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Abstract

When a large investor decides to liquidate his portfolio in finite time period, he can put
market orders to do so. However large market orders may adversely impact prices. Which
in turn may produce lower liquidation return . Dark pools are new kind of market, where
not all the information is made public after the trade execution.

We have developed a dynamic strategy to place market orders as well as dark pool
orders such that total expected liquidation return is maximized. The problem is formu-
lated as Morkov Decision Process in finite horizon and solved using approximate dynamic
programming technique.

.

Keywords: Portfolio Liquidation, Dark Pool, Dynamic Programming, Markov Decision
Process
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Chapter 1

Introduction

1.1 Introduction

When a large investor decides to liquidate his portfolio, he can place his whole portfolio as
market order. But placing a large order might move the prices adversely. Impact of the
order size on the prices has been studied. Several models have been proposed for same,
such as [1, 12] . The impact may cause reduced return on portfolio. One simple solution
is to put the orders of equal block market orders through time, but that might not produce
the best return with the dynamics of the prices through time.

New kind of markets have emerged called as dark pools [5, 9] , as contrary to conventional
market after the trade execution, dark pools do not make trade details public. One has to
submit orders in dark pool to know the depth of the market. Lack of the trade information
makes these markets more suitable for large investors since these have less impact on the
prices. One does not know the depth of the market. The execution prices in these dark
pools are mostly derived from the exchange such as NBBO mid price [5]. However the
orders in dark pools are not guaranteed to be executed either whole or in parts. Most of the
time it happen that the orders get cancelled. Since the large investor wanted to liquidate
his portfolio in limited period of time, it may not be best to put the orders in dark pools
only.

We propose the solution to put the orders in both the conventional (market order) and
dark pools such that the return of the portfolio liquidation is maximized with the dynamics
of the price governed by the size of the orders placed in the conventional market.

We formulate the problem as sequential decision problems, which naturally falls in the
realm of Markov decision process, since the liquidation has to be in finite amount of time,
this leads to the finite horizon Markov decision process. Optimal solution of a Markov
decision problem with small action and state space can be achieved using backward dynamic
programming which involves storing the value function of each state in a tabular fashion
and then recursing backward in time to solve the Bellman Equation. However when state
space is large using table to store values is not computationally feasible. Further to that if
the action space is also large it does make the problem more demanding. We use techniques
from approximate dynamic programming also called as reinforcement learning in computer
science community to solve our problem.
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1.2 Our Contribution

Our contributions are summarized as follows.

• As the problem is to make decision through time and based on the dynamics of the
market, we have formulated this as Markov Decision Process.

• We provide a solution as non stationary policy based on time and dynamics of the
market considering the problem as finite horizon, using actor critic method.

• We show the empirical result that the TD error converges as the number of iteration
increases, based on our proposed solution.

• We show the empirical result that policy obtained with our approach produces better
return than naive policy of equal block market orders.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we briefly discuss about the
Markov Decision Process.In chapter 3, we describe the formulation and solution scheme to
our problem in detail.In Chapter 4, we provide the analysis of the empirical results obtained
based on the proposed scheme. In the concluding Chapter 5, we summarize the work done
and future directions related to our work.



Chapter 2

Markov Decision Process

A sequential decision making problem where the state of the system depends on the action
taken can be modelled as Markov decision process. Below we discuss the deterministic
dynamic optimization problem and then gradually move towards stochastic optimization
problem.

2.1 Introduction

Consider a discrete time dynamic system with following dynamics [4],

xt+1 = ft(xt, ut)

where

• xt is the current state of the system, e.g position and or velocity of particle or price
of securities in stock market.

• ut is the control applied to the system for example force applied to particle or number
of stocks applied to buy/sell.

and a reward rt(xt, ut) is generated such as capital gain from selling securities. We take
t ∈ 0, 1, 2, ..., T is set of discrete time steps. Total reward accumulated can be written as

T−1∑
t=0

rt(xt, ut) + rT (xT ) (2.1)

where xT is terminal state and rT (xT ) is terminal reward.
The objective is to maximize the overall reward generated, e.g. maximize the overall

capital gain from selling the securities. We can write it as an optimization problem below

max
u0,u1,...uT−1

T−1∑
t=0

rt(xt, ut) + rT (xT ) (2.2)

If we assume a discounting due to time such as in reward generated, we can add a
discounting factor γ in the above equation and write it as

6



2.2. Dynamic Programming 7

max
u0,u1,...uT−1

T−1∑
t=0

γtrt(xt, ut) + γT rT (xT ) (2.3)

Given the initial state x0 our goal is to find control sequence (u0, u1, ....., uT−1). This
problem can be solved by enumerating over all actions sequences and looking into exhaustive
solution but this is computationally intractable.

2.2 Dynamic Programming

Dynamic programming [4] is technique of breaking the large problem to smaller problems
that are easy to solve, popularized by Richard Bellman. Consider the equation (2.2) ,which
we can rewrite as

V0(x0) = max
u0,....,uT−1

T−1∑
t=0

γtrt(xt, ut) + γT rT (xT )

= max
u0

[r0(x0, u0) + max
u1,....,uT

T∑
t=1

γtrt(xt, ut) + γT rT (xT )]

= max
u0

[r0(x0, u0) + γV1(x1)]

(2.4)

In general we can write

Vt(xt) = max
ut

[rt(xt, ut) + γVt+1(xt+1)] (2.5)

This is called Bellman equation [4]. Which we will be able to solve by backward substi-
tution in the following way

• Step 1: Initialize VT (xT ) = rT (xT ) for all terminal states xT set t = T − 1

• Step 2: Calculate

Vt(xt) = max
ut

[rt(xt, ut) + γVt+1(xt+1)]

∀xt ∈ S where xt+1 = f(xt, ut)

• Step 3: if t > 0 return to step 1 else stop

This technique is called backward dynamic programming [4, 16, 8].

2.3 Markov Decision Process

Consider following similar to deterministic discrete time dynamic optimization problem with
stochastic component added to it, the dynamic of the system is now governed by equation
equation (2.6)

xt+1 = ft(xt, ut, εt) (2.6)
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where εt is a random noise.
In this setting we can rewrite the optimal equation as finding optimal policy π =

(π0, π1, ....πt−1) ∈ Π such that

V0(x0) = max
π∈Π

Eε0,ε1,...εT [
T−1∑
t=0

γtrt(xt, πt(xt)) + γT rT (xT )] (2.7)

Similar to above observation in case of deterministic case, we can establish relation and get
a backward substitution method to find optimal sequence of actions

V0(x0) = max
π∈Π

Eε0,ε1,...εT−1 [

T−1∑
t=0

γtrt(xt, πt(xt)) + γT rT (xT )]

= max
π∈Π

∑
x1

P (x1|x0, π(x0)[r0(x0, u0) + Eε1,...εT−1

T∑
t=1

γtrt(xt, ut) + γT rT (xT )]

= max
π0

∑
x1

P (x1|x0, π(x0)[r0(x0, u0) + γV1(x1)]

(2.8)

hence above can be written in general as

Vt(xt) = max
πt

∑
xt+1

P (xt+1|xt, πt(xt))[r(xt, πt(xt)) + γVt+1(xt+1)]

= max
πt

[r(xt, πt(xt)) + γ
∑
xt+1

P (xt+1|xt, πt(xt))Vt+1(xt+1)]

= max
πt

[r(xt, πt(xt)) + γEVt+1(xt+1)]

(2.9)

where expectation is based on one step transition i.e. distribution of εt. We can utilize
the backward dynamic programming method to generate the optimal control sequence or
optimal policy.

Moreover, Markov decision process can be formally defined [7, 16, 6] as 5-tuple (S,A, P.(., .), R(., .), γ)
where

• S is the set of possible states of system.

• A is set of possible actions that can be taken.

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) that is the probability of system being in state
s‘ at time t+ 1 given it was in state s at time t and action taken was a.

• R(s, a) is reward generated when action taken a in state s

• γ ∈ [0, 1] is the discounting factor.

The problem in MDPs is to find a policy that maps state to action i.e. a function π :
S → A that decides action π(s) given the state is s. It be written as to find a policy
π = (π0, π1, ...πT ) such that accumulated reward is maximized i.e.

max
π∈Π

E[
T∑
t=0

γtrt(st, πt(st))] (2.10)
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where expectation is taken over Pπ(., .) Above discussed problem is finite horizon Markov
decision problem, if the time horizon is not limited then the problem is said to be infinite
horizon problem, it can be written as

max
π∈Π

E[

∞∑
t=0

γtrt(st, πt(st))] (2.11)

2.3.1 Value Function and Q Function

For some policy π a value function [15, 16, 7] is defined V : S → R

V π
t (xt) = rt(xt, πt(xt)) + EV π

t+1(xt+1|xt, π(xt)) (2.12)

hence our objective is to find a policy π∗ such that

V π∗
t (xt) > V π

t (xt);∀π ∈ Π

where Π is set of all feasible policies. Similarly Q function [15, 16, 6] is defined Q : S×A→ R
due to as value of taking action a and following the optimal policy thereafter

Qt(xt, at) = r(xt, at) + γEV π∗
t+1(xt+1) (2.13)

As it can be seen it does involve expectation calculation which is difficult even when the
distribution is known. Using the Q function optimal action by chosen such that Q function
is maximized

a∗t = max
at∈At

Q(st, at); t ∈ {0, 1, ...., T − 1}

2.3.2 Value Iteration

Consider an infinite horizon control problem. Backward dynamic programming techniques
can not be used, as we do not have a horizon and terminal reward function defined. But
we can still use the optimality equation in the same way as in backward case, following is
the value iteration [16, 15] algorithm for infinite horizon

As can be observed this is uses same optimally equation used in backward dynamic
programming, but it starts with an some initial values of all states and then using optimality
equation it calculates it approximates the value function. For small state and action space
it may produce optimal value too. This is example of forward dynamic programming where
we start with initial value function and update the value function based on optimality
equation.
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Algorithm 1 Value Interation

1: procedure valueIteration(state s)
2: Initialization:
3: set V 0(x) = 0;∀x ∈ S.
4: set a tolerance parameter η > 0.
5: set N = 0.
6: repeat :
7: for x ∈ S do
8: V n+1 = maxa∈A[r(x, a) + γ

∑
x′∈S Pr(x

′|x, a)V n(x′).

9: let an+1be vector that solves above
10: if ||vn+1 − vn|| < η(1− γ)/2γ then
11: set aη = an+1

12: V η = V n+1 return aη, V η

13: else
14: set N = N + 1 goto repeat



Chapter 3

Problem Formulation and
Proposed Solution

3.1 Introduction

An order book is the list of orders (manual or electronic) that a trading venue (in particular
stock exchanges) uses to record the interest of buyers and sellers in a particular financial
instrument. A matching engine uses the book to determine which orders can be fulfilled i.e.
what trades can be made [21]. Assume a large investor who owns significantly large amount
of stocks of a particular security, wants to liquidate his portfolio. He wants to sell off his
whole portfolio. We consider the perfect and complete market. When he places a market
order an entry in market order book is made. This information in order book is public to
every investor/broker. This may lead to adverse impact on price. There have already been
large number of studies on price impact of market such as [1]. Considering the price impact
of market, following can be thought as the market dynamics

pt+1 = ft(pt, xt, εt) (3.1)

where pt is the price security, xt is the amount of order to sell and εt is the random noise.
More conveniently we can write the impact as

pt+1 = ft(pt, xt) + gt(εt)

pt+1 = p∗t + gt(εt)
(3.2)

where ft can be regarded as order size impact of trader and gt as impact due to noise traders,
p∗t is the impact price at which the trade takes place. Considering the equation (3.2) as dy-
namics of the market, the liquidation in market order can be formulated as an optimization
problem below

max
x0,x1,....xT

E

T∑
t=0

p∗t ẋt

s.t. x0 + x1 + x2 + .......+ xT = X0

(3.3)

where X0 is the initial amount available to liquidate. The equation (3.3) is a dynamic
optimization problem with price as state variable and amount of stocks to trade as action

11



12 3. Problem Formulation and Proposed Solution

variable, but with a constraint, i.e. equation (3.3) is a Markov decision problem with a
constraint. We can convert it into an unconstrained optimization problem by introducing
new state variables as a two dimensional sets st = {pt, Xt} and with upper bound on action
xt as Xt, as described below

max
x0,x1,....xT

E
T∑
t=0

ct(st, xt) (3.4)

with Xt+1 = Xt−xt where action space is now bounded as xt ∈ {0, 1, , , .Xt};∀t ∈ 0, 1, .., T .

3.2 Dark Pool

As discussed in previous section the impact of the trade size may adversely affect the price of
the security and hence, one has to put the orders in such a way that the impact is minimum.
Portfolio liquidating is a process which an investor wants to do in a limited period of time, he
may have to compromise with the lower return. Dark pools are exchange markets working
privately that allows a trader to put their orders, but not all the information about orders
or trdes are made public , hence called dark pool [3, 5]. Only way to know the market depth
and other information in dark pool is to put orders in dark pool.

Even for an investor putting order in dark pool reveals only small information [3]. There
are no publicly available order books as in case of market orders. If an investor let’s say a
seller puts his order of size zt at time t, let’s say yt amount is available to buy from buyer
side. After trade execution let’s say his dt amount got executed where dt 6 yt, information
available to investor is only min(xt, yt) as he can only observe dt. Only information he
can learn is the fraction of his order being executed. There have been studies for optimal
orders placements in dark pools so that the execution of the trades are maximized such as
in [9]. To our best knowledge the study of closest to our work has been considered in [14],
where no partial execution in dark pool has been considered, and the problem has been
formulated with whole history of orders making impact on prices. Here in this thesis we
assume only Markov property that is the price depends only on the previous order size and
previous price along with the random component.

As the price in dark pool are mostly derived from the conventional exchange price such
as mid price of NBBO [3], it can be said that the order size impact on the price in the dark
pool is near to negligible. It seems conclusive that investor should place all his order in
dark pool, rather than as market orders. But one thing to note about the dark pool are
that there are no guarantee that the orders will be executed in the dark pool. Hence it is
suitable to put the orders both in dark pool and conventional exchange market order. In
the next section we formulate the problem as Markov decision process and then move on to
finding the way to solve the same.
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3.3 Problem Formulation

Let us assume

Xt = stocks available at time t to liquidate

xt = amount of order to be placed in primary exchange at time t

yt = number of order to be placed in dark pool at time t

zt = number of stocks executed in dark pool at time t

dt = price of stock in dark pool at time t

pt = price of stock in primary market at time t

(3.5)

Investor by selling his stocks in primary exchange and dark pool gets liquidity as below

r(pt, dt, xt, yt) = p∗t .xt + d∗t .zt (3.6)

considering above as reward function we can formulate it as an optimization problem below

max
xt,yt

E
T∑
t=0

r(pt, dt, xt, yt) (3.7)

subject to following dynamics of market

pt+1 = f(pt, xt, εt)

= h(pt, xt) + e(pt, εt)

= p∗t + e(pt, εt)

dt+1 = g(dt, pt, yt, ηt)

= o(dt, pt, yt) +m(dt, ηt)

= d∗t +m(dt, ηt)

(3.8)

and constraint
T∑
t=0

(xt + zt) = X0 (3.9)

Where εt and ηt are random variables. And we can formulate following relationship

Xt+1 = Xt − (xt + zt)

By similar method as in section 3.1 we can turn this problem into unconstrained problem.

3.4 Backward Dynamic Programming Approach

Let us assume for case of market orders only, as we have discussed we will take state of the
system as vector st = {pt, Xt} i.e. price and available liquidation amount of stock at time
t. Following is the backward dynamic programming algorithm for the same. Assuming the
following algorithm, as we can see there are nested for loops and also expectation calculation.
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Lets assume that we have some fixed maximum price P and we have discrete probability
transition given, and for terminal case

rT (sT ) = p∗TXT

sT = {pT , XT }
aT = {XT }

(3.10)

Algorithm 2 Backward DP

1: procedure backDP
2: Calculate the terminal liquidity and initialize terminal action
3: VT (sT ) = rT (sT );∀sT
4: AT (sT ) = XT ; ∀sT
5: for t = T − 1 to 0 do
6: for pt ∈ {0, 1, ...P} do
7: for Xt ∈ {0, 1, .., X0} do
8: st = (pt, Xt)
9: maximum = 0

10: action = 0
11: for at ∈ {0, 1, ...Xt} do
12: value = rt(st, at) + EVt+1(st+1)
13: if value > maximum then:
14: value = maximum
15: action = at
16: Vt(st) = value
17: At(st) = action

then based on this we can see that the algorithm is O(tP 2X2
0 ) in worst case. Along with

the space complexity of O(tPX0). Consider for an example investor has initially 10000
stocks and maximum price is $100 and he wanted to liquidate in 10 period of time then we
have time complexity of O(1013) and space complexity O(107) which is not feasible. One
way to reduce this is to consider since we are considering a large investor, he will be placing
order in blocks and also the possible price transition is limited. Using these let us assume
he is placing orders in block size of 100, and only 10 transition is possible for price, hence we
have time complexity O(108) and space complexity O(105), this seems to be feasible. But
we can observe from the discussion that as the backward dynamic programming technique
is good for only small size problems. This is termed as curse of dimensionality in dynamic
programming. This shows that if we consider this for dark pool problem, as the dimnsonality
of state and action vector is even more, it will not be feasible to apply this. Along with this
we have assumed the prices to be discrete which is not realistic.

In the next section we will look into approximation based dynamic programming algo-
rithms and will apply to the dark pool problem.
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3.5 Approximate Dynamic Programming

We have seen that the backward dynamic programming approach is not feasible in case of
problems with large state and action space. The obvious way to proceed is to step forward
through time. But to step forward in time we need the value function available for the future
time, which is not possible. We can consider the approximation of the value function. Let
us assume the approximation is given as :

V̂ n
t (st) = approximate value function at time t for state st at iteration n

Now this value function can be used to update the value function at iteration n+ 1 by the
help of information gathered in iteration n. To find the optimal action in iteration n we use
the Bellman equation

ant = argmax
a∈At

{rt(st, a) + EV̂ n−1
t+1 (st+1)} (3.11)

where expectation is on the transition probability of st.

As calculation of the expectation can be intractable, we can generate samples and calcu-
late the sample based expectation. Below is the generic forward dynamic forward dynamic
programming algorithm due to [15, 4]

Algorithm 3 Forward DP

1: procedure forwardDP
2: For all t initialize value function V̂ 0

t (st)∀s ∈ S,N
3: n← 1
4: repeat
5: for t = 0 to T − 1 do
6: generate sample Ωt

7: solve :
8: ant = argmaxa∈At{rt(st, a) +

∑
ωt∈Ωt

Pr(ωt)V̂
n−1
t+1 (ft(st, a, ωt))}

9: choose ωt ∈ Ωt

10: compute st+1 = f(st, at, ωt)
11: update the approximation V̂ n

t (st)
12: t = t+ 1

13: n = n+ 1
14: if n < N then:
15: goto repeat
16: else:
17: stop

There are many methods that can be used to update the estimate of value function.
One way is to compute

v̂nt = {rt(st, a) +
∑
ωt∈Ωt

Pr(ωt)V̂
n−1
t+1 (ft(st, a, ωt))} (3.12)
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which is estimate of the value function of the state st, which obviously depends on the our
approximation at iteration n− 1, since the estimate v̂nt may have noise, we can smooth the
value function based on

V̂ n
t (st) = (1− αn)V n−1

t (st) + αnv̂nt (3.13)

where α is called step size parameter, takes value between 0 and 1. We can see that the
above algorithm has assumption that the state space is finite and also the action space is
finite. But when we do not have finite space such that the price in the market can not be
regarded as discrete then we can not use the above mentioned algorithm directly. But what
we can do is use some kind of function approximation such as a linear function with some
parameters, or neural network [6, 15, 16]. This helps us to represent the value function with
limited number of parameters and based on the state we can evaluate the value function.
For example below is a linear function approximation based on state of system

V̂t(st) = θ1φ1(st) + θ2φ2(st) + ...+ θmφm(st) (3.14)

where θi are parameters and φi(st) are features derived from state vector st. Now all we
need to do is find way to update the parameters θ1, θ2, .., θm, rather than storing the value
function for each state we need to store only parameters.

3.5.1 Actor Critic Method

We can group majority of approximate dynamic programming methods also called reinforce-
ment learning in computer science community into actor only, critic only and actor-critic
models [13]. In real life cases where action as well as state space is large it is not feasible
to store the value function or policies itself for each state and state action pair, hence an
approximation function has to be used for value such as described in above section. We
describe the critic only and actor only method in following paragraphs and then move to
actor critic method.

Critic only methods e.g. Q-learning [23], SARSA [18] use function approximaters for
state-action function i.e. Q functions as described in previous chapter. There are no ex-
pilicit function used for policy. Deterministic policy π = {π0, ..., πT−1} is calculated from
approximated Q function by solving the optimization problem over value function.

πt(st) = argmax
a∈At

Q(st, a) (3.15)

When learning is in online setting there have been examples shown for simple MDP such as
[19, 10, 2] that the methods such as Q learning and SARSA do not converge with specific
function approximaters. However divergence was further analysed by [20] and shown that
the convergence can be assured for linear in parameters if the samples are drawn accordingly.

Actor only methods do not store the value function or parametric value function, however
the policy itself is parametric and the optimize the reward based on Bellman equation in the
space of parameters of policy function itself. Examples of the actor only methods are SRV
algorithm [11], REINFORCE algorithm [22]. The main advantage of actor only method
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is their convergence property, convergence are obtained if estimated gradient are unbiased
and step size or learning rate satisfy Robbins-Munro condition [17]

αk > 0 ∀k (3.16)

and
∞∑
k=0

αk =∞
∞∑
k=0

α2
k <∞ (3.17)

Drawback of actor only methods are that they may have large variance in estimated
gradient.

The actor critic method combines the benefits of both actor only and critic only method,
they are able to produce the continuous actions and hence useful for large action space, and
large variance in gradient estimate is reduced by critic presence. Consider the following
setting where we are approximating the value function and policies as follows

V̂t(st) = θTt φ(st) (3.18)

and
πt(st) = ωTt ψ(st) (3.19)

where
φ(st) = {φ1t , φ2t , ...., φmt}

and
ψ(st) = {ψ1t , ψ2t , ...., ψmt}

are vecor of features based on state st also the parameters are considered to be time depen-
dent are

ωt = {ω1t , ω2t , ...., ωmt}

and
θt = {θ1t , θ2t , ...., θmt}

Consider the Bellman equation 2.12

V π
t (xt) = rt(xt, πt(xt)) + EV π

t+1(xt+1|xt, π(xt))

with approximation under a policy π we can rewrite the above equation as

V̂ π
t (st) = {rt(st, πt(st)) + EV̂ π

t+1(st+1)} (3.20)

The difference between right hand and left hand side is known as temporal difference(TD)
or Bellman error. This error can be used to obtain the gradient following ways

δt = {rt(st, πt(st)) + EV̂ π
t+1(st+1)} − V̂ π

t (st)}
= {rt(st, ωTt ψt(st)) + EθTt+1φ(st+1)− θTt φ(st)}

(3.21)

From the above Bellman error we can easily calculate the gradient of mean square error
and update of the parameters of value function can be obtained as follows in case of linear
case

θt ← θt + αθδφt(st) (3.22)
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similary we can obtain the update for the policy parameters as follows

ωt ← ωt + αωδψt(st) (3.23)

Eligibility traces are temporary record of occurrence of an even, i.e. system state visited
through trajectory which can be defined as

et(s) =

{
λet−1(s) : if s 6= st

λet−1(s) + 1 : if s = st
(3.24)

where λ is discounting parameter for history of the state. The above eligibility traces can
be generalized for continuous spaces as follows

zt =


0 : if t = 0

1 : if t = T − 1

φt(st) + λzt−1 : otherwise

(3.25)

observe that z is now vector of the same dimension as features of value function. Combining
all these together we can write the actor-critic algorithm

3.6 Actor Critic method for Dark Pool Problem

We consider the following assumptions

• The impact function of price is known for conventional exchange

• Prices in the dark pool are derived from primary exchange prices

• We consider negligible impact of the trade size in the dark pool.

• We consider that no other fees is charged for order placement in either dark pool of
conventional exchange

In addition to above assumptions we normalize the prices to be any real number in [0, 1] also
we take stocks available as real number in [0, 1]. We trade as fraction of available amount
in dark as well as conventional market. Following are the dynamics of the market

• pt = f(pt−1, xt−1) + εt where we have assumed εt
iid∼ N (µ = 0, σ2 = 0.001)

• d∗t = pt + ηt i.e. no impact of order size in dark pool, however random component

ηt
iid∼ N (µ = 0, σ2 = 0.001) is added

• yt ∼ Gumbell(µ = yt−1, β = 0.02) or yt = 0 with equal probability, where yt is the
fraction of dark pool order executed and initial value y0 is assumed to be 0

• state of the system is given as st = {pt, Xt, yt−1} , where pt is the price in the
conventional market, Xt is amount left to liquidate,
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Algorithm 4 Actor Critic Algorithm

1: procedure actorCritic
2: initialize
3: θt, ωt∀t ∈ {0, 1, ...T − 1}, N
4: n← 1
5: repeat
6: generate initial state randomly s0

7: initialize eligibility traces z = 0
8: for t = 0 to T do
9: generate sample Ωt

10: calculate TD error : δt
11: select action based on current parameters : at = ωTt ψt(st)
12: generate random exploration variable : et
13: at ← at + et
14: if t = T-1 then:
15: δt = rt(st, at) +

∑
ot∈Ωt

Pr(ot)rT (fT (st, at, ot))− θTt φt(st)
16: z = 1
17: else
18: δt = rt(st, at) +

∑
ot∈Ωt

Pr(ot)θ
T
t+1φt+1((ft(st, at, ot)))− θTt φt(st)

19: z = λz + φt(st)

20: θt ← θt + αθδtz
21: ωt ← ωt + etαωδtψt(st)
22: compute st+1 = f(st, at, ot)
23: t = t+ 1

24: n = n+ 1
25: if n < N then:
26: goto repeat
27: else:
28: stop

We consider following set of features based on state vector for value function approximation

φ(st) = {Xtpt, (yt−1)pt, X
2
t , p

2
t , yt−1} (3.26)

Similarly we consider the feature vectors for dark pool policy and conventional market
policy as follows

ψd(st) = {√ptXt, yt−1, Xt}
ψm(st) = {√ptXt, pt, X

2
t }

(3.27)

With above features we take the policy and value function parameters given as below

θt = {θt1 , θt2 , θt3 , θt4 , θt5}
ωdt = {ωdt1 , ω

d
t2 , ω

d
t3}

ωmt = {ωmt1 , ω
m
t2 , ω

m
t3 }

(3.28)
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the reward function is given as

rt(st, xt, zt) = p∗txt + d∗t ztyt

rT (sT ) = p∗tXT
(3.29)

Policy function are considered as sigmoid function, such that they give the fraction of
current available liquidation amount as next order to be placed. Using above dynamics and
assumptions we have applied the actor critic learning method described in previous section.



Chapter 4

Simulation and Analysis

In this chapter we analyze results obtained on applying the actor critic method to liquidation
problem. First we will discuss the simulation of market price, then we will show empirical
result of convergence of temporal difference error. The value function and policy obtained
is discussed. Finally, we will show empirically that the policy obtained with our approach
is better than naive policy of equal block market orders for each time period.
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Figure 4.1: Sample Dynamics of Market Price

We have considered finite horizon of 20 time periods. Based on the assumptions and
market dynamics discussed in section 3.6, the market price dynamics is shown in figure 4.1
based equation below,

pt+1 = pt(1− k
√
xt
pt

) + εt (4.1)

where k is a constant and εt
iid∼ N (µ = 0, σ2 = 0.001).
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Figure 4.2: Convergence of Temporal Difference Error

We have used on-policy actor critic method, it learns using reward generated from
each interaction with the environment. In our case for each period of time it updates
the parameters of the policy and value function based on the liquidation amount received.
As discussed in section 3.5.1, temporal difference error is used to find the gradient. The
convergence of the TD error is desired for learning optimal policy. Figure 4.2, shows the
convergence of the temporal difference(δ) error. It can be seen that initially error starts
increasing and then as the number of iteration increases TD error starts to converge.

Figure 4.3, shows the value function based on the policy obtained after TD error con-
vergence as discussed above. Samples of value function corresponding to the initial market
price have been drawn. Following observation can be drawn from the figure,

• The value function is sum of liquidation returns obtained, it should decrease as time
proceeds, we can see that value function is monotonically decreasing.

• For higher initial price of a security, liquidation return should be higher . The graph
shows value function has higher values of higher initial price.

• Value function near horizon is close to zero, which indicates as time proceeds lesser
stocks are left to liquidate.

Now we discuss the policy obtained for dark pool and market orders. Figure 4.4 shows
the policies for dark pool and market order. It can be seen that the size of the market
order is most of the time more than the dark pool order, as in dark pool order execution
is not guaranteed. We can see that as time proceeds towards horizon, the order size starts
increasing. It indicates that policy trades more aggressively as time proceeds, so that whole
portfolio is liquidated before the horizon.
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Figure 4.3: Value Function For Different Initial Prices
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Figure 4.4: Comparison for Market Order and Dark Pool Order

We show that empirically that the liquidation return obtained using actor critic method
is better than the return based on equal block market orders. We have generated the
samples returns based on the dynamics of the market discussed for equal block size market
orders and policy obtained using actor critic method. The difference between liquidation
return obtained using both approach is calculated. Null hypothesis is that mean difference
between both approach is 0. Results of one sample t-test for different sample sizes, are
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Sample Size Mean Difference t-statistic p-value

100 0.0280837810258 0.83388953147427203 0.40535119271146636
1000 0.020419467299 2.0931508570575095 0.036461619930250787
5000 0.0219556654136 4.9122884383925438 9.1447540739443554e-07
10000 0.0219220529495 6.9557773292088916 3.6146034055307383e-12

Table 4.1: Result of t-test

shown in the table 4.1.
For sample size 1000 and above the p value is small (< 0.05), null hypothesis can be

rejected. The mean difference calculated shows that the return obtained using actor critic
method is better than the naive approach of splitting as equal block market orders. Hence
we can say, our approach produces better liquidation returns.



Chapter 5

Future Work and Conclusion

A finite horizon control problem poses additional complexity to the control problem. One
has to find a non stationary policy, as the state and action space both changes with the
time. Finding stationary policies in case of infinite horizon problem is relatively easy and
there have been convergence proof for many methods for stationary policy.

We have applied the finite horizon based actor critic learning method here. We have
explicitly put the parameters for each time period to be separate such that we can get the
non stationary policies. We have shown convergence of TD error empirically. We have also
shown the comparison of splitting equal block market orders and our approach. It was
shown empirically that the approach we used produces higher liquidation return.

Because of the non stationarity of the policies in finite horizon problem, non convergence
of algorithms have been shown for some problems.Hence a formal proof of convergence is
required. As approximation has been used, an error bound on the policies obtained has to
be theoretically obtained. These are some future directions on this problem and on finite
horizon control problems as whole.
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