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Abstract

Given an isothetic rectangular floor containing a set of n randomly placed points, an
important problem that arises in computational geometry is to identify the largest
maximal empty rectangle(MER). The best known algorithm for this problem has
complexity of O(n log2 n). Here, our motivation is to develop an algorithm for a given
set of n points on a rectangular floor, identify a pair of maximal empty rectangles
such that the area of their union is maximum among all pairs of maximal empty
rectangles that exist on the floor. We have observed that if we try to find two
disjoint MER whose union is maximum, the by line sweep technique it can be solved
in O(R + n log n) time, where R is the maximum number of MER’s. We have also
observed that the unconstrained version of this problem can be solved in less time if
it is possible to devise a sub quadratic algorithm for the problem of finding the pair
of rectangles whose union of area is maximum among m rectangles. In order to solve
this problem we have observed that if we try to find two disjoint rectangles whose
union is maximum among m rectangles, it can be solved in O(m logm) time. We have
also observed that if they are axis-parallel squares rather than rectangles, and they
are of same area, then even for the non-disjoint case, the problem can be solved in
O(m logm) time.We have approached to solve the same problem for rectangles with
same area using matrix space, but have not found any way to approach the general
case. This study is still in process.

Keywords: Computational geometry, geometric algorithms, complexity, balanced
binary search tree.
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Chapter 1

Introduction

1.1 Introduction

Computational geometry involving isothetic polygons, particularly the geometric in-
tersection problem [8] plays a significant role in VLSI, e.g., layout design , design
rule checking, circuit extraction , resizing , routing and testing and also in image pro-
cessing and pattern recognition. An isothetic polygon is a polygon which is formed
by isothetic(straight) lines parallel to X or Y axis [21].

Given an isothetic rectangular floor containing a set of isothetic non-overlapping
solid rectangles, an important problem that arises in VLSI layout design is to identify
a suitable empty rectangular space where a solid rectangle with a given area and
aspect ratio is to be placed. This problem arises in VLSI placement [15] where
some rectangular components are already placed on a chip, and a new component is
to be placed; the objective is to search for a region where the new module can be
accommodated without any overlap with the existing solid rectangles. This calls for
an algorithm to identify the maximum empty rectangle in the layout area. This is a
generalization of the problem discussed by Naamad et.al [14], where the goal was to
find the maximum empty rectangle on a Cartesian plane amidst a set of randomly
placed points, for which an O(min(n2, Rlogn)) algorithm was described, where n
is the number of points on the floor plan and R is the total number of maximal-
empty-rectangles(MER) present on the floor. The complexity was later improved to
O(nlog2n+R) in [10] and then to O(nlogn+R) in [ [3], [18], [5]]. The algorithms
given in [20], [4] locate the maximum-area-rectangle in a point set, without inspecting
all MER’s in time O(nlog3n) and O(nlog2n) respectively. The algorithm developed
in [14] was used in [15] to find an efficient strategy of automatic/interactive general
block placement. A related problem is to locate a largest rectangle contained in
an isothetic polygon [21] for which an O(n2) time and O(nlogn) space algorithm
is known. A similar problem is to find the Largest Axis-Aligned Rectangle in a
Polygon, [9] for which an O(nlogn) time algorithm is also known. A unified algorithm
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4 1. Introduction

has been developed which is applicable to MER for the following three cases : (i) in a
collection of solid rectangles, (ii) in an ensemble of points and (iii) within an isothetic
polygon. [17] This algorithm was to generate all MER’s is suggested which runs
in O(nlogn + R ) time and consumes O(n) space.Later the problem of identifying
all Maximal Empty Isothetic Cuboids (MEC) was introduced In [16]. An output-
sensitive algorithm, based on plane-sweep paradigm, is proposed for generating all the
MECs present on the floor. The algorithm runs in O(C + n2logn) time in the worst
case, and requires O(n) space, where C is the number of MECs present inside the box.
In this paper it was also shown that the total number of MECs is bounded by O(n3)
in the worst case. It was conjectured by Datta and Soundaralakshmi [17] that the
maximum number of maximal empty boxes is O(nd) for each (fixed) d. The conjecture
was confirmed by Kaplan et. al. [11], who obtain the first tight θ(nd) bound on this
number.Recently it Dumitrescu and Jiang has showed that the expected number of
maximal empty axis-parallel boxes amidst n random points in the unit hypercube
[0, 1]d in Rd is (1± o(1)) (2d−2)!

(d−1)! n ln
d−1n , if d is fixed.

Here, our motivation is to develop an algorithm for a given set of points on a rect-
angular floor, identify a pair of maximal empty rectangles such that the area of their
union is maximum among all pairs of empty rectangles that exist on the floor.



Chapter 2

Algorithm For The Point Set

Let P = {p1, p2, . . . , pn} be n points on a rectangular region A. The upper left corner
of A is assumed to be the origin of our co-ordinate system with x and y. An Axis
parallel(isothetic) rectangle R in a given layout that does not contain any point of P
is said to be an empty rectangle. An empty rectangle is said to be a maximal empty
rectangle(MER) no other empty rectangle contains R.

We first consider a simpler variation of the problem, where the objective is to re-
port two disjoint empty rectangles of maximum area. Next, we consider the general
problem, where the reported rectangles may be non-disjoint

2.1 Disjoint pair of MER of maximum area.

We use line sweep technique and the algorithm in [17] to report two disjoint MER
of maximum area. Before Describing it let summarize the algorithm in [17]. Here
they have given an algorithm to identify all possible MER in a given point set. An
for that they have introduced the concept of a window. Let us introduce the concept
of window as follows:

Consider a point p(a1,h). Draw a horizontal line through the point p. It hits the left
and right boundary at the points l1(l, h) and r1(r, h) respectively. A primary window
is said to be generated in this event and is represented by an ordered tuple ([l, r], h),
where [l, r] is a horizontal interval and h denotes the height where it was originated
(see Figure 2.1).

Now a window S([l, r], h) which remains active till it strikes a point R(a1, b1). Before
it dies down, it returns an MER[(l, h), (r, b1)] and splits itself to give birth to two new
windows whose intervals are subsumed by the interval [l, r] of the parent window S
and whose heights are inherited. These windows are called secondary windows, which
in turn, may give birth to other secondary windows(see Figure 2.2).
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6 2. Algorithm For The Point Set
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2.1. Disjoint pair of MER of maximum area. 7

We apply a line sweep method to compute the largest MER among the points above
each horizontal line passing through the points in P. While sweeping line L from the
top boundary of A, whenever a point(p) is reached, some MER has been generated
by the above algorithm. We then compute the maximum one among them and store
it in variable T(p) attached to the point p. The same method is followed to compute
the largest MER among points below each horizontal line passing through the points
in P.Here also we attach a variable B(p) with the point p, to store the largest MER
below the point p. Next , a linear scan is performed; at each point we add T(p) and
B(p) to identify the point p for which this sum is maximum.

2.1.1 Data Structure

Our algorithm needs the following data structures:

(A) A list Y, with three fields Y.x, Y.y, Y.T, Y.B;

1. Y.x contains the x co-ordinate of each point p ∈ P .

2. Y.y contains the y co-ordinate of each point p ∈ P .

3. Y.T contains the largest MER among the points above each horizontal line
passing through the points for each point p ∈ P .

4. Y.B contains the largest MER among the points below each horizontal line
passing through the points for each point p ∈ P .

Initially Y.T an Y.B this two list are assigned to zero.

(B) A balanced binary search tree where each of its leaf node from left to right contains
the x co-ordinate of the points in P sorted in ascending order. Each of the internal
node contains the following information:

(1) A discriminant value d(w) = (d(w1) + d(w2))/2 , where w1 and w2 are the left
and the right child of w respectively. The discriminant value of a leaf node is the x
co-ordinate attached to it.

(2) A secondary list w.L . It’s each node contains windows containing p, and it
consists of three fields L.l, L.r and L.h, sorted in increasing order with respect to L.h,
is attached to each node w of T in the form of a doubly linked list with an additional
direct forward link from w to the last node in the list.All the windows[say A([l,r],h)]
which contains d(w) i.e. l ≤ d(w) ≤ r are in this secondary list.

We also maintain a global variable M. It keeps the area of the largest MER above
each point considered so far.

We also maintain two pointers POINTER L and POINTER R while processing a
point p(a1,b1). Initially, these pointers point to the root of T. Later, POINTER L
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points the current node of T which contains the last inserted secondary window with
right extremity at a1 and POINTER R points the current node containing the last
inserted secondary window with left extremity at a1.

List Y is sorted in non-decreasing order on the basis of the value of Y.y . If points
have same y co-ordinate then they are kept in Y in increasing order with respect to
their x co-ordinates.

2.1.2 Algorithm

Input: A rectangular floor [(0,0),(a,b)] with n points.

Output: Return the list P.T

Step1 : Initially an empty balanced binary search tree T is prepared.

Step2 : A window ([0,a],0) corresponding to the roof of the floor plan[(0,0),(a,b)],
is inserted in T.

Step3 : Create the sorted list Y,/*This gives the sequence of processing*/

Step4 : Let p(a1,b1) be the current point which is to be processed.Search the bal-
anced binary search tree T to identify the node w where d(w) = a1[x
co-ordinate of the point p].Let PIN be the set of nodes traversed from the
root to w.

Step5 : Find all windows in w.L and in PIN whose intervals contains p. Let this
set of windows be A. This set of windows are processed from the end
of the secondary list of their respective node(i.e., the window with the
largest interval first and then in decreasing order). Each of the window
will generate an MER. We will store the area of generated MER in p.T.
Every time we will update the value of p.T, if the newly generated MER
has larger area than the previous one. When the processing of all the
windows in w.L is over; we will store MAX(p.T,M) in P.T .

Step6 : After reporting each MER, the corresponding window will be split. One
of the splitting part will still remain a valid window(Assume no two points
have same x or y co-ordinate). The surviving window say A[(l1,r1),h1]
needs to be inserted in the secondary list of the proper node; only if there
is no window say B[(l2,r2),h2] is present where (l1 = l2) and (r1 = r2).
This whole process can be efficiently done by the use of POINTER L
and POINTER R.

Step8 : Insert the window C[(0,a),b1] at the proper node in T.

Step7 : Delete all the processed windows from T.

Step8 : Repeat from Step4 until all points are processed.
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Now run this algorithm in the opposite direction i.e. Bottom to Top direction, to
find out the list P.B . Now, for each point p ∈ P we have these two value p.T
(represents the largest MER among all MER whose bottom end is on or above p) and
p.B (represents the the largest MER among all MER whose upper end is on or below
p). So, now return the maximum value of the summation of p.T and p.B, among all
the points in P.

Now we will run this algorithm in X direction to find out the best possible disjoint
pairs which are separated only by vertical line. Now compare and return the best
disjoint pair.

2.1.3 Complexity Analysis

1. The construction of the balanced binary search tree including the sorting of Y
can be done O(n log n) time.

2. Step4 can be done in O(log n) time. Step4 will run for n times as we have total
n number of points. So, overall time taken by Step4 is O(n log n).

3. Step5 will take O(|A|) time to complete. |A| is the number of MER generated
during the processing of one point. Now Step5 will run for each of the point.
So, overall time taken by Step5 is:

∑
p∈P
|A| = R. R is the total number of MER.

4. In step6 all secondary windows generated from set A can be inserted in T in
O(log n) + |A|) time by properly using POINTER L and POINTER R. So,
overall time taken by step6 is O(n log n+R).

So, overall time complexity to find the list P.T is O(n log n + R). An to find the
best disjoint pair we are doing this similar method for 4 times and doing some linear
scan which will not affect the total complexity. Naamad et. al. [14] shows that the
total number of MER(i.e. R) can be of O(n2). So, the worst case complexity of our
algorithm is also O(n2).

2.2 Non disjoint pair of MER of maximum area

Now to find the pair of Non-Disjoint MER whose union of area is maximum we can’t
use the sweep line technique. So, we have attempted to solve it in some different way.
Naamad et. al. [14] shows that the total number of MER is of O(n2), so if we try to
find the pair among all O(n2) MER, then our ob is done. So, the most trivial way is
to do the Brute Force search. So, we will check all possible pair and will return the
pair whose area of union is maximum. But for that we need to check (n2(n2 + 1)/2)
number of pairs; which is of O(n4). So, now if it is possible to find some algorithm
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where it is possible to find out such pairs among all O(n2) MER in some efficient
technique then our problem is solved.

So, now our main problem boils down into a different problem. We have a set of n
axis parallel rectangles. We need to identify a pair of rectangles whose union is of
maximum area. The trivial algorithm of considering all possible pairs needs O(n2)
time. The objective is to have a sub quadratic algorithm. We have discussed it in
the next chapter.



Chapter 3

Best possible pair among n given
axis parallel rectangles

3.1 Best disjoint pair of rectangles

We again use the sweep line algorithm to solve this problem in O(n log n) time.(see
Figure 3.1). We execute a left to right sweep to compute the largest rectangle among
all rectangle that lie to the left side of the right boundary of each rectangle. A similar
right to left sweep is performed to compute the largest rectangle among all rectangle
that lie to the right side of the left boundary of each rectangle.We now explain the
left to right sweep.

Here we maintain a list P with two fields P.m and P.x; where Pr.m contains the
largest rectangle among all rectangle that lie to the left side of the right boundary of
r and Pr.x contains the x co-ordinate of the right boundary of r for each r ∈ R.

Here we maintain a global variable MAX. It keeps the area of the largest rectangle
on the left of the right side of each rectangle considered so far.

Input: A set R = {r1, r2, . . . , rn} of n rectangles.

Output: Return the list P.

Step1: Sort the rectangles on the basis of their right boundary.

Step2: Move a sweep line from left to right direction where the event of the sweep
line is the right side of the rectangle.

Step3: Let at an instant we are processing the right boundary of rectangle r. compare
its area with MAX; and store the maximum one in Pr.m and x co-ordinate of
right boundary of r in Pr.x for each r ∈ R.

11
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Right Boundary

LeftBoundary

A

B

C

At This Point Max Area Rectangle A At This Point Max Area Rectangle is MAX(A,B)

Move The sweep line where event is right boundary

Move The sweep line where event is left boundary

Figure 3.1: Demonstration of the algorithm for finding disjoint pair of rectangles of
maximum area

Step4: Repeat from the step2 until the right sides of all rectangles are processed.

Now we need to do the right to left sweep in similar manner. And we store the result
in a list Q with two fields Q.m and Q.x; where Qr.m contains the largest rectangle
among all rectangle that lie to the right side of the left boundary of r and Qr.x
contains the x co-ordinate of the left boundary of r for each r ∈ R.

Now to find the disjoint pair of rectangles of maximum area we will do as follows:

1. Initialize M(a scalar variable) to zero.

2. Keep two pointers at the beginning of both the list P and Q.

3. For an index i in P find the first index j from Q, where Pi.x ≤ Qj.x; then add
Pi.m and Pj.m and store it in M if it is larger than the earlier value of M.

3. Repeat 2 until all elements of list P are processed.

Now as both the list P and Q are sorted we can do the above process linearly. So, in
overall the most costly step is the sorting of the rectangles, which will take O(n log n)
time.

Now repeat this algorithm in y direction also to find out best the disjoint pair of
rectangles which are only separated by a horizontal line.
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3.2 Unconstrained best pair of rectangles

In this unconstrained version, we first execute the algorithm of 3.1 too identify a
disjoint pair of rectangles of maximum size. Then we need to device an algorithm to
identify a pair of possibly intersecting rectangles of maximum size. This study is still
in process. We considered a simplified variation of this problem where all the objects
are axis parallel squares of same size in the next chapter.



Chapter 4

Best possible pair of squares
among n given axis parallel squares
of unit size

It is clear that in this problem if there exists at least one disjoint pair of square then
that should be our answer. So, first we will run our algorithm in 3.1 for this set of
squares. If the solution pair is of size 2 unit in total, then our job is done. Otherwise,
if all of the n squares are are intersecting with each other then algorithm in 3.1 will
return only one square in the answer.

Lemma 1 Let S1, . . . Sn be a collection of axis parallel squares. If the intersection
of every pair of these squares is nonempty, then the whole collection has a nonempty
intersection; that is,⋂n

j=1 Sj 6= ∅ .

Proof:
As every pair of these given squares are non empty and all of the squares are axis

parallel squares, from geometry it is clear that collection of any three squares also have
a non empty intersection. Then rest of the lemma follows from Helly’s Theorem. [1]
�

So, we consider an environment where all the squares have a common intersection
region.(see Figure 4.1).

4.1 Notation

Let us denote X INT (A,B) as the length of intersection area between square A and
B in the X-direction, Y INT (A,B) as the length of intersection area between square

14
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Figure 4.1: Shaded region is the intersection area of all the squares

A

B

C v

Figure 4.2: No vertices of Square A are in the boundary

A and B in the Y-direction, INT(A,B) is the intersection area between square A and
B, and U(A,B) is the union of area of square A and B.

4.2 Observations and their proofs

Observation 1 Let S1, . . . Sn be a collection of axis parallel unit squares and
⋃n

j=1 Sj =
U . All those squares which has at least one vertex in the boundary of the region U
only they can be present in the solution of our problem.

Proof:
For contradiction, let it is a possible to get the best possible pair of square where at

least one of the square does not have any vertex at the boundary. Let A be such a
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square[see Figure 4.2] and suppose union(A,B) is maximum. Now, as no vertex of
A(say v) is not in the boundary so, there must be some square (Suppose C) whose left
boundary is on the left of A and bottom boundary is on the bottom of A to cover the
vertex v. So, (X INT (A,B) > X INT (C,B)) and (Y INT (A,B) > Y INT (C,B))
also. So, (INT (A,B) > INT (C,B)) which implies that (U(C,B) > U(A,B)) which
is a contradiction. �

As of now we will only consider all those squares which has at least one vertex at
the boundary. As all the squares are sharing a common area(shaded in Figure 4.1),
we can choose our axes passing through this shaded area. This splits R2 into four
quadrants. All the border vertices of the squares will fall into any one of these four
quadrant.

Now our first task is to to find out all the vertices of the squares which are at the
boundary of region U. It is possible to detect in O(n log n) time.[see page 340 in [19]].
Now to detect the quadrant of each boundary vertex we need to find the intersection
region of all squares. It is possible to to detect by sorting of squares in both x and y
direction in O(n log n) time.

Note That algorithm in [19] will return only the endpoints of each line segment of
the hull U. Let this set of point is R, and the set of vertices of all squares is V. We
will give number to only those points which are in the intersection of these two sets
R and V. Numbering of the vertices will be needed later.

A square having its one corner in any quadrant i is said to lie in quadrant i. Observe
that a square may lie in more than one quadrants.

Observation 2 If in the optimal solution both the squares lie in the same quadrant
then their vertices appear respectively at the bottom end and top most points of the
stair in that quadrant.

Proof:
Obvious.See Figure 4.3, here in the 3rd quadrant the square corresponding to the

vertex ’i’ and the square corresponding to the vertex ’l’ will be the best pair. �

So, in order to identify such a solution, if exists, in O(1) time by computing the area
of the union of these two squares and storing them as a candidate for the best pair.

•We denote extreme endpoint for a horizontally adjacent quadrant are left most stair
vertex in the left quadrant and right most stair vertex in the right quadrant and for
a vertically adjacent quadrant are top most stair vertex in the upper quadrant and
bottom most stair vertex in the lower quadrant.

Observation 3 If in the optimal solution both the squares lie in adjacent quadrant
then at least one of them will be the square corresponding to the extreme endpoint as
defined above.
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Proof:
Let the optimal solution lie in 3rd and in 4th quadrant. For contradiction, let the

best pair (B,C) in Figure 4.4.a or in Figure 4.4.b corresponds to two squares whose
corresponding stair vertices i.e. j and k are in 3rd and 4th quadrant respectively such
that no one corresponds to an extreme endpoint of its respective stair. Let i and l are
two extreme endpoints and corresponding squares are A and D respectively. WLOG
let us assume that D is on top of A.

Now it is clear that the square B will always at the left of the square C. If not suppose
C is at the left of B. Then we have two possibility either C is at the top of B or C is
at the bottom of B. But both these cases are not possible; because in the first case k
will no more a stair vertex[see Figure 4.4.c], and in the second case j will no more a
stair vertex[see Figure 4.4.d].

Now as we have already assumed that i and l are two extreme border vertex in 3rd

and 4th quadrant, so B can’t be at the left of A and C can’t be at the right of D and
from Figure 4.4.e and 4.4.f it is clear that C will always on the bottom of D, o.w. k
will no more a stair vertex and B will always on the bottom of A, o.w. j will no more
a stair vertex.

Hence, C will be at the right of B and on the bottom and left of D along with that
B is at the right and bottom of A.[see Figure 4.4.a or Figure 4.4.b]

Now we have two cases:

Case1: C is at the top B. In this case (X INT (B,C) > X INT (B,D)) (as C is at
right of B and D is right of C) and also (Y INT (B,C) > Y INT (B,D)) (as C is at
top of B and D is top of C). So, (INT (B,C) > INT (B,D)). So, U(B,C) < U(B,D);
which is a contradiction.[see Figure 4.4.a]

case2: C is at the bottom of B. In this case (X INT (C,A) < X INT (C,B)) (as B
is at left of C and A is left of B) and also (Y INT (C,A) < Y INT (C,B)) (as B is at
top of C and A is top of B). So, (INT (B,C) > INT (A,C)). So, U(B,C) < U(A,C);
which is a contradiction.[see Figure 4.4.b]

�

Now we deal with the problem of identifying two vertices v1 and v2 of region U such
that they lie in diagonally opposite quadrant, and their corresponding squares S1 and
S2 produces maximum area of S1∪S2 among all possible pair of vertices in diagonally
opposite quadrants.

We number the vertices of region U with the natural numbers from 1 to n in clockwise
order. We use Qi to denote the vertices of the region U in ith quadrant, for i = 1,2,3,4.
Consider the vertices in bottom-left and top-right quadrants. Let Aij denote the area
of S1 ∩ S2 where vi ∈Q3 and vj ∈Q1. Let |Q3| = m and |Q1| = n.

Observation 4 Let Mm×n be a matrix whose ijth entry Mij corresponds to S1 ∩ S2

where vi ∈Q3 and vj ∈Q1. The matrix M is a totally monotone matrix as defined
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Figure 4.5: Demonstration of observation 4

below.

Definition 1 A matrix is said to be totally monotone if for every 2 × 2 sub matrix[
a b
c d

]
, it is not simultaneously possible that a > b and c < d.

Proof:
[Observation 3]: To prove this matrix M totally monotone we will take any 2×2 sub

matrix,

[
a b
c d

]
, and we will show that it is not simultaneously possible that a > b

and c < d.

[ See Figure 4.6.a ]Let i,j are any two row index of matrix M i.e. the stair vertex in
Q3 and k,l are any two column index of matrix M i.e. the stair vertex in Q1. Now, ’a’
is the intersection area between the squares corresponding to the stair vertex i and
k; similarly b,c,d is defined.

Let Si, Sj, Sk, Sl are the squares corresponding to the stair vertex i(xi,yi),j(xj,yj),
k(xk,yk),l(xl,yl) respectively.

Now from the way of the numbering of the stair vertices we can conclude two condi-
tions:

1. (xi > xj)and(yi < yj)

2. (xl > xk)and(yl < yk)

Case1: i and l are the vertices of the same square and j and k are the vertices
of the same square. Here a = M [i, k] < b = M [i, l], so monotonicity
holds.[see Figure 4.6.b]
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Figure 4.6: (a): An instance of a matrix M , (b): i and l are the vertices of the same
square and j and k are the vertices of the same square.
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Case2: i and k are the vertices of the same square and j and l are the vertices of
the same square. By construction it is not possible.

Case3: i and l are the vertices of the same square and j and k are the vertices
of the different square. Here a = M [i, k] < b = M [i, l],so monotonicity
holds.[see Figure 4.7.a]

Case4: i and l are the vertices of the different square and j and k are the vertices
of the same square. Here (c = M [j, k] > d = M [j, l]),so monotonicity
holds.[see Figure 4.7.b]

Case5: i and k are the vertices of the same square and j and l are the vertices of
different square.[see Figure 4.7.c]. Here Sj is to the left and above of Sk

(as Si and Sk are same square),so (X INT (Sj, Sk) > X INT (Sj, Sl)) and
(Y INT (Sj, Sk) > Y INT (Sj, Sl)). So, (INT (Sj, Sk) > INT (Sj, Sl)) i.e.
(c > d) always.

Case6: j and l are the vertices of the same square and i and k are the vertices of
different square. [see Figure 4.7.d]. Here Si is at the right and bottom
of Sl (as Sj and Sl are same square),so (X INT (Si, Sk) < X INT (Si, Sl))
and (Y INT (Si, Sk) < Y INT (Si, Sl)). So, (INT (Si, Sk) < INT (Si, Sl))
i.e. (a < b.) always.

Case7: All Si, Sj, Sk, Sl are different squares. Here we prove the totally monotone
matrix property exhaustively enumerating all possible cases.Since (xi >
xj)and(xl > xk) we sort the squares Si, Sj, Sk, Sl in increasing order
on the basis of their left boundary. They may appear in six ways as
demonstrated in Figure 4.1. Similarly we sort the squares in increasing
order on the basis of their bottom boundary. They also may appear in
six ways.Considering the pair of ordering of four participating squares Si,
Sj, Sk, Sl namely(Ai : Bj),i=1, . . . , 6,j=1, . . . , 6 we have 36 configuration.
We will consider each configuration and will either justify that the said
configuration is not possible, or if such a configuration is possible then
show that the monotonicity holds.

• Among these 36 configurations there are 16 which are invalid.[see Figure 4.8]

(A4:B4): Here Sl is at left and bottom of Si; So border vertex i will not exist.

(A4:B5): Same reasoning as before.

(A4:B6): Same reasoning as before.

(A5:B6): Here Sk is at left and bottom of Si; So border vertex i will not exist.

(A1:B1): Here Sk is at left and bottom of Sj; So border vertex j will not exist.

(A1:B5): Same reasoning as before.

(A1:B6): Same reasoning as before.
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Table 4.1

All possible combinations if we
sort Si, Sj, Sk, Sl in increasing or-
der on the basis of its left bound-
ary:

All possible combinations if we
sort Si, Sj, Sk, Sl in increasing
order on the basis of its bottom
boundary:

A1: Sk, Sj, Si, Sl B1: Si, Sl, Sk, Sj

A2: Sk, Sj, Sl, Si B2: Si, Sl, Sj, Sk

A3: Sk, Sl, Sj, Si B3: Si, Sj, Sl, Sk

A4: Sj, Sk, Sl, Si B4: Sl, Si, Sj, Sk

A5: Sj, Sk, Si, Sl B5: Sl, Si, Sk, Sj

A6: Sj, Si, Sk, Sl B6: Sl, Sk, Si, Sj

(A2:B1): Same reasoning as before.

(A2:B5): Same reasoning as before.

(A2:B6): Same reasoning as before.

(A2:B4): Here Sl is at left and bottom of Si; So border vertex i will not exist.

(A3:B1): Here Sk and Sl both are at left and bottom of Sj; So border vertex j will
not exist.

(A3:B2): Here Sl is at left and bottom of Sj; So border vertex j will not exist.

(A3:B4): Here Sl is at the left and bottom of both Si and Sj; So both i and j will
not exist.

(A3:B5): Same reasoning as before.

(A3:B6): Same reasoning as before.

•Now among these remaining 20 structure there are 6 structures where INT (Si, Sk) <
INT (Si, Sl) i.e. a < b.[see Figure 4.9]

Here, Sl is at the left and above of Si, and Sk is at the left and above of Sl. So,
X INT (Si, Sk) < X INT (Si, Sl) and similarly Y INT (Si, Sk) < Y INT (Si, Sl)
;Hence INT (Si, Sk) < INT (Si, Sl) i.e. a < b.

• Next we show that there are 5 structures where INT (Sj, Sk) > INT (Sj, Sl) i.e.
c > d.[see Figure 4.10]

Here, Sj is at the left and above of Sk, and Sk is at the left and above of Sl. So,
X INT (Sj, Sk) > X INT (Sj, Sl) and similarly Y INT (Sj, Sk) > Y INT (Sj, Sl)
;Hence INT (Sj, Sk) > INT (Sj, Sl) i.e. c > d.
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• Now consider the case (A1:B4) as shown in Figure 4.11. Here, we can’t ensure that
c > d or in other words INT (Sj, Sk) > INT (Sj, Sl). But if a > b i.e. (INT (Si, Sk) >
INT (Si, Sl)) then c > d can be ensured as follows:

Let, INT (Si, Sk) > INT (Si, Sl) . . . (A)

Sk is to the left and above of Sj, and Sj is to the left and above of Si :

=⇒ INT (Sj, Sk) > INT (Si, Sk) . . . (B)

Together (A) and (B)

=⇒ INT (Sj, Sk) > INT (Si, Sl) . . . (C)

Also Sl is to the right and bottom of Si, and Si is to the right and bottom of Sj:

=⇒ INT (Si, Sl) > INT (Sj, Sl) as . . . (D)

So, from (C) and (D) we can say that,

INT (Sj, Sk) > INT (Sj, Sl) i.e. c > d.

•Now we will consider the four cases shown in Figure 4.12. Here if the total mono-
tonicity is not followed, then (i) a > b and (ii)c < d where, a = INT(Si , Sk), b =
INT(Si , Sl), c = INT(Sj , Sk) and d = INT(Sj , Sl) have to occur simultaneously.
From (i) and (ii):

INT (Si, Sk) + INT (Sj, Sl) > INT (Si, Sl) + INT (Sj, Sk).

But this is not possible since,

INT(Si , Sk) ∪ INT(Sj ,Sl) ⊆ INT(Si , Sl) ∪ INT(Sj , Sk).

Each of the rest four cases, we will consider individually and show that for all these
cases totally monotonicity holds.[see Figure 4.13]

•[Case(A5 : B4)]: [see Figure 4.13.a]

Suppose in this case INT (Sj, Sk) < INT (Sj, Sl) is true.

=⇒ (d+ b+ c) < (c+ a)

=⇒ (b+ c) < (a+ c) . . . (1)

Now as Sj is at the left of Sk and Sk is at the left of Sl.

=⇒ X INT (Sj, Sk) > X INT (Sj, Sl)

So, to satisfy INT (Sj, Sk) < INT (Sj, Sl) it must be Y INT (Sj, Sk) < Y INT (Sj, Sl)

=⇒ [Y INT (Sj, Sk)× base] < [Y INT(Sj, Sl)× base]

=⇒ (o+ p+ q) < (q + s)

=⇒ (p+ q) < (q + s) . . . (2)

Both (1) and (2)

=⇒ (b+ c+ p+ q) < (a+ c+ q + s) . . . (3)
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And from Figure 4.13.a it is clear that:

INT (Si, Sl) > (a+ c+ q + s) . . . (4)

And, INT (Si, Sk) = (b+ c+ p+ q) . . . (5)

Both (4) and (5)

=⇒ INT (Si, Sk) < INT (Si, Sl).

So, here monotonicity holds.

•[Case(A6 : B4)]: Proof technique is same as before[see Figure 4.13.b]

•[Case(A1 : B2)]: [see Figure 4.13.c]

Suppose in this case INT (Si, Sk) > INT (Si, Sl) is true.

=⇒ (a+ b) > (b+ c+ s)

=⇒ (a+ b) > (b+ c) . . . (1)

Now as Si is at the bottom of Sl and Sl is at the bottom of Sk.

=⇒ Y INT (Si, Sk) < Y INT (Si, Sl)

So, to satisfy INT (Si, Sk) > INT (Si, Sl) it must be X INT (Si, Sk) > X INT (Si, Sl)

=⇒ [X INT (Si, Sk)× h] > [X INT(Si, Sl)× h]

=⇒ (g + f) > (f + e+ d)

=⇒ (g + f) > (f + e) . . . (2)

Both (1) and (2)

=⇒ (a+ b+ g + f) > (b+ c+ f + e) . . . (3)

And from Figure 4.13.c it is clear that:

INT (Sj, Sk) > (a+ b+ g + f) . . . (4)

And, INT (Sj, Sl) = (b+ c+ f + e) . . . (5)

Both (4) and (5)

INT (Sj, Sk) > INT (Sj, Sl).

So, here monotonicity holds.

•[Case(A1 : B3)]: Proof technique is same as before[see Figure 4.13.d]

�

4.3 Complexity Analysis:

If in the optimal solution both the squares lie in the same quadrant then it is possible
to identify such a solution in O(1) time.[From observation 1]. If in the optimal solution
both the squares lie in the adjacent quadrant then it is possible to identify such a
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solution in O(n) time.[From observation 2].If in the optimal solution both the squares
lie in the diagonal quadrant then also it is possible to identify such a solution in O(n)
time because in O(n) it is possible to identify the minimum value of every row of a
totally monotone matrix. [2]. So, the most costly operation in this algorithm is to find
the stair vertices and their respective quadrants which is of O(n log n). So, overall
complexity of this algorithm is O(n log n).



Chapter 5

Future Work and Conclusion

We have developed a sub quadratic algorithm to find the best disjoint pair of axis
parallel rectangles. But in the unconstrained version of finding the best pair of rect-
angles we have not been able to find any sub quadratic algorithm. This study is
still in process. We have developed a O(n log n) algorithm simplified variation of this
problem also, where each of the rectangles are squares of same area.

Now we are trying to solve a more difficult variation of this problem where each of the
polygons area rectangles but of same area. Here first we have defined one distance
function as follows:

d(R1, R2) = A(∪(R1, R2))− A(R1); where

1. d(R1, R2): Distance between two rectangles R1 and R2.

2. A(∪(R1, R2)): Area of the union of rectangles R1 and R2.

3. ’-’ : Subtraction operation between natural numbers.

4. A(R1): Area of rectangle R1 which is a constant number ’C’.

Lemma 2 d(R1, R2) is a metric.

Proof:
To prove this lemma we nee to show that d(R1, R2) will follow all three properties

of a metric.

1. d(R1, R1) = A(∪(R1, R1))− A(R1) = 0.

2. d(R1, R2) = A(∪(R1, R2)) − A(R1) = ∪(R1, R2) − A(R2) = d(R2, R1), since
A(R1) = A(R2) = C.

29
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3. Triangle inequality:[see Figure 5.1]

C = A(R1) = (a+d+e+f) = A(R2) = (c+d+e+g) = A(R3) = (a+d+c+b).

d(R1, R2) = (f + e+ g + a+ d+ c)− C . . . (i)
d(R2, R3) = (a+ d+ c+ b+ e+ g)− C . . . (ii)
d(R1, R3) = (a+ d+ e+ b+ c+ f)− C . . . (ii)
(i)+(ii)-(iii) =⇒ (g + a) ≥ 0

(i)+(iii)-(ii) =⇒ (f + c) ≥ 0

(ii)+(iii)-(i) =⇒ (b+ e) ≥ 0

Hence, d(R1, R2) is a metric. �

It is clear that optimal solution pair of rectangles will be the farthest pair of points
in this new metric space. Our motivation of defining this distance function has from
[6] and [7]. Here they have deifned Convex Polygon-Offset Distance Function and
with this new distance function they have generated furthest site voronoi diagram for
convex polygon. Hence, in our problem if it is possible to represent each rectangle
uniquely by some disjoint point or tuples, and as the distance function is also metric
then we can generate the furthest site voronoi diagram for the set of rectangles with
our distance function [ [13], [12]] and we will get our optimal solution pair. We are
currently working in this problem and later we will approach for the general case.
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