6;T).
In addition to the conditions (A0) to (A2) and the validity of the equation
(3.2) for all (v, 0), assume that the followmg conditions hold for {yr} :

(A3) (i) 3 m —E..5 T &7 L0in P( )—measureasT — oo for1<
m_ U]T T osr
j <k

(ii) there exists a neighbourhood Ty of 7, and a neighbourhood Us(7y,) of €
such that

52 ('r)
sup sup | 56,56 |< hH(X1(70,6))
€To Belp(10) !
where
Erp [(X1(10,0))/ (min(o{7, o{"))] = 01
for1 <j1<k;

1 ) f(“ﬂ‘) F) (70) P
(A4) o0 {E""‘ [aa ( or || e | 55 -0
asT — oo for 1 < j < k; and

(A5) max(v{",1 < j < k)(vr — ) = Op(1).

Note that

Zr((vr, 0); 0r) — ZT(('YT,O) )

(vr)
X o r_1 f
EOm =0 Ty %

+=ZE, 5k (B — 6,)(Brr — 0" L
g ~i=121=1\Y t Y; (T)v,(T) 090,00, | o7 0-6.

1 f(‘w) {8 f(‘rr)
=6~ N (60[ ] E”"’{%[cfn

|

<.

II M
/\
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r R a 7(‘71‘)
+Z51(0r — 0;)Eqrp 36, | o7

1 N R 1 52 f(‘rr)
—sk_ k(B — 6,)(0ir — 6,)u DD T
+2 i=151=1 (05 = ;) (O = 6)v ) v§T)”§T) 00;00, | o 6

From the v(T)—consistency of the estimator 67 and the conditions (A1), (A3) to
(A5), it follows that

Zr((r, 8); 01) — Zr((vr, 8); 8)

k- 08} 1 ('YT)
= X (0ir — 0]‘)1’;‘ (_T)E*m { [ ]} +op(1)
J=1 1)].
) f%”")
= Y‘ (9]T Oj)’uj (T) E,, 0{ [ ]} + op(1).

j=1

Equation (3.2) implies that

Zr((vr,0);01) ~ Zr((7r,6);8) = 0p(1)

in P(T)o-probablhty as T — oo. Hence we have the following theorem.
Theorem 4.1. Suppose the conditions (A0), (A1) and (A3) to (A5) hold
in addition to (3.2). Then

Zr((vr,8);07) — Zr((vr, 6);0) 20 in PT, probability as T — oo.
In addition to (A0) to (A5), suppose the following conditions hold.

(A6) Let mr(v,0) = E,p[fr(X1(7,8);0)]. Assume that mr(y,0) is twice
continuously differentiable with respect to v with uniformly bounded second
derivatives.

Expanding around vy, we have

omr(v, 0) _
o lv=7

('YT_'YO) azmT(’Y: 0) ' —
) oy 7

where | v — 70 <] 77— %0 |-

mr(vyr,8) = mr(v,0) + (/v — )
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(A7) Suppose that

fr(Xr(r,0);0) — mr(yr,6)
osr((vr,0);6)

in P,g?g—probability as T — oo where

LN(0,1)

air((vr, 0);8) =< fr(Xr(yr,6);8) — mr(r,8) >1
and

(AS) o.fT((’YTaB) 0) P

—lasT — oo in P( ) robability.
osr((70,0);8) -P Y

Then
c
{fr(X1(7r,0);0) —mr(yr,0)}/osr((vr,60);0)—N(0,1)
in Pg},—probability as T — oo. Define

fr(Xr(yr,6);0)
or((10,0);0)

Zr((vr,0);0) =

Hence

mT('YT)G)
UfT((’Yoae);e)

in P(T% —probability as T' — oc. Therefore, by Theorem 4.1,

Zr((yr,0);8) — LN(0,1)

mT(7Ta0)
o7 ((%,6); 6)

in P( Lprobabnhty as T — oo under the conditions (A0) to (Al) and (A3) to
(A8) prov1ded (3.2) holds and we have the following result.

Theorem 4.2. Suppose the conditions (A0), (A1) and (A3) to (A8) hold.
Then

Zr((vr, 0); 0r) — AN(0,1)

mr(yr, 6)

L
o (Cr0,0%;0) MO

Zr((yr, 0); 61) —
as T — oo.

Special case. Let us consider the special case when o s7((70,8);0) is non—
random and v! is non-random for 1 < j < k. Then

Zr((vr,0);0r) ~ N (%,1) . (40)

as T — oo.
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Furthermore
mT('YT) 0) - (77‘ _ 'YO) 1 6mT('7) 0) I
as7((1,8); 8) o;r((10,6);8) oy 7™
a2 2
Lr =) 1 Pmr(r.6), .(42)
2 omr((%,6);8) oy T
where | v — v |[<| 77— v |- Let nr = ma.x(v§T),l < 7 £ k). Suppose
Y7 =70 + (Anp)~! for fixed A > 0. ... (4.3)
Then
P 1 amT('Yyo) )
Z ,0);07) ~ N | ...(44
2, O)ifr) = N (e e PO (4.0

from (4.1). Under the conditions on mr(y,0) assumed above, it follows by
arguments similar to those in Neyman (1959) that the asymptotic power of the
test defined by the test statistic ZT(('yT,O);éT) is obtained from the normal
distribution with mean

...(45)

1 677’1'[‘ (71 0) |
Anrosr((10,0);8) Oy

=70

and variance unity.

Remarks. Assumptions (A0) to (A8) stated in this section are of the classical
Cramer—Wald type. It may be explored whether they can be restated in terms
of LAN or LAMN and Lj,—differentiability conditions. We do not do this here.

5. OPTIMAL TESTS IN THE NON-RANDOM CASE

In the last section, we have derived a formula for computing the asymptotic

power of the test statistic Zr((vr, 6); ér) where éfp is a vV —consistent estimator

j
of 8;,1 < j < k and ny(yr — ) = O(1) where 71y = max(v](T),l < j<k).

Let
d P(?
¢ (z;0) = log Eﬁ%)—(x)l“’:""'x € &r.

aP®
Assume that, for every = € X7 and for every (v, 8), the density a—‘ﬁ;(x) is at
least twice differentiable with respect to all the (k+1) parameters. Let qS,(,T) (z;0)
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&)
and ¢>g)(z; 0) denote the-derivatives of the log %%(:1:) with respect to vy and 6;
respectively evaluated at ¥ = 79. Assume further that

)‘%'30 = E‘yoﬂ[(b'(y?(XT(’Yo,o);a)]?<°°v
Moo = Byolt(X1(1,6):0)85 (X1(10,0);0)] < 00,1 <i <k

and

Mg = Enold8 (X1(0,0);8)85 (X1(70,0);0)] < 00,1 < i, j < k.

Note that ,\Sﬁ,, ’\-(yfg.- and /\((,‘,Te)] are all functions of @ and . Let

Moo A P
070 od ox o : o
T T >
A(T) — /\'(Yogl ’\g.o). s /\glo)k _ A‘nryo . A]2
: E : (T (T)
T T T A A
DYDY S 2 5

and suppose that Ag) is invertible. Define

ADAD = @ (%,8),...,a{" (2, 8))

where A' denotes transpose of a matrix A. Then the regression of qb,(,r"o‘) on
$D1<i<kis

k

3" 0P (y0, 00",

1=1

Define
k
Yr(X1(10,0);8) = D = 3~ a{" (10, )8} .(51)
1=1
and
5" (70, 8);T) = Enol¥r(X7(x0,8); 0)I%. . (5.2)
Let

Yr(Xr(%,8); 1)
o((70,0); T)
(B1) Suppose that differentiability with respect to (7y,8) under the integral

sign in (5.4) is valid and that the support of Pg) does not depend on (v,8).
Note that

Zr(X1(v0,8);87) = ...(5.3)
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dPI
g T
/x’ rra du’ =1, ...(5.4)
Eoo[¢{1] = 0 and Eyelf, ) = 0, ..(5.5)
and
EnysYrey ] = 0 ... (5.6)

(B2) Suppose differentiation with respect to @ under the integral sign is
permissible in the equation (5.6).
It is easy to check that

v.,ela—YT-+Y¢(T’]=0,15isk .. (5.7)
and hence
oYr
Ensl5g- ]—0 ...(5.8)
from (5.6) which implies that
Yr

0
E.'o,a{go—i W }-—-0 (59)

from (5.6) and (5.7). Let mgf )('y, 6) be the expectation of fr(Xt(v,8);8) under

P,g) as defined in Section 3 and mr(v,8) be the corresponding expression for

YT‘(X 7(7,80); 0) defined above. In order to compare the asymptotic powers of
level a test statistics from these, let us compute from (4.5). Note that

.- 1 omd(1,6) !
T Anroyr((0.0)8) O =
_ 1 E F) f(*/) I
A'rrfffr((‘ro 6™ 9 =%
T
- Arrrafr((“lo X)) En, O[f(%)¢( )]

T,
B 'Wfr(('m g5 Emol i1 {¥r + za‘%( M
0)
B A’TT"/T((vo, ); )E“m,e[fT Yr]

since E., g f: (7°)¢(‘_T)] = 0 by hypothesis which in turn follows from the fact

6f(‘Y)
Elfr (70) (T)] = 0.0 [ a4, l=vo| =0
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by (3.2) in the nonrandom case. All the above calculations can be justified
under the additional assumption that (B3) the expression E,g[fr(X7(v,8);0))
can be differentiated under the integral sign with respect to v and 6. Hence

C;‘f) S W (E'YO 9[ ('70)]2E7° 8[YT]2)1/2

- W["fr((%")»e)o’((vo,e) T)
= Anr 0((‘70’ 0) T)

= —t—— V1]’

]1/2

Anr0 ((7.0).T) oy
= —1 __E LY
Anro{((1.0)7) 70'0[ Té% ]
('since E.m‘a[YTqbgT)] =0,1<i<k)
A0 (0 ONT) 7=
- 1 8mr(m9)| .
Anr0 ((10.0)T) o T

Now, following arguments similar to those given in Bhat and Kulkarni (1972)
(cf. Basawa and Prakasa Rao (1980)), it can be shown that the C(a)-test based
on Yr is optimal in the sub-class of critical regions symmetric about y = 7, for
testing Hy : v = v against Hy : v # 7o.

6. EXAMPLE

Consider the diffusion process defined by the stochastic differential equation

dX(t) = (vX(t) + 0)dt + dW (t),t > 0,X(0) =0 ...(6.1)
where {W (t),t > 0} is the standard Wiener process.
The problem is to test the hyposthesis
Hy : v = v against Hy : v # 0

in the presence of the nuisance parameter 6. Let P(T) be the probability measure
generated by the process {X(t),0 <t < T} on C[O T) when (v,0) is the true
parameter. Here C[0, 7] is the space of all real-valued continuous functions on
[0,T] endowed with the supremum norm. Let uT be the measure generated by
the standard Wiener process on C[0,T]. Note that

T
Pq(,?(/0 X2(t)dt < 00) = 1 for all T > 0. ... (6.2)

Hence P,s?;) is absolutely continuous with respect to u” and
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(T)

log — / (VX () + 0)dX () — - / (X () + 0)2dt ...(63)
(cf. Basawa and Prakasa Rao (1980)). It is easy to check that
D = / X(£)dX(t) - / (X (t) + 6) X (£)dt ... (6.4)
and
o = / dX(t) — / (Yo X (£) + 0) X (t)dt ...(6.5)

when (o, 8) is the true parameter. In view of (6.1), it can be seen that

0= [ " Xaw ()

and

o / dW (t) = W(T).

In particular

M0, = mfo X (t)dW (t))?
Jo BrglX (Ot

2D = oouo X(@)dw (¢) [T dW (t))
fo ‘709[X (t)]dt
and
Mg = ExoWHT)] =T
Hence
/\(T) /\(T)
T .70
AD — [ /\(Tg /\% ...(6.6)
0

fo E o[ X2(t))dt j;)T E, e[ X (t)]dt ]
fo Eye[ X (t)]dt T

and
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AIND ™ = / Ey, (X (t))dt = a(y0,0) (say) -

Furthermore the regression of a&(T) on ¢(T) is given by

(% / Ernal X ()]d)6.

Define
Yr =Yr(y,0) = (T) a(’Yo,a)fﬁm
- jo (£)dW (2) — a(v0,0) fy dW (t) - (67)
= [1X() - a(0,0)]dW (2).
Then
7 (0,05T) = Engl¥l
= f Byl X (t) — a(0,0)]%dt ...(6.8)

f o X2(t)dt — Taz(’ro, 9)
= 0 EpolX2(t))dt — (fo Eyo[X(t)]dt)?.

Suppose there exists 0 < Br — oo independent of 8 such that

I

1 T
o [ BuslX(©) — aloe, Ot — b, 0) 2T — o0 .(69)

for some 0 < b(vy, 8) < co. By the central limit theorem for stochastic integrals

(cf. Basawa and Prakasa Rao (1980) or Kutoyants (1984)), it follows that
1000 5760 1) 85 T — oo ...(6.10)
B (0, 6) :

It is easy to see that

E.,o,o[Y'rtbgT)] =0. ...(6.11)

In order to use

Yr (%, 9)

Zr(0,0) = —o 222
BY?b1/2(xo, 6)

..(6.12)
as a test statistic for testing Hy : ¥ = o against Hy : v # 7, we need a vr—

consistent estimator of @ for some vr — oo as T — oo. It is easy to check from
(6.3) that
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91 ek, TXtht ' X(t) + 0)X(t)dt 6.13
5 (s | = [ xOaxo- [[axo+oxoa .61
and
6 dPTo T T
— llog —22 | = - . ...(6.1
= [og d,ﬁ] /O ) /0 (VX (t) + 0)dt (6.14)
The likelihood equations are
d dPT, 8 dPT,
e —_Y | = = — - . ...(6.15
By [l"g ar | =0 5 |8 gt (6.15)

They lead to the estimators

5 XD —4r [] X(t)de
=

..(6.16
. (6.16)
and
W X@dX @) - br [ X(t)dt (6.17)
T x2(t)dt
However, if (v, ) is the true parameter and 7o is known, then
T
X(T) ='yo/ X (t)dt + 6T + W(T) ...(6.18)
0
and the maximum likelihood estimator 67 of 8 satisfies the relation
. wW(T)
—f0= —. ...(6.19
br T (6.19)

Note that \/T(é']“ — 0) is normal with mean zero and variance one. Hence éT is
a vp—consistent estimator of 6 with vy = T'/2, The statistic

Yr(v0,r)
Zr(v,0r) = 2 A
By "6 /% (7o, 67)
can be used as a test statistic for testing Hy : v = 7o against the alternative

H; : v # v and it is an optimal asymptotic test.
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