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In this work, we devise an optimal allocation strategy for the execution of a predefined

no. of stocks in a given time period using the technique of discrete-time Stochastic

Control Theory for two different market models. The market model-I (MM-I) which

allows an instant execution of market orders has been analyzed by assuming geometric

Brownian motion of the stock prices for two different cost functions where the first func-

tion involves just the fiscal cost while the cost function of the second kind incorporates

market risks along with fiscal costs. Subsequently, we improvise an investment strategy

for the delayed stock execution (MM-II) and compare the performance of the resulting

policies with some of the commonly used execution strategies.
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Chapter 1

Introduction

The search for an ‘optimal’ action given the current state (or total information) in

a discrete-time setup for processes involving some degree of stochasticity has led to

the evolution of numerous data-driven as well as data-independent techniques with the

precise definition of ‘optimal’ being highly subjective in general. The stochastic process

we’ll be looking forward to involves the time evolution of stock prices which an investor

encounters while devising a useful strategy to buy a pre-defined block of shares in a given

time duration. This stock execution problem is highly correlated with the fundamental

difficulty of forecasting stock prices as a practical solution to any one of these two would

bring some insight to solve the other. Investors and professional analysts frequently

try to model stock prices with the help of the available information and certain noise

factors whose distribution depends on various market aspects such as inflationary rates,

financial status of the company and its competitive workforce. Therefore, any attempt to

trade a given block of shares would result in a decision (policy) whose final investment

cost attributes its dependence to this probabilistic behavior of stock prices with its

precise mathematical distribution still lingering in uncertainty. Formally, the problem

statement can be redefined as

Problem 1. Given an investor with an obligation to buy K no. of shares (market

order) in a time frame of T units, devise a trading strategy such that the investor’s total

monetary investment is minimized.

1



Chapter 1. Introduction 2

Assuming that one proposes a strategy that fares better than the naive ones for most of

the cases, then the policy can be executed in High Frequency Trading (HFT) markets

where the role of an investor is replaced by a finite-time Turing Machine except for the

fact that the no. of transactions made in the same duration has now increased in leaps

as the trading can be electronically automated leading to an even smaller investment

cost.

Mathematically, Problem 1 can be reformulated as:

Problem 2. Determine a cost-efficient strategy (policy)

π∗ = {µ∗0(x0, R0), µ
∗
1(x1, R1) . . . µ

∗
N (xN , RN )}

such that

xk+1 = g(xk, uk, εk) ∀k ∈ Z

uk = µ∗k(xk, Rk) ∀k ∈ {0, 1, . . . , N}
N∑
r=0

ur = K

where g(x,R, ε) is a known function which updates itself at each of the N equispaced

time points in the time duration T , Rk is the stock position held at time point tk and xk

is the stock price at time tk.

Bertsimas & Lo[1] devised one such policy by partitioning the entire time frame into

N intervals of equal length and performing the transaction of buying K/N shares at

the start of each interval. In order to analyze the expected investment cost of such

policy, Bertsimas utilized the discrete form of Arithmetic Brownian Motion (ABM)

(xt = xt−1 + h(ut) + ηεt) to periodically update the stock price. The major drawback

with ABM model for stock price updation is that the non-negative behavior of stock

price prevails only for shorter time frames T and the resultant optimal action (no. of

shares bought out of the remaining stock pool) at each transaction point remained

independent of any current/previous state information. Almgren & Chriss[2] extended

the Bertismas’ model for limit order markets by incorporating the variance associated

with the execution shortfall in the objective function. More recently, application of some

of data-driven statistical techniques based on Reinforcement Learning[3] by Kakade et
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al.[4] and Nevmyvaka et al.[5] have resulted in significant improvement over simpler

execution strategies such as submit and leave. In 2014, Cont & Kukanov[6] developed

a more generalized mathematical framework for optimal order execution in limit order

markets by incorporating targeted execution size due to bounded execution capacity of

limit orders

In this work, we’ve introduced the preliminary concepts of discrete-time control theory

(with perfect state information) for two possible reductions in the form of Infinite and

Finite-horizon problems (Chapter 2) followed by its application to two different market

scenarios (MM-I and MM-II) where we’ve analyzed the resultant action using fiscal cost

and its combination with market risks (Chapter 3 & 4). Conclusively, we’ve compared

the performance of our output with some commonly used strategies and provided a few

suggestions to improve upon the existing results.



Chapter 2

Optimal Policy Formulation

Using Stochastic Control Theory

The uncertainty factor (ε) involved in the state-updation function leads us to one such

pathway of determining a cost-efficient policy (satisfying the conditions of (2)) by min-

imizing the expected future cost leading to the application of well-established theory of

Stochastic Control. Mathematically, the exact optimization problem reduces to deter-

mining optimal policy π∗ = {µ∗0(x0, R0), µ
∗
1(x1, R1) . . . µ

∗
N (xN , RN )} for the objective

min
{π}

E0[

N∑
r=0

urxr] (2.1)

Subject to the conditions:

uk = µk(xk, Rk) ∀k ∈ {0, 1, . . . , N}

Rk+1 = Rk − uk

xk+1 = g(xk, uk, εk)∀k
N∑
r=0

ur = K

uk ≥ 0 ∀k

(2.2)

where xk is the stock price at time point tk, Rk is the stock position held at time tk and

uk is the appropriate action (investment strategy).

4



Chapter 2. Optimal Policy Formulation Using Stochastic Control Theory 5

The two different discrete-time formulations for determining optimal action using Stochas-

tic Control in order to minimize the expected future cost (monetary) with respect to

the execution of market orders are prescribed in the following sections:

2.1 Reduction to Infinite horizon problem

The approximation of the finite discrete-time objective (2.1) to an Infinite horizon prob-

lem implies the following deduction provided β = 1− ε where ε→ 0+

min
{µ}

E0[

∞∑
r=0

βrurxr] =⇒ min
{π}

E0[

N∑
r=0

urxr] (2.3)

On application of Bellman’s principle of optimality for discrete-case Infinite horizon

problem[7], the optimal policy of objective function (LHS of (2.3)) can be determined

by solving the functional equation (2.4) using some of the simplified class of functions

for µ(x,R) such as variable separability/lower order polynomial forms.

V (x,R) = x.µ(x,R) + βE[V (g(x, µ(x,R), ε), R− µ(x,R))] (2.4)

where V (x,R) is the optimal value of E0[
∑∞

r=0 β
rurxr] corresponding to the optimal

policy µ(x,R).

2.1.1 Pitfalls of reduction to Infinite horizon case

1. Solving the multivariate functional equation (2.4) even with some of the simplified

assumptions for the functional form of µ(x,R) is quite difficult.

2. The sufficient conditions for the convergence of infinite series given by LHS of (2.3)

are not known in general.

3. The optimal actions predicted by the resultant policy µ(x,R) would in general be

non-integers (α-approximate policy).
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2.2 Finite horizon problem for integral states

Let the uniform partition Π(T ) = { t0, t1, . . . , tN } be given with X being the finite

set of all possible stock prices and P = { r ∈ Z+ | r ≤ K } the set of all possible stock

positions. Then at any given time point t ∈ Π(T ), the state vector (x,R) ∈ X × P .

If the function f(x, u,R) computes the instantaneous cost for the current state (x,R)

and action u, the optimal policy (π∗ = {µ∗0(x0, R0), µ
∗
1(x1, R1) . . . µ

∗
N (xN , RN )}) for the

objective function (2.1) can be computed dynamically for each discrete time point using

Bellman’s principle of optimality[8]. Precisely, to determine the time tk policy function

µ∗k(xk, Rk), optimal action uoptk is tabulated as a function of all (xk, Rk) ∈ X × P using

the adaptive cost objective

Jk(xk, Rk) = min
{uk}

∞∑
i

Pr(εik|Fk)[f(xk, uk, Rk) + Jk+1(g(xk, uk, ε
i
k), Rk − uk)] (2.5)

where Fk is the tk-filtration (information contained till time tk).

At the final time point tN , the optimal action would be to buy all the remaining RN .

Thus JN (xN , RN ) simply reduces to f(xN , RN , RN ).

If the uncertainty parameter (εk) is independent of information Fk, then (2.5) further

simplifies to

Jk(xk, Rk) = min
{uk}

∞∑
i

Pr(εik)[f(xk, uk, Rk) + Jk+1(g(xk, uk, ε
i
k), Rk − uk)] (2.6)

At any time point tk ∈ Π(T ), the optimal action uoptk and Jk(xk, Rk) can be dynamically

computed using (2.6) for each of the state element (xk, Rk) ∈ X × P .

2.2.1 Pitfalls of reduction to integral finite horizon case

1. The numerical algorithm for its implementation mandates the construction of a

three-dimensional matrix where each two-dimensional sub-matrix corresponds to

a unique time point. Therefore its space complexity is of the order Ω(xmaxKN).
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2. The method imposes an additional restraint of the finiteness and countability of

the set of all possible states (X × P ).

3. The numerical search for the optimal integral solution can at best be accom-

plished using branch and bound algorithm[9] whose worst case complexity is still

K (initial stock position). Thus the eventual time complexity for this algorithm

is Ω(xmaxK
2N).



Chapter 3

Optimal Investment Strategy for

Market Model-I

In this chapter, we’ll develop an investment strategy based on the idea of Stochastic

Control Theory discussed briefly in Chapter 2 for the market structure of first kind

which sanctions the investor to buy any number of stocks on an instant basis at the

current market price (mid-point of bid-ask spread). Unlike Almgren & Chriss [see 2],

we’ve modelled stock prices realistically using Geometric Brownian Motion (discrete

form of Ito’s differential) as the Bachelier’s model (xt = xt−1 + h(ut) + ηεt) would

eventually return negative stock prices with non-zero probability in the limit of longer

time duration. The discrete time stock price model we intend to use in our analysis is

given by:

xk+1 = xk(1 + βuk + εk) (3.1)

here xt+1 is the stock price at time tk+1, εk is a random noise with E[εt] = 0 and βuk

is the drift in stock price due to the buying action of uk no. of stocks with β being

some kind of prominence factor which varies according to one’s influence in the stock

market. For our case, we’ll assume β belonging to the range [10−5, 10−4]. In the next

two sections, we’ll establish the general nature of some of the investment strategies for

different kinds of instantaneous cost functions and compare their performance with some

well-established policies.

8
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3.1 Allocation Policy for Fiscal Cost Function

For this particular case, the instantaneous cost function is exclusively monetary i.e

f(xk, uk, Rk) (Section 2.2) is simply given by

f(xk, uk, Rk) = xkuk (3.2)

where uk ≤ Rk.

Accordingly, the expression for optimal expected cost (2.5) modifies to

Jk(xk, Rk) = min
{uk}

[xkuk +

∞∑
i

Pr(εik)Jk+1(g(xk, uk, ε
i
k), Rk − uk)] (3.3)

On rewriting the above expression for penultimate time point (t = tN−1) by modelling

the stock price using GBM, the objective simplifies to

(3.4)JN−1(xN−1, RN−1) = min
{uN−1}

[xN−1uN−1 + xN−1(RN−1 − uN−1)(1

+ βuN−1)]( ∵ E[εN−1] = 0, JN (xN , RN ) = xNRN )

leading to the following deduction.

Deduction 1. When the nature of the instantaneous cost function is completely fiscal

i.e. f(x, u,R) = xu and the stock price is modeled using 3.1, the optimal investment

policy due to stochastic control (Problem 2.1) simply converges to the purchase of the

entire stock block of size K at time t = tN . In general, the result holds for any stock price

updation function of the form xt+1 = xt(1 + h(ut) + εt) where h(ut) is a non-decreasing

drift with h(0) = 0

Proof. On rearranging the terms of penultimate time objective for the drift h(u), (3.4)

modifies to

JN−1(xN−1, RN−1) = min
{uN−1}

[xN−1RN−1 + xN−1(RN−1 − uN−1)h(uN−1)] (3.5)
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As (RN−1 − uN−1)h(uN−1) ≥ 0, the optimal action (uoptN−1) results in zero with

JN−1(xN−1, RN−1) = xN−1RN−1. By recursively calculating uoptk and Jk(xk, Rk) using

the functional form of Jk+1(xk+1, Rk+1) (3.3), it’s trivial to observe the identical nature

of the objective function for all 0 ≤ k ≤ N − 1. Hence the above deduction follows.

3.1.1 Resultant policy and its comparison with Bertsimas’ model

Deduction 1 can be further generalized by observing the degenerate nature of the objec-

tive function at the penultimate time point i.e. both 0 and RN−1 are the optimal solu-

tions to the objective 3.5. Henceforth, the optimal allocation policy modifies to the total

investment for the entire stock block (K) at any one of the time point t ∈ { t0, t1, . . . , tN }.

Tabulated below is the total expenditure resulting from Bertsimas’ policy and one-time

investment at the midpoint T/2.1

Stock Investment Cost(B) Investment Cost(OT) Ratio(OT:B)

GOOG $719770.69 $738000 1.02532
AAPL $97670.42 $106636.21 1.09179
QCOM $48983.12 $48808.40 0.99643
NVDA $36247.86 $35704.41 0.98500

LXS.DE e39972.39 e40986.76 1.02537

Table 3.1: Comparison of total expenditure between Bertsimas’(B) and One-
Time(OT) policy based on their daily opening price spanning a total of 100 working

days (Feb’16 - Jun’16)

As evident from the data above, the one-time investment policy may frequently fail to

perform better than the distributed investment policy (due to Bertsimas).

3.2 Allocation Policy for Constrained Cost Function

Due to the possibility of positive accumulation of random noise (εt) over large no. of

discrete time steps, the allocation policy devised in the last section has a tendency of

resulting in a greater investment cost compared to the policy of distributed trading

1As per the stock data obtained from Yahoo Finance
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over the same no. of time steps. Thus, we’ve made an attempt to modify the instan-

taneous cost f(x, u,R) by incorporating non-negative penalty in addition to the fiscal

cost if the current action (uk) violates certain market specific bounds. Specifically, a

pre-determined set of bounds - an upper bound (UB) and a lower bound (LB) restricts

the fractional consumption (uk/Rk) at every time point tk. The effect of penalty im-

posed for the case when the fractional consumption goes below the lower bound (LB) is

less pronounced at initial time points compared to the later ones as the opportunistic

time window to minimize the total expenditure decreases gradually with the passage of

another transaction opportunity. The non-existence of such a restriction would eventu-

ally result in the investor holding a large fraction of his initial stock position at later

time points with fewer opportunities to improve his total investment cost. Similarly, by

restricting the investor to buy a large fraction of his current stock position (exceeding

the upper bound (UB)) at the earlier time points of the transaction window, one in-

structs the investor to employ a distributed investment strategy till the near end of the

transaction window where this constraint is liberalized. Mathematically, these two kind

of restrictions can be summarized by modifying instantaneous cost (f(x, u,R)) using

the logarithmic barrier[10] resulting in the functional form:

f(xk, uk, Rk) = xkuk − xkCl
( tk
tN

)γ
log
(

1−max(0, LB − uk
Rk

)
)

− xkCu
( tN
tk

)γ
log
(

1−max(0,
uk
Rk
− UB)

)
∀k ∈ { 0, 1, 2, . . . , N − 1 }

(3.6)

Here Cl, Cu and γ are positive market specific constants with Cl � Cu.

The Bellman’s criteria for optimality (2.6) can now be applied for the instantaneous cost

f(x, u,R) given by eq. 3.6 resulting in another useful deduction.

Deduction 2. Let X be the set of all possible stock prices and the instantaneous cost

f(xk, uk, Rk) be taken of the form given by (3.6). Then the adaptive cost objective

(Jk(xk, Rk)) given by (2.6) is linearly dependent on xk (∀xk ∈ X)

Proof. Let P (n) be the proposition that the cost Jk(xk, Rk) is linearly dependent on xk

∀k ≥ n
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Base Case : The objective function at penultimate time point (tN−1) is given by

JN−1(xN−1, RN−1) = xN−1uN−1 − xN−1Cl
( tN−1
tN

)γ
log
(

1

−max(0, LB − uN−1
RN−1

)
)
− xN−1Cu

( tN
tN−1

)γ
log
(

1

−max(0,
uN−1
RN−1

− UB)
)

+ xN−1(1 + βuN−1)(RN−1 − uN−1)

which is evidently linearly dependent on xN−1. Thus P (N − 1) holds true.

Inductive Step: Let P (k + 1) holds true for some k ≤ N − 1. Then

Jk(xk, Rk) = xkuk − xkCl
( tk
tN

)γ
log
(

1−max(0, LB − uk
Rk

)
)
− xkCu

( tN
tk

)γ
log
(

1

−max(0,
uk
Rk
− UB)

)
+ E[Jk+1(xk(1 + uk + εk), Rk − uk)]

From the induction hypothesis, Jk+1(xk(1 + uk + εk), Rk − uk) is linearly dependent

on xk(1 + uk + εk) thus Jk(xk, Rk) is linearly dependent on xk. Hence P (n) holds

∀0 ≤ n ≤ N − 1

Corollary 3.1. Let X be the set of all possible stock prices and the instantaneous cost

be taken of the form given by (3.6). Then the optimal action uk for the objective (2.6)

is independent of xk ∀k ∈ { 0, 1, . . . , N − 1 }

This computationally useful corollary follows trivially from the previous deduction.

3.2.1 Numerical Algorithm for Policy Evaluation

The Deduction 2 (and thus Corollary 3.1) is extremely advantageous to develop an effi-

cient algorithm for determining the policy as the optimal action resulting from the theory

of stochastic control is independent of stock price x. Hence all future computations can

be performed by assuming stock price to be unity.

The time and space complexity of this algorithm is O(K2N) and O(KN) respectively

compared to the previous estimate of Ω(xmaxK
2N) and Ω(xmaxKN).

The C code for the algorithm 1 can be downloaded from this link.

https://www.dropbox.com/s/8w4pqfqkgpd6n6j/opt_control_log_penalty.c?dl=0
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Algorithm 1 An efficient algorithm to compute optimal policy for constrained cost

1: procedure Optimal˙Allocation(J, U) . 2-D arrays to store optimal cost and
action

2: while r ∈ {0, 1, . . . , InitialSize} do
3: J [N ][r]← r . Optimal Cost at time tN for x = 1
4: U [N ][r]← r . Optimal action at tN (ind. of x from last corollary)

5: while i ∈ {N − 1, N − 2, . . . , 0} do . To evaluate uopt and Ji(1, r) at each time
point ti

6: J [i][0]← 0 . Optimal Cost when stock position is null
7: U [i][0]← 0 . Optimal Action when stock position is null
8: while r ∈ {1, 2, . . . , InitialSize} do . To determine the optimal action for

each possible stock position
9: uopt ← 0

10: valopt ← f(1, uopt, r) + (1 + βuopt)J [i+ 1][R− uopt]
11: while u ∈ {1, 2, . . . , r} do . Brute force search to determine optimal

action dynamically
12: valu ← f(1, u, r) + (1 + βu)J [i+ 1][R− u]
13: if valu ≤ valopt then
14: uopt ← u
15: valopt ← valu

16: J [i][r]← valopt
17: U [i][r]← uopt

3.2.2 Resultant policy for constrained objective

The optimal allocation vector (in row-major form) with initial stock position of 1000

shares for β = 5× 10−5, Cl = 1000, Cu = 10, γ = 2, LB = 0.2, UB = 0.6 and different

no. of time points is depicted as under

• N = 10

~uopt =
[
600 240 96 38 15 6 1 2 1 1

]
• N = 30

~uopt =


0 600 110 58 47 37 30 24 19 15

12 10 8 6 5 4 3 3 2 2

1 1 1 1 1 0 0 0 0 0


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• N = 50

~uopt =



0 0 0 600 39 72 58 46 37 30

24 19 15 12 10 8 6 5 4 3

3 2 2 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


• N = 100

~uopt =



0 0 0 0 0 0 0 0 0 119

176 141 113 90 72 58 46 37 30 24

19 15 12 10 8 6 5 4 3 3

2 2 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


With a steady increment in the no. of available time points N for transaction in the fixed

interval T , the resultant allocation policy follows a strategy of smaller stock acquisition

towards the beginning and end of the interval T whereas bigger transactions are made

towards the middle. Intuitively, this kind of allocation behaviour can be explained

the observing the effect of the drift βu which has a tendency to increase the stock

price resulting in a larger investment cost. Therefore, it is advantageous to make small

transactions towards the beginning in such a way that the stock prices have a little

tendency to drift upwards and at the same time a noticeable fraction of the initial

stock position is also fulfilled followed by a major acquisition towards the middle. The

resultant hefty drift would eventually have a little effect on the total investment cost as

the remaining stocks constitute a small fraction of the initial stock position K.



Chapter 4

Optimal Investment Strategy for

Market Model-II

In this chapter, we’ve considered a market model (MM-II) of the second type where an

investor makes a decision to trade uk no. of shares using the information contained till

time tk−1 and the order is executed at time tk at the market price xk. Accordingly,

the mathematical formulation of this control problem for the uniform time partition

Π(T ) = { t1, t2, . . . , tN } modifies to

min
{π}

E0[
N∑
r=1

urxr] (4.1)

Subject to the conditions:

uk = µk(xk−1, Rk)∀k ∈ {1, 2, . . . , N}

Rk = Rk−1 − uk−1

xk = g(xk−1, uk, εk)∀k
N∑
r=1

ur = K

uk ≥ 0 ∀k

(4.2)

15
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The slightly modified stock updation function g(xk−1, uk, εk) follows Geometric Brown-

ian Motion of the form:

xk = xk−1(1 + βuk + εk) (4.3)

4.1 Allocation Policy for Fiscal Cost Function (MM-II)

Using a similar analysis as discussed previously for market model of type-I, the Bellman’s

criteria for optimality to determine an optimal policy for problem 4.1 redefines the set

of objectives to

Vk(xk−1, Rk) = min
{uk}

E[xkuk + Vk+1(xk, Rk − uk)] (4.4)

The proof of the following deduction is analogous to the one described in (2).

Deduction 3. Let X be the set of all possible stock prices then the adaptive cost objective

(Vk(xk−1, Rk)) given by (4.4) is linearly dependent on xk (∀xk ∈ X). Thus the optimal

action uk for the objective (4.1) is independent of xk ∀k ∈ { 0, 1, . . . , N − 1 }

The above deduction can be used to simplify the objective (4.4) in the following way

(4.5)Vk(xk−1, Rk) = min
{uk}

[xk−1(1 + βuk)uk + xk−1(1 + βuk)Vk+1(1, Rk − uk)]∀k

∈ { 1, 2, . . . , N − 1 } (∵ E[εk] = 0)

VN (xN−1, RN ) = xN−1(1 + βRN )RN (4.6)

4.1.1 Numerical Algorithm for Policy Evaluation

The simplified set of equations (4.5) and Deduction 3 leads to the following algorithm

to compute the optimal policy function.

The time and space complexity of this algorithm is O(K2N) and O(KN) respectively.

The C code for the Algorithm 2 can be downloaded from this link.

https://www.dropbox.com/s/f8dp58ji9a2k2pc/opt_control_bert.c?dl=0
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Algorithm 2 An efficient algorithm to compute optimal policy for fiscal cost (MM-II)

1: procedure Optimal˙Allocation(V,U) . 2-D arrays to store optimal cost and
action

2: while r ∈ {0, 1, . . . , InitialSize} do
3: V [N ][r]← (1 + βr)r . Optimal Cost at time tN for x = 1
4: U [N ][r]← r . Optimal action at tN (ind. of x from last corollary)

5: while i ∈ {N − 1, N − 2, . . . , 1} do . To evaluate the optimal action and cost
Vi(1, r) at each time point ti

6: while r ∈ {0, 1, . . . , InitialSize} do . To determine the optimal action for
each possible stock position

7: uopt ← 0
8: valopt ← (1 + βuopt)uopt + (1 + βuopt)V [i+ 1][R− uopt]
9: while u ∈ {1, 2, . . . , r} do . Brute force search to determine optimal

action dynamically
10: valu ← (1 + βu)u+ (1 + βu)V [i+ 1][R− u]
11: if valu ≤ valopt then
12: uopt ← u
13: valopt ← valu

14: V [i][r]← valopt
15: U [i][r]← uopt

4.1.2 Resultant policy for fiscal cost objective (MM-II)

The resultant allocation vector (optimal action) in row-major form for β = 5× 10−5 is

demonstrated as below:

• N = 10

~uopt =
[
103 103 102 101 101 99 99 98 97 97

]
• N = 30

~uopt =


35 34 34 34 34 34 34 34 34 34

34 33 34 33 33 34 33 33 33 33

33 33 33 33 33 33 32 32 32 32


• N = 50

~uopt =



21 21 21 21 21 20 21 21 20 21

21 21 20 20 20 20 20 21 20 20

20 20 19 20 20 20 20 19 19 20

20 20 20 20 20 20 20 20 19 20

20 19 19 19 19 20 20 19 19 19


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• N = 100

~uopt =



11 10 10 10 10 9 10 10 11 10

11 10 10 11 9 10 9 10 10 10

11 10 10 10 11 9 10 10 10 11

10 11 10 10 10 10 10 11 11 10

10 10 9 10 9 10 9 10 10 10

10 10 10 10 10 10 10 10 10 10

9 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 9 9


The comparison of the total expenditure of the above policy with Bertsimas’ is tabulated

as under:1

Stock Investment Cost(B) Investment Cost(MM2) Ratio(MM2:B)

GOOG $719770.69 $719837.14 1.00009
AAPL $97670.42 $97668.46 0.99997
QCOM $48983.12 $48964.32 0.99961
NVDA $36247.86 $36195.93 0.99856

LXS.DE e39972.39 e39954.41 0.99955

Table 4.1: Comparison of total expenditure between Bertsimas’(B) and Market
Model-II(MM2) based on their daily opening price spanning a total of 100 working

days (Feb’16 - Jun’16)

Thus from the above data we can safely infer that the optimal action resulting from the

Geometric Brownian Motion of the stock prices performs equally well when compared to

their corresponding Arithmetic Brownian Motion for the market model of second type.

1As per the stock data obtained from Yahoo Finance



Chapter 5

Conclusion

The policy resulting from the analysis performed in Chapter 3 by incorporating several

risk-factors has shown considerable improvement over the Bertsimas’ policy with its

total expenditure tabulated as under:1

Stock Investment Cost(B) Investment Cost(WR) Ratio(WR:B)

GOOG $719770.69 $699576.13 0.97194
AAPL $97670.42 $94117.02 0.96361
QCOM $48983.12 $45666.70 0.93229
NVDA $36247.86 $28670.91 0.79096

LXS.DE e39972.39 e35319.80 0.88360

Table 5.1: Comparison of total expenditure between Bertsimas’(B) and Cost with
Risks(WR) based on their daily opening price spanning a total of 100 working days

(Feb’16 - Jun’16)

In summary, the non-performance of one-time investment policy (Table 3.1) and signif-

icant improvement of the policy resulting from the modified cost function (Table 5.1)

by incorporating market risks can be safely established for the average case analysis of

market model-I keeping in mind the existence of a non-zero probability of the occurrence

of a case scenario where the above deduction fails to hold. The subsequent analysis con-

ducted for market structure-II (Table 4.1) that recognizes the aspect of delayed trading

for the geometric Brownian motion of stock prices yielded results with a performance

similar to those proposed in [1].

1As per the stock data obtained from Yahoo Finance
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The instantaneous cost objective 3.6 could be improved further by factoring constraints

in a rational manner such that the penalty levied upon their violation does not undermine

or overestimate the effective fiscal cost. Another way to improve the cost objective is

by estimating the effect of current stock price before converging to any possible action.

For instance, if the bounds on the possible stock prices and its probability distribution

throughout the entire time duration T is already known, then one can possibly make use

of this information by tuning the penalty functions appropriately as a significantly lower

stock price and higher probability density would result in a net reduced risk for the case

when one intends to invest in a large fraction even at the earlier time points. Similarly,

a higher price (close to upper bound) would levy a high penalty even when one is within

the bounds of the imposed constraints. These kind of formulations would bring in the

dependence of the stock price resulting in improved policies but with a slight trade-off

of an increased time and space complexity.

Another possible way to improve the performance of the resulting control action is by

utilizing a more general form of the stock price updation function based on the theory

of Linear Price Impact with Information as suggested in [1] i.e. the stock price at each

successive time point can now be modeled as:

xt+1 = f(xt, ut, Zt, εt)

Zt = g(Zt−1, ηt)

(5.1)

Finally, in future we plan to work upon the above generalizations by simultaneously

improving upon the structural form of the information acquired and the algorithmic

approach to reduce the average case time complexity of the final control problem.
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