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Abstract

Mixed criticality systems integrate tasks of different criticality levels on the same platform.
In order to ensure safety of such systems, we need to guarantee that all critical tasks must
complete their execution prior to their deadlines. In normal architectural platforms, DRAM
controllers generally serve the memory requests on an open page policy. So DRAM con-
trollers that are used in normal architecture cannot serve all the memory requests and hence
all the tasks often cannot meet their deadlines. In this work, we propose a novel approach
for bank aware memory allocation of tasks which can significantly improve the performance
of these mixed criticality systems. Experimental results on different benchmarks show the
efficacy of our proposed scheme.

Keywords: Mixed criticality system, schedulabity analysis, graph partitioning, constrained
optimization.
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Chapter 1

Introduction

A real time system is any information processing system which has to respond to an ex-
ternally generated input stimuli within a finite and specified period. Correctness of a real
time system depends not only on the logical result of input but also on the time at which
the result is produced. Different real time embedded systems include automobile systems,
avionics systems and many others. Real time embedded systems which integrate tasks of
different criticality levels on the same hardware platform are more commonly known as
mixed criticality systems. In these systems, applications belonging to different criticality
levels are engineered to different levels of assurance where high criticality applications are
the costliest to design. Criticality level denotes the assurance against failure needed for a
system component [3].

A task τi = (Ai, Di, Ci, E
j
i ) in a mixed criticality system is defined as follows:

• Ai ∈ N denotes the arrival time,

• Di ∈ N and Di > Ai denotes the deadline,

• Ci denotes the set of criticality levels,

• Ej
i ∈ R denotes its execution time / memory budget at the jth criticality level.

A mixed-criticality system (MCS) consists of tasks of two or more distinct levels of crit-
icality. The main objective of mixed-criticality systems is to guarantee the safety of the
system by increasing the number of execution of critical tasks. A mixed critical task has
many execution modes and each mode is associated with different budgets for execution.
Execution budget means resource requirement of a task in a particular execution mode. A
task can switch from one mode to another mode if required. For example, a critical task
generally executes in its lowest execution mode with minimum budget of execution in that
mode. But it may switch to higher modes during execution with larger number of resources
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10 1. Introduction

Figure 1.1: Overview of an automotive system

so that it may not miss its deadline. Scheduling critical tasks on a mixed criticality platform
is quite challenging. We need to guarantee that all the critical tasks are to be scheduled
and executed within their deadlines.

A popular example of a mixed criticality system is an automotive system. Automotive
embedded systems contain a mix of safety critical control tasks (needed for system stability
and safety) and time critical tasks with deadline constraints (needed for ensuring system
performance and behavior). Safety critical tasks include tasks for controlling vehicle dy-
namics, air-bag control which are crucial for ensuring the safety of the vehicle. On the other
hand, tasks associated with stringent timing constraints like tasks for driver-assistance, help
improve usability and driving comfort. Some tasks may also exhibit both timing and safety
critical behavior. With the consolidation of functionality on the same hardware, applica-
tions with both classes of tasks may co-exist, interact and share common hardware platform
resources like Electronic Control Units (ECUs), and buses. Scheduling and platform design
to ensure such a mix of timing, control performance and stability constraints is a challenging
problem. Fig1.1 gives an overview of an automotive system.

In this type of mixed criticality systems, each task generally constitutes multiple instruc-
tions, some of which are compute intensive instructions, while others are memory intensive.
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Figure 1.2: Schematic diagram of memory architecture

Thus, memory intensive tasks require frequent memory accesses. But in our existing archi-
tecture, instructions cannot be served instantaneously as and when they arrive. A schematic
diagram of a contemporary memory architecture is shown in Fig1.2. In existing computer
architecture, we can schedule requests either at the processor or at the memory or more
specifically the DRAM controller. Several scheduling algorithms have been proposed to
schedule the tasks at the processor level. Uniprocessor schedulers mostly use Earliest Dead-
line First (EDF) [20] or Rate Monotonic Scheduling (RMS) [22] to schedule tasks at the
processor. Scheduling of tasks in multi-core systems has also been proposed in [7]. Current
DRAM controllers take the advantage of row buffer locality. They follow an open row policy
to schedule requests to access memory. According to the open row policy, the instruction
which results in row hit is served first. Then the older requests are served in the order of
their arrival. In this dissertation, we focus on the scheduling of memory requests at the
DRAM so that maximum number of high critical tasks get executed.

1.1 Motivation of this dissertation

In this dissertation, we study the problem of memory scheduling for mixed criticality sys-
tems. We first take up the problem of deciding the required number of banks that can
ensure a given set of mixed criticality tasks can meet their deadlines. We study both the
decision and optimization problems for the same. Following this, we take up the issue of
bank scheduling. The major problem with the open row policy at the DRAM is that most
of the high criticality tasks fail to meet their deadlines while waiting for memory access
if not scheduled and executed within their deadlines. Due to this open row policy, some
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low criticality tasks get prioritized to be executed first whereas, some high criticality tasks
may miss their deadlines while waiting in the buffer for memory access. Thus, selection of
tasks is a very important criteria for scheduling tasks of different criticality levels executing
on such a platform in order to ensure safety of the system. In this dissertation, we have
proposed a novel method to schedule tasks around memory which increases the number of
execution of high criticality tasks significantly. A number of proposals have been made for
scheduling tasks of different criticality levels around memory. The fundamental difference
of these methods with our proposed method is that in our proposed method, we ensure that
no high criticality task will miss their deadlines at the cost of any low criticality task. This
is the main motivation of this dissertation. The main contribution of this dissertation is
highlighted below.

1.2 Contribution of this dissertation

Our method proposes a bank aware memory scheduling policy to schedule tasks of different
criticality levels across memory banks. We have partitioned the tasks across banks according
to their address mapping and then we have refined our existing partitions by a heuristic
partitioning algorithm which uses a cost function based on some task parameters and some
system parameters as a metric for partitioning. Our proposed method has been compared
with existing state-of-the-art memory controllers on different benchmarks of Malardalen
Worst Case Execution Time Benchmark [9]. Results on different benchmarks show the
efficiency of our proposed method.

1.3 Organization of this dissertation

The rest of the dissertation is organized into 5 chapters. A summary of the contents of the
chapters is as follows:

Chapter 2: A detailed study of relevant research is presented here.

Chapter 3: This chapter deals with design specifications to support this type of mixed
criticality system.

Chapter 4: This chapter addresses the inefficiency of existing DRAMs to support this
type of mixed criticality system and our contribution to overcome this inefficiency.

Chapter 5: We summarise with conclusions on the contribution of our dissertation.



Chapter 2

Background and Related Works

In this chapter, we first present a few background concepts needed for developing the foun-
dation of our proposed work. We also present an overview of different methods proposed
in the literature of scheduling around DRAM.

2.1 Background

In this section, we discuss a few background concepts.

2.1.1 Organization of DRAM

Main memory is stored in DRAM cells that have much higher storage density. DRAM chips
are large, rectangular arrays of memory cells with support logic that is used for reading and
writing data in the arrays, and refresh circuitry to maintain the integrity of stored data [19].
According to storage oraganization, memory is hierarchically organized into DIMM, rank,
bank and array. DRAM devices are composed of basic blocks of DRAM memory. Multiple
DRAM devices are accessed in parallel which together forms a DRAM rank [18]. DRAM
devices in the same rank share same bus for address and command and another bus for data
communication. Each DRAM device is made up of multiple DRAM arrays which store the
data. Each of these arrays can be accessed independently. A group of DRAM arrays in
different DRAM devices that are accessed together forms a DRAM bank. A DRAM bank
is a 2D array of cells: rows x columns. A DRAM row is also called a DRAM page. Memory
arrays are arranged in rows and columns of memory cells called wordlines and bitlines,
respectively. Each memory cell has a unique location or address defined by the intersection
of a row and a column. A DRAM cell stores a bit in a capacitor and hence they are needed
to be charged periodically to prevent loss of data. Fig.2.1 shows the organisation of DRAM.

13



14 2. Background and Related Works

Figure 2.1: Organisation of DRAM

2.1.2 DRAM access commands

A number of DRAM commands such as PRECHARGE, ACTIVATE, READ, WRITE,
REFRESH and IDLE are used to access DRAM cells for different DRAM operations. Fig.2.2
shows a brief overview of the state transition of a DRAM. There are two types of transitions
in a DRAM, transition due to DRAM commands and transition triggered by time elapse.
The curved arrows represent the transitions caused due to elapse of time and the straight
arrows represent the transitions caused by issue of DRAM commands. PRECHARGE
command precharges the bit lines and a new row is set ready to be accessed. PRECHARGE
command is issued before accessing a new row. After fully precharging the bit lines, the
bank goes back to Idle state. ACTIVATE command opens a row in a bank for access. The
data is transfered from DRAM cells to the row buffer. While in Active state, a READ or
a WRITE command may be issued. The same row remains active until a PRECHARGE.
READ command initiates a burst read from an active row in a bank. WRITE command
initiates a burst write to an active row in a bank. REFRESH command refreshes the target
bank and rows within the DRAM and prevents decaying of data. So it is necessary to issue
REFRESH command at regular intervals in order to prevent data loss in DRAMs.

2.1.3 Row Buffer Management Policy in DRAM

In DRAM devices, arrays of sense amplifiers act as buffers that provide temporary data
storage. Policies that manage the operation of sense amplifiers are known as row buffer
management policies. In ordinary DRAM devices, open-page policy and close-page policy
are mainly used.
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Figure 2.2: Simplified overview of important states of a DRAM

• Open-Page policy: The open-page row buffer management policy usually favors mem-
ory accesses to the same row of memory by keeping the sense amplifiers open and
holding the data for ready access. Whenever a row of data is brought to the array of
sense amplifiers in a DRAM cell, different columns of same row can be accessed again
and again having only column access latency. Whenever a different row of the same
bank needs to be accessed, the memory controller first precharges the DRAM array,
then activates the desired row and finally allows for column access. This policy is best
suited for sequential memory accesses and increases performance by better exploiting
spatial and temporal locality in memory.

• Close-Page policy: The close-page row buffer management policy works better when
we have random memory accesses across different rows. This policy precharges the
row after every memory access. So we can keep the bank in Idle state after every row
access in order to avoid the precharging overhead.

2.1.4 Different timing constraints between DRAM commands

Minimum delay must be maintained between two successive DRAM commands to ensure
correct operation of a DRAM. Two types of timing constraints exist in DRAM:

• Intra Bank Timing constraints - When two successive commands access the same bank,
some amount of delay must be maintained. However, these delays vary from device
to device. Some DRAM timing constraints which are relevant to our implementation
are:

– Row Precharge time- time to precharge a complete row. It is actually the min-
imum delay between a PRECHARGE command and a subsequent command in
the same bank.
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– Row Access time- minimum time interval between ACTIVATE and onset of next
PRECHARGE command in the same bank.

– Row to Column delay- time interval between ACTIVATE and a subsequent
READ or WRITE command in the same bank.

– Column Access delay- time required to access the columns of a particular row in
the row buffer.

– Row Cycle time- minimum interval to access different rows in the same bank in
memory.

• Inter Bank Timing constraints- DRAM arrays for different banks are in the same
DRAM device. Thus, hardware resources are sharable between banks. Address,
commands and even data buses are shared by the ranks. Therefore, timing constraints
are to be satisfied to avoid conflicts in hardware resources. Some inter-bank timing
constraints are:

– Row activation to Row activation delay- time interval between two ACTIVATEs
to different banks.

– Data Burst duration- busy period of the data bus.

2.1.5 Mixed Criticality Systems

Criticality is a designation of the level of assurance against failure needed for a system
component. A mixed criticality system (MCS) [5] is one that has two or more distinct
levels such as safety critical, mission critical or non critical etc. A safety-critical system [23]
is a system whose failure or malfunction may result in death or serious injury to people,
loss or severe damage to equipment/property or environmental harm. It is to be ensured
that in order to maintain the safety of the system, a critical task should not miss its deadline.

A key aspect of Mixed-Criticality Systems is that a task can execute with different resource
requirements in different criticality modes. The resource required to execute a critical task
in its highest criticality mode is maximum, whereas, a task can execute with smaller amount
of resources in lower criticality modes. Based on the availability of resources, a task may
execute in multiple criticality levels in different cycles. A task executing in higher criticality
mode with higher number of resources results in higher percentage of task completion. So,
a task executing in higher criticality mode requires less number of cycles to complete the
task. More critical a task is, more is the number of modes in which it can execute.

2.1.6 Scheduling and Schedulibility Analysis

The term scheduling analysis in real-time computing includes the analysis and testing of the
scheduler system and the algorithms used in real-time applications. In computer science,
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real-time scheduling analysis is the evaluation, testing and verification of the scheduling
system and the algorithms used in real-time operations. For critical operations, a real-time
system must be tested and verified for performance [24].

Real-time systems have timing requirements that must be guaranteed. Scheduling and
schedulability analysis enable these guarantees to be provided. In scheduling theory, a real-
time system comprises a set of real-time tasks; each task consists of an infinite or finite
stream of jobs. The task set can be scheduled by a number of policies including fixed
priority or dynamic priority algorithms. The success of a real-time system depends on
whether all the jobs of all the tasks can be guaranteed to complete their executions before
their deadlines. If they can, then we say the task set is schedulable [26].

2.2 Related research

Several techniques have been developed and adopted in real time predictable DRAM con-
trollers. In normal systems, multiple requesters generate memory requests to the DRAM
controller, which finally schedules the requests to the DRAM for processing the requests.
In real time systems, each task is associated with a deadline which is expressed in terms of
real time. Shared resource access interference, such as memory and system bus, is very chal-
lenging for designing predictable real time system as WCET of a real time task significantly
differs between the different criticality levels. In commercial off-the-shelf (COTS) DRAM
controllers, scheduling techniques are generally applied at the software level. In custom
memory controller, either techniques focus mainly on scheduling the memory requests or
controlling the commands. So based on our requirements, we need to decide on the suitable
address mapping scheme and page policy to be used.

In COTS multicore systems, DRAM banks can be accessed independently. In [25], PAL-
LOC, a DRAM bank aware memory controller has been proposed. These memory controllers
exploit the page-based virtual memory system to avoid bank sharing among cores, thereby
improving isolation on COTS multicore platforms without requiring any special hardware
support. In [12], techniques have been proposed to provide a tight upper bound on the
worst-case memory interference in COTS multi-core systems, where a task running on one
core may get delayed by other task running on the other core due to shared resources. They
have explicitly modeled the major resources in the DRAM system and considered timing
characteristics by analyzing worst-case interference delay imposed by a parallelly running
task on the other.

A predictable DRAM controller design has been proposed in PRET [17], where DRAM is
considered as multiple resources that can be shared between one or more requests individ-
ually by interleaving accesses to blocks of DRAM. Thus contention for shared resources is
eliminated within the device, making accesses temporally predictable and temporally iso-
lated. Each memory request is scheduled by Time Division Multiplexing (TDM) and each
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DRAM command’s latency is predefined, so each request is isolated and tightly bounded.
Though this scheme is very useful for critical tasks, unused memory slots cannot be used
for non critical tasks and hence is very inefficient for those systems with large number of
non critical tasks.

Another approach has been mentioned in [1] where bank interleaving and a close page
policy are used with a pre-defined command sequence. Different scheduling approaches
such as dynamic scheduling can be used for systems where we have varying memory request
patterns. But request isolation is not gauranted. Again in [2], a Credit-Controlled Static-
Priority (CCSP) has been suggested to provide minimum bandwidth for each request with
bounded latencies.

Multicore processors handle hard real time systems for their good performance-watt-ratio
and high performance capabilities. Unfortunately, multicores are limited by the gauran-
tee of time composability for mixed critical applications as WCET of a task depends on
inter-task interferences with other tasks executing simultaneously on the same platform.
In [15], an analytical model that computes worst case delay, more specifically known as
Upper Bound Delay (UBD) has been computed considering all memory interferences gen-
erated by co-running tasks. Another approach has been proposed in [8] where a method for
composable service to memory clients by composable memory patterns has been designed.
A reconfigurable TDM, which can be changed at run time along with a reconfigurable proto-
col has been developed, whereas, predictable and composable performance is also offered to
active memory clients which remain unaffected irrespective of configuration. Each request
is isolated from memory interference if each task is allocated a slot in the TDM. But, a lot
of slots are wasted if no memory request occurs resulting in decrease in throughput. Also,
in absence of critical tasks, no non critical tasks are allowed to execute in the slot assigned
for critical task.

Another approach has been developed in [11] where memory access groups (MAGs) are
generated per bank and the tasks are combined to form these MAGs. Both critical and
non critical MAGs are generated and each bank has certain critical space for execution of
critical tasks. In absence of critical tasks, non critical tasks can execute in their place and
they are pre-empted by critical tasks as soon as they arrive. The main disadvantage of this
method is that each of critical MAG consists of one safety critical and two or more mission
critical tasks. Therefore, some mission critical tasks may miss their deadlines while waiting
in the MAG for memory access. For systems, where the ratio of safety critical and mission
critical tasks are same, a lot of safety critical tasks miss their deadline.

In [10], memory requests are scheduled using time-division-multiplexing scheduler and a
framework has been developed to statically analyse the tasks to meet the timing require-
ments of all tasks. This work proposes a mixed page policy that dynamically switches
between close and open-page policies based on the request size to combine the benefits of
both policies while avoiding their drawbacks. But in this method, many slots remain unused
as requests are served in an interleaved manner and requests are served in a TDM manner.
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Our bank partitioning problem and the solutions presented therein are based on the power
mode partitioning problem discussed in [16] and the tenant mode allocation problem dis-
cussed in [13, 14]. However, in this work, we have adopted the same model in the context of
designing efficient policies for DRAM controllers, while also deriving the hardness results.
This gives us some novelty over what exists in literature.





Chapter 3

Bank Specification for serving
memory requests

A mixed criticality system consists of tasks from different criticality levels working on the
same platform. A task may be of certain criticality level based on the safety of the system.
Upto 5 levels of criticality levels are identified in automobile/avionics systems. For an au-
tomobile/avionics system, our goal is to ensure that no high critical task should miss their
deadlines at the cost of any low critical task.

Let us consider an automobile system consisting of engine, fuel system, exhaust system,
cooling system, lubrication system, electrical system, transmission system, air-bag control
system and the chassis. The chassis includes the brakes, tires, wheels, the suspension system
and the body. When the system is in operating state, we have multiple messages coming
from different applications. But some applications like the air-bag control system operates
during emergency conditions to keep the system safe. So these messages are of higher crit-
icality in order to ensure the safety of the system.

We have considered a task as a set of memory requests. Each task can be executed in
any criticality mode. Our task model is based on the power mode partitioning problem dis-
cussed in [16] and the tenant mode allocation problem discussed in [13, 14]. In this chapter,
we will mainly focus on the memory bank design and memory requirements so that we can
serve the memory requests of different critical tasks executing at different criticality levels.

3.1 Memory Bank Requirements

Consider the memory hierarchy explained in the introductory chapters. The number of
memory banks is unchangeable and needs to be specified at design time.

21
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Task ID Criticality Levels Parallel Bank Access % of task executed Deadline

1 L11, L12, L13 L11 - 6 L11 - 25% 4 cycles
L12 - 10 L12 - 35%
L13 - 0 L13 - 0%

2 L21, L22, L23 L21 - 5 L21 - 20% 5 cycles
L22 - 10 L22 - 30%
L23 - 0 L23 - 0%

3 L31, L32, L33, L34 L31 - 0 L31 - 0% 6 cycles
L32 - 4 L32 - 15%
L33 - 8 L33 - 25%
L34 - 12 L34 - 40%

Table 3.1: Task Specifications

3.1.1 Problem Formulation

Problem 3.1.1 Given a set of mixed critical tasks with different deadlines and with dif-
ferent memory requirements at different criticality levels, the problem is to determine if the
set of tasks can be served with a given number of memory banks such that all tasks finish
execution within their deadlines.

The above problem is introduced here with the help of an example.

Motivating Example

Consider a set of tasks with some memory requests that are needed to be served within
their deadlines. Each task is associated with a set of critical levels or modes in which
the task can be executed, along with the number of parallel bank accesses required at a
particular criticality level or mode and the percentage of task which gets completed on
serving the memory request at that criticality level or mode. A set of tasks with different
task parameters are given in Table 3.1. All tasks are assumed to have arrived at the same
instant for memory access. We need to check whether we can serve all the memory requests
at any criticality level within their deadlines on a memory with 12 banks.

Intuitively, if we consider the maximum bank required by each task in any criticality mode,
then we see that a memory with 32 banks can run all the tasks in parallel and hence will be
able to schedule all the tasks within their deadlines. But our system may not always have
huge amount of resources to execute all the tasks in parallel. So we need to schedule the
tasks in such a way that we use our resources efficiently as well as we can meet the task
deadlines.

Given the above set of tasks and a memory with say 12 banks, we need to answer whether
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all these tasks can complete their execution within their deadlines. The above decision
problem can be formulated using the following conventions-

Definition 3.1.1 ith task τi is defined as -

τi = (Li, Bi, Ei, Di)

where, Li ∈ Z+, denoting j criticality levels which task τi can exibit,

Bi : Li → N, Bi denotes the number of parallel bank access that τi exhibits at each criticality
level in Li,

Ei : Li → R, Ei denotes the percentage of total task that can be completed by τi at each
criticality level in Li.

Di ∈ Z+, denotes the deadline of ith task τi

The problem is to synthesize a schedule for the tasks at each cycle, with each task assigned to
one of its criticality levels, such that all tasks finish execution by their respective deadlines.
A feasible schedule to the task set (a solution to the above problem) must therefore, satisfy
the following conditions:

• Condition 1: In every cycle a task will execute in exactly one of its criticality levels.

• Condition 2: A task must complete 100% of its execution before its deadline.

• Condition 3: At any cycle the total number of banks accessed by all the executing
tasks must be less than or equal to the number of banks available to the system.

We now attempt to characterize the hardness of the problem. As above, we are given a
set T of tasks, each having deadline d(t) ∈ Z+, a number m ∈ Z+ of banks, number r ∈
Z+ of resource requirements (number of parallel bank access) of each task in each cycle
depending on its criticality level, resource bounds m in each cycle, resource requirements
Bi(t) of ith task, 0 ≤ Bi(t) ≤ m. The problem of finding a schedule for the above is
NP-complete. The problem is definitely in NP since we can verify in polynomial time if a
given schedule satisfies the requirement on bank access and task deadline. To show that
our problem is NP-hard, we present below a polynomial time reduction from the partition
problem [21] to our problem. Given an instance α of partition problem, we will generate an
instance of our problem σ such that if α can be partitioned into p partitions, σ can also be
scheduled over p cycles (where p denotes the maximum largest deadline value) with m banks.
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Our problem is a variant of the resource constrained problem [6] with resource bounds
equal to m and each task having individual task deadlines. A task can be identified as
a set of subtasks executing with different amount of resources. In each cycle, we need to
generate a partition consisting of subtasks such that the sum of resources at every cycle is
atmost m and each task can complete 100% of its execution within their individual deadlines.

Our problem instance α consists of a set of elements, represented by Ei, i varies from 1
to |α|. Each element of Ei is again a set of tuples - a number and a cost associated with
that number. So, each Ei consists of tuples of the form (nij ,Cij), where j varies from 1 to
|Ei|. Our objective is to partition α into p partitions such that each partition pk contains
atmost one number nij from every Ei so that the sum of the numbers in each partition is
atmost m and the sum of the costs corresponding to all the selected numbers of Ei over p
partitions is atleast 100. Each element Ei again can be selected for some definite number
of partitions. On selecting the jth number from the ith element in the set α, a subtask
of ith task is selected whose bank requirement is the jth number that is selected and the
cost associated with the number, Cij , is the percentage of execution of ith task at j ∗ th
criticality level with nij number of parallel bank access. In every partition, pk, the sum
of all the numbers must be atleast m. When the total cost of ith element is greater than
or equal to 100 over all p partitions, then ith task gets completed. On getting a partition
at every iteration with the above constraints, we actually get a schedule for our problem.
So if α can be partitioned into p partitions, σ is schedulable over p cycles with m banks.
Again, the converse is also true. Suppose that our problem can complete execution of all
the tasks over p cycles. We construct a schedule σ of our problem such that over p cycles,
σ can schedule all the tasks within their deadlines with m number of resources (banks) in
each cycle. For ith task executing in jth criticality level in the schedule σ, a number from
the ith element of the multiset α is selected. The total number of banks accessed in every
cycle in the schedule σ is atmost m, ensuring the sum of the numbers in every partition
cannot exceed m. Completion of ith task in the schedule σ over all p cycles is equivalent
to the sum of costs corresponding to every number selected from the ith element in α over
all p partitions to be atleast 100. A schedule σ exists, denoting that all the tasks can be
completed in p cycles with m banks. This implies α can also be partitioned into p parti-
tions. Thus, the problem of deciding if a schedule exists for all the tasks with individual
task deadlines over m banks in every cycle is NP-complete.

3.1.2 Constraint Formulation

The decision problem introduced above can be stated with the following constraints. We are
given a number of banks z. To formulate the above problem we define a decision variable
say fijk.
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fijk =

{
1 if ith task executes in jth criticality level in kth cycle

0 otherwise

The above decision problem can be expressed with a set of constraints which are as follows.
From Condition 1, we get that for all cycles, a task can execute in exactly one of its criticality
level. Therefore, for each task τi,

|Li|∑
j=1

fijk = 1,∀k, 1 ≤ k ≤ Di (3.1)

From Condition 2, we get that all tasks should complete 100% execution before their dead-
lines. The percentage of task that gets completed at the last cycle may exceed 100. So we
have used ’≥’ instead of ’=’. Therefore,

Di∑
k=1

|Li|∑
j=1

Ei(Lij) ∗ fijk ≥ 100, ∀i, 1 ≤ i ≤ n (3.2)

Here, Eij(Lij) denotes the percentage of ith task that can be executed at criticality level j,
n denotes the total number of tasks. From Condition 3, we get that at any cycle the total
number of banks required by all the tasks executing at that cycle must be atmost z.

n∑
i=1

|Li|∑
j=1

Bi(Lij) ∗ fijk ≤ z,∀k, 1 ≤ k ≤ Di (3.3)

where n denotes the number of tasks and z denotes the number of banks available to the
system. Here, Bi(Lij) denotes the parallel bank access required by ith task at criticality
level j.
In the above decision problem the value of z is 12. For z = 12, we check whether all the tasks
will meet their deadlines. We get a total of (4 + 5 + 6) = 15 constraints from Condition 1
for different tasks at each cycle k.

f111 + f121 + f131 = 1 (3.4)

f211 + f221 + f231 = 1 (3.5)

f311 + f321 + f331 + f341 = 1 (3.6)

f112 + f122 + f132 = 1 (3.7)

f212 + f222 + f232 = 1 (3.8)

f312 + f322 + f332 + f342 = 1 (3.9)
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f113 + f123 + f133 = 1 (3.10)

f213 + f223 + f233 = 1 (3.11)

f313 + f323 + f333 + f343 = 1 (3.12)

f114 + f124 + f134 = 1 (3.13)

f214 + f224 + f234 = 1 (3.14)

f314 + f324 + f334 + f344 = 1 (3.15)

f215 + f225 + f235 = 1 (3.16)

f315 + f325 + f335 = 1 (3.17)

f316 + f626 + f336 = 1 (3.18)

Again, from Condition 2, we get 3 constraints for different tasks.

25 ∗ (f111 + f112 + f113 + f114) + 35 ∗ (f121 + f122 + f123 + f124) ≥ 100 (3.19)

20 ∗ (f211 + f212 + f213 + f214 + f215) + 30 ∗ (f221 + f222 + f223 + f224 + f225) ≥ 100 (3.20)

15 ∗ (f321 + f322 + f323 + f324 + f325 + f326) + 25 ∗ (f331 + f332 + f333 + f334 + f335 + f336)

+40 ∗ (f341 + f342 + f343 + f344 + f345 + f346) ≥ 100

(3.21)

Again, from Condition 3, we get 6 constraints for different clock cycle k.

6 ∗ f111 + 10 ∗ f121 + 5 ∗ f211 + 10 ∗ f221 + 4 ∗ f321 + 8 ∗ f331 + 12 ∗ f341 ≤ 12 (3.22)

6 ∗ f112 + 10 ∗ f122 + 5 ∗ f212 + 10 ∗ f222 + 4 ∗ f322 + 8 ∗ f332 + 12 ∗ f342 ≤ 12 (3.23)

6 ∗ f113 + 10 ∗ f123 + 5 ∗ f213 + 10 ∗ f223 + 4 ∗ f323 + 8 ∗ f333 + 12 ∗ f343 ≤ 12 (3.24)

6 ∗ f114 + 10 ∗ f124 + 5 ∗ f214 + 10 ∗ f224 + 4 ∗ f324 + 8 ∗ f334 + 12 ∗ f344 ≤ 12 (3.25)

5 ∗ f215 + 10 ∗ f225 + 4 ∗ f325 + 8 ∗ f335 + 12 ∗ f345 ≤ 12 (3.26)

4 ∗ f326 + 8 ∗ f336 + 12 ∗ f346 ≤ 12 (3.27)

Solving these set of constraints, we get that the above tasks cannot meet their deadlines
on a memory with bank size 12. So the above set of tasks is not schedulable for a memory
with 12 banks. This leads us to two questions which are discussed in the following sections-

1: The maximum number of tasks that can be executed at different criticality levels within
their deadlines on a memory with z banks.

2: The minimum number of banks required to design a system consisting of tasks with
different criticality levels and different deadlines.
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3.2 Task Maximization Problem

The above decision problem leads to the question that if a set of tasks is not schedulable
with a bank of particular size, then what is the maximum number of tasks which can be
schedulable for the set of tasks with the above parameters.

3.2.1 Problem Formulation

Problem 3.2.1 Given a set of tasks with different sets of criticality levels along with num-
ber of parallel bank access required at each criticality level, and percentage of task completed
if executed at that criticality level. Each task is also associated with a deadline. We are
given a memory with z number of banks, we need to find out the maximum number of tasks
that can complete their execution within their deadlines.

We explain the task maximization problem with the set of tasks in Table 3.1. The problem
is NP-hard. To show that our problem is NP-hard, we give a polynomial time reduction
from partition problem [21] to our problem. Given a instance α of partition problem, we
will generate an instance of our problem σ such that if the gain over α is atleast K over p
partitions, σ can also ensure completion of K tasks over p cycles. Our problem is a variant
of scheduling to minimize weighted completion time [6] with resource bounds equal to m in
each cycle. A task instance in our problem can be identified as a set of subtasks executing
with different amount of resources. In each cycle, we need to generate a partition consisting
of subtasks such that the sum of resources at every cycle is atmost m and atleast K tasks can
be completed within their individual deadlines. We associate weights w(t) to each task such
that on completion of each task a weight w(t) is added to the total cost of the system. We
need to guarantee that the total weight associated with the system must be atleast K * w(t).

Our problem instance α consists of a set of elements, represented by Ei, i varies from 1
to |α|. Each element of Ei is again a set of tuples - a number and a cost associated with
that number. So, each Ei consists of tuples of the form (nij ,Cij), where j varies from 1 to
|Ei|. We need to partition α into p partitions such that each partition pk contains atmost
one number nij from every Ei so that the sum of the numbers in each partition is atmost m
and the sum of the costs corresponding to all the selected numbers of Ei over p partitions is
atleast 100. Our objective is to guarantee that the number of elements Ei whose cost over
p partitions has exceeded 100 is atleast K, ie, we have a gain of atleast K. Each element Ei

again can be selected for some definite number of partitions.

On selecting jth number from ith element in the set α, a subtask of ith task is selected
whose bank requirement is the jth number that is selected and the cost associated with
the number, Cij , is the percentage of execution of ith task at jth criticality level with nij
number of parallel bank access. In every partition, pk, the sum of all the numbers must
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be atleast m. When the total cost of ith element is greater than or equal to 100 over all p
partitions, then ith task gets completed and 1 is added to the gain function. If α results in
a gain of atleast K over p partitions, then σ can also ensure completion of K tasks over p
cycles with a total weight of atleast K * w(t) over p cycles.

Again, the converse is also true.

Suppose that our problem can complete execution of K tasks over p cycles. We construct
a schedule σ of our problem such that over p cycles, σ can schedule K tasks within their
deadlines with m number of resources (banks) in each cycle. For ith task executing in jth

criticality level in the schedule σ, a number from the ith element of the multiset α is selected.
The total number of banks accessed in every cycle in the schedule σ is atmost m, ensuring
the sum of the numbers in every partition cannot exceed m. Completion of ith task in the
schedule σ over all p cycles is equivalent to the sum of costs corresponding to every number
selected from the ith element in α over all p partitions to be atleast 100. Now, completion
of K tasks over p cycles in σ means the total cost to the system is K * w(t). Therefore,
number of elements in α whose sum is atleast 100 is K. So, α has a gain of K over p partitions.

Therefore, maximum task execution over m banks with individual task deadlines and a
resource bound of m in every cycle is NP-hard.

3.2.2 Maximum Task Execution : Constraint Formulation

We introduce a new decision variable Ci to keep track of the task completion. Ci marks the
completion of task Ti.

Ci =

{
1 ith task Ti has completed 100% of the task

0 otherwise

We define the task maximization problem using Integer Linear Programming (ILP) as fol-
lows -

Maximize
∑n

i=1Ci, subject to

For each task τi,
|Li|∑
j=1

fijk ≤ 1, ∀k, 1 ≤ k ≤ Di (3.28)

Di∑
k=1

|Li|∑
j=1

Ei(Lij) ∗ fijk ≥ 100 ∗ Ci,∀i, 1 ≤ i ≤ n (3.29)
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n∑
i=1

|Li|∑
j=1

Bi(Lij) ∗ fijk ≤ z,∀k, 1 ≤ k ≤ Di (3.30)

From Condition 1, we get that at any cycle k, a task can exist in any one of its criticality
level. Therefore, Eqn. 3.28 holds from Condition 1. Similarly, Eqn. 3.29 is obtained from
Condition 2. Hence, if any task say T1 has completed its 100% execution, then the flag
C1 is set and the Condition 2 holds. If C1 flag is 0, meaning that the task T1 has not yet
completed its 100% execution. So, Condition 2 holds in both the cases. From Condition
3, we get Eqn. 3.30 where the number of banks required must be less than or equal to z
at every cycle. Formulating the above equations in the form of constraints on the set of
tasks in Table 3.1 for the task maximization problem, we get a total of 18 constraints from
Condition 1, 3 constraints from Condition 2 and 6 constraints from Condition 3. Solving
the above set of 27 constraints, we get the answer for the maximum number of tasks that
can be executed and also the schedule for the task maximization problem. Table 3.3 in the
Results section of this chapter shows the maximum number of tasks that can be schedulable
for a given set of tasks and a given set of system resources.

3.3 Bank Minimization Problem

The decision problem discussed in the first section of this chapter can only tell us if a set
of tasks with a fixed number of banks and with certain task parameters is schedulable or
not. But if no feasible schedule exists then we need to know the minimum number of banks
required to schedule a given set of tasks.

3.3.1 Problem Formulation

Problem 3.3.1 Given a set of tasks with different deadlines. Each task is associated with
different criticality levels, number of parallel bank access at that criticality level and percent-
age of task executed on serving those memory requests at that criticality level. We need to
answer the minimum number of banks required to execute all the tasks within their deadlines.

This problem can be formulated in a similar way like the above decision problem discussed
in the first section with minor changes in the constraints and the objective function.

3.3.2 Hardness Characterization of the problem
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Problem 3.3.2 Given a set T of tasks, each having length l(t) ∈ Z+, with deadline d(t)
∈ Z+, number r ∈ Z+ of resource requirements (number of parallel bank access), resource
requirements Bi(t) of ith task, for each task t - Can we get the minimum number of banks
K required to schedule all the tasks t ∈ T with resource bound of K in each cycle over a
period of p cycles.

It can be shown that this problem is NP-hard using a similar reduction technique as in the
case of the decision problem.

3.3.3 Constraint Formulation

Let z be the number of memory banks and n be the number of tasks to be executed at a
particular instant. Our problem can be expressed using Integer Linear Programming as -

Minimize z subject to

For each task τi,
|Li|∑
j=1

fijk ≤ 1, ∀k, 1 ≤ k ≤ Di (3.31)

Di∑
k=1

|Li|∑
j=1

Ei(Lij) ∗ fijk ≥ 100, ∀i, 1 ≤ i ≤ n (3.32)

n∑
i=1

|Li|∑
j=1

Bi(Lij) ∗ fijk ≤ z,∀k, 1 ≤ k ≤ Di (3.33)

By applying the above constraints on the tasks in Table 3.1, we require a memory with
atleast 15 banks to complete the tasks within their deadlines. A memory with bank size
less than 15 will fail to meet all the task deadlines. Table 3.2 in the Results section of
this chapter shows some sets of critical tasks and corresponding minimum number of banks
required to execute all the tasks within their deadlines.

3.4 Bank Minimization using Binary Search

We know that for the bank minimisation problem, the solution for the minimum number of
banks will lie in between 1 to M where M is the sum of maximum number of banks required
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by any task at its any criticality level. For the tasks in Table 3.1, the optimal solution will
lie somewhere in between 1 to (10 + 10 + 12) = 32, (the sum of the maximum number
of banks of each task). Using Integer Linear Programming to minimise or maximize the
objective function requires a lot of computation cost for a very large problem with many
constraints. Also it increases the search space and time complexity of the problem. We
can significantly decrease the computational cost and space complexity of the problem by
applying a binary search on the search space. Since, we know that a solution will always
exist in between 1 and M, therefore, instead of solving for the minimum number of banks
we can apply a binary search on the value of z and check if the solution is optimal for that
value of z. The solution is a straight adaptation of the one in [16].

3.4.1 Binary Search Algorithm on the bank minimization problem

Algorithm 1, 2 and 3 give a description of our binary search algorithm on bank minimisation
problem.

Algorithm 1 Bank Minimization using binary search

1: function binsrch(n, TaskList) . n denotes the number of tasks, Tasklist is the list
of n tasks along with all the task parameters

2: min = 1 . Minimum number of banks can be 1
3: max = compute max banks(n, TaskList) . find upper bound for the number of

banks required
4: result = -1
5: while (max > min) and (result 6= 0) do
6: mid = (min + max)/2
7: result = check feasibility(mid, n, TaskList) . a Function which

returns positive value if mid is greater than optimal solution and negative value if mid
is less than optimal

8: if result < 0 then
9: min = mid + 1

10: else if result > 0 then
11: max = mid -1
12: end if
13: end while
14: return mid
15: end function
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Algorithm 2 compute maximum number of banks required

1: function compute max banks(n, TaskList) . calculates the upper bound for the
number of banks required

2: max = 0
3: for i = 1 to n do
4: for j = 1 to length(TaskList[i].Criticality Level) do
5: if TaskList[i].Bank[j] > max then
6: max = TaskList[i].Bank[j]
7: end if
8: end for
9: end for

10: return max
11: end function

Algorithm 3 check feasibility of the solution

1: function check feasibility(val, n, TaskList)
2: for i = 1 to n do
3: for j = 1 to length(TaskList[i].Criticality) do
4: for k = 1 to TaskList[i].Deadline do
5: Apply the constraints for a bank of size val . call LpSolver and apply

the constraints for a bank of size val
6: end for
7: end for
8: end for
9: result = assert optimal() . check if the status of the solution is optimal for a bank

of size val
10: return result . result < 0 for infeasible solution, result > 0 for feasible solution,

result equal 0 for optimal solution
11: end function
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3.4.2 Complexity Analysis

Unlike conventional procedures for getting the minimum number of banks required to sched-
ule a set of tasks within their deadlines, binary search reduces the search space by half at
each step. Thus, in the worst case, number of function calls to check the feasibility of the
solution is equal to the number of times we calculate the mid in the binary search problem.
The check feasibility() function calls the decision problem to check for the optimality of
the solution. It checks for which value of mid our solution is optimal (the point where
the function returns 0). This is equivalent to finding 0 in an array of sorted numbers by
binary search. For a problem of size n, our solution is logarithmic in n, as is the usual case
with binary search. So the search space explored on which the decision problem is called
is smaller, corresponding to the mid values, and hence space complexity of the problem re-
duces significantly. Moreover, since the decision problem is called log(n) times in the worst
case, the space required by the decision problem can be evaluated as the peak requirement
among all the space required by the log(n) function calls. As these log(n) function calls are
called individually, so the space allocated at each function call is significantly much lower
than that allocated for solving the bank minimization problem. On the other hand, we
apply ILP to get an answer to the minimization problem on the entire search space of the
problem. Though the solver uses some heuristics to minimize the search space, the space
complexity is larger. A comparative study of the space complexities of binary search in
contrast to our ILP based solution on different task sets is shown in the results section of
this chapter.

3.4.3 Correctness of binary search based optimal solution generation

We wish to prove here that our approach always generates a valid optimal solution for the
minimum number of banks. Let P(n) be the assertion that binsrch works correctly for
inputs where right - left = n. If we can prove that P(n) is true ∀ n, then we know that
binsrch will definitely give us the value of n for which the optimal solution exists.

Base Case. In the above example when n = 0, min = max = m (say). Since we have
assumed that the iteration would continue till the optimal solution is found between min
and max, it must be the case that x = 0, ie, the optimal solution lies at m, and the function
will return m, a value in between min and max.

Inductive Step. We assume that binsrch works as long as left - right ≤ k. Our goal is
to prove that it works on an input where left - right = k + 1. There are three cases, where
x = 0, where x < 0 and where x> 0.

Case x = 0, the optimal solution lies at m. Clearly the function works correctly.

Case x > 0, the optimal solution lies at some value smaller than x. We know that natural
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Figure 3.1: Peak memory plot on Taskset I by Binary Search vs ILP

numbers between min and max are in ascending order, hence they are sorted. Therefore,
the optimal solution must be found between min and m - 1. The n for the next iteration is
n = m - 1 - left = (left + right)/2 - 1 - left. (Note that x is the floor of x, which rounds it
down toward negative infinity.) If left + right is odd, then n = (left + right - 1)/2 - 1 - left
= (right - left)/2 - 1, which is definitely smaller than right - left. If left + right is even then
n = (left + right)/2 - 1 - left = (right - left)/2, which is also smaller than k + 1 = right -
left because right - left = k + 1 > 0. So the recursive call must be to a range of a that is
between 0 and k cells, and must be correct by our induction hypothesis.

Case x < 0. The optimal solution lies at some value greater than x. This is more or
less symmetrical to the previous case. We need to show that r - (m + 1) ≤ right - left. We
have r - (m + 1) - l = right - (left + right)/2 - 1. If right + left is even, this is (right - left)/2
- 1, which is less than right - left. If right + left is odd, this is right - (left + right - 1)/2
- 1 = (right - left)/2 - 1/2, which is also less than right - left. Therefore, the iterative call
is to a smaller range of the array and can be assumed to work correctly by the induction
hypothesis. We can thus conclude that binsrch is correct.

3.5 Results

This section presents different results generated on different set of tasks.
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Figure 3.2: Peak memory plot on Taskset II by Binary Search vs ILP

Figure 3.3: Peak memory plot on Taskset III by Binary Search vs ILP
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Task ID Criticality Parallel Bank Percentage of Deadline Minimum Bank
Level Access task executed Requirement

1 L1 7 18% 5 cycles 18 banks
L2 10 40%
L3 15 45%

2 L1 5 15% 7 cycles
L2 8 25%
L3 12 35%

3 L1 10 30% 8 cycles
L2 13 45%
L3 0 0%

4 L1 6 20% 5 cycles
L2 9 30%

1 L1 8 25% 6 cycles 12 banks
L2 12 50%

2 L1 6 30% 4 cycles
L2 8 40%
L3 10 55%

3 L1 5 35% 8 cycles
L2 10 45%

1 L1 5 10% 6 cycles 15 banks
L2 10 30%

2 L1 0 0% 4 cycles
L2 8 40%
L3 10 50%

3 L1 4 20% 8 cycles
L2 6 30%
L3 7 40%

4 L1 0 0% 10 cycles
L2 3 15%
L3 6 25%

5 L1 8 20% 9 cycles
L2 12 35%

1 L1 8 30% 6 cycles 14 banks
L2 10 40%

2 L1 5 25% 8 cycles
L2 8 35%

3 L1 4 15% 7 cycles
L2 10 30%

4 L1 7 20% 9 cycles
L2 9 35%

Table 3.2: Minimum number of banks required to execute different sets of critical tasks
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Task Criticality Parallel Bank Percentage of Deadline Number of banks, Task ID
ID Level Access task executed of the completed tasks

1 L1 4 16% 8 cycles 7 banks - Task ID (1,2,4)
L2 5 20%
L3 7 25%

2 L1 3 25% 6 cycles 5 banks - Task ID (2,4)
L2 4 30%
L3 6 35%

3 L1 1 5% 5 cycles 6 banks - Task ID (1,4)
L2 2 10%
L3 4 15%
L4 6 28%

4 L1 2 15% 9 cycles 4 banks - Task ID (2)
L2 3 18%
L3 5 22%

1 L1 4 5% 14 cycles 3 banks - Task ID (3)
L2 6 8%

2 L1 5 10% 11 cycles 8 banks - Task ID (2,3)
L2 7 12%

3 L1 3 15% 7 cycles 14 banks - Task ID (1,2,3)
L2 5 18%

1 L1 2 3% 11 cycles 7 banks - Task ID (1)
L2 6 10%

2 L1 3 5% 9 cycles 13 banks - Task ID (1,2)
L2 5 8%
L3 7 12%

1 L1 6 10% 11 cycles 6 banks - Task ID (2)
L2 7 12%

2 L1 2 8% 12 cycles 8 banks - Task ID (2,3)
L2 3 10%

3 L1 3 10% 8 cycles 12 banks - Task ID (1,2,3)
L2 5 15%

Table 3.3: Maximum number of tasks that can complete execution on a given number of
banks
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Task Criticality Parallel Percentage of Deadline
ID Level Bank access task executed

1 L1 2 15% 10 cycles
L2 4 24%

2 L1 1 10% 7 cycles
L2 3 15%
L3 5 20%

3 L1 2 15% 8 cycles
L2 3 20%
L3 7 25%
L4 8 30%

4 L1 4 12% 7 cycles
L2 5 25%

5 L1 2 10% 9 cycles
L2 4 12%
L3 7 18%

6 L1 3 15% 12 cycles
L2 5 20%
L3 7 30%

Table 3.4: Taskset I

Task Criticality Parallel Percentage of Deadline Minimum number
ID Level Bank access task executed of banks

1 L1 3 18% 8 cycles
L2 5 25%

2 L1 4 21% 6 cycles
L2 5 26% 12 banks
L3 6 32%

3 L1 3 6% 7 cycles
L2 6 13%
L3 8 17%
L4 9 25%

Table 3.5: Taskset II
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Task Criticality Parallel Percentage of Deadline Minimum number
ID Level Bank access task executed of banks

1 L1 4 15% 10 cycles
L2 6 30%

2 L1 2 22% 10 cycles
L2 5 30%

3 L1 3 18% 10 cycles 8 banks
L2 7 23%

4 L1 3 15% 10 cycles
L2 5 21%

Table 3.6: Taskset III





Chapter 4

Memory Bank Prioritization

In the previous chapter, we have discussed about the methods to evaluate the optimal num-
ber of memory banks required to design a mixed-criticality system. Also, given a mixed-
criticality system with t number of tasks, whether a memory with n number of banks can
support such a system can also be evaluated by solving an ILP discussed in the previous
chapter. With the help of the methods explained in the previous chapter, for a particular
mixed criticality-system, we can get a schedule which determines which task should be exe-
cuted at which criticality level/mode in every cycle so that the mixed-criticality system can
be executed with the given memory system.

Each critical task in the mixed-criticality system consists of multiple memory requests
and number of parallel memory bank access at each criticality level. The computation to
determine the optimal number of banks for the design of such a mixed-criticality system
is evaluated offline. The main disadvantage of this method is that the memory requests
may not always allow parallel bank access when requests are served in real systems. After
address translation, two or more memory requests may get mapped to same bank. Again,
due to the open row policy, discussed in the introductory chapters, some memory requests
get prioritized over the other. This problem have been discussed in the next section with
the help of an example.

4.1 Motivating Example

Consider a mixed-criticality system consisting of two tasks with 5 and 8 memory requests
respectively. The tasks specifications are shown in Table 4.1. It has been found that to
execute the tasks within their deadlines we need a memory with atleast 3 banks. Each bank
is assumed to be of size 128B with row size of 16B. So each bank has 8 rows. Each row
again consists of 4 columns of 4B each. The memory is word addressable, so each address

41
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Task ID Criticality Parallel Bank Percentage of Deadline
Level Access task executed

1 L1 1 20% 4
L2 2 40%
L3 3 60%

2 L1 1 12.5% 6
L2 2 25%
L3 4 50%

Table 4.1: Task Specifications

is of 4B. The address mapping of each bank is given below -

Bank 0: Address 0-31 is mapped on this bank. Each row consists of 4 addresses, address
0-3 maps to row 0 of Bank 0, similarly address 4-7 maps to row 1 of Bank 0.

Bank 1: Address 32-63 is mapped on this bank. Address 32-35 is mapped to row 0 of
Bank 1. Similarly, address 60-63 is mapped to row 7 of Bank 1.

Bank 2: Address 64-95 is mapped on this bank. Address 64-67 is mapped to row 0 of
Bank 2. Similarly, address 91-95 is mapped to row 7 of Bank 2.

Now when these tasks are allowed to execute, the memory addresses generated by the
above tasks are listed in Table 4.2. If we schedule the above tasks according to the optimal
schedule generated by ILP, we need to execute the tasks in the following sequence in every
cycle -

Cycle 1: T1 executes in Criticality level 1 with one bank access. T2 executes in Criticality
level 2 with 2 parallel bank access. So in Cycle 1 we require 3 parallel bank accesses.

Cycle 2: T1 executes in Criticality level 2 with two parallel bank access. T2 executes
in Criticality level 1 with one bank access. So, in Cycle 2, we have 3 parallel bank
accesses.

Cycle 3: T1 executes in Criticality level 2 with 2 parallel bank access. T2 executes in
Criticality level 1 with one bank access. So, we have 3 parallel bank accesses in Cycle
3.

Cycle 4: T2 executes in Criticality level 2 with 2 parallel bank accesses.

Cycle 5: T2 executes in Criticality level 2 with 2 parallel bank accesses.

After address translation, the mapping of different requests on different memory banks
is explained below.
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Task ID Number of Memory Addresses Bank Number Row Number
Memory Requests

1 5 12 0 3
36 1 1
15 0 3
39 1 1
42 1 2

2 8 10 0 2
22 0 5
66 2 0
37 1 1
72 2 2
75 2 2
79 2 3
83 2 4

Table 4.2: Memory Address Mapping

Explanation: In cycle 1, Row 3 of Bank 0 (address 12) is brought in the rowbuffer of
Bank 0. Row 2 of Bank 0 (address 10) and Row 5 of Bank 0 (address 22) though scheduled
to be served in Cycle 1, but cannot be served as some other request from T1 has already
been scheduled to be served in the rowbuffer of Bank 0. So these two requests are kept in
the waiting queue to be served later.

In cycle 2, Row 1 of Bank 1 (address 36) is brought to the rowbuffer of Bank 1. Row
3 of Bank 0 (address 15) results in row hit in Bank 0. So memory request to access address
15 is prioritized over pending requests to access address 10 and address 22. Thus, address
15 is served first. Similarly, in Cycle 3, request corresponding to address 39 is prioritized
over other pending requests as address 39 is mapped to Row 1 of Bank 1 which is already
in rowbuffer of Bank 1.

Table 4.3 shows in detail the overview of memory in every cycle. After address mapping of
several memory requests to different memory banks, it has been found that both T1 and
T2 fails to meet their deadline when executed on a memory with 2 banks.

4.2 Disadvantage of the existing method

The main disadvantage of the existing method is due to the address mapping policy, many
requests get mapped to same bank and hence get buffered in the waiting queue. They
have to wait for the bank availability in the subsequent cycles. When a memory address is
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Cycle Incoming Previous Pending Requests Served in Deadline
Requests Requests the current cycle Miss

1 12 (Bank 0, Row 3) 12 (Bank 0, Row 3)
10 (Bank 0, Row 4)
22 (Bank 0, Row 5)

2 36 (Bank 1, Row 1) 10 (Bank 0, Row 4) 15 (Bank 0, Row 3)
15 (Bank 0, Row 3) 22 (Bank 0, Row 5) 36 (Bank 1, Row 1)
66 (Bank 2, Row 0) 66 (Bank 2, Row 0)

3 39 (Bank 1, Row 1) 10 (Bank 0, Row 4) 10 (Bank 0, Row 4)
42 (Bank 1, Row 2) 22 (Bank 0, Row 5) 39 (Bank 1, Row 1)
37 (Bank 1, Row 1)

4 72 (Bank 2, Row 2) 22 (Bank 0, Row 5) 22 (Bank 0, Row 5)
75 (Bank 2, Row 2) 37 (Bank 1, Row 1) 37 (Bank 1, Row 1)

72 (Bank 2, Row 2)

5 79 (Bank 2, Row 3) 75 (Bank 2, Row 2) 75 (Bank 2, Row 2) T1
83 (Bank 2, Row 4)

6 79 (Bank 2, Row 3) 79 (Bank 2, Row 3)
83 (Bank 2, Row 4)

7 83 (Bank 2, Row 4) T2

Table 4.3: Overview of Memory from cycle to cycle

served, the row to which this address belongs is brought to the rowbuffer in the memory.
The memory request is then served by reading/writing at the appropriate column in that
row in the rowbuffer. On the next cycle, if some memory request arrives which maps to the
same bank and same row in the rowbuffer, the address is served first though some other
addresses are waiting for memory access in the waiting queue. Due to this phenomenon,
some tasks miss their deadlines in spite of waiting for cycle in the waiting queue.

4.3 Hardness Characterisation of the problem

Problem 4.3.1 Given a set of n memory requests (M1, M2, M3 . . . Mn) coming from a
set of k tasks having different deadlines (D1, D2, . . . Dk), executing on a memory with m
banks. Can we schedule n memory requests on m banks over T cycles based on the address
to which they are mapped so that all t tasks can meet their deadlines.

The problem is NP-complete.

The problem is in NP.

Given a schedule to serve n memory requests, whether all n memory requests corresponding
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to t tasks can be executed over T cycles can be verified in polynomial time.

The problem is NP-hard.

To show that our problem is NP-hard, we give a polynomial time reduction from CNF-
SAT problem [23] to our problem. Given an instance α of CNF-SAT problem, we will
generate an instance of our problem σ such that if α is satisfiable, σ can serve n memory
requests over T cycles within the individual task deadlines.

Our problem can be considered as a variant of the CNF-SAT problem [23]. In Boolean
logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a con-
junction of clauses, where a clause is a disjunction of literals, otherwise put, it is an AND
of ORs. n memory requests get mapped to m different banks based on the address of each
request. At a particular instant, a bank may remain free, whereas, many requests may get
buffered at some other bank. We can think of n memory requests as a set of n clauses. We
can think of our problem C as a set of n clauses C1, C2, C3, . . . Cn. ith clause, Ci is True, if
ith memory request gets served within the task deadline, otherwise, Ci is False. Our goal
is to give an assignment to the variables σ : V → True, False so that C evaluates to True.
So, if α is satisfiable, σ can serve n memory requests over T cycles within the task deadlines.

The converse is also true.

Given σ can execute n memory requests within their deadlines. This indicates that all
the memory requests can be served within the task deadlines over T cycles. Now, when
ith task gets executed within the task deadline, Ci is assigned True. So, if all n memory
requests get served within the task deadlines, then Ci is assigned True, where i varies from
1 to n. Thus, C becomes satisfiable. So, if σ can complete execution of n memory requests
within the task deadlines, α becomes satisfiable.

Thus, whether a set of n memory requests from t tasks can be served within individual
task deadlines is NP-complete.

4.4 Solution to the problem

To solve the above problem, we propose a novel bank aware address mapping heuristic which
partitions the memory requests based on a gain function calculated locally on arrival of a
memory request. We use a partitioning heuristic to partition the memory requests across
banks.
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4.4.1 Bank scheduling using Task partitioning

We use an iterative heuristic for partitioning the network whose worst case computation
time per pass grows linearly with size of the network [4] and which in general converges
after several passes. Generally, very small number of passes are needed leading to a fast
approximation algorithm for mincut partitioning, which is the basis of our work.

Given a network consisting of a set of cells(modules) connected by a set of nets(signals),
the mincut partitioning problem consists of finding a partition of the set of cells into two
blocks A and B such that the number of nets in the block is minimum. This is the main
objective of our algorithm.

4.4.2 Our proposed methodology

Consider a mixed-criticality system where n is the optimal number of banks required to
design such a system. We suggest to keep two extra banks which will not participate in
address mapping. These two extra banks will be used to serve the pending requests in
the waiting queue so that we can minimize the deadline misses of tasks. We consider the
memory requests as the nodes in our problem. Requests which are mapped to same bank
form a partition. We start with an initial partition of requests, which makes up our initial
partition. We calculate a gain function over the task as the difference in the gains achieved
by serving a memory request in the same bank or in some reserved bank. This difference
in the two gains helps to decide whether a memory request will be served inplace or in the
reserved bank. Gain function can be explained formally as -

Gain(Reqi) = Gain(Serving Reqi in the same bank) - Gain(Serving Reqi in some reserved
bank)

= [T.deadline - (total memory access time + total waiting time in existing method)] -
[T.deadline - (total memory access time + total waiting time in our method)]

Here, T is the task whose memory request is being served and T.deadline is the dead-
line of the task T. Let us consider that the ith memory request Reqi has been mapped to
jth row (Rowj) of kth bank (Bankk). There are few cases with the help of which we can
highlight the above problem.

Case 1: If the rowbuffer of Bankk currently holds the Rowj and if no other request is
found to be mapped to Rowj , then the Reqi will be served immediately. So we do not
need to replace Reqi. The cost to serve Reqi is equal to 1 row access time.

Case 2: If p number of requests all mapping to different rows of same bank, are ahead of
Reqi in the waiting queue, then according to the FR-FCFS policy, Reqi will be served
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after p requests. In this case, if the cost to serve Reqi in any one of the reserved banks
is greater than that to solve after p memory requests of same bank, we allow Reqi to
be served in Bankk. So the cost to serve Reqi is the total time to serve p row misses
followed by 1 row miss time. On the other hand, if p′ out of p requests map to the
same bank as the rowbuffer, then Reqi will be served after p′ row hits followed by
p− p′ row misses.

Case 3: If the rowbuffer of Bankk currently holds some row other than Rowj , say Rowj′ ,
and if say k′ number of requests are infront of Reqi in the waiting queue, then we need
to calculate the cost to serve Reqi in Bankk after serving k′ requests. Considering all
k′ requests result in row miss, the time to serve Reqi is the total time to serve k′ row
misses followed by 1 row miss corresponding to Reqi. We need to calculate the cost to
serve Reqi in any reserved bank, say Resl. To serve Reqi in any reserved bank, Resl,
we need to copy Rowj of Bankk to any row, say l′ of Resl and bring that row in the
rowbuffer. So the total time to serve Reqi is the time to copy Rowj to Resl followed
by the time to bring the Rowj to the rowbuffer.

If the difference of the two costs in the Gain function is greater than 0, we serve Reqi in
Bankk, otherwise, we serve Reqi in one of the reserved banks.

4.4.3 Algorithm for Bank Aware partitioning

Algorithm 4 explains Bank Aware partitioning. We give a detailed explanation of our
algorithm. Our algorithm takes as input a memory request of a task T in the form of
< address, requesttype >, number of parallel memory accesses of the task T that are left
to be scheduled and deadline of the task as input to our algorithm. Our output is the bank
number to which each address will get mapped.

Step 1: The bank to which the Req is mapped is evaluated. The variable Bank is as-
signed that value. n is assigned the number of requests ahead of Req in the waiting queue.
Step 2: The number of requests in the waiting queue which are mapped to the same bank
and same row as the Req is calculated. n2 is assigned that value. The number of requests
which are mapped to some other bank other than Bank is calculated and n3 is assigned
that value.
Step 3: If the row of the Req is same as that in the rowbuffer of the Bank, then we calculate
the waiting time of Req. Three cases can occur-
Case 1: n2 = 0, then the waiting time of Req is wait time1 = 0.
Case 2: n2 = n, then the waiting time of Req is wait time1 = n * t1, where t1 is the
memory access time when there is a row hit.
Case 3: n2 > 0 and n2 < n, then the waiting time of Req is the time to serve n2 row hits
followed, ie,wait time1 = n2*t1.
Step 4: If the row of the Req is not the same as that in the rowbuffer of the Bank, then
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Cycle Incoming Previous Pending Requests Served in Deadline
Requests Requests the current cycle Miss

1 12 (Bank 0, Row 3) 12 (Bank 0, Row 3)
10 (Bank 0, Row 4)
22 (Bank 0, Row 5)

2 36 (Bank 1, Row 1) 10 (Bank 0, Row 4) 15 (Bank 0, Row 3)
15 (Bank 0, Row 3) 22 (Bank 0, Row 5) 36 (Bank 1, Row 1)
66 (Bank 2, Row 0) 66 (Bank 2, Row 0)

3 39 (Bank 1, Row 1) 10 (Bank 0, Row 4) 10 (Bank 0, Row 4)
42 (Bank 1, Row 2) 22 (Bank 0, Row 5) 39 (Bank 1, Row 1)
37 (Bank 1, Row 1)

4 72 (Bank 2, Row 2) 22 (Bank 0, Row 5) 22 (Bank 0, Row 5)
75 (Bank 2, Row 2) 37 (Bank 1, Row 1) 37 (Bank 1, Row 1)

72 (Bank 2, Row 2)
42 (Res 0, Row 2)

5 79 (Bank 2, Row 3) 75 (Bank 2, Row 2) 75 (Bank 2, Row 2)
83 (Bank 2, Row 4)

6 79 (Bank 2, Row 3) 79 (Bank 2, Row 3)
83 (Bank 2, Row 4) 83 (Res 0, Row 4)

7

Table 4.4: Overview of Memory from cycle to cycle on using Bank Aware Partitioning

the waiting time of Req, wait time1 = n2*t1 + (n - n2 - n3)*t2, where t2 is the memory
access time when there is a row miss.
Step 5: The waiting time of Req if served in any one of the reserved memory bank is
wait time2 = t3, where t3 includes the time to copy a row from one bank to another and
the time to bring the copied row to the rowbuffer of the reserved memory bank.
Step 6: We calculate gain in the above two methods. Gain by method 1 is given as Gain1

= deadline - (wait time1 + n1*M), where M is the worst case memory access time. Gain
by method 2 is given as Gain2 = deadline - (wait time2 + n1*M).
Step 7: If Gain1 is greater than Gain2, then we serve the request in Bank, otherwise we
serve the memory request in any reserved memory bank.

4.4.4 Solution with an Example

Consider the same set of tasks as in Table 4.1 and Table 4.2 respectively. The above dis-
cussed method when applied on the same set of tasks with same memory requests, generates
the following result as in Table 4.4. We have assumed that the time to serve each memory
request is 1 cycle. We have assumed that our system in this example has one extra reserved
memory bank denoted by Res. It has been found that on adopting our method, both T1
and T2 can be served within their deadlines.
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Algorithm 4 Bank Aware Partitioning(Req, n1, deadline)

1: Input Req: Memory request to be served, n1: number of pending parallel accesses,
deadline: deadline of the task

2: Output Bn : Bank number on which Req is finally scheduled
3: t1 = memory access time when row hit
4: t2 = memory access time when roow miss
5: t3 = time to copy a row to the Reserved Bank
6: M = Worst Case memory access time
7: n = number of requests in the waiting queue before task T
8: Bank = Req.bank . Bank to which Req is initially mapped
9: n2 = 0

10: n3 = 0
11: for i = 1 to n do
12: if Reqi.bank == Bank then . checks if some other request is mapped to the same

bank as Req
13: if Reqi.row == Bank.rowbuffer then . checks if some other request is mapped

to the same row as Req
14: n2 = n2 + 1
15: end if
16: else
17: n3 = n3 + 1
18: end if
19: end for
20: if Req.row == Bank.rowbuffer then
21: if n2 == 0 then
22: wait time1 = 0
23: else if n2 > 0 and n2 < n1 then
24: wait time1 = n2 * t1
25: else if n2 == n then
26: wait time1 = n * t1
27: end if
28: else if Req.row 6= Bank.rowbuffer then
29: wait time1 = n2 * t1 + (n - n2 - n3) * t2
30: end if
31: wait time2 = t3
32: Gain1 = Task.deadline - (wait time1 + n1 ∗M)
33: Gain2 = Task.deadline - (wait time2 + n1 ∗M)
34: if Gain1 > Gain2 then
35: Bn = Bank.row
36: else
37: copy Bank.row to any row in the Reserved bank
38: Bn = Reserved.row
39: end if
40: return Bn
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4.4.5 Performance Analysis

Consider two memory requests, M1 arriving at instant t1 and M2 arriving at instant t2,
where t1 < t2. Let M1 and M2 are mapped to the same Bank B at rows R1 and R2 respec-
tively. Let R be the active row in the rowbuffer of bank B. If R1 = R, then M1 will be
served first followed by M2. But if R2 = R, then M2 will be served first due to open row
policy, followed by M1.

Now, consider there be n requests arriving after M2, all mapping to the same row R.
According to the open row policy, all the n requests will be served first, then M2 will be
served. Let τ1 units be the time to execute a memory request if there is a row hit. Let
τ2 units be the time to execute a memory request if there is a row miss. Clearly, τ2 > τ1.
τ1 includes only row access time, whereas, τ2 includes loading of a row to the rowbuffer of
a bank followed by row access time. So, M2 will get a chance to execute after (n * τ1 +
τ2) units. Let M2 has arrived from Task T whose deadline is given by T.deadline units.
Let X be the number of parallel accesses remaining to be served in the memory after M2

gets served. Now, the Gain of M2 by following the conventional method for scheduling in
DRAM, denoted by Gain1(M2) is given by -

Gain1(M2) = T.deadline - (n * τ1 + τ2 + X * α)

where α is the maximum memory access time to execute an instruction,

Let τ3 be the time to copy a row from Bank B to one of the reserved bank Rb. Fol-
lowing our method, the Gain of M2, denoted by Gain2(M2) is given by -

Gain2(M2) = T.deadline - (τ3 + τ1 + X * α)

If Gain2(M2) > Gain1(M2), we follow our method. Otherwise, we follow the existing
method.

Gain2(M2) - Gain1(M2) > 0

=⇒ [T.deadline - (τ3 + τ1 + X * α)] - [T.deadline - (n * τ1 + τ2 + X * α)] > 0

=⇒ n * τ1 + (τ2 - τ1) - τ3 > 0

=⇒ n * τ1 - τ3 > 0 [Since, τ2 - τ1 > 0]

when n is very large, n * τ1 >> τ2

So, Gain2(M2) - Gain1(M2) > 0.
Hence, our method is expected to yield better results than the conventional open row strat-
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egy. Further, we discuss the advantages of our method over existing method.

1. Requests mapping to two different rows in the same bank in an interleaved
manner -

Let α1, α2, . . . αn be n memory requests mapping to bank B in such a manner that all
α2i are mapped to row R1 and all α2i+1 are mapped to row R2 of B. If the rowbuffer of
bank B holds row R1, then all odd requests will be pending in the waiting queue, whereas
all even requests will get served. So, by open row policy, there will be n/2 row misses. Now,
if we apply our method, row R2 will be mapped to some reserved bank in the system, say
B’ and all the odd requests will be directed to bank B’ and served in that bank. So, we can
increase the probability to meet the deadlines of the tasks.

2. Two critical tasks from two critical applications accessing two different
chunks of memory mapped in consecutive locations -

Let us consider two critical tasks from two different applications are accessing memory
locations in such a way that task from the first application are all mapped to row R1 of
bank B, whereas, task from the second application are mapped to row R2 of bank B. Fol-
lowing the existing policy, either one of the tasks can meet their deadlines. The other task
from the second application will not be able to meet their deadlines. Following our pro-
posed method, the row from the second task will be copied to the reserved bank and all the
remaining requests corresponding to that row get diverted to the reserved bank and meet
deadline of both the tasks from different applications.

4.5 Results

This section deals with our discussions on implementation, benchmark programs used by
us and results obtained from normal DRAMs vs our modified DRAM controller. We have
implemented our own simulator. We have generated our results on Malardalen WCET
benchmarks [9]. Table 4.5 gives a a description of the benchmark programs. We have
generated our memory trace on these benchmark programs. Table 4.6 gives a description
of some of the tasksets which are generated based on the number of instructions in the
memory traces. We have compared the performances of our modified DRAM controller
with existing DRAM controllers on a memory with bank of size 32B and 64B respectively.
Some of the results have been shown in Table 4.7.
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Benchmark Program Number of Instructions Memory Instructions

bs.c 179 64

cnt.c 295 95

duff.c 257 111

fac.c 164 48

fibcall.c 163 55

insertsort.c 189 66

lcdnum.c 198 49

ns.c 245 71

prime.c 227 69

Table 4.5: Details of Malardalen WCET benchmark programs

Figure 4.1: Number of Task Misses on Dataset I for a memory with 10 banks and row size
64B over 70,000 cycles



4.5. Results 53

Dataset Benchmark criticality number of parallel percentage of
Number program level accesses task completed

Dataset I fibcall.c L1 3 6%
L2 4 8%
L3 6 12%

lcdnum.c L1 2 3%
L2 3 5%
L3 4 7%

fac.c L1 1 2%
L2 2 4%
L3 4 8%

Dataset II bs.c L1 5 7%
L2 8 12.5%
L3 10 15%

cnt.c L1 5 5%
L2 7 7%
L3 10 10%

duff.c L1 7 6%
L2 9 8%
L3 11 9%

Dataset III prime.c L1 3 4%
L2 6 8%
L3 9 13%

ns.c L1 4 5%
L2 6 8%
L3 10 14%

insertsort.c L1 3 4%
L2 6 9%
L3 8 12%

Dataset IV lcdnum.c L1 5 10%
L2 7 14%
L3 9 18%

insertsort.c L1 6 9%
L2 8 12%
L3 10 15%

fibcall.c L1 5 9%
L2 8 14%
L3 11 20%

Table 4.6: Some Dataset generated on different benchmark programs
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Dataset Number of Number of Rowsize Number of Task Miss Number of Task
Number cycles Banks (conventional method) Miss(our method)

Dataset I 10,000 10 banks 64B 1 1
20,000 3 2
30,000 4 3
40,000 6 4
50,000 8 5
60,000 9 6
70,000 11 7

10,000 10 banks 32B 2 1
20,000 4 2
30,000 5 3
40,000 8 5
50,000 11 6
60,000 12 7
70,000 14 9

Dataset II 10,000 19 banks 64B 3 0
20,000 6 1
30,000 9 1
40,000 14 4

10,000 19 banks 32B 3 2
20,000 5 3
30,000 8 6
40,000 13 11

Dataset III 10,000 15 banks 64B 2 1
20,000 4 1
30,000 5 2
40,000 8 3

10,000 15 banks 32B 3 2
20,000 5 3
30,000 6 4
40,000 9 6

Dataset IV 10,000 12 banks 64B 2 1
20,000 5 2
30,000 7 4
40,000 12 4

10,000 12 banks 32B 3 2
20,000 6 4
30,000 9 6
40,000 14 11

Table 4.7: Results on some of the Datasets
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Figure 4.2: Number of Task Misses on Dataset I for a memory with 10 banks and row size
32B over 70,000 cycles

Figure 4.3: Number of Task Misses on Dataset II for a memory with 19 banks and row size
64B over 40,000 cycles
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Figure 4.4: Number of Task Misses on Dataset II for a memory with 19 banks and row size
32B over 40,000 cycles

Figure 4.5: Number of Task Misses on Dataset III for a memory with 15 banks and row
size 64B over 40,000 cycles
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Figure 4.6: Number of Task Misses on Dataset III for a memory with 15 banks and row
size 32B over 40,000 cycles

Figure 4.7: Number of Task Misses on Dataset IV for a memory with 12 banks and row
size 64B over 40,000 cycles
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Figure 4.8: Number of Task Misses on Dataset IV for a memory with 12 banks and row
size 32B over 40,000 cycles



Chapter 5

Conclusion

In this dissertation, we study the problem of memory scheduling for mixed criticality sys-
tems. We first take up the problem of deciding the required number of banks that can
ensure a given set of mixed criticality tasks can meet their deadlines. We study both the
decision and optimization problems for the same. Following this, we take up the issue of
bank scheduling. The major problem with the conventional open row policy at the DRAM
is that most of the high criticality tasks fail to meet their deadlines while waiting for mem-
ory access if not scheduled and executed within their deadlines. We propose a heuristic to
address this limitation. Experimental results on a number of task sets with varying char-
acteristics show the efficiency of our methods. We believe our research will open up future
avenues in memory scheduling of mixed criticality systems.
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