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 1. INTRODUCTION. Let E and F be Banach spaces. An isometzy from E to F

 is a map f: E F such that

 ll t(x)-t(Y) li = ll x-Y ll for all x, y e E. (1)

 Every isometry is continuous and injective. Among the earliest theorems for

 Banach spaces is the Mazur-Ulam Theorem [13]. This says that if f is a surjective

 isometry between real Banach spaces E and F, and if f(O) = O, then f is linear.

 The conclusion is not valid for complex Banach spaces (just consider the complex

 conjugation on ¢). The hypothesis of surjectivity is essential in general, but can be
 dropped for a large class of Banach spaces that includes real Hilbert spaces. The

 condition f(O) = O is necessary for f to be linear. If f is any isometry then f - f(O)

 is also an isometry, so this condition is no serious restriction.

 If distances are known imprecisely one may not be able to say whether f is an

 isometry. Then the concept of an approximate isometry is useful. Given £ > O, a

 map f: E F is called an £-isometzy if

 | || f(x) - f(y) || - 1I X - y 11 | < £ for all x, y E E. (2)

 Note that if f is an £-isometry then so is f -f(O). The following problem was

 posed by Hyers and Ulam [9]. If f is a surjective £-isometry between real Banach

 spaces E and F such that f(O) = O, then does there exist a surjective linear

 isometry g: E F such that

 ||t(x)-g(x) || < K£ for all x E E, (3)

 where the constant K is independent of f, but can depend on the spaces E and

 F? Hyers and Ulam [9] showed that if E = F is a real Hilbert space then the

 answer is in the affirmative with K < 10.

 The Hyers-Ulam problem has been solved over the years. It is only recently that
 it was shown that the sharp value of K is 2 for all Banach spaces [14].

 The aim of this note is to discuss some of these matters, to explain a part of the

 original Hyers-Ulam ideas, and to show how to extract some more results from

 them. One major issue of concern through the article is how essential the

 assumption of surjectivity of f is for the conclusions.

 2. ISOMETRIES. Let E be any Banach space and let x, y be any two points of
 E. The algebraic midpoint of x and y is the vector m(x, y) = (x + y)/2. A metric

 midpoint of x and y is any point z of E that satisfies

 IIZ - xll = IIZ - Yll = 2 llx - Yll (4)

 The algebraic midpoint is always a metric midpoint. It is easy to see that if E is a

 Hilbert space there are no other metric midpoints for any pair of vectors x, y. This
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 is not always so in all Banach spaces. Here is an easy example:
 Let E be the space 2 with the 1l-norm; i.e., if x = (xl, x2) then liXll =

 |X1 1 + Ix2 |. Let x = (l, O) and y = (O, l). The algebraic midpoint of x and y is
 (2 2) This is at distance l from x and y. So are all points z of the form (t, t),
 where O < t < l. All these points are metric midpoints of x and y. A pictorial
 representation of this phenomenon might be helpful; see Figure l. The unit ball of
 E is a diamond centered at the origin. Shift this diamond's center to (l, O) and then
 to (O, l). The intersection of the boundaries of these two diamonds is precisely the
 set of metric midpoints of x and y.

 ,9
 (-1, O)< )1, 0w)

 Figure 1

 Let Mo(x, y) be the set of all metric midpoints of x and y. It is easy to see that
 Mo(x, y) is a closed, convex, and bounded subset of E.

 There is a class of Banach spaces in which the norm is chosen so as to ensure
 that for all pairs x, y the set Mo(x, y) is just the singleton {m(x, y)}. These are the
 strzetly convex Banach spaces. The space E is called strictly convex, if whenever
 IIXII = IIYII = l and lI(x + y)/211-l, then x = y (that is, every point of the unit
 ball of E is an extreme point). For 1 <p < so, lp is strictly convex. A simple
 calculation with norms shows that if E is strictly convex then Mo(x, y) = {m(x, y)}
 forallx,yeE.

 The importance of this observation is the following. The relation (4) that defines

 metric midpoints is unchanged under isometries, so if f: E F is an isometry and

 if F is strictly convex then

 t( 2 ) =f(m(x,y)) =m(t(x) f(y)) = f(x) +f(y)

 Thus evezy isometry f from a Banach space E into a strictly convex Banach space
 F satisfies the equation

 f(x+y) f(x) +f(Y) f 11 (EE (5)

 Now if f(O) = O, this says that f(x/2) = f(x)/2 for all x. It follows, again from (5),
 that f is additive:

 f(x +y) =f(x) +f(y), forall x,y s E. (6)

 It is clear from this equation that f(nx) = nf(x), for every positive integer n. Also,
 choosing y = -x in (6) we see that f(x) = -f(x) for all x. Hence, f(nx) = nf(x)
 for every integer n. Now it is easy to see that f(rx;) = f(x) for every rational
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 number r. Since f is continuous, for all real a we have

 f( oex) = oef(x) for all x E E.

 Thus f is real linear even if the spaces E and F are complex; if they are real then
 f is linear. This proves the Mazur-Ulam Theorem in the special case when the

 space F is strictly convex. Note that in this case we did not require that f be
 surjective.

 When the set Mo(x, y) contains points other than m(x, y), the preceding
 argument does not work. However, it is possible to give a metric characterization
 of the algebraic midpoint and then use a modified version of the above argument.

 Here is an outline of the argument.
 Let x, y be any two points of a Banach space E. Starting with the set Mo(xX y),

 define, inductively, for n = 1, 2, . . ..

 Mn(xtY) = (U E Mn-l(xsy) llu-ull < 2 forall v E Mn-l(xXY))

 Here, dn = diamMn. Then we have a nested sequence of closed sets Mo(x, y) 2
 M1 (x, y). 2 M2 (x, y) 2 *2, with diamMn < do/2n. It is not difficult to prove that

 the point m(x, y) is in Mn(xX y) for all n. Hence,

 00

 n Mn(Xx Y) = {m(x, y)} . (7)
 n =O

 This gives a metric characterization of the algebraic midpoint m(x, y).

 Now note that if f is a surjective isometry from a Banach space E onto a
 Banach space F, then

 Mn(t(x) f(y)) = t(Mn(Xx y)) for all n.

 At this step of the proof we do need to assume that f is surjective. If f were not
 surjective, we could have in F two points f(x) and f(y) whose metric midpoint is

 outside the range of f. So, from (7) we have

 ( 2 )- n Mn(f(x)t(Y)) = n f(Mn(xxy))
 n=O n-O

 Since f is injective,

 00 00

 t n Mn(xx y) = n t(Mn(xx y)
 n=O n=O

 Now appealing to (7) again, we have

 f(x) +f(y) {x+yA

 As before, from this we can conclude that f is real linear. This proves the
 Mazur-Ulam Theorem.

 Let us now give some simple examples to illustrate the necessity of the

 surjectivity assumption for general Banach spaces. Let E = R and let F = 1R2 with

 the t:O-norm; i.e., if x = (x1, x2) then liXll = max(|xl|, Ix21) Let f: E F be the

 map f(t) = (t, sin t). Since gsin t-sinsl < gt-s| for all t and s, it follows that f is
 isometric. Clearly f is not linear. To see another example, let E= R and let
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 F = R2 with the 11-norm. Define the map t: E F as

 ( (t,0) if -1 < t < 1

 t(t)=<(-l,t+1) if t<-1

 t(l,t-1) if t21

 This is the piecewise linear curve illustrated in Figure 2. It is easy to veriiy that

 ||t(t)-t(s)l| =lt - sl forall t,s E R.

 Thus f iS isometric, but not linear.

 (-1n0) (1,0)

 Figure 2

 Can this phenomenon occur if dim E = dim F? The answer is no for finite-

 dimensional spaces. It was shown by Charzyfiski [5], [6, p. 143] that if E, F are
 n-dimensional real normed spaces then every isometry f: E > F satisfying
 f(O) = 0 iS linear. Note that this implies that f iS surjective.

 Here is a simple proof of this theorem. Obviously, f maps SE, the sphere of
 radius r centered at the origin of E into the sphere of the same type in F. Assume
 that there exists r > 0 such that t(SE) is a proper subset of SF. Take any point
 Y E SF \f(SE). Then the restriction of t to SE is an embedding of SE into

 SF \ {Y}. If we have two different norms ll * ll1 and 11 t 112 on Rn then every sphere

 with a positive radius r with respect to the norm ll * ll1 centered at 0 is homeomor-
 phic to the unit sphere with respect to 11 112 (the homeomorphism can be defined

 by x x/lix112 for every x with llxlll = r). Hence, the restriction of t to SE can be

 considered as an embedding of the standard sphere Sn-l into the punctured
 sphere Sn-1, which is homeomorphic to Rn-l. It is well-known that such embed-

 dings do not exist. So, t must be surjective, and therefore, by the Mazur-Ulam
 theorem, it is linear. It is interesting to note that the name of Ulam is associated
 also with the theorem from topology used here. This is the Borsuk-Ulam Theorem;

 see [12, p. 170].

 There is a more general version of the Mazur-Ulam Theorem that goes beyond
 Banach spaces to locally convex topological vector spaces. See [6, Chapter VII].
 The idea of the proof is essentially the same, but now the algebraic midpoint is
 characterized in terms of prenorms.

 3. APPROXIMATE ISOMETRIES. We have defined £-isometries in Section 1

 and explained the Hyers-Ulam problem. Since surjectivity of t is a necessary
 requirement in the Mazur-Ulam Theorem, it is natural to impose that condition
 here too. However, there is a significant difference between the two problems in

 J_ T 1
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 this respect. In Section 2 we explained how for a large class of Banach spaces
 (including Euclidean spaces) the Mazur-Ulam Theorem can be proved without this
 assumption. Hyers and Ulam gave an example of an £-approximate isometry t
 from R into the Euclidean space 2, with f(0) = 0, that cannot be uniformly

 approximated by any linear isometry g: 114 1142. They defined t: 114 R2 by

 t( ) ((t,clogt) lf t > 1

 Then for each £, we can choose c such that t is an £-isometry. To see this note
 that log t is a concave function, and hence for 1 < s < t,

 log t - log s log t

 t-s t-1

 Since (log t)/t O as t oo, this means that llf(t) - f(s)ll is asymptotically like

 It - sl. More formally, it is an easy exercise to show that t is an £-isometry
 whenever

 2 {(logt) j £>C max82 21.

 However, the set {llt(t) - g(t)ll: t E 114} is unbounded for every linear isometry

 g: 114 R2.

 After the Hyers-Ulam solution of the problem for Hilbert spaces, there were
 several papers giving partial solutions for special Banach spaces. A breakthrough
 was made by Gruber [8], who proved that if a constant K satisfying (3) can be
 found (for a given pair of real Banach spaces E and F) then this inequality
 remains true if we choose K = 5. Further, he proved that this can always be done
 if E and F are finite-dimensional. In the general case of all real Banach spaces
 this was proved by Gevirtz [7]. Finally, it was shown by Omladic and Semrl that
 the choice K= 2 works in (3) for all real Banach spaces E and F [14]. Here
 is a simple example that shows the inequality (3) with K= 2 is sharp. Define

 t: R 114 by

 f( ) tt - 1 if t 0 [0,1/2]

 t-3t if t[0,1/2]

 One can easily check that t is a surjective 1-isometry satisfying t(0) = 0. The only

 linear isometries g: 114 114 are g(t) = t and g(t) = -t. Obviously, the second one

 does not approximate t uniformly, while max|t(t) - tl = It(2) - 21 = 2.

 4. EUCLIDEAN SPACES. The Hyers-Ulam example explained in Section 3 can
 be modified to show that if E and F are real Hilbert spaces with either
 dim E < dim F, or dim E = dim F = oo, then there exists an £-isometry

 t: E F, t(0) = 0, that is not uniformly close to any linear isometry. Of course,

 such an t is not surjective.

 What happens in the remaining case, dim E = dimF < °°? The following
 theorem gives the answer.

 Theorem 1. Let En be an n-dimensional Euclidean space and let t: En En be an

 £-isometzy satisfying t(0) = 0. Then there exists a unique bijective linear isometry
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 g: En En such that

 |W(X) -g(X) || < 2£

 for all x E En

 Our proof has two steps. First we use two theorems from the Hyers-Ulam paper

 to find an isometry g and a constant K (depending on n) such that the inequality

 (3) is true. Then we use the special inner product structure of En to show that K
 can be replaced by 2. This argument is simpler than the one in [14] for arbitrary

 Banach spaces, and requires no assumption of surjectivity on f.

 The inner product between two vectors x and y will be denoted by <x, y). Let

 f: En En be an £-isometry satisfSing f(O) = O. Assume for a moment that f can

 be uniformly approximated by a linear isometry g: En o EnX that is, there exists a

 positive real constant M such that

 || f(x) - g(x) || < M for all x X En.

 Let m be an arbitrary positive integer. Replacing x in this inequality by 2mx,

 dividing the obtained inequality by 2m, and using linearity of g we get

 f (2mx) M

 2m -g(x) < 2m for all x E En

 and for all positive integers m. This shows that if

 f(2mx)

 lim m (8)
 moo 2

 exists, then a linear isometry g can approximate f uniformly if and only if g(x) is

 equal to this limit for every x. The sequence in (8) is now called the Hyers-Wam

 sequence.
 The first result in the Hyers-Ulam paper [9] states that this sequence does

 converge for every x.

 Lemma 2. Let En be an n-dimensional Euclidean space. Suppose that £ > O and that

 f: En < En is an s-isomety satisfying f(O) = O. Then

 f(2mx)

 g(x)= lim 2m
 moo

 exists for every x E En. The mapping g is a linear bijective isometry.

 After this, Hyers and Ulam prove that an £-isometry (not necessarily surjective)

 "approximately preserves" orthogonality, in the following sense:

 Lemma 3. Let f and g be as in Lemma 2, and let u E En be a unit vector. Then for

 every x E En orthogonal to u we have l< f(x), g(u))l < 3£.

 Proof of Theorem 1: Let g: En > En be as in Lemma 2. Since g-1 is an isometry,

 g-1 0 f is an £-isometry. Note that g-1 0 f sends zero to zero and

 * (g o f )(2 x)
 llm 2m = x

 for all x. As it is enough to prove the conclusion for g-10 f, we can assume with

 no loss of generality that g(x) = x for every x.

 First we show, using induction, the existence of a constant K (depending on n)

 such that llf(x) - xil < K£ for all x. Let f be an £-isometry on E1. Since f(O) = O

 we have | If(x) l - Ixl | < £ for all x. So, either If(x) - xl < £ or If(x) + xl < £
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 For all x outside a large neighborhood of 0, only one of these can be true. It is
 now easy to find a constant K such that If(x) - Xl < K£ for all x.

 Assume now that we have already proved the assertion for n - 1 dimensional
 Euclidean spaces. Let x be any vector in En and let u be any unit vector
 orthogonal to x. By Lemma 3 with g(y) -- y we have l<f(x), u) | < 3£. Let P be
 the orthoprojector onto [u]l . For any w E [u]l we define fi(w) = tf(w). We
 claim that t1 is a 7£-isometry on [u]l satisfying t1(0) = 0 and

 fi(2 w)
 lim m = w
 moo 2

 for all w. Obviously, t1(0) = 0. Next note that

 Illfl(W) -ti(W')ll -llw - w'lll
 =lilt(W) - (f(w),utu -f(w') + <t(Wt),U)Ugl -llW - Wtill

 < | || f( w) -ff w ) || -|| W - W || | + 6£ < 7£ .
 Finally,

 fi(2 w) . Pf(2 w)
 lim = lim m = Pw = w.
 moo 2 moo 2

 By the induction hypothesis, there exists a positive constant Kn_l such that

 11 fi( W ) W || < 7Kn -1 £

 for all w E [u]l . It follows that

 lit(X) -Xll = liti(X) + <f(x), uVu -X|| < 7Kn_1£ + 3£.

 Since x was an arbitrary vector, the induction step is over.
 Now we will show how to replace K by 2. Take any x E En and set llf(x) -

 Xll = a. Assume that a + O. Denote by y the unit vector satisfying f(x) - x = ay.
 The vector x can be written as x - x0 + byS b E 1RS where x0 and y are orthogo-
 nal. For every positive integer m we have f(x + my) =x + my + vm, where

 livmil < K£ because of what we have shown in the first step. Write vm = bmy + um,
 bm E 1R, where um and y are orthogonal. Consequently, llumil < K£ and Ibml < K£.

 Using the fact that f is an £-isometry with f(O) - 0 we have

 |||t(X + my)|| -llX + Myll| < £.

 This can be rewritten as

 Igl(m + b + bm)y + (xo + Um)||-Il(m + b)y +xolil < £

 Since um is bounded and x0 and um are orthogonal to y, this shows that for every
 ,u > 0 we have Ibml < £ + ,U if m is large enough.

 Since f is an £-isometry, we have

 m - £ < || ff x + my) - ff x) || < m + £,
 or equivalently,

 m - £ < ||(m - a + ba)y + umil < m + £

 For large m this norm can be brought as close to m - a + bm as we wish. Since for
 large m we have Ibml < £ + ,U with ,u being arbitrarily small, this is possible only if
 a<2£. z

 We should remark that in the second part of our proof no reference was made
 to the finite dimensionality of the spaces involved. Thus, the factor 10 obtained by

 Hyers and Ulam (for the case of surjective isometries between infinite-dimensional
 Hilbert spaces) can be reduced to 2 using this argument.
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 It would be nice to extend Theorem 1 to £-isometries f: E F where E and F

 are arbitrary n-dimensional real normed spaces. In this case we have the following
 substitute for Lemma 2: There exists an increasing sequence (mk) of positive
 integers such that

 ( ) li ff mkx)
 koo mk

 exists for every x E E. The mapping g is a linear bijective isometry. To prove this
 we first observe that the definition of £-isometry implies that the sequence
 (n-1t(ox)) is bounded for every x E E. We choose a dense subset {z1, Z2 . . . } in
 E. Applying the Cantor diagonal procedure we can find an increasing sequence
 (mk) of positive integers such that

 g(Zp) = lim t(mkzp)
 koo mk

 exists for every positive integer p. Using the definition of £-isometry once again we
 see that (9) exists for every x E E. Clearly, g(O) = O. To prove that g is an
 isometry we replace x and y in (2) by mkx and mky, respectively. Dividing the
 obtained inequality by mk and sending k to infinity we conclude that g is an
 isometry. We have already proved that g must be linear.
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