Well 1 sullas complines in

[From Biometrika, Vol. 42. Parts 1 and 2, June 1954.] [All rights reserved.] PRINTED IN GREAT BRITAIN

Substitutes for x2

By J. B. S. HALDANE

Department of Biometry, University College, London

Neyman (1930) and Jeffreys (1948, p. 170) have suggested a substitute for χ^2 involving some saving of computation. I here suggest what $\bar{\mathbf{I}}$ believe to be a better one. If a sample consists of N individuals belonging to m classes, and n_r belong to the rth class, the expected number on some hypothesis being

Na_r, where
$$\sum_{r=1}^{m} a_r = 1, \text{ then}$$

$$\chi^2 = \sum_{r=1}^{m} \frac{(n_r - Na_r)^2}{Na_r}.$$
Neyman's
$$\chi'^2 = \sum_{r=1}^{m} \frac{(n_r - Na_r)^2}{n_r}.$$
I consider
$$\chi''^2 = \sum_{r=1}^{m} \frac{(n_r - Na_r)^2}{n_r + 2}.$$
(1)

Since there is a finite probability that any n_r should be zero, it is clear that the expectation of χ'^2 is formally infinite. I shall show that it still exceeds m-1 even when samples in which any $n_r=0$ are excluded. Haldane (1953) gave reasons for preferring n_r+1 as a divisor in a similar context. It can be shown that

 $\tilde{\mathcal{E}} \left[\sum_{r} \frac{(n_r - Na_r)^2 + b}{n_r + c} \right] = m - 1 + N^{-1} [(b - c + 2) \sum_{r} a_r^{-1} - (3 - c) \, m + 1] + O(N^{-2}).$

Hence to avoid an infinite expectation c must be positive, and to avoid a multiple of Σa_r^{-1} , which may be large, in the expectation, we must have b = c - 2. The value b = 0 gives a simple formula, though b=1 gives an expectation nearer to $\mathscr{E}(\chi^2)$ when N is large.

Let
$$n_r = Na_r + x_r$$
. Then
$$\chi^2 = N^{-1} \sum_{r} x_r^2 a_r^{-1},$$

$$\chi'^2 = N^{-1} \sum_{r} x_r^2 a_r^{-1} \left(1 + \frac{x_r}{Na_r} \right)^{-1}$$

$$= \chi^2 + \sum_{i=2}^{\infty} \left[N^{-i} \sum_{r} (-x_r)^{i-1} a_r^{-i} \right],$$

$$\chi''^2 = N^{-1} \sum_{r} x_r^2 a_r^{-1} \left(1 + \frac{x_r + 2}{Na_r} \right)^{-1}$$

$$= \chi^2 + \sum_{i=1}^{\infty} \left[N^{-i-1} \sum_{r} x_r^2 (-x_r - 2)^i a_r^{-i-1} \right].$$

So

To find the expectations of these quantities we require the expectations of powers of x_r , namely,

$$\mathscr{E}(x_r) = 0, \quad \mathscr{E}(x_r^2) = Na_r(1 - a_r), \quad \mathscr{E}(x_r^3) = Na_r(1 - a_r) \left(1 - 2a_r\right), \quad \mathscr{E}(x_r^4) = 3N^2a_r^2(1 - a_r)^2 + O(N).$$

If we write $\mathscr{E}^*(x_r^i)$ to mean the expected value of x_r^i when n_r is not zero, we omit the cases where $x_r = -Na_r$, which have a probability $(1-a_r)^N$, which tends to zero quicker than any negative power of N. Thus

$$\mathcal{E}^{*}(x_{r}) = \frac{Na_{r}(1-a_{r})^{N}}{1-(1-a_{r})^{N}}, \quad \mathcal{E}^{*}(x_{r}^{2}) = \frac{Na_{r}(1-a_{r})1-N^{2}a_{r}^{2}(1-a_{r})^{N}}{1-(1-a_{r})^{N}}, \quad \text{etc.}$$

$$\mathcal{E}(\chi^{2}) = N^{-1} \sum_{r=1}^{m} (1-a_{r}) = m-1,$$

$$\mathcal{E}(\chi^{\prime 2}) = \infty,$$

$$\mathcal{E}^{*}(\chi^{\prime 2}) = \infty,$$

$$\mathcal{E}^{*}(\chi^{\prime 2}) = m-1+N^{-1}(2\sum a_{r}^{-1}-3m+1)+O(N^{-2}),$$

$$\mathcal{E}(\chi^{\prime \prime 2}) = (m-1)\left(1-\frac{1}{N}\right)+O(N^{-2}).$$
(2)

Thus even if we exclude the samples where any n_r is zero, χ'^2 has a positive bias often exceeding twice the reciprocal of the smallest expectation. The bias of χ''^2 is smaller, and readily calculated. The higher moments of the distribution of χ''^2 and of χ'^2 , provided samples where any $n_r = 0$ are excluded, differ from those of χ^2 by quantities of the order N^{-1} . Errors of this order are neglected in the ordinary use of χ^2 , and can be neglected in that of χ''^2 , since χ^2 would be used if great precision were required.

As a numerical example, suppose that the numbers expected in four classes are 63, 21, 21 and 7, those observed being 71, 13, 16 and 12. Then $\chi^2 = 8.825$, $\chi'^2 = 9.470$, $\chi''^2 = 8.319$. If we reverse the signs of the deviations, so that the observed numbers are 55, 29, 26 and 2, we find $\chi^2 = 8.825$, $\chi'^2 = 16.832$, $\chi''^2 = 10.330$. The addition of the bias 0.0268 to χ''^2 gives values of 8.345 and 10.357, and this correction is clearly negligible. It is clear that χ''^2 is a far better approximation than χ'^2 , and as it is no harder to calculate, it should be preferred.

REFERENCES

HALDANE, J. B. S. (1953). A class of efficient estimates of a parameter. Bull. Int. Statist. Inst. 33, 231-48.

JEFFREYS, H. (1948). Theory of Probability. Oxford University Press. NEYMAN, J. (1930). Bull. Int. Statist. Inst. 24, 44-86.

