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A note on non-normal correlation
By J. B. 8. HALDANE

e product-moment correlation p is frequently estimated for two variates which are not normally
stributed. There are, however, no general expressions for the effect of this non-normal distribution on
e precision of the estimate of p. They may be obtained in one special case which is of biological import-
ce. Suppose X and Y are two correlated variates. Then if

X =at Sl+pte+(1=pliyh ¥ = bt Sl +ppa—(l=piyl

and furtherif € =y = 0,7 = 3? = 1, and = and y are independent, the variance of X is 62, that of Y is 72,
and their covariance is po7, regardless of the distributions of > and y. Hence the correlation of X and ¥
is p. If x and y are normally distributed the correlation is of course normal. Now in biological statistics
X and Y may be measurements of two organs in the same individual, or of their logarithms. « depends
on the sum of causes which affect X and Y alike, ¥ on the sum of causes which affect them oppositely.
For example, in any series of spceimens, not all of which are fully grown, z will increase with age up to
a certain point; and in a population containing a, minority of juvenile members the distribution of x will
probably be negatively skew. But y may be quite independent of age if the variability of the organs
messured is uncorrelated with age, and may well be normally distributed when « is not.

Let k,, be the cumulants of the joint distribution of x and y. Then since they are independent, k., = 0
unless.r or s = 0, K39 = &gy = 0, kgg = Kog = 1; and let kyy = ¥y, Ko = V1» Kao = Var Kou = Vg» €tC., these
being measures of the deviations from normality of the distributions of  and y.

Our estimate of p on a sample of n members is thus

e nXX,Y,~-ZX, Y,
IXE - (ZX, )R [EYE-(ZY,)]
=1 +p) a2~ n(l—p) Tyt~ (L+p) (Z2,)2 + (1~ p) (Sy)2]
“x [n(L4 p) Sat+n(1—p) Syt + 2n(1 — p?)t Sa, g, — (1 +p) (E2,)2 — (1 - p) (Zyy)? — 2(1 — p?)} Ta, Ty
X [n(1+p) a2 +n(l—p) Ty — 2n(1 — p)t Za,y, — (1 +p) (Z2,)2 — (1 + p) (Zy,)* + 2(1 — p?)} B, Ty, ]
So e [(L+p) {nZa}— (Z,)% — (1 —p) {(nZy? — (Zy) 3P
T+ p) (nZat — (o) + (1 - p) (nZy? — (Zy,)]? — 4(1 — p?) (nZz,y, — Tz, Ty,)*
- (1 +p) kogo— (1 — p) Kpe J?
U1 +p) g+ (1 — p) ka3 — 4(1 = p?) kn}’
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where k,, is the unbiased estimate of &, from the moments of the variates in the sample. For example,
n2at -~ (Xx,)?

0= Thm-1) o -
tributions of  and y from normality. k,§ exceeds (kq)?, or unity, by the sampling variance of &y, which
2K,8 | Kag

. We can now ask how thé mean value of 72 Will be affected by deviations of the dis-

I
+2/3‘. The effect of non-normality in the distribution of  is therefore to increase th
n

n~1 =n’ n—1

mean value of &,2 by v,/n. Similarly, k2 is increased by y,/n. kaokee is not increased, sivee x; aﬁdy a),rg‘J
independent. Icl_’l’does not include terms with zero suffixes, so it is also unaltered. In fact, both numerattn
and denominator of (1) are increased by nY{(1 +p)2y, + (1 —p)2v,]. . '

We cannot caleulate the variance of r directly from (1) since 7 differs from p by a quantity of orfim
But since both the numerator and denominator are increased by

K, K,
(1+P)”;4?+(1—P)’$ or nH(14p)2yy+(1—p)*y,]

above the values found when the distributions of x and # are normal, we have in the normal case
. 4p*+4n1P
= —-——,
4+4n1Q
where P and @Q are independent of n to order »~%, and in general

= _ 4P+ n AP+ (1+0) v+ (1-p)*Y,]

2 = .
4407 4Q + (L +p)2 Yy +(1—p)%¥y]

— o 1-—p?
So rh—rf = Tn& [(1+p27e+(1—p)2 7]+ O(n~2).

The variance of » is therefore increased by this quantity. The precision of the estimate of p does not
therefore depend on the skewness of the distributions of x and y, provided they are mesokurtic. And since-

Y1 = V214 p) Ry X)+ 7)), 71 = V21 ~p) [ (X)) — 1T,

it follows that skew distribution of X and Y will not affect the precision of r. On the other hand, the.
distributions of X and Y have the same value of y, or §,— 3, namely,

Ty = I +pP i+ (1 —=p)7s)

—_—pn2
Hence var(r) = 1—nﬂ (1~ + Ty} + O(n-2). (2)

1
If we employ Fisher’s transformation z = }log (l—_}-—:) , we find

r
var (z) = n‘l(l + 1 2

;) + 0. @

The variance of z is thus no longer almost independent of p. But the precision of r is increased if the dis-
tributions of X and Y are platykurtic, and decreased if they are leptokurtic. Cleatrly, however, (2) and
(3) are inapplicable when | p | is near unity, terms of at least order n~2 being required.

On empirical grounds, E. 8. Pearson (1931, 1932) stated that ‘the normal bivariate surface may be
distorted and mutilated to a remarkable degree without affecting the frequency distribution of 7’. This
would seem to be truc when | g | is not near unity. It is also true for ‘mutilations’ which affect skewnéss
without doing a great deal to kurtosis. However, when correlation is high it would seem that arelatively
slight change in kurtosis may have a large effect on the variance of r. h ’ '

it is possible that the formula (1) might serve as a basis for a new development of the theory of #e
distribution of 7 in the normal case, and farther information could certainly be obtained from jb
cerning the more general case here considered. In the most general case x and y, though they have a 10
coefficient of correlation, are not independent, so such cumulants as &y, would not in genéral b?

and it is doubtful whether the method would be of value. On the other hand, if the distributioxj{ o
and Y, though having different values of

or (3) may be used with some confidence.
I have to thank Mr K. A. Kermack for useful eriticism.

B, have insignificantly different values of 8, squ onf(
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