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 Recurrence and transience of diffusions in a

 half-space
 SRINIVASAN BALAJI and SUNDARESWARAN RAMASUBRAMANIAN*

 Indian Statistical Institute, Bangalore Centre, 8th Mile, Mysore Road, R. V College Post,
 Bangalore 560 059, India

 For non-degenerate diffusions in the half-space with oblique reflection, a dichotomy between
 recurrence and transience is established; convenient characterizations of recurrence and transience are
 given. Verifiable criteria for recurrence/transience are derived in terms of the generator and the
 boundary operator. Using these criteria, 'real variables proofs' of some results due to Rogers,
 concerning reflecting Brownian motion in a half-plane, are obtained. The problem of transience down
 a side in the case of diffusions in the half-plane is dealt with. Positive recurrence of diffusions in half-
 space is also considered; it is shown that the hitting time of any open set has finite expectation if
 there is just one positive recurrent point.
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 1. Introduction

 Recurrence and transience of diffusion processes in Rd have been studied by several authors
 (see Khasminskii 1960; Friedman 1975; Bhattacharya 1978; Pinsky 1987; Ichihara 1978);
 these authors give verifiable conditions on the diffusion coefficients (or on the generator) for
 recurrence/transience. One might consult Pinsky (1995) for an up-to-date review of the
 known methods and results for the recurrence classification for diffusion processes without
 reflection. (For corresponding recurrence classification results on Markov chains using
 martingale ideas based on stochastic analogues of Lyapunov functions, see Meyn and
 Tweedie (1993a; 1993b) and the references given therein.)

 In this paper, we study recurrence, transience and positive recurrence of non-degenerate
 diffusion processes in the half-space/half-plane, with oblique reflecting boundary conditions
 at the boundary.

 If the state space is a bounded smooth domain, then the reflecting diffusion, being a
 Feller continuous strong Markov process on a compact space, has an invariant probability
 measure and hence is positive recurrent (see Bhattacharya and Waymire 1990, p. 230).
 Therefore problems of interest would be in unbounded domains, like the half-space.
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 98 S. Balaji and S. Ramasubramanian

 Another case which can easily be dealt with is the class of diffusions in the half-space

 {xl > 0} with conormal reflection at the boundary. Let L denote the generator. The coefficients can be extended in a canonical fashion to R0d; and we shall denote once again

 by L the generator of the corresponding diffusion in DRd. If { U(t) = (U1(t), U2(t), ...,
 Ud(t)): t > 0} is the L-diffusion in Rd, then { f(t) = (IUi(t)l, U2(t), ..., Ud(t)): t > 0} is
 the diffusion in the half-space with conormal reflection at the boundary (see Bhattacharya
 and Waymire 1990). Clearly U is recurrent if and only if U is.
 We now outline briefly the organization of the paper. In Section 2 we establish the

 dichotomy between recurrence and transience (starting, of course, with the natural
 definitions), and derive criteria for recurrence and transience. We give proofs only when
 they differ from the case of diffusions (in R d) without boundary conditions. (See case (ii)
 in the proof of Lemma 2.2(a) and the proof of (c) -= (d) in Proposition 2.3.) The main
 difference is the following. It is not clear if an analogue of Lemma 2.3(b) of Bhattacharya
 (1978) holds in the case of reflecting diffusions. (Of course, maximum principles under
 stronger differentiability conditions are available as in Protter and Weinberger (1967).)
 Applying the results of Section 2, in Section 3 we study the case of Brownian motion in the
 upper half-plane with variable skew reflection; this leads to a real variables proof of some
 results of Rogers (1991) concerning the same problem (Rogers had used complex analytic
 tools, in particular the so-called Pick functions).

 In Section 4 we consider the diffusion {(X(t), (t),X2(t))} in the space {x1 > 0} with
 {Xl(t)} being recurrent; we give conditions for {X2(t)} to go to -oo a.s. Positive
 recurrence is considered in Section 5; it is shown that if one point is positive recurrent then
 the hitting time of any open set has finite expectation, and in particular the diffusion itself
 is positive recurrent. Miscellaneous examples and comments are given in Section 6.

 2. Criteria for recurrence and transience

 Let D = {x E Rd: X1 > 0}, d > 2, and D = D U OD. We have the coefficients a, b defined
 on D, y defined on OD satisfying the following conditions:

 (Al) For each x e D, a(x)= ((aij(x)))1_i,j<d is a d x d real symmetric positive definite matrix; there exist A1, 12 >0 such that, for any x e D, any eigenvalue of
 a(x) E [A1, A2]; and aij(.) are bounded and Lipschitz continuous.
 (A2) For each x e D, b(x)= (bi(x), b2(x), ..., bd(x)) is a vector in R0d; bi() are

 bounded Lipschitz continuous.

 (A3) For each x e zD, y(x) = (1, y2(x), 73(X), ..., Yd(X)) is a vector in Rd, and each
 Yi C Cb(OD).

 Let the generator L and the boundary operator J be given by

 d 02f(x)
 Lf(x) = >j ai(x) xix + bi(x) x, xED, (2.1) i, = i=1xE D, (2.1)
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 Recurrence and transience of diffusions 99

 f(x)d Of(x) Jf(x) = i(x) x OD. (2.2)
 Let Q = C([O, xo): Rd) be endowed with the topology of uniform convergence on compacts.
 Let X(t) denote the tth coordinate map on Q, that is X(t, w) =: w(t); let {it} be the natural
 filtration.

 Let {Px: x e D} be the (L, J)-diffusion on D, that is,

 (i) Px{o): X(O, a)) = x, X(t, w)) E D, Vt > 0) = 1;
 (ii) for each f e C (RDd) with Jf > 0 on OD,

 f(X(t)) - J 1D(X(s))Lf(X(s)) ds is a Px-submartingale. (2.3)

 Moreover, there exists a continuous, non-decreasing, progressively measurable process ?(t) on
 Q such that

 (i) ?(t)= Jfo lOD(X(s)) d?(s);
 (ii) for each fzC 2 (Rd),

 f(X(t)) - 1D(X(s))Lf (X(s)) ds - D(X(s))JfD(X(s))Jf(X(s)) d4(s) is a Px-martingale. (2.4)

 The (L, J)-diffusion {Px:x E D} is strong Markov and Feller continuous; or equivalently
 under {Px} the process {X(t): t ~ 0} is strong Markov and Feller continuous. By the
 existence of a continuous transition density under the conditions (Al)-(A3), the strong Feller
 property follows: see Ramasubramanian (1996).

 For any open set V in D, define the stopping time

 rv = inf{t >O0 : X(t)0 V}.

 Note that we are not assuming V to be bounded. If V is bounded, by Lemma 3 in
 Ramasubramanian (1986), we have Px(rv < oc) = 1 for all x E V.

 Lemma 2.1. Let V be a bounded open set in D, g a bounded measurable function such that,
 for x e V

 g(x) = Ex[g(X(rv))]. (2.5)

 Then g is a continuous function on V

 Proof In view of strong Markov, strong Feller properties of (L, J)-diffusions, Theorem 13.1
 of Dynkin (1965) and Lemma 2.2 of Bhattacharya (1978), it is enough to show that

 lim supPx(|X(t) - x1 > e) = 0, (2.6)
 t10 xEK

 for any K C D, K compact and e > 0. But this follows from the uniform estimate given in
 Stroock and Varadhan (1971, p. 181). ]
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 Lemma 2.2 (a) Let U1, U2 be open sets in D such that U1 is non-empty and Uln U2 = .

 Let ai = inf {t > 0: X(t)O (Ui)c}, i = 1, 2. Then x--Px(aol < 0`2) is a strictly positive
 continuous function on (UI)C f (U2)c.

 (b) Let U be an open set in D. Then xH--Px(rU < oo) is a strictly positive continuous
 function on U

 Proof. (a) Let g(x) = Px(Ol < 02), and x e U, n U' be arbitrary. Let V be a neighbourhood
 of x such that x E V C V C (U1)c n (U2)c. Then we have

 g(x) = Ex[Ex(rv)(l{o <o2}] = Ex[g(X(rv))]. (2.7)
 Hence by Lemma 2.1, g is continuous on V It remains to show that g is strictly positive.
 Case (i): x E Dn fl Un U12. Since (L, J) diffusion behaves like L-diffusion till hitting dD,

 by the support theorem of Stroock and Varadhan (1972), it follows that g is strictly
 positive.

 Case (ii): x E OD n Uc n Uc. Let 6 > 0 be such that B(x: 6) n Ui = U, i = 1, 2. Then by
 the strong Markov property, g(x) = Ex[g(X(rB))], where TB = inf { t > 0: X(t) B(x: 6)}.
 Suppose g(x) = 0. Then Px(ao < U2) = 0, PxX(TB)-'-a.s. Since (L,J)-diffusion does not hit
 aD On B(x: 6), which is a (d - 2)-dimensional manifold (see Theorem 3.7 of Rama-
 subramanian 1988), it follows that Pz(al <a2) = 0 for some z E Dn AaB(x: 6). This
 contradicts case (i). Hence g is strictly positive.

 (b) Follows directly from (a) by taking U1 = Int(Uc) and U2 = 0. F-

 Definition. (a) A point x E D is said to be a recurrent point for (L, J)-diffusion if, for every
 e >0,

 Px(X(t) E B(x : e) for a sequence of t's T oc) = 1. (2.8)
 (b) A point x E D is a transient point for the (L,J)-diffusion if

 Px(lim IX(t)= = c) = 1. (2.9)
 If all the points are recurrent (transient) then the diffusion is recurrent (transient).

 Proposition 2.3. Assume (AJ)-(A3). The following statements are equivalent.

 (a) xo E D is a recurrent point.
 (b) P,x(X(t) E U for some t > 0) = 1, for all non-empty open sets UC D.
 (c) There exist zo E D, O< r< r ri, y E OB(zo: rl) such that Py(r < oo) = 1, where

 S= inf {t O0: X(t) E B(zo: ro)}.
 (d) There exists a compact set K C D such that Px(X(t) E K for some

 t > 0) = 1,for all x ED.
 (e) Px(X(t) E U for some t > 0) = 1, for all x E D and for all non-empty open

 sets UC D.

 () Px(X(t) E U for a sequence of t'soo) = 1, for all x E D and for all non-empty
 open sets UC D.

 (g) (L, J)-diffusion is recurrent.
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 Proof We will prove only (a) = (b) and (c) = (d); proofs of other implications are either
 trivial or analogous to the corresponding implications in Bhattacharya (1978).
 (a) (b). Let xo E D be a recurrent point, and assume, without loss of generality, that

 xo 0 U. Let B be a ball such that B C U. Choose e > 0 such that B(xo, e)n B = 0. Let U,
 be a bounded open set such that B(xo, e)U B C U1. By Lemma 2.2, and as the diffusion
 exits out of bounded sets in finite time, we have

 inf Py(al < 02) > 0, (2.10)
 yE OU1

 where oi = r and O2 = (,~)c. The rest of the proof follows as proof of (a) (b) in Proposition 3.1 of Bhattacharya (1978).

 (c) => (d). Let K = B(zo: ro); y E OB(zo: rl). By (c) we have Py(r < 00) = 1.
 Case (i): y E D. Define

 V(x) = 1 - Px(r < 00). (2.11)

 By Lemma 2.2, V is continuous on KC. By the strong Markov property

 0 = V(y) = E,[ V(X(y))], (2.12)

 where 1r is the exit time from B(y: 6) with B(y: 6) n K = p, B(y: 6) C D. By (2.12) we
 have V(z) = 0, PyX(r)-l-a.s. Now by the support theorem for L-diffusions (see Stroock and
 Varadhan 1972), and continuity of V, V(z) = 0 for all z E OB(y: 6). This holds for all
 sufficiently small 6 < (rl - ro) A d(y, OD). If z E D n KC, then one can find points
 yo, Yl, ..., Yk+1 E D n Kc such that yo = y, Iyi+l - yji < (Iyj - zo - ro) A d(yj, OD) and
 Yk+1 = z. By repeating the above argument, we find

 V(yo) = V(yl) = ... = V(z) = 0. (2.13)

 Thus V- 0 on KC n D. By continuity, V- 0 on KC and hence on D.
 Case (ii): y E OD. As in equation (2.12) we have 0 = V(y) = Ey[ V(X(r))] by the strong

 Markov property. Hence V(X(r)) = 0, Py a.s. Since (L, J)-diffusion does not hit
 OD n OB(y: 6) (see Ramasubramanian 1988) we have V(z) = 0 for some z E Dn KC.
 Thus the problem is reduced to case (i). Hence the proposition is proved. D

 For any compact set K define UK = inf { t 0: Xt E K}.

 Theorem 2.4. Assume (AJ)-(A3).
 (a) (Dichotomy.) (L, J)-diffusion is not recurrent if and only if (L, J)-diffusion is transient.
 (b) (L, J)-diffusion is recurrent if and only if there exist a compact set K with non-empty

 interior, a point x E Kc and a measurable function u such that

 (i) u(z)Too as Iz Ioo;
 (ii) Ex[u(X(aK)) 1< u(x).

 (c) (L, J)-diffusion is transient if and only if there exist a compact set H with non-empty
 interior, y E He and a measurable function u such that
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 (i) Ey[1 {~ <O u(X(a H))] < u(y);
 (ii) u(y) < inf u(z).

 zEH

 Proof (a) If (L, J)-diffusion is transient then it trivially follows that (L, J)-diffusion is not
 recurrent. Now let us suppose that (L, J)-diffusion is not recurrent. Let x E D be arbitrary

 and choose ro, rl such that Ix < ro < rl. Put 61 = suplyl=ri Py(uo <00), where
 uo = inf { t > 0: X(t) B(O: ro)c}. Since no point in D is recurrent by the previous
 proposition, we have Py(uo < oo) < 1 for all y such that jyl = rl. Now as y-+Py(uo < oo) is a
 continuous function, we have 61 < 1. Hence, proceeding as in the proof of Theorem 3.2(b) of
 Bhattacharya (1978), we get the result.

 (b) Necessity. Let u be a function such that u(z) = i (Izl), where ui is a strictly increasing
 function with limroo ui(r) = oo. Let K = B(O: 1) and choose x such that Ixl > 1. As the
 diffusion is recurrent, IX(oK)I = 1, Px a.s. Hence we have

 Ex[u(X(OK))] = i~(1)< u(x). (2.14)
 Sufficiency. Suppose the diffusion is not recurrent and so by part (a) it is transient. Let

 A = {K < oo}. By transience we see that Px(A) > 0; and again by transience and (b)(i)
 note that u(X(UK)) = 00 on Ac. Hence we have Ex[u(X(UK))] = 00, which is a
 contradiction.

 (c) Necessity. Let H = B(O: 1). Put u(x) = Px(aH < o00), x E D. Then we have

 u(x) = Ex[1{U<I,, }1] = Ex[1{U<j,, }u(X(aH))], since u(X(U-H)) = 1 on {(H < oo}. By transience u(x) < 1 for Ixl > 1, but u(z) = 1 for all z E H. Hence (ii) is also satisfied.
 Sufficiency. Suppose the diffusion is not transient. Hence by part (a) it is recurrent.

 Therefore by (i) and (ii) of (c),

 u(y) > Ey[l(o {U<}u(X(o H))] = Ey[u(X(o H))]

 > inf u(z) > u(y), (2.15)
 zE H

 and hence we have a contradiction. Therefore the diffusion is transient. D

 We now derive some corollaries which are analogues of Proposition 3.1 and 3.2 of
 Pinsky (1987).

 Corollary 2.5. If there exist ro > 0 and u E C2(Rkd\B(O: ro/2)) such that

 (i) u(x)Too as xiTxoo;
 (ii) Lu(x) < 0, Ixl >j ro;
 (iii) Ju(x) <- O, {Ixl > r0} n OD,

 then (L, J)-diffusion is recurrent.

 Proof By It6's lemma, the optional sampling theorem and by conditions (ii), (iii) above, we
 have

 Ex[u(X(t A UK))] < u(x), (2.16)
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 where K = B(O: ro). Let A = {K < 00}. If Px(Ac)> 0 then by dichotomy (Theorem 2.4(a))
 the diffusion is transient and hence limto, IX(t, o)l = 00, for w E Ac. Hence as u can be
 taken to be non-negative without loss of generality,

 lim Ex [u(X(t A UK))] > lim Ex[1Ac u(X(t A OK))] = 00. (2.17)
 t--+oo t-+oo

 Note that (2.17) contradicts (2.16). Hence Px(AC) 0.
 Now letting t --+ 00oo we have

 Ex[u(X(uK))] u(x). (2.18)

 By Theorem 2.4(b) we have that the diffusion is recurrent. D

 Corollary 2.6. If there exist ro > 0 and a function u E CC2(Rd\(B(0: ro/2)) such that

 (i) Lu(x) < O, Ixl > ro;
 (ii) Ju(x) 0, { Ixl ro } n D;
 (iii) there is a point xo such that JxoI > ro and u(xo) < inf xl=ro u(x), then the diffusion

 is transient.

 Proof Let K = B(0: ro). Without loss of generality let us take u >: 0. By It6's lemma, the
 optional sampling theorem and by conditions (i), (ii) above, we have

 Exo[u(X(t A UK))] < U(Xo). (2.19)
 Now

 Ex [ 1 {UOK <} u(X(OK))] = limEx [1 {UK-<t} u(X(aK))]

 < lim{Exo [1 {K<t} u(X(uK))] + Ex [1{UK > t}u(X(t))]}

 = limExo [u(X(t A OK))] U(Xo). (2.20) t--+oo

 Hence by Theorem 2.4(c) we have transience. D

 Now let us give some criteria for recurrence and transience of diffusions in terms of the
 coefficients of L and J. These are analogues to the criteria in Bhattacharya (1978). Let L, J
 be defined as in (2.1), (2.2).

 Define

 d

 A(x)= ( ixj ,
 i, j=12

 d

 B(x) = aii(x),
 i=1

 d

 C(x) = 2Z xibi(x).
 j=1
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 Put

 B(x) - A(x) + C(x)
 P(r) =sup

 IxI=r A(x)

 f(r) = inf B(x) - A(x) + C(x) - Ix =r A(x)

 I(r) = du; 1(r) = ; r (u) du
 1U 1 U

 Proposition 2.7. Assume (AJ)-(A3).

 (a) Let u(x) = Ixl exp(-7(r))dr. If u(x) -- +0 as x - oo and Ju(x) < 0 for
 x G OD, IxJ > 1, then the diffusion is recurrent.
 (b) Let v(x) = xl exp (-(r)) dr. If limx,,v(x) < oc and Jv(x) > 0 for

 x 2 OD, Ixl > 1, then the diffusion is transient.

 Proof This easily follows from Corollories 2.5 and 2.6 and the proof of Theorem 3.3 in

 Bhattacharya (1978). D

 Remark 2.8. Note that (L, J)-diffusion can be transformed to (L, O/Ox,)-diffusion through a
 C2-diffeomorphism of D (see Ramasubramanian 1986). Let i, b denote the coefficents of L.
 Define A, B, C analogous to A, B, C above with a, b replaced by a, b.
 Define

 B(x) - A(x) + C(x) P(r) = sup
 Ixl=r A(x)

 u(x) = xexp - r du dr Jl 1 J U /
 Note that Oui/xl = 0 on OD. Thus if i(x) -- 00oo as Ixl -- 00, we have that (L, J)-diffusion is
 recurrent. Similarly we can also have a condition for transience.

 Remark 2.9. The boundedness assumptions in (Al), (A2) can be relaxed to linear growth
 conditions on a, b. Under such conditions the (L, J)-diffusion is conservative. As in Lemma
 2.5 of Bhattacharya (1978), the strong Feller property can be established. It is now clear that
 the analysis of this section can be carried through under the relaxed assumptions. We omit
 the details.
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 3. Reflecting Brownian motion in the upper half-plane with
 variable skew reflection

 In this section we will deal with recurrence and transience of reflecting Brownian motion
 (RBM) with variable oblique reflection in the upper half-plane. Rogers (1991) has dealt with
 this problem but has used complex analytic techniques to get the results. Here we will give a
 real variables proof of these results, using in particular Corollaries 2.5 and 2.6 above.

 In this case it is convenient to deal with the problem in polar coordinates. Therefore we
 shall describe the set-up in Cartesian coordinates as well as in polar coordinates.

 Let

 S = {(xl, x2): X2 > 0, -oo < X1 < 00} = {(r, 0): r>0, 0 E (0, tr)}

 OiS = {(xi, 0): x, > 0} = {(r, 0): r > 0, 0 = 0}

 O2S ={(xi, 0): xi <O} = {(r, 0): r > 0, 0 = t}

 OS = 01S u 02S u J{(, O)}; S = s u S.
 Here the generator L is the Laplacian, viz.,

 1 1 a2 2a212
 L A= +- -- -+ -+-

 2 2 ax rx 2 ar2 r r r2O92

 For x E OS, let y(x) be the direction of reflection and let ir(x) be the angle that y(x) makes
 with the normal at x, clockwise direction being taken to be positive.

 As in Section 2, we will assume that the normal component of y is bounded away from
 0; Hence without loss of generality, we may take the normal component to be 1. So we may
 write y(x) = (yi(x), 1) = (tan y(x), 1). As y is bounded, and bounded away from the
 tangential direction, note that there exists a fl > 0 such that

 -.r/2 + f < r(x) t< r/2 - p.

 Also, we assume that ri(x) E Cb(OS).
 Now the boundary operator J can be written as

 Of(x) Of(x) Jf(x) = y (x) + 2 ax, ax2

 Of(() 1 Of(.)

 tan r(.) ?r + ,Ir - ' on OlS Or 1rOf (3.1)

 -tan r ( .) - r ( on 02S.
 For x E 01S, note that r(x) = r(lxI, 0), and for x E 02S, we have r(x) = r(lxl, xr). We will
 use this notation in the sequel.

 Theorem 3.1. (a) If lim inf r~-oy(r, r)+ liminfr~,o(-r(r, 0))>0, then the RBM is recurrent.
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 (b) If lim supr-,,,(r, r) + lim supro(-r(r, 0)) < 0, then the RBM is transient.
 (c) If i7(r, 0) is non-decreasing and i7(r, ;r) is non-increasing, and if

 lim i(r, 0) = lim i(r, .r),
 r---+OO r---+OO

 then the RBM is recurrent.

 Proof (a) Let lim infr,,,(-i7(r, 0)) = $1 and lim infr oo7(r, ;r) = $2. By hypothesis
 ~1 +2 = >0. Put 1 -e/4=O1, 2-e/4=02 and a=(01+02)/7r. Note that
 01 +02 >0 and hence a >0. Now define the function u on the set B(O: 1)C n S in
 terms of polar coordinates as follows:

 u(r, 0) = ra cos (aO - 01). (3.2)

 Clearly 1Au = 0. Note that -tr/2 < -01 < aO - 01 < 02 < r/2, for all 0 E [0, Jr]. Hence
 {cos (aO - 01): 0 E [0, tn]} is bounded away from 0. Therefore u(r, ) -- 00oo as r -- 00 since
 a > 0. On O1S we have

 Ju(r, 0) = ara-1 cos 01 tan 7(r, 0) + ara-1 sin 01. (3.3)

 But since lim infroo(-ir(r, 0)) = 1, there exists an sl such that for all r > sl,
 r(r, 0) :> 1 - e/4 = 01. Hence tany (r, 0) < tan (-01). Consequently as a > 0, by (3.3),
 we have on 1S n { r > si }

 Ju(r, 0) < 0. (3.4)

 Similarly, on 02S

 Ju(r, a) = -ara-1 cos 02 tan r(r, t) + ara-1 sin 02. (3.5)

 But as lim inf r-oo i(r, n) = $2, we have, for some s2 > 0, for all r > s2, 77(r, Z) >
 ?2 - e/4 = 02. Substituting in (3.5) we see that, on 02S n {r > s2}

 Ju(r, ;r) < 0. (3.6)

 Hence by (3.4) and (3.6), we have on [1IS n {r > so}] U[02S n {r > so}], Ju < O, where
 so = max {sI, S2}. Now by Corollary 2.5 the process is recurrent.

 (b) Let lim suproo(-ir(r, 0)) = $1 and lim supr-,,o ~(r, ;r) = ?2. By hypothesis i1 + 2 =
 -E <0. Put j1 + e/4 = 01 and ?2 + e/4 = 02. Note that 01 + 02 < 0 and let
 a = (01 + 02)/r < 0. Define

 u(r, 0) = ra cos (aO - 01). (3.7)

 Proceeding as in the proof of part (a) with obvious modifications and using Corollary 2.6, it
 can be proved that RBM is transient in this case.

 (c) Let limroo r(r, 0) = -01 and limroo r(r, r) = 02. By assumption r(r, 0)T - 01 and
 r(r, ;r)102. Define

 u(r, 0) = log r + 0 tan Oi. (3.8)

 With u defined by (3.8) and using Corollary 2.5, recurrence of RBM in this case can be
 established along similar lines as in part (a). O
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 Remark 3.2. Parts (a) and (b) of Theorem 3.1 have been proved by Rogers (1991) using
 complex analytic methods. It may be mentioned that Rogers obtains other results as well
 concerning RBM with variable reflection field, using Pick functions from complex analysis;
 see also Rogers (1990). Since two-dimensional Brownian motion is well behaved under
 conformal mappings, the complex analytic approach as considered by Rogers is a natural tool
 to use. Observe that Brownian motion in R 2 is a critical case as far as recurrence/transience

 is concerned; that is Brownian motion in R 2 just fails to be transient! (The authors thank
 Prof. Varadhan for this remark.) This aspect is also manifest in part (b) of Theorem 3.1, in
 the sense that a mild perturbation by a suitable 'reflection field' is enough to make the
 process transient. Our 'real variables' approach enables us also to consider other critical cases
 like Example 6.3.

 A particular case of part (c), viz., when y(x) - constant, has been dealt with by Williams
 (1985). In fact our choice of the function u in the above proofs has been inspired by
 Varadhan and Williams (1985).

 Proposition 3.3. Let qr(x) be the angle of reflection on the boundary aS such that it satisfies
 r(xl) = q(xi + 1), that is, we consider periodic reflecting conditions. Now let

 Y1 = inf { q(xi): x1 E [0, 1]},

 Y2 = sup {y(xi): xl E [0, 1]}.
 Then if y = 0 and YI < y2, then the RBM is transient.

 Proof Put u(r, 0) = ra cos (a0 - r) - 6 tan y2, where a = -y2/2 and r = 62/2. Then,
 along the same lines as in the proof of Theorem 3.1(b), we have transience of the
 process.

 Note. The condition in Proposition 3.3 above is not covered by the inequalities of Theorem
 3.1 (a)-(b).

 Remark 3.4. Consider the generator and boundary operator as follows:

 _f(_) a2f(x) 5,f(x) L f (x) = (m2 + 1) + 2m ?+ x ED,
 Ox2 UXl UX2 X2

 f(x) f(x) Jf(x)= X2 x E D. dx2

 where m is a positive constant. That is, we consider diffusion with generator L and
 normal reflection at the boundary. By a transformation of the upper half-plane as in
 Ramasubramanian (1988), we see that (L, J) diffusion is transformed to (A, J)-diffusion,
 where

 af(x) Of(x)
 Jf(x)= m +

 Ox1 Ox2
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 By Theorem 3.1(c) we see that (A, J)-diffusion is recurrent. Hence (L, J)-diffusion is
 recurrent. It is interesting to note that Proposition 2.7 does not yield any information
 concerning the recurrence of (L, J)-diffusion. This is not altogether very surprising because
 both Theorem 3.3. of Bhattacharya (1978), and Proposition 2.7 work well when the generator
 and the boundary operator preserve the class of radial functions.
 Our proof of Theorem 3.1(a) and a theorem due to Menshikov and Williams immediately

 suggest the following result concerning passage-time moments.

 Proposition 3.5. Suppose the hypothesis of Theorem 3.1(a) holds. Let a be as in the proof of
 Theorem 3.1(a). Then there exists a positive constant c < 1 such that r > 0,

 (i) Ez(rP) < oc, for p < a/2, Izj > r;
 (ii) Ez(rnp) = o, for p > a/2, jzj > re, where Tr = inf {t > 0: 1Z(t)J = r}.

 Proof. Let u be the function as in the proof of Theorem 3.1(a). Then the proposition follows
 by applying Theorem 4.1 of Menshikov and Williams (1996) to the function u. As Ju < 0,

 the proof of Theorem 4.1 essentially goes through, with minor changes. E]

 4. Transience down a side in the half-plane

 In this section we revert to the notation of Section 2. Let

 D = {(xl, x2): X1 > 0, -00 < x2 < 00}.
 Let

 2 a2f(x) 2

 Lf (x) = > aij2f( xix bi(x) Of(x), x ED, (4.1) i,j= 1 i i= xE D, (4.1)

 Of(x) _f(x)
 Jf(x) =ax- ) + Y2(X) , x E OD. (4.2) Oxi (x2

 be respectively the generator and boundary operator. Let (XI(t), X2(t)) denote the (L, J)-
 diffusion on D. Suppose {Xi(t)} is recurrent (that is, for any open set U in [0, 00) and any
 x E D, Px(XI(t) E U for a sequence of t'sToo) = 1). We give conditions for {X2(t)} to go to
 -oo a.s. Similar conditions can be given for {X2(t)} to go to +00oo. In this regard let us prove
 the following proposition.

 Proposition 4.1. Let there be a function u E C2(I2) with the properties

 (i) u > 0 and u(x) = (x2);
 (ii) i(x2) decreases as x21 - oo;
 (iii) i (x2) increases to o00 as x2too;
 (iv) Lu < 0 on D and Ju < 0 on OD.
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 Then the diffusion is transient, and furthermore

 Px li X2(t) = -oo =1, Vx E D.

 Proof Let r E R be arbitrary but fixed. Let

 Tr = inf {t > 0: X2(t)= r},

 S1 = {(Xi, x2): x2 > r),

 S2 {= (x1, x2): x2 < r}.

 Step 1. We will show that

 sup Px(Tr < 00) < 1, (4.3)
 xEL

 for any horizontal line L C S2. This, in particular, implies that the process is transient.

 Suppose (4.3) does not hold; then supxeL Px(Tr < 00) = 1. So given E > 0, there exists an
 x(O) E L such that

 Px(O)(Tr < 00) > 1 - E/2, (4.4)

 u(x(o)) > Ex(o)[u(X(t A Tr))]

 = E(co) [1 {r, t} u(X(zr))] + Ex(o) [1 {r > t} u(X(t))]. (4.5)
 Let A = {Tr < oo00} and AT = {Zr < T). Choose T such that Pxo(ArT)> 1 - e. This is possible
 as ATIA. Consequently as u > 0, we get

 u(x(O)) > Ex(o) [11,< rT} u(r)] + Ex(O)[1{Tr > TI u(X(T))]
 = u(r)Pxo(AT) + Ex(o)[1Ac u(XT)]

 > iU(r)(1 - e). (4.6)
 But this contradicts (ii) above. Hence (4.3) holds and step 1 is complete.
 Step 2. We will show that, for all x E S1,

 Px(Tr < 00) = 1. (4.7)

 Put

 r2k = inf{t > 12k-1: X1(t) = 1}; r2k+l1 = inf {t > r2k: X1(t) = 2}.

 Since the process {Xl(t)} is recurrent note that Px(rk <00) = 1 for all k. Hence by
 condition (iv), It6's lemma and the optional sampling theorem we have

 Ex[u(X(rk A Tr))] L U(X), (4.8)

 for all k. Let A = {zTr <00} and B = {rk <00 for all k}. Suppose (4.7) does not hold. Then
 Px(Ac) > 0, and hence by recurrence of {Xl(t)} we have Px(Ac n B) > 0. By transience of the
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 process (by step 1) and as X1 and X2 are bounded below by r A 0 on Ac, note that for a.a.
 w E Ac,

 Xl(t, w) + X2(t, w) --+ 00 as t --- oc. (4.9)
 This implies that, for a.a. w E Ac n B,

 X2(rk((), 0 ) --+ 00 as k -- oc. (4.10)
 Now by (4.8) and condition (iii)

 u(x) > lim Ex[u(X(rk A Tr))] > lim Ex[1AcnBu(X(Tr A 1rk))] = 00, k-*oo k-*oo

 which is a contradiction. Hence (4.7) holds and step 2 is complete.
 Step 3. Let x = (xl, x2) be arbitrarily chosen. Choose r, rl such that rl < r < x2. Define

 6r, = sup {Py(Tr, < 00): y such that y2 = r).

 By step 1, 6,r < 1. By the strong Markov property,

 Px(X2(t) = r for a sequence oft'sToo) < Px(52i+1 < 00)

 = Ex[12i-Lc Px(2_i-1)((r < 00A): l rPx(2i-1 < 00) .. . 6ir (4.11) where

 ?2i = inf { t > 2i-1: X2(t) = r}

 ?2i+1 = inf { t > 2i: X2(t) = ri}, i = 1, 2, .

 As 6r, <1 note that 61 - O0. Hence Px (lim supt-,,X2(t) < r) = 1. As r < 0 is arbitrary, the
 proposition is proved. E]

 Example. Consider the function u(x)= ex2. Let L, J be defined as in (4.1). Then
 Lu(x) = (a22(x) + b2(x))ex2 and Ju(x) = y2(x2)ex2. Hence, if a22(x) + b2(x) < 0 and
 y2(x2) 0, we have, on assuming the recurrence of X1, that the process is transient down
 to -00.

 Note. Conditions for recurrence of Xi are being investigated. In this connection one may
 consult Ramasubramanian (1983) for conditions for recurrence of projections of diffusions in
 Rd (without boundary conditions). Such conditions (together with appropriate modifications
 required to ensure that the derivatives along the reflecting directions are negative) in the
 present context are not difficult to prove.

 5. Positive recurrence of diffusions in the half-space

 In this section we will deal with positive recurrence of diffusions and the existence of
 invariant measures. First, let us define some stopping times which will be used below. We
 consider diffusions in the half-space D, where

 D={(Xl, x2,..., Xd): x1 > 0}.
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 Let U be an open set in D. Define

 ru = inf { t 0: X(t) 0 U} = exit time fromU.

 aru = inf { t 0: X(t) E U} = entrance time intoU.

 For c > 0, define

 rc = inf {t > 0: IX(t)l = c}.

 Definition. A point x E D is said to be positive recurrent if there exist bounded open sets U1,
 U2 such that x E U1 C U1 C U2 and

 sup {Ez(auu): z E aU2} < 00. (5.1)
 The diffusion is said to be positive recurrent if all points are recurrent.

 Lemma 5.1. Let x be a positive recurrent point; let Ui, U2 be open balls such that (5.1)
 holds. Let U, V be balls such that U1 C U C U C U2 C U2 C V. Then

 sup {Ez(ou,): z E aU} <00 (5.2)
 sup {Ez(aUu,): z E aV} < oo. (5.3)

 Proof By the strong Markov property, Lemma 3 of Ramasubramanian (1986) and by positive
 recurrence of x, we have

 sup Ey(aU,) a sup Ey[lo, <r1U2 oU,1] + sup E,[1O,,1 >T 2 * UO1] yeOU yeOU yeOU

 < sup Ey(rU2) + sup E,[Ex(ru2)( U)]
 yeOU yeOU

 < 00. (5.4)

 By Proposition 2.3, the existence of a positive recurrent point implies that the diffusion is

 recurrent and hence we have aor2 < oo, Pz a.s. for z E U'. Therefore we have

 sup Ez(a U,) = sup Ez[Ez(o u, I|9 U2)] zeOV zeOV

 = sup Ez(Ex( U 2)(o U)
 zeOV

 < sup Ez(a U,) < oo. (5.5)
 zE U2 F]

 Proposition 5.2. If there exists one positive recurrent point, then the diffusion itself is
 positive recurrent.

 Proof Let xo be a positive recurrent point and let y be an arbitrary point. We will show that

 y is positive recurrent. Since xo is a positive recurrent point, we can find two balls UI, U2
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 such that (5.1) holds. Let U3, U4 be balls such that U2 g U3 g U3 C U4 and y E U3. By
 Lemma 5.1,

 supEz{av,: z E 0U4} < oo. (5.6)

 Since av3 < a, Pz a.s. for z E 9 U4, we have
 sup {Ez(u3 v: z E 0U4} < oo. (5.7)

 Combining (5.6) and (5.7), we see that y is a positive recurrent point. As y was chosen to be

 arbitrary, the diffusion is positive recurrent. F]

 Our next objective is to obtain an upper bound for the expected hitting time of a
 bounded open set. For this we need the following lemma.

 Lemma 5.3. Let A be a bounded open set in D, and let r > 0 be such that A C B(0: r). Then
 there exist M > r, 0 < PA < 1, such that, for all x E B(0: r),

 Px(X(1) E A and IX(t)I : M, Vt E [0, 1]) > PA. (5.8)

 Proof. Since the diffusion has a continuous positive density and A is an open set, note
 that

 po -- inf {Px(X(1) E A): x E B(0: r)} > 0. (5.9)

 Let e = po/4. By tightness of measures {Px: x E B(0: r)} on C([0, 1]: Rd), we can find a
 compact set Ke , C([0, 1]: Rd) such that, for all x E B(0: r),

 Px(K) >1 - E.

 By Arzela-Ascoli's theorem, there exists M >0 such that Iw(t)l < M, for all t E [0, 1], for
 all o E Ke. Hence, for all x E B(0: r), by (5.9) we have

 Px(X-'(A) n Ke) = Px(X '(A)) - Px(X-'(A)\Ke)
 > Po - E = P0o =: PA (5.10)

 whence the lemma follows. DE

 Now with M, r as in the preceding lemma, let ro = 0 and put:

 qi = inf {t > 0: IX(t)l = r} V (1 A M);

 r72i = inf {t > 1r2i-l: X(t) 0 B(0: M)} A (q2i-1 + 1);

 rq2i+l = inf { t > 2i: X(t) E OB(0: r)}.
 Let F = {UA < 1, rM> 1}, where A, M are as in the preceding lemma. By (5.10) note that

 Px(F) > pA. (5.11)

 Proposition 5.4. Let A, r, M, pA be as in Lemma 5.3. For any x E B(0: r),
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 Ex(PA) 1 2 + sup Ez( r) Ex(Tr). (5.12) PA L. [zl < m

 Proof If suplzl.M Ez(Tr) = 00, note that (5.12) trivially holds. So assume
 sup jzlM Ez(r)< oo00. Then note that any point in B(O: r) is positive recurrent and hence
 the diffusion itself is positive recurrent. This, in particular, implies that the diffusion is
 recurrent. Therefore all the stopping times involved in the proof are well defined.

 Ex(uA)= Ex U Ads + Ex A 2ds
 [JO J Li>-JI AA772i-1j

 + Ex A [ A'2i+1 ds]. (5.13)
 i>l OAA?2i

 Clearly,

 [r AA1 1

 Ex dsj < Ex(Q1) = Ex(Tr V (1 A ZM))

 < 1 + Ex(r,). (5.14)

 Next, by the strong Markov property for i > 1,

 Ex[ A ds = Ex 1{UA >12i-}Ex(2i-1)J ds
 [ai A A772i-1

 < Px(OA > Y2i-1). (5.15)
 As {UA >Y1 } C FC, we have

 Px(OA >il) > (1 - PA). (5.16)
 Now observe that, for i > 3,

 Px(QA > 12i-1)= Ex[I{OA >172i-I lOFA >,2i-3=]
 < Ex[1 {UA >,,2i_3}Ex(l,2i-3)(l {A >(TMA1)})]

 < Px(OA > 72i-3) sUP Pz(UA >(rM A 1))
 IzI-r < (1 - pA)Px(QA > 172i-3). (5.17)

 As Y3 >1i a.s., by (5.16) we have

 Px(UA > 73) O (1 - PA). (5.18)

 By (5.17) and (5.18) we have

 Px(QA > r2i-1)  (1 - pA)i-1. (5.19)
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 Combining (5.15), (5.16) and (5.19), we have

 Ex ds 2 -d + (1 - pA). (5.20)
 i>l UOAA)]2i-1 PA

 By the strong Markov property and the fact that X(r2i) E B(0: M), we have
 O[AA72i+1 ] [AAr

 Ex [JAA?/ds2 = Ex l{UA >?2i}Ex(j2i,) ds

 < Px(OUA > 72i) sup Ez(sr). (5.21)
 As 172i > ?12i-1 a.s., we have

 Px(OA > r2i) < Px(OA > r2i-1) (1 - PA)i-1. (5.22)
 Combining (5.21) and (5.22), we obtain

 A A2i+1 sup Exil ds sup Ez(tr) (5.23)
 i> o AA?12i PA [Izl<M

 Now combining equations (5.13), (5.14), (5.20) and (5.23), we have the proposition. O

 Corollary 5.5. If the diffusion is positive recurrent then Ey,(OA) < 00, for any y E D and for
 any non-empty open set A C D.

 Proof Without loss of generality take A to be bounded open. Let y E D be arbitrary but
 fixed. Let x E A be arbitrary. By positive recurrence there exist open balls U1, U2 such that

 x E U1 U1 C U2 and (5.1) holds. Now choose r > lyl such that A U U1 C B(0: r). For any
 M such that B(0: r) U U2 C B(0: M), supIzIMEz(a ,)< oo00 by Lemma 5.1. Hence we have
 suplzlIMEz(tr) < oo, by continuity of sample paths. Choose a suitable M, such that Lemma
 5.3 and Proposition 5.4 hold. Now the corollary follows. O

 Proposition 5.6. Let ro > 0, e > O0, u E C2(Rd\B(O: ro/2)) be such that

 (i) Lu(x)< -E, xI x ro;
 (ii) Ju(x) < 0, {Ixl > ro} n oD;
 (iii) u(x) > 0 for all x such that Ixl |> ro.

 Then the diffusion is positive recurrent.

 Proof Let rn = inf { t > 0: IX(t)I | (ro, n)}. Then by It6's formula,

 Ex[u(X(t A rn,))] - u(x) <* -eEx(t A rt0). (5.24)
 So Ex(t A zn) < [u(x) - Ex(u(X(t A r 0)))]/e. Hence Ex(r,0) < u(x)/e as t - 00. But since

 rn Tr0 as n - oo00, we have
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 u(x) Ex(.ro) u < 00. (5.25)

 From (5.25) it follows that suPzl=r Ez(tro)< oo for any r > ro. Hence we have that the
 process is positive recurrent. []

 Remark 5.1. If the diffusion is recurrent, then, by the argument and results of Maruyama and
 Tanaka (1959), there exists a unique (up to scalar multiplicity) a-finite invariant measure.
 Furthermore, if the diffusion is positive recurrent, then, by the same arguments, the invariant
 measure is a probability measure. (Note that the Condition 6 of Maruyama and Tanaka
 (1959) is needed just for open balls.)

 Remark 5.2. In Bhattacharya (1978) a point x is said to be positive recurrent if, for all
 0 < ro < rl, we have Ez(aB(x:ro))< oo, for all z E B(x: rl). However, to prove the existence
 of an invariant probability measure a condition similar to (5.1) above is needed.

 Remark 5.3. Estimate (5.12) is stated (with a brief indication of proof) in Dupuis and
 Williams (1994), in the context of semimartingale RBMs in the orthant. As this estimate is
 likely to be very useful we thought it appropriate to write up a proof.

 Note. Our analysis concerning recurrence, transience and positive recurrence can easily be
 extended to unbounded domains that are C2-diffeomorphic to the half-space.

 6. Further comments and examples

 Example 6.1. Let D = {(x , x2): X1 > 0}. Put L = A/2 - 8/&xil, j > 0. Note that in R2
 L-diffusion is transient as the diffusion is (BI(t) - pt, B2(t)), where B1 and B2 are Brownian
 motions.

 But let us consider (L, J)-diffusion where J = /&xli. Now by taking u(x) = log Ixl, we
 see that

 Lu < 0 on D;
 Ju < O on OD.

 Furthermore, u(x) -+ 00oo as IxiToo. Hence the process is recurrent, by Corollary 2.5.

 Example 6.2. Now consider

 D = {(xl, x2): x2 > 0}.

 Let i, 1#2 be negative constants, and

 &f(x) ff(x)
 Lf(x) = Af(x) + l xl + #2X2

 OXl ZX2
 f(x) 8Of(x)

 Jf(x)= y(xl) + ; &xl Ox2
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 that, is we consider an Ornstein-Uhlenbeck process in the upper half-plane with reflection
 field (yi(xi), 1). We can have positive recurrence of the process in the following cases.

 Case (i). Let yi(xi) < 0, for xl 1, and yl(xl) > 0, for xl -1. Then with the function
 f(x) = log lxl, applying Proposition 5.6, we can see that the process is positive recurrent.
 Case (ii). Let #1 = /2 = P. Now consider the upper half-plane in polar coordinate form,

 that is,

 D = {(r, 0): r > 0, 0 E (0, it)}.

 Then the diffusion and boundary operators transform to

 0 1& 10 0 Lr,O = + -+ +r- ' r2 r ar 2 002 Or

 o 1n tan 17(0) + on 0 = 0

 &r r O- Jl=

 -tan 1(-) 0 on 0 = t. dr r8O

 Now if the reflection field satisfies the condition in Theorem 3.1(a), then by Proposition 5.6
 applied to the function u(r, 0) as in the corresponding proof, we have positive recurrence of
 the Ornstein-Uhlenbeck process.

 Similarly, if the reflection field satisfies the condition in Theorem 3.1(c), we have positive
 recurrence of the Ornstein-Uhlenbeck process. In particular, we see that the Ornstein-
 Uhlenbeck process with constant angles of reflection is positive recurrent.

 Example 6.3. Let S be the upper half-plane as in Section 3. Let

 2 &2f(x)

 Lf(x) = aij(x) Oxixxj
 where

 g(r)
 ai(x) = dy+ 2 xij,

 in which g(r) is a bounded Lipschitz continuous function. Note that S = {(r, 0): r > 0, 0 E
 (0, 7t)}. Let J be given by (3.1). In polar coordinates L above is transformed to

 2 2i 1a2
 L = (1 + g(r))-r2 + +r r2a02

 Case (i). Let the reflection field satisfy the condition in Theorem 3.1(a). Assume
 g(r) > 0. Take a, so and u as in the proof of Theorem 3.1(a). Note that 0 < a < 1. Then on
 [a1S n {r > so}] U [02S n {r > so}] we have

 Ju < 0. (6.1)

 As g(r) > 0, we have

 Lu < g(r)a(a - 1)ra-2 cos (aG - O1) < 0,
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 and in this case the process will be recurrent.
 Case (ii). Let the reflection field satisfy the condition in Theorem 3.1(b). Assume

 g(r) < 0. Take a, u as in the proof of Theorem 3.1(b). Since a < 0 we choose so > 0 such
 that, on [OiS n {r > so}] U [O2S n f{r > so}], we have

 Ju 0 0. (6.2)

 As a < 0 and g(r) < 0, note that

 Lu ~ 0.

 Hence the process is transient. In particular, if g(r) = -1/(1 + log r), we have recurrence in
 the unrestricted case (see Friedman 1975, p. 202). But in the upper half-plane with the
 reflection as above, the process is transient.

 Example 6.4. Let D = (xl, x2, X3, x4): X1 > 0} and let (1, Y2, Y3, Y4) be the reflection field on
 OD, where Y2, 73 and Y4 are constants. Consider Brownian motion in D with reflection field
 as above. The equation can be explicitly written for reflection Brownian motion in D,

 ZI(t) = B1(t) + ?(t)

 Z2(t) = B2(t) + y2?(t)

 Z3(t) = B3(t) + y3(t)

 Z4(t) = B4(t) + y4?(t)

 where ?(t) is the local time at 0 for the Brownian motion BI(t), and the Brownian motions

 Bl(t), B2(t), B3(t) and B4(t) are independent. Without loss of generality, assume that
 y2 + y + y2 = 1. Let O be the orthogonal transformation in Ry3(c D) taking (y2, 73, 74) to
 (1, 0, 0). Hence

 O(Z2, Z3, Z4)T = O(B2, B3, B4)T + O(y2, 73, y4)T?(t)

 = (B2, B3, B4)T + (?(t), 0, 0)T

 where (B2, B3, B4) is again a three-dimensional Brownian motion. Consider the trans-
 formation T: [R4 -+ R4 such that T(xl, x2, x3, x4) = (X, Y2, Y3, Y4), where (y2, y3, y4)T =
 O(x2, x3, x4)T. As T is a smooth transformation, it would preserve recurrence and transience.
 Let T(Z1, Z2, Z3, Z4)= (21, Z2, Z3, Z4), where

 Zl(t) = Bl(t) + ?(t)
 z2(t) = B2(t) + ?(t)

 23(t) = B3(t)
 Z4(t) = B4(t).

 Now note that (Z1, Z3, 24) is a three-dimensional reflected Brownian motion with normal
 reflection in the space E = {(xl, x3, x4): X1 > 0} and is transient. Hence the diffusion
 (21, 22, Z3, Z4) is transient. In general this result is true for dimensions greater than 4.
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 To conclude, we mention two cases in which the asymptotic behaviour of the diffusion is
 not clear to the authors.

 (a) Brownian motion in three dimensions with reflection field y(x), where y is bounded
 smooth. One would expect this process to be transient; however, even when y = constant
 we do not know the result.

 (b) For the Ornstein-Uhlenbeck process in the half-plane with drift coefficients

 lxl , 12x2, (ll < 0, /2 < 0) we do not know whether the process is recurrent. In particular, we do not know the behaviour of the process when y is such that (x, y(x)) >0, for all
 x E OD. Also we are not able to say anything about positive recurrence.
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