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Abstract

With the ever increasing quantity of scientific literature in the Bio-medical domain, it
has become a crucial task to build such intelligent automated systems, that can under-
stand the deep hidden meaning underlying texts, and can adapt to new knowledge based
discoveries in the literature. Natural Language Processing is the best approach towards
this task. In this project, we try to build such a system to extract knowledge from scholary
articles of Cancer Genetics for the Event Extraction shared task organized by the Bio-
NLP community in 2013. With the help of distributed vector representations of words
to capture the semantic informations of words, and the Recurrent Neural Networks to
capture the contextual informations of sequential data, we propose a pipelined system of
two models for the Cancer Genetics Event Extraction task.
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Chapter 1

Introduction

1.1 Motivation

Text Mining (or Text Data Mining, or Textual Analytics, or Information Extraction from
Texts) is the process of automatically extracting high-quality, structured information
from Natural Language texts, by the means of various Pattern Recognition techniques,
to describe the content, structure and behavior underlying the texts.

Over the years various techniques such as Bayes, Naive Bayes, Nearest Neighbors,
Support Vector Machines (SVM), Maximum Entropy, Expectation Maximization (EM),
Hidden Markov Model (HMM), etc., have been used successfully for such information
extraction tasks, because of their simplicity and the simple feature representation for
the texts. Although neural network models were already present at the time, they were
easily superseded by the aforementioned techniques, because neural nets need powerful
computation devices, and some form of numerical representation of the texts.

As the technology has evolved and computation devices such as Processors and
Graphical Processing Units (GPUs) became powerful, application of neural nets resur-
faced. Along with that, the distributed vector representation of texts that can capture
syntactic and semantic information inherent in them, helped the neural nets to improve
information extraction tasks from texts, profoundly. We have seen the strengths of differ-
ent complex neural net models (currently known as Deep Neural Nets) such as, Recurrent
Neural Networks (RNN), Autoencoders, Restricted Boltzman Machines (RBM), Deep
Belief Networks (DBN), Convolution Neural Networks (CNN), etc., for various Natural
Language Processing (NLP) related tasks, for example, Sentiment Analysis, Handwrit-
ten Digit Recognition, Machine Translation, Language Modeling, Question Answering,
Chat-Bots, etc.

As each day hundreds of scholary articles are proposed in the Bio-Medical domain,
it is necessary to improve information retrieval techniques so that the search queries can
return the most relevant results. One most important step to achieve that is to improve
information extraction techniques. Hence our goal is to try to build such an information
extraction system using the power of deep neural networks.

Since 2009, the BioNLP community has been organizing Shared Task (ST) events
in order to advance the methods and resources to automate the information extraction
from biomedical literature. In this thesis, we are going to explore Cancer Genetics (CG)
shared task introduced in BioNLP 2013.
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1.2 Organization of the Thesis

Chapter 2 is used to present the Cancer Genetics task in detail, starting from
the definitions of Cancer Genetics, Entities, Triggers, Arguments and Events, to
describing and breaking down the Event Extraction task into components, and
finally stating why we need NLP techniques for this task.

Chapter 3 is used to present briefly the techniques that have been used in most
approaches, and a state of the art model for the CG shared task in BioNLP ST
2013.

Chapter 4 is used to describe the relevant theoretic backgrounds needed to un-
derstand our models, in-depth description of our proposed models, their results
and benchmarking scores, and finally reviewing the pros and cons of our models.

Chapter 5, the final chapter, is used to comment over our overall thesis, and
future plans for this task.

Chapter 1 Krishanu Nayak 2



Chapter 2

Cancer Genetics Task

2.1 Cancer Genetics

Genes are found in DNA in each cell that forms our body. They control how the cell
functions, for example, how quickly it grows, how often it divides, and how long it lives.
Each gene has its own instruction to formulate correct protein that performs specific
functions for the cells. Providing wrongful instructions to genes, the DNA then mutated,
creates nonstop harmful abnormal proteins resulting unlimited cell productions, or no
protein at all resulting no repair in the cellular damages. These mutations happen often,
but the human body can correct them most of the time. Cancer is a genetic disorder
which usually happens after multiple such harmful mutations that could not be corrected
by the human body. And the study of the cause and effects of such mutations in genes
leading to destructive behavior of cells is called Cancer Genetics.

2.2 Cancer Genetics Task from BioNLP 2013 ST

2.2.1 Background

The BioNLP ST, organized for the third time in 2013, presented open challenges as Nat-
ural Language Processing tasks over biomedical scientific literature, where the organizers
provided task definitions, Gold standard data for model development and evaluation,
and tools for model assessment and comparisons. The biological questions addressed by
the BioNLP ST 2013 belong to the molecular biology domain and related fields. Similar
to the previous two editions, this one is also targeted towards progressing the complex
text-bound Event Extraction (EE) tasks. The BioNLP ST ’13 includes six tasks:

1. Genia Event Extraction (GE)

2. Cancer Genetics (CG)

3. Pathway Curation (PC)

4. Gene Regulation Ontology (GRO)

5. Gene Regulation Network in Bacteria (GRN)

3
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6. Bacteria Biotopes (BB)

All these tasks share common event-based representation and file formats, so that one
system can be reused across tasks easily. For our project we decided to work with Cancer
Genetics (CG) task.

2.2.2 Cancer Genetics task

The CG task aims at automatic extraction of information from the literature on Cancer,
a complex group of genetic diseases that is well studied research topic worldwide.

The CG task concerns the extraction of events relevant to cancer, covering
molecular foundations, cellular, tissue, and organ-level effects, and organism-
level outcomes.[Nédellec et al., 2013]

The CG task is differentiated from previous event extraction tasks in the
BioNLP ST series in addressing a wide range of pathological processes and
multiple levels of biological organizations, ranging from the molecular through
the cellular and organ levels up to whole organisms[Pyysalo et al., 2013]

The CG task is defined over a set of 18 entity and 40 event types based on community
standard ontologies. The CG task corpus consists of 600 PubMed abstracts annotated
for over 17,000 events. The objective is to capture these events and associated arguments
from the given CG corpus. These are thoroughly discussed in the following sections.

2.2.3 Definitions

2.2.3.1 Entity

A Biological Entity, or simply an Entity, can be defined as an independent yet complete
representation of an instance of a biological organization (or biological entity), of various
hierarchical levels. Each such entity participates to form a biological class, that depicts
the level of hierarchy it belongs to. For example:

• Tumor is an entity of type Cancer

• TIMP-3 is an entity of type Gene or Gene Product

• Capillary is an entity of type Tissue

The 18 types of entities defined with reference to the domain standard databases and
ontologies for the Cancer Genetics Shared Task, can be seen in Figure 2.1. The grayed
out labels inside the ‘Type’ column represent higher level organizations, presented in
the table only for references, but they are not part of the annotations.

2.2.3.2 Event

A Biological Event, or simply an Event, can be described as a change of state of Biological
Entities, or some other Biological Events. The interacting entities and events are said
to be the arguments of the parent event. Furthermore, the type and the number of
arguments depend on the parent event type. Hence, an event is formally constructed
by two features:

Chapter 2 Krishanu Nayak 4
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Figure 2.1: 18 Entity Types as defined in the BioNLP ST ’13

• Trigger Word(s): A word, or a sequence of words, that expresses the existence
of an event, is called a trigger. The trigger itself decides which type of event is
happening, and said to belong to that event type.

Let us denote an event by superscripted form as TriggerWordEventType and an
entity by subscripted form as EntityWordEntityType.

Figure 2.2 contains multiple such events. Let’s look at a few examples. In Fig-
ure 2.2a, IGF-IGGP and mevalonic acidSimple chemical are the entities, and
down regulate−Regulation, suppress−Reg, and synthesisSynthesis are the events.

• Argument(s): The entities and events participating in the event being con-
sidered, are called its arguments. Each of these arguments also said to perform
different roles in the construction of the event, which are defined by the event type,
and partly the type of the argument itself. The number of role types are small
and generic, but they are defined some moderate task specific way. The following
roles are defined in the CG task.

– Theme: An entity or an event that is primarily affected by the event. In
Figure 2.2a, an entity IGF-IGGP is an argument of type Theme of an event
down-regulate−Regulation, and an event synthesisSynthesis is an argument
of type Theme of an another event suppress−Reg.

Chapter 2 Krishanu Nayak 5
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(a) Example for Theme

(b) Example for Cause

(c) Example for Participant

(d) Example for Instrument

(e) Example for AtLoc

(f) Example for ToLoc

Figure 2.2: Examples of different event compositions

– Cause: An entity or an event which is the reason of the event. In Figure
2.2b, an event AngiogenesisBV dev is an argument of type Cause of an event
essential+Regulation.

– Participant: An entity that is participating in the event, but its role can
not be described from the context. In Figure 2.2c, an entity VEGFR2GGP

is an argument of type Participant of an event signallingPathway.

– Instrument: An entity that is used to carry out the event. In Figure
2.2d, an entity VHLGGP is an argument of type Instrument of an event
transfectedPlan proc.

– Site: A part of a Theme entity that is specifically affected by the event.

Chapter 2 Krishanu Nayak 6
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– AtLoc: Location where the event takes place. In Figure 2.2e, an entity
tumorCancer is an argument of type AtLoc of an event angiogenesisBV dev.

– FromLoc: The source of a movement is described by an event involving a
change of location.

– ToLoc: Direction or end-point of a movement described by an event involv-
ing a change of location. In Figure 2.2f, an entity lungOrgan is an argument

of type ToLoc of an event metastaticMetastasis.

2.3 Task Breakdown

The Event Extraction task can be partitioned into two consecutive subtasks:

1. Trigger Words Detection: The first part of the two deals with finding the
trigger words from a given text. This also involves finding the associated event
types for those trigger words. This essentially is a sequence labeling problem.

2. Arguments Extraction: The next part is to extract the arguments (entities and
events), in association with the type of the arguments (theme, cause etc.), for the
trigger words identified in the first part.

For example, in Figure 2.2f, the first task is to identify the trigger words metastactic
and decreased, with their associated event types Metastasis and Negative Regulation,
respectively. The next part is to identify arguments of metastacticMetastasis, which are
entities tumorsCancer of argument type Theme and lungOrgan of argument type ToLoc;

and the argument of decreasedNegativeRegulation, which is an event metastaticMetastasis

of argument type theme. Then the compositions of events become:

Event 1: metastacticMetastasis −−−−→
Theme

tumorsCancer

Event 2: metastacticMetastasis −−−−→
ToLoc

lungOrgan

Event 3: decreasedNegativeRegulation −−−−→
Theme

metastaticMetastasis

2.4 The Need of NLP Techniques for EE Task

With the existence of millions of proteins, genes, organisms, species, we are nowhere
near to understand the relationships or interactions amongst them completely. Even
the scientific literatures already available in these domains, can not possibly be com-
prehended all, to make rules for knowledge based information extraction tasks. Hence,
along with knowledge representations (e.g. named entities), some generic ways (e.g. dif-
ferent entity types, event types and argument roles) are defined to represent the possible
relationships. Therefore, no better method than Natural Language Processing can be
thought of for deep, automatic understanding and capturing of those relationships.

Chapter 2 Krishanu Nayak 7



Event Extraction from Bio-Medical Documents

2.5 Summary

In this chapter, we covered the BioNLP ST 2013 platform, the in-depth setting of
Cancer Genetics (CG) task, and why we have chosen NLP to apprehend the task. In
the subsequent chapters we will discuss the related works for the CG task, and present
our methods and results for the same.

Chapter 2 Krishanu Nayak 8



Chapter 3

Related Works

3.1 Participants

There were six teams, including one from ISI, who took participation in the BioNLP ST
2013 for Cancer Genetics Task. The Turku Event Extraction System (TEES 2.1)[Björne
and Salakoski, 2013], presented by University of Turku, which was first proposed in
BioNLP ST 2009, and extended in both BioNLP ST 2011 and 2013 to adapt to new
corpora and derive task specific event rules. Like 2011, in 2013 also TEES stayed
unbeaten, with recall 48.76%, precision 64.17%, and fscore 55.41%. The results for full
task (primary evaluation criteria), of top three teams are shown in Table 3.1.

Teams Institute Recall Precision F-Score

TEES-2.1 University of Turku, Finland 48.76 64.17 55.41
NaCtTeM University of Manchester, UK 48.89 55.82 52.09
NCBI NCBI, US 38.28 58.84 46.38

Table 3.1: Top three team results in BioNLP ST 2013

3.2 Discussion

3.2.1 Introduction

There were various approaches for the extraction tasks, including Support Vector Ma-
chines (SVM) based pipeline architectures, a joint pattern matching approach, a rule
based approach, and a parsing based approach. The organizers provided different sup-
porting resources, that is, the training, development and test data were preprocessed by
BioC lemmatizer, Genia sentence splitter, Genia Treebank tokenizer, Stanford Parser,
etc. The task setting explicitly allowed the use of any external resources. In the following
section we will look into the methodologies used by the TEES 2.1 system.

3.2.2 Turku Event Extraction System (TEES) 2.1

TEES[Björne and Salakoski, 2013] is a Support Vector Machine (SVM) based system for
the extraction of events and relations from natural language texts. The generalizations
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included in the version 2.1 made TEES achieve highest ranks in four out of eight tasks
in BioNLP ST 2013.

3.2.2.1 Main Idea behind TEES

The basic goal of TEES is to extract text-bound graphs from Natural Language ar-
ticles using machine learning techniques. It represents each event in a unified graph
format where triggers and entities are nodes, and arguments are labeled directed edges
connecting those nodes.

3.2.2.2 Preprocessing

TEES converts the shared task data (a1, a2 and txt files) into interaction XML formats.
This generalization was required to incorporate various corpora provided for multiple
shared tasks in the BioNLP ST 2013. The tokenization was performed by standard
tokenizer, parse trees were generated by McCCJ parser, which are then converted into
a collapsed Stanford dependency scheme.

3.2.2.3 Event Extraction

TEES follows three primary processing steps to detect events.

1. In the first step, event triggers are identified by classifying each non-entity words
into one of the event classes or as a negative.

2. In the second step, for each pair, constructed by taking an entity and a predicted
trigger, an argument edge candidate is generated and classified into one of the
argument classes or as a negative.

3. In the final unmerging step, for each valid set of outgoing argument edges, an
unmerging example is generated and classified as a true event or not, separat-
ing overlapping events into structurally valid ones. This unmerging step removes
structurally valid but possibly negatives from consideration, increasing support
scores.

TEES uses SVMmulticlass Support Vector Machine with a linear kernel as the classifier
in all machine learning steps.

In the previous versions of TEES, task specific rules were used for event extraction,
for example, number of arguments and argument types for each event were manually
defined. In TEES 2.1 these rules and constraints are learned automatically. The perfor-
mance of TEES 2.1 on CG task can be seen in Table 3.1.

3.2.2.4 Shortcomings

As reported in the TEES 2.1 paper, representing the site arguments have been prob-
lematic, due to the structure of site arguments. As the site arguments are part of
the primary arguments (themes), TEES requires another step after the predictions of
primary arguments. This creates problems when there are multiple such primary argu-
ments. In those cases TEES uses the nearest primary argument to be the site of the
event. This schemes although bypasses the problem, does not resolve the ambiguity.

Chapter 3 Krishanu Nayak 10
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3.3 Summary

Although it is necessary to describe the investigations of all the other related works in
the context of event extraction, it is beyond the scope of this thesis to present them here,
due to the paucity of space, and the distinctive nature of the methods we are going to
propose. Hence, we presented in a very concise manner, the Turku Event Extraction
System, its methodologies, tools and techniques, and its pitfalls.

Chapter 3 Krishanu Nayak 11



Chapter 4

Proposed Work

4.1 Theoretic Background

In this section, initially we are going to describe the techniques with their theories we
were going to embed, then we will describe our model, and the results.

4.1.1 Word Embedding: Word2Vec

4.1.1.1 Word Embedding

In the context of machine learning, most of the algorithms, as well as all neural network
models, require features to be represented in numerical forms; they just would not work
on strings of plain text. In a nutshell, word embedding is just representing texts as some
kind of numbers, so they can be fed into our algorithms or neural net models. Word
embeddings became one of the most exciting area of research.

4.1.1.2 One-Hot Vectors

One most basic form of word embedding is One Hot Encoding method. In this approach,
each word is denoted as a sparse vector whose dimensions are represented by a word.
That is, if we have 50 words in our vocabulary, then each of the 50 words will be
represented as a 50 dimensional vector. Now say, ‘dog’ is in the vocabulary and its
index is 9, then in its vectorized representation, the 9th bit is set to 1, all other 49
dimensions are marked as 0’s. Although, this technique makes each word uniquely
identifiable and input ready for neural net models, it does not have significant value in
the context of Natural Language Processing. Because, this method does not capture
the syntactic and semantic information inherent in the word itself, and the context it
appears in.

4.1.1.3 Distributional Vectors

Although in a unanimous form a word itself has a meaning, it is actually defined by the
context, that is, the words that surround it. Hence, it is arguably but safe to assume
that words that appear within a boundary of similar contexts, or similar neighboring
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words, inherits similar meaning (e.g. elevator and lift will both appear next to down,
up, building, floor, and stairs).

This knowledge raised an idea to represent words by their contexts. Suppose we
represent each word by a |V | dimensional vector, where V is the set of unique words.
Now, unlike one hot encoding we don’t mark the index of the word, rather we mark
the indices of the words that surround it. Then we find all the occurrences of a certain
word (e.g. elevator) from a big corpus. Then we decide a neighboring window K, all
the words inside this region of the word (e.g. elevator) are considered as its neighbors.
For example, if the corpus has the sentence ”The left elevator goes down to the second
floor”, with a window of size 5, (e.g. elevator) then has the following neighbors: the, left,
goes, down. In the ‘counting methods’ technique the vector of elevator is then modified
by adding the number of occurrences of the, left, goes, and down at their respective
indices. When this process is finished, each word is represented by a vector having the
frequencies of all its neighbors. Usually it is then normalized to obtain a probabilistic
distribution, that is, how likely each of the words supposed to appear as a neighbor of
some other word.

If we can assume that these distributional vectors are capturing the meaning of
words, then by some vector similarity measure it will be possible to capture similar
words. Let’s say we take cosine similarity measure, and we apply on all possible word
pairs - we can expect elevator and lift to yield a higher similarity score than elevator
and, say, cat. As we will see, this assumption turned out to be true, and a revolutionary
development towards the NLP tasks where semantic similarity is very much needed to
be captured.

Although the idea of distributed representation of words was lucrative, in the real
world obtaining it from a large corpus was computationally infeasible. Because. storing
each of these |V | words in a |V |-dimensional vector results in a |V |2 matrix - this is quite
large, and performing operations on all words were computationally heavy.

These obstacles were overcome by the Neural Net models. The idea was to represent
each word in a relatively small vector space (typically 50 to 1000) where each dimension
of that space will represent a feature of the word, rather than the word itself, and the
target is to bring words with similar features closer and words with dissimilar features
pushed afar. This approach was first presented by [Bengio et al., 2003], but gained
extreme popularity with Word2Vec [Mikolov et al., 2013b] (discussed in Section 4.1.1.4).

Now unlike the counting method, each vector is learned rather than frequency cal-
culated from the corpus. In the most basic sense, the algorithm goes as follows: each
vector is randomly initialized, and by going through a large corpus at each step, the
vectors of both the target word and the vectors of the neighboring words are updated in
a way to bring them closer. After going through many such steps, the vectors become
meaningful, yielding similar vectors to similar words.

The lower dimensional representation still captures the essence of distributed rep-
resentation with advantages of lower computation cost. In addition, it turned out that
different vector arithmetics can be applied to these vectors to understand more about
the features each of the word holds in its vectorized representation.

Chapter 4 Krishanu Nayak 13
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4.1.1.4 Word2Vec

Word2vec presented by [Mikolov et al., 2013a] is an efficient model that finds the seman-
tic distributional vector representations given a raw text. It uses a simple Multilayer
Perceptron neural net model with a single hidden layer to learn those representations.
There are two types of Word2vec models based on the targets, the Continuous Bag-of-
Words model (CBOW) and the Skip-Gram model. CBOW predicts target words (e.g.
‘mat’ ) from source context words (‘the cat sits on the’ ), while the skip-gram predicts
source context-words from the target words. As it was later proven than for a large set
of data, skip-gram tends to perform better than the CBOW technique, we focus in the
skip-gram model in the remaining section.

4.1.1.4.1 Skip-gram The model is a simple neural network which contains a single
hidden layer, and is used to perform a certain task, but after that, in a conventional
sense, the network is not used for the task it has been trained for. Instead, the goal is
actually just to learn the weights of the hidden layer - we’ll see that these weights are
actually the “word vectors” that we’re trying to learn.

We’re going to train the neural network to do the following. Given a specific word
in the middle of a sentence (the input word), look at the words nearby (there is actually
a parameter called window size, usually set to 5, meaning 5 words behind and 5 words
ahead, that defines the neighborhood) and pick one at random. The network is going to
tell us the probability for every word in our vocabulary of being the “nearby word” that
we chose. The output probabilities are going to relate to how likely it is to find each
vocabulary word nearby our input word. For example, if we gave the trained network
the input word “Soviet”, the output probabilities are going to be much higher for words
like “Union” and “Russia” than for unrelated words like “watermelon and “kangaroo”.

We have to first find a way to represent the words of our vocabulary. Let’s say, we
have a vocabulary of 10,000 words. We are going to represent a word like ‘ants’ as one
hot encoded vector like we did in Section 4.1.1.2. It will have 10,000 components, one
for every word in our vocabulary, and set the corresponding bit for the word ‘ants’ to
1. Now look at the architecture of the Word2Vec model shown in Figure 4.11. The
output of the network is a single vector of the size of our vocabulary, here it is 10,000,
containing probabilities of each word appearing as a neighbor of the input word ‘ants’.

Finally the rows of the weight matrix will be our word vectors. So the end goal of
all of this is really just to learn this hidden layer weight matrix – the output layer we’ll
just toss when we’re done!

The 1 x 300 word vector for ‘ants’ then gets fed to the output layer. The output layer
is a softmax regression classifier. Each output neuron (one per word in our vocabulary!)
will produce an output between 0 and 1, and the sum of all these output values will add
up to 1. Specifically, each output neuron has a weight vector which it multiplies against
the word vector from the hidden layer, then it applies the function exp(x) to the result.
Finally, in order to get the outputs to sum up to 1, we divide this result by the sum of
the results from all 10,000 output nodes.

The skip-gram neural network contains a huge number of weights. For our example
with 300 features and a vocabulary of 10,000 words, that’s 3M weights in the hidden

1http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Figure 4.1: Architecture of Word2Vec.

layer and output layer each. Training this on a large dataset would be prohibitive, so
the Word2vec authors introduced a number of tweaks to make training feasible. They
are Sub-sampling, Negative Sampling and Hierarchical Softmax. But we will leave those
techniques from describing, which can be found in [Goldberg and Levy, 2014].

4.1.1.4.2 Reasoning with word vectors If two different words have very similar
“contexts” (that is, what words are likely to appear around them), then our model
needs to output very similar results for these two words. And one way for the network
to output similar context predictions for these two words is if the word vectors are
similar. So, if two words have similar contexts, then our network is motivated to learn
similar word vectors for these two words!

As it turned out, the learned vectors for the words capture a deep and meaningful
relationships amongst them. And not only that, vector arithmetics applied over those
representations extracted more informations than that we had imagined. For example,
if we denote the vector for word i as xi, and focus on the singular/plural relation,
we observe that xapple–xapples ≈ xcar–xcars, xfamily–xfamilies ≈ xcar–xcars, and so on.
As a result [Mikolov et al., 2013c] showed that using simple algebraic computations
more informations can be obtained. For example, vector(“King”) – vector(“Man”) +
vector(“Woman”) results in a vector that is closest to the vector representation of the
word “Queen”. SemEval 2012 task of measuring relation similarity came up with more
surprising sets of results. And to add more, Word2vec captured not only semantic but
also syntactic regularities.

Here are some more results shown in Figure 4.2 achieved using the same technique:
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Figure 4.2: Relationship pairs in a word embedding. From [Mikolov et al., 2013a]

4.1.2 Recurrent Neural Networks

We discuss the basics of Recurrent Neural Networks (RNNs) which are deep learning
models that are becoming increasingly popular. We don’t intend to get too heavily
into the math and proofs behind why these work but are aiming for a more abstract
understanding.

Recurrent Neural Networks were created in the 1980’s but have just been recently
gaining popularity from advances to the networks designs and increased computational
power from graphic processing units. They’re especially useful with sequential data
because each neuron or unit can use its internal memory to maintain information about
the previous input. This is great because in cases of language, “I had washed my house”
is much more different than “I had my house washed”. This allows the network to gain
a deeper understanding of the statement. This is important to note because reading
through a sentence even as a human, we pick up the context of each word from the
words before it.

4.1.2.0.1 Architecture A typical RNN is a network that can feed itself over time,
that is, it has a feedback loop connected to itself as input. This feedback loop makes
the RNN act like a ‘memory’ which remembers information (theoretically) about what
has been seen (or calculated) so far. Figure 4.3 shows how a typical RNN looks like.

Figure 4.3 also shows a RNN being unfolded into a full network. Unrolling the net-
work reveals the complete time-steps as a feed-forward multilayer network. For example,
if the sequence is a sentence of 5 words (or 5 time-steps), the network would be unrolled
into a 5-layer neural network, one layer for each word (or time-step). The formulas that
govern the computation happening in a RNN are as follows:

• xt is the input at time step t. For example, x1 could be a one-hot vector corre-
sponding to the second word of a sentence.

• st is the hidden state at time step t. It’s the ‘memory’ of the network. st is
calculated based on the previous hidden state and the input at the current state:
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Figure 4.3: A Recurrent Neural Network and the unfolding in time

st = f (Uxt + Wst−1). The function f usually is a nonlinearity such as tanh
or ReLU . s−1 which is required to calculate the first hidden state, is typically
initialized to all zeros.

• ot is the output at step t. For example, if we wanted to predict the next word
in a sentence it would be a vector of probabilities across our vocabulary. ot =
softmax (V st).

Few things to notice here:

• If we assume the hidden state st as the memory of the network, then it can be
stated that st captures all the informations of the previous time steps from s0 to
st−1. At step t the output ot is calculated based on the memory or state st at
time t. Although theoretically true, in reality a hidden state can not remember
information from far too time steps ago.

• When we unraveled the network, we observed a chain of layers connected with
synaptic weights, forming a deep layered network. But unlike the traditional deep
nets all those weights are same (U, V, W above) across the time-steps. This helps
target only one goal with different inputs, and it also reduces the total number of
trainable parameters.

• Although the Figure 4.3 shows outputs at each time steps, this is not necessarily
true for all RNNs. The behavior of a RNN can be changed so that it also can
output at specific intervals or at the final time-step. Depending on the types of
problems we want to solve this was needed. For example, when doing Sentiment
Analysis, we do not want output after processing each word, rather after a sentence
or a paragraph.

4.1.2.0.2 Strengths of RNN RNNs have shown great success in so many NLP
tasks. A few of them are stated below:
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• Language Modeling and Generating Text: When we write a text, we can
always notice that the choice of words depends on the words we have previously
written. A language model precisely does that by finding the words that are highly
probable for that current position. Applications of these can be seen in current
smart-phones where a keyboard predicts the next character or even next word
while typing. Some papers implementing Language models are [Mikolov et al.,
2010], [Mikolov et al., 2011], and [Sutskever et al., 2011].

• Machine Translation: Machine Translation takes an input of a sequence of
words in a given language and translates it into another language. While earlier
models started with word by word translation and then rearranging them, RNN
captures information hidden in the sequence by completely reading them, then
through an intermediate representation tries to predict the arranged sequence of
words in the target language. Some research papers regarding machine translation
using RNN are [Liu et al., 2014], [Sutskever et al., 2014], and [Auli et al., 2013].

• Speech Recognition: Today RNNs are also trained to find the phonetic seg-
ments and textual representation of them from an audio signal. Research paper
regarding speech recognition is [Graves and Jaitly, 2014].

4.1.2.0.3 Problems with RNN Earlier we saw that a RNN is nothing but a chain
of layers where layers are states at different time-steps, connected by shared weights.
Hence, it is easy to understand that the training of such network is same as the Multi-
layer Perceptron networks. The only difference is that at each layer the gradient is
dependent upon all the gradients of the previous layers. The technique of calculating
the gradients of all the previous layers (time-steps) and summing them up to get the
gradient of the current layer is called Backpropagation Through Time (BPTT).

Theoretically it seems that RNNs can capture long term dependencies, but in reality
vanilla RNNs suffer from vanishing and exploding gradient problems that restrict them
from remembering long distance relationships. This led to the development of some
enhanced mechanisms to deal with those problems. Some of them are briefly stated
below:

4.1.2.1 LSTM

LSTMs are nothing but RNNs with a few tweaks in the sleeve. Rather than using
Sigmoid activation function, that is the main reason of the vanishing gradient problem,
LSTM uses a different activation function (ReLu). A few internal circuits are added,
which are called memory gates or forget gates, that decide what to remember and what
to forget at each time step. It turns out that LSTM can in reality capture long-term
dependencies.

4.1.2.2 GRU

A slightly more dramatic variation which resulted a more simpler network with very less
number of parameters than LSTM is the Gated Recurrent Unit, or GRU, introduced by
[Cho et al., 2014]. It combines the forget and input gates into a single “update gate”,
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and also merges cell state and hidden state to reduce the number of parameters. This
model is gaining popularity each day.

4.1.2.3 Bidirectional RNN

Bidirectional RNNs (or LSTM or GRU) are based on the idea that the output at time t
may not only depend on the previous elements in the sequence, but also elements yet to
be seen. For example, to predict a missing word in a sequence it is advisable to look at
both the left and the right neighboring words. Bidirectional RNNs are nothing but just
two RNNs stacked on top of each other, where the first one receives the original sequence
and the latter receives the reverse sequence. The output is usually concatenation of both
those RNNs.

4.2 Our Work

4.2.1 Introduction

Similar to most of the successful approaches to the Event Extraction tasks, we decided
to follow the Pipeline method, where we will predict the triggers first, and based on
those predictions we will extract arguments for those triggers. Hence, we propose two
subtasks:

1. Trigger detection

2. Arguments extraction

We will present these two subtasks separately, along with respective models, parameters,
and scores at the word level, finally the scores obtained by using BioNLP ST 2013
Evaluation Script.

4.2.2 Preprocessing

Before discussing the architectures for both of the subtasks, we need to discuss the
preprocessing we made. These are:

• Sentence and word tokenization are already performed by Standford Parser for all
of the Training, Development and Test data, and shared as external resources by
the BioNLP community. We have used those preprocessed data.

• As both the entities and the triggers can contain more than one word, we needed
a way to represent those phrases, so that we can give each word separately as an
input to and get an output from our networks, without ambiguity. To do that, we
decided to replace each entity type and event type with added prefixes of B- and I-,
as in Begining word and Inside word respectively. This technique helped predict
triggers with phrases, and also reduced complexity at the time of post-processing.

• For the argument extraction task, in our proposed model we needed indices of
words in a sentence, so that the predictions will tell us at what indices the argu-
ments for a given trigger are. In the cases of multiple words for entities, we mark
them with same index.
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Let’s look at an example for clarification for both of the above: From Table 4.1, it can

Low metastatic and G-418 resistant H-3 cells were paired cultured with BALB/c3T3 fibroblasts

Metastasis Simple Chemical Cell Planned process Cell
B-Metastasis B-Simple Chemical B-Cell I-Cell B-Planned process I-Planned process B-Cell I-Cell

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 6 7 8 9 10 11 11

Table 4.1: Preprocessing steps

be seen that H-3 cells is a phrase with entity type Cell, and hence in the preprocessing
step H-3 is tagged with B-Cell and cells is tagged with I-Cell, and same goes with the
other entity and trigger phrases. But in the cases of single words, the tags are prefixed
with B-. Hence, metastactic is tagged with B-Metastatic, and G-418 is tagged with
B-Simple Chemical.

For the indexing, in the Table 4.1, it can be seen that the indices of only the entities
with phrases are modified. Hence, indices of H-3 and cells, and indices of BALB/c3T3
and fibroblasts, are kept same (in this case 6 and 11 respectively). But we do not
modify the indices of the trigger phrases, because, while in the first step we are going
to predict the triggers, merging of trigger words happen at the post-processing stage,
hence modified indices for triggers are not available beforehand.

4.2.3 Obtaining Word2vec

BioNLP community provides pre-trained Word2vec models2, using texts obtained from
PubMed3, PMC4, and their combination with a recent English Wikipedia dump. There

Word2vec models Size

PMC-w2v.bin 1.90 GB
PubMed-and-PMC-ri.tar.gz 2.31 GB
PubMed-and-PMC-w2v.bin 3.09 GB
PubMed-w2v.bin 1.78 GB
wikipedia-pubmed-and-PMC-w2v.bin 4.11 GB

Table 4.2: Pre-trained Word2vec models provided by BioNLP community

are five such models as shown in Table 4.2, out of which we used PubMed-w2v.bin to
generate Word2vec vectors for our task. The features length provided in these Word2vec
models are 200. For the unknown words which were not found in the PubMed Word2vec
model, we generated 200 length random vectors, and made dictionaries for reference use.

2http://evexdb.org/pmresources/vec-space-models/
3PubMed comprises more than 27 million citations for biomedical literature from MEDLINE, life

science journals, and online books.
4PubMed Central R©(PMC) is a free full-text archive of biomedical and life sciences journal literature

at the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM).
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4.2.4 Trigger Detection

4.2.4.1 Model

Similar to Parts-of-speech tagging, the trigger detection task is also a sequence labeling
problem, where we would like to classify each word of a given sentence to one of the
event types, or a negative. The architecture of the Trigger Detection model is shown in
Figure 4.4. The four layers of the model are described below:

Figure 4.4: Trigger Detection Model

Input Layer: Similar to Parts-of-Speech task, we need character features to
predict the triggers. Thus, the first input of this layer is Character Embedding
followed by a BLSTM capturing character features. As an entity can not be a
trigger word, it is beneficial to let the network know whether the given word is an
entity or not. Therefore, we give Is Entity information (i.e. given a word is it an
entity or not) as the second input. To capture the semantic information we give
Word2vec as the third input. Finally, as only some specific POS tagged words
(e.g. mostly nouns and verbs) are found to be triggers, we provide Parts of Speech
tags as the final input in the Input Layers.

Merged Layer: This layer simply concatenates Character Features output from
the first BLSTM, and Is Entity, Word2vec, and Parts of Speech information from
the Input layer.
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All-features Layer: This layer contains one BLSTM layer which takes the input
from the Merged Layer and produces All-Features output.

Softmax Layer: This is the classification layer which takes All-features output
as input for the actual classification task, and maps each word to one of the event
types, or negative.

4.2.4.2 Parameters

The parameters of the network and their respective vector sizes are shown in Table 4.3.
The shape of the input and output matrices are shown in Table 4.4 (None is replaced at

Character Vector size 28
Maximum no. of characters in a word 20
Maximum no. of words in a sentence 50
No. of nodes in the first BLSTM 64
No. of nodes in the Softmax layer 86
Is Entity Vector size 3
Word2vec vector size 200
POS tag vector size 39
No. of nodes in the second BLSTM 70

Table 4.3: Trigger Detection model parameters

the training and testing time, by the number of samples, i.e. in this case by the number
of sentences in the training and testing data, respectively).

Char. Embed. (None, 50, 20, 28)
Is Entity (None, 50, 4)
Word2vec (None, 50, 200)
POS tag (None, 50, 39)

Softmax (None, 50, 86)

Table 4.4: Shapes of the Trigger Detection model input and output matrices

4.2.4.3 Trigger Detection Results

After training with 50 iterations and batch size 1, during predictions, at the word level,
1978 trigger words matched out of 2596, giving accuracy 76.19%, and 24523 non-trigger
words matched out of 25011, giving accuracy 98.05%, with overall trigger accuracy being
97.72%. The benchmarking scores are shown in Table 4.5. When we looked into the

Precision Recall F-score

59.72 64.28 59.52

Table 4.5: Precision, Recall, F-score of trigger detection task
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data, we found that in the training samples, there were 10% trigger words, and 90%
non-trigger words. This severe class imbalance resulted this low benchmarking scores
despite high accuracies.

4.2.5 Arguments Extraction

4.2.5.1 Model

The formulation of Arguments Extraction task is somewhat different than that of the
sequence labeling tasks. In this case, for a given trigger in a sentence, we want to predict
at which indices in that sentence, the arguments are, i.e. for a given trigger, for each of
the argument types, at each word positional index we predict whether it is a positive
or a negative argument index. The architecture of the Argument Extraction model is
shown in Table 4.5. The layers are described below:

Figure 4.5: Arguments Extraction Model
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Input Layer: To predict whether a word is an argument of a trigger, it is also
necessary to capture character features, word vector representations, entity infor-
mations, and POS tag informations of all the words surrounding the trigger word.
As all these informations are already provided in the Trigger Detection model, and
has already been trained, it is feasible to use that already trained model to capture
the semantics rather than training again. Hence, we take the outputs of the All-
Features layer of the Trigger Detection model as the first input of the Input Layer
of Argument Detection model. As the arguments need to be predicted only for
trigger words, it is necessary to tell the network whether a given word is a trigger
or not. Hence the Softmax layer’s triggers output of the Trigger Detection model
is given as the second input of the Input Layer of Argument Detection model. As
we are predicting at each positional index whether there is an argument of specific
type at that index, it is necessary to provide word positional index along with
every word. Hence, Word Positional Index is the third input in the Input Layer.
Finally, as a specific entity type form as specific argument type for a specific trig-
ger type, along with trigger information, it is also necessary to provide entity type
informations of each word. Hence, the final input of the Input Layer is the Entity
Types information.

Merged Layer: This layer simply concatenates the input vectors from the Input
Layer.

All-Features Layer: This layer contains a single BLSTM which takes input from
the Merged Layer and produces All-Features output.

Sigmoid Layers: We have eight different types of arguments, hence we built
eight different sigmoid layers. Each of these layers consists nodes denoting all
word positional indices. Then at each of those nodes of positional index, we try
to predict whether it is a positive or a negative argument. Hence, for a sigmoid
layer, the task becomes binary classification at each positional index. Each of
these sigmoid layers take inputs separately from All-Features layer, but trains the
complete network based on each others’ predictions, hence making the Argument
Extraction a joint learning task.

4.2.5.2 Parameters

The parameters of the network and their respective vector sizes are shown in Table 4.6.
The shape of the input and output matrices are shown in Table 4.7 (None is replaced at

All-Features output vector size 140
Triggers output vector size 86
Word positional index vector size 51
Entity types vector size 34
No. of nodes in the All-Features Layer BLSTM 80
Arguments vector size (for each sigmoid layer) 53

Table 4.6: Arguments Extraction model parameters
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the training and testing time, by the number of samples, i.e. in this case by the number
of sentences in the training and testing data, respectively).

All-Features output (None, 50, 140)
Triggers output (None, 50, 86)
Word positional index (None, 50, 51)
Entity types (None, 50, 34)

Each Sigmoid Layer (None, 50, 53)

Table 4.7: Shapes of the Arguments Extraction model input and output matrices

4.2.5.3 Arguments Extraction Results

After training with 200 iterations and batch size 1, during predictions, for the 76.19%
correctly classified triggers by the Trigger Detection model, 736 Themes matched out of
1836, giving accuracy 40.09%; 127 Cause matched out of 548, giving accuracy 23.18%;
17 Participant matched out of 97, giving accuracy 17.53%; 19 Instrument matched out
of 146, giving accuracy 13.01%; 0 FromLoc matched out of 7, giving accuracy 0.0%; 15
ToLoc matched out of 48, giving accuracy 31.25%; 16 AtLoc matched out of 90, giving
accuracy 17.78%; and 0 Site matched out of 19, giving accuracy 0.0%. Precision, Recall,
F-score measures are shown in Table 4.8. Still these scores are a little misleading when

Argument Type Precision Recall F-Score

Theme 94.76 92.49 93.61
Cause 96.95 95.97 96.46
Participant 97.93 97.78 97.85
Instrument 97.82 97.47 97.65
FromLoc 98.02 98.18 98.10
ToLoc 97.97 98.06 98.02
AtLoc 97.92 97.83 97.88
Site 98.01 97.97 97.99

Table 4.8: Scores of Arguments Extraction task

we look at the accuracies stated earlier. Because, for a sentence with 50 words, say,
a trigger can have as much as 5 arguments in that sentence. Then the target vector
will contain 45 zeros and 5 ones. Hence, if the predictions match zeros almost all the
time, but mismatches ones (i.e. True Positives are always high, False Positives and
False Negatives are very low), still these scores will be higher, because of the severely
imbalanced labels (0’s in this case with respect to 1’s).

4.2.6 Events Construction and Benchmarking Results

At the post-processing step, we combine a predicted trigger at the Trigger Detection
stage with its arguments from Arguments Extraction stage to obtain Events for that
trigger. Then we created a2 files required for the Evaluation Script to obtain the

Chapter 4 Krishanu Nayak 25



Event Extraction from Bio-Medical Documents

Benchmarking Results. We present a few results in comparison with TEES 2.1 system
in the Table 4.9.

Event Class
Our System TEES 2.1

recall precision fscore recall precision fscore

Development 48.33 44.62 46.40 72.12 70.75 71.43
Blood vessel development 64.64 66.22 63.84 80.51 90.65 85.28
Growth 78.57 73.33 75.86 68.06 85.96 75.97
Death 17.07 21.21 18.92 79.66 83.93 81.74
Cell death 55.88 67.86 61.29 66.94 81.00 73.30
Cell proliferation 38.89 48.28 43.08 74.60 86.24 80.00
Breakdown 55.56 71.43 62.50 67.35 89.19 76.74
Metastasis 50.00 47.50 48.72 69.23 72.67 70.91
Gene expression 38.46 48.11 42.75 76.91 79.56 78.21
Pathway 23.26 17.54 20.00 64.57 79.61 71.30
Binding 18.03 25.58 21.15 35.45 62.90 45.35
Regulation 1.73 2.19 1.93 26.53 42.46 32.66
Positive regulation 6.64 8.56 7.48 40.15 53.54 45.89
Negative regulation 7.84 9.38 8.54 42.62 54.40 47.79

Overall (All 40 Classes) 21.16 26.52 23.54 48.76 64.17 55.41

Table 4.9: Event Extraction Benchmarking Results

4.3 Discussion

When we look into the benchmarking results for Event Extraction in Table 4.9, we see
that although only Growth event class giving better recall in our model than in the
state of the art TEES 2.1 system, we have achieved comparable results. We found the
following reasons for having such variance in the results:

• As the inputs of the Trigger Detection model, in conjunction with Character Em-
bedding and Word2vec, we experimented with different combinations of features
to improve the trigger detection results. They are:

1. Word Positional Index, Entity Types

2. Is Entity information, Entity Types present around the current word

3. Is Entity information, POS tag

4. Is Entity information

5. Entity Types present around the current word

We found that Case 1 resulted in the least accuracy, and Case 3 gave a little edge
(0.5 to 1.0% better) over all the others.
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• Although we have achieved a very good accuracy while detecting triggers, the low f-
score (Table 4.5) suggests that it is going to impact the arguments extraction task,
which is the problem of such pipeline methods. That is, an incorrectly classified
trigger brings ambiguities to the network, and affects the learning of arguments
extraction task.

• Due to the massive imbalance in the trigger classes themselves it is expected that
the trigger detection task will be hard.

• Although there is enough data to use deep learning methods for trigger detection,
upon inspection we found that the number of instances for each argument type, are
very small. This is one of the main reasons of poor performance in the Arguments
Extraction task.

• As the prediction of arguments are average for Theme and AtLoc types, but very
poor for the others, very less number of accurate events could be constructed. And
as the final benchmark happens over the actual construction of events, a very good
trigger accuracy could not improve overall Event Extraction performance. That is
why although Death, Cell proliferation, Gene expression, Positive regulation and
Negative regulation, each matched more than 80% of the time, they could not
contribute much in the final event extraction result.

• It is also possible that, in the Argument Extraction model the Word Positional
Indices might influence the learning in a negative way, that is, the network might
be learning, for a given trigger, at which indices an argument type is appearing
most of the times and predicting those indices, hence sometimes predicting non-
trigger and non-entity words as arguments.

4.4 Summary

In this chapter, we looked into some brief theoretic backgrounds necessary to understand
our model, and presented a pipeline model for the Cancer Genetics Event Extraction
task. We discussed the architectures of both of our models, and discussed the results.
We finally presented the Benchmarking scores of our model for Event Extraction task,
and reviewed the benefits and shortcomings of our proposed model.

Chapter 4 Krishanu Nayak 27



Chapter 5

Conclusion & Future Work

In this thesis, we looked into the task of Event Extraction from Bio-medical documents
on Cancer Genetics from deep learning point of view. We proposed a pipeline model with
two subtasks to solve the problem. We noticed that like any other pipeline model, our
system also suffered from error propagation. The final benchmarking results revealed
that our system fairly competed with the state of the art system for event extraction
tasks. Now, as we understand the benefits and shortcomings of our designed system, we
need to work on the following:

• Applying Convolution Neural Network in the Arguments Extraction task to know
whether it gives better features than the LSTM we used.

• As mentioned in Section 4.3, it is probable that the word positional indices affecting
the arguments extraction task, we need to remove this input from the model and
improvise.

• We now believe that rather than looking at the complete sentence at once and
then finding the arguments positions for a given trigger, it might be a better idea
to compare the given trigger with each of the other entities and triggers to learn
whether one such pair forms an event or not.

• Finally, as we stated earlier, pipeline models suffer from error propagation, we want
to devise a joint model that will learn to predict triggers and their arguments all
in one go.
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