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Substitutes for 2

By J. B. 8. HALDANE
Department of Biometry, University College, London

’Neymé,n (1930) and Jeffreys (1948, p. 170} have suggested a substitute for 2 involving some saving of
computation. I here suggest what I believe to be a beiter one. If a sample consists of NV individuals
belonging to m classes, and 1, belong to the rth class, the expected number on some hypothesis being

Na,, where Z a, = 1, then .. T (n,—Ng,)?
. = o= B
r=1 Na,
— 2
Neyman’s §r = % (n,— Na,) )
. =1 Ny

. m . 2

T consider Yi= 3 (n,—Na,) (1
r=1 N+2

“Since there is a finite probability that any n, should be zero, it is clear that the expectation of x’2
is formally infinite. I shall show that it still exceeds m— 1 even when samples in which any r, = 0 arc
excluded. Haldane ( 1953) gave reasons for preferring n,+ 1 as a divisor in a similar context. It can be
shown that N 5

@@[Z("' —it] =m—14+N-1[(b—c+2) Da;l—(8—c)m+ 11+ O0(N2).
fip+c » _
Hence to avoid an infinite expectation ¢ must be positive, and to avoid a multiple of Za;!, which may
be large, in the expectation, we must have b = ¢— 2. The value b = 0 gives a simple formula, though
b=1 givesan expectation nearer to &(x?) when N is large.
Let n, = Na, +x,. Then x%=N-1 Zmﬁa;l,
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xX*=N ?ac'a,(+Nr)

=+ B NE(—m)tas],
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z,+ 2) -1

72 = -1 21
X N- Zxa (1+Na,

= yt+ 3 [N-1Za¥(—z,—2) a1l
i=1 r
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To find the expectations of these quantities we require the expectations of powers of x,, namely,
&) =0, &) =Na(l—a,), &(?) = Nea(l-a,)(l-2a), &(x%) = 3N%a?(1 —a,)*+ O(N).

If we write & *(x}) tb mean the expected value of i when n, isnot zero, we omit the cases where z, = — Na,,
which have a probability (1 — a,)¥, which tends to zero quicker than any negative power of N. Thus -

~
- Nal-a,)¥ _ Na,(1—a,) 1—N2a¥(l—a,)¥
E¥(x,) = mN’ ép*(xf) = i—( —a,)N , ete.
So () =N 3 (1—a) = m—1,
r=1
E(x'?) = o,
EXx?) =m—1+N-Y2Za;1~3m+1)+O(N-2), (2)

E(x’? = (m—1) (1 —%) +O(N-?).

Thus even if we exclude the samples where any =, is zero, ¥’2 has a positive bias often exceeding twice
the reeciproeal of the smallest expectation. The bias of x”2 is smaller, and readily calculated. The higher
moments of the distribution of ¥”2 and of y"%, provided samples where any n, = 0 gre exclude, differ
from those of ¥? by quantities of the order N-1. Errors of this order are neglected f}ﬁiordinary use
of ¥2, and can be neglected in that of y”2, since ¥2 would be used if great precision were réquired.

As a numerical example, suppose that the numbers expected in four classes are 63, 21, 21 and 7, those
observed being 71, 13, 16 and 12.Then y? = 8-825, ' = 9-470, y”2 = 8-319. If we reverse the signs of the
deviations, so that the observed numbers are 55, 29, 26 and 2, we find y? = 8-825, y’%2 = 16-832,
x”% = 10-330. The addition of the bias 00268 to y”2 gives values of 8-345 and 10-357, and this correction
is clearly negligible. It is clear that y”2 is a far better approximation than y’?, and as it is no harder te
calculate, it should be preferred. '
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