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FOREWORD FROM THE EDITOR

In March of 1938 Dr. Shewhart, through the ecourtesy of the Bell Tele-
phone Laboratories, delivered a series of four lectures under the title of this
book at the Graduate School of the Department of Agriculture. Of late
years there has been a tremendous interest among agricultural research
workers in distribution theory and in statistical testing of hypotheses, as a
consequence of which there has grown up a corresponding thirst for knowl-
edge and new methods in inference. The Graduate School has persistently
endeavoured to supply the requisite academic courses, and to supplement
them wherever possible by lecturers from other fields and other lands.
Such is a brief description of the circumstances under which Dr. Shewhart
came to Washington.

We found that though his experience had been in manufacturing, we in
agriculture are faced with the same problems, but not with the same penalties
for misuses and abuses of the theories that we apply. When machines are
turning out pieceparts by the thousands or even millions monthly, the
industrial statistician does not have to wait long to see his predictions
tested out. In agriculture, years are often required—a crop must be sowed
and harvested again and again until the evidence is definitely for or against
the prediction that one treatment is actually better than another, and by
the time the question is settled, not only the statistician who made the
prediction, but the prediction itself may be forgotten. With time in our
favor it is easy to become careless about fundamentals.

An inference, if it is to have scientific value, must constitute a prediction
concerning future data. If the inference is to be made purely with the help
of the distribution theories of statistics, the experiments that constitute
the evidence for the inference must arise {rom a state of statistical control;
until that state is reached there is no universe, normal or otherwise, and
the statistician’s calculations by themselves are an illusion if not a delusion.
The fact is that when distribution theory is not applicable for lack of control,
any inference, statistical or otherwise, is little better than conjecture. The
state of statistical control is therefore the goal of all experimentation.

Dr. Shewhart is in a position to speak with authority on some aspects of
these questions. In his experience he has found that it is exceedingly more
difficult than is commonly supposed to weed out the causes of larger varia-
tion, but that it can usually be done through careful attention to the control
chart and to the physical mechanism of the experiment or production process.
Unfortunately not one but many experiments seem to be required.
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iv FOREWORD

The scientific viewpoint is that every statement must be capable of
being tested. If a statement can not be put to a test, it has no value in
practice. Dr. Shewhart kept this viewpoint throughout his lectures. Here
for the first time we see operationally verifiable meanings for well-known
statistical terms such as random variable, accuracy, precision, true value,
probability, degree of rational belief, and the like, all of which are necessary
if statistics is to take its rightful place as a tool of science. Here also we
see a criterion of meaning that has been found useful in guiding the applica-
tion of statistical technique in industry.

Most of us have thought of the statistician’s work as that of measuring
and predicting and planning, but few of us have thought it the statistician’s
duty to try to bring about changes in the things that he measures. It is
cvident, however, from the first chapter that this viewpoint is absolutely
essential if the statistician and the manufacturer or research worker are to
make the most of each other’s accomplishments. What they are capable
of turning out jointly is the sum of their independent efforts augmented by
a strong positive interaction term. Likewise the value of a book is not
just the sum of the values of the chapters separately; each chapter, even
each paragraph, has a meaning that is conditioned by all the others. The
subject of quality control is not fully expressed by any single idea, and the
first chapter must be interpreted in the light of the last.

It has been the duty of the editor to promote clarity by altering the
manuscript where it has seemed desirable to do so in-order that the ideas
expressed in the book will be understood, operationally, in the sense in
which Dr. Shewhart understands them himself. Most of the cross-
referencing, and many of the footnotes, signed and unsigned, are from the
editor. It has been of particular satisfaction to work so closely with Dr.
Shewhart on the production of this book, because it was he who introduced
me to some of the modern statistical literature back in 1928. B

It is a pleasure to record the generous assistance of Lee Garby (Mrs.
Q. D. G.) for checking the references and for making a number of suggestions
in proof. The expert help of the accommodating printer, the Lancaster Press,
Inc., has been a delight to the author and editor. In conclusion, it is fitting
that :atte_ntion should be drawn to the fact that this book is one more
contribution to science.from the staff of the Bell Telephone Laboratories.
If the world were deprived of the contributions to science that have origi-
nated from that great organization, it would be a different one indeed.

W. E. D.

WASHINGTON
February’1939



PREFACE

Statistical methods of research have been highly developed in the field
of agriculture. Similarly, statistical methods of control have been developed
by industry for the purpose of attaining economic control of quality of
product in mass production. It is reasonable to expect that much is to be
gained by correlating so far as possible the development of these two kinds
of statistical technique. In the hope of helping to effect this correlation,
it was with pleasure that I accepted the invitation to give a series of four
lectures on statistical method from the viewpoint of quality control he-
fore the Graduate School of the Department of Agriculture. The subject.
matter of these lectures is limited to an exposition of some of the elementary
but fundamental principles and techniques basic to the efficient use of the
statistical method in the attainment of a state of statistical control, the
establishment of tolerance limits, the presentation of data, and the specifica-
tion of accuracy and precision. I am indebted to many, and in particular
to Dr. W. Edwards Deming, for the helpful criticisms and stimulating
questions brought out in the discussion periods following the lectures and
in private conferences.

In preparing these lectures for publication, it has heen a pleasure and
a privilege to have the wholehearted cooperation of the editor, Dr. Deming,
who has contributed many helpful suggestions and has done much to help
clarify the text. My colleague, Mr. H. F. Dodge, has given continuing
help and advice over the past several years in the development of the
material here presented. Miss Miriam Harold has contributed many help-
ful suggestions at all stages of the work and has for the most part horne the
task of accumulating and analyzing the data, drawing the figures, and
putting the manuseript in final form. To each of these, I am deeply in-
debted. For many courtesies extended to me at the time the lectures were
given, I am indebted to Dr. A. F. Woods, Director of the Graduate School.

W. A. SHEWHART
BeLL TELEPHONE LABORATORIES, INC.
New York
August 1939



The application of statistical methods in mass pro-
duction makes possible the most efficient use of raw
materials and manufacturing processes, effects econ-
omies in production, and makes possible the highest
economic standards of quality for the manufactured
goods used by all of us. The story of the application,
however, is of much broader interest. The economic
control of quality of manufactured goods is perhaps
the simplest type of scientific control. Recent studies
in this field throw light on such broad questions as:
What is the fundamental role of statistical method in
such control? How far can man go in controlling his
physical environment? How does this depend upon

the human factor of intelligence and how upon the
element of chance?
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CHAPTER 1
STATISTICAL CONTROL

The possibility of improving the economy of steel to the
consumer is therefore largely a matter of improving its uni-
formity of quality, of fitting steels better for each of the multi-
farious uses, rather than of any direct lessening of its cost of
production.!

) JOHN JOHNSTON, Director of Research
United States Steel Corporation

Introduction. Three steps in quality control. Three senses of statis-~
tical control. Broadly speaking, there are three steps in a quality control
process: the specification of what is wanted, the production of things to
satisfy the specification, and the inspection of the things produced to see
if they satisfy the specification. Corresponding to these three steps there
are three senses in which statistical control may play an important part in
attaining uniformity in the quality of a manufactured product: (a) as a
concept of a statistical state constituting a limit to which one may hope to
go in improving the uniformity of quality; (b) as an operation or technique
of attaining uniformity; and (c) as a judgment. Here we shall be con-
cerned with an exposition of the meaning of statistical control in these
three senses and of the role that each sense plays in the theory and technique
of economic control. But first we should consider briefly the history of
the control of quality up to the time when engineers introduced the statistical
control chart technique, which is in itself an operation of control.

Some ImporTANT HIsTORICAL STAGES IN THE CONTROL OF QUALITY

To attain a perspective from which to view recent developments, let us
look at fig. 1. % That which to a large extent differentiates man from animals
is his control of his surroundings and particularly his pro-
duction and use of tools. Apparently the human race began
the fashioning and use of stone tools about a million years
ago, as may be inferred from the recent discovery just north of London 2

Parts fitted
10,000 years ago

1 ¢‘The applications of science to the making and finishing of steel,” M echanical Engineer~
ing, vol. 57, pp. 79-86, 1935.

2 This discovery is reported in Man Rises to Parnassus by H. F. Osborn (Prin(.:e?,on
University Press, 1928). The photograph of the stone implements (fig. 1) of a million
years ago has been reproduced by permission from this most interesting book. Those of
the implements of 150,000 and 10,000 years ago have been reproduced by permis%ioq fr(.nm
the fascinating story told in Early Steps in Human Progress by H. J. Peake (J. B. Lippin-
cott, Philadelphia, 1933).

1



2 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

of the crude stone implements shown at the left in fig. 1. Little progress
in control seems to have been made, however, until about 10,000 years ago
when man began to fit parts together in the fashion evidenced by the holes
in the instruments of that day.

1,000,000 150,000 10,000
YE'ABS Aco YEARS AGO Years Ago 150 YEARS Ao
INTRODUCTION
OF
INTERCHANGEABLE
ParTs

Fia. 1

Throughout this long period, apparently each man made his own tools,
such as they were. As far back as 5000 years ago the Egyptians are sup-
Interchangeable parts— posed to have made and used interchangeable bow.s
exact, 1787 and arrows to a limited extent, but it was not until

about 1787, or about a hundred and fifty years ago,
that we had the first real introduction of the concept of interchangeable
parts. Only yesterday, as it were, did man first begin to study the tech-
nique of mass production!

From the viewpoint of ideology, it is significant that this first step was
taken under the sway of the concept of an ezact science, according to which
“Go tolerance limits, 1840; an attempt was made to produce pieceparts to
“go, no-go,” 1870 exact dimensions. How strange such a proce-

dure appears to us today, accustomed as we are to
the use of tolerances. But as shown in fig. 2, it was not until about 1840
that the concept of a ““go” tolerance limit was introduced and not until
about 1870 that we find the “go, no-go” tolerance limits.?

Why these three steps: “exact,” “go,” “go, no-go”? The answer is
quite simple. Manufacturers soon found that théy could not make things

3 Tt will be noted that the first six dates shown in fig. 2 are given with question marks

~—authorities are not in unanimous agreement as to the exact dates. I think, however,
that the dates here shown will be admitted by all to be sufficiently close approximations.



STATISTICAL CONTROL 3

exactly alike in respect to a given quality; moreover, it was not necessary
that they be exactly alike, and it was too costly to try to make them so.
Hence by about 1840 they had eased away from the requirement of exact-

PARTS INTERCHANGE-
BEGINNING FIRST FITTED  ABILITY

LITTLE,IF ANY, CONTROL OF CONTROL TOGETHER™, INTROID‘\lJ:J%D
1 1 |
1,000,000 BC 300,000 BC 80008C 1787
7 ? T
QUALITY
CONTROL
EXACT GO GO NO-GO CHART
— 1 $ I 937
i I 1
1787 1840 1870 1924
? 7
Fic. 2

ness to the ‘“go’’ tolerance. Let us see how this worked. If we take, for
example, a design involving the use of a cylindrical shaft in a bearing, one
might insure interchangeability by simply using a suitable “go’’ plug gauge
on the bearing and a suitable ““go’’ ring gauge on the shaft. In this case,
the difference between the dimensions of the two ‘‘go’’ gauges gave the
minimum clearance. Such a method of gauging, however, did not fix the
maximum clearance. The production man soon realized that a slack fit
between a part and its “go”’ gauge might result in enough play between the
shaft and its bearing to cause rejection, and for this reason he tried to keep
the fit between the part and its “go’’ gauge as close as possible, thus involv-
ing some of the same kind of difficulties that had been experienced in trying
to make the parts exactly alike. The introduction of the ‘“go, no-go”
gauge in 1870 was therefore a big forward step in that it fixed the upper and
lower tolerance limits on each fitting part, thus giving the production man
more freedom with a resultant reduction in cost. All he had to do was
stay within the tolerance limits—he didn’t have to waste time trying to be
unnecessarily exact. )
Though this step was of great importance, something else remained to
be done. The limits are necessarily set in such a way that every now and
, then a piece of product has a quality characteristic fall-
ng)i?tli:ipaﬂs; ing outside its specified tange, and is therefore defective.
To junk or modify such pieces adds to the cost of produc-
tion. But to find the unknown or chance causes of defectives and to try to
remove them also costs money. Hence after the introduction of the go,
no-go tolerance limits, there remained the problem of trying to reduce the
fraction p of defectives to a point where the rate of increase in the cost of
control equals the rate of increase in the savings brought about through
the decrease in the number of rejected parts.
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For example, in the production of the apparatus going into the telephone
plant, raw materials are gathered literally from the four corners of the earth.
More than 110,000 different kinds of pieceparts are produced. At the
various stages of production, inspections are instituted to catch defective
parts before they reach the place of final assembly to be thrown out there.
At each stage, one must determine the economic minima for the sizes of the
piles of defectives thrown out.

This problem of minimizing the percent defective, however, was not
the only one that remained to be solved. Tests for many quality character-

istics—strength, chemical composition, blowing time
Destructive tests; of a fuse, and so on—are destructive. Hence not
;e::sf;z:f::ﬁ&gg' every piece of product can be tested, and engineers

must appeal to the use of a sample. But how large a
sample should be taken in a given case in order to gain adequate assurance of
quality?

The attempt to solve these two problems gave rise to the introduction
of the operation of statistical control involving the use of the quality control

. chart in 1924, and may therefore be taken as the starting
Z::n?ula;;? control . int of the application of statistical technique in the
control of the quality of a manufactured product in

the sense here considered.

Why, you may ask, do we find, some one hundred and fifty years after
the start of mass production, this sudden quickening of interest in the
application of statistical methods in this field? There are
at least two important reasons. First, there was the rapid
growth in standardization. Fig. 3 shows the rate of growth in the number
of industrial standardization organizations both here and abroad. The
first one was organized in Great Britain in 1901. Then beginning in 1917
the realization of the importance of national and even international stand-
ards spread rapidly. The fundamental job of these standardizing organiza-
tions is to turn out specifications of the aimed-at quality characteristics.
But when one comes to write such a specification, he runs into two kinds of
problems: (1) minimizing the number of rejections, and (2) minimizing the
. cost of inspection required to give adequate assurance of quality in the sense dis-
cussed above. Hence the growth in standardization spread the realization
of the importance of such problems in industry. :

Second, there was a more or less radical change in ideology about 1900.
We passed f.rf)m the e9ncept of the exactness of science in 1787, when in-
ter(.:hangeabll%ty was .lntrodu-ced, to probability and statistical concepts
V‘\;’h}:ch came into their own in almost every field of science after 1900.

ereas the concept of mass production of 1787 was born of an exact

science, the concept underlying the quality control chart technique of 1924
was born of a probable science.

Why after 1900?
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We may for simplicity think of the manufacturer trying to produce a
piece of product with a quality characteristic falling within a given tolerance
range as being analogous to shooting at a mark. If one of us were shooting
at a mark and failed to hit the bull’s-eye, and some one asked us why, we
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should likely give as our excuse, CHANCE. Had some one asked the same
question of one of our earliest known ancestors, he might have attributed
his lack of success to the dictates of fate or to the will of the gods. I am
inclined to think that in many ways one of these excuses is just about as
good as another. Perhaps we are not much wiser in blaming our failures
on chance than our ancestors were in blaming theirs on fate or the gods.
But since 1900, the engineer has proved his unwillingness to attribute all
such failures to chance. This represents a remarkable change in the
ideology that characterizes the developments in the application of statistics
in the control of quality.

Developments since 1870. With the introduction of the go, no-go
tolerance limits of 1870, it became the more or less generally accepted
practice to specify that each important quality characteristic X of a given
piece of product should lie within stated limits L. and L, represented
schematically in fig. 4. Such a specification is of the nature of an end
requirement on the specified quality characteristic X of a finished piece of
product. It provides a basis on which the quality of a given product may
be gauged to determine whether or not it meets the specification. From
this viewpoint, the process of specification is very simple indeed. Knowing
the limits L; and L, within which it is desirable that a given quality charac-
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teristic X should lie, all we need to do is to put these limits in writing as a
requirement on the quality of a finished product. With such a specification
at hand, the next step is to make the measurements necessary to classify a
piece of product as conforming or nonconforming to specification.

QUALITY X y {
Ly Lo

Fic. 4

At this point, however, two problems arise. Suppose that the quality
under consideration, the blowing time of a fuse for example, is one that can
be determined only by destructive tests. How can
Simple specification of go, (pe give assurance that the quality of a fuse will
no-go tolerance limits L . . . i . .
often unsatisfactory - meet its specification without destroying the fuse in
the process? Or again, even where the quality
characteristic can be measured without destruction, there is always a
certain fraction p falling outside the tolerance limits. How can we reduce
this nonconforming fraction to an economic minimum? A little reflection
shows that the simple specification of the go, no-go tolerance limits (p. 3)
is not sufficient in such instances from the viewpoint of economy and
assurance of quality.

As was mentioned at the beginning of this chapter, we shall consider con-
trol from the viewpoints of specification, production, and inspection of
quality, as is necessary if we are to understand clearly the role played by
statistical theory in the economic control of the quality of a manufactured
product. To illustrate, suppose we fix our attention on some kind of
material, piecepart, or physical object that we wish to produce in large
quantities, and let us symbolize the pieces of this product by the letters

01,00 -+, 04+, 00y Ongry -+, Oy - )

pre:.suming. that a given process of production may be employed to turn out
an indefinitely large number of pieces. We shall soon see that correspond-
ing to t&e thfee. steps in control there are at least three senses in which the
phrase “statistical control” may be used in respect to such an infinite
sequence of product.

In the first place,.prior to the production of any of the 0’s, the engineer
may propose to attain a sequence of 0’s that have the property of having
The concept of the state been produced under a state of statistical control.
of statistical control I}I: the second place, the engineer, before he starts

the production of any specific se j i

) ) quence of objects, is
fre{gty sure to foqus his attention on the acts or operations that he wisl,les
0 be carried out in the production of the pieces of product. Often, when
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the aim is to produce a sequence of objects having a specified quality
characteristic within some specified limits, the engineer will refer to the
process of production as an operation of control. The available scientific
and engineering literature, for example, contains many articles discussing
‘““the control of quality” by means of gauges, measuring instruments, and
different forms of mechanical technique: much of this
The operation of control. |iterature makes no reference to the use of statistics
The operation of . . !
statistical control though in recent years the actual operations of con-
trol have often involved the use of statistical tech-
niques such as, for example, the control chart. In order to distinguish the
operation of control in the more general sense from that in which statistical
techniques are used for the purpose of attaining a state of statistical control,
it is customary to think of the latter as an operaizon of statistical control.
That which transforms an operation of control into an operation of statistical
control is not simply the use of statistical techniques, but the use of statis-
tical techniques that constitute a means of attaining the end characterized
here as a state of statistical control. It should be noted that the end desired
may be conceived of prior to the production of any sequence of objects
symbolized in (1) that have the desired characteristics, and independently
of whether any such sequence can be produced. For example, we may con-
ceive of a state of statistical control although we know of no way of attaining
such a state in practice. In contrast, before we can describe an operation
of statistical control, except to say that it is a means to an end, we must find
by experiment such an operation.
A requirement regarding control. Let us consider the following specified
end requirement:

A. The quality of the O’s shall be statistically controlled in
respect to the quality characteristic X.

As an example, the product might be condensers and the quality character-
istic X the capacity; the product might be pieces of steel and X the carbon
content; or the product might be any other kind of object with an associated
quality characteristic. The natural thing to do is to think of this require-
ment, {A) as expressing a condition that the qualities of a sequence of pieces
of product represented by the O’s in (1) shall be found to have when made.
.For example, we might, as we shall soon see, interpret this requirement as
meaning that the sequence of values of the quality characteristic X belong-
ing to the sequence of objects of (1) shall be random. On the other hand,
we might interpret the requirement (A) as implying that the cause system
underlying the operation of producing the objects satisfies certain physical
requirements. In any case, the requirement itself may be, and usually is,
stated prior to the production of any of the O’s in (1).
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A probable inference regarding control. Now let us contrast the re-
quirement (A) with the following statement regarding control:

B. The quality of the O’s is statistically controlled in respect
to the quality characteristic X.

This is a judgment or probable inference that the quality of the product actu-
ally meets the requirement expressed by (A). Since we are here assuming
that the process of manufacture is capable of turning out an indefinitely
large number of pieces of product, it follows in practice that the statement
(B) implies a prediction about O’s not yet made: as a probable inference 1t
is based on past evidence obtained in the process of making some pieces of
product and in testing them. In other words, it is an inference carried from
the product already made to that which is to be made in the future. The full
meaning of statement (B), as we shall see later, must depend upon a con-
sideration not only of the sense of control implied as a requirement but also
as an inference based upon specific evidence that this requirement has been
met.

It is therefore essential that we examine carefully the three senses of
statistical control: Ist, as a characterization of the state of control; 2d, as
an operation; 3d, as a judgment. This is necessary if we are to see how the
attainment of the economic control of the quality of a manufactured product
involves the coordination of effort in the three steps: specification, produc-
tion, and inspection, as is depicted graphically in fig. 10, page 45.

TrE STATE OF STATISTICAL CONTROL

The idea of control involves action for the purpose of achieving a desired
end. Control in this sense involves both action and a specified end. For
Two views example, in the quotation at the head of this chapter we
of control have an expression of the need for controlling the quality of
. steel to attain the end of greater uniformity. The man who
is to do the controlling is likely to focus his attention on what he is supposed
to do or on what action he is supposed to take in the process of making the
steel, whereas the man who uses the steel may be primarily interested in the
end result: as determined by the quantitative measurements of the quality
of the finished product. Hence there are two ways of viewing control in
general a,.nd statistical control in particular; namely, from the viewpoint of
the physma,l act of production, and from that of the end results as mani-
fested in t‘he uniformity of quality. Correspondingly, there are two ways
of conceiving of the state of statistical control; namely, as a physical state
describable in physical terms, and as a mathematical state characterized
by t.he quantitative aspects of the end results and describable in mathe-
matical terms and an operation of drawing at random.
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Some may prefer to say that there is no mathematical state of control,
but instead that there is simply a mathematical description of a physical
state. 'This is perfectly satisfactory so far as I see 7f we think of the mathe-
matical deseription as including an explanation of what the mathematical
statistician means by the operation of drawing a sample at random and not
simply the description of the results that he obtains mathematically. How-
ever, in much the same sense, there is no observable physical state of control
except in deseriptive terms characterizing some operation such as drawing
a sample with replacement from a bowl, repeating an observation under the
same essential conditions, or going as far as one can go in the process of con-
trolling quality by finding and removing causes of variability. To be more
exact, therefore, we should perhaps speak of the physical and mathematical
descriptions of the state of control, but it will simplify matters to speak only
of the “‘physical and mathematical states’” in our attempt to relate the
physieal and mathematical operations.

As a background for our consideration of the two states of statistical
control, we shall start with the aim of the engineer to manufacture a product
of uniform quality. We shall take this to imply that the quality should be
reproducible within limits,* or that the engineer should be able to predict
with minimum error the percentage of the future product that will be turned
out by a given process with a quality within specified limits. The engincer
desires to reduce the variability in quality to an economic minimum. In
other words, he wants

'(a) a rational method of prediction that is subject to mini-
" mum error, and
(b) a means of minimizing the variability in the quality of a
given product at a given cost of production.

Is it possible to control the production process so that these two wants
may be satisfied? If so, how shall the engineer know when the production
process is in such a state of control? How can this state be characterized?
Shall it be by describing the physical operations that the engineer goes
through in producing the product; shall it be in terms of quantitative data
obtainable from the product in such a state of control; or shall it be by
means of a combination of the two? As a basis for answering such ques-
tions, we must consider on the one hand the physical aspects of the state of
control, and on the other hand the mathematical aspects of the quantitative
data obtainable under a given state of control.

The physical state of statistical control. The ideal bowl experiment.
Let us consider first an idealized experiment. Let us assume that we have

1 Sometimes the term homogeneous is used instead of the more descriptive phrase
“reproducible within limits.”
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N physically similar chips on each of which is written a number. We place
these in a bowl and draw successive samples of n chips one at a time with
replacement and thorough mixing.® Experience shows that the differences
between samples drawn under such conditions are predictable in a probabil-
ity sense and that there is nothing that we can do to reduce the variability
in the complexion of the samples. Hence the physical operation involved in
getting such a series of samples constitutes an empirical means of deseribing
a physical state of statistical control. '

However, the engineer does not deal with drawings from a bowl. In-
stead he deals with measurements of one kind or another. Let us assume
that it is possible to attain a physical state of statistical control of such
measurements. How does the engineer set about attaining such a state?
The answer is that in making a series of repetitive measurements of a
physical constant or in producing units of the same kind of product, he
tries to control all of the causes of variability until he has attained a state
where the conditions remain, as he says,® “essentially the same.”

It may be helpful to note that the concept of a physical state of statistical
control as illustrated by the example of drawings from a bowl appears to be
much the same as the concept of doing something ‘‘physically at random.”
For example, Neyman 7 says: ‘‘ There are experiments which, even if carried
out repeatedly with utmost care to keep the conditions constant, yield
varying results. They are ‘random.”” Does this mean that we can rely
upon our ability to perceive when conditions are being controlled with the
utmost care, and that we shall not go astray by calling such experiments
random and acting as though they were random? It seems to me that it is
far safer to take some one physical operation such as drawing from a bowl
as a physical model for an act that may be repeated at random, and then to
require that any other repetitive operation believed to be random shall in
addition produce results similar in certain respects to the results of drawing
f rom a bowl before we act as though the operation in question were random.
This seems particularly advisable in the light of my own experience which

dose :iS:,.e mnyctmmmic1 %ontlrol of Quality (Van Nostrand, New York, 1931); on p. 164isa
eseription of a normal bowl, and in Appendix 1T is a record of 4000 drawi
together with various calculations on thell)n. ‘0 rawings therefror,

¢ Such a chargc_tenzg,tion of a physical state of statistical control is subjective, and
}1:1}ally all authomths will not agree in a given case that such a state has been attained.

: is true that a subjective judgment is involved in setting up the ideal bowl experiment
of the brevious paragraph. Experience shows, however, that in the case of the bowl
probability theory is usually applicable, and fluctuations in the complexion of the samples;
%;:nuz‘éﬁyniicﬁgfgdi? being ?’o ? minimum'. My own experience indicates that this situa-
mercly judpa to réma.iieg:sr:n%ia(l)lryfi;lﬁcetuatmns In measurements arising. under conditions

same.
" J. Neyman, Lectures and

Conjferences in Mathemats 1 Statisti
The Department of Agriculture, Washington, 1938), p.wgl. atistics (The Graduate Sehool,
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indicates that almost all sets of data taken under ‘“presumably the same
essential conditions” fail to satisfy the additional requirement that they be
in certain ways like those drawn from a bowl (see chapters II and III).

The concept of a state of statistical control must define in an abstract
way the physical state of statistical control, and hence something supposedly
common to all specific instances. Thus even if we agree that sampling
from a bowl constitutes a physical state of statistical control, what is there
common about such a physical state and any physical state of statistical
control of some production process? The answer appears to be: By their
results we shall know them. The only way in which we may hope to define
objectively a common characteristic of such states is in terms of certain
quantitative aspects of their observable characteristics. But in order to get
such a basis of comparison, we must go to mathematics and try to find some
abstract way of describing a state of statistical control in terms of character-
istics of sequences of numbers that we expect to get by repeating an opera-
tion arbitrarily chosen as a random one.

In trying to formulate some of the important characteristics of a useful
concept of a mathematical state of statistical control we should keep in
mind that the state of statistical control is something presumably to be de-
sired, something to which one may hope to attain; in other words it is an
ideal goal. We may conceive of this state prior to the act of attaining it in
a given instance and irrespective of whether it can be attained in practice.
The delineation of such a concept is a priori and definitive, whereas the ap-
plication of the concept to a particular given physical state of control is hypo-
thetical. The concept of a state of control is used in this definitive sense
in the requirement A (p. 7) that the quality of the product shall be statis-
tically controlled in respeet to the quality characteristic X, whereas it ap-
pears in the hypothetical sense in the corresponding judgment B (p. 8).
In order to be of practical use, the state of statistical control should not be
defined solely in terms of either the physical cause system or the results
produced by the cause system. Instead, it should be defined in terms of
both the perceivable characteristics of a cause system that is capable of
producing an infinite sequence, and the quantitative characteristics of the
infinite sequence produced by such a cause system.

The mathematical state of statistical control. Let us think of the
chance cause system as controlling the variation in quality of a given
product in such a way that the expected frequency dp of producing a piece
of product with a quality characteristic X lying within the range X &  dX
is given by an expression of the form

dp = f(X)dX 2

W, A, SHEWHART'S COLLECWON
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The mathematician may be inclined to accept equation (2) as defining
mathematically a statistical universe representing a statistical state of
control in respect to the quality X. However, let us see why equation (2)
can not be taken as the complete description of what is here meant by
statistical state. Let us consider, for example, a production process turning
out an indefinitely large sequence (1) of objects having a certain quality X.
Let

X1, Xo, ooy Xiy ooy Xy Xty o0y Xnggy o0 (3)

represent single measurements on the qualities of such a sequence of objects
taken in the order of their production. Can we use equation (2) as a basis
for determining whether the sequence (3) arose under statistically controlled
conditions? There are, as we shall now see, three reasons why this can
not, be done. )

First, even for the infinite sequence, there is no unique function f to
be used as a basis for comparison. Second, equation (2) describes a property
of an infinite sequence that is approached as a statistical limit and not
a property of a finite portion thereof such as we always have in practice.
Third, there is nothing in such a definition that explicitly places any restric-
tion on the order in the sequence (3) even though it is essential that this
order should be what the mathematician refers to as random.

Let us consider in more detail each of these three limitations. Some
of the earliest attempts to characterize a state of statistical econtrol were
Need for differentiating inspired by the belief ’?hat there existed a special
betueen & univorse ang a form of frequency function f and it was early argued
statistical state of control  that the normal law characterized such a state.

When the normal law was found to be inadequate,
then generalized functional forms were tried. Today, however, all hopes
of finding a unique functional form f are blasted. Even if there did exist
such a unique function f, we should still be faced with a second difficulty,
namely, that such a function would be descriptive of a property of tfle
whole of the infinite sequence and not of a part of it. In consequence, we
§h01.1]d have to take a comparatively large sample before we Shoul(i be
Justified in judging whether the degree of fit between a theoretical curve
and thg observed distribution in a finite portion of the sequence warranted
;he belief ‘that the sequence was statistically controlled. Worse than that,
0;)?}13:(;% frtilfecf:(fz:iitc Zh:f ftlilnctlonal form of a @istribution is independegt

rder e observed values in a sequence and hence is

not a criterion of randomness.
we {lf;jill:pi(;(t?lecogl(g;; ;ts ‘Zﬁl have been noted that in stating equation (2)
expected frequency, and not as a probability
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as is often done. In general, we may say that a variable X has the fre-
quency function f(X) if the frequency of occurrence of X in any arbitrarily

chosen range a« < X < 8 is measured by f f(X) dX, the frequency fune-

tion being so defined that the integral between + « and — « is equal to
unity. We may take the concept of frequency as primary and essentially
undefined. Often it is said that this integral expresses the probability
that X lies between « and 8. It should be noted, however, that the fre-
quency expressed by this integral is a property of the infinite sequence as
a whole and does not necessarily fix the order in the sequence. On the
other hand, to state that the probabz’lz'tyﬁ that X will fall within the interval

a < X < #1is equal to the integral f f(X) dX implies that the variable

exhibits what we usually speak of as a random order. The concept of a
mathematical state of statistical control must involve some operationally definite
meaning for random order.

An attempt at defining random order for infinite sequences. What the
engineer would like to have, therefore, is an infinite sequence of numbers
that would characterize once and for all the order that a statistically con-
trolled state of causes may be expected to give. Let us assume for a
moment that the numbers

81,82 "y 8iy vy Sny Snily * "y Sngj "t ° (4)

constitute such a sequence. How then should we compare sequences (3)
and (4)? Particularly, how should this be done when we have observed
only a finite number n of terms of the infinite sequence (3)? These are
questions calling for the cooperation of the mathematical statistician.
First, let us consider briefly the problem of characterizing once and for
all a random comparison sequence symbolized by (4). We may start with
a consideration of the method proposed by von
Requirements devised by  \figes 8 and others. In accord with this proposal,
von Mises; difficulties . . .
encountered two requirements are placed on an infinite sequence
in order that it may be called random. Let p he the
fraction of the first » numbers in the infinite sequence (3) lying within any
arbitrarily chosen interval « < X < 8. Then the first requirement is that
the limit
Lim p = p’ (5)
n—raw
8 For a statement of the requirements here attributed to von Mises, see H. Cramer,

Random Variables and Probability Distributions (Cambridge, 1937), p. 4. See also 8. 8.
Wilks, Statistical Inference (Princeton Mathematical Notes, 1937), pp. 1, 2.
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shall exist where p’ is a constant. The second requirement is that the anal-
ogous limit shall exist and have the same value p’ for every subsequence
that can be formed from (3) according to a specified operation A such that
it can always be decided whether the ith observation of (3) should bfalong
to a given subsequence without knowing the magnitude of this particular
observation? It may be helpful to symbolize this procedure as follows:

The original

infinite Xy Xo o0y Xy ooy Xay Xy sy Xaws e &)
sequence
An infinite ). CTHD. CTRETEID CTARERND CHND. SRNETHEREND. CRVEALLL

number of Xot, Xaz, + vy Xaiy o+ 0y Xony Xongrs 0y Xongy *0
infinite se- .
quences each
derived by re-q -
arranging (3) | Xut, Xezy ooy Xeoy =y Xy Xtniny =7y Xingpy "
according to .
some specified
operation A [ -

(3a)

It is to be understood that every number X; in the infinite set
of sequences (3a) is a member of (3), and that every member

of (3) is to be used once and only once in any one sequence
of (3a)

In general, then, the test for randomness of an infinite sequence (3) becomes
one of determining whether or not the original sequence belongs to the class
created by the operation A4, as fixed by the two requirements just stated.
At least three difficulties arise in trying to use this concept of random-
ness in quality control work. In the.first place, it is recognized '° that
ignorance of the magnitude of X is not a good criterion of independence in
selection. For example, Kendall and Smith argue that there is no such
thing as a random selection from a universe considered apart from the
universe whose members are being selected. In the second place, there is
no available practical means of comparing sets of infinite sequences in the
way proposed. In the third place, we never have an observed infinite
sequence (3) to start with. What the practical man wants is a method

for determining whether or not a finite sequence consisting, let us say, of the
first n terms of (3) is random.

* Cf. H. Cramer, Random Variables and Probabili istributs i i
Pross. 1037}, o4 : nd Probability Distributions (Cambridge Univ.
10 For an interesting discussion of randomness from a viewpoi
; point much the same as here
presented, see the article by M. G. Kendall and B. Babington Smith, “Randomness and
random sampling numbers,” Jour. Roy. Stat. Soc., vol. ci, pp. 147-166, 1938,
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An attempt at defining random order for finite sequences. Let us under-
take to determine in what way it is meaningful in an operationally verifiable
sense to ask whether an observed sequence of n terms is random. If we
choose, as I have done above, to consider the operation of drawing from a
bowl random, we may theoretically obtain an infinite class of finite sequences
composed of these same n numbers in the following simple way. Let us
write the n numbers on as many symmetrical chips, put the chips in a bowl
and mix them thoroughly. Then let us draw the numbers out one at a
time without replacement and record them in the sequence drawn. By
repeating this process indefinitely, we get an infinite set (3b) of finite
sequences of n numbers each with which to compare the original sequence.

'Xu, Xlz, Xls, fT Xia

X21; X22) X23) Tty X?n
X31, X32; X33, ft Ty X3n

Infinite set of finite sequences, | -

each being one of the n! possible | -

orders in which the n chips can

. (3b)
be drawn from the bowl X, Xio, Xisy -y Xin

Tt is to be understood that any number X ; in this infinite set of
sequences is some one of the » numbers drawn from the bowl.

Now since only n! different sequences are possible with » chips, by the time
we have drawn n! 4 1 sequences, some one of the possible n! orders must
have been repeated at least once. It is usual to assume that in the infinite
set of sequences, all orders occur with equal frequency. On this basis the
order of the original observed sequence is one of the n! possible orders and
it is neither more nor less likely to occur in the infinite set of comparison
sequences than any other order. For some such reason it has long been
argued cogently by many that we can not hope to define a random sequence
in terms of the properties of that sequence.

Suppose, however, that a scientist or an engineer were to observe a se-
quence of 7 values of X in which, let us say, each succeeding value of X is
either equal to or greater than the preceding one, as for example, in the
monotonic sequence

X=X, =X3=..=X;=Xippn= - =X (3¢c)

In the sense that this sequence is a member of the infinite set (3b), it is just
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as random as any other. However, I believe that most scientists would
never think of it as a random sequence, particularly if » is reasonably large,
let us say 10 ormore. There are also many orders other than that indicated
in (3¢) that would likewise not be called random under normal circumstances
if observed in the course of actual experimenial work as contrasted with
drawing from a bowl. For example, sequences suggesting functional rela-
tionship or marked trends of the variable X with the order would not likely
be classed as random; e.g. see fig. 32 (p. 147) and accompanying text.

In other words, given any finite sequence of n terms, it is theoretically
possible to write down each of the ! different orders that might be expected
to occur with equal frequency in the set (3b). The scientist or engineer
looking at these n! orders would distinguish several that, if they had occurred
in his everyday experience, he would not call random. Pushed for an
explanation, he would likely say that the sequences he would pick out of
(3b) and not call random would be those that, if they occurred in the course
of his work, he would attribute to some nonrandom instead of random causal
process. Pushed a little further, he would say that if in practical experi-
mental work he gets one of these orders that he would choose upon the basis
of past experience as being nonrandom, and that if he repeats again and
again the same physical operation, the new sequences thus obtained will
not often be much like the ones he would expect to get had the original
finite sequence been drawn from a bowl. For example, if he were to obtain
in practical work a trend such as indicated by (3¢), he would be more likely
to expect the next m observations to suggest the presence of a trend than
if the original sequence that showed a trend had been obtained by the
random operation of drawing from a bowl. The importance of being able
to get clues from the characteristics of a sequence will be seen later (p. 27).

Now. we are in position to make three observations that are of funda-
mental importance in.quality control work. First, it appears hopeless to
define random order in a useful way for a specific sequence. Instead it
appears that the only operationally verifiable way to define random order is in
ferms of some chosen random operation. A random sequence in this sense
Z;};&I;zl:llslpi}; 8; }Ilréel(r;}?er of an infinite class‘of sequences obtainable through
mentalist, at least th:seﬁafindomtoﬂeram‘on' S.e confi » What t.he expert-
sequence is not randomqis S . (t}gn ;. hengmeer’ Moples 1Y saving thajc o
further experiments. For xon ;ng ; at’ ool be'ChGCked only by making
study of the cause S.ystem t(}elxa‘;mp s lmphc.at.lon s be that further
nonrandom by the e at p;oduc.ed the original finite sequence called
systom may by modiﬁegth:-zen alist will reveal ‘ways .by wh‘lch this cause

ugh the process of eliminating assignable causes;

g:)ste};ié(rinph(l:ation may _be something operationally verifiable about future
values of X given by this cause system that will be character-
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istically different from that produced by the random operation of drawing
from a bowl. '

There is of course, on reflection, nothing mysterious about this situation
wherein a sequence is called random if it is known to have been produced by

. ) a random operation, but is assumed to be non-
Randomness not verifiable by . . .
comparison with other orders random if occurring in experience and not known
to have been given by a random operation. The
fact simply is that such an observed sequence may or may not have been
given by a random operation, and past experience has shown that such
sequences oceurring in practice are more likely to have arisen as a result of
a nonrandom than of a random operation. In any case, the implication of
the statement that an observed sequence is or is not random can be verified
only in the future and is not one that can be verified by comparing the order
in the observed sequence with any or all of the n! orders of the same set of
numbers. Third, the experimentalist usually considers the order in any
sequence of observed results to be one of the most helpful clues to the physical
interpretation of his results as a basis for future predictions. He is forever
on the lookout for orders of special importance. When he can no longer
distinguish anything significant in an observed order, he is likely to take it
for granted that the observed data have been taken under the same essential
conditions.

The operation of statistical control to be described shortly is a successful
attempt to extend the usefulness of order in an observed sequence as a
clue to the making of valid predictions in operationally verifiable terms
beyond the place where the experimentalist fails without the aid of a eri-
terion of control to attribute significance to order. To extend the usefulness
of observed order in a sequence in this way is a basic objective of the theory
of statistical control of quality and constitutes an extension of the signifi-
cance attached to order so well established in the history of science.

There is an indefinitely large number of ways in which the order in the
original sequence may be expressed in terms of the order of subsamples of
the original sequence by using an indefinitely large number of different
statistics such as average, standard deviation, and all moment functions, to
mention only a portion of those that are possible. There is also an in-
definitely large number of ways of breaking up the sequence into subsamples.
In other words, we might include all of the results of what is generally termed
the mathematical theory of distribution, to which contributions are being
added daily, as a basis for characterizing the order in such a sequence.
Personally, I like to look upon the theory of distribution as providing an
indefinitely large reservoir of criteria by which one may describe the order
in a sequence characterizing the physical state of statistical control.
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There is no unique description of a state of control. In the last few
paragraphs we have briefly indicated the many difficulties confronting any-
one searching for a unique description of the characteristics that a sequence
arising from a state of statistical control must have. Evidence has been
given for believing that such a unique description can not be found. Atten-
tion has heen directed to the significance of the order in which the numbers
appear in the sequence as constituting a part of the requirement of any
definition of a mathematical state of statistical control; yet here again there
is no definite unique test that is necessary and sufficient to define the order
that the mathematician refers to as random. What then may we conclude
about specifying the state of control in mathematical terms?

It is obvious that we can not hope to specify the mathematical state of
statistical control in a complete manner. All that we can hope to do is to
make some arbitrary choice of criteria and some arbitrary choice of random
operation such as drawing from a bowl to be taken as characterizing such a
state, being careful that each criterion chosen takes into account the order
in the sequence. The definition of random in terms of a physical operation
is notoriously without effect on the mathematical operations of statistical
theory because so far as these mathematical operations are concerned
random is purely and simply an undefined term.!! The formal and abstract
mathematical theory has an independent and sometimes lonely existence of
its own. But when an undefined mathematical term such as random is
given a definite operational meaning in physical terms, it takes on empirical
and practical significance. Every mathematical theorem involving this
n.la.thematically undefined concept can then be given the following predic-
tive form: If you do so and so, then such and such will happen. Hence the
process of making a physical application of the mathematical theory consists
in specifyipg the human operations by which physical meaning is given to the
mathematically u_nd.eﬁned terms. We can then proceed to determine if
:,:; giiué;]aen;s};(r)z(ii;gg)r:j cﬁl physi‘ca,lly obser_vable event.s suggested by carry-
verification of the useful:essezr}atlc?ilt Opetr 'atllo atatist .Valld- o " ctbirical
utmptions besoland fr o mathematical statistics, tl?e validity c?f the as-
lorm remdom 1 o.ffundagm tg la‘ spectfic physically t?pt.aratwnal meaning to the
application of statistical egla tmportance. Hence it is thgt for the successful
of defining the stato of stat'eo? y great care needs to be given to the method

1stical control in terms of the physical operations

and the associated mathematical o i .
perations based
undefined concept of random, upon the mathematically

11 Y
based gz t%e C{am'er,lloc. cil., p. 5;J. Neyman, “Outline of a theory of statistical estimation
Based classica) the(_)ry of probability,” Phil. Trans. of the Roy. Soc. of Lond 1

» Pp. 333-380, 1937; in particular, pp. 338-9, ' ' e
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How to build a model of a state of statistical control. Postulate I.
Thus far an attempt has been made to indicate some of the important
characteristics of the a priori and definitive concept of a state of statistical
control in terms of the characteristics of an infinite set of infinite sequences
(30) in one case and an infinite set of finite sequences (3b) in another, where
each set is generated by a physical operation characterized as random. It
hasbeen implied that, in quality control work, whenever the system of chance
causes producing variations in an observed sequence (3) of some quality
characteristic X is such as to produce a sequence that is a member of the
class (3a), the chance cause system is to be considered as being in a mathe-
matical state of statistical control or in a state where one can build a mathe-
matical model to represent certain characteristics of that particular state.
The two functions desired of such a model are that

(1) It shaliserve as a computing device in making predictions.

(2) It shall suggest new physical experiments to be made in
trying to attain a state of statistical control.

So far as a model can be constructed upon the basis of knowledge of a finite
number n of terms of the sequence (3) to provide valid predictions about the
remainder of the sequence (3), such a model will obviously be of great use
in many engineering applications. In fact the attainment of such a model
is the ideal goal in many instances in establishing economic tolerances in
the sense to be discussed in chapter I1.

For reasons already considered, no model can ever be theoretically at-
tained that will completely and uniquely characterize the indefinitely ex-
pansible concept of a stite of statistical control. What is perhaps even
more important, on the basis of a finite portion of the sequence (3)—and
we can never have more than a finite portion—we can not reasonably hope
to construct a model that will represent exactly any specific characteristic
of a particular state of control even though such a state actually exists.
Here the situation is much like that in physical science where we find a
model of a molecule; any model is always an incomplete though useful picture
of the conceived physical thing called a molecule.

In this section we shall consider the simplest case of building a mathe-
matical model in which the observed sequence (3) is drawn one term at a time
with replacement and thorough mixing by some one that is blindfolded or,
as we shall say, drawn from a bowl containing an unknown population.
We have already chosen to characterize this operation of drawing as random,
so we can begin at once to construct our model without first testing for
randomness as we shall have to do in the next section when we take up the
problem of attaining a state of statistical control for a manufacturing process.
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All that we shall attempt to do here is to examine briefly but critically
the principles underlying the practical procedure in constructing a model.
First, let us note just what it is that we are to
call the model. An important element is the
concept of a universe or more accurately a fre-

Distribution theory is
purely formal mathematics

quency function .
B
b= [ S0 0 e, 00 dX (20)

where the indicated integral from « to 8 gives the relative frequency p’ of
occurrence of X for the infinite sequence (3) within the interval «, 8, the
integral from — « to + « being unity. The other important element of
the model is the formal mathematical theory of distribution that gives the
rules for deriving other distribution functions. We call these derived
functions frequency distributions of statistics of samples of #n drawn from
the parent universe, but here again the mathematical operations are, from
the viewpoint of meaning, independent of what the results are called. The
essential fact is that the theory of distribution is purely formal mathematics.

Now let us consider how we are to go from an infinite sequence such as
(3) or, more particularly, from a finite portion thereof, to the universe. As
already noted above, the mathematician postulates that the observed fraction
p of values of X within any arbitrary range o« < X < 8 for a sample of
size n approaches p’ as a limit as n — «, as indicated in (5). Likewise, the
mathematician picks out certain functions 8; ( = 1, 2, - -, m) of any finite

portion consisting of 7 terms (let us say the first n terms) of the infinite
sequence, and postulates that the limits

Lims 0,':9,,' 7 = 1, 2, cre, M (5(1)

n=oaoo

exist. The same limits are usually postulated for all sequences drawn at
random from the same bowl. As is well known, of course, there is no ac-
cepted way of proving the physical existence of these limits and for that
reason I like to indicate this fact ®* by using the symbol Lim, instead of
Lim. .For our present purpose, however, we are interested in the physical
operatlon. associated with the limit (5a) by which we go from a 6; to ¢,
and the significance thereof from the viewpoint of probable inference.

12 Tt should ) . e
con tinuitir,();nd lt)ﬁfahﬁﬁs be noted, however, that formal mathematical concepts of limits,

e are introduced in much the same way i hysi i
: u Yy in many physical theories
(‘i‘;ilizr:soiur cl?rllcetf)t of the physical condition described does not rigorously satisfy the con-
physicalllg}lfe :ry is)’:(?:czl?ncspts. For example, continuity is a fiction so far as its use in
obiairad. ned, yet the use of such a concept is often justified by the results
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Physically, perhaps the nearest that one can approach the nature of a
statistical limit is by drawing with replacement from an experimental uni-
Drawings from a bowl; Verse written on a series of ‘“physically similar”
does X approach a chips,*® the ideal bowl experiment previously men-
limit, statistically? tioned (p. 9). Fig. 5 shows one observed approach.
There is no answer The distribution of the numbers written on the chips
in the bowl was approximately normal * and symmetrical about zero as an
arithmetic mean. The ordinate of each point is the observed average X for
the sample of size n corresponding to the abscissa of that point; as n varies,
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the average X varies. It is of interest to note how the observed average
swings back and forth about zero, which is sometimes spoken of as the
theoretical limit. Do we know that with increasing sample size the average
X in this particular case approaches any particular value X’ in the sense of a
statistical limit? No matter how many observations we might take, I
should still not know how we could answer this question with certainty.'®

13 See the reference to one such bowl experiment cited in a footnote on page 10.

14 Any actual distribution must of course be discrete and have definite .cut—oﬁs' in the
tails. An exactly normal distribution is unrealizable, but is a mathematical artifice to
facilitate calculations. In this problem the actual distribution of the numbers on the
chips is of no consequence, for we are concerned only whether X approaches a limit statis-
tically, the actual value of the limit, if it exists, being of no importance at present. Editor.

15 On this point see further discussion in chapter IV.
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One might ask whether this approach satisfies that symbolized formally
by equation (5a). I know of no way of answering this question in an
operationally definite way any more than I know of a way of checking
once and for all a sequence in an operationally definite way to see if it
represents a statistical state of control. If we assume that the dotted curve
in fig. 5 approaches a limit, the practical significance of this conclusion is
that we are tacitly adopting the empirical rule of inference that an average
of n observations is to be taken in preference to an average of n — 1.

Likewise, in the practical operation of setting up the model, we assume
that we can approach the functional form of f and the parameters therein by
acting as though the limits (5) and (5a) exist, or more accurately, by the
rule of taking a p or a 8; calculated from n + 1 terms of an infinite sequence
such as (3) in preference to a p or 8, calculated from 7 such terms. Stated
more generally, this amounts to basing action on the following fundamental

Postulate I. A model of a statistical state based uponn + 1
terms of a sequence defined as random is to be chosen instead
of a corresponding model based upon n terms.

Of course, it should be kept in mind that the process of setting up a
model of a state of control in the way just described is up to this point 16
!imited to the case where the sequence (3) is drawn from a bowl and hence
is given by what we have chosen to define as a random operation. Such
an operation characterizes a physical state of statistical control representing
the limit to which one may hope to go in attaining valid predictability and
a state where the one making the drawings as prescribed can not do anything
to' control the limits of observed variability. It must, however, be I;ept in
mmfi that logically there is no necessary connection between such a physical
:.s'ta.txstical state and the indefinitely expansible concept of a statistical state
in terms of mathematical distribution theory. Thereis, of course, abundant
evidence of close similarity 4f we do not question too critically 7 what we
mean by.close. What is still more important in our present discussion is
that if this similarity did not exist in general, and if we were forced to choose
betv./een‘ the formal mathematical description and the physical description,
I thmk we should need to look for a new mathematical description instead
of for a new physical description because the latter is apparently what we
}(;fa,ve. to lgve with. It is the practical man’s good fortune that mathematical
flStI‘lbutl(.)Il theory seems to agree so closely with what he gets in drawings
rom an ideal experimental universe. As an indirect result, distribution

18 In the next secti .
be attained that may a?s% we shall see how through the operation of control, sequences can

17 See J. Neyman. Le(})e treated as random from the viewpoint of constructing a model.

tures and Conferences on Mathematical Statisti
School, The Department, of Agriculture, Washington, 1938")L ’aglc)a 19—%; oo (The Ciraduste
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theory (mathematical statistics) must become the stock in trade of the
control engineer.

StaTISTICAL CONTROL AS AN OPERATION 18

Let us first see what the operation of control is designed to do. The
statistician looking at the function or purpose of the operation of control
will likely see it as a procedure for attaining a state of statistical control of
some variable whereas the engineer will see it as 2 means of effecting certain
economies and attaining the highest degree of quality assurance at a given
cost. Presumably both the statistician and the engineer are interested in
understanding the operation of control as a scientific procedure. In what
follows, an attempt is made to present the important characteristics of the
operation from each of these viewpoints. ’

In the beginning of this chapter we noted the steps that had been taken
in going from the concept of an exact fit of interchangeable parts based upon
the concept of an exact science, to the concept of tolerances, fig. 4, p. 6.

] Statistical theory then stepped in (1924) with the
g:eea:ltlil;;ﬁit‘;ajlu:ng% concept of two action or control limits 4 and B that
lie, in general, within L; and L, as shown in fig. 6
(next page). These limits are to be set so that when the observed quality
of a piece of product falls outside of them, even though the observation
be still within the limits L, and L., it is desirable to look at the manufactur-
ing process in order to discover and remove, if possible, one or more causes of
vartation that need not be left to chance. In other words, whereas the limits
L, and L, provide a means of gauging the product already made, the action
limits A and B provide a means of directing action toward the process with a
view to the elimination of assignable causes of variation so that the quality
of the product not yet made may be less variable on the average.

Furthermore, the statistical theory of quality control introduces the
concept of the expected value C lying somewhere between the action limits
A and B. This point  serves in a certain sense as an aimed-at value of
quality in an economically controlled state. We might pause a moment to
note the importance of the point C from the viewpoint of design or the use of
material that has already been made. Let us take, for example, a very
simple problem of setting overall tolerance limits. Suppose that we start
with the concept of the go, no-go tolerances of 1870 (fig. 4, p. 6) and that

18 This subject is discussed at length in my book, Economic Control of Quality of Manu-
factured Product (Van Nostrand, New York, 1931). It is also discussed in a most helpful
way in The Application of Statistical Methods lo Indusirial Standardization and Quality
Control by E. 8. Pearson (British Standards Institution, London, 1935) and in the Manual

on Presentation of Data (American Society for Testing Materials, 260 S. Broad St., Phila-
delphia, 1933).
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we wish to fix the overall tolerance limits for n pieceparts assembled in such
a way that the resultant quality of the n parts is the arithmetic sum of the
qualities of the component parts. An extremely simple example would be
the establishment of tolerance limits on the thickness of a pile of n washers
or, in general, any n laminated pieceparts in terms of the tolerance limits on
one. The older method of fixing such limits was to take the sum of the
tolerance limits on the individual pieceparts, but the tolerance range result~
ing from such practice is usually many times larger than it needs to be.
The economical way of setting such tolerance limits for a product in a
state of statistical control is in terms of the concept of the expected value C
of the quality, and the expected standard deviation about this value. The
concept of the expected value is of fundamental importance in all design
work in which an attempt is made to fix overall tolerances in terms of those
of pieceparts. \ )
Thus we see that for reasons of economy and quality assurance it is
necessary to go beyond the simple concept of the go, no-go tolerance limits
of the customary specification and to include two action limits 4 and B and
an expected value C, as shown schematically in fig. 6. Statistical theory

alone is responsible for the introduction of the concept of the action limits 4
and B3 and the expected value C.

QUALITY X
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It sbould be npted that if there were no reason connected with economy
or (!uahty assurance for going beyond the concept of the go, no-go tolerance
limits, statistical theory would have nothing to add. Likewise, it should be
qot.ed that, although the action limits A‘and B may lie within the tolerance
hm1t§ L.l and Ly, the product already produced and found by inspection to
be within the limits L, and L, is still considered to conform, even if outside A
and B. In other words, the action limits A and B do not apply as a gauge
for.pr(')duct already made: their function is to call attention to evidence for
believing that the manufacturing process includes assignable causes of

a.riation in the qualit that ma i i i
\Y . give “()l]l) € 1mn l,he future lf they are n

) The operation of statistical control.
In the way just described introduces a mo
tion of control and in this sense constitut
trol” directed toward the attainment of

The use of statistical techniques
dification in the customary opera-
es an ‘‘operation of statistical con-
a8 state of statistical control.
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The specification of an operation of statistical control consists of the
following steps: . ' )

1. Specify in a general way how an observed sequence of n
data is to be examined for clues as to the existence of assign-
able causes of variability. :

2, Specify. how the original data are to be taken and how
they are to be broken up into subsamples upon the basis of
human ' judgments . about whether the conditions under
which the data were taken were essentially the same or not.

3. Specify the criterion of control that is to be used, indicating
what statistics are to be computed for each subsample and how
these are to be used in computing action or control limits for
each statistic for which the control criterion is to be con-
structed. :

4. Specify the action that is to be taken when an observed
statistic falls outside its control limits. '

5. Specify the quantity of data that must be available and
found to satisfy the: criterion of control before the engineer
is to act as though he had attained a state of statistical control.

In the next few paragraphs I shall consider briefly each of these steps and
indicate the nature of the available evidence to show that the operation
as a whole successfully accomplishes its objective in practice.

Let us think of a particular manufacturing process as an operation of
making a given kind of object, and let us assume as above that this operation
can be repeated again and again at will. Let us assume that we want to
attain a state of statistical control of some quality characteristic X; that n
pieces of the product have been made; and that the qualities of these n
pieces in respect to the characteristic X are available in the order that the
pieces were produced. These n values of X may be thought of as constitut-
ing the first n terms of an infinite sequence (3) corresponding to what we
should get under similar conditions by repeating again and again the opera-
tion of production. ‘

It is essential for an understanding of the operation of control that we
distinguish three kinds of acts that are involved. These are (a) mental
operations or judgments typical of which is the judgment that two or more
observations are made under the same or different conditions, (b) mathe-
matical operations such as are involved in constructing a criterion of control,
and (¢) physical operations such as looking for an assignable cause when an
observed point fails to satisfy a criterion of control.

Some comments on the first step in the operation of control. The
importance of order. In order to take this step, we must decide how the
original set of n data is to be used as a clue to the existence of assignable
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canses of variability. We start with the assumption that when the opera-
tion of production is random, that is, when it is in a state of statistical
control, there are no assignable causes present in the production process.
Hence our clue to the existence of assignable causes is anything that indi-
cates nonrandomness. However, as already pointed out above, any set of
n values of X considered as a sample or as a sequence might have been ob-
tained by some random operation. Likewise it might have been obtained
by a nonrandom operation. We must therefore take into account the pre-
viously observed fact that there is no unique test for randomness of the
cause system producing the data in terms of the n observed data.

If a set of n data is to serve as a clue to the state of control, two con-
clusions are obvious. First, we must depend on past experience to suggest
what, if any, characteristics of a given set of n values of X are more likely
to oceur in nature as a result of a nonrandom than as a result of a random
operation. For example, if you were told that nine sueccessive determina-
tions of the density of oxygen gave in proper units 1.42891, 1.42892, 1.42892,
1.42894, 1.42894, 1.42895, 1.42895, 1.42896, 1.42900, you would likely sus-
pect a nonrandom condition. It should be kept in mind that from the
viewpoint of the operation of control, nonrandom is a category for a tem-
porary pigeon-hole for those states of control that we are to look at further
in an attempt to find assignable causes of variability. If, however, you
were given the following order in which they actually did occur,!® 1.42900,
1.42894, 1.42896, 1.42892, 1.42895, 1.42891, 1.42892, 1.42804, 1.42895, you
would likely conclude that the sequence represented a random condition.
Sfrcond, the acceptance of any specific characteristic such as order in any
given set of n observed values of X as an indication of the state of control
can on‘ly be conf:u'med in the light of future experience. Hence the only
ZI:(‘;‘ aﬁ;z:iliyt;’lzrlsfgagle way in W}.lich the sejc of n observed data may serve
f. . ate of control is by serving as a link between past and
uture experience.
assi}g{:;gllggcgﬁs:sllggvt;?;b?;}: p{itn_cipal object is to detect the presence of
that there are certain identl'g ’bll S Mhtural to try t'o make e of the fact
not, equally likely to be o 1 f.thedO}"ders observed In experience that are
possible order.  Thes i ;}ll sociated in future experience wx“oh every other
gincer well knows that o ri mo};e reasonable since every sclent}st and en-
produced by momanean the observed orders are 'much more likely to be

an by random operations. In fact it is only

:nr;};ir;;ll:nlisasfiiﬁiﬁultyl inldistinguishing orders of this kind—trends, cyclic
, functional relationshi i
e woents, fur ps, and erratic effects—that he appeals to

19
See the Journal of the American Chemical Society, vol. 61, pp. 223-228, 1939.
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There are, however, other reasons for examining the observed order for
clues of nonrandomness. For example, the identifiable order of three or
more numbers, whence comes our concept of the ordinal numbers, is based
on the property of “betweenness’ and not on the absolute values of the
numbers; so.likewise the significance of observed order is independent of the
frequency distribution of the observed set of numbers as well as that of the
potentially infinite sequence of which the n observed numbers constitute
but a finite part.

Of course, if we neglect the significance of observed order, we may still
ask whether the set of n observed values is a likely random sample from
some assumed universe; and if it is not a likely
sample in this sense, we may reject the hypothesis
that it came from such a universe. However, in
applying such a test we must first introduce an assumption that the ob-
served order is given by a random operation so that we may arrive at the
functional form of the universe and at estimates of the parameters. Abun-
dant evidence will be presented in the following chapters to show that such
an assumption is almost never justified in practice; hence we are confronted
with the necessity of assuring ourselves that we are dealing with a sequence
given by a random operation before we can justify the customary interpre-
tation of a test of this character. Under such conditions, it appears that
certain requirements on the order of happening are primitive. Moreover,
such a test to determine whether an observed set of n data is a likely random
sample from some assumed universe does not in itself indicate whether the
observed sample is likely to have arisen from some nonrandom operation.
Finally, such a test neglects the significance of the observed order as a clue
to nonrandomness.

Considerations of the character indicated in the last few paragraphs have
indicated the need, in quality control work, of stressing the significance of
certain characteristics of the observed order as clues to nonrandom opera-
tions in the production process. The fact that the successful choice of the
observed orders most likely to indicate nonrandomness (or the presence of
assignable causes) must be based on experience simply emphasizes the im-
portance of a broad experience in the subject matter of any given field as a
background for establishing efficient tests for assignable causes.

Some comments on the second step in the operation of control. Let us
start by rewriting the infinite sequence (3) in the form

)fl,)fz,...,)fi, ...,)l(n,Xm,...,XﬂH, (3d)
C1 Cs OF Ca Canr Coati

where the symbol C; (i = 1, 2, - - -) stands for the condition under which the

Some comments on the test
of a hypothetical universe
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associated X; was obtained and where the term condition is used as it is in
the phrase “same essential conditions.” We may symbolize the judgment
that the conditions are essentially the same by the expression

Ci =C, (6)

In the initial stages of the operation of any production process, it is
likely that the engineer will not be willing to assume that C; = C;. Instead,
he will likely point out what he considers may be important differences in
the conditions, as for example, differences in source of raw materials,
variations in humidity, wear of tools, and the like. True enough, upon
extended study some or all of these differences in conditions may not be
found to be assignable causes of variability in the X’s. However, to begin
with, these differences in conditions constitute our best clues to what on
further stidy may prove to be assignable causes. Hence it is desirable that
the engineer or scientist provide a means of grouping the X’s upon the basis
of observed differences in conditions that may later prove to be assignable
causes. It is important to note that from the viewpoint of interpretation,
the grouping of the X’s in this manner is independent of their magnitudes.

. Kvery scientist and engineer follows such a procedure as a part of his
daily work; if the measurements broken up into subgroups in this way are
radically different from one group to another, the conclusion is usually
drawn that the corresponding differences in conditions constitute assignable
causes of variation in the quality characteristic X, and this conclusion i8
reached without ever calling on the statistician for advice. If, on the
other har.ld, the subgroups of X's are not *‘clearly ’” different and show some
overlapping, two alternative courses are open to the scientist or engineer.
One of thes.e is to conclude that the conditions are essentially the same and
t,}'m other is to call in the statistician to advise whether the observed
g:ﬁ:f;?j; :itxeinaﬂ;: gt;roufps of .X’.s are likely to have arisen as sampling
problem, long familiar i: ‘31 St:m?'ﬂ(_ia.l o .ThuS i s stotis 'thev
test for (’ietermining whether :Ws atisticlan, of trying t(') d'e oo Stf'atlsncal
The statistician may feel that hz iosr o ¢ Safmpl'e'S B e e v o
some statistical test for signiﬁcan::l: N (I)—III amlhar'gmur‘ld and make uso of
introduces the assumption that th ‘1' ot X in o domg.so, ho lsualy
proposed by the experimontalin e values of X in any particular subgroup
universe, and he uetially aoen Hiz tc}cl)nsh}tl,ute a lzandom sample from. some
is normal. Of course. 1n. math:m 3‘6 tl e fu'nc.tlf)nal form of this universe
statements that follov:r o fa ica, }fta,tlstlcmn' can then In_rlake certain
ever, the practical importance oBf’ romdtde agsumptlon.s. AN
upon whether the assumptions arany e uctlo'ns of this character depends

e representative of the actual conditions.
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To illustrate, let us consider the significance of the assumption that each
subgroup constitutes a random sample from some universe. Obviously any
finite set of numbers might be given by a random operation, and would con-
stitute a random sample from some universe. In fact, any finite set of
numbers might be a sample from a normal universe. Statistical theory
enables us to say rigorously some things of interest about how certian
characteristics of successive samples from the same normal universe may be
expected to vary even though we do not know the average X’ and standard
deviation ¢’ of the universe. ,

At this point one of the distinguishing characteristics of the control
statistician shows up. Irrespective of the result of applying any statistical
test for significant differences between subgroups selected by the experi-
mentalist solely upon the basis of his knowledge of the conditions under
which the values of X were obtained, the control statistician knows that past
experience does not justify him in believing that any such subgroup is a
random sample of the production process if the only evidence for this belief
is that the experimentalist considers the observations in each subgroup to
have been taken under the same essential conditions. That is to say, ex-
perience has shown that the judgment represented by expression (6), that
the conditions underlying a set of n values of quality are essentially the
same, is not by itself a satisfactory criterion of randomness. If we could
rely on such a judgment as a sufficient condition for believing that a state
of statistical control had been reached, there would be no story to tell about
the operation of statistical control with which we are concerned in this
section.

On the other hand, no scientist or engineer would think for a moment of
ignoring the importance of the human judgment that the conditions under
which a set of n measurements were made did or did not remain the same.
In the successful development of any operation of statistical control, we
can not do without the human judgments about the conditions C, but we
can not. get along solely with them, either. We must seek in addition some
criterion of control that makes use of the numerical magnitudes of the
observed qualities.

Some comments on the third and fourth steps in the operation of control.
Practical requirements imposed on the criterion of control. Criterion I.
We shall consider these two steps together because they are so closely interre-
lated. Infact,whatistobe done in step three depends to a large extent upon
the action that is to be taken in step four. For example, step four consists of
looking for an assignable cause of variability whenever the observed statistic
chosen in step three falls outside its control limits. Hence the criterion of
control should be as nearly as possible such that when and only when a
statistic falls outside its control limits it will be possible to find an assignable
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cause of variation. And it is to be remembered that if an assignable cause
is found and removed, a change (narrowing) of the control limits is required
(note paragraph iii on p. 35). Thus the third and fourth steps are closely
dependent on each other. '

We are now in a position to set down some of the important practical
requirements imposed upon the criterion of control, and this we shall do
before passing on to comments regarding the fifth step in control.

1. Our criterion of control should indicate the presence of
assignable causes of variation.

2. It should not only indicate the presence of assignable
causes but also should do this in a way to facilitate the dis-
covery of these causes. .

3. It should be as simple as possible and adaptable in a con-
tinuing and self-corrective operation of control.

4. It should be such that the chance of looking for assignable

causes when they are not present does not exceed some pre-
seribed value.

I have discussed elsewhere what has been termed Criterion I of control.®
There is no intention of repeating here what was said at that time but in
the next few paragraphs an attempt will be made to explain in more detail
some of the reasons why this criterion was chosen. Let us see how it meets
the four practical requirements just noted.

(i) The principal function of the chart is to detect the presence of
assignable causes (st requirement). Let us try to get clear on just what
this means from a practical and experimental viewpoint. We shall start
wi'th the phrase “assignable causes.” An -assignable cause of variation as
this term is used in quality control work is one that can be found by experi-
ment without costing more than it is worth to find it. As thus defined, an
assignable cause today might not be one tomorrow, because of a change in
th.e egonomic factors of cost and value of finding the cause. Likewise, a
criterion thaF would indicate an assignable cause when used for one pI‘Odl,lC-
tion process 1s not necessarily a satisfactory criterion for some other process.
()bvmus}y t‘here is no a priori, formal, and mathematical method of setting
up a eriteron that will indicate an assignable cause in any given case.
Instead, the only way one can justify the use of any criterion is through
extensive experience. The fact that the use of a given criterion must be
JUStflﬁe.d on emplrlca! grounds is'emphasized here in order to avoid the
:Ztnu::zg :}il’izus(l)li :tcix;llterlon with a test of statistical significance. We shall

gnificance is a deductive inference upon

20 W. A. Shewhart, E 3 .
New York, 1931), ch. X)C(O.nomq,c Conlrol of Quality of Manufactured Product (Van Nostrand,
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the basis of certain fundamental assumptions, and theoretically can be
made with any desired degree of exactness. In general, any such test con-
sists in defining some statistic 8 of a random sample of 7 from some assumed
universe and computing the probability of getting an observed value of 8
outside any chosen range 6, = 6 = 6,. Then some arbitrary choice of
probability is made and the associated values of 6; and 6, are computed.
An observed value of ¢ is then defined as significant if it falls outside the
corresponding range 6; =6 = @,. Such s process is deductive. In con-
trast, when an observed statistic falls outside its control limits, the inductive
inference is implied that an assignable cause is present. To check this in-
ductive inference, we must appeal to empirical evidence.

The next point to note is that in developing a control criterion we should
make the most efficient use of the order of occurrence as a clue to the presence
of assignable causes. The importance of order as such a clue has already
been considered (pp. 25-27 ff). As an example, let us consider a case where
we have a sequence of n numbers taken under presumably the same condi-
tions. Omne such set of 204 observations of insulation resistance # may be
used here to illustrate some of the characteristics of a control chart criterion
as a tool for detecting the presence of assignable causes. Grouping these
204 observations into subgroups of four taken in the order in which the
observations were made, and applying the control chart Criterion I to the
51 subgroup averages, we get the results shown in the upper half of fig. 7.
Here we see indications of the presence of assignable causes of variability,
which further research revealed and removed (see pp. 114-5).

Now let us see what would have happened if we had not known the order
in which the 204 pieces of insulating material were made. For example,
suppose that these pieces had been thoroughly mixed together in a box or
tray before the measurements of resistance had been made,
as is a very common practice. The 204 measurements of
resistance on the 204 pieces of material after they had
been thoroughly mixed would have been the same, but we should then know
nothing about the order in which the pieces were made. Of the 204!
different orders that might be obtained by such a random operation, the
order of manufacture, which is the basis of the control chart in the upper
half of fig. 7, is no more unlikely than any other. Instead of mixing the
pieces of insulating material in a tray or box, and measuring one piece at a
time upon drawing it, we may write the 204 original measurements on as
many physically similar chips, mix the chips in a bowl, and draw them one
at a time without replacement. Suppose we apply the same Criterion I to
one sequence of 204 numbers obtained in this way. The results are shown
in the lower half of fig. 7. There is no indication of the presence of assign-

More on the im-
portance of order

21 The 204 observations constitute table 7, given in chap. III, p. 90.
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able causes. If in this case the original order had not been given and we
had taken instead the order actually given by the random operation of
drawing the 204 numbers one at a time from a bowl, the application of
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would give ne indic (;_ the 204! possible different sequences, most of them

of showing avera esa lfo? of the presence of assignable causes in the sense

we must rem bg oI lour 01113?@8 of control limits. On the other hand
ember that the original sequence is one of the 204! possible’z
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sequences generated by such a random operation. Hence the failure to meet
the criterion does not serve to pick any one of the 204! sequences drawn from
a bowl as being nonrandom, because in fact they all are obtained by means
of a random operation.

Why then may we place faith in Crltenon Ias a good indicator of assign-
able causes, or of those that can be found? As already suggested earlier in
this chapter in the discussion of the meaning of random, extensive experience
has shown that one almost never finds in practical work an observed se-
quence even when obtained under presumably the same essential conditions
that will satisfy Criterion I, and if assignable causes are looked for when an
observed statistic goes outside its control limits such causes are almost al-
ways found. If the process of finding and removing assignable causes is
continued, we gradually approach a condition where an observed statistic
only seldom goes outside of its limits, and if one looks for assignable causes
in these rare instances, such causes are not usually found.

It is important to note that in the use of Criterion I to detect the pres-
ence of a.ss1gnable causes, emphasis always has been and must be laid
upon breaking up the original sequence into sub-
groups of comparatively small size. If this is not
done, the presence of assignable causes will very
often be overlooked. Incidentally the necessity of using small subgroups
is not imposed by the particular choice of the criterion used. It would be
equally necessary, for example, if we were to use the analysis of variance
test instead of Criterion I. Thus if the 51 samples of 4 are analyzed
by the analysis of variance, using a probability level of .01 as a test for
assignable causes, we get indications of the presence of such causes. If
instead of 51 subgroups of 4, we take 4 subgroups of 51, both Criterion I
and the analysis of variance test happen to give positive indications in this
particular instance, although this is exceptional for subgroups of this
size. If, however, we go to 2 subgroups of 102 each, both tests fail. Need-
less to say, this one example is introduced not to prove the importance of
using small subgroups in the criterion of control but simply to illustrate
what is usually found in practice.

It is reasonable to expect that one may detect more readily the presence
of the customary kinds of assignable causes by breaking up the total number
of available observations into small subgroups than by breaking them up
into larger subgroups. One of the principal reasons is that assignable
causes are for the most part those that come and go in an erratic fashion.
For example, let us think of an infinite sequence:

X1, Xy, oo, Xy Xig, -y Xagj, "';)l(nan+1: oy Xagr, oo (3d)

| , ,
(/‘1, 02; C'i; Ci+1: Ci+i7 Cﬂ: C"+1’ C"*k’

Small subgroups required
in Criterion I
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An assignable cause may, for example, come into the condition C; and remain
present in the next j — 1 conditions. The same assignable cause may come
in again and again at other places in the sequence. Generally there are
several assignable causes of this character present in any production process
or physical experiment even when it is judged that the conditions are being
maintained essentially the same. By using large subgroups we tend to get
overlappings of the effects of different assignable causes, and the effects of a
single cause are thus masked. Experience and theory both indicate that a
Importance of the method of feeding sub.sax_nple si.ze of four is effective in the
the data into the criterion. Criterion Majority of instances that have come to
I uncovers not only assignable causes, my attention. Enough has been said to
but also trends and periodic indicate that an important factor in choos-
fluctuations . . . . as

ing a criterion of control to indicate the
presence of assignable causes is the method of feeding the data into the
criterion.

In practice, Criterion I is useful in detecting the presence of assignable
causes not only when a statistic falls outside its control limits, but also when
the graphical record suggests the presence of either a trend or a periodic
effect, even though the observed values of the statistics for the available
subsamples do not fall outside the control limits. For example, a sequence
of averages of subsamples of four sometimes reveals such effects as would
not be suggested by the original sequence. However, it is obviously not
feasible to give any definite rule for the use of such apparent trends and
periodic fluctuations with the same assurance that one applies the rule of
looking for an assignable cause whenever an observed statistic in a subsample
falls outside its control limits.

(ii) Next let us consider the second requirement of a criterion of control,
namely, t.hat it shall not only indicate the presence of an assignable cause
‘())l}l)t .that 1t. shall do‘ this in a way to facilitate the discovery of the cause.
o Vé;)l(l)srllyﬂllf an a;sft.gnable ‘cause is 1ndlCé.lted, we must be able to put our
o % A CZ uc;n 1 (;()ns ex1st.1ng at t}-le tn.ne the cause is present if we are
5d). 1f an i :J};l]e remove it. Aga.,m, with reg.;a.rd to the infinite sequence
crite’rion shouigd ihdicc:;;us?tls present, in the .condltlons C *',tf’ Civi the? co.ntrol
in the form of a controleclhs Izr.esgncg in this set of C(.)ndltIO.IlS. Criterion I

We aro now 1o _t.ar 1s designed to meet t}.us requirement. )
small subaro A position to see another prz.Lctlcal advantage of using

groups. Assume fo? the moment that in analyzing the set of 204

Another reason for values of insulation resistance we make use of 4 sub-

small subgroups groups _of 51 each instead of the 51 subgroups of 4 each

to know only tha:h;)rvfnasl; ﬁg-b i7 Obviously it is n'luch more indefinite

subgroup of 51 pieces of mgléa 'ei cause c?ntered during the time that a

entered during the . aterial was being fnade than to know that it
g ime that a subgroup of 4 pieces was being made.
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(iii) We next come to the third-mentioned requirement, namely, that the
criterion shall be as simple as possible and adaptable to a continuing and
self-corrective operation, of control. Experience shows that the process of
detecting and eliminating assignable causes of variability so as to attain a
state of statistical control is a long one. TFrom time to time the control
chart limits must be revised as assignable causes are found and eliminated.
The continuing control chart record showing a succession of modifications
presents a complete and up-to-date history of the available evidence for
indicating the progress that has been made up to the present in the process
of attaining control.

A simple procedure is used for establishing the limits without the use
of probability tables, because it does not seem that much is to be gained
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during the process of weeding out assignable eauses in order to attain a state
of statistical control by trying to set up exact probability limits upon the
basis of assumptions that we know from experience do not hold until the
state of statistical control has been reached. This is particularly true since
such probabilities do not indicate the probability of detecting assignable
causes but simply the probability of looking for such causes when they do
not exist, which is of secondary importance until a state of statistical control
has been reached. Then too, as already indicated, the design of an efficient
criterion for the important job of indicating the presence of assignable causes



36 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

depends more upon the method of breaking the sequence up into subgroups
of a given size taken in a certain order than it does upon the use of any
exact mathematical distribution theory. '

(iv) True enough, as we approach closer and closer to a state of statistical
control it becomes important to have a criterion that does not indicate
trouble too often when such trouble is not, present. This is the fourth re-
quirement as listed above. The control limits as most often used in my
own work have been set so that after a state of statistical control has been
reached, one will look for assignable causes when they are not present not
more than approximately three times in 1000 subsamples, when the distri-
bution of the statistic used in the criterion is normal. For example, fig. 8
shows Criterion I applied to a sequence of 100 averages of four corre-
sponding to a sequence of 400 drawings with replacement from a normal
universe. Not one of the 100 averages falls outside the limits although in
the long run we should expect about three in 1000 to fall outside.

Even in trying to keep the probability of looking for assignable causes
when they are not present below some limiting value, it is necessary to make
some considered choice depending largely upon the costliness of thus looking
unnecessarily for trouble.  Since there is no a priori exact basis for making
this choice it is felt that the simple rules of setting control limits as described
in the literature are satisfactory.

Some comments on the fifth step in the operation of control. Even
after we have found a suitable criterion of control there remains an exceed-
ingly important practical question to be answered : how long a run of observa-
tions satisfying the criterion of control must we have before we can rest
ussu_red for practical purposes that a state of statistical control has been
attained? Suppose we applied such a criterion to a short sequence of ob-
served values, let us say a seéquence of eight, and got no evidence of the
presence of assignable causes; should we conclude solely upon this evidence
that th.e process or operation giving rise to the observed values is in a state
gvfo.:lia;csls(;:giis;;t]r\?i? gieeizr?r inv}?n by experience in guality control
if it had been conclu;led that a stg,‘fé of 3;Vi.n§ Ve;‘ Jound wh fnstance where,
solely on the bais of evidones poioed Z atistical control had been reaclr{ed
would not later have been sholv?v t1 ; y & smal sar.nple, such & co.nch.lswn
to the first two samples of fourn fothe e omas If we spply Criterion
resistance discussed above, we 1? .eds.equ.ence of 204 observed va.lues o
causes. Nevertheless the’ cos of l.catlon Of- the presence of assignable

) Pprocess of making the pieces of insulating material
was not in a state of statistical control as lat i
, ater work revealed, although it

may have been that no assi
' : gnable cause was ' X
Jirst eight pieces were being made. prosent during fhe time thes'e
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Before going further, we should note the fundamental and very important
difference between an inference that a criterion of control when applied to a
sequence of data does not indicate the presence of assignable causes, and an
inference that a state of statistical control hasbeen reached upon the evidence
that a criterion of control when applied to a given finite sequence does not,
indicate the presence of assignable causes. As previously noted (p. 33) it is
found that assignable causes may again and again come into and go out of a
production process or any physical operation repeated an indefinitely large
number of times under presumably the same essential conditions. It is

. . therefore possible that no assignable cause
:ﬁiﬁag:a;?;izsgfuvg‘:;fnes; is present d1_1ring the time tl}a? a finite se-
stages. Theymaycomeandgo,and quence is being taken, but this in itself does
the attainment of statistical controlis not, necessarily mean that a state of statis-
?sg::(fuﬁgmcess"‘ A long sequence tical control has been reached or, in other

words, that all assignable causes have been
eliminated from the process considered as an operation that can be re-
peated at will an indefinitely large number of times. My own experience
has been that in the early stages of any attempt at control of a quality
characteristic, assignable causes are always present even though the pro-
duction operation has been repeated under presumably the same essential
conditions. As these assignable causes are found and eliminated, the
variation in quality gradually approaches a state of statistical control
as indicated by the statistics of successive samples falling within their
control limits, except in rare instances, and by the fact that when as-
signable causes are looked for in these rare instances they are seldom dis-
covered: It has also been observed that a person would seldom if ever be
justified in concluding that a state of statistical control of a given repetitive
operstion or production process had been reached until he had obtained,
under presumably the same essential conditions, a sequence of not less than
twenty-five samples of four that saltisfied Criterion I. In certain instances,
where it is for some economic or other kind of reason essential that we be
practically certain that we have attained a state of statistical control, it may
be desirable to have a longer sequence of samples of four. For example, if
one wants to attain economic minimum tolerances for a given qualit;y
characteristic based upon the assumption that the production process is in
a state of statistical control, it may be necessary, as we shall see in the next
chapter, that a total sample size of not less than one thousand give no
indication of the presence of assignable causes.

The operation of statistical control as a whole. We are now in a position
to view at better advantage the operation of statistical control as a whole.
As has already been noted, this operation is a continuing, self-corrective one
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designed for the purpose of attaining a state of statistical control. The
operation itself must not be confused with the
The operation of statistical ~  criterion of control: the operation of control
:ﬁ:tcr:iltgizzt;f c};ifr%';fused with ot only indicates how the data are to be
: broken up and fed into the criterion of control
and what action is to be taken when an observed statistic falls outside its
control limits, but also indicates how many data must be fed into the control
criterion without getting any evidence of assignable causes before the control
engineer is to act as though he had attained a state of statistical control.
The operation of control is in this sense a dynamic process involving a chain
of actions, whereas the criterion of control is simply a tool used in this
dvnamic process. The successful quality control engineer, like the success-
ful research worker, is not a pure reason machine but instead is a biological
unit reacting to and acting upon an ever changing environment.
Example of what can be done in practice. It may bhe helpful to look at
a typical example illustrating how the operation of control works in practice.
Fig. 9 shows a control chart for averages of 136 successive samples. The
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quality .ch.aracteristic is the blowing time of a certain kind of fuse. In
the‘ preliminary survey which took place prior to the taking of these data
assignable causes were indicated and removed, and the manufacturing’
process brought into a state of control. This chart is a typical illustration
of thg fact that once we attain a condition of control, in which a com-
paratively long sequence of averages of small subsan’lples taken under
E}TSSIZI:;;?; the sariae cond.itions remains within the limits of Criterion I,
o c(:)r; ';Sllla;'ly' continues. The averages of the subsamples remain
from D the con b<0) 11m1’?s almost as well as if the samples had been obtained
o & oW um\.re:rse! . That such a state of control can be attained

ommereial conditions is all the more impressive when in the next

chapter we find that some of
°h, the most precise measurement: ical
science do not meet thig stringent control chart test nents of physies
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Two kinds of errors in the operation of control. Since a scientific
inference about experience can never be more than probable, it is always
subject to two general kinds of errors which we may write as follows:

e1  Sometimes when a scientific hypothesis H is rejected, the
hypothesis H is nevertheless true.

ez Sometimes when a scientific hypothesis H is accepted, the
hypothesis H is nevertheless false.

Neyman and Pearson have considered specific instances of these two general
kinds in testing certain statistical hypotheses.? They consider the problem
of having been given a sample consisting of the first # terms of an infinite
sequence considered without respect to order, to determine whether it came
from a universe m (hypothesis A). Representing the set of n values as a
point = in hyperspace, they say—

Setting aside the possibility that the sampling has not, been
random or that the population has changed during its course,
Z must either have been drawn randomly from = or from =/,
where the latter is some other population which may have any
one of an infinite variety of forms differing only slightly or
very greatly from 7. The nature of the problem is such that
it is impossible to find eriteria which will distinguish exactly
between these alternatives, and whatever method we adopt
two sources of error must arise:

e;1  Sometimes when Hypothesis A is rejected, £ will in fact
have been drawn from =.

e21  More often, in accepting Hypothesis A, £ will have been
drawn from ='.

These two kinds of errors are called by Neyman and Pearson “errors of the
first and second kinds,” and are obviously somewhat like two different pairs
of errors encountered in using the operation of statistical control.

The first of the two pairs of errors (e: and e;) is encountered in interpret-
ing a criterion of control applied to a given finite sequence of observations,
and may be written in the following form—

e12 We may reject the hypothesis that there existed, at the
time the finite sequence was obtained, one or more as-
signable causes in the process giving rise to that finite
sequence, when this hypothesis is nevertheless true.

es2  We may accept the hypothesis that there existed, at the
time the finite sequence was obtained, one or more assign-

22 J. Neyman and E. 8. Pearson, ‘“On the use and interpretation of certain test criteria
for purposes of statistical inference,” Biometrika, vol. 28A, pp. 175-240, 1928, and in
particular, p. 177. The italicizing in the quotation is mine. I have also introduced
the symbols e11 and e, instead of their numerals 1 and 2,
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able causes in the process giving rise to that finite se-
quence, when this hypothesis is nevertheless false.

It should be noted that the hypothesis in this instance pertains to the
existence of assignable causes during the time the finite sequence was being
obtained.

The pair of errors e; and e, so far as they are encountered in interpreting
the operation of control as a whole, may be stated similarly—

¢is We may reject the hypothesis that the production process
or repetitive operation is in a state of statistical control
when this hypothesis is nevertheless true.

es  Wemay accept the hypothesis that the production process
or repetitive operation is in a state of statistical control
when this hypothesis is nevertheless false. ‘

In this instance we should note that the hypothesis pertains to the condi-
tions existing within a repetitive operation throughout the time required to
produce an infinite sequence. .

These three pairs of errors are alike in general form, but they differ in
the hypotheses involved. They also differ in that Neyman and Pearson’s
errors ey and ey of the first and second kinds are essentially formal, whereas
the other two pairs are expressed in empirical terms. For example, Ney-
man and Pearson can theoretically build an exact mathematical model
that enables them to compute with any desired degree of exactness the
probabilities of occurrence of their two kinds of errors. It will be noted
that .their hypothesis involves the assumption that the observed data
conststute a random sample, and we have already considered some of
tbe difficulties involved in trying to give this term an empirical and opera-
t/lonally verifiable meaning. In fact, we may think of the whole operation
of sta.'mstical control as an attempt to give such meaning to the term random.
But just as soon as we pass from the concept of the errors e;; and eg1 of
Neyman and Pearson, which may be defined in terms of a mathematical
model, to errors of the general form ¢, and e, expressed in terms of scientific
hypothese§ about observable phenomena, we can no longer compute with
;r(;a.them.atlcalhexactnes:s the probabilities associated with any pair of errors
oprerzti%:ir; St;fgglsi}:}eslls. As a background for th('a development, of the
imtiation] oot S al control, the fprrgal mathematical theory of testing a
o s coggfmael}ls;s llci eof (;ztsta‘n;img importance, but‘ it would seem that
formal theory of testi 74 i man, the fundqmental difference between the
hypotheses employed i:’;gt}?e i;;:fzttlif:;l hypo”%es‘ls nd the empirical lesting o

of statistical control. In the latter, one

must also test the hypothesis tha
2 t the sample of dat obtai
conditions that may be considered random.p T Obt'amed e
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THE JupGMENT oF StaTisTIcCAL CONTROL

To form a background against which to view the problem of judging the
condition of statistical control, let us summarize some of the points previ-
ously made. The engineer wants a product of uniform or homogeneous
quality. As a basis for a quantitative characterization of such a product
he conceives of one arising under a state of statistical control that assures
(a) predictability in the probability sense and (b)) minimum variability in
quality. To attain this state, the engineer finds that he must go through
certain operations of statistical control in which he uses a technique involv-
ing the use of statistical criteria for finding and weeding out assignable
causes. The concept of a state of statistical control is a basis for describing
the engineering goal of uniform quality, and the operation of statistical
control is a means of approaching this goal. In any specific instance there
remains the problem of judging how close one has approached the goal,
and this is the problem now to be considered.

- As a beginning, let us again consider the statement: ‘“ The quality of this
product is in a state of statistical control” (see statement B on page 8).
For our present purpose, we shall assume that this is equivalent to the
statement that the quality of the product being turned out by the production
process is uniform. Confining our attention to a single quality character-
istic- X, we may represent the quality of such a product by the infinite
sequence

Xl’ X2;"')Xi) "")X'n}Xﬂ+17""Xﬂ+i’ e (3)

where the order in the sequence corresponds to the serial order in which the
pieces of product are produced.? Let us consider the meaning of the state-
ment that the quality X of this product is statistically controlled, remember-
ing that at the time such a statement is made we have at our disposal only
a finite number 7 of terms of the sequence.

We can draw three important conclusions. First, any such statement
to be definite must be definite in respect to the meaning of the state of
statistical control implied. Second, any such statement is a probable in-
ference implying a prediction P about an unobserved portion of the sequence.
Third, what we know about the n observed values of X and about the results
obtained in applying the technique of statistical control to the production
process constitutes the evidence E for the prediction P.

Let us refer to the time at which such a statement is made as the present,
and let us assume that n terms of the potentially infinite sequence have

% For practical purposes of simplification, it is here tacitly assumed that the process or
machine makes but one object at a time. In practice, of course, there is likely to be a
whole battery of machines which may turn out more than one piece of product at a time.

The treatment here given can be extended to cover this case, but would be unnecessarily
involved for illustrating the fundamental points here considered.
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been observed. Any such statement will be assumed to involve some kind
of prediction about some portion or the whole of the unobserved part of
the infinite sequence beginning with the term X ... as indicated schemati-
cally below:

le X27 st '7Xi; "';Xm l Xﬂ+1) ° "7Xn+i1
Past Present Future

For a prediction to have an operationally definite meaning, it is necessary
that there be given or implied a perfectly definite way of determining
whether it is true or false. Hence it is necessary that there be implied an
operationally definite meaning of the statistical state of control in terms of
characteristics of the sequence (3). There are two senses in which we may
have such a meaning. One is the theoretical sense in which we include all
possible criteria that the mathematical statistician may impose upon the
infinite sequence (3) as a characterization of what he means by a mathe-
matical state of control. The other is the practical sense in which one
chooses a limited group of criteria to be applied in some specified way to a
finite portion of the sequence consisting of n 4 j terms, j of which have
not been observed at the time the prediction is made.

Postulate II.  In what follows we need to keep clearly in mind that the
statement that the quality of product is in a state of statistical control
involves a prediction P which may or may not be true, and it involves the

?vidence E for believing in the prediction. T'he statement itself is a probable
inference. 1shall assume the basic

f’ostulate II. The objective degree of rational belief b,/ in an
mferen_ce i.nvolving a prediction P based upon evidence E is
not an intrinsic property like fruth but inheres in the inference
through some relation of the prediction P to the evidence E.

desi‘rZLTalza;) I:(’it hf:‘;l_go Into a discussion of all the reasons why it seems
could go into ;)I:i > this postulate, any more than earlier in this chapter we
ot iscussion of a.ll the reasons for adopting Postulate L. - It

suihce here to recall that in our discussion we have tried to show that

Three kinds of opera ‘Ons neces- in o d t'o ili
N rati S raer lIlake succe; 1 t

probability—mental, phyciort we must consider a chain of three kinds of
and mathematical ’ operations, viz., mental, physical, and mathe-
matical.

The fact that we must depend upon

a human individual to choo
. se su i i i
tions that he believes will leadczgssjul'ly o opeience those e

robabili indi
Ftinal bieng o s e, e & ncsary human st o
E with a prediction p. act 1s always an attempt to relate past evidence
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Starting with this postulate, we should note that the process of verifying
an inference involving a prediction P based on evidence E must be different
from that of verifying the prediction P. To verify the prediction, we do
not need to have in mind any evidence, whereas to verify the inference we
must determine whether or not the prediction P is reasonable upon evidence
E. Thus it is obvious that an inference based upon specified evidence E may
be reasonable or valid upon the basis of that evidence even after one has learned
that the prediction is false.®® These things will be discussed more in detail
in chapter III.

Now we are in a position to appreciate more fully the three concepts of
statistical control (p. 1), namely, as a state, as an operation, and as a judg-
ment. The state of statistical control is an ideal goal; statistical control
as an operation is a means of attaining the goal; and concerning control
The judge of quality must be there mu§t be a judgment in the nature of a
familiar with the rules of prob-  probable inference as to whether the state has
able inference and rules of been attained. The judge of quality must be
evidence familiar not only with the statistical means of
specifying the state of statistical control in terms of which he makes his
predictions but he also must be familiar with the rules of probable inference
and rules of evidence. His job is in this sense closely analogous to that of
the judge in the theory of Anglo-American jurisprudence; the legal judge
has his rules of evidence and principles of judicial proof, and the judge of
quality must have corresponding rules and principles, including those
underlying statistical inference.

THE SIGNIFICANCE OF STATIsTICAL CONTROL

Let us first consider the significance of the operation for attaining and
maintaining statistical control of quality upon statistical methodology.
As we have tried to show in the discussion about the state of statistical
control, there is a purely formal and mathematical theory of distribution
which may be taken as characterizing our concept of a purely formal state
of statistical control which, so far as the formal theory is concerned, may
or may not be descriptive of any state attained or attainable in practice.
Then there is the concept of the physical state of statistical control (drawings
from the bowl universe), which represents the limit to which we can go in
attaining valid predictability and minimum variability. Quality control
studies have shown that there is good reason to believe that such a physical
state can be attained in mass production, and that, when attained, the
observables of this state satisfy the criteria that are used in describing the
formal (mathematical) state.

24 For a further and lucid discussion of this conclusion and related matters, see C. 1.
Lewis, Mind and the World-Order (Scribners, New York, 1929), pp. 309-344.
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In the customary application of statistical theory, one assumes that he
is dealing with a physical state that gives samples showing the characteris-
Formal distribution theory tics of randomfless. Control Stl.ldl.eS have shown
will give valid predictions that such physical states of statistical control are
only in a state of statisti- indeed rare natural occurrences, at least in physics
cal control and engineering (¢f. later chapters), and further-
more that they can not usually be brought about without the operation of
statistical control, wherein comparatively large numbers of preliminary data
are taken in the process of detecting and removing assignable causes of
varigbility. In this chapter, we have considered the problem of control
only from the viewpoint of attaining valid predictability and minimum
variability in a measured quality X. In other words, we have neglected the
matter of accuracy, which will be considered later, especially in chapter IV.
We shall then find still more evidence to indicate the need for going through
a definite operation to attain a state of statistical control before applying
statistical theory that is based on the assumption that such a state exists.

Next let us consider the significance of the study of statistical control
from the viewpoint of the control of quality. Let us recall the three steps
of control: specification, production, and judgment of quality (page 1).
On the older concept of an exact science these three steps (call them I, II,
and IIT) would be independent. One could specify what he wanted, some
one else could take this specification as a guide and make the thing, and an
inspector or quality judge could measure the thing to see if it met specifi-
cations. A beautifully simple picture!

'1"he whole picture, however, is radically different just as soon as we
admlt‘ that we have only a probable science. Even when we limit ourselves
to trying to stay within tolerance limits, it is necessary for economic reasons

L . and for attaining maximum quality assurance in
isn"s;?g;z?(‘;'. ‘;’)°g::t‘°“' all kinds of work, including that where tests are
independent destructive, to introduce the concept of action

) . Jlimits A and B and the aimed-at value C, fig. 6.
cBol;:‘tx:::l Or(}irf;(();tsfsmig C we must first apply the operation of statistical
action iimits 4 and eB hmusi)really come fror.n Step 1II and after suita_ble
limits can not he ot w_:;lre teen established in Step II. But th.ese.a action
are specified in Ston T 1I t0}111 1io.m.e knoyyledge of the tolerance limits that
third step can not Il)oe .tak ]];l {t 18 paftlcular'ly 1mportan.t to note thai:J the
as objects, but instead m ertl; by skaply lrfspechn.g the qua}lty O.f the objects
ordered ir; relation tor thn ust be ta. en by inspecting the objects in a sequence

on to the production process. In fact these three steps must

g0 in a circle instead of in. a straight li i i '
. ght line, as shown schematicall fig. 10.
It may be helpful to think of the three st’e sction pr

. ) s in the mass i )
as steps in the scientific method. P ass-production process

In this sense, specification, production,
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and inspection correspond respectively to making a hypothesis, carrving
The three steps in fig. 10 core-  OUt 81 experiment, and testing the hypothesis.
spond to the three steps in a Lhe three steps constitute a dynamic scientific
dynamic seientific process of process of acquiring knowledge. From this
acquiring knowledge viewpoint, it might be better to show them as
forming a sort of spiral gradually approaching a circular path which would
represent the idealized case where no evidence is found in Step 111 to indicate
a need for changing the specification (or scientific hypothesis) no matter
how many times we repeat the three steps. Mass production viewed in this
way constitutes a continuing and self-corrective method for making the
most efficient use of raw and fabricated materials.

From the viewpoint of specification it is of interest to note that for the
meaning of control to be operationally definite, not only certain criteria of
control, but also the operation of selecting the objects whose qualities are to
be tested, must be specified. The choice of criteria to be used as a method

STEP 1 STEP I - STEPII
SPECIFICATION PRODUCTION INSPECTION.
oLDb
\C ATION

¢
o 3
<
/—\

”
CShgous

F1c. 10

of verifying the state of control can be made without reference to a given
kind of product, but the method of specifying the sequence to be used in the
chosen criteria can not in general be set down without reference to empirical
information obtained in production. What is still more important, the
intent of any such specification implies a certain degree of assurance that
the quality of the product will be found to satisfy this set of criteria, par-
ticularly when not every piece of the product can be tested. Here again,
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without a knowledge of the results of prior attempts to control quality, one
can not specify in a perfectly definite way just how many data are required
and in what sequence these data shall be used in applying control criteria to
give the quality assurance intended by the design specification. For these
reasons it seems that operationally verifiable control requirements, and
requirements as to how many data shall be obtained to provide adequate
quality assurance, can only be set down in Step III, and then only by one
having his eye both on the intent of design requirements and upon the ac-
cumulated inspection results to date, indicating the degree to which a state
of statistical control has been approached. Hence the design specification
must be supplemented in Step I1I by inspection practices providing adequate
data and satisfactory criteria of control for each type of product.

Furthermore, since the running record of past results must play such an
important part in judging the degree to which control has been attained, it
is necessary that Step I1I provide such a continuing record or quality report.
The graphical control chart (Criterion I) is admirably adapted to this end.
The mathematical theory of distribution characterizing the formal and
mathematical concept of a state of statistical control constitutes an un-
limited storehouse of helpful suggestions from which practical criteria of
control must be chosen, and the general theory of testing statistical hy-
potheses must serve as a background to guide the choice of methods of
making a running quality report that will give the maximum service as time
goces on.

To attain ecopomic control and maximum quality assurance, statistical
theory and techniques must enter every one of the three steps in the control

L . of quality. In this way they make possible a
St 3
en‘?;’ftéﬁﬂitffe?ﬁi :Lll:ge:e:tl;lsques very important potential contribution of mass
of fig. 10 production to scientific industrial progress.
. Incidentally, we have seen that this potential
state of economic control can be approached only as a statistical limit even
after the assignable causes of variability have been detected and removed.
Control .of this kind can not be reached in a day. It can not be reached in the
production of a product in which only g few pieces are manufactured. It can
however, be approached scientifically in a continuing mass productim.b. ’

Tue FUTURE oOF StaTisTIos IN Mass ProvucTtion 25

Much has been written about the application of statistical theory and

:ifs’?:;?u? mkstudying, discovering, and measuring the effects of an existing
Syster (1)' u: nown or .ch.ance causes. Much remains to be written about
pplication of statistical theory and techniques in finding out how to

2 Extracted from a paper b this ti i
Institute of MathematicalpStati);tic;? gﬂ:e(rfkl:grerli)%g ¢ the Detroit meeting of the American
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tinker with and modify an existing chance cause system until it behaves as
we want it to. The statistician knows that his predictions will be valid if
certain assumptions about the cause system are justified, perhaps the most
important assumption being that the particular effects of his chance cause
system are random. In mass production the statistician has learned by
experience that random effects do not just happen, even by careful planning.
If the industrial statistician ignores this fact and makes predictions as if he
were dealing with randomness, he may expect many of his predictions to go
wild; what is more he knows that this fact will be discovered and his work
discredited. For this reason the industrial statistician in mass production
must commence by developing techniques for determining when we are
justified in assuming that the effects of the underlying cause system are
random, and when the usual distribution theory is applicable.

- Experience in the control of quality has provided a practical technique
for detecting and eliminating assignable causes of variability in the produc-
tion process until a state of statistical control is reached wherein predictions
based upon the assumption of randomness will prove valid. By the elimina-
tion of assignable causes of variability we make the most efficient use of
raw materials, maximize the assurance of the quality of the manufactured
product, minimize the cost of inspection, and minimize loss from rejections.
Statistics in mass production can be made to pay good dividends, and has a
bright future. What does this future depend on?

The answer to this question is contained in the three fundamental steps
in quality control (p. 1; also fig. 10, p. 45):

I. The specification of the quality of the thing wanted.
II. The production of things designed to meet the specifi-
cation.
III. The inspection of the things produced to see whether
they meet the specification.

We have seen that the outstanding characteristic of the first step is the
necessity of setting up and putting into effect a tolerance range for each
specified quality characteristic. If a producer contracts to deliver goods
within some specified range and upon applying Steps IT and III finds that
some of his product falls outside the tolerance limits, he loses money. He
must not contract to meet tolerance limits that are too narrow, yet if he is
to make the most efficient use of materials, he must, in most instances, close
up the tolerance limits as much as he dares.

Obviously one can not specify a practically attainable tolerance range
out of thin air;.one must recognize what is possible under commercial condi-
tions of production in Step II, which in turn is revealed by inspection in
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Step III. He must also take into account the fact previously noted, and on
which much more will be said later, that the manufacturing process to begin
with is almost certain not to be in a state of statistical control. This state
can be approached only through the application of certain statistical tech-
niques involving the use of the control chart. The point to be stressed is
that the three steps, specification, production, and inspection, can not be
taken independently in mass production: instead they must be coordinated,
each step being of assistance toward the attainment of the other two, as is
suggested in fig. 10 (p. 45). In fact, the three steps may be thought of asa
scientific experiment in which the objective is the attainment of the most
efficient use of the available materials.

Broadly speaking, the statistician of the future has before him the op-
portunity of helping to develop this fundamental type of experiment. As
has been stated, he must start by designing statistical control techniques
for the elimination of assignable causes of variability, whereupon he can use
modern statistical theories as deseribed in the literature with reasonable
assurance that his predictions will be found valid. He must, however, go
further than is customarily recognized in the current literature in that he
must provide operationally verifiable meanings for his statistical terms such
as random variable, accuracy, precision, true value, probability, degree of
rational belief, and the like. The chapters that follow will be an initial
step in this direction.

In one sense the statistician’s problem in mass production is more compli-
cated than the design of experiments that is usually considered in the litera-
tu.re of statistics. Whereas the customary statistical theory is concerned
with .c.ompal'atively small-scale experiments carried out under laboratory
condmops by a few people, the corresponding development of the mass
production Pprocess must be carried out under commerecial conditions on a
!arge scale, mvolvmg-large_ numbers of people. To illustrate, the three steps
1.11 the mass produ(?tlon process are usually carried out either by different
may volvethecoordimated chor ot aevsl e Sompany: The step
of employees, including physicists c(l)l l 'eia v hl'mdreds and even thousands
ing agents, lawyers, and econom{ £ em{? % coEineers salesagante, purches
had any training in’statistics ; Sb i fow of these people have ever
0 appreciato them if (e s or pro .ablhty, and yet they must be brought

0 them atisticlan is to develop the opportunity of making
his full contribution. This situatio i y

1Tl n constitut 1 for

those now in industry but also for th bl prob ero o t onty ©

industrial leaders of 1y or those resp.ons:ble for the training of the

morrow so that they will have sufficient knowledge of

g €
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In the future the statistician in mass production must do more than

simply study, discover, and measure the effects of existing chance cause

. systems: he must devise means for modifying these cause

An additional duty  gyitems to bring about the results that are desirable in
for the statistician . .

in mass production the most efficient use of materials. He must not be

satisfied simply to measure the demand for goods; he

must help to change that demand by showing, among other things, how to

close up the tolerance range and to improve the quality of goods. He must

not be content simply to measure production costs; he must help to decrease

them.

“The future contribution of statistics in mass produetion lies not so much
in solving the problems that are usual to the statistician today as in taking
a hand in helping to coordinate the steps of specification, production, and
inspection. The long-range eontribution of statistics depends not so much
upon getting a lot of highly trained statisticians into industry as it does on
creating a statistically minded generation of physicists, chemists, engineers,
and others who will in any way have a hand in developing and directing the
production processes of tomorrow.



CHAPTER 11
HOW ESTABLISH LIMITS OF VARIABILITY?

Thus in many directions the engineer of the future, in my
judgment, must of necessity deal with a much more certain and
more intimate knowledge of the materials with which he works
than we have been wont to deal with in the past. As a result
of this more intimate knowledge his structures will be more
refined and his factors of safety in many directions are bound
to be less because the old elements of uncertainty wilt have in
large measure disappeared.!

FRANK B. JEWETT, President
Bell Telephone Laboratories, Inc.

WHAT 18 INVOLVED IN THE PROBLEM?

In the previous chapter we saw how the engineer first tried to make
things exactly alike in the process of mass production; how, for economic
reasons, he was forced to adopt the use of the go tolerance limit and then
the go, no-go tolerance limits; and finally how he was forced to adopt the
use of the go, no-go tolerance limits plus two action or control limits and a
statistical limit in order to effect additional economies and to attain maxi-
mum quality assurance. Attainment of the state of statistical control
considered in the previous chapter involves the establishment of the control
and statistical limits. The problem considered in this chapter is that of
osml)‘lishing the tolerance limits.? That is, we shall consider the question,
how is the engineer of the future going to provide himself with a knowledge
of the properties of materials that is adequate for setting tolerances in &
way to make the most efficient use of these materials?

Notg on the meaning of tolerance limits. Probabilities involved. We
may think of t'he use of the go, no-go tolerance limits as constituting 2
;neat;li of screening a given p?oduct in respect to some quality characteristic.
wI;thi 1118 Ws}(}allzs},le,t }‘lcolerarll_ce limits on a quality characteristic X fix the range
to specification eaqgatlty X of a piece of product must lie in order to conform
AR thi: Yo fit into some mechanism that the engineer wants to
design. However ‘i’tlﬁwpomt, the choice of limits depends upon a particular
or at least what he’ ca;ls nott only Wl}at the engineer wants but what he can gfft,

get economically, that must be taken into account in

! “‘Problems of the engineer,

X ” Science, vol. ‘75

2 The rel enee, vol. 75, pp. 251-256, 1932,

control l?mri‘::fiogsdbe;ween the five limits, two tolerance limits L; and Ls, two action or
nd B, and the statistical limit C, is illustrated in fig. 6, p2.’ or

50
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the setting of tolerance limits. So soon as an engineer undertakes to set
tolerances that make efficient use of materials, he must think not only of the
tolerance range itself but also of the percentage of the product made under com-

mercial conditions that may be expected to have
f?;;?rifizi;%?tg::::zgﬁ; a quality falling within this range. Hencg t.he
when thinking of tolerance limits €Stablishment of economsc  tolerance limits

necessitates the acqu1s1tlon of knowledge
concerning the probablhty that the product made under commercial condi-
tions will have a quality falling within these limits.

There is another reason why the engineer under certain conditions must
be concerned not only with the tolerance range but also with the probability

associated with that range. For example, if the in-
With tolerance limits  g00tion test to determine whether the quality of a
there must be an . . oy .
associated probability Piece of product lies within the specified tolerance
range is destructive, then it is only through a knowl-
edge of the expected variability of quality that an engineer can determine
what assurance he has that the quality lies within its tolerance limits.

Whereas tolerance is sometimes defined either as the difference between
two limiting sizes as a means of specifying the degree of accuracy or as a
specified allowance for variations from a standard, the concept of tolerance
as used in this monograph implies not only the concept of tolerance limits
but also that of the percentage of the commercial product that may be expected
to have a quality falling within this tolerance range. So long as we think
of a tolerance range simply as go, no-go limits, our attention is centered
primarily on the limits themselves. However, just as soon as we begin
to consider the establishment of tolerance limits from the viewpoint either
of making efficient use of available materials or of maintaining an ade-
quate degree of quality assurance, especially when the inspection test is
destructive, we must think not only of the tolerance limits but also of the
probability associated with these limits.

Three typical tolerance ranges. Let us confine our attention to a single
quality characteristic X. Three typical kinds of tolerances that arise in
practice are illustrated schematically in fig. 11. If p represents the probabil-
ity 3 of a value of X falling outside the tolerance range Li, L, the problem
may be thought of as that of setting tolerance limits in such a way that

p=p (7
where p’ represents the largest fraction nonconforming that is allowable
from an economic viewpoint. Associated with any such requirement there

3 Some difficulty is involved in interpreting the meaning of this probabi}ity when the
quality of the product is not in a state of statistical control because ther:e is no constant
probability p under these conditions: the probability p itself then varies with time.
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is some tolerance range L1, Ly, and it is desirable in most instances that this
range be reduced to an economic minimum through the process of eliminat-
ing assignable causes of variability.

Very often in practice only the tolerance range is specified. As an
example of a tolerance range in which both limits are specified we have the
requirement that the diameter of a shaft must lie within the range L, L,

o I l—p |
L1 L2
N S |
111 = 0 L2
o l l—1p l
L, Lo—
Frc. 11

(top of fig. 11).  As an example of a tolerance range in which only the upper
limit is specified, we have the requirement that the blowing time of a fuse
shall not be greater than L, seconds (middle of fig. 11). By implication the
lower limitis Ly = 0. As an example of a tolerance range in which only the
lower limit is specified, we have the requirement that the tensile strength of
a steel strand shall not be less than L, pounds per square inch (bottom of
ﬁg._ 11). By implication the upper limit is L, = ». Even thoﬁgh no re-
q.mremen.t sx.xch as (7) is explicitly stated in any one of these three illustra-
tions ‘typlfymg practice, some such requirement is implied, because it is
essential that the fraction p of nonconforming pieces shall not exceed some
value that is usually les.s than 1 percent and often less than 0.1 percent.
Object of the Our ob]ect.m this chapter may now be more definitely stated
chapter as that of trying to determine some of the potential contribu-
tions and inherent limitations of the application of statistical

theory in the establishment of the economs. imi i
omic tol
each of the three cases. erance fimits Ln and Lo

TaE ProBLEM FROM THE VIEWPOINT OF StaTIsTICAL THEORY

pla;? I:)rxg:;{ t:: see clfaa,rly the role that.statistical theory may be expected to
Dy ] tol g pqz&ble the most efficient use of engineering materials, it is
we ar ’ 11 (CiOIlSl er two fUIlda:mentauy different, conditions under which

¢ called upon to establish economiec tolerances; namely, setting

tolerances on the qualit isti
' ¥ characteristics of (a) raw and fabri i
and pieceparts, and (b) the completed unit, ) e g

strucf,ux:e. For the sake of simplicity,
acteristic X of some fabricated materia]
or that of malleable iron,

physical system, or engineering
let us think of some quality char-
o mat such as the tensile strength of steel,
the thickness of condenser paper, or the like.
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First of all there is the problem of discovering the way the given property
X varies under commercial conditions of production and then comes the
problem of making the best use of material with this kind of variation
when used in the design of complicated structures.

It is helpful to think of these two problems as being characteristically
inductive and deductive respectively. The first has the earmarks of the so-
called statistical problems of estimation and the second has the earmarks of
the statistical problems of distribution. )

From an engineering viewpoint, these two problems, broadly speaking,
may be considered as belonging in the field of research on the quality of
materials on the one hand, and in that of design on the other. It is sig-
nificant for both the engineer and-the statistician that statistical theory can
be made to play an important role in these two fields. For the engineer
it makes certain economies possible and provides a rational basis for estab-
lishing interrelated tolerances in a complicated structure so as to make the
most efficient use of materials. For the statistician it opens up & new field
for the application of statistical theory and techniques not only in the in-
ductive process of adding to our present knowledge of physical properties of
materials and physical laws but also in the deductive process of designing
structures that make the most efficient use of our present knowledge of
available raw and fabricated materials.

If it were possible to attain a state of statistical control for each and
every quality characteristic of fabricated materials and if the frequency
distributions of these characteristics were known, it is obvious that the
efficient use of such knowledge in designing new structures would involve,
among other things, the direct application of mathematical distribution
theory. Even before the engineer has attained the state of statistical eon-
trol for all important quality characteristics of the fabricated materials and
pieceparts entering into a given design, it is possible under certain conditions
to effect a reduction in overall tolerance limits and to decrease the number
of rejections by randomizing the assembly process so as to distribute the
effects of assignable causes. The applications of statistical theory in the
processes of design and assembly are particularly attractive to the mathe-
matical statistician for they are likely to pay a good return on the exercise
of all his mathematical talents. However, such applications are only
touched upon here and there in this monograph. 1In the rest of this chapter,
for example, we shall consider primarily the inductive process of establishing
tolerances on a single quality characteristic X of any fabricated material or
piecepart.

4+ Of course, when making this distinction, we must keep in mind that induetive scien-

tific inference involves the use of both inductive and deductive steps employed in the
process of making and testing a hypothesis.
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A practical example. One might expect that all the engineer needs to
do in order to improve his technique in setting tolerances on some quality
characteristic X is to become acquainted with the available theory of
“statistical estimation.”” We shall later find that such an expectation is
not justified, but that is getting ahead of our story.

Let us assume that we wish to use malleable iron in some design and
to set tolerance limits on its tensile strength. We naturally turn to the
engineering literature for data obtained under practical conditions to be
used as a basis for setting such tolerances. In the report of a recent sym-
posium ¢ on malleable iron, we find the results of 5000 tensile-strength
measurements on as many test bars of this material. These measurements
were made by Enrique Touceda for the Malleable Iron Research Institute,
the bars having been taken from several different heats over the period from
May to November 1930, from each of the companies comprising the mem-
bership of the Institute. These data are presented in table 1. Here we

TABLE 1
TENSILE STRENGTH OF 5000 MALLEABLE IronN Bars

Range of values Observed Normal law

1bs. per sq. in. distribution distribution Difference
Under 45,000 0 -0 0
45,000-45,999 1 0 1
46,000-46,999 2 1 1
47,000-47,999 3 5 -2
48,000-48,999 8 22 —14
49,000-49,999 23 77 —54
50,000-50,999 289 210 79
51,000-51,999 472 447 25
52,000-52,999 739 744 -5
53,000-53,999 927 963 —36
54,000-54,909 967 970 _3
55,000~55,999 758 762 4
56,000-56,999 481 466 15
57,000-57,999 230 222 8
58,000-58,999 72 82

59,000-59,999 19 24 =
60,000 and over 9 5 - 2

have a very respectable-lookin
However, when graduated to
the theoretical and the obser

g unimodal frequency distribution (fig. 12).
a élc()ir.rr;a.lbcurve, the closeness of fit between
' ved distributions as measured by x2 = 90.23
lsh :(})lt velgl ,‘gt?ocll, a,I%d the .theoretical statistician might therefm}"e zrgue that
e viﬁfe O(z liai sl:)r;lver‘se Isnot normal. For our present purpose, however,
of e umver;(e o no 1;1ter§st; We are not concerned with the functional form
exists at oll ik ‘merely with the assumplion that a universe exists. If it

all, then 1t would appear that the setting of economic tolerances

® Symposium on malleable j i i i
Materials, vol. 31, oo yaleal f, 11r£;):‘)n1 -castmgs, published in the Proc. Amer. Soc. Testing
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reduces to a statistical problem of estimation; and by increasing the sample
size at will, we could presumably approach closer and closer to the tolerance
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range associated with any specified value of probability.¢ If, however, the
universe does not exist, there is no corresponding rule for getting closer and
. . closer to the tolerance range. Our problem here of set-
Setting tolerances is ting tolerances is therefore twofold: (@) to examine the
a twofold problem ) }
available evidence to see if one is justified in assuming
that a statistical universe exists, and (b) to consider the technique of
setting tolerances both when the assumption is justified and when it is not.
There is, however, another aspect of setting tolerances that we must con-
sider. For example, let us assume that we wish to make use of pure iron
in some way that requires us to set tolerances on its density. Accordingly
we turn to an authoritative table 7 of physical properties and find the density
given as (7.871 % 0.002) gms/cm3. This example is typical of the case
where the available information upon which to base tolerances is given in
the form X + AX. What is the meaning of such a range and what relation,
if any, does it bear to the tolerance range? Obviously, a tolerance range
can be put into this form so far as its numerical aspects are concerned.

¢ For a more critical discussion of the limiting process here involved, see the latter part
of chapter IV. '

7 Physical Constants of Pure Metals, The National Physical Laboratory (His Majesty’s
Stationery Office, London, W. C. 1, 1936).
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Furthermore, if we turn to the literature of modern statistics, we find much
emphasis placed upon the assertion that with

Can va(liid toll(:ra:ce_ ralt_lges " the help of modern small-sample theory such
be ﬂ;lis?”t ¢ basis of small  ranges can be established upon the basis of small

. samples just as validly as upon the basis of large
samples. Hence the engineer rightly wants to know if the statisticians
have found a satisfactory way for setting tolerance ranges on the basis of
small samples. '

We find much confusion regarding the meaning of ranges X =+ AX even
in the literature of statistics. The fact that the meaning of the range that
is valid in the sense of so-called modern small-sample theory turns out to be
different from the meaning of the tolerance range should be of considerable
interest to statisticians as such as well as to engineers.

How EstaBLisH ToOLERANCE LiMiTs IN THE SimMpPLEST CASE?

A tolerance range for the bowl universe. Instead of tackling at this
point the practical problem of setting tolerance limits on a property such as
the tensile strength of malleable iron castings, let us start with the simpler
problem of establishing tolerance limits where we know that the sample
Xy, Xoy -+, X4y - -+, X of data was drawn one at a time with replacement
from an experimental ® normal universe. Let us consider first how to set a
tolerance range X = L; to X = L, that will include let us say (1 — p')N
= .5N or one-half of N future drawings from the bowl. An engineer may
wonder why we choose .5 whereas in practice p’ is most likely to be less than
.01: we choose this value of p’ because several books in science and in error
theory seem to tell one just how to establish L, and L for p’ = .5. For
example, one (?utstanding treatise of 1937 on a particular branch of physics
has an appendix discussing accuracy and precision. The authors give eleven
measurements of a length. They calculate the arithmetic mean X of this
sa.mple an.d the estimated probable error e of a, single measurement in accord
with classical error theory. They then state in effect that if another set of n
n}lleasurements be ma,d(? unfler the same conditions, it is an even chance that
the mean of this set will differ from the mean of the set of eleven measure-
ments by more than e/+/n. This certainly looks to the uninitiated like 8
means of setting a tolerance range for &, probability of 1. Of course, the

implication is that ranges for any probability could be set up in an analogous

manner with proper allowance for th i i
p’, such as 0.1, 0.05, etc. ° magnitude of the desired value o

menstojzgrzl}fs tl;e result of an experiment is more convineing than an argu-
! erefore let us see what might happen to one who set tolerance

8 See, for example, page 165,

Jactured Product, for such a distrib e 22, of m

ation, y Economic Control of Quality of Manu-
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ranges by such a rule. For this purpose, I drew from a normal universe in a
bowl the sample of eleven measurements shown in table 2. The average X,
and the estimated probable error e of a single observation are .009 and .322
respectively. Now let us set up tolerance limits for a probability of } and
sample size * n = 4. In line with the previous paragraph, we find that such
limits would be .009 £ .161, since .322/4/4 = .161. According to the

TABLE 2
.5 1 -3 -9 1 -1
-.1 3 —.6 N 4

X =0.009, SD.=0456 = o, 0.674sV11/(11 — 1) = 0322 = ¢
authors of the text, at least as I interpret their discussion, we should expect
to find fifty percent of the averages of samples of four lying within this range.
Well, let us take 100 samples of four and see if such a prediction is valid.
Fig. 13 shows the results of one such test. We were led to expect 50 percent
within the limits .009 & .161 shown by the dotted lines: actually we find
27 percent! The prediction of 50 percent within limits was not valid!

l.5|'
L * * .o .'
1.01, .
° hd . *
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What would happen to a practical man who followed such a rule? In
answering, I am reminded of the old saying: when a doctor makes a mistake,
he buries it; when a judge makes a mistake, it becomes the law. I would
add in the same vein: when a scientist makes a mistake in the use of statis-
tical theory, it becomes a part of ‘“scientific law’’; but when an industrial
statistician makes such a mistake, woe unto him for he is sure to be found

® Of course, 1 might have chosen any other value of n.
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out and get into trouble. Why the difference? The answer i1s that in
establishing tolerances, one can rest assured that he will hear about it if
appreciably more than the expected percentage of the product is found
outside of the limits, because hundreds, thousands, and sometimes even
millions of pieces of product are made per month.

It would, of course, be unfair for the engineer to judge the usefulness
of statistical theory on the basis of the example just considered. Gauss,

the originator of the estimate a\/n/ (n — 1), was aware of
Student'stheory  the fact that it fluctuates from sample to sample, and the

same can be said of all careful writers since his time. Some
of the inherent limitations of the older theory have been overcome by work
that began in 1908 with Student’s publication 1° of tables for the probability
P« that the mean of a sample of 7, drawn at random from a normal popula-
tion, will not differ from the expected value X’ of the population by more
than z times the standard deviation ¢ of the sample. Let us see whether
this fundamental contribution helps us to set tolerance limits for the ideal
case of the normal bowl universe. -

First, let us see just what this theory enables us to predict with validity.
Interpreted in an operationally verifiable way, this theory means, among
other things, that given a normal universe, even though its expected value
X’ and standard deviation ¢’ are unknown, we can nevertheless make the

valid prediction that if we draw a series of N samples of size n, and calculate
the N ranges !t '

Xx:*:Zo‘l, X'z:l:zn,---, XN:I:ZO’N

then p.N of thf‘ese ranges may be expected to include the expected value X’
o}f1 the Popu!at}o.n. If the population is an experimental one whereof the
L eoretical limiting value X’ may be obtained,!? then such a prediction can
e _tisted. As an example, fig. 14 shows a series of 100 such ranges for
n“— 1, 40 ranges for n = 100, and 4 ranges for n = 1000. The ranges were
all calculated with p, = 1. The expected value 3 X’ is zero, and is shown
10 Student, “The probable error of a mean.” Bj ¥
. 4 ] Biometrika, vol. 6, pp. 1-25, 1908, As
21:ge once remarked to the editor, Student nov‘;here in this p,aper merﬂli)oned the probable
orloé a meanlexcept in the title, P
1t For samples of 4, and with p, = i
. " 3] € p.—%,z=0.442 ’s i
g‘;hga 8 t:;ﬁe of _t_, the relation being ¢ = 2/ (n — 1),’ a,;:)sr fs(:;l;,l]ef; %?nszl(i%%t:rlztgﬁ%r
g Sl s o S o S
T ra, : U not too far into the tails.
such a,foi;’ac :s%zacl)bcﬁitgzssxos%eo: htélzi(s)pera_tional sense in which a theoretically true value
l?gfin o in the o el chag:,:il(i?] of logical verifiability and of the meaning of
course, zero is thy X ips i i
tical limit X' of £ pons no: gzezl;;%e Ofvgl;e hlz;umbers on the chips in the bowl, yet the statis-
of circumventing thiy difficatty wili b ve no way of telling, but an operational method

7 e discussed later on in thi
and egs. (12) and attendant discussion), also more fully in th(laslggt? gﬁp%ﬁ? Segggtﬁ:es a
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!ay the heavy central line. By actual count, the percentages of ranges that
mcluc‘le zero are 51, 45, and 50, the expected value p, being 50. To me, this
constitutes an excellent check between theory and experiment. Thus we

200
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» Fig. 14

see that it is possible to make predictions with Student’s theory regarding
the varying ranges in the sense of fig. 14 that are just as valid for small
samples as for large ones.!

14 Editor’s comment. It is important to realize that the change from bad agreement to
good agreement that has been brought about by substituting the Student ranges in fig. 14
for the single range in fig. 13 is due more to a development in interpretation than to any
numerical refinement provided by Student’s integral.

In fig. 13 there is only one range—the spacing of the horizontal lines; moreover this
one range is centered throughout at 0.009, which happened to be the mean of the 11 measure-
ments on page 57. This one range just happened to give bad results; it might have been
somewhat wider and given better results; if it had accidentally been close to 2 X 0.674¢'/4/4,
spaced centrally about 0 (.009 is close enough), it would have worked very well. Infig. 14
there is not a single range, but many ranges—one for each sample, their centers and lengths
following the fluctuations of the means and standard deviations of the successive samples.
This would be so whether each range had been computed with the classical estimate of the
probable error made from that particular sample (.6740/4/(n — 1) = .389¢ for samples Qf
4), or with Student’s multiplier (.4420), as was actually done. Of course the Iatter will
give somewhat better results with the normal bowl, on the average, but the numerical
refinement of replacing .389 by .442 is not so momentous as has been proclaimed by many
writers. Of much more importance to the statistician is the fact that, whether he uses
the classical estimate aVn/(n — 1) of ¢’, or Student’s integral, he is at the mercy of the
sampling fluctuations of ¢, even in controlled experiments. )

The chief lesson in figs. 13 and 14 is the resignation to the fact that no sing!e
small sample can provide the information needed for setting the width of a single pair
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Student's theory inadequate for tolerance limits. Now let us consider
the problem of establishing a tolerance range for samples from the normal
bowl that was used in getting the data shown in figs. 13 and 14. As before,
let us assume that we do not know the parameters of the normal distribution
in the bowl. Our problem is to set a range X = L; to X = L, such that
the probability of drawing a value X lying within this range is some previ-
ously specified value, 1 — p’. As a special case let us take p’ = .5. We
shall assume that the only way we can find out anything about the normal
universe in the bowl is by making drawings with replacement.

Obviously the starting point is to draw a sample of n values of X from

the bowl. To make the problem specific, let us assume that we have drawn
the following sample of four:

1.7, 02, 14, 05

How shall we set up the tolerance limits L, and L, for a probability p’ = .5?

I think it will be generally (perhaps unanimously) agreed among statis-
ticians that our best estimate of such a range can be put in the general form
X &+ to. Tt is obvious, however, that no matter what rule is adopted for
computing such a range, that range will only as a rare event correspond to a
probability p’ = .5. It is also obvious that the problem of establishing a
valid tolerance range is fundamentally different from the problem solved by
S.tudent. His theory tells how to make valid predictions of the number of
times a series of varying ranges with varydng centers may be expected to in-
clude a theoretically true value, whereas, in order to establish a valid toler-
ance range, we must be able to make a valid prediction about how many

times future observed values may be expected to fall within a given pair of
fixed limits.

A study of three types. of ranges. The difference between the Student
type of range and the estimated tolerance range is of fundamental impor-
tance. The two ranges should certainly not be confused as they sometimes

of lines that will perform the feat that was expected of those in fig. 13, and the substitution

of a theory that deals with the ¥
Drediction meoring o i th rt;lrymg_ ranges of fig. 14. It should be noted that any

: ge X &+ 20 is a probabili icti i
thatlpartlczlalr range, but rather a whole sequence of ,}; T(;;izg 111:7}:9 e;;redlctlon concerning not
n " .
we n ee:i:otl;) rgoe twt?;i{lg indtﬁls(_’r I fear, in much of the application of statistics to agriculture,
fig. 13—but they must l;)e ne }:def} of a single range—a, pair of horizontal lines like those in
even though close to 50 ;Z:c:n?i)hft ﬁllace.. The fluctuating ranges of fig. 14 will not suffice
pre d,il‘f ﬁe d by Student’s theory. em in a long series do overlap the true value, just as
Similarioeglgt'oi fifl]ge:nfio poindt out f;ha.t though there was a prior publication of a chart
came originally from coﬁ%ei‘rslatilrl;ge S_ﬁfahstwal Theory of Errors (their fig. 11), the notion
footnote 27. An s with Shewhart, as explained in Deming and Birge’s

I illuminating ch 3 : AT
included by Student’s integraﬁ :ngr:hf)zz lilringtratmg the distinction between the samples

341 of an artice by Alan Trel luded })y the normal integral is fig. 4 on page
vol. 5, pp. 324-341, 1934. reloar and Marian Wilder, Annals of Mathematical Statistics,



HOW ESTABLISH LIMITS OF VARIABILITY? 61

are in the literature, particularly when the probability is taken as .5.
Neither should the meaning of either of these ranges for a probability of .5
be confused with the meaning of the probable error range X’ 4 .6745¢'/v/n
of classic error theory for averages of samples of size n, where X’ and o’
are the true average and standard deviation respectively of the universe.
To emphasize this point let us consider the following examples of these
three ranges:15

50 percent Student X 4= z¢ computed from a sample of n in
range:!® such a way that 50 percent of the ranges
" computed in this same way from a se-

quence of samples of n from this same

universe may be expected to include X'.

Estimated 50 per- X =+ k¢ computed from a sample of n

cent tolerance and estimated to be the range that will

range:"’ include 50 percent of the averages of fu-
ture samples of n from the same uni-
verse.

The probable error, X’ = .674¢’/+/ncomputed from the uni-

or 50 percent toler- Vverse parameters and assumed to include

ance range:'® 50 percent of the averages of future
samples of n from the same universe.

The following five points should be noted: (1) the first two ranges are
computed from a sample, whereas the third is computed from the param-
eters of the universe; (2) the predictions involved in the meanings for the
second and third ranges are the same, and this prediction is different '* from
the corresponding prediction for the Student type of range; (3) the validity
of the prediction for either the Student or the probable error range is to be
independent of the sample size, whereas the validity of the estimaled toler-
ance range (the second one of the three) depends upon the sample size n in a
way that we shall shortly consider in some detail; (4) as the sample size n
in the estimate of the tolerance range approaches infinity, we may expect

15 Probabilities of other than 50 percent could be considered with obvious modifications
in the ranges. In fact, in the example treated in fig. 15, the fraction used is 99.73"percent.

16 The 50 percent Student range is what Neyman and Pearson would call they ‘50 per-
cent confidence interval” computed from the standard deviation of the sarpple.' Here
the 90, 95, 99 percent confidence intervals would be computed sxmllarly,_but with¥different
values of z, as found by Student’s integral. Values of z are conveniently found frs)m
Fisher’s table of t, the connection being t = z4/(n — 1). Demmg'and"erge show the 50
percent values of z directly in their Statistical Theory of Errors, p. 140. Editor. B

17 Tt should be noted that the z and k are different numbers even fo.r the same _probablhty
because the ranges X + z0 and X & ko are not subject to the same interpretation. )

18 In chapter IV it is pointed out that there is no possible physically operational meaning
to this third type of range.

1% See editor’s comment on pp. 59-60.
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predictions in terms of these estimates to approach the same degree of
validity in the statistical sense as predictions in terms of probable error
ranges; and (5) as the sample size used in computing either the Student or
the estimated probable error range approaches infinity, both these ranges
approach in the statistical sense the probable error range computed from
the parameters of the universe, as given above.2?

Now let us see what we must do in order to set up a tolerance range for
a prediction which is valid within limits that are practical. For this
purpose let us choose 1 — p’ = .9973 because this is about the magnitude
customarily used in engineering practice. Of course, if we knew X’ and
o', the desired range would be X’ 4 3¢’. Let us see what happens if we
take X =+ 3¢Vn/(n — 1) as the range for each sample. Fig. 15 shows 100
such ranges for as many samples of 4 drawn from an experimental universe;
40 ranges for 40 samples of 100; and 4 ranges for 4 samples of 1000. The
dotted limits are X’ + 34, .

A tale of great practical importance hangs on this figure. The standard
deviation ¢ fluctuates from sample to sample so wildly for samples of four that
large errors in predietion often result. But for z so large as 100 the standard
deviation is much steadier, and for n = 1000, steadier yet. If one were to
go through life setting 99.73 percent tolerance ranges for samples of four,

bl |

00 © 5 %2 & o

SAMPLE NUMBER

Fie. 15

using the “estimated”’
he would sometimes get
when the samples are
second range in fig. 15 i

value of ¢’ as indicated in the previous paragraph,
a range that includes g, very small percentage, even
drawn from a normal universe. For example, the
ncludes only 12 percent instead of the aimed-at 99.73
% At this point the reader ma;

of Deming and Birge’s Statistical g’hv:loil; 2;' %’3‘1::;1; ¢ ® simple example worked out on p. 141
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percent. Furthermore, most of his ranges would be off center owing to
fluctuations in X. Even on the average, the ranges thus set up would not
include 99.73 percent, but something less. For example, the observed
average for 1000 such ranges for as many samples of four was in one experi-
ment found to be 93 percent. Of course, it is theoretically possible to

- choose a coefficient for ¢ that will overlap 99.73 percent of the chips, on the
average, but the errors of the separate ranges would have a larger average
than those observed above.

There are many details of interest that might be considered, but for our
present purpose it is sufficient to note that the varying experimental ranges

have a tendency to hug closer to the ideal limits the larger
Small samples?  the sample size used in computing the limits. This fact

is of great practical importance, because it shows that if we
wish to reduce the chance of making an error in estimating the probability
associated with chosen tolerance limits, there is no royal small-sample
road for doing this. Even under the simple conditions here assumed, we
can improve our estimate only by increasing the sample size n. And even
with the normal bowl universe one would not likely be satisfied with a sample
of less than 1000 and would most certainly require 100 or more if he were
trying to set tolerance limits that would insure efficient use of engineering
materials. That is to say, even if the properties of materials and manu-
factured products were in a state of statistical control to begin with, it would
still be necessary, in order to acquire the “certain and intimate knowledge”” *!
required for setting the most efficient tolerances, to have a sample of at
least 100 and more likely a sample of 1000 or more.

It should also be noted that there is no way to form an opinion concerning
the errors that might be made in adopting an estimated tolerance range of
the form X == ko unless we know the sample size n from which it was computed.

In chapter III we shall be concerned with ranges again, but from thé
standpoint of the presentation of data.

How EsrasLisi TOLERANCE LIMITs IN THE PRACTICAL Casg?

The necessity for control. Thus far we have considered the method of
establishing tolerance limits, assuming that the world is a bowl of chips.
Under such conditions, we can increase our knowledge upon which to base
tolerance limits only through the process of taking more data, that is, by
increasing the sample size. This problem is purely statistical in the sense
that any sample of n observed values may be considered as a sample of an
indefinitely long sequence of numbers satisfying the requirement that they

21 Compare this with the quotation at the beginning of this chapter, p. 50.
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come from a'statistical state of control. Schematically the situation is this:

Xl,Xz, ---,X,',--',X,., ‘ X nt1, -'-,X,.+i,--- (8)
Sample | Universe
Past Present Future

How to set tolerance limits L; and L; upon the basis of the sample, and how
to determine the errors that may be expected for samples of n, are problems
to the solution of which the mathematical statistician can contribute more
than anyone else, provided, of course, that the physical state of statistical
control represented by drawings from the bowl can be characterized by the
mathematics of distribution theory. In fact, in such a state of statistical
control, there is, in general,? nothing useful that an experimental scientist
can tell a statistician about how the n numbers arose beyond the statement
that they were drawn from a bowl. Thus we see that since the state of
statistical control represents the limit to which one can hope to go in attain-
ing uniformity of quality of product, the setting of the most efficient toler-
ances reduces in the end to a purely statistical problem.

Now let us ask : how often in the practical field is one justified in conclud-
ing upon the basis of a small sample of data that the conditions have been
The stat;sticim does not maintained esse.ntia.lly'the same in the sense that
dare to take it for granted 2 would be justified in making predictions as
that contro! exists though the sample had been drawn from a bowl?

. A mathematician obviously can not answer this
f]ucstlon;. we must appeal to experience for an answer, but in analyzing and
interpreting the experience the statistician and scientist must cooperate.

' To make our problem specific let us assume that we are given a set of
sixteen measu_rer.nents (table 3) of a physical quantity and that we wish to
set tolerance limits for such measurements.2? What should be our first step?

TABLE 3
6.683 6681 6676 6678 6679  6.672
6.667 6.667  6.664 6678 6671 6675 gg% g:g%

Shall we call in a statistician to proceed as if the sample had been drawn from

2. Eowl, or sha!l' we first call in the scientist who took the measurements to
hei:m ‘/1;) ?Or;lethlng about them? If we call the scientist, what shall we ask

% The qualifying phrase ““in " i
strictly speaking we can never be szﬁint?}rxz]t wls reea he}'e 5 e mind scified monure sont
or physical operation, includin
monograph as a random one.

= It should be kept in mind th
at we h
on these measurements, instead of the ﬁué,‘t‘(l:t(;h

osen here to set constant tolerance limits
the editor’s comment, beginning on page 59

ng limits given by Student’s theory. See
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Some engineers, scientists, and statisticians make a distinction between
the observations of the highly skilled and technically trained research
worker and those that an engineer must often work with. They tend to
place a kind of halo around the data of research as though such data repre-
sent the limiting condition that one may hope to attain in removing causes
of variability. As noted in chapter I, when scientists think they have done
an excellent job measuring some physical constant or property, they have
the habit of saying that all the measurements were made under the “same
essential conditions.” The statistician as a rule not knowing any too much
science and the scientist not knowing any too much statisties, the two have
often gotten together and agreed, as it were, that the phrase ‘“same essential
conditions’ can be taken as a password between the two groups. Hence
one might conclude that it would be sufficient to ask the scientist if the data
of table 3 had been taken under the same essential conditions. If the
scientist answers yes, then one might be tempted to turn the problem over
to the statistician for him to tell us what he can upon the assumption
that the 16 data constituted a sample from a bowl of chips.

Engineering and “research’ data are not to be regarded differently with
respect to the assumption of statistical control. Those who would agree
to use this procedure for research data would likely not agree to its use in

TABLE 4
Tensile Strength
1b. per sq. in.
Source Maximum Minimum  Average
No. 1 59 000 45 000 54 000
No. 2 58 500 53 000 56 250
No. 3 56 880 50 000 52 460
No. 4 55 850 47 850 52 890
No. 5 62 140 54 400 57 920
No. 6 62 860 52150 56 350
No: 7 56 000 50 000 53 000
No. 8 58 000 50 000 55 000
No. 9 61 300 49 000 55 000
No. 10 59 800 50 000 53 970
No. 11 60 000 46 600 52 670
No. 12 58 000 50 000 53 000
No. 13 62 000 51 000 53 000
No. 14 56 640 45 500 51170
No. 15 61 500 45 000 53 710
No. 16 58 000 50 500 55 500
No. 17 56 160 50 480 52 830
Average tensile
strength............ 54 040

setting tolerance limits upon the basis of engineering data such as the 5000
observed values of tensile strength of malleable iron castings, table 1,
page 54. They would likely question the justification of assuming that



66 STATISTICAL METHOD FROM THE VIEWPOINT 'OF QUALITY CONTROL

these data arose under a state of statistical control. Would one be justi-
fied in questioning this assumption? The answer is yes. For example, the
reference from which the 5000 data of table 1 were taken gives also the
means, maxima, and minima for large samples of similar tests- on other
material from the same seventeen different sources, as shown in table 4.
The total number of tests summarized in table 4 is more than 20,000. Even
though the difference between the averages—54,040 1b. per sq. in. and
54,030 1b. per sq. in.—for the data of tables 4 and 1 respectively is not great,
I think that both statisticians and engineers would agree that it is pretty
likely that the chance cause system behind the 5000 test values was not
free from assignable causes, the reason being that the data of table 4 reveal
differences that are statistically significant; and since the 5000 data of table 1
came from the same sources, we may perhaps conclude that one is not justi-
fied in assuming that they arose under a state of statistical control.2¢ This
failure to satisfy the criteria of control is a typical characteristic of engineer-
ing data.

And now how about the data of “research”? Let us look at some of the
series of data taken in pure science to see if they behave as if they had been
drawn from a bowl. Let us look at the scientists’ measurements of three of

\
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\

870 1900 * * 19'30 -
YEAR-
Fie. 16

;t,lhelal 1s;eve:"thundaxr_len?al constants of physical science, namely the velocity of
; Ech cl,) e gravitational constant G, and Planck’s constant h. Certainly

observations are among the elite of all physical measurements. Fig. 16
* Incidentally, this comparison betw

tion that is apt to result from pooling s

een tables 1 and 4 illustrates the loss of informa-
homogeneous. Editor.

everal sets of data before they can be accepted as
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shows the fluctuation in the accepted values of these constants over the
past years.2® The three ordinate scales are not shown since the object here
is simply to indicate in a readily comparable way the variations in each of
the three sets of measurements over the period from 1870 to 1936. On the
evidence here presented, it might be argued that, for the velocity of light c,
the accepted measurement seems to be approaching asymptotically some
fixed value. This type of argument has, in fact, been advanced by Bavink 2¢
as indicating the more or less ordered way in which we approach perfect
knowledge in physics. The other two curves, however, constitute quite a
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contrast. Each ends at approximately the level where it began. Physicists
pretty generally agree that for each of the three constants, the observed
range of variation is so great as to be indicative of ‘‘constant” errors.
Moreover it should be kept in mind that the points shown in t_ig. .16 are
averages. Now if weexamine the way the single observations are distributed
around some of these points, we find further evidence for believing that there

2% R, T. Birge, “The velocity of light,”” Nature, vol. 134, page 771, 1934. Sten von
Friesen,, *‘On tl%e values of fun):iamental atomic constants,”” Proc. Royal Soc. London,
vol. A160, pp. 424440, 1937. The values of G for 1895 and 1896 are taken from the
article “Gravitation” in the eleventh edition of the Encyclopedia Britannica. These are
the values which the author of the article, J. H. Poynting, thougl;t mqst likely to be cor-
rect at that time (1910). The 1927 and 1930 values are those given in the sz_ths{mmn
Physical Tables, 1933, while the 1936 value is obtained from ‘Fundamental physical con-
stants,” by W. N. Bond, Phil. Mag., ser. 7, vol. xxii, pp. 624632, 1936. 032

2 Bernhard Bavink, The Anatomy of Science (G. Bell and Sons, Ltd., London, 1932).
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are assignable causes of variability present. For example, let us consider
the last determination of the velocity of light shown on the chart.?” The
total number of repetitive observations in this one point is large—2885 in
fact. If these readings could reasonably be treated as though they were
a random sample from a normal bowl of chips with an average equal to the
true velocity of light, we could be pretty sure that 99.7 percent of a large
set of future observations by this method would fall within the range
¥ + 30. Butasis almost always true when a large sample is available, these
2885 observations do not give much evidence of having come from a normal
universe. Fig. 17 compares the observed distribution of these observations
with the fitted normal curve. The x? test tells us that the probability of
getting a deviation from normality (as measured by x?) as large as or larger
than that observed, is too small to be read from the tables of x2. Hence if
one wished to set up valid tolerance limits on future observations of the
velocity of light, he would be unwise to use a rule based upon the assumption
of normality. ,

But—and this is the most important question—are we justified in
believing that these data constitute a random sample from any universe,
normal or otherwise? Dare we assume that they arose from a constant
system of chance causes of variation or, in other words, from a state of
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Ztatlstl(}al control?  Suppose we let the data speak for themselves when

;xlccesswfe groups are plotted in the form of a control chart fig. 18. The
. ? . .

chance of one of these averages going outside the dotted limits if the samples

#7 Michelson, Pease, and P “ i
vacuum,” Astrophysical J. ourna(le,a :,SOTI,& Measurement of the velocity of light, in a partial

28 Criterion I as described on p. 309 ;Dp. 26-61, 1935.

Product is here used (cited on p. 23). t my Economic Control of Quality of Manufactured
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had come from a constant chance cause system (even though we do not
know the distribution function for the cause system, i.e., even if we do not
know the form of the universe) is not much different from .003. Four
points outside the limits, in a total of forty-six, is not a very likely event
on the assumption of a constant system of variation. What is the practical
significance of this fact for our present story? It is simply this: Whereas
there is safety in numbers when selting tolerance limits on the basis of a sample
Jrom a bowl, that same degree of safety does not exist when the samples are not so
drawn. My own experience has been that when data behave as they do
in fig. 18 it never pays to rely upon numbers alone.

Now let us look at another point in fig. 16, this time the maximum point
shown on the G curve. This value, 6.670 X 103 em?® g sec™?, is that
given by Heyl.?® It was derived from the three sets of measurements shown

TABLE 5
VALUES oF G IN Unrrs oF 1078 om® ¢! sec? (HEYLY)
Gold Platinum Glass
6.683 6.661 6.678
6.681 6.661 6.671
6.676 6.667 6.675
6.678 6.667 6.672
6.679 6.664 6.674

6.672

in table 5 corresponding to experiments using platinum, gold, and glass
spheres. The value given by Heyl is obtained by weighting the data for

S o ¢ PLATINUM

GOLD [’y 8. _8e 8 @

GLASS e e )

[ ol
6.660 6.670 6.680 6890

HEYUS MEASUREMENTS OF G = GM./CC.X 10-8
Fia. 19

the gold spheres by ohe third and the other data by unity. The data of
table 5 are shown graphically in fig. 19. Certainly we need no refined

2 Paul R. Heyl, Bureau of Standards Journal of Research, vol. 5, pp. 1243-1290, 1930.
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statistical tests to convince us that such a set of sixteen data is very unlikely
upon the assumption that a constant system of chance causes is the source
of the observed variability. Heylsays: “ The different results obtained with
the various materials used for the small masses are yet to be explained, but
evidence is given that this difference is not to be ascribed to the nature of
the material.” The point I wish to stress is that here again we have a
sample of measurements among the most elite of pure science that do not
seem to behave like drawings from a bowl of chips.

Where does the statistician’s work begin? Now let us return to the
question, given the problem of setting a tolerance range on measurements of
the type shown in table 3, shall we first call in a statistician or shall we first
call in the scientist who is an authority in the field from which the data
came? The evidence (fig. 19) of lack of control in the measurements of the
constants ¢, G, and h may well serve to shake our faith in a scientist’s judg-
ment that the conditions have been maintained essentially the same, and in
regarding his statement as a satisfactory basis for turning the data over toa
statistician to be treated as if it were a sample from a bowl. As the reader
may have already noted, the sixteen measurements of table 3 (p. 64) are
the same as those of table 5, except for a constant multiplier; hence, after
our e?(perience with fig. 19, we are able to say something concerning the
question that was asked regarding the numbers in table 3; it would be
hazardous to consider them as a sample drawn from a normal bowl or any
other kind of bowl, no matter who took the data. '

In the light of s.uch experience in the investigation of available measure-
ments of the physical constants and in the light of my experience in the
Tt!;:i s:a&stician i]s hsupreme after _StUdY of samples of measurements of qual-
statistical con 1 1 i
established;'ut;‘t)i.l t::: telf: scientist 1,13;1;: s\?g:n?:mg, : feljel that betore e
and the statistician must cooperate s oie . y sample of data to the
tol be should sta.tl.stm{a.n for the purpose of setting

erances he should first ask the scientist (or engineer) to cooperate with

the statis.}ti(';if?,n ,in examining the available evidence of statistical control.
’}fhe stq.txstxclap s work solely as a statistician begins after the scientist

as satisfied h.xmself through the application of control criteria that the
sample.has arisen under statistically controlled conditions. The case is
something like the old story of Pat, the Irishman, who had been in this
country only a few months and in the meantime had located a job as a
hod-carrler'whe’n his friend Mike arrived. ¢ Pat,” says Mike, ‘“and what
z;.re you domg? ' To which Pat answered, ‘‘Sure an’ I have ’an easy job.

carry the bricks up four flights of stairs and the man up there does all the

"
:;‘:;kr;ﬂ cglllltﬁlzlei:(::as?omfe ser;lse t}}e scientist must carry his data through
in setting tolerances. efore handing them over to the statistician to use
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There still remains the question how we are to set tolerance limits when
the chance cause system is not in a state of control. Certainly the engineer
and the scientist both must set tolerance ranges within which measurements
of physical constants and properties may be expected to lie even when condi-
tions indicate that the state of statistical control has not been attained.
Perhaps enough has been said to show that the establishment of tolerance
limits under conditions that are not statistically controlled is not a problem
to be turned over to the statistician to solve by himself on the assumption
that the available data can be treated asa sample from a bowl.

FurTHER CONSIDERATIONS REGARDING TOLERANCE LIMITs

As a starting point for what follows, we need to look more critically than
heretofore at the requirements that tolerance limits must meet in the process
of mass produection of interchangeable parts. So far, we have spoken only
of tolerances expressed in terms of the measurements of some quality charac-
teristic. It has been tacitly assumed that if the measurements of a quality
characteristic on two or more pieces of a given kind of product fall
within their tolerance limits, then the quality of all of these pieces of
product falls within these same tolerance limits. Obviously, however, this
assumption may not be justified because the measurements may be, as we
say, “in error.” Hence we need to take into account the difference between
the customarily accepted concept of the true value X’ of a physical quality
and a measurement X of this true value.

For example, if we have two pieces of product O1 and O; of the same
kind, we customarily assume that the values X’y and X'’s of their true
quality characteristics must both lie within some tolerance range

X' = L1 to X' = Lz (9)

in order that the objects be interchangeable in assembly and use in respect to
the quality characteristic X’. Likewise the desired physical state of statis-
tical control is assumed to be expressible in terms of a sequence of numbers
representing true values of the quality characteristic X’ for a sequence of
objects:

X’ly X,2’ th X,i) N} X,m X,n+17 ) X,"'H) e (10)

These are formal expressions of the fundamental requirements for economic
mass production of interchangeable parts.

Let us now look g little closer at this concept of a true value X' as here
used. How is one to determine whether the true value of the quality
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characteristic lies within a given range? If one can not discover the true
The concept of the true value value, then of what practical use is the concept
leads to operationally of true value? In answer we shall see that the
verifiable criteria regarding  concept of true value leads us to choose opera-
measurements tionally verifiable criteria that measurements of
a quality characteristic must satisfy in order that they may be considered
to be measurements of the true value X’. These criteria, as we shall see,
include those for control of any method of measurement and those for
checking the consistency between measurements by different methods.

To begin, let us note that corresponding to every concept of a true
measurable quality characteristic X', such for example as length, there are
usually several assumed methods of measurement. For example, a method
may involve the use of (a) an ordinary rule, (b) a micrometer, (¢) a traveling
microscope, or (d) triangulation. Presumably the operation of measure-
ment by each method can be repeated again and again at will so that corre-
sponding to any true value X' there are potentially as many infinite se-

quences of measurements as there are assumed methods of measuring.
Schematically the situation is this:

§“’ §12, .."th “"Xlﬂ; Xl,n+17 "'7X1,n+i)

O [ Attty Rai oy Koy Agmgry v, Kongsy 0
XN —q: (11)

1)?“’ Xz, -+, Xity o+, Ximy Ximary + vy Xomgs, - - -

:\;herc the symbol — stands for an operational meaning of measuring X'
The dlggran} of sequences (11) thus portrays the fact that each method of
measuring gives rise to a sequence of observations, and if there are several
methods, there are as many sequences. However, in order for such a set of
sequcnc?s (11) to constitute the operational meaning of measuring the true
value X', ez%ch. Séquence must represent a statistically controlled condition
and the statistical limits of the averages of the first n terms of these sequenceg :

30 The transition from the iti i i
taveen the abstract somermt 1t )s(elsqucglces (11) to the equalities (12) constitutes a bridge be-

and a physi i 3
chapter IV.we shall see how one oan pagssgigilly verifiable operation of measurement. In

even if for some value of n, X s ot the same thing as the theoretical limit X',
question, when can one say th qual numerically to X', This brings up the

C at egs. (12) are true? F i

g > say that ! ? or an answer

r::gc:;)t O’fl‘ ﬁ:sucrt;c:i verifiability, involving certain limitations expr«-‘;sse(:(lil ‘ienn'zgffnlsn(g;ot%lllglgfl}éz
. atter will be considered carefully in chapter 1V. Editor
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as n approaches infinity must be equal; or expressed formally,
W=X,=...=2%.=... (12)

Standard methods of measuring. In practice it is customary to choose
one of the methods of measurement as a standard. For this method we
may write the potentially infinite sequence of measurements of the true
value X'’ as

Sl: S.2: Tt Sn; Sn+1, Sn+2, s (13)

to set if off from the others. Theoretically, this sequence in order to serve
as a basis for comparison should be random in the sense that it is representative
of a state of statistical control. Requirement (12) then reduces to

X, =8 =12 ---) (14)

As statisticians we might have introduced the requirement in (12) and
(14) that these statistical limits be equal to the true value X’, or as we some-
times say, that the method of measurement shall not be biased. Operation-
ally, however, we have no physical or experimental way of getting at X’ ex-
cept through measurement, and hence the requirements (12) and (14) are
here expressed in terms of measurements alone. It should be noted, of
course, that (12) and (14) express the requirements in a formal and hence
abstract manner. We shall later consider the practically verifiable opera-
tional meaning of these expressions in use (chapter IV).

Let us pause for a moment to examine some of the proposed standard
methods of measuring a quality characteristic such as length to see what
criteria such measurements must satisfy. These methods of measuring are
usually divided into two classes: those using some arbitrarily chosen physical
object such as the Imperial Standard Yard and the International Prototype
Metre and those using some natural phenomenon such as the wave length of
light.

First let us consider the requirement of randomness or statistical con-
stancy of the standard sequence (13) when applied to a typical standard
method of measurement. To begin, we shall choose an operationally veri-
fiable criterion for control in the sense considered in chapter I. The layman
might expect that, having chosen a criterion of control, it would be quite
simple to find a standard experimental sequence that satisfies the one
chosen. For example, he might expect Michelson’s measurements on the
velocity of light to constitute such a sequence for length. A glance, however,
at the control chart record (fig. 18, p. 68) for these measurements of the
velocity of light should be sufficient ground for believing that this method
of measurement, at least as represented by Michelson’s data, does not
satisfy the criterion for control here chosen. Since we do not find evidence
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of statistical control in measurements of some of the most important physical
constants, it would seem that the first real prob-
Statistical control the first lem in establishing a standard sequence in terms
:tfe: %ﬁ:ﬂ’;ﬁ:ﬂt of measurements of a physical phenomenon is to
detect and eliminate assignable causes of variation
until one can be reasonably sure that he has attained a state of statistical
control in the measuring process. i
Now let us see what the situation is for measurements in terms of arbi-
trarily chosen physical standards. Some interesting results have recently
been given by J. E. Sears, superintendent of the metrological department of
the National Physical Laboratory. In addition to the Imperial Standard
Yard, there are in existence at least four Parliamentary copies. Table 6
shows the observed differences in millionths of an inch between the length
of the Imperial Standard Yard I and the copies P.C. 2; P.C. 3; P.C. 5; and
P.C. VI. Sears places the observations on P.C. 3 in 1876 and those on
P.C. 3 and P.C. 5 in 1892 under suspicion, and hence he argues that accord-
ing to the results shown in this table the lengths of the bars P.C. 2, P.C. 3 and
P.C. 5 have remained in close agreement with that of the standard. How-
ever, he points out that not only the evidence given in table 6 but also other
evidence cited in his article indicates that P.C. VI contracted over this
period in an exponential manner so as to approach the asymptotic difference
of — 228 X 10~®inch which the bar has now reached. Sears points out that

TABLE 6
Difference in Millionths of an Inch
Comparison 1852 1876 1886 1892 1902 1912 1922 1932
1;0 2 —I +21 +36 — + 6 _ — 93 — 19 - 39
P'(c"g :% - —33 +57 —  +55 — — 40 — 61 —111
pG.s 1 —35 —33 — 470 — — 43 - 23 — 47
.C. —_ -3 — —192 ~215  —-217 ~234

the bar P.C. VI was made several years after the others and argues that
perhaps 'the reason why the change in length is noted only in the case of
P.C. VIisthat the others had reached a stable state before the measurements
in tl'?'bl(;) 6 were ta.k-en. Of course, another explanation might be that the
::; I:I;-at:Ts’ including the Imperial Standard, have been shrinking at the
for gzﬁ Z:; pr:;zntttr;lurpose, the point I wish to make is that there is evidence
lengin oo Igmt - e use of suc.h arbitrarily chosen physical standards of
Dol st e:;f)ected to give a random test series, at least until the
L ar:rres t : ems.elves are several years old. The question of how
o sbudy, of the tou quired in any given case can be determined only through

y e test results at intervals over this period to determine whether
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they give evidence of having attained a state of statistical control. The
initial measurements obtained by the use of such standards certainly do not
give evidence of having arisen under statistically controlled conditions.

What is more important, however, from an operational viewpoint, js to
scrutinize the measurements that are obtained by a given method in order to
determine not only whether they have arisen under a state of control but
also whether they are significantly different from those obtained by other ac-
cepted methods; in other words, to determine whether such measurements
satisfy the requirement (12) or (14) as the case may be.

The use of any one of the duplicate physical standards of length in table
6 is capable of giving an infinite sequence; hence corresponding to the
measurements of a length by the five standard bars, we should have five
sequences of the form shown below:

Sit, S1zy v oy S1s, v, Siny Stongy, * 00y Stongi, <0

0 Se1, Sz, + -+, Saiy + vy Semy Seongyy o0, Sonpsy o

X' -3 (15)
Sily_Sﬂv Y Sii) Sty Siﬂ) Si.ﬂ-i-lr Tty Si: ntiy 0T

Presumably, duplicate copies of a standard should be interchangeable in
terms of the infinite sequences (15) that characterize them in an operational
way. Hence, from the viewpoint of statistical theory, the requirements im-
posed on the sequences in (11) are different from those imposed on the. se-
quences in (15). It follows that sequences (11) and (15) must both satisfly
the conditions (12), and in addition that the sequences in (15) must also
satisfy the condition ’

F8) = f1(S1) = fa(S) = - =1i(S) = -+ - (16)

which is supposed to symbolize the requirement that the sequences in (15)
may all be considered as random sequences from the same universe. .

Setting tolerance limits when control is lacking. Now we are in a
position to consider in what practical sense we can set toler'ance limits on tlze
“true value’” X’ under practical conditions. The first thing we must do ls,
to aseribe an operational meaning to the measurement of the true value X
that satisfies eqs. (12). If, in a practical case, one knew that: each of the
sequences corresponding to the assumed methods of measuring thg true
value was random, and that the requirements (12) and (16) were satisfied,
then one could proceed in setting tolerance limits as he Woul(f fo.r samples
drawn from a bowl. Evidence has been given, however, to indicate tl'lat
requirements (12) and (16) are not met even for the simple case of measuring
alength. How then shall we proceed?
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All that we can do here is to consider some of the general principles that
we must take into account in the establishment of tolerance ranges under
conditions of lack of control. To begin with, we must give attention to the
meaning, validity, and efficiency of the range.

Meaning. In establishing a tolerance range for drawings from a bowl
universe, we attempt to estimate from a sample of n a range that may be
expected to include (1 — p”)N of N future numbers drawn from the same
bowl. In contrast, let us consider the problem of establishing a tolerance
range on the tensile strength of malleable iron on the basis of the 20,000 -
measurements given in table 4, p. 65. The tensile strength of malleable iron
is more complicated and much less definite than drawings from a bowl, on
two scores. In the first place, one must choose the methods that are to be
included in the sequences (11), which define the operation of measuring the
quality characteristic of tensile strength. In the second place, one must
decide which sources of supply of the material are to be covered by the
tolerance. One must, in other words, define the operations of choosing the
material to be included. Obviously, establishing a tolerance range for one
of the sources of material in table 4 would be quite a different problem from
establishing a tolerance range for all of the sources noted in this table,
which in turn is a simpler problem than establishing a similar tolerance range
applicable to all sources that might be included in the future. We shall
give more critical attention to the operational meaning of tolerance ranges
in chapter I_V. We should note here, however, that in the case of a bowl we
may conceivably set a tolerance range that may be expected to include
(1 — p)N of f}lt:ure drawings from the same bowl, whereas under non-
f:(mthrolled condltlor}s we can conceive of establishing a tolerance range only
in the sense of f.in(%mg a range such that the probability of future observed
values falling within this range can not be less than 1 — p'.

Samllf)iz;zg;tzi.ze I:Ll ;(ra;arlllgftoleranse ranges for fu.ture drawings based upon 2
range might involve a hlfozn ? O"‘;l,ﬁlt yyas pointed ou.t that the tolerane
is even greater. For cnmnts .fns of lack of control the chance for error
tensile strength of malleabli ® 01 one were to set a tolerance range for the

n upon the basis of a sample of size » from

lt:sois,:r:il 1}llaving th_e smallest range in table 4 (p. 65) it would obviously
ge error irrespective of ize i i
sources shown in the table. remple size if spplicd 1o any of the othe

ilslett};; iﬂoﬁit{hﬁ practical instances, the most difficult job of all is to
ple :‘0 18 to be used as the basis for establishing the tolerance
ange. If one chooses such a sample without respect to

tgeezzsfﬁafle causes present, it is practically impossible
ablish a tolerance range that is not subject to 8

cho

Choosing the sample
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huge error. Before choosing the sample, therefore, it is desirable to try to
detect the presence of assignable causes and to discover the nature of these
so that their influence may be foretold. The operation of quality control,®
as well as tests for significant differences, is of great use in this connection
if the tolerance range is to be set so as to include the variability that may
arise if none of the assignable causes is removed. Under such conditions,
one must try to choose the tolerance limits L; and L. so that under the worst
conditions that one may reasonably look forward to in the light of a study
of the nature of the assignable causes present, not more than p’N of any
group of N observations are expected to fall outside the limits L; and L, in a
series of N trials.

Thus in setting tolerances for the tensile strength of malleable iron where
it is desired to include all of the 17 sources in table 4 under the assumption
that they are to remain as uncontrolled as they are, one would simply take
into account the best and worst sources as a basis for setting the tolerance
limits. Then, since it is likely that each of these two sources is not statisti-
cally controlled, one would have to allow for the effects of assignable causes as
best he could. Oftentimes under such conditions the maximum and the
minimum in the best and worst sources respectively are of more importance
than any other statistics of these distributions for indicating the range in
which most of the future observations will lie.

Emphasis should be placed upon the fact that in the use of statistical tests
for significant differences it is necessary to use large enough samples to reduce
to a satisfactory level the risks of making errors in judgment. The reason
for such action is similar to that for going to a sample size between 100 and
1000 in trying to establish a tolerance range even in the simplest case of
drawing from a normal bowl, as was pointed out in the discussion of fig. 15,
p. 62. Also I think it is important to note how extensive the series of
measurements apparently must be before we can hope to gain much by
trying to analyze a set of data as though it were a sample from a bowl. For
example, in the beginning of any investigation involving the measurement of
a “true” value there are usually only a few known methods of measuring
the quantity in question. At least in the field of physical and chemical
science, the requirement of consistency ® between the results obtained by

3 See, for example, H. F. Dodge, *Statistical methods and specification of quality,”
Bulletin of the American Society for Testing Materials, No. 85, pp. 17-21, 1937.

32 This term as here used means agreement or harmony of the sequences among them-
selves as parts of the assumed operational meaning of measuring the true value. A chosen
set of sequences is assumed to be consistent with respect to any specified statistic of the
sequences when the observed differences in the values of this statistic calculated from
the observed portions of the sequences are not greater than may reasonably be left to chance
as determined by some chosen criterion.
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different methods has been a powerful influence in directing attention to the

so-called constant errors. It would appear
Consistency between different that in general, it is of little value to make very
$°§:3si§fp?r:::::ement e large numbers of measurements by any one

method until it has been found to give results
that are more or less consistent with those obtained by other methods. If,
however, a large number of measurements are to be made as, for example,
in the measurement of the velocity of light, it would seem that much is to
be gained by applying statistical criteria of control for detecting assignable
causes of variability, because in no other way apparently can we reach the
state of statistical control and maximum validity in prediction.

Efficiency. Under conditions that are not statistically controlled, the
tolerance limits must be set much farther apart than would be necessary if the
operation of statistical control were applied to detect and weed out un-
necessary causes of variability. Setting an unnecessarily broad tolerance
range naturally leads to an inefficient use of materials. For example, in the
design of ships,® or structures of any kind, if the engineer makes the toler-
ances unnecessarily wide, such action results in the use of more material
than is necessary. It should, of course, be noted that efficiency in the sense
here used is limited to the concept of minimizing the quantity of material
used and hence is to be differentiated from the broader concept of economic
use which must take into account efficient use of material as only one of
scveral factors.

If we are going to make the most efficient use of material, we must close
up on the tolerances as far as it is economical to go. In this process, we
must r!nake use of two kinds of statistical criteria: (a) those involved in the
operation of control, and (b) those required to test the consistency between
t’h’e sequences used in giving operationally definite meaning to the true value
-(Yb ) s::;eg;:»vtllgilly lzllluStr?ted in (11) and (15), pp. 72 and 75. Criteria under
besting whether}irt iso:(; Sor tzsltmg s1g.mﬁca,nt dlﬁ"e.rencgs in averages and for
from the same state of st tistion to believe thai:, & given set of sequences‘came

' atistical control. 'This progress toward the ultimate
goal of ?ﬂiCI.EI'lt use of raw materials through reduction of tolerances to an
cconomic minimum necessarily involves extensive use of tests for significant
differences.
attaignxl'z{::(liziasi ;zt;:::;yofo ;urt.her than scientists have gone in trying to

physical measurements satisfying the criteria
Stringent requirements (12) and (16)? The answer is that, in just the same
in industry way that industrial applications of scientific prin-
ciples have brought more and more stringent require-

““Features of practice affect; i
) cting design,” a paper read at the annual
of Naval Architects and Marine Enggineersl,) 1%36.

3 Cf. W. P. Roop,
meeting of the Society
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ments on accuracy in measurement, so it is that any further steps toward
attaining maximum efficiency in the use of materials will bring additional
requirements on the methods of measurement in regard to the state of
statistical control and maximum consistency, both of which will necessitate
the extensive use of statistical theory and technique.

From what has been said in this chapter, it appears that we must gain a
much more intimate knowledge of the properties of materials than we now
have if the engineer of the future is to minimize tolerance ranges and thereby
attain maximum efficiency in the use of materials. Furthermore it must
be apparent that this ideal can be attained only by the application of statis-
tical theory in establishing criteria for control and other criteria for testing
consistency between methods of measurement. Even in establishing toler-
ances under conditions that are not statistically controlled, it is to the
engineer’s advantage to use statistical technique as an aid in segregating
assignable causes of variability; and when a state of statistical control is
reached, the setting of tolerance limits becomes a purely statistical problem.



CHAPTER III

THE PRESENTATION OF THE RESULTS OF MEASUREMENTS
OF PHYSICAL PROPERTIES AND CONSTANTS

A Worthy Goal:

“When you can measure what you are speaking about and
express it in numbers, you know something about it, but when
you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind.”

LORD KELVIN
But:

“ . . . knowing begins and ends in experience; but it does
not end in the experience in which it begins.” !
C.1L. LEwIs, Harvard University

TuE NATURE OF THE PROBLEM

Increased knowledge of quality necessary. To make the most efficient
use of both raw and fabricated materials, the engineer needs to increase his
present knowledge of their quality characteristics. In fact, he must know
more in the future than anyone now knows about the variability of almost
every such quality characteristic. Needless to say, the measurements of
physical properties and constants made by the scientist and engineer in the
rescarch laboratory contribute materially to such knowledge. However,
as we have seen in the previous chapter, the engineer must also have more
knowledge than he now usually has about the variability of each quality
characteristic of his product under commercial conditions of production if he
1s to be able to set the most economic tolerance limits on each characteristic.
The object of this chapter is to consider how an understanding of statistical
th.eory may help one to present the results of measurement in a way that
.wxll c9ntribute most effectively to the knowledge that the engineer must have
if hg is to esfuablish tolerances that will make possible the most efficient use
of his materials. The emphasis throughout this chapter is accordingly to be
placed upon the presentation of observed results as an evidential basis for
knowledge; in fact, the title might well have been
Data as Evidence.”

Some considerations of summaries of the density of iron. As an
(ta;:ample, let us assume that we wish to make use of pure iron in such a way
. :ch(t; (‘)i;rilzlg l;ia‘;’;e (l)f t.lll:e quality Chgrgcteristicé upon which we wish to

e limits. Since this is a property of pure iron that has

The Philosophical Review, vol. xlii, p. 134, 1934.
80

, “The Presentation of

! ““Experience and meaning,”
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been studied at length by different scientists and engineers, we may expect.
to find the results of their work summarized in standard tables of physical
constants. Let us see if such summaries provide adequate knowledge for
establishing economic tolerance limits. If one looks in the Smithsonian
tables, for example, he finds that the density of pure iron at ordinary
temperature 2 is given as

7.86 gm /cm?.

Obviously this single value does not provide a basis for setting tolerance
limits because it does not indicate how much variability may be expected.
If one looks in another recent and authoritative table,3 he finds that the
density of pure iron at approximately room temperature is given as

(7.871 £ 0.002) gm/cm?.

Does such a summary provide an adequate basis for establishing a tolerance
range? Let us assume as a basis for our discussion of this question that
7871 is an estimate of the true value of the density and that 0.002 is an
estimate of the probable error. Suppose now that we want to set a 99.7
percent tolerance range. Does the information that we have found provide
an adequate basis for establishing such a range? ’

In the light of the experimental results presented in fig. 15 (p. 62) it is
apparent that the error that might be made in setting a tolerance range upon

the basis of such evidence, even though the
Size of sample must bestated  ,riginal data were normally distributed without
;w:: xAan ?,’;ttr‘;gﬁﬂgelf" eriments. onstant error about the true value, may be

quite large unless the estimates of the expected
value and probable error are based upon a large sample. In other words, we
see that even under idealized’ conditions of sampling from a normal l?owl
universe, it is necessary for one to know the size of the sample if he is to
form a reliable estimate of the maximum error that may be expected in the
estimated tolerance range. Hence it appears that a summary of the meas-
urements of a quality characteristic X either in the form X or X + AX does
not in itself provide a satisfactory basis for setting tol.era,nce ranges even
though it be known that the quality characteristic X is in a normal state of
statistical control. .

There is, however, 2 much more important reason why §uch presenta~
tions of data are inadequate; as emphasized in the previous _chaptgrs,
measurements of physical properties and quality characteristics, 1n‘clu<.img
some of the most refined physical measurements, are not ordinarily in a

2 Smithsonian Physical Tables, 8th rtevised edition (The Smithsonian Institution,
Washington, 1933), p. 160.

s Physical Constants of Pure Metals, The National Physical Laboratory (His Majesty’s
Stationery Office, London, W.C. 1, 1936), p. 6.
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state of statistical control. As a further illustration of this fact, let us
look at fig. 20 which shows the ranges for several different determinations
of the velocity of light as given in a recent article.!
A more important defect The length of the vertical line in each case is propor-
in summaries in the .
form X + AX tional to the recorded range. If we compare the suc-
cession of ranges in fig. 20 with those shown in fig. 14
(p. 59), neglecting for the moment the fact that the two sets of ranges have
not been calculated in the same way, I think it is obvious that the ranges

in fig. 20 do not appear to behave on the whole like those in fig. 514; in
300,200

300,000

KILOMETERS PER SECOND

299,800 | | l \ | \
1 1 ;. L I I n i s
1874 '79 ‘82 ‘82 1902 ‘06 ‘23 ‘28 ‘28 32

YEAR

Fia. 20

particular, the succession of ranges in fig. 20 does not appear to center about
some constant expected value. If we were to construct corresponding sets
of ranges for the measurements of the gravitational congtant G and Planck’s
constant k (fig. 16, p. 66), we should find that they als;o do not behave like
the n(_)rmal t?owl ranges in fig. 14. This illustrates the simple fact that the
meaning or interpretation of any summary in the form X + AX depends
upon whether the original data arose under a state of statistical control;
such. a summary of data does not provide an adequate basis for setting an
efficient tolerance range.

Ther.e are, howgver, certain other reasons why the customary practice of
summarizing data in the form X + AX does not provide the necessary basis -

Still other arguments for setting economic tolerances. Perhaps the chief
against X + AX among these is the fact that different methods are often

used in making a summary of a gi 1

: given set of data in the

i(:;n; .i( :f: QX . In othe.r words, starting with an original set of data, differ-
clentists may use different methods in estimating the true or expected

:;f‘;;e; {S;I;dcg;i Ef)roba.ble error or some other measure of dispersion. They
X 4+ AX as eda' pl‘Obab_lllty other than % in arriving at AX. Hence

) u'se In practice does not always have the same meaning.
Lond sntf!‘:o\;fn; fé(l)esen, Zgllithe values of fundamental physical constants,” Proc. Roy. Soc.
von Friesen’s arti,cg.)' m 40, 1937. Only the first five ranges in fig. 20 are taken from

he oth i :
two sets of measurements fur (;hee; eznlgggztake into account different data. There are
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This immediately suggests a question that has been the subject of extensive
investigation in the field of statistics—what method should be used in
estimating? :

Enough perhaps has been said to indicate the nature of the problem
that one encounters in trying to make efficient use of data as customarily
summarized. Owing to the fact that such summaries do not usually provide
adequate knowledge, it is necessary for engineers to consider the funda-
mental problem of how one should tabulate data on the quality character-
istics of raw and fabricated materials so as to provide an evidential basis for
the maximum amount of knowledge that one wishes to convey for the estab-
lishment of valid and efficient tolerance limits.

The importance of the problem of presenting data. Before we plunge
into a discussion of the technical aspects of the problem of presenting data,
it is fitting that we mention briefly some of the other ways in which this
problem has come to the attention of engineers. In December 1926 a
Sectional Committee on Standards for Graphical Presentation was organized
under the procedure of the American Engineering Standards Committee.
The scope of this committee’s work included the development of the basic
principles that should be used in the preparation of scientific and engineering
graphs. One of the problems early brought to the attention of this com-
mittee was that of presenting data graphically in a way to provide as much
knowledge as possible about the variability of measurements. Fig. 20
serves as a simple illustration of an attempt of one scientist to provide graph-
ically some knowledge about the variability of the measurements of the
velocity of light. It is obvious, however, that we must find a satis-
factory method of summarizing data analytically along the lines called for
in the previous section before we can summarize the results graphically.
Hence it is reasonable to say that the satisfactory solution of the problem of
determining how best to present experimental data graphically must await a
satisfactory solution of the problem of presenting the numerical aspects of
data so as to make a maximum contribution to knowledge in the sense dis-
cussed in this chapter.

About 1930 the American Society of Mechanical Engineers and the
American Society for Testing Materials jointly sponsored the formation of a
cooperative 5 committee to consider, among other things, the p.roblem of
applying statistical theory in the presentation of the great quantities of d.ata
taken by engineering and scientific groups in the study of the physical
properties of raw and fabricated materials, such data being intended for

8 This committee on the application of statistics in engineering and manufacturing is
now jointly sponsored by the two engineering societies named above and by the American
Statistical Society, the American Mathematical Society, and the Institute of Ma.thematxcal
Statistics. The American Society for Testing Materials also organized a committee about

this time on the interpretation and presentation of data to consider the specific problems
arising in their society.
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later use in the establishment of economic tolerances. A vast amount of
data of this nature is summarized each year, and it is therefore of con-
siderable commercial importance to find the most useful method of do-
ing the work. Having been closely associated with these committees
since their organization, I shall try to present in this chapter some of the
basic principles that have been found useful in guiding the choice of a
method for presenting the kinds of data ordinarily obtained by these com-
mittees.*

We should note at the beginning that the consideration to be given here
is limited in a fundamental way; it has to do with the presentation of data
only from the viewpoint of providing knowledge and not from the viewpoint
of securing an emotive reaction on the part of the one who reads the results
after they are presented. To make clear the significance of this limitation
it is desirable to consider briefly the way in which a summary of a group of
data is a kind of language, and hence must comply with the accepted require-
ments of a meaningful language if it is to be scientific.

The presentation of data from the viewpoint of language. There is
scientific language and emotive language. A presentation of the result
of measurement by "an author serves as a language of communication be-
tween the author and his readers. Now there are at least two distinet uses
of such language: 7 (a) to communicate information or knowledge; and
(b) to arouse an emotional attitude in a reader or to influence his action in
any way other than by‘the information transmitted. These two. uses of
language have been referred to as the scientific and emotive respectively.

In the presentation of scientific and engineering data for the purpose of
providing the reader with a knowledge of engineering materials, it is neces-
The statistician’s language sary jnhat the langufxg.e used be scientific and pot
is sometimes emotive emotive. A statistician must keep this require-

ment in mind if and when he steps in to help the
> and Strange as it may seem in the face of this situation,
th.e statistician sometimes rushes in to help the scientist and engineer do a
scientific job and forgets that a lot of his professional lingo is more emotive
thar} ssnentlﬁc: witness, for efiar.nple, the statistician’s use of such phrases as
:Zzttlséézililiiztséoconﬁdte.nce limit, probable error, most probable value, and
most probablé Va,hrlr;e: 1(;’11 Ofi)lybla. few. Some of these terms~pa?ticularly
ively by the scientist: pSro at.e error.—hgve been taken over quite exten-
o s o “even-bet.,” ometimes scientists even add new terms of their

) error instead of probable error.

¢ Such summaries are presented not only ; igi i i
) : Y in original memoirs and reports but also in
(;r;%?neermg‘ handbooks and tables such as the Smithsonian Physical TI()zbles the Inter-
tonal Critical Tables, etc. v ’

7 See for example I,. 8. i . .
Co., New York, 19%(‘;’), ppS. lsot_eé’klng, A Modern Introduction to Logic (Thomas Y. Crowell

scientist and engineer.
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To illustrate the difference between some of the emotive terms used by
the statistician and some of the terms in current use by physical scientists,
let us consider what the scientist sometimes says about the measurement of a
physical constant such as the velocity of light. In the first edition (1926)
of the International Critical Tables, we find tabulated what the editors of
that publication call the accepted, conventional, or defined values of the
physical constants to be regarded as exactly correct for purposes of compu-
tation. In what respect does such an accepted value differ from a most
probable value or from a best estimate? If a reader, ignorant of the tech-
nical meaning of best, inds two tables, one giving the best estimates and
the other the accepted values, is he not likely to feel that the best estimates
should be better than simply accepted values, and make his choice accord-
ingly? Certainly the use of the term ‘‘best” introduces a large emotive
element not present in the term ‘‘accepted value,” but this emotive element
does not, contribute to scientific knowledge in that it does not have an opera-
tionally definite meaning in terms of future experience. Scientific state-
ments presumably state something about an object or physical phenomenon
that can be tested experimentally by an observer and thus can be shown to
be either true or false. Hence, in the use of statistical techniques in the
presentation of scientific data, we must be careful to give scientific meaning
to all terms used. Although meaning is thus an essential component of
knowledge, it is not the only one—in fact there are two others; and we n}ust
thoroughly understand all three and their interrelations in order to co'nsnder
intelligently the role that statistical theory may be made to play in the
presentation of scientific data.

THrREE COMPONENTS OF KNOWLEDGE—EVIDENCE, PREDICTION,
DEGREE OF BELIEF

Basic to all that follows is the concept of knowledge here ad(?pted. I'n
line with the statement quoted from C. L. Lewis at the b('eginmng. of this
chapter, I shall assume that knowledge begins and ends in expenmentf'x]
data but that it does not end in the data in which it begins. From this
viewpoint, there are three important components of knowledge: (al) ‘?he
data of experience in which the process of knowing begins, (b) the predlcthn
P in terms of data that one would expect to get if he were to perform‘ cgrta.m
experiments in the future, and (c) the degree of belief py ir} the prediction P
based on the original data or some summary thereof as evidence E. These
three components are schematically illustrated in fig. 21. Knowledge be-
gins in the original data and ends in the data predicted, these‘ft.lture data
constituting the operationally verifiable meaning of th.e original data.
Since, however, inferences or predictions based upon .experlmental 'data can
never be certain, the knowledge based upon the original data can inhere in
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these data only to the extent of some degree of rational belief. This follows
from Postulate II (p. 42), in which it is assumed that there is an objective
degree of tational belief p’s belonging to the relation between any prediction
and the original data upon which the prediction is based.

Original data as

evidence E Prediction P

Degree of belief ps
in prediction P
based on evidence E

"Fie. 21

What has just been said about the three components of knowledge may
appear to the practical engineer or statistician as being abstract and some-
what formal until he considers how they are met in everyday experience.
For example, I might say, It is going to rain day after tomorrow.” That
§tatcment has a definite predictive meaning in the sense that you can test it
in the future. However, it doesn’t convey much knowledge, since I have
no standing as a weather prophet. You may therefore ask what makes me
th?nk that it. is going to rain day after tomorrow. That is, you ask for my
evu?ence. Given the evidence, there is presumably a certain degree of
belief p’s, however small, that may rationally be held in my prediction.
The em_lden.ce as well as the prediction must be considered.

_ This simple example shows how one may make a perfectly definite
scientific statement—one that is meaningful—without conveying much if
A statement may convey any \knowledge.. .In fact, I should say that the
meaning, yet not convey statement that it is going to rain day after tomor-
knowledge row, free of any supporting evidence and the source

_ ) of the statement, conveys no knowledge at all. The
results of experimental work may also be summarized in terms of meaningful
statements that do not transmit knowledge, in that the one who reads the
summary may not know how much belief to place in it. Likewise one may
Three ways of presenting present a set of original data without making any
experimental data interpretative statements. Hence, in what follows

] we must consider ways and means for i -

) ; presenting ex

i).enmentz?.l flata in three different ways: (a) as original data, (b) as interpre-
ive predictions, and (c) as knowledge. ’

THE RE :
REsuLTS OF MEASUREMENT PRESENTED A8 ORIGINAL DaATa

scient;:,eﬁ)?ll(gozitg as facts; can it be done? Often the engineer and the
e problem of presenting experimental data as though its
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solution were independent of the use to be made of the results presented.
They try to present the data as scientific “facts.” For example, the “pure”’
physicist or the “pure” chemist studies the structure and properties of
materials; measures the fundamental constants of nature; and seeks to dis-
cover the ‘“laws’ of nature—all with the idea of learning the facts of nature.
Such a scientist may not be concerned with any industrial use of his data.
In any case he usually contents himself with the thought that he is “pre-
senting the facts’ that any application must start with. = This is because it
is conceived (e.g.) that the velocity of light ¢, the gravitational constant G,
and all similar constants of nature are objective and independent of the
kinds of use that may be made of them. In much this same way, tables of
the physical and chemical properties of materials are often treated by both
the compiler and the user as though they presented facts. This is quite
natural, of course, because one is apt to think of the material contained in
such tables as giving the characteristics of an unchanging ‘““real” universe
instead of a universe of measurements that are subject to sampling
fluctuations.

Original data must be considered as evidence for inferences of various
kinds. Rule 1. Ttis customary practice to conceive of the density of pure
iron in any chosen system of units as some single value. If such a true value
exists and if we could discover it, we could presumably put it down once and
for all as a fact. In practice, however, we can not discover this true value;
we can simply make measurements and draw inferences from such measure-
ments about other measurements not yet made if we are to limit ourselves to
inferences that can be operationally verified. As previously stated, knowledge
provided by such measurements begins in these measurements and ends in
measurements, but does not end in the measurements in which it beir}gs:
such knowledge can only be probable. Hence we must think of the original
data simply as evidence for one or more various probable inferences, each of
which involves its own specific prediction P. Whenever the original data
constitute evidence for some specific prediction P it is usually if not always
possible to summarize the original data in such a way that the summary itself
constitutes an appreciable fraction of the evidence in the origmal' da.ta.
In accord with Postulate II (p. 42), it is assumed that there is an obj(?c‘_clve
degree of rational belief p’s in the prediction P based upon t}.le original
evidence E. By definition we shall say that a summary contains fxll ?he
evidence in the original data for a specific prediction P when the objective
degree of belief based upon the summary is the same as that based upon the
original data. In general, a summary does not contain the whole of the
evidence in the original data, and what constitutes a good summary of the
data for one prediction may not be so good a summary for another.
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Since the useful knowledge based upon an original set of data involves a
more or less definite set of predictions and associated evidences, we may set
down

Rule 1. Original data should be presented in a way that
will preserve the evidence in the original data for all the
predictions assumed to be useful.

But just what predictions will be useful? A human element of choice enters
here in much the same way that a human element enters into the choice of
the readings of scientific instruments in the laboratory. When one is trying
to determine how to present data in a given case, it is essential that he con-
No facts sider the. kinds of prediction that may be attemp.ted in
without theory the knowing processes to which the data may be subjected.
What has just been said illustrates the generally accepted

conclusion that we can not have facts without some theory.®
Two different problems of presentation—data may or may not arise from
statistical control. When presenting data we should differentiate between

(a) those that arose under a state of statistical control, and
(b) those that did not.

It is necessary to do this because the role played by statistical theory
under statistically controlled conditions is fundamentally different from
what it is under noncontrolled conditions. For the purpose of the present
chapter, I shall assume that drawings from a bowl are in a physical state of
st'atistical control and that the mathematics of distribution theory applies.
Likewise I §hall assume that measurements taken under presumably the
same conditions, provided ° they satisfy Criterion I of control to the extent of at

For statistical coatrof it is not least '25 samples of four (p. 37), arise under a

;“mt:rm that measurements ~ Physical state of statistical control. As was
e taken under “presumably ointed i i

e, taken undet “presumably p out in the previous chapter (pp. 70 and

must also satisfy Criterion 1 79) the statistician 1° alone is then in a position
to set up tolerance ranges and make predictions
8¢, . . if there is to be an

From C. 1. Lewis y knowledge at all, some knowledge must be a priori.”

Mind and the World-Ord i i
® For reference to Criterion I, see p. g()er gcgbners, o otk 1920) p. 195 Tidior.

) €e . ay be of interest to note that the require-
3:::: hl!;l}&osﬁol:re a(xlld elsewhe;re in this monograph on the data that are to be treaged as
stringent ¢ fran the ;m er a physical state of statistical control are operationally much more
21 of s taan 1 :qullrements made‘qmte generally, and in particular by Neyman on page
experiments 1Pgd on lectures (previously cited on p. 10). There he classes as random
e oo c:ﬁ?i?t' out repeatedly with utmost care to keep the conditions constant, Here
takenqand 1t’1111 . t,hlon that not }ess than some fixed number of such measurements must be

at these must satisfy a particular criterion. Neyman’s requirements would

presumably be met by the me: i
D 66, B 30, o 3,y ihe 1 Siztﬁrfnn:ents on the fundamental physical constants (fig. 16,

this monograph. asurements do not meet the requirements imposed in
12 Of course, an engineer or scienti
theory. gineer or scientist may also act as a statistician if he knows statistical
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that will have maximum validity. However, under conditions that are not
in a state of statistical control, the statistician and scientist must cooperate.
In fact, the contribution of the scientist to the use of data as evidence under
such conditions may be greater than the contribution of the statistician.
Four important characteristics of original data. There are at least the

following four characteristics of original data to be considered in pres-
entation:

(1. Numbers representing the numerical
values of the measurements.

2. Text describing the condition under
which each measurement was made, in-
cluding a description of the operation
of measurement. :

3. Human element or observer H.

(4. Order in which the numbers were taken.

Original Data—

Thus if we let Xy, X;, -+, X4, - -+, X, represent the numerical values of a
set of n measurements of some quality characteristic X, then to every X,
there is some associated condition C;, an observer H,, and order . This
situation may be represented schematically by a diagram like this:

X
AN
H; C,’

Every thoughtful student of science or engineering is aware that each of
these aspects of the original data may influence his interpretation of the
results obtained in any experiment. Table 5 (p. 69) showing the results
of Heyl’s measurements of the gravitational constant G, is an example of a
tabulation in which the data are divided into three groups corresponding to
three different experimental conditions. If the same operator took all the
measurements,

H;=H; (17)

If the experimenter is of the opinion that the conditions under which all the
n measurements were taken are essentially the same, he would say that

C: =C; (18)
In such a situation one might be tempted to overlook the order in w%lich
the numerical data were taken. However, we have seen in the previous
chapters that even under conditions assumed to be
Order can :e ! the same, order is very important until statistical con-
disregarded only in . . ized

controlled experiments (0l has been esta,b!mhed., as will be further er_npha,swf)
below under the discussion of the presentation of the

results of measurements from the viewpoint of knowledge.
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Table 7 is an example of the presentation of a set of 204 observations as
original data both in regard to the 204 numbers and the order in which they
were taken. The numbers provide the numerical values of 204 measure-

TABLE 7

5045 4635 4700 4650 4640 3940 4570 4560 4450 4500 5075 4500
4350 5100 4600 4170 4335 3700 4570 3075 4450 4770 4925 4850
4350 5450 4100 4255 5000 3650 4855 2965 4850 5150 5075 4930
3075 4635 4410 4170 4615 4445 4160 4080 4450 4850 4925 4700
4200 4720 4180 4375 4215 4000 4325 4080 3635 4700 5250 48%0
4430 4810 4790 4175 4275 4845 4125 4425 3635 5000 4915 4625
4485 4565 4790 4550 4275 5000 4100 4300 3635 5000 5600 4425
4285 4410 4340 4450 5000 4560 4340 4430 3900 5000 5075 4135
3080 4065 4895 2855 4615 4700 4575 4840 4340 4700 4450 4190
3925 4565 5750 2920 4735 4310 3875 4840 4340 4500 4215 4080
3645 5190 4740 4375 4215 4310 4050 4310 3665 4840 4325 3690
3760 4725 5000 4375 4700 5000 4050 4185 3775 5075 4665 5050
3300 4640 4895 4356 4700 4575 4685 4570 5000 5000 4615 4625
3685 4640 42556 4090 4700 4700 4685 4700 4850 4770 4615 5150
3463 4895 4170 5000 4700 4430 4430 4440 4775 4570 4500 5250
5200 4790 3850 4335 4095 4850 4300 4850 4500 4925 4765 5000
5100 4845 4445 5000 4095 4850 4690 4125 4770 4775 4500 5000

ments of the insulation resistances of as many different pieces of a new kind
of material produced under presumably the same essential conditions. The
order in which the test pieces were made is that obtained by reading from the
top down in each column beginning at the left of the table. These are the
data shown in the control charts of fig. 7 (p. 32), where they were considered
first in the order in which they were taken and then without respect to this
order. There we found that it was the order that furnished the clue to the
presence of assignable causes of variability that were later found and
removed.
Summarizing original data; by symmetric functions; by Tchebycheff’s
theorem. Rule 2. It is well to keep in mind that numbers and order are
) the two aspects of original data that are amenable
z;zs‘:’g:;‘g?sgfigifi“;;s_l’gni‘y to mathematical analysis. For example, in any
for controlled experiments physical or engineering paper there are usually
many pages of text descriptive of the operations of
measurement and the conditions under which the data were taken. Need-
less to say, _suf:h information is often of very great value as evidence for
certain predictions, but there is not, in general, any way available for sum-
marizing 1t at one stroke. Any mathematical summary can present but a
portion of wh'at must be considered as the original data. If the order is
neglectgd, as it can be without loss of information when and only when the
gata.amse from a state of statistical control, we may present the set of n num-
i::}lgz};zlfﬁ’;vm (t)lfl an ungrouped f_l‘quency distribution. It will be assumed
e ina,lss tatf such a distribution contains all the useful information
g €t of nonordered numbers. Thus if we have a sample Xy,

2 » Xiy -+, X, drawn from a bow! universe (pp. 9 ff), the whole of the
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information useful as evidence in predictions is assumed to be contained in
the set of numbers arranged in a frequency distribution.

o To save space, however, it is often desirable to try to
:ﬁ?ﬁ:&‘ﬁi"i a summarize a frequency distribution of 7 finite numbers
symmetric functions 10 terms of a set of m numbers, 6,, 6, - - -, 8,, where

m < n and the 6’s are symmetric functions of the »
original numbers. The ideal aimed at is to secure a set of these numbers
such that one can go from the 6’s to the X’s as well as he can go from the
X’s to the #’s. This ideal we may represent schematically as follows:

Xy, Xy, o0, Xy "',Xnt’—@x,»ez, sy O (19)

Now, of course, without making m = n, it is not possible to attain this
ideal. It is possible, however, purely from a summary consisting of the
sample size n, the average X of the n numbers, and
g:ﬁe({,fycheﬁ,s theorem ’chfeir root mean square deviation o, to say with cer-
tainty that not more than n/#? of the n numbhers X,
Xs, - -+, X, were outside the limits X = to, t being any number whatever
that is greater than unity.”? It should be noted that this statement is true
for any set of finite numbers and hence is absolutely independent of whether
the set of n data arose under conditions that permit the drawing of valid
probable inferences about the expectancy of future values of X falling within
the range X + to.

For example, et us consider the frequency distribution of the 204 num-
bers given in table 7. Given only the average X = 4498.18 and standard
deviation ¢ = 465.24 of this set of 204 numbers, one can say with certainty,
without ever having seen the original figures, that not more than 204/ of
these numbers were outside the limits X = to = 4498.18 & 465.241.
Tchebycheff’s theorem applies as a description of the distribution observed
in the sample, irrespective of how the numbers are distributed so long as
they are all finite. Itis a remarkable theorem, but it does not allow one t})
differentiate between distributions having the same X, o, and n. Hence if
the use of the data summarized in the form of the ¢’s involves inferences
that depend on the distribution of the numbers in the sample, it is necessary
to give more information in the summary of the original data than is con-
tained in the three statistics X, o, and n. .

It must be kept in mind that given any prediction P, there is,.m accord
with Postulate II (p. 42), an objective degree of belief p’s belonging to ?he
relation between this prediction and the original data. If, instead of starting

n ’ omic Control of Quality of Manu-
facture?df}”f:;;gyf\}fl:g %f)};i(r);zi’ %Z,WAYE:I]:Wﬁ?gB,%%& Tchebycheff’s .original g.rticle
“Des valeurs moyennes” (in French) appeared in Liouville’s Journal, 2d series, vol. xii, pp.

177-184, 1867. A translation into English is given '{n Smith’s Source Book in Mathematics
(McGraw-Hill, New York, 1929), pp. 580-587. Editor.
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with the original data, we start with a summary of these data, the corre-
sponding objective degree of belief in the same prediction P may turn out to
be somewhat different. Hence we may set down the following rule for
summarizing a frequency distribution of data in terms of symmetric
functions:

Rule 2. Any summary of a distribution of numbers in terms
of symmetric functions should not give an objective degree of
belief in any one of the inferences or predictions to be made
therefrom that would cause human action significantly differ-
ent from what this action would be if the original distribution
had been taken as a basis for evidence.

Tue RESULTS OF MEASUREMENT PRESENTED AS
MEANINGFUL PREDICTIONS

Every interpretation involves a prediction. Criterion of meaning. The
idea of presenting experimental results as original data is familiar to all of us.
However, presentation as a prediction may not be so familiar; in fact some
scientists and engineers may prefer to think of only two ways of presenting
the results of experimental work, namely, as original data and as an inter-
pretation. Closer examination reveals, however, that every meaningful
interpretation involves a prediction.??

As a starting point, it may be helpful to note that the statistician may
examine and analyze a sample of data from a normal bowl universe and set
down estimates of the true average and standard deviation of the universe.
Here the sample constitutes the original data and the estimates constitute
an interpretation. As another example, a physicist may examine all the
original data on the measurement of Planck’s constant , and then state his
findings in terms of the customary units in the form

h = (6.551 £ .013)10-27,

Here the physicist has presented only an interpretation. As a third
example, we shall consider a recent statement by Sir William Bragg in his
book, T.he Crystalline State (Oxford, 1925): “The difference between the
three pf'mmpal states, gaseous, liquid, and crystalline—it is better to say
crystalline rather than solid—is brought about generally by an alteration in
temperature. When the temperature is high enough, the atoms and mole-
cules are endowed vivith 80 much individual energy of movement that they
lgad a more or less independent existence as a gas. When the temperature
sinks somewhat, the forces begin to get the upper hand, and the molecules

12 The editor is reminded of C ig’ i
extornal restity withent ped oF.C. L. Lewis’ staternents, ‘. . . there is no knowledge of

pation of future experience.”
denotes ha_,s a’}ways' some temporal spread. . . .” p“The;:a is r;o. l;nvg?v?:dthe c('):l:ggt
interpretation.” Mind and the World-Order (Seribners e

» 1929), p. 195.
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join up to make a liquid, but not so tightly as to bind neighbours together
permanently and in a definite way.” Here we have a beautiful interpreta-
tion of many measurements of different kinds that are not given in the text.
In each of these examples we can easily distinguish between original data
on the one hand and the interpretation on the other. Where then does
prediction come in?

Let us consider first the quotation about the crystalline state. This
certainly predicts what will happen to a gas when the temperature sinks
somewhat. One gets a vivid picture of the way the molecules will join up
to make a liquid. Here is certainly prediction. Likewise the statement
about Planck’s constant may lead us to expect that future measurements of
this constant will give us somewhat similar results to those quoted above.
In much the same way, the statistician’s estimate of a universe parameter is
& prediction of what he would expect to find the true value to be if he could
measure it without error. In each of the three examples there is an element.
of prediction, and it is this element that helps to make scientific results
useful.

Let us look a little more carefully at this element of prediction. Just
what is predicted in each case? For example, how would one proceed to
check the prediction that the molecules will join up to make a liquid
when the temperature sinks somewhat? So far as this can be tested experi-
mentally in a quantitative way, the prediction must be translated into terms
of measurements of certain kinds that may be expected when the measure-
ment of temperature sinks somewhat. We certainly can not “see’” the
molecules joining hands when the temperature sinks. Just so soon as we
make such a translation to predictions in terms of future measurements,
we have to allow for the fact that future measurements of any kind, even
though ‘made under presumably the same essential conditio_ns, will not
likely all be identical—a fact tacitly recognized in the tabulation above of
Planck’s constant and in the example of the statistician’s est‘imat‘e of the
true value of a parameter. 'Thus we see that different. predictions in terms
of future repetitive measurements are of fundamental importance.

We shall now consider how data may be presented iI} .the form of three
types of prediction of interest from the viewpoint of r.epetzt.we measurements.
Two of these have already been referred to in connection with ﬁgs. 14 and 15;

the first, the type of prediction involved in a Student
We shall here rapge, we shall here refer to-as type P;; the second,
g?';f&if,%ﬁf © P ihe type of prediction involved in th-e tolerance range,

we shall refer to as type Ps. The third type of predic-
tion, type Pj, is that involved in estimation and will be- (-zons1dered. first
since it is the one with which the statistician is most familiar. It will ‘be
helpful to keep in mind that predictions Py, Pz, and Ps are three spemal
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tvpes schematically represented by P in fig. 21 (p. 86) as constituting a
fundamental component of knowledge.® It should be noted that the field
as here limited excludes consideration of predictions that arise from a
scientific theory except in terms of repetitive quantitative measurements.
Obviously allscientific predictions must have definite meanings, and we
shall accordingly choose the following

Criterion of Meaning: Every sentence in order to have defi-
nite scientific meaning must be practically or at least theoret-
ically verifiable as either true or false upon the basis of

" experimental measurements either practically or theoretically
obtainable by carrying out a definite and previously specified
operation in the future. The meaning of such a sentence is
the method of its verification.

Our immediate object is to compare the operationally verifiable meanings
of these three kinds of prediction from the viewpoint of presenting data.
For example, the presentation of data as a Student range X + AX consti-
tutes a symbol for a definite prediction or expectancy that is fundamentally
different from that associated with a presentation of data either as a toler-
ance range or as an estimate of some parameter.

Prediction involved in estimation—type P;. “Best” estimates. Both
the scientist and the statistician make estimates. For example, the scientist
estimates the true values of physical constants and of the qualities of
materials and objects. The statistician appears to go through much the
same process in estimating from a sample the parameters of an assumed
universe. Infact much of modern statistical theory deals with the problem
of determining the “best” estimates of parameters. Granted that the
statistician can obtain what he chooses to call the best estimates in cases
where sg.mples are drawn from experimental bowl universes, just what do
such estimates mean in the sense of the criterion of meaning stated above?
In gnswering this question, we shall discover s type of prediction that I
(tl}leg‘{latf: as P, Reqognizipg this type, we shall be in a position to consider

.slgmﬁcance of such estimates from the viewpoint of the scientist and
engineer,

] 1 > xperimental bowl universe of known fune-
tional form f(X) involving s parameters A’y, Ay «--. My --.. N.. The
statistician sets for himself the problem of ﬁnding rom. samp

. X from the sample the
corresponding best estimates @1, 92, ', @i - -+, @, Of these parameters.

kinds of prediction other tha,

1y k n types Py, P,, and Ps.
id in cha:pt_er I about the prédictiolf) tha.ff ’ esignal
rved sta_tlstlc falls outside Criterion I.
serve to illustrate the genera) principles

For example,
an assignable cause can be
However, a discussion of these
involved in presenting data as

three types should
a prediction.
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-Let us consider first what Neyman has called the best unbiased estimate.!
Any estimate ¢; of a parameter A’; is called unbiased by Neyman if the
expected value of ¢;is equal to A’;. Then from among the unbiased esti-
mates, he chooses that one as best which has minimum variance. Let us
look at this best unbiased estimate from the viewpoint of our criterion of
meaning. For this purpose, let us assume that the distribution in the bowl is
as nearly normal as can be made with a reasonable number of chips—let us
say 1000. Now it can be shown that the average X of a sample of nis what
Neyman calls the “best unbiased’” estimate of the average X’ in the bowl.
In what way can one verify the statement that the average X of the sample
is the best unbiased estimate? '

Apparently two operations are involved. If we can in some way find
the average X' in the bowl,!® we can then see whether the mean value of the
arithmetic means of N samples of n drawn from this bowl approaches this
average in the sense of a statistical limit (ch. I, page 20) as the number
N of samples is indefinitely increased; in this way we should determine
whether the average of a sample is an unbiased estimate. To investigate
the meaning of “best” operationally would be more difficult; it would be
necessary to plot for each unbiased method of estimation a distribution of
the estimates of X’ obtained by that method from the N samples of n; that
method whose distributlon has the smallest standard deviation (or roughly,
spread) is the “best.”

" Hence we see that what Neyman calls the best unbiased estimate of a
parameter has a pretty definite theoretically verifiable operational meaning.
Neyman emphasizes the fact, however, that other criteria of best estimates
have been proposed and still others may be developed. The predictive ele-
ment in each of these would have a meaning different from that described
in the previous paragraph, so that, as he says clearly enough, there is no
such thing as the best estimate: there can be only an estimate that is chosen
(or shall we say accepted?) as best by someone. In this sense, the statisti-
cian ends his hunt for a best estimate pretty much as the editors of the
International Critical Tables end their hunt for the*true values of physical
constants—both accept some estimate even though they do not accept, in
general, the same kind of estimate. In one case the statistician does the
accepting and in the other case the scientist does the accepting, but it is
acceptance in either case. The statistician, however, can give a very
definite operational meaning to his choice of estimate.

14J. Neyman, Lectures and Conferences on Mathematical Statistics (The Graduate
School, The Department of Agriculture, Washington, 1938), pp. 127-142. )

15 Of course, if we make up the bowl ourselves, we know the average X' because we build

it up to certain specifications, e.g. normal, with a certain mean X ’ (e.g. 0), a certain standard
deviation ¢’ (e.g. 1), and some convenient class interval (e.g. 0.26").
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It should be noted that the statistician does not attempt to make any
verifiable prediction about one single estimate; instead, he states his predic-
tion in terms of what is going to happen in a whole sequence of estimates
made under conditions specified in the operational meaning of the estimate
that he chooses.

Let us see in what sense Neyman's ‘‘best unbiased’” estimate could be
tested in the practical problem of estimating the true value of some physical
constant such as the velocity of light. In this case, we presumably can not
find the true value as we could find the true average in the experimental bowl;
hence we can not verify in a practical way the prediction that the supposedly
unbiased estimate of the true value actually approaches the true value in
the statistical sense; the process of verification can only be theoretical.
However, we could compare the variance of the assumed “best’’ estimate
of a true value of a physical constant based upon N samples of n measure-
ments with the variance of another kind of unbiased estimate of the same
true value based also upon N samples of n measurements, and we could see
which estimate is better by Neyman's criterion.

Now let us consider the difference between presenting data in terms of
estimates and presenting them as original data or summaries thereof in
terms of symmetric functions. For this purpose, let us assume that we
start with a sample X, X,, -+, X;, ---, X, from a bowl universe of un-
known functional form f(X). It is important to note that any of the
generally accepted statistical methods of estimating a parameter from the
sample of n involves two assumptions: (a) the functional form f(X), and
Different kinds of estimates have (b) the particular type of estimate to be
different predictive meanings, yet chosen as best, for example, the best un-

the predictive meaning of a particular biased estimate, the maximum likelihood
estimate is independent of the form v

asstmed for th ahiverss estimate, or that obtained by the use of the

) o Bayes-Laplace theorem. Itis particularly
Important to note that different kinds of estimates do not have the same op-

crationally verifiable predictive meaning; hence to say that ¢; is an estimate
of a parameter \'; is not in itself operationally definite; we need further to
know. what estimate. The predictive meaning of an estimate is clear
(prov1ded the reader knows the kind of estimate), even though the func-
tlor}al form fi(X) that happened to be chosen to represent the universe as a
basis for computing the estimate is not known.

It may be-helpf}ll to indicate the relations between the original data and
any such set of estimates by the following scheme:

X, X, o X s, Xnﬂol, By, +- -, 65, ceey O
' Ji(X)

= @k, Oy, s (20)
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wherein the symbol — represents one method of going from the sample to
the symmetric functions 6;, and the symbol fi(X) over the arrow suggests
one of the many ways of going from the 6’s to a set of estimates. As just
noted, we do not need to know the functional form fx(X) to interpret the
predictive meaning of the ¢'s. )

However, we should note that the ¢’s by themselves do not constitute a
summary of the original data in the sense that the 6’s constitute such a

summary because it is possible, if we know the ¢’s,
Esﬁmates are predictions t, make other sets of estimates based upon other
ut not summaries. g s .
Astatisticis asummary  #ssumed forms for f(X), but it is not possible to do
- this if we start with a set of ¢’s and do not know the
corresponding assumed form of the universe. An estimate ¢ is of the nature
of a symbol of something that may be experienced in the future, whereas a
statistic 6, is simply a summary of a characteristic of previous observations.
This illustrates the sense in which the requirements for presenting the results
of measurements as a meaningful prediction are different from those for
presenting the original data and preserving the information contained therein
for all the useful predictions that might be based on them (cf. Rule 1 on
p. 88).

Prediction involved in the use of the Student range—type P;. Some-
times the statistician presents his results in terms of what I have called
Student ranges (ch. II). For example, .950 &= .715 is one such Student
range corresponding to a probability 1 — p’ = 3. Now let us ask, what is
the operationally verifiable meaning of such a range or what kind of verifi-
able prediction is it a symbol of?

In the first place, it is of interest to recall that any single Student range
such as .950 =+ .715 considered by itself is not suggestive of a probability
interpretation involving an operationally verifiable prediction (see p. 61).
Likewise, that a given estimate is the best unbiased one is not a verifiable
statement except when this estimate is a member of a class of estimates.
Student ranges for a probability of % are subject to the following interpreta-~
tive prediction: If N samples of the same or different sizes be drawn from
the same universe or from other universes, and if in each case a Student range
for the probability 1 — p’ be computed, then we may expect to find that
(1 — p")N of the ranges thus set up will include the corresponding true uni-
verse averages—a kind of prediction illustrated in fig. 14 (p. 59) and discussed
at that point.

Some scientists have sought to calculate Student ranges for the physical
constants and they have often chosen a probability 1 — p’ = §. Student
ranges are also frequently used in other fields of scientific investigation; hence
the associated type P, prediction is of broad general interest in the interpre-
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tation of the measurements of published results of science. The fact that a
prediction involving a Student range X + AX is a probability prediction
concerning not this particular range, but rather of a whole sequence of vary-
ing ranges should be of equal interest (p. 59). It should be noted, however,
that for most scientific measurements, including those of physical properties
and constants, such predictions are only theoretically verifiable because we
can not discover the corresponding true values.

From the viewpoint of the presentation of the results of measurement in
terms of Student ranges that will provide a meaningful prediction of type
P,, it should be noted that we do not need more than can be presented in
the form of a range X =+ AX, it being understood that this is a Student
range for a given probability, e.g. p. = %, or p. = .95, as the case may be.

Practical need for clarification of predictive meaning. We should note
that interpretations of such ranges by some scientists appear to involve
predictions other than that described above as type Pi, though just what
else is involved may not always be clear. Thus in a recent paper, Edding-
ton ! puts the question: suppose I have occasion to use Planck’s constant h

and that I find the following two-determinations recorded in the literature
in terms of the appropriate units:

hy = (6.551 £ .013)1027
hs = (6.547 & .008)10—27

If we assume that these two are to be taken at their face value, which one
shall I choose? He argues that the second one is the more useful to him
because it limits & to a narrower range and hence will lead to sharper con-
clusions.” I am not sure what the expression ‘‘assuming that these are
to be taken at their face value” covers. However, let us assume that it
implies that in both instances the values of h were calculated by the same
method from what the statistician would call random samples of measure-
ments {ree from constant errors. Now in what experimentally verifiable
sense does the second determination h, limit 4 to a narrower range than does
hi? T assume jchat all will agree that this inference implies something more
than would be implied in the statement that both hi and hs are ranges inter-
pretable as a type P, prediction, but I am not sure what more is implied
and hence I am not sure how one would set about checking the meaning,.

1 assun}e that anyone who is asked to choose between h; and %, as esti-
mates of A’ would want to choose the valye of h that might reasonably be

1¢ A. 8. Eddington, “Not,

vol. 475’ op. 271287 1033, otes on the method of least squares,” Proc. Phys. Soc. (London),
17 This seems to imp} icti .

supposed to include theptr}; a prledlctlon of type Py in the sense that the tabulated range is

the basis of Student’s theor;va ue, although the ranges may not have been computed upon
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expected to be the closer to the true value 2. In fact, the physical scientist
usually does not want to set up Student ranges that are expected to corral
50 percent of the true values of the physical constants, but instead he wants
to set up ranges that center as closely as possible about the true values.
From this viewpoint, which of the two ranges should the scientist choose?
Some might be tempted to choose the smaller range as Eddington did. This
may be as good a rule as any other to follow under the present assumptions
and when we only have the ranges given. However, it is not the rule that
one would likely follow if he were given the sample sizes n; and n, corre-
sponding to k; and h;. For example, so far as we can determine solely from
the tabulated ranges h; and k., the two might have been based upon different
sets of data both of which had been taken by the same man under pre-
sumably the same essential conditions, the only difference being that the
numbers of observations 7y and n, were different. If we were given n; and
7y, then the desirable practice to follow would be to choose that value of h
that was determined from the larger number of observations.

To make this point clear, let us consider the following two Student
ranges obtained from two samples drawn with replacement from a normal
bowl universe:

.3500 =+ .0200
0015 £ .0218

Which one of the averages, .3500 or .0015, would you choose as the one
closer to the true average of the distribution in the bowl? Suppose one
chooses the value .3500 because it is associated with the smaller range.
This might be a reasonable choice simply upon the basis of the tabulated
ranges, but it would certainly not be the choice if one knew that the sample
size for the first range was 4, and for the other range, 1000. Under such
conditions I assume that all will agree that the choice would no longer be
.3500. If we turn back to fig. 14 we shall see the location of these two ranges
in respect to the true value; the first of these ranges is that shown as the
second on this figure and the other is the fourth from the last. I trust that
enough has been said to indicate the danger of trying to read into a Student
type of range a predictive meaning that is not justified.

Prediction involved in the use of the tolerance range—type P;. In
chapter II (pp. 61 and 62) we considered briefly the predictive meaning of
a tolerance range. For example, if we were to say that the 90 percent
tolerance range for drawings from a given normal bowl universe is X = AX,
the operational meaning of this is that 90 percent of future drawings from
the bowl may be expected to fall within this range.

In practice, of course, we have the problem of esta.blishing.tolera.nce
ranges upon the basis of a sample. To make our discussion specific, let us
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assume that we have at our disposal the following sample of four drawn
from what we know to be a normal bowl universe:

1.7 02 14 0.5

For this sample, the average X = .950; and the standard deviation o = .619.
Obviously we can not establish the 90 percent tolerance range upon the
basis of this sample. The 90 percent estimated tolerance range for a
sample of size four in the sense here considered is approximately X = 3o.
For this particular sample of four, this estimated range is .950 & 1.857, and is
subject to verification in two senses. In the first place, it is possible to carry
out additional drawings from the bowl to see whether 90 percent of these
will fall within the stated tolerance limits. As was pointed out in chapter
II, we may seldom expect that tolerance ranges established in this way will
be found to be correct. This was illustrated in our discussion of fig. 15
where it was pointed out that only by increasing indefinitely the sample size
used as a basis for estimating the tolerance range could we expect to get a
tolerance range that would prove to be exact. Hence in practice where we
must use estimated tolerance ranges, it is always desirable to record the
sample size n—in this case four—that was made the basis of the estimated
tolerance range.

Now thisestimated tolerance rangefor asample of four is in addition subject -
to the following operationally verifiable meaning: if we draw N samples of
four from the same normal universe and set up tolerance ranges X; =+ 3o
(t =1,2,3, -+, N) for these N samples and if we then compute the corre-
sponding fractions 1 — p1, 1 — py, -+, 1 — py of the total population in
the universe included by these ranges, the average of these fractions will
uppr(?ach 18 approximately .9 as a statistical limit as N is increased in-
definitely. This statement implies a prediction about the expected areas
of t:he parent population swept out by the ranges X; -t 3¢; instead of im-
plying a presiiction about the expected number of true values included within
the ranges X + 440, where ¢ = 1,2, - - -, N (see p. 61).

Common characteristics of the predictions.

cte: Now we should note three
common characteristics of the scientific meanings of these three types of
prediction:

Alil Tglfe meanings permit, practical experiménta,l verification
only i X a8 In the case of experimental universes, we can dis-
cover the true average and the true universe area swept out by

arange.” In most practical cases such a. i i

K S measuring physical
constants the method of verification can only be tl%egrg;ical.

18 This limit of .9 is

. approximate in the sense that it was determined iri
:;lla;g at::s% Z.i\;zzag:v (i)tfhl :hp for 1000 samples of four. W. A. Shewhart, “Not: l:rlx) gﬁ?}iﬁ)&
DD B00-807 1o e error of a single observation,” Journal of Forestry, vol. xxvi,
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B. The meanings are all in terms of a number of samples and
not in terms of a single sample. They do not tell us anything
about a characteristic (estimate, Student range, or estimated

ttl)lerance range) of a single sample except that it is one of a
class. :

C. From a practical viewpoint, what is perhaps the most im-
portant common characteristic of the meanings of these three
types of prediction is that the method of verification theoret-
ically involves an indefinitely large number of samples of size
n. Hence when it comes to verifying any one of the three
types of statistical statement by experiment it is necessary
to take many samples of size n and in this way a large sample—
a fact that is of great importance when presenting data from
the viewpoint of knowledge, as we shall soon see.

Before leaving the subject of presentation of data in the form of a pre-
diction,?® let us look again to see how this differs from the presentation as
original data. The situation is illustrated schematically in fig. 22.

In passing from the original data on the left of fig. 22 to the predictions
on the right, the interpreter takes three steps, involving the introduction of
assumptions and interpretive constructs; he adds something to the original
data. 'When scientific results are presented as predictions they have opera-
tionally verifiable meaning in terms of data that may be taken in the future.
They do not, however, in themselves convey knowledge.

Tar Resvrts oF MEASUREMENT PRESENTED AS KNOWLEDGE—
Ipear CONDITIONS

We take data to acquire knowledge; how to present the results of meas-
urements as knowledge is therefore of outstanding importance. For ex-
ample, it was stressed earlier in this chapter that the engineer needs more
knowledge about properties of raw and fabricated materials in order to .set
the most efficient tolerance ranges. Engineers are interested in knowing
how they can use statistical theory to help them extract the requisite knowl-
edge from available data and to present it in a form that will be useful to
others. ‘ _

To every prediction there corresponds a certain degree of rational belief.
It is necessary now for us to note more carefully than heretofore how
knowledge differs from original data and from predictions. Knowledge,

1 This, of course, involves the assumption that drawings from an experimental normal
bow! universe can be said to be in a state of statistical control that is normal. Even bere,
of course, verification is practical only in the sense that no matter how many samples we
have taken in the process of verification, we can alw_ays take one more. o

20 Needless to say, the presentation of data as ev'xdence upon which to base a predx(lzgc&n
is an entirely different problem. This problem is discussed in the next section, pp. i .
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as has been stated, begins in data and ends in other data. It starts with
original data and makes predictions about data not yet taken, involving,
at the same time, something more—it involves a certain degree of rational
belief in a prediction based upon evidence derived from the original data:
this relationship between prediction and evidence is of great importance
from the viewpoint of the presentation of the results of measurement as
knowledge. . '

It is perhaps not necessary to'point out that just as soon as we begin to
consider knowledge it is customary for us to introduce some kind of require-
ment of truth or validity for the predictions based upon the analysis of the

original data. However, the fact is often lost
There is a distinction betweeg _sight of that there is an important distinetion be-
?,’;:ﬁ:‘}ﬁt&i‘{,‘fe true, an tween valid prediction in the sense of a prediction

being true, and valid knowledge in the sense of a
prediction being justifiable upon the basis of the available evidence and the
accepted rules of inference. Thus a prediction may in a given case prove
to be false, yet upon the basis of the evidence available at the time the pre-
diction was made, this prediction may be that which the majority of the
recognized authorities in the particular field of investigation would have
made. From this viewpoint, what might have been acceptable as valid
knowledge yesterday may not be acceptable as valid knowledge tomorrow
even though no new data are introduced.

For example, the rules of inference accepted by scientists change with
time, and as a result what would be accepted today as a valid inference upon
the basis of given evidence £ might not be accepted tomorrow. Thus an
analyst in making predictions of types Py, P;, and P;s
(pp- 92-101) makes use of certain distribution theory,
and when better distribution theory is developed, the
analyst must use it if he is to record the results of measureme_nts, as knowl-
edge, in a way that will be accepted by authorities as valid knovt/ledg.e.
Likewise the scientific analyst must present his evidence along with his
predictions if he is to present his results as knowleflg(.e. I'n terms (?f the
schematic diagram of fig. 22, the evidence for the pre(%lctlons is ever.ythmg. to
the left of the three predictions including the deductlve. as well' as m('iuctlve
chain of reasoning symbolized in the arrows. Sucl_l ev1dence,_ 1nc.1ud.1ng the
analyst’s chain of reasoning, is necessary if the engineer or SCIGI}tlSt is to b-e
able to judge the validity of the knowledge solely upon the basis of what is
pw;(innﬁ?;)f this, we must remember that it is possibl_e to make sta?ements
having a definite operationally verifiable meanin;?r lethout prgseqtmg any
evidence (cf. p. 86). Meaning involved in predictions constituting com-

Knowledge is affected
by rules of inference
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ponents of knowledge is not only independent of that knowledge but ante-
dates and outruns that knowledge because we must first have a meaning to
a prediction before we can decide either its validity or its reasonableness
upon the basis of the available evidence; but the meaning of the prediction
remains the same even after the validity of the knowledge has been judged.

Nonstatic character of knowledge. Just as soon as we adopt the picture
of knowledge here sketched, we are forced to consider knowledge as some-
thing that changes as new evidence is provided by more data, or as soon as
new predictions are made from the same data by new theories. Knowingin-
this sense is somewhat of a continuing process, or method, and differs funda-
mentally in this respect from what it would be if it were possible to attain
certainty in the making of predictions. For example, if we had some way of
finding out once and for all what the 99.7 percent tolerance range for the
density of pure iron is, or what the true value of the velocity of light is (as-
suming that these things have constant objective values), we could put the
figures down once and for all, and they would not change with the acquisition
of further measurements.?! Since, however, we do not know either of these
with certainty, and since we can make operationally verifiable predictions
only in terms of future observations, it follows that with the acquisition of
new data, not only may the magnitudes involved in any prediction change,
but also our grounds for belief in it.

Limits to knowing. Predictions based on the bow! universe have
maximum validity. The more we know, the more able we are to make
valid predictions. Knowledge in this sense is a process or & method of ap-
prozimating a practical ideal of a minimum number of false predictions.
Sp .f:?.r as the three kinds of prediction (pp. 92-101) are concerned, the
limiting situation is that conceived of as a state of statistical control repre-
sent.efi gmpirically by drawings from an experimental bowl universe. In
fact, it is assumed that if we knew the distribution in the bowl, the validity
of the predictions that we could make concerning the fluctuations in the ob-
served characteristics of samples therefrom would represent the limit to which
“:' could hope to go. ’-I‘his is a sjecond characteristic of drawing numbered
;:1 ips from a bowl universe (with replacement, stirring, etc.), attention
. ::;nﬁ :;l;z:;ig l:‘lalen directed to the fact that in the state.of statistical control
da.tap » the order and the observer do not constitute useful items of

3 We can, of course, attai is ki PI . . .
Deductive s t; tements :;,11 :iltlixglii kind of fixity in a deductive science such as mathematics.

€ ¢ ght or wrong and may be verified once and for all b
using the conventional formal rules. For example, let us consider the statement that Y

w jw — 3.141592653589793238462643383280l <1079
e can be sure that such a statement is true once and for all, or is false once and for all.
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The object of a scientific investigation and the presentation of its results.
It is important to note that statistical distribution theory provides the
fundamental basis for predictions in this limiting case. Knowing is a
process by which we may hope to approximate closer and closer to this ideal
state. I take it that the object of a scientific investigation is so to organize
past experience and so to direct the acquisition of new experience that it will
be possible to make valid predictions on the outcome of any proposed ex-
periment that is capable of being carried ouf, and to make the prediction in
less time than it would take to carry out the proposed experiment. For this
reason, the distribution theory of statistics is thus the tool that must ulti-
mately be used for making the kinds of prediction considered here.

Since knowing is of the nature of a developing process directed toward
the attainment of an idealized state where maximum validity of prediction
results, perhaps the most important requirement on the presentation of data
is that the results of an experiment should be presented in a way to contribute
most readily to the development of the knowing process. 'This is particularly
important in connection with the making of a running report on the quality
of product turned out by a repetitive process in mass production where the
ultimate goal from the viewpoint of establishing efficient tolerances i's the
establishment of sets of tolerances having the maximum degree of validity.

The presentation of results from the normal bowl. Let us assume that
we know that the distribution in the bowl is normal but that we do not kpow
the two parameters—the average X’ and the standard deviation ¢'. First,
let us illustrate a fact to which attention has been ealled above, namely, that
knowing is not static. For this purpose, let us consider tl}e manner of
estimating the average X’ upon the basis of a sarr_lple of size n. If we
adopt the rule of computing the ‘“best unbiased” estimate (p. 95), we shall
find that the estimate for a sample of size n = n; will not in general be the
same as the estimates for n = n1 + 1, 7 = m1 + 2, ete., as has already been
illustrated by the averages computed for the statistical }umt in ﬁg._ 5. of
chapter I (p. 21). Thus knowledge may fluctuate both in the prediction
and evidence. . e

In a similar way, let us consider tolerance range predictions in terms of
samples drawn from a normal bowl in which the pa.rax.neters are unknown.
Fig. 15 of chapter II (p. 62) shows how such predictions actually change
from one sample of four to another. This same figure, hOWGVC_r; does some-
thing more—it shows that without a knowledge of the sa.mple. size one is not
in a position to estimate the size of error that he may make in a prediction
of thiskind. Hence even in this simple case, we ought to tabulate the sample
size if the data are to be used at any time in esta.blishing_ tolerances. The
striking thing, however, is that in the simple case of drawing from a normal
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bowl, it is sufficient to tabulate merely the average X, the standard devia-
tion ¢, and the sample size n; nothing else is of any use in the predictions
here considered.

The presentation of results from a bowl when its distribution is known
but is not normal. Theoretically it is feasible to set up ways and means of
making valid predictions through the use of statistical distribution theory
for each of the three types discussed above (pp. 92-101) for any universe;
it-is of interest to remark, however, that only a comparatively few functional
forms other than the normal law have been investigated. So far as we are
here concerned, it is interesting to note that when the known distribution in
the bowl is not normal, the tabulation of the average, standard deviation,
and sample size will not lead to predictions, particularly of the Student and
tolerance range types, that are of the same degree of validity as are those
derivable from these same factors when the distribution in the bowl is normal.
Furthermore, the answer to the question of how the data may best be sum-
marized under these conditions ecan be determined with a reasonable amount
of labor only by means of theoretical distribution theory such as the theoret-
ical statistician may be expected to supply in the future. For predictions
of types Pyand Pj it is perhaps reasonable to believe that the average and
standard deviation will be two of the symmetric functions that are required.
It is almost certain, however, that in order to provide necessary information
concerning the magnitude of the errors that may be expected in making
tolerance range predictions it will always be necessary to tabulate the
sample size n. ;

Thus for predictions of the three types here considered, it is desirable to
tabu]‘ate at least the average, standard deviation, and sample size; and for
certain non-normal forms of distribution, it is necessary to tabulate other
symmetric functions also.

The presentation of results from a bowl when its distribution is un-
t’}‘;‘:‘:s dig:;:;tthe VleWDOflnt of presen.ting the results of measurement,
of the distribaty ;Sl V;’:: Iziss brOII; ‘Qhekprevmus case where the functional f.orl'n
unknown? The more oreiess0 :)Vb o to. the present case where lt. 18
formation from the cammple thanv;zu:ha.nswer. is that we must have more in-
greatest number of valid prediction eIpI‘eVIOuS case In order to make the
long as the sample of 7 is drawn fr N b ; Shf)u.ld be noted, however, that 59
distribution of the wirmboere 1o 31 om & bowl, it is assumed tl}at the freql_lency
whole of the information given be :ﬁmple, and t he sample size " contain the
makes 1o difference sl %ca,kes tifl e sample; in other word.s, it presumably

How shall one ke predio; e sarfnple and what order is observed.
tional form of the bowl i lon.s o types Py, PZ’. and P; when the func-

universe 13 unknown, particularly if only a small
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sample is available? What the statistician customarily does is to make
predictions as though he were dealing with samples from a normal bowl.
Such a procedure may lead to comparatively large errors as a simple example
will serve to show. Suppose that one is interested in making predictions
in terms of the Student ranges (type P1) based on samples of four and corre-
sponding to a probability of .50, and that he follows the procedure in setting
up such ranges that he would be justified in following if he knew that the
samples came from a normal bowl. Fig. 23 shows the results of setting up
100 such ranges corresponding to as many samples of four from each of
three different bowls. The functional forms of the experimental universes,
although unknown to the observer, were normal, rectangular, and right
triangular respectively. Whereas for a normal bowl, 50 of the 100 ranges
would be expected to include the true value, the observed number of inclu-
sions for the three sets of data are 51, 56, and 68 respectively. There can be
little doubt that the percentage failure of prediction in the rectangular and
right triangular cases was largely the result of lack of normality of the un-
known parent distribution. This experiment simply illustrates the well-
known fact that it is necessary to know the functional form of the distribu-
tion in the bowl if we are to attain the limit to which we can go in making
valid predictions. :

[ T %

40

FREQUENCY

201

L HH‘ MM

-0 °
X
Fia, 24

30

Although, as we have seen,

when the distribution i i
the average, standard deviation oot o s normal

» and sample size contain what is perhaps the
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essential information from the viewpoint of setting tolerance ranges, it is
worthy of note that in the present case, where the functional form of the
universe is unknown, such a summary is inadequate. Supposé, for example,
that we are given X = — .0028, o = .9663, n = 1000, and that we are
interested in setting tolerance limits for a probability of .997. We have
already seen in fig. 15 how accurately tolerance limits can be established
upon the basis of such information provided that we know the universe is
normal. Suppose now that we set the range for this sample of 1000 in
exactly the same way that we would if we knew the universe were normal,
by taking the average plus and minus three times the observed standard
deviation. This range is laid off on the X axis in fig. 24.

Now let us look at this range in relation to the observed frequency distri-
bution of the sample of one thousand. I think almost everyone will agree
that tolerance limits — 1.4 and + 2.6, for example, would satisfy the re-
quirements much more efficiently than the tolerance range X + 3¢, which
is unnecessarily large. Obviously, in order to go as far as we can in setting
valid tolerance ranges, it is essential that we take into account the observed
distribution in the most efficient way. Inthe present state of our knowledge
of the theory of estimation and the establishment of valid ranges of varia-
bility in terms of a comparatively few symmetric functions, I feel that one is
not justified in trying to summarize a sample of the size usually required
(1000 or more) solely in terms of symmetric functions as a basis for establish-
ing valid tolerances. We should instead, at least in our present state of
knowledge, tabulate the frequency distribution fo found in the sample.

As another illustration, let us consider a small sample—a sample of
eight drawn from a bowl universe of unknown functional form:

1.7 107 0.2 14 100 104 0.5 10.6

How would you summarize these numbers? Would you be satisfied with X,
¢, and n from the viewpoint of predictions of the three types here considered?
As a background for answering these questions, let us plot these eight values
on a straight line, fig. 25. I believe that it will be generally agreed that the
knowledge based on the distribution of numbers, particularly when shown
graphically, is sufficiently different from that based on the summary in
terms of the average X = 5.69, standard deviation ¢ = 4.76, and sample
size n = 8 to make it desirable to record the distribution—here, the eight

& @1 A 1 L 1 L 1 1 A'ALL;
- 2

4 L] 8 0

so—e
Fie. 25

numbers themselves. For example, suppose one were interes_ted in setting
a tolerance range for a probability 1 — p’ = .997 based on this sample. If
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all one knew was the summary in terms of X, o, and n, he would likely set
up the range as though the sample had been drawn from a normal bowl
universe, and in so doing, he would experience a certain degree of belief in his
tolerance range prediction. If now, the same person were shown the original
distribution, would his degree of belief be increased or decreased? Mine
would be decreased materially. Hence I should want to be given the ob-
served sample distribution fo even though the sample size is only 8. Of
course, a tolerance range so set would be subject to large error. Anyone
familiar with even elementary sampling theory appreciates that a sample of
1000 or more must be available, even when drawing from a bowl, before one
can place much reliance in his judgment concerning the functional form of
the distribution in the bowl, particularly if one is interested primarily in the
tails of the distribution. Furthermore, such a person is familiar with the
serious difficulties of trying to judge the form of the distribution when the
only information available is a set of symmetric functions such as the 6’s in
fig. 22, p. 102. So from the viewpoint of summarizing a sample drawn from
a bowl in which the form of the distribution is unknown, it does not appear
desirable—at least in engineering work and particularly in the setting of
tolerances—to give a summary simply in the form of symmetric functions.
Hence when tabulating the results that are to be used in setting tolerances
when the distribution in the bowlis unknown, it appears desirable to show at
least the four quantities _
fo, X,0,and n

fo being the ungrouped distribution of results in the sample.

THE RESULTS OF MEASUREMENT PRESENTED A8 KNOWLEDGE—
CustoMArY CONDITIONS

Complications in real measurements not in a state of statistical control.
The problem of presenting the results of measurement of a physical quality
characteristic or constant is much more complicated than that considered
in the previous section dealing with samples from a bowl universe. This
complication arises from the fact that measurements do not in general
behave as though they arose under a state of statistical control. In fact,
not only do repetitive measurements made by any one method of measuring
usually show lack of control, but also measurements of the same quality
characteristic or physical constant made by different methods usually indi-
cate the existence of assignable causes of difference. For example, on page
89 we called attention to the fact that for any physical measurejment X
.there are three associated elements from the viewpoint of operational mean-
ing, namely the condition C; under which the observation was taken, the
human element H; introduced by the observer, and the order. No;v to



MEASUREMENTS OF PHYSICAL PROPERTIES AND CONSTANTS 111

assume that an observation such as a drawing from a bowl arises from a
state of statistical control implies operationally the assumption that for
such an observation we may neglect the factors C; and H; as not contributing
to knowledge. We shall soon see, however, that these factors play an im-
portant role in the problem of presenting the results of physical measurement.
How to present C; and H; is a difficult problem. It goes without saying,
however, that without knowing anything about C; and H, there is little
ground for believing in any prediction that may be made upon the basis of a
series of n repetitive measurements Xy, X, --+, X;, -+, X,. Here we shall
confine our attention to certain aspects of the problem that are significant
from the viewpoint of determining the usefulness of statistical theory as a
guide in the presentation of the results of measurement.

In the first place, it should be noted in the light of the results presented
in chapter II that if the formal rules for making predictions of the three
types P1, P, and P; are applied to an actual set of physical data, the ex-
pectancy of the percentage of valid predictions would be very low compared
with the percentage attainable for drawings from a bowl. From the view-
point of setting the most efficient tolerances, more knowledge is reguired
than is contained in any tolerance set by such a rule, unless we have evidence
to indicate that such observations are statistically controlled about a
statistical limit which appears to be the same for all of the known me'thf)ds
of measuring. Hence we shall here consider some of the ways stgtlstlcal
theory may be applied to advantage in the process of approaching t}'m
idealized condition of statistical control—that is, applied to advantage in
the knowing process.

Although there are three component factors of knowle@gg as here con-
sidered, namely evidence, prediction, and degree of belief ps, it is notgworthy
that we have no quantitative way of measuring ps. Let us conmder.tho
investigations in any new field of measurement. Man}.r, many 9bservat1()ns
of an exploratory character are often taken before a sclent1§t will even take
Pri he attai t of statistical time to record them. It is almost alway's
c:;‘g:;) tofraknmze does not a long experimental road between such ini-
increase indefinitely as more and tial efforts and the announcement of the
more measurements are taken final results as, for example, in the
measurement of the velocity of light by Michelson.  For our present purpose,
perhaps the most important characteristic of suc.h an approach to scientific
knowledge is the fact that the method of increasing knowledge does not con-
sist in taking more and more repetitive measurements under presumably
the same conditions as it does when one is making drawings from a bowl. . In
fact, a scientist seldom bothers to take more than ﬁV}e or ten obs_ervatlons
under what he considers to be the same essential condlt.lons (draw1ng§ from
a bowl), although often he experiments with what he thinks may be slightly
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different conditions. An illustration is provided by Heyl’s measurements of
G shown in table 5 (p. 69) wherein the results are given for three different
experimental arrangements which we might call conditions Cy, C2, and Cj,
provided it is permissible to conclude that the conditions remain the same
for the measurements in each one of the three columns.

Consistency between different methods more important than consistency
in repetition. The degree of belief that a scientist holds in a prediction
made upon the basis of measurements of some physical constant or property
depends a lot more on the consistency between the results obtained under
slightly different conditions and by different methods of measurement than
it depends upon the number of repetitions made under what he considers to
be the same essential conditions. In all such work it has long been recog-
nized that the statistician may contribute to the efforts of the scientist in
discovering assignable differences between two or more sets of observations.
For example, in table 5 the statistician might apply tests for determining
whether the data obtained under the three possibly different conditions
could reasonably have occurred as a result of sampling fluctuations; all he
needs for this purpose are the average, standard deviation, and sample size
for cach of the three sets of measurements. ‘

A word on the detection of constant errors by ‘‘tests of significance.”
It is very difficult, however, to weigh the importance of this contribution of
th.e statistician and to determine how much the results of his efforts con-
tribute to a rational belief in the conclusion derived from the analysis of
data. From the viewpoint of scientific inquiry, the validity attainable in
predicti9ns depends so much upon the skill of the experimentalist in selecting
appropriate sense data on the one side and connecting principles or concep-
tual theorxes- on the other, that unless this process is carried out successfully,
almost nothing that the statistician contributes is significant. One must not
p_lacsa too much reliance upon the existence or nonexistence of so-called
Slgmﬁpan“c differences' reached in any statistical test. However, if the
s st o i, It rinipe 0
tributed to them and are sug 8 aflsl ;ca }:o.ests have the Vah%e customf.a.rﬂy at-
from the viewpoint of rov'((zf'SS uk ol GXte‘nt'. Henee o tabulating dats
maries be made in termI; o ;hmg nowledge, it is ofte.n (.:les1ra.ble that sum-
size for each group of dat e average, Stand.a.rd deviation, and the sample

a taken under conditions assumed to be the same

by 'the scientist, instead of summarizing all the data as though it constituted
a single sample from a, statistically controlled condition.

Nfaed for the attainment of statistical control
very important contribution of statistj :
comes about when one tries to

goes in looking to see whether

What seems to me a
cal theory to scientific methodology
go quther than the scientist customarily
repetitive observations made under pre-
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sumably the same essential conditions satisfy the criteria of control referred
to in chapter I. If one is to attain the kind of knowledge that is requisite
for establishing the most efficient tolerances—the kind that could be estab-
lished for drawings from a bowl—it is obvious that one must attain a close
approximation to a state of statistical control. Furthermore, as I have said
before, it is necessary to have a comparatively large sample, usually more
than a thousand, as a basis for establishing the tolerance range if one is to
keep within practical limits the error in setting such ranges. What I have
termed in chapter I the ‘“operation of control” constitutes an operational
procedure for attaining this control and the knowledge requisite for estab-
lishing such tolerances. This application of statistics is inherently different
from that of making the three kinds of prediction P;, P,, and P; from a
single sample, referred to above. In fact, it is the function of the operation
of statistical control to help attain with a minimum amount of human effort
a state of control wherein we may with reasonable assurance of attaining
valid results make these three kinds of prediction as if they were applied to
drawings from an experimental bowl. .

An interesting characteristic of this operation of attaining knowledge is
that to begin with we can not tell how many observations will be required.
So long as we find any evidence of lack of control, we can not estimate the
degree of belief that we should hold in any prediction made upon the basis
of accumulating data. However, this operational procedure of detecting
and eliminating assignable causes provides a method of approaching a state
of statistical control of a given repetitive operation in a more or less regular
manner. So far as the claims for this operational technique are justified,
it follows that the available data should be so tabulated that criteria of control
may be applied, even when the scientist assumes that his data have been
taken under the same essential conditions. An illustration of such a pres-
entation is provided in table 7 (p. 90), which gives the 204 observations of
insulation resistance in the order in which the pieces were made. For
investigating their state of control, the averages and standard deviations of
the successive samples of four would have been a satisfactory summary of
the original data. ‘

Tt will be noted that in the previous section dealing with ideal conditions
(pp. 101-110), the recommendation there given was to present the observed

. ) _ results in an ungrouped frequency distribution fo,
g:tﬁv;r::;xgﬁgﬁtd but that no such recommendation is .made in the
present section; here we are not assuming that con-

trol exists, but rather we are attempting to attain it or prove it. Th.e
reason is obvious; the use of the observed frequency distribution‘ Jo 18
to give evidence concerning the nature of the distribution function in th.e
experimental bowl, whereas in the initial stages of investigation, the condi-
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tion of control has not yet been attained and there is no universe (bowl) to be
discovered. TFor example, there would be little if any advantage, so far as
1 sce, in presenting the 204 observations of table 7 as an ungrouped fre-
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quency distribution since these data when tested by means of Criterion I

%2:1 ztii;l cti of tl.ack of COI}tro.l. If, on the other hand, these data had
satisfy the criterion of control and if they were to be used
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as the basis for setting, let us say, a 99.7 percent tolerance range, the observed
distribution would be of some help in indicating the validity of such a range.

As we saw earlier (pp. 86 and 103) a prediction devoid of supporting
evidence conveys no knowledge. And so it is that in order to convey to
another person the knowledge that one obtains from a study of his own
experimental work, it is necessary to present the evidence as well as the predic-
tion. Since it is customary in experimental work to find that the state of
statistical control can be approached only as a limit by discovering and
weeding out assignable causes, the presentation of evidence that the assign-
able causes have been found and removed necessarily adds to one’s rational
belief that the end results represent a state of statistical control. For
example, fig. 26 shows a control chart for 51 averages of four measurements
each, derived from a sequence of 204 measurements of resistance on as many
pieces of a new kind of product. This figure points with some definiteness
to a lack of control, and on this basis certain assignable causes of variability
were found and removed from the process, after which the data of fig. 27
were taken. The latter chart gives evidence that it arose from a statistically
controlled state, and this belief is strengthened by the recognition that
certain causes of variability had been located and removed with the help of
fig. 26 before the data of fig. 27 were taken. It is important to keep a
running report as a basis for judging quality in mass production because
such a report may indicate progress toward the attainment of a state of
control even though such a state has not yet been attained.

Distinction between summarizing data for evidence of statistical con-
trol, and for setting tolerance limits after it has been attained. In the
process of testing data for evidence of control, I have shown elsewhere why
it is desirable for the scientist or engineer to divide the original data in.to
comparatively small groups which he thinks arose under the same essen'f,la]
conditions. These are then tested for control by some criterion involv1.ng
in general the use of the average X, standard deviation o, and sanElple size
n of each subgroup. Suppose, however, that one wishes t? contmue_ the
study of the resistance of the new kind of material just considered lII'ltll'hO
has sufficient evidence for setting valid minimum tolerance limits; begmn}ng
with the data shown in fig. 27 and continuing until a sample of something
like one thousand or more is reached, the data may be kept in the form of a
frequency distribution, for the reason that statistical control may IlO'.W.be
assumed to exist. Here we see the difference between (i) summarizing
data for getting evidence of control, and (i) summarizing data tha‘.c ap-
parently come from a state of statistical control, for the purpose of providing
a basis for establishing tolerance limits that will make possible the most
efficient use of material.
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Tolerance limits when statistical control has not been attempted. There
is, however, another problem that we should consider, namely, that of
setting tolerance limits when no attempts at statistical control have been
made. In this case, the maximum and minimum observed values play a
very significant role in enabling an engineer to set tolerance limits that will
include most of the product, although such limits do not permit making the
most efficient use of material. This is particularly true if a large number of
measurements representing a wide range of conditions is available: the
20,000 measurements of the tensile strength of malleable iron from 17
different sources shown in table 4 of chapter II (p. 65) constitute a good
example. For reasons that we need not go into here, the average should
also be given, so we may say that under conditions of lack of control, at
least the following statistics should be tabulated:

Max., Min., X, and n.

Need for evidence of consistency—constant errors. Let us assume
that one wishes to set tolerance limits on the measurement of a physical
constant such as the velocity of light. As previously pointed out in chapter
IT, this problem is the same analytically as that of setting tolerance limits on
the true value of quality of pieces of product of a given kind. It is true, of
course, that the tolerance limits on a quality must take into account not
only the variability of the “true” quality but also that of the method of
measurement, hence the problem of setting tolerances on the measurement
of a presumably constant value of a given quality always constitutes a part
of the job of setting tolerances on a quality characteristic.

Suppose that one is given in the appropriate units the average X,
standard deviation o, and sample size n for the measurements on the
velocity of light previously considered (pp. 67—69):

X = 290,773.85; ¢ = 13.37; n = 2885

Let us also assume, although contrary to fact, that these data satisfy Cri-
terion I of cont}‘ol (p. 30), and that the distribution is approximately normal.
Should we .be. justified in using this set of data alone as a basis for setting
tolerance limits for the measurement of the velocity of light? Obviously
the answer to this question is No, if by measurement we are to include
measurement, .not only by the method used in this case but also by other
methods admitted by scientists as having a just claim for consideration.
651For example, let us compare this set, of measurements with another set of
more recently reported by Anderson. Fig. 28 shows 2 control charts

I

vacuuxl’(’:hjl:;? ’f’ iza'sei 3‘1‘1 Pearson, ‘‘Measurement of the velocity of light in a partial
Anderson g m’; agu::mexﬁ;umﬁevc’lf 82, pp. '26—(’5,1 , 1935 (2885.5 observations); W. C.
247, 1937 (651 observations), velocity of light,” Rev. Sei. Instruments, vol. 8, pp. 239~
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placed end to end for the two series and constructed as best one can ® from
the data as recorded. The striking thing to note is that the two averages
are significantly different. For example, Anderson’s data give

X =299,764.15; ¢ = 14.96, and n = 651.

The ratio of the observed difference in averages to the estimated standard
deviation of this difference is
X, — X
.6370

It is indeed very unlikely that a difference so large as this would arise as a
result of random sampling. Incidentally, I think that it is this general type

= 15.23.
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of experience in which different test methods appear to give a.ssig.nably
different results that leads scientists to stress the importance of looking at
the consistency between measurements made by different methods, ra.ther
than to stress repetition of the same measurement a great many times
(p. 112). .
Kinds of information needed for setting limits in uncontrolled condi-
tions. Obviously the kind of evidence that one wou}d Wz.mt to have bef.ore
trying to set an efficient tolerance range would be the maximum observation
given by the method producing maximum values, and. the minimum observa-
tion by the method producing minimum values. One would also want. to
know the number of different methods of measurement that had been tried
because ‘‘constant errors’’ have in the past usually been discover'ed through
the use of different methods of measurement. If one takes the jclme to look
back through the literature in physics, let us say .for a period of some
twenty years or more, he will find quite a variation in the accepted values

23 Anderson records average deviation for each sample; the sigmas used in the control

chart are the mean deviations multiplied by Vr/2. The broken control limits for the
Anderson data arise from the fact that his samples are not all the same size.
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for many of the constants there tabulated. The same is true for measure-
ments of the atomic weights in chemistry as is illustrated in table 8 which
shows the accepted values relative to oxygen = 16 for the dates 1931
and 1936.

From the viewpoint of establishing tolerance limits upon such measure-
ments, it therefore appears that one should record the maximum and mini-
mum values and the number of different methods involved. It would not
appear that very much information.is provided by a weighted average and
an estimate of a so-called probable error so long as the results given by
different methods are assignably different. Perhaps in this case more than
in any other, the name of the scientist is also an important factor. It would
seem, therefore, that statistical theory does not contribute much to the
technique of presenting evidence upon which to base a tolerance range under
conditions that are not statistically controlled. However, if for some
reason it becomes necessary to close up on such a tolerance range by detecting
and eliminating all constant errors, statistical tests for significant differences
become, as we have seen, a necessary tool in the process.

TABLE 8
INTERNATIONAL ATOMIC WEIGHTS
REvarive Atomic WEIGHTS

Oxygen = 16

Element 1931 1936
Arsenic 74.93 7491
Caesium 132.81 132.91
Columbium 93.3 92,91
Iodine 126.932 126.92
Krypton 82.9 83.7
Lant}lanum 138.90 138.92
Osrmu{n 190.8 1915
Pota_ssmm 39.10 39.096
Radium 225.97 226.05
Ytterbium 173.5 173.04

(:olumn 2 from table 595, Smithsonian Physical Tables, 8th ed. (Washington, 1933).
Column 3 from the Journal of the American Chemical Society, vol. 58, p. 547, 1936.

ConcLuping CoOMMENTS
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tested by future experiment. The scientist alone is responsible for this
initial step. However, when he reaches the stage at which he examines his
experiment critically with a view to eliminating assignable causes of variabil-
ity and attaining a condition of control wherein predictions can be made with
the greatest validity, he needs the cooperation of the statistician; it is the
statistician who can provide an efficient operational procedure for attaining
the state of statistical control. In order that he may apply the statistical
technique of control, it is essential that the scientist tabulate the data in
such a way that they can be used in the criteria of control. Andif knowledge
is to be conveyed concerning the attainment or nonattainment of this state,
the results of applying control techniques must be presented as evidence.

As soon as a state of statistical control has been attained, the statistician
can proceed without the help of the scientist to set up rules that lead to the
most efficient prediction. The two may, in other words, part company.
Thus we see that the knowing process begins with the scientist and ends with
the statistician, but between the beginning and the end the two must co-
operate.

Finally, let us ask: What has all this to do with quality control? In the
first chapter, we got a picture of the interrelations of the three fundamental
steps in control. There, as well as in the second chapter, we saw the need
of a running record of quality measurements not only from the viewpoint
of giving quality assurance but also from the viewpoint of providing in the
end an adequate basis for establishing tolerance limits that will secure the
most efficient, use of materials, such as is necessary for the establishment of
economie standards of quality. In fact an economic standard of quality is
not & written finality but is a dynamic process. It is not merely the im-
prisonment of the past in the form of a specification (Step I, fig. 10, p. 45)
but rather the unfolding of the future as revealed in the process of prod}m-
tion (Step II) and inspection (Step III), and made available in the running
quality report. These facts must be taken into account in the prodl.lctlon
and exchange of goods if the most economical use of raw materials in the
satisfaction of human wants is to be attained. In the preparation of a
quality report that will make full use of the additions to a\.fa.i.la'ble data
arising out of a continuing process of mass production, the statistician must
play a prominent role.



CHAPTER 1V

THE SPECIFICATION OF ACCURACY AND PRECISION

The concept is synonymous with the corresponding set of
operations.? .
P.W.BRIDGMAN, Harvard University

VARIOUS ASPECTS OF THE PROBLEM

Applied science more exacting than pure science regarding accuracy
and precision. The development of improved methods of attaining ac-
curacy and precision is an excellent example of the principle that necessity
is the mother of invention. When man became a measuring animal he had
to adopt standards of length, mass, and the like. Then commerce and
industry called for the legalizing of certain standards and the establishment
of methods of measuring with ever increasing accuracy and precision in terms
of such standards. For example, the introduction of interchangeability
about 1787 brought about a need for accurate measurement and the inven-
tion of gauges. Then the steady increase in the required accuracy of inter-
changeable parts produced under manufacturing conditions led to the in-
vention of standard-length gauges with 0.00001 inch tolerances, and pushed
1h‘(\ accuracy of test methods out to 0.000001 inch.2 Both pure and applied
science have gradually pushed further and further the requirements for
accuracy and precision.

However, applied science, particularly in the mass production of inter-
changeable parts, is even more exacting than pure science in certain matters
of aceuracy and precision. For example, a pure scientist makes a series of
measurements and upon the basis of these makes what he considers to be
the best estimates of accuracy and precision, regardless of how few measure-
ments hc.e may have. He will readily admit that future studies may prove
such estimates to be in error. Perhaps all he will claim for them is that
they are as good as any reasonable scientist could make upon the basis of the
data avalla.ble at thc? time the estimates were made. But now let us look
at the applied scientist. He knows that if he were to act upon the meagre

ysics (Mgcmillan., New York, 1928), p. 5.

}?d by Bridgman is not limited to physical operations but may
<t OW at _he calls baper ar_ld pencil operations and verbalizing. See
perational analysis” in the Philosophy of Science, vol. 5, Dp.

L The Logic of M odern Ph
~ The term operation as us
include in certain contexts
for example his paper
114-131, 1938,

2 .
Cf.¥.H.Rolt, Gauges and Fine M casurements (Macmillan, London, 1929), vol. 1, p. 10.
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evidence sometimes available to the pure scientist, he would make the same
mistakes as the pure scientist makes in estimates of accuracy and precision.
He also knows that through his mistakes someone may lose a lot of money or
suffer physical injury, or both.

For example, applied scientists are often called upon to make measure-
ments of many different qualities of raw materials and finished products with
specified degrees of accuracy and precision. Such specifications may be used
in describing some physical quality characteristic of a material to be used in
some part of a machine, such as the steering rod of an automobile, or of a
material to be used as a food, or of some drug to be used as medicine. In
each of these typical cases, a failure to meet the specification may occasion
physical injury to someone. In other cases, the specified degrees of precision
and accuracy may define conditions economically desirable as, for example,
when they define the conditions to be met by the quality characteristics of
pieceparts in order that they may fit together in random assembly without
an economically prohibitive percentage of rejections. Thus we see why- it ix
that the applied scientist can not stop with making estimates of precision and
accuracy—he must also act on the basis of such estimates. e knows that
this action will reveal his mistakes, and what is more important, he knows
that such mistakes may carry with them serious consequences.

The applied scientist in order to be “successful” can not afford to make
too many mistakes even though they be small, and in no case can he afford
to make a mistake that is large enough to cause serious
trouble. Hence his tendency is to be cautious in ac-
cepting any estimate of precision or accuracy as 2
basis for action. In his language, he wants to be “sure” of his estimates be-
fore making them the basis of mass production practices. He does not
consider his job simply that of doing the best he can with the available data;
it is his job to get enough data before making his estimates. -

The practical man has yet another worry. He knows that speciﬁca%l('ms
of quality involving requirements of fixed degrees of accuracy and precision
may become the basis of contractual agreement, and he knows that any
indefiniteness in the meaning of any of the terms used in such a speciﬁcat'mn,
including those of accuracy and precision, may lead to misunde':rstandmgs
and even to legal action. Hence the applied scientist finds it des1rabl(? to go
as far as one can reasonably go towards establishing definite and operattonally
verifiable meanings for such terms. : o

Fivefold objective. More specifically, there are two charactel:ls.tlc
kinds of engineering sentences in which the terms accuracy and precision

The applied scientist
must get enough data
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are used. One states a spectfication such as

A. The accuracy of the test method shall be =1 percent.
B. The precision of the test method shall be =+ 1 percent.

The other states a judgment such as

a. The accuracy of this test method zs == 1 percent.
b. The precision of this test method ¢s 4= percent.

Not only must the engineer clearly distinguish between the meanings of the
concepts of accuracy and precision but he must also be able to differentiate
in an operationally verifiable manner between a specification and a judgment
involving either of these concepts; he must also know what kind of evidence
_and how much evidence is required as a basis for making a valid statement
in the form of a judgment about either accuracy or precision.

It is important to note that, at least in the statement of a judgment
(such as a or b), it is necessary to consider not only the meaning but also the
truth content and the validity of the statement. As already noted, a state-
ment in the form of a judgment such as @ or b has the property of being
either true or false. This property of a statement or judgment. of being
either true or false in a specific case must be distinguished from the opera-
tionally verifiable meaning of the statement that necessarily antedates and
outruns the truth content in a specific case. What is more important, as
pointed out in the previous chapter, a judgment always involves a relation
between specified evidence and a specified prediction, and the judgment may
be valid even though the prediction be false.

A specific example may help to make clear this distinction between the
meaning of the prediction involved in a judgment and the validity of that
:|udgment. I have before me a commercial specification for core solder that
includes the following chemical requirement: ““The percentage of tin shall be
determined by any method capable of a precision of =+ .2 percent.”” Pre-
sumably this requirement might be stated and might have definite meaning
even though no method could be found satisfying the requirement. If,
however, 1 ﬁpd a meiuhod Z that I believe meets the requirement, I may
;;p;):pi;l;)elebzfsi (I))fr(seggi:;filleife\:f;de;ncz rE mta}fe t'}Il\E .statement, “This m_ethod Z
to be true; but whether true .orp ’Ser‘zﬁ j ot tement may n.Ot»pI‘OVG
evidence E: may still be valid i 1‘3)1, e Judgmt?nt. e .the basis of the
reasonable man would enh n ; }f sense that it is t.he Ju(.igment that a

The problem in this c}fa }clep i fi y f]O ?Sl-s of the _Sp§01ﬁc cvidence I
hope to go in giving opera,tirc))n;f‘llls dvfei ; d: @ t-o md?%m h.ow f{fw one can
curacy and precision: (5 £o e (31' e nl.te meanings to specifications of ac-

) ; ; sider available ways and means for determin-
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ing the truth content of a judgment about either aceuracy or precision; (c)
to consider the operation of determining whether or not a judgment about
. aceuracy or precision is valid; (d) to consider ways and means for controlling
the error of judgment; and (e) to indicate the role played by statistical
theory in giving operationally verifiable meanings to statements involving
accuracy and precision, and in determining the truth content and validity
of such statements.

Broad interest in the problem. Before beginning the technical discus-
sion of this chapter, let us note how many classes of people are interested
either directly or indirectly in being able to attain the objectives set forth at
the end of the previous paragraph. These objectives are important to the
producer and consumer of manufactured goods, both of whom are interested
in making specifications that are definite. They are also important for him
who would legislate a standard of quality in such a way as to minimize the
room left for judicial interpretation, and for the court called upon to adjudi-
ciale cases arising from such legislation? They are important for every
scientist who must record the accuracy and precision of the results of his
research, or interpret those of others. That the limit to which we may go in
attaining an operationally definite meaning for accuracy and precision con-
stitutes the limit to which we may go in attaining definiteness in any kind
of meaning follows at once if we admit, as I think we must, that no greater
degree of definiteness is attainable than in the field of quantitative scientific
measurement. Hence to provide an operationally definite meaning for
aceuracy and precision is a fundamental problem for the physical and social
scientist, as well as the logician interested in exploring the limits to which
one can go in developing an operationally verifiable theory of meaning.!
Finally it should be of interest to the statistician to discover that statistical
concepts and techniques must play a fundamental role in giving definite
meaning to the concepts of accuracy and precision as well as in the process of
attaining specified degrees thereof in experimental work. Hence the roll
call of those interested in the problem considered in this chapter includes

3 See for example: “Standards and grades of quality for foods and drugs,” by Gllhex.'t
Sussman and S. R. Gamer, The University of Chicago Law Review, vol. 2, No. 4, 1935.
The following recent publications of the Chamber of Commerce of the United States are
also indicative of the breadth of interest in the problem of legislating standards: Quality
Standards and Grade Leveling, 1935; Standardization of Consumers’ Goods, 1934.

4+ Some popular writers have become enthusiastic over the social and scxe_ntlﬁc z?dvan tages
that would accrue from increased definiteness in language and have painted in glowing
terms the world as it would be if all of us made use of the operational theory of meaning.
See, for example, The Tyranny of Words by Stuart Chase (Harcourt, Brace and Co., 1937).
That there are certain very definite limits to which we may go in attaining the dreamed-of
definiteness even in the case of accuracy and precision should be of interest to those who
would weigh the importance of such popular expositions.
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producers, consumers, scientists, legislators of standards, judges in litigations
involving standards, logicians interested in the operational theory of mean-
ing, and lastly, the statistician who is called upon to furnish some of the
foundation structure upon which any solution of the problem must rest.

THE MEANING OF ACCURACY AND PRECISION—PRELIMINARY COMMENTS

The terms accuracy and precision have long been and continue to be
used by technical people in the discussion of both pure and applied science;
they are among those most commonly found in scientific literature. Etymo-
logically the term *‘accurate” has a Latin origin meaning “to take pains
with” and refers to the care bestowed upon a human effort to make such
effort what it ought to be, and “accuracy’ in common dictionary parlance
implies freedom from mistakes or exact conformity to truth. ‘‘Precise,”
on the other hand, has its origin in a term meaning ““cut off, brief, concise”’;
and “precision’’ is supposed to imply the property of determinate limitations
or of heing exactly or sharply defined. Even though there is this definite
difference hetween the etymological meanings of the two terms, they are
treated as svnonyms in the standard dictionaries and, what is more im-
portant, thev are often used interchangeably in scientific and engineering
literature. In faet, this practice of using the terms loosely and inter-
changeably has gone to the point where the author 5 of one of the most widely
known books on the precision of measurements bemoans the fact that the
two terms are so often used carelessly and indiscriminately. Since these
terms are frequently used incorrectly and since there is a “‘rather wide
divergence of views in respect to their meanings,” ¢ they were made the
hasis recently of a round-table discussion. Such facts are typical of the
:x.vuilable evidence indicating that engineers are aware of the existing confu-
sion in the use of these terms at least in some quarters and of the practical
need ‘for distinguishing in a definite and verifiable manner between their
meanings. :
thagiﬁﬁﬂag’mitizso ll\r:e:hii ts};el?lzy “?f errors, of course, have always insisted
! ) ay or other the difference between what
is observ.e(.i ‘and what is true, whereas precision involves the concept of
reproducibility of what is observed. Thus Laws, writing on electrical
n}easurements, says: " ‘“Every experimenter must form his own estimate
;iisti};es &iiigg’a(rﬁl a;ﬁ))rc(:(s:ils t(())f ’;};e absolute truth, obtained by the use of

easurement. He must remember that a

¢ H. M. Goodwi isi . .
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high precision, or agreement of the results among themselves, is no indica-~
tion that the quantity under measurement has been accurately determined.”’
As another example, we may take the following comment from a recent and
authoritative treatise on chemical analysis: 8 “The analyst should form the
habit of estimating the probable accuracy of his work. It is a common
mistake to confuse accuracy and precision. Accuracy is a measure of the
degree of correctness. Precision is a measure of reproducibility in the hands
of a given operator.”

On first reading, these distinctions seem to be clear cut, concise, and to
the point. With such distinctions available, why should it have been
necessary to hold the round-table conference called by the American Society
for Testing Materials in 1937 to consider the meanings of accuracy and
precision? With such distinctions recognized in the literature, why at the
conclusion of this round table conference was it thought necessary by those
present to adopt the following resolution in respect to the word precision?
‘“Resolved that when a standing committee records or specifies 2 numerical
value for precision in a standard, the committee should make clear what is
meant in terms of operations or procedures to be followed for purposes of
verification.” Is it that engineers are not familiar with the literature or
is there a more fundamental difficulty? Can it be simply that the cited
differences between accuracy and precision are not operationally definite?
Let us now look at these differences in a critical manner to see if we can
throw any light on such questions.

Why statements about accuracy and precision are often indefinite. Lct
us note the advice given by Laws to the effect that every experimenter must,
form his own estimate of the accuracy or approach to the absolute truth.
The very phrase “his own estimate” implies that all persons may not be
expected to estimate alike. If and so far as different experimenters usc
different methods for estimating, the advice given by Laws does not have an
operationally definite meaning that is the same for all people. Looked at in
this way, such advice is indefinite. In the same quotation from Laws,
“high precision” is given as synonymous with the phrase ‘“agreement of the
results among themselves.” But agreement of results among themselves is
itself not very definite because there is obviously an indefinitely large
number of senses in which results might be said to agree among themselves.
For example, in what sense are we to infer that the 204 data of table 7 agree
among themselves? We might, for example, think of their agreement in
terms of the way they cluster about the observed average or in terms of the
magnitude of some one or more of the indefinitely large number of symmetric

8 Lundell and Hoffman, Outlines of Methods of Chemical Analysis (John Wiley and Sons,
New York, 1938), p. 220.
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functions of these data. Or again we might concern ourselves with the order
in which the observations appear.

Mouch the same kind of indefiniteness exists in the advice quoted from
Lundell and Hoffman, wherein accuracy is considered as a measure of the
degree of correctness. The meaning of this is definite only if we know what
measure is implied and if we know what the degree of correctness is that we
are supposed to measure. The phrase ‘“ degree of correctness” presumably
corresponds more or less with the phrase ‘“‘approach to the absolute truth”
in the advice given by Laws. Likewise, the suggestion that precision is a
measure of reproducibility is definite only if we know what measure is im-
plied and if we know what the reproducibility is that we are to measure.

Does this mean that the advice given in the two quotations cited above
is not good advice? Quite the contrary. In my estimation at least, it is
some of the best advice that I have seen in any practical book discussing
accuracy and precision of measurements. Anyone who reads this advice
with as much care and thought as the authors apparently used in giving it
will get a very definite feeling that accuracy and precision are distinctly
different concepts, even though they may not be able to put their fingers on
the difference. Furthermore, anyone who reads the books from which these
quotations are cited will see that the authors go about the measurement of
accuracy in a different way from that in which they go about measuring
precision.  The point that I wish to make here is simply that such advice is
not nearly as definite as we sometimes feel that it is; and furthermore that
it does not provide meanings of accuracy and precision that are subject to ex-
perimental verification as is so often desirable, particularly when such terms
appear in specifications that form the basis of contractual agreements.

’I"o emphasize this point, suppose we consider the. requirements in a
specification that the accuracy of the test method shall be + 1 percent and
that the precision of the same test method shall be = 1 percent. If there
were one and only one experimental method of measuring accuracy, and
similarly, one and 9n1y one method of measuring precision, and if successive
:‘Y(I}Ziitre&l:?:sv:g e;l(;,lg:r aceuracy or precision always gave the.sa,me identical
e S;;éciﬁcationuha,d ei) Eé)nuncirtm;lty about whether or not in a given case
(85 it seems t0 be in the Irtled. dqst so long, hov.vever, as it is admlt’_oed »
measuring both acedra quo ; a Yl.ce) that 1':here is more than one way of
repetitive measurementy af’Il 'tlljlremsmn’ and Just o l-ong e kno-w fhat
Stne rot e s of either accuracy or precision may not give the

o quirement in a specification loses much of the definite-

ness that it at first seems to have.
quo’tI,;a}:ier:l:Zv};eti :Jni(r)lfgleeg'n?,nd more funda,me.ntal sense in which the advice
1te. Most operations of measuring a physical
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quality characteristic may be repeated again and again an indefinitely large
number of times. Such a method may be thought of as being potentially
capable of generating an infinite sequence. To what portion of such a
sequence do such phrases as ‘‘agreement of the results among themselves”’
or the ‘““reproducibility of the observed values” refer? Unless this question
can be answered, the meaning of such phrases is indefinite even though we
knew what measure was to be used and what aspect of agreement or repro-
ducibility was to be measured. We shall return later to this point.

In this chapter we are trying to see how far it is possible to go toward
making definite statements in the form of either specifications or judgments
involving the terms accuracy and precision. Our next step will be to
examine briefly the concepts of accuracy and precision as revealed in the
theory of errors to see if they provide some of the definiteness lacking in the
advice quoted above from practical treatises on measurement.

Accuracy and precision in the theory of errors. Customary assumptions.
Let us start with the consideration of what is usually admitted to be the
simplest kind of physical measurement, namely, that of the length of the

4 B

line AB. To be definite, let us specify that this measurement is to be made
with an engineer’s scale graduated to 0.01".

In the theory of errors, we customarily assume that we may repeat
such a measurement again and again at will, obtaining an infinite sequence of

observations
Xy Xo, ooey Xay ooy Xy Xngty o0y Xy o0 3)

The next step is to assume that the line AB has a true length X' W}’lich is
constant for all time. Then we introduce the concept of an error ¢'; of a
single observation X; defined by the relation

e',; = X,‘ - XI (21)

Thus far everything seems to run along very smoothly.

Now let us ask ourselves, what is the meaning of the accuracy _of th’e
method of measuring the length of the line AB by means of an engineer’s
seale? Of course, one of the things that is done in the theory of errors 1s_t,o
assume that the infinite sequence (3) (p. 12) has a limiting average value X';
then we sometimes speak of the difference

d =X —X (22)
as a constant error. This constant error provides a kind of measure of the

accuracy of the test method in somewhat the same way that eq. (21) provides
a measure of the accuracy of the single observation X
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Usually, however, we go further and conceive of the accuracy of a given
method of measurement as being determined by the frequency of occurrence
of the numbers in an infinite sequence such as (3) within some specified
range X' — Ly, X’ + L,. 1If, for example, we assume that L = L, = Ly
50 that the range becomes symmetrical about the ‘‘true” value X', and if we
choose L so that the fraction 1 — p’ of the terms in the infinite sequence (3)
that lie within the range X’ & L is %, then the distance L is termed the
probable error.? It should be noted, of course, that p’ in such a case is as-
sumed to be a constant value in much the same sense that the true value X’
and the expected value X’ are assumed to be constant values. We may, as
is often done, conceive of the probable error thus defined as a measure of
the accuracy of the method of measurement characterized by the infinite
sequence (3). ,

Statisticians and experimentalists realize full well that there is nothing
sacred about probable error as thus defined, for example, we might choose
limits that would include a fraction 1 — p’ different from 3. Likewise, there
is nothing sacred about making L, = L,. It appears, however, that most of
our common concepts of accuracy in the theory of errors depend in some
way or other upon the frequency of occurrence of the numbers in an infinite
sequence within a range specified in relation to the true value X’.

Passing now to the concept of precision we see that it seems to differ
principally from the concept of accuracy in that the clustering of the
numbers in the infinite sequence is measured in terms of the fraction 1 — p’
of these numbers within the range X’ — L, X’ + L, this range being related
to the average X’ of the infinite sequence (3) instead of the true value X’ of
the thing being measured. ’

Mathematically all this is extremely simple. For example, we may
postulate (i) that repetition of the process of measuring some objective
guali.ty characteristic under essentially the same conditions gives rise to an
mﬁmte_sequence of numbers, approaching, as n is increased, an average

Aln

value X/ 5 (ih) t.,-l}a.t the quality characteristic being measured has a true
value, X ;_a,nd (111). that associated with any specified range either in respect
to X' or X .there‘ls a def:mite fraction 1 — p’ of the numbers in the infinite
sequence lying within this range. In the terms of such postulates, it is a
snmgle matt.er to d..lffere.ntlate between the concepts of accuracy and precision.
the c(:)l:; g;;ﬁg?l;::eci :Vlth thed usual theory. However, when we try to apply
we ran inte difﬁcultiezcy %n bprgcls19n based upon such a sgt of postula‘?es
definite requirement th.at h }i) egm.‘vs.uth, the first postulate involves the in-
conditine? Do, e repetitions be made under the “same essential

. oes it therefore follow that the theory of errors is applicable

9 Cf. chapter II.
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to any sequence observed under what the experimentalist assumes to be the
same essential conditions; or would it be better to seek some formal criterion
that may be applied to the observed data? Classic error theory attempted
to provide the basis for a formal criterion by imposing the limitation that
the distribution of the numbers in an infinite sequence should be normal
and that the observations should be made at random. However, it was
early realized by statisticians that the requirement of normality might be
met to a very high degree of approximation by measurements that contain
assignable causes of variation; hence the requirement of normality did not
provide a satisfactory basis. It is also obvious that in order to apply the
concept of randomness it is necessary to have an operation that describes
once and for all the meaning of ‘““random.” However, classic error theory
does not provide such a meaning.

Our effort to attain a definite operational meaning for acecuracy and
precision would not end here, however, even if we found such a meaning for
Practically verifiable rand.o.m, because thfz meanings for accuracy and
statements concerning the  precision thus far given are in terms of the un-
objective existence of the known and nonexperienceable true value X', ex-
length of a line pected value X', and fraction 1 — p’ of the num-
bers in an infinite sequence within certain limits. In the measurement of
the length of a line AB, for example, there is no way of observing any one of
these three numbers; instead, all that we can experience quantitatively is a
finite number of measurements; and the only kind of practically verifiable
statement that we can make about the length of the line in the sense that
it may be said to have objective existence is that expressible in terms of
a finite number of measurements not yet made. To make this point spemfic,
let us consider ten observations on the length of one such line, obtained with
an engineer’s scale reading to 0.01 inch, the next decimal being estimated

(table 9).
TABLE 9

4.000 3.996 3.996  3.990 3.994
3.996 3.994 3.994  3.992 3.992

If we are to keep our feet on the ground and make statfzments that are
subject to practical verification, we must express the meaning of the accu-
racy and precision of the method in terms of the characteristics of a ﬁnlt.e
portion of the infinite sequence that this operation of I.neasurerr.lent is
capable of giving. We must go even further if we are to attain operationally
definite meaningsfor statements (specifications or judgments) abogt accuracy
and precision. It is certainly important that we try tq determn.le in what
sense the validity of such judgments can be verified: it is just such judgments
that form the basis for action and hence in the engineeripg field are of
fundamental practical importance. Asa starting point, it will be necessary
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to consider the nature of operational meaning more carefully and critically
than we have yet done.

OPERATIONAL MEANING

Operation or method of measurement; two aspects. It is important to
realize in what follows that there are two aspects of an operation of measure-
ment; one is quantitative and the other qualitative. One consists of num-
bers or pointer readings such as the observed lengths in n measurements of
the length of a line, and the other consists of the physical manipulations
of physical things by someone in accord with instructions that we shall
assume to be describable in words constituting a text. A simple example of
a text outlining an experimental procedure may be useful at this point to
help fix the two aspects of a measurement. For this purpose we shall take

the following instruction for the measurement of the surface tension T of a
liquid: 10

In order to make a direct measurement of the surface tension 7T,
attach a very light wire frame a (Fig. 113) to a delicate helical spring s, and
by means of an elevating table b, raise a vessel of liquid till the frame is
immersed. Next lower the table carefully by means of a rack and pinion
r, until a film forms between the prongs of the frame. Then quickly take
the reading of the index ¢ upon the mirror scale m. Before repeating, stir
the liquid vigorously by means of a glass rod which has been carefully
cleaned in a Bunsen flame. Continue this operation until a2 number of
consistent readings can be obtained. The difference between this reading
and that taken when the spring and frame hang freely is, of course, a
measure of the force of tension F possessed by the two surfaces of the
film. In order to reduce this force to dynes, observe the elongation pro-
duced by a known weight of the same order of magnitude as F. Then
apply Hooke’s Law to determine F accurately in grams. Finally meas-
ure the distance ! between the vertical wires of the frame ¢ with an
ordinary metric scale and calculate 7 from T = F /2ab.

. The num‘ber obtained as T is an example of what is referred to above as a
pointer reading. ~ All the rest of this quoted paragraph describes the physical
part of the operation.

First le't us note that the physical part of even such a simple operation
as measuring the surface tension of a liquid is far from being perfectly
deﬁmte.. To begin, we need only call attention to such phrases as ‘‘attach
a very light wire frame,”” “lower the table carefully,” and “quickly take the
readmg.” Not only are such phrases vague but they must also be under-
stood in terms of other precautions that the experimenter should take, such

as making sure that the wire frame and the vessel containing the liquid are

R, A Milli Y . .
1903), pp. 195_15.11(8‘11’ Mechanics, Molecular Physics, and Heat (Ginn and Co., New York,
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free from grease. ‘‘Being free from grease” in turn is not rigorously definite;
to some people it means clean enough to eat on; to the experimental physicist
it may in some instances mean baked out at a high temperature under
vacuum; etc.; and I assume that all would agree that no amount of effort
could make such instructions absolutely definite.

Next, let us note that the operation here under consideration is spectified
not only in physical terms but also in terms of the numerical results obtained
by repeating the operation. For example, we have the sentence: “Continue

this operation until a number of consistent readings
A requirement on the can be obtained.” In other words, the text describ-
operation is consistency . . -
among the observed data 11'& the operation does not say to carry out such

and such physical operations and call the result a
measurement of T. Instead, it says in effect not to call the result a measure-
ment of T until one has attained a certain degree of consistency among the
observed values of F and hence among those of 7". Although this require-
ment is not always explicitly stated in specifications of the operation of
measurement as it was here, I think it is always implied. Likewise, I think
it is always assumed that there can be too much consistency or uniformity
among the observed values as, for example, if a large number of measure-
ments of the surface tension of a liquid were found to be identical. What is
wanted but not explicitly described is a specific kind and degree of con-
sistency. These facts illustrate an important characteristic of every
physical measurement considered as an operation, namely, that neither the
physical nor the numerical aspect of an operation by ttself can be laken as a
complete description of the operation.

What has just been said is important for the present discussion in that
it shows why the definiteness of a specification of an operation depends upon
how successfully the requirements upon both the physical and the numerical
aspects of an operation have been set forth. Likewise the interpretatio.n of
experimental results must take into account both aspects of the operation;
failure to meet the requirements for either one may be the source of an error
in a judgment based upon the observed results. For example, the fai}ure
of the experimenter to keep the wire frame and container free from oil in
the measurement of surface tension is a source of error. Likewise, .the
inability of the experimenter to meet the requirement of consisten'cy is a
source of error. Furthermore, it is obvious that a criterion of consistency
may be met when the requirements on the physical operation have not.
Hence it follows that any conclusion that a statistician may derive from the
numbers obtained by repeating an operation of measurerr{ent must be. con-
sidered as only part of the evidence in determining the validity of any judg-
ment based upon such an analysis as evidence.
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Consistency and reproducibility. Finally, it should be noted that the
advice to repeat the operation of measuring surface tension until a number of
consistent readings have been obtained is indefinite in
that it does not indicate how many readings shall be
taken before applying a test for consistency, nor what
kind of test of consistency is to be applied to the numbers or pointer
readings. Hence we must conclude that the operation of measurement for
surface tension quoted above is somewhat indefinite not only in its physical
but also in its numerical aspect. One of the objects of this chapter is to
sce how far one can go toward improving this situation by providing an
operationally definite ecriterion that preliminary observations must meet
before they are to be considered consistent in the sense implied in the instruc-
tion cited above.

Before doing this, however, we must give attention not so much to the
consistency of the n observed values already obtained by = repetitions of the

operation of measurement as we do to the reproducibility of
szdzt?:itlity? the operation as determined by the numbersin the potentially

infinite sequence corresponding to an infinite number of
repetitions of this operation. No one would care very much how consistent
the first n preliminary observations were if nothing could be validly inferred
from this as to what future observations would show. Hence it seems to
me that the characteristic of the numerical aspects of an operation that is of
greatest practical interest is its reproducibility within tolerance limits through-
out the infinile sequence. 'The limit to which we may go in this direction is to
attain a state of statistical control. The attempt to attain a certain kind of
consistency within the first n observed values is merely a means of attaining
reproducibility within limits throughout the whole of the sequence.

A requirement concerning a verifiable statement about precision. Just
as soon, however, as we begin to consider the reproducibility of the operation
in this sense, we must take into account the whole of the potentially infinite
sequence in trying to define what we mean in an operationally definite way
by tbe term “‘reproducible.” It should be noted that if we are to give
fieﬁn}teness to a test of consistency of the first n observed numbers in an
mﬁn}tf; sequence, only these first n» numbers are involved, whereas if we are
to give definiteness to the concept of reproducibility of the operation of
measurement we must take into account the whole infinite sequence or at
least that part of it beyond the first n observed values that we arbitrarily

c}'loose to consider. Hence it follows that, since any requirement of coun-
sistency placed on the n preliminary observations is but a means of insuring
reproducibility, the nature of this requirement of consistency can not be
given definite meaning until the ¢

riteria of it
definitely fixed. reproducibility have been

When are the
readings consistent?
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It is this characteristic of reproducibility that must be defined in an
operationally definite way when we try to give an operationally definite
meaning to precision. As we have already noted, the classical concept of
precision is stated in terms of the whole of the infinite sequence, but if we
adopt this concept, we can never practically determine the truth content of
any statement about precision because it is not practically possible to ob-
serve the whole of the infinite sequence. If we are to make a stalement about
precision that we can verify tn practice, that statement must involve a concept of
prectston thatl does not take into account the whole of the infinite sequence. This
leads us to a further consideration of verifiability as a criterion of meaning,.

Practical and theoretical verifiability. Suppose it turned out that a
statement or judgment that the accuracy or precision in a given case is such
and such could never be verified, or that it is not possible to determine
whether the prediction involved in such a statement in a specific case is true.
Particularly within the last decade or so it has been said by many writers
that any such statement, not being verifiable, would be meaningless; and
from this viewpoint, a statement about precision that involves the concepts
of precision that we have attributed to the classical error theory would be
meaningless for the reason that we ean not practically observe an infinite
sequence. The fact is that if we were to adopt practical verifiability as a
criterion of meaning, much of what is written about accuracy and precision
would be meaningless.

In chapter III, however, we adopted a criterion of meaning (p. 94) that
permits either theoretical or practical verifiability. Fig. 29 shows schemat-
ically the portions of an infinite sequence that are subject to practical and
theoretical verifiability. In this figure, the number j of terms within the

_ Only theofetically
Previously observed Practically verifiable verifiable
Xl, X2’ "';Xiy"'rX'n; Xﬂ+1) X"+2J"'7X"+J'7 Xﬂ+i+1’Xﬂ+J'+2y

Past ——— Future —— — — — —
Present i

F1a. 29

region of practical verifiability is assumed to be finite. No matter 'how large
we make 7, so long as it is finite, there is an indefinitely lar.ge portlf)n of .the
infinite sequence that remains subject only to theoretl(,:a.l verifiability.
Therefore, in order to say anything that is practically verlﬁab'le about an
unobserved portion of the potentially infinite sequence after haV}ng repeated
the operation of measurement n times, it is necessary to frar{le this s.ta.tement
in such a way that it will involve only the numbers of a finite portion of the
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infinite sequence. To make such statements definite, we must do three
things: (1) specify the number j; (2) define the function or functions of the
set of j numbers that are to be computed; and (3) specify for each such func-
tion y; the interval Y1 < ¥: < i within which the function ; must lie if
the statement is to be considered true.

The operational meaning of a quality characteristic. The only way one
can experience any quality characteristic quantitatively is by means of an
operation of measurement. As already pointed out (p. 72), there are
usually several known ways of measuring any such quality characteristic
and presumably many as yet unknown but knowable ways. For each method
of measurement, there is a physical operation that is observably different
from the corresponding physical operation for any of the other methods. The
objectivity of a quality characteristic exists only in the consistency between
the indefinitely large number of potentially infinite sequences constituting the
numerical aspects of the operations. Any such quality characteristic is
therefore operationally verifiable in a practical sense only for statements
confined to finite portions of the infinite sequences arising from the
specified methods of measuring the quality under consideration. The region
of practical verifiability is schematically shown by the numbers enclosed
within the rectangle of fig. 30. Forconvenience, the number of observations

Xy, Xugy, ooy Xugy o0y Xang | Xvmary =00y X1 nady | Xt nkie1y -

Xn,’Xn, ooy Xy oy Xong | Xongt, <00y Xoontgy | Xoneigly ©°

):(u, sz, ) in, ct an, Xk,n+1, ey, Xk, n+iy Xk‘n+j+1, LR
Fic. 30

within the region of practical verifiability has been taken as j in each se-
quence, though the number of observations taken in each sequence need
not, !oe the same. To make any practically verifiable statement about a
quah.ty characteristic X, we must do four things: (1) specify each of the k
physical operations of measurement that are to be considered; (2) specify
the number of terms that is to be considered for each infinite sequence (the
terms thus specified are represented schematically within the rectangle. of
fig. 30); (3) define the function or functions to be computed in terms of the
set of observations thus specified; and (4) specify for each such function y;
the interval ya < ¢: < ¢up within which the function ¢; must lie if the
statement is to be considered true. '

; H?vmg now considered the region o_f practical verifiability for an opera-
ton of measurement and also for g quality characteristic, let us next consider
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the corresponding theoretical verifiability. This is necessary if we are to
trace the connection between the theoretical and practical meanings of
accuracy and precision and if we are to indicate the usefulness of both.
Physical and logical aspects of theoretical verifiability. Examples. For
our present purpose it is desirable to consider two aspects of theoretical
verifiability, namely, physical verifiability and logical verifiability. An in-
finite sequence can not be realized in practice, but we can always conceive of
making one more measurement and thus theoretically of getting as long a
sequence as we wish. In this sense, an infinite sequence is physically oh-
servable; theoretically we can observe as much of it as we like. Inmuch the
same way we can not express 4/2 in our “rational” number system, but we
can conceive of coming as close to it as we like; by earrying out more calcula-
tion we can always get one more figure.
(i) The true value of X’. But now let us consider in contrast the concept
of the true value X' of a quality characteristic, for example the length of a
line A B, or the velocity of light. Iam not able even to conceive of a physical
operation of observing or experiencing a true length X’. You may argue
that there are Ways of measuring the length of a line, by any one of which
you may obtain a sequence of observations; you may even argue that the
limiting average X’ is equal to X’. But the physical operation is a method
of obtaining X’, not X’. Whether X’ = X’ we shall never know. Th.c
true length X’ is the given, unknowable, unapproachable, ineffable.* It is
removed from the pale of observation as securely as v-lis rem0v§d fr9m
the realm of real numbers; there is not even the question of approximating
V=1 with the rational and irrational numbers. )
This does not mean that anyone is not free to conceive of there being a
true value X’, but simply that I am not able to

A true value X" isnot conceive of a physical operation whereby I can ob-
3;2?;'&?,‘,’1“’ by any physical serveit. The conception of true length in terms of

operations with symbols having logical gnd mathe-
matical significance is possible, but in terms of physical operations such a
conception is not possible. .

At this point, someone might suggest that we consider the measurement
of the sum of the angles of a triangle. It might be suggested that here we
know the true value of the sum to be 180° independent of any measurement.
We must keep in mind, however, that the claim that the sum of the angles
of a triangle is 180° rests only upon the acceptance of a certain set of postlﬂ
lates about abstract geometry as being descriptive of our real world.
we had chosen another well-known 1 set of postulates, the sum would

1 ¢f, C. I. Lewis, Mind and the World-Order (Scribners, New York, 1929), ch. IT.

12 J. W. Young, Fundamental Concepts of Algebra and Geometry (Macmillan, New York,”
1911), p. 34.
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theoretically be greater than 180° and for still another well-known set of
postulates, the sum would theoretically be less than 180°. If there were
available some physical operation by which we could determine which, if
any, of these sets of postulates were true, we could then consider this opera-
tion as establishing the true value X’. It has long been agreed, however,
that there is no physical operation by which we can determine the truth
content of a set of postulates. .

(ii) The expected average X'. We may now think of the theoretical sense
in which the expected average X’ of the infinite sequence is verifiable. ~As
already noted, it is always possible to conceive of repeating a physical opera-
tion of measurement once more, irrespective of how many observations have
already been made, and of computing the average of this much of the poten-
tially infinite sequence. ‘This operation, however, in itself does not provide
a method of approaching to within a specified range of X’ unless we assume
some limiting process. And if we assume a limiting process, it will not
necessarily apply to the observed sequence; hence it would seem that the
expected value X’ of an infinite sequence can be considered as verifiable
only in the logical sense.

(iii) The degree of belief p’s. Next let us consider the degree of belief p's
assumed to exist in a prediction upon the basis of evidence E. Here again
there does not secem to be any conceivable physical operation of finding p’s.
Hence it too must be considered as being only logically verifiable.

(iv) Randomness. Finally we may ask in what verifiable sense a se-
quence can be “random.” Of course we can start with a concept of an
infinite sequence that -satisfies certain specified postulates as defining a
random sequence. To allow for a wide variety of sequences that may be
formed from the same set of numbers and yet be called random, the subse-
quences that may be formed from the original sequence by some rule that
does not depend upon the magnitude of the terms chosen from the original
sequence, as well as the original sequence itself, are usually assumed to satisfy
the same set of postulates. However, as pointed out in chapter I, it is not
humanly possible for anyone to write down one such original sequence, nor
has anyone succeeded in giving a rule whereby a person can determine
whether an observed sequence satisfies the given set of postulates. Hence
the meaning of. any such theoretical approach to the definition of random
can only be logically verifiable.

lim ::st }?: ;’;Z?ipnle ((:;c :hlsd purely l}(:gical or postulatif)na} approach, we might
requiremente. (l)gthe illil .szic})l those sequences satisfying the following two
ol o approachl)_f? e a};zerage of. the .ﬁrst n terms of th.e sequence
aversge of the foun o terms a,sf n becomes infinite; andv (2) the limit (?f .the
sequence by a rule sach ik tst}(i any subsequence, formefi from the original

at the choice of the terms to be included in the sub-
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sequence dges not depend upon the magnitude of the term, shall exist and
approach X’ as n becomes infinite. Since there is an indefinitely large
number of rules for selecting a subsequence that will satisfy the requirements
laid down, such a definition of random admits an indefinitely large number of
random sequences.

If instead of starting with some simple postulational basis, one attempts
to set down a set of criteria that sequences drawn “physically at random ”’
from a bowl should satisfy if they are to meet the conditions of random
sampling, he discovers potentially an indefinitely large number of such
criteria to be considered, whereas only a few have so far been formulated.
Such criteria depend upon the frequency distribution of the statistical uni-
verse and in this way are not so general as those considered in the previous
paragraph. Even if we admit that there may come a time when all of these
criteria can be set down, there would still be the difficulty of even conceiving
of a rule or operation of writing down one such sequence that would satisfy
all of these criteria. Then, even if we could surmount this difficulty, we
should have to devise some rule of getting random subsequences from this
original sequence. Any attempt to do this will meet serious and, I believe,
unsurmountable difficulties.

In some way or other it is desirable to get a formal definition or logical
concept of random that is applicable to any physical process admitted as
being random. For example, let us suppose that drawings with replacement
from a bowl gave what was admitted to be a random sequence. Now it is
generally (if not always) assumed that a physically random process may give
any possible order of the numbers defined by the operation. It is difficult to
see how one can even conceive of a set of criteria that will admit all of these
sequences as being random.

Put somewhat crudely, the point that I have attempted to illustrate is
this: even if it were possible to write down a random sequence defined in
terms of abstract postulates, and if we could independently carry out
physical processes such as drawing from a bowl, such processes to be called
physieally random, no one has yet so far as I know even conceived of a satis-
factory rule or operation of relating the two kinds of sequences in a logic?.l
manner. The situation is much like that of a differential equation, in
which the symbols are purely formal. We may, however, interpret a cert:mq
symbol as some physical quantity such as heat, but there is no a priori
unique way of relating such a symbol to the experimental results obtainable
by measurement. :

Now that we have briefly examined the operational meanings of the "crue
value X’ and the expected value X, which enter into the classic deﬁni.tzons
of accuracy and precision, we are in a position to consider the operational
meaning of these terms.
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TueE OPERATIONAL MEANING OF ACCURACY AND PRECISION

Some fundamental difficulties. It may be helpful to represent schemat-
ically what we have seen to be a fundamental difference between the classic
concepts of accuracy and precision (fig. 31). Having chosen a statistically
controlled operation of measurement, precision is defined in terms of the
X/ pl
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fraction 1 — p’ of the numbers in the potentially infinite sequence associated
with that operation and lying within a range fixed in respect to the expected
or average value X’ of the sequence. Accuracy for the same operation of
measurement essentially differs only in that the range is fixed in respect to
the true value X’ instead of the expected value X’. Usually, however,
accuracy is thought of in terms of more than one operation of measurement,
beeause the term true value usually implies consistency among all the infinite
sequences corresponding to different methods of measurement (cf. sequences
(11), p. 72).

The first point I wish to make is that the ranges used in defining the classical
concepts of both accuracy and precision are of the tolerance type in that they are
constant ranges concetved of as being tied down to fixed points.

It should also be noted that the operational meanings of accuracy and
precision are more involved than that of either X’ or X’ in that even after
these symbols have been given meaning, we must yet consider the operational
meaning of p'. Of course, we can logically conceive of the fraction p’ asso-
ciated with any fixed range. However, it is not so easy to conceive of an
operation either physical or formal by which one could obtain p’ from a
given observed sequence. In practice, we often think of the fraction p of
the first » numbers of an observed sequence and speak of the statistical limit
of pasn approaches o as being equal to p’. However, as previously
pointed qut, this concept of a limit does not provide any formal process of
fleterminlng how close p approaches p’ for any chosen value of n. Hence p'
is not formally defined in an operational way other than to say that it may

be thought of in much the same way that a true value X’ may be thought of,

eYen g?/ough We are not able to conceive of an operation of finding either
p or X'
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Enough has been said to show that the symbols p’, X', and X’ entering
into the classical definitions of accuracy and precision stand for logical con-
cepts that are neither practically nor physically verifiable. Likewise the
concept of degree of rational belief p’; relating evidence E to a prediction P
involving either accuracy or precision is verifiable only in a logical sense.
The same situation holds for the logical concept of random. Let us now
consider briefly the sense in which accuracy and precision are practically
verifiable.

Practically verifiable meaning of accuracy and precision. It follows that
the only kind of quantitative and practically verifiable criterion of either
accuracy or precision is of the nature of a tolerance range. To make this
range operationally definite, we must specify

(1) the physical operation of measurement for precision, and
the one or more such operations for accuracy.

(2) the finite number of terms from each of the potentially
infinite sequences to be made the basis of the tolerance
requirement.

(3) the function or functions 1; of the terms upon which
tolerance limits are to be set, and :

(4) the tolerance limits ;; and ;, for each such function ..

Here again reference to figs. 29 and 30 (pp. 183 and 134) will be helpful
in showing schematically the practically verifiable portion of the infinite
sequences that must be used in defining precision and accuracy respe9twely
in terms of measurements not yet taken. These ¢ functions may in cer-
tain cases be symmetrical functions previously designated by 6, but they
are not necessarily so.

These four steps in specifying a tolerance range are of fundamental
practical importance in the preparation of operationally definite specifica-
tions of quality. It is important to note that we can not speak of the prac-
tically verifiable meaning of accuracy and precision, but only of a chos:‘en
verifiable meaning. Furthermore, it appears that such a practically verifi-
able meaning for either precision or accuracy does not make much use of the
concepts of true value X’, expected value X', fraction p', and rand(.)r.n. In
the sense that operationally verifiable criteria of accuracy and precision re-

duce to tolerance range requirements, it is ap-
Tolerance requirements for  parent that if one were to stop at this point, he
f,?‘;ﬁff{,ﬁg precision must might be misled into thinking that one is free to

choose at will any specific verifiable meaning for
accuracy and precision. However, when specifying t%lese terms in prac-
tice, one is not free to choose arbitrarily any concelvable. r.equ.lrement,
no matter how much he would like to do so, because he must limit himself to
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those that are economically attainable. In other words, tolerance require-
ments for accuracy and precision must be economic. We have already con-
sidered at some length in chapter II the problem of setting such tolerances.

Within this limitation, the meaning of accuracy and precision is perhaps
sufficient for use in specifying requirements such as “the accuracy (or
precision) shall be 1 percent.” However, we must go further in our con-
sideration of meaning if we are to give an operationally verifiable interpre-
tation to a judgment or statement such as ‘‘the accuracy (or precision) is
1 percent.” We must, in other words, provide an interpretation for the
process of determining the validity of such a judgment.

Furthermore, since in specifying accuracy and precision we are tied down
to the statement of requirements that can be met, we are not free to ignore
the importance of the concepts of true value X', expected value X/, fraction
p’, and random, all of which enter into the classic concepts of accuracy and
precision. Likewise in the interpretation of a judgment, we must make use
of the fundamental concept that any judgment involving a prediction P in
terms of either accuracy or precision based upon specific evidence E implies
an objective degree of rational belief p's. '

The meaning of these concepts in use. Up to this point we have con-
sidered the logical but not the practically verifiable meaning of these con-
cepts as concepts. Now we must consider their meaning in use. For our
present purpose, we should recall that a concept as a concept is an abstract
logical form. The delineation of such a concept is an act of reason and is
independent of any necessary connection with empirical or physically ob-
se.rva.ble data.‘ For example, as already noted (p. 135) we may choose at
.Wln a postulational basis for a geometry that will make the sum of the angles
in a triangle 180°, more than 180° or less than 180°. Our choice is inde-
pendent of any necessary connection with the sum of the angles of any real

triangle determined by some specified operation of measurement.

A Now let
us recall briefly how a coneept is used. ‘

) In the ﬁ‘rst place, the application of a concept as a concept to a particular
given experience may be hypothetical. For example, we can say that if the
sum of the angles of a real triangle is 180°, and if there exists an operation of
mea§urement that can be repeated an indefinitely large number of times
and if 50 percent of the values in this infinite random sequence lie within tl;(:
range 189" =+ L, then L is the 50 percent tolerance range for precision fnf
this particular operation of measurement. Likewise in sampling theory, we
c.onsta.ntly use concepts as hypotheses. We say again and again some.t},f
hk(_e the _followmg: If we draw a sample of n at random from a normal Ny
lation with average X’ and standard deviation ¢’, then such and such f ]l)lopfl-
In fact, the mathematical theory of distribution simply provides us v\(')itﬁ“ .

indefinitely large number of hypotheses consisting of sets of conditions he

of the
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form “If . .. Jthen . . . . Such is the nature, for example, of tests for
=tatistical significance. Such hypotheses may be formulated at will so long
as we conform to the aceepted rules of abstract logic. However, they have
no recessary connection with what is observable.

In the sccond place, it is a fact (of very great importance in use) that
thinking of an abstract concept serves as a guide to the choice of a particular

operationally verifiable criterion of experience as a
Abstract concepts serve

as guides. basis for action. Invariably each such practical rule
More on the distinction  of action, so far as it has been adopted as a result of
between a statement reasoning, is based upon some abstract concept or set

and a judgment of concepts. There is obviously a very important

difference between the hypothetical statement, ‘““‘If the accuracy (or pre-
cision) of a specified test instrument is one percent, accept the instrument,”
and the judgment constituting a criterion of action, ‘“The accuracy (or preci-
sion) of this particular instrument is one percent, hence accept this instru-
ment.”  Such a choice of criterion of action in each particular instance is an
instrumental or pragmatic means of correlating experiences. From this
Viewpoint, that choice from among all the possible choices that is most useful
in correlating experience, is the best: However, best in this sense can be
determined only by experiment; it can not be determined by pure reason
‘lone; and it can be determined only by finding out experimentally what
Kind of action under a specified set of conditions works out more successfully
than other kinds of action that have been tried. _

Practically verifiable procedures for realizing p’, X’, X', ', and ra.ndom-
Ness, Distinction between the meanings of concepts and operatlpnally
Verifiable procedures. In chapters II and III respectively we considered
the astablishment of economic tolerance ranges and the factors to be con-
“idered in determining whether a prediction in terms of a tolerance range
“hd hased upon specified evidence E is likely to be true. INo_vi/ w’e shall
bricfly indicate how each of the abstract concepts of 9/, X/, X', p’s, and
r:nul(;mness, has suggested and given rise to. the development_ of operai
ti"”ally verifiable procedures whose usefulness in the field .of quality contro
ha been justified by experience. Such operationally verifiable procedgll;elas
do, hot constitute the meaning of the concepts for they are not sgsceptl e
' <ych meaningful interpretation. Instead, they are pxl‘ocedures in nol wz:iy
“hneeted with the abstract concepts except that thinking of the one leads
toy i ther. o

'}’;::::L:Sf;:; scientists always want to make valid predictions. dBut 3,:
“e have seen, validity of prediction in terms of a tol.eranf:e range ep:vr}th
""Don the degree of reproducibility of the poten}ually }nf%mte sequence
"“hect to this range. We conceive of there being a.hmlt tO.Wthh we may
he 'Pe to go in lattaining reproducibility, and we conceive of this as being that
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which is most likely to be correlatable with the abstract concept of random.
Under such conditions one must search for a practical criterion of random-
ness, and the outcome in the theory of quality control has been the develop-
ment of a practically verifiable operation of control. Hence the meaning of
random in use considered in this monograph is of the nature of such an
operation of control.

The next step in the chain of reasoning is to assume that in those cases
where we have eliminated the assignable causes in the practical and definite
sense of the theories of quality control, we can find a mathematical probabil-
ity model upon the basis of which we can make valid predictions. This
leads us, for example, to assume that associated with the abstract concept of
a certain fraction 1 — p’ of the numbers in an infinite sequence lying within
any specified tolerance range there is an observable number 1 — p which
we may use in our mathematical model. For example, we may choose to
associate 1 — p with the simple operation of cbserving the fraction of the
numbers in a finite set of n observations found to lie within some specified
range. It is of interest to note that though this practical range can be fized,
it can not be fized in respect to either X' or X', and hence differs fundamentally
in meaning from the conceivable ranges so fixed in the classical concepts of
accuracy and precision.

Naturally in practice we must have some operation of trying to approach
closer and closer to what we call the true value X’. 1In our chain of reason-
ing we assume that we _!-mve an operation of measurement giving a sequence
whose expected value X’ is numerically equal to X’, but we have also noted
that this is not the same as assuming that operationally X’ and X’ are the
same. Then we must find some way that constitutes an attempt to ap-
proach X’. This gives rise to the adoption of Postulate I (p. 22), or in
other words, the sirnple practical rule of operation whereby we choose to ac-
cept the average X of n + ¢ observed values in preference to the average X
of n observed values. Of course, this rule is not considered applicable in
practice until it has been shown that the observed portion of the sequence
satisfies the chosen <?peration of control, and until we have done something
:)ha.t we often describe as eliminating constant errors in the sense now to

e considered.

In the measurement of what we assume to be a constant of nature or a

property of a physical object, practice is modified by the result of thinking

of the a.bstra'mct concept of an objective value X’. The nearest approach that
we can attain to such constancy is in terms of reproducibility in each of tz
afimltted physical operations of measurement, and also in terms of :
sistency between the results thus obtained. In turn this suggests the con;
one or more operationally verifiable statistical tests for significant, ;-sf? ;
ences between the results obtained by the different methods of measurerlneer:;
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that have been adopted. Such tests constitute practically verifiable criteria
for the absence of constant errors.

Now we come to the problem of trying to find an operationally verifiable
procedure for determining whether a given judgment in respect to accuracy
or precision is valid. There appears to be no way of determining quantita-
tively even an observed degree of belief p,. All we can do is determine in an
operationally definite manner whether the action taken by someone on the
basis of specified evidence is the kind that someone else would take upon the
basis of the same evidence. This is pretty much the kind of practical pro-
cedure that has been adopted in the theory of jurisprudence. The method
there followed is in general to take the majority opinion of a specified group
of reasonable men. Perhaps this procedure is as rational as any other to be
followed in determining the validity of a judgment in respect to accuracy and
precision based upon specified evidence E. This rests upon the assumption
that if every reasonable man could experience the objective degree of rational
belief p’y in a prediction P upon the basis of specified evidence E, then all
such reasonable men would act in the same way. In turn it is assumed that
commonness of action on the part of reasonable men is a practical basis for
believing that those acting the same way have experienced the same degree
of belief. That is to say, if the objective degree of belief possessed by
any person on the basis of evidence E is to be measured by his action, then
commonness of action on the part of reasonable men is an arbitrary but
convenient basis for defining their measured degrees of belief as being equal.
Their objective degrees of rational belief, symbolized by p’y may or may
not be equal; they are unknowable in the same sense that the true value X’

is unknowable. .
We have now reached the stage where we realize that

p’, X', X', and p's

all turn out to have a common characteristic: each stands for a concept t'hat
can not be reduced once and for all to an operationally verifiable meaning.
Instead, these concepts serve as fountains of suggested ope.rational. meanings
from which we must choose in order to talk with definiteness in specific
instances. , y )

Need for specifying the minimum quantity of e.v1d.ence for forming a
judgment regarding accuracy and precis?on. It Is lmporta.nt .to' note,
however, that in addition to these operationally verifiable criteria in use
corresponding to the different fundamental abs:tract concepts, we have a;so
called attention again and again throughout this monograph to the neefl for
specifying the minimum quantity of evidence that shall_ be used as a baslls 0(11'
judging accuracy and precision. Too much emphasis can not be p:;::?
upon this requirement if we are to control the error of judgment within
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practical limits. Without such a requirement one might choose sets of
operational criteria that would be satisfied and yet not provide against an
occurrence of errors in judgment that are prohibitive from the viewpoint of
practice. Infact, the necessity for taking a certain quantity of information
as a basis for any important act is the fundamental starting point for the
application of all of the five other practical operations in use, namely: (1)
those of control, (2) use of probability theory, (3) statistical limit, (4) tests
for significance, and (5) majority action of reasonable men corresponding
respectively to the abstract concepts of random, p’, X’, X/, and p’s.

The meaning of abstract concepts is not unique. Next we should note
that we can not justly refer to the meaning in use of the abstract concepts in
the classic definitions of accuracy and precision, but instead we can only
refer to a chosen specified set of operationally verifiable meanings, it being
possible to set down an indefinitely large number of different sets of such
criteria. The ones that have been discussed and illustrated in the preceding
pages have proved successful at least in the field of quality control. In this
sense, they are fundamentally ezperimental in character, and are not to be
confused with generalized concepts that are not subject to experimental
verification. Some one else may find a better set. As time goes on, such
criteria in use may be expected to change even though the fundamental
abstract concepts were to remain the same. However, the details of the
abstract concepts also may be expected to change since there is always an

interaction between practical procedures and the associated conceptual
background.

CONCLUSIONS

We started out in this chapter with a fivefold problem and we may
now state our conclusions.

Fir§t: H ow far can one hope to go in giving operationally definite meanings
to specifications of accuracy and precision?

Sn.lce .there ml.lst always be a physical and a numerical aspect to a
quantitative physical operation and since it is not possible to make the

requirements on the physical part of the operation rigorously definite, it

follows that we can not make a specification of accuracy or precision rigor-

ou§ly definite. We can, of course, place practically verifiable tolerance re-
quxren?ents for accuracy and precision in g specification, but only on the
nun.‘lerlcal resplts. However, any such set of requirements represents an
arbitrary choice from among an indefinitely large number of possible sets
and hence no one of them means the same as the requirement: ‘‘The
accuracy (or precision) of the test method shall be 1 percent” (p. 122).

To thfz extent that we wish to fix the objective properties of the thing
specified in terms of accuracy and precision, we must take account of the
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idealistic concepts of accuracy and precision in classic error theory. These
concepts, however, are not practically verifiable and hence can not be made
operationally definite. In fact, there is no necessary relation between the
abstract concepts entering into the classic meaning of accuracy and precision
and the results of any physical operation. We are not free to choose at will
an operationally definite set of criteria if we are at the same time trying to
Definite meanings for approach as close as possible to meanings that can
accuracy and precision can be used to advantage in practice. In fact, we
not be specified once and  find that associated with each of the five funda-
for all mental concepts entering into the classic defini-
tions of accuracy and precision there are at least as many suggested types of
operationally verifiable meanings in use, each of which must be taken into
account if we are to attain the practical advantages of specifying accuracy
and precision. Since these meanings in use change with experience as
well as with the detailed aspects of the abstract concepts, it is smpossible to
specify once and for all a satisfactory operationally definite meaning for either
accuracy or precision.

Hence, in many instances, it may be desirable to specify accuracy and
precision in terms of formal abstract requirements that suggest operationally
verifiable criteria in use. For example, the requirement that the aceuracy
(or precision) shall be 1 percent, if interpreted in the classic way, isa require-
ment of this character. It has no necessary connection with experience in a
specific instance; but any interpretation of observed data in terms of accuracy
or precision will of necessity be shaped in accord with our choice of opera-
tionally verifiable criteria that are suggested by the abstract concepts of
accuracy and precision. e

If, on the other hand, a specification of accuracy Or precision 1S limited to
the statement of operationally definite criteria, it is perfectly ffeas1ble to meet
such criteria without attaining the practical objectives for which the criteria
were set. It should also be noted that any statement of aceuracy and pre-
cision in terms of an operationally definite tolerance range faﬂ? to ﬁ’f any

requirements of the reproducibility thé?t is so vitally
?r;iltzrr?;iosxlxlallllylrddegniti important in understanding thedpraet'lc‘alnusegxég(ra(s)s
; Sou ¢ olien be of accuracy and precision. -
included in specxﬁcatlons gflsi}llﬁlii(;nﬁzfssmfers our pioperty N inﬁ.nite e
quence and therefore involves a portion of it not yet (_)bse'zrved. It is ofte:il
of vital importance to include operationally definite criteria of accuracy an
precision in addition to the statements of sucl: a general requirement as
“the accur r precision) shall be 1 percent.’ o

Seco(;llil :a cg’IEZt I@)va;s anc)i means are avaz'labl-e for determining the truth
content of a judgment involving accuracy or precision?
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If the requirements in respect to the numerical aspects of a physical
operation are stated in a practically operationally verifiable manner, all we
need to do is to carry out the operation thus specified in the requirement and
see whether it has been met. Even this simple process, however, is not quite
so simple as at first appears, in that the one who is to judge whether a require-
ment has been met must take into account not only the criteria on the
numerical aspects of the operation but also the requirements'in respect to
the physical operation, which, as we have seen, always must be somewhat
indefinite. It follows that a human element must always enter into a judg-
ment of either accuracy or precision even though the numerical requirements
are stated in a perfectly definite operationally verifiable manner.

However, there is a more important factor to be taken into account,
namely, that a specification is fundamentally the statement of requirements
as o means to an end which we idealize in terms of the classic concepts of
accuracy and precision. For practical purposes, therefore, there is always

left over, beyond any verifiable definite specification,
:,‘P“m“ﬁ"n cannotbe  5omething that we may term the intent of the require-

ivorced from the intent . .

of the requirement ment. A simple example may help to make this

point clear. We have seen that as a starting point
for fixing in a definite manner the significance of aceuracy and precision it is
necessary to adopt some operation of control. In fact, we considered an ex-
ample of such a requirement stated in definite terms in connection with the
description of an operation of measuring the surface tension of a liquid (p.
130). Since, as has been pointed out, it is not possible to write down all
the criteria that should be met in such instances, any specific criterion can be
considered a necessary but not a sufficient condition. For example, suppose
that we were to adopt as an operation of control the technique involving the
use of what I have referred to in this monograph as Criterion 1.1¥ In fig. 8
(p. 35) we showed a set of one hundred averages of four which satisfies this
criterion. Assume, however, that a condition arose where this criterion was
implied or stated in the specification and where instead of getting the points
shown in fig. 8 we got the succession  of points shown in fig. 32. Anyone
supposed to judge whether Criterion I had been met would have to answer
Yes if he considered only the letter of the requirement. However, I think
he ?vould hﬁ%ve to answer No if he were to take into account that the specifi-
cation was intended to define a condition of randomness which is only par-

tially fixed by any criterion such as Criterion I. In this case such evidence

13 Page 309 of my book cited on p- 10.

14 These points are the first ninet
universe and previously shown in fi
in ascending order of magnitude.

y-six averages of samples of four drawn from a normal
g. 8. Each group of sixteen averages has been arranged
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would undoubtedly suggest that at least the intent of the requirement had
not been met.

Third: How may we determine whether a judgment about accuracy or preci-
ston s valid? _

An example of a judgment of accuracy or precision might be, as already
indicated, a statement of the character: “The accuracy (or precision) of this
test method is 1 per cent.” Such a statement is a prediction in terms of a
tolerance range, and this prediction rests upon certain specified evidence E.
The act of judging in this sense is an act of reason relating the evidence E
and the prediction P, and is discussed in chapters II and III in connection
with the general theory of tolerance ranges.
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It should be noted, of course, that such a judgment is a specific act l.m(.ier
specific conditions. Its validity is independent of whether the prediction
proves to be true and instead depends upon whether the act is the one that a
reasonable man should have taken under the particular conditions fixed py
the evidence E and the prediction P. It seems that a method for detern.mr.l-
ing operationally whether a judgment is valid is to find out whet'her it is
approved by the majority of reasonable men, where reasonable is taken
pretty much in the legal sense of this term.
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Fourth: How may we control the error of judgment?

The first step in controlling the error of judgment is to take not less than
a certain quantity of data, this quantity being fixed by practice in each
particular field of inquiry (pp. 37-38). The next step is to make sure that
the operation of control is satisfied. We may then proceed to define the
desired tolerance type of range for either accuracy or precision. To estab-
lish this range we may use the methods discussed in chapter II.

Fifth: What role does statistical theory play in the speczﬁcatwn of accuracy
and precision in a definite manner?

T'he further we go in trying to fix requirements of accuracy and precision,
and in trying to attain in an economic manner a quality of product that will
meet such requirements, the more we must rely upon the application of
statistical methodology at every step. Starting with the fundamental
classic concepts of accuracy and precision, we find that the operations in
use associated with these eoncepts are fundamentally statistical in character.
One of the most fundamental requirements underlying accuracy and preci-
sion is the reproducibility of an operational procedure, and this leads us at
once to the fundamental abstract concept of random and its associated
operational verifiable meanings inuse. Likewise, in trying to fix the require-
ment of accuracy corresponding to the concept of an objective true value,
we naturally are led to a statement of requirements not only in terms of

andomness of a single infinite sequence but also in terms of consistency be-
tween sequences as measured in terms of tests for significant differences.

Just as the development of abstract concepts and associated practical

techniques go hand in hand in any research, so they have gone hand in hand

in the development of ways and means of specifying and attaining accuracy
and precision in the control of quality.



EPILOGUE

Hindsight supplements foresight: a view backward often adds ma-
terially to a view forward. In his preface, the editor comments briefly on
what the reader may expect to find in the four lectures presented in this
monograph. A reader who has reached this page can look back and see
what be has found. For such a reader, the following paragraphs are offered
in the hope that they will help him to round out his picture of statistical
method from the viewpoint of quality control.

Central to the theme of the four lectures is the concept of the act of
control, which consists of the three components: (a) the act of specifying
the end to be attained, (b) the act of striving to attain the end specified,
and (c) the act of judging whether the end had been attained. In mass
production, as we have seen, these component acts are commonly called
specification, production, and inspection. Fundamentally the set of com-
ponent acts may be put in parallel with three fundamental steps in scientific
method as shown below:

Mass Production Scienitific Method
Specification Hypothesis
Production Experiment
Inspection Test of hypothesis

The consideration of the three component acts of control as steps in
scientific method provides a means of visualizing the act of control as a
scientific one, and constitutes a background for the entire discussion in this
monograph.

Since the outcome of the repetitive act in mass production, like that of
the repetitive one of measurement under the same essential conditions ip
science, can not be predicted with exactness, we must introduce into sci-
entific method statistical hypothesis, statistical experimentation, and sta-
tistical tests of hypotheses. Thus we come naturally to the conce_pt of
statistical control. Viewed as an illustration of the role of statistical
method in scientific control of the physical world, what is said gbogt ?he
application of statistical theory in the control of quality has an 1n'tr1gu1.ng
generality. However, my discussion has been concerned primarily with
showing how the theory and practice of statistical control may be made to
provide the highest standards of quality of manuffizctured goods at any
given cost. From the practical viewpoint, it is significant that mass pro-

149



150 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

duction plus statistical techniques when combined in the operation of
statistical control provides a continuing, self-correcting process of making
the most cfficient use of raw materials and fabrication processes. The
adjectives continuing and self-correcting are also the essential character-
istics of the scientific method.

Chapter I describes the concept of the statistical state of control, the
operation of statistical control, and the judgment of control. The assump-
tion that such a state can be attained as a limiting condition in control
constitutes the underlying fundamental hypothesis in the theory of sta-
tistical control. The five steps in the operation of statistical control provide
a practical means of attempting to attain the idealized state (p. 25). Em-
phasis is placed upon the importance of order in the results of a series of
repetitions as a basis for detecting assignable causes of variability. It is
shown that the nature of the problem of judging whether a state of statistical
control exists is essentially one of testing the hypothesis that assignable
causes have been eliminated.

Of fundamental importance for all that is said in this monograph is the
fact that the three component acts in the control of quality, namely,
specification, production, and inspection, are so interrelated that they can
not be taken independently if we are to attain the most efficient control
of quality.

Chapter II takes up the very practical problem of establishing toler-
ance limits that will make possible the most efficient use of raw materials
and pieceparts. From a statistical viewpoint; the use of tolerance limits,
which are so important in industry, differs in a fundamental way from the
use of fiducial limits so extensively discussed in modern statistical theory.
Although it is shown that the tolerance range can be reduced toward a
minimum with inherent economic advantages as we approach a state of
statistical control, evidence is provided to show that such a state is not a
natural one, at least in the fields of physical and engineering measurements.
This empirically established fact should have some repercussion in many
fields where it is the prevalent practice to rest inferences upon the assump-
tion that a state of statistical control (or randomness) exists. It is also of
far-reaching significance that even after a state of statistical control has
been attaine_d, which is usually a long process in itself, it is still necessary
to h:?.ve ava.llable.a the results of a thousand or more repetitions of the pro-
duct{on process if we are to be able to set valid tolerance limits that will
prov1.de.max1mum efficiency in the use of materials. Such facts point to
certain inherent advantageg of mass production in scientific control.
oo s Booutnd o Sine ls or i r
D ortance The qised. n chapter 1 is obviously of gl:eat p?actlcal im-

. n of this problem leads to a consideration of three
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aspects of scientific knowledge and in so doing may be suggestive of im-
proved practices to be developed in many other fields of presenting the
results of scientific experimentation as “knowledge.”

The fourth chapter takes up the simplest type of problem—specifying
in an operationally verifiable way a state of statistical control of a single
quality characteristic. Such a specification must introduce the concepts
of both precision and accuracy. It becomes necessary to make use of and
to extend the operational theory of meaning both theoretically and prac-
tically to -attain the desired end of practical verifiability. Not only is the
material here discussed of fundamental importance on account of providing
a scientific basis for writing operationally definite specifications of quality,
but it may be of considerable interest to statisticians as well as others in

. attempting to say what they mean and to mean what they say.

Although time did not permit a discussion of the role played by the
so-called statistical design of experiments in the control of quality, the
importance of the use of such statistical foresight in the layout of the
measurements to be made is emphasized in step 2 (p. 25) of the operation
of control, and in step 2 (p. 139) of the act of specification.

Throughout this monograph care has been taken to keep in the fore-
ground the distinction between the distribution theory of formal mathe-
matical statistics and the use of such theory in statistical techniques designed
to serve some practical end. Distribution theory rests upon the framework
of mathematics, whereas the validity of statistical techniques can only be
determined empirically. Because of the repetitive character of the mass
production process, it is admirably suited as a proving ground wherein !;o
try out the usefulness of proposed techniques. The technique involved in
the operation of statistical control has been thoroughly tested and not f ound
wanting, whereas the formal mathematical theory of distribution constitutes
a generating plant for new techniques to be tried.



SOME COMMENTS ON SYMBOLS AND
NOMENCLATURE

It is a well-established practice of many authors to include a list of
symbols used, and at the suggestion of the editor, I undertook to prepare
one to be inserted at this point. A start was made by putting down the

following description of the symbol X and the symbols Xj, X, -+, Xa
Symbol Description
X Some measurable quality characteristic
Xy, X Xy, -+, X0 Numbers denoting the results of n observations

on some quality X.

A carcful reader, however, would immediately point out that X had also
been used as a mathematical variable in several different places as, for
example, in the equation dy = f(X)dX, where dy represents the probability
that X will fall within an interval X 4 1dX. Of course, we may let X
represent some quality characteristic, but this does not make a mathe-
matical variable X the same as a quality characteristic X.

In much the same way, X, Xy, X3, -+, X, are not always referred to
simply as » numbers denoting the results of observations on some quality
X. For example, they are sometimes referred to as a sample, and at other
times as measurements. Here we have three different descriptions of the
same 7 symbols. Most of these inconsistencies, if they may be called such,
would not likely give much cause for worry. They are, in fact, the kinds
of inconsistencies present in most discourse, even in the natural sciences.
But now let us pass to a less familiar symbol like X’ or X'. The very incon-
sistencies that we may be willing to slur over in every day practice are the
ones that need to be stressed in learning how to make the best use of such
terms.

For example, we might describe X’ as the mean of a universe or popula-
tion. Mathematical statisticians have g perfectly definite way of using
such a mean in formal mathematics. But what is the meaning of X’ in the
physical world? Do we have any “statistical universes or populations”” in
the true sense? The answer to this must involve some consideration of the
concept of random operation, and I trust that enough has been said to
indicate the difficulties that we get into when trying to describe randomness
in an operationally definite way. On the other hand, the usefulness of
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statistical theory depends on our giving that operation a definite meaning as
has been done, for example, in the case of the operation of statistical control.

The same symbol X’ is also used in this monograph for the true value
of a physical constant, and as such plays an important role in the discussion
of errors. In the mathematical theory of errors, the term true value here
represented by X’ is used consistently by most authors. However, when
we try to appraise the usefulness of the mathematical theory involving the
use of X’ we must think of the objective meaning of X’ in the world about
us. Such meaning is of paramount importance in the specification of
quality, involving as it does the concepts of both accuracy and precision.
It is for this reason that operational meanings both theoretically and prac-
tically verifiable have been introduced, and a distinction drawn between
meaning solely as a prediction and meaning in knowledge. The same type
of discussion could be given about the description of every symbol that I
have used including not only letter symbols such as X, X', X', p, p’, and
the like, but also word symbols such as random.

What is the trouble with our symbolism? Is it not possible to find a
satisfactory one that can be described in a simple but definite manner?
Such questions demand consideration. To do justice to these questions
would take far more space than is here available. However, I shall try to
suggest what appears to me as a helpful manner of approaching the meaning
of symbols.

But first let us consider a question that may be in the minds of some
readers. Why all this fuss over symbols here when there is not so much
fuss in such fields as physics and chemistry, for example? Well, in such
fields, the usefulness of mathematical theory has been pretty well estab-
lished over a long period of research and application. Put somewhat
crudely, the physicist and chemist have learned by experience how to extf‘uct
certain numbers from their experimental work and how to put these into
the mills of the mathematician which grind out other numbers or functions
that the scientist has learned by experience can be used in ce.rt.am more or
less well-established ways. This means that the mathematician and the
scientist in these two fields have grown to have a more or less common
ground in language. ) o

However, in the case of mathematical statistics, some scientists and
engineers still question the usefulness of all the high-brow theory. They
appreciate, for example, that it is one thing to assume the'xt a sample has
been drawn at random and another thing to base much reliance upon con-
clusions that rest upon such assumptions. Then, too, the very concepts
such as probability, randomness, universe, statistical limit, and Phe l.1ke
are indefinite. All in all we may say ‘that at least in the ﬁe.ld of ?ngmeermg
we are only now in the process of learning how to get the right kind of data
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to put into the refined mill of the mathematical statistician. What is
more, engineers know that the usefulness of this mill can be proved only
by experience that provides operationally definite meanings in use for the
terms now appearing in the formal mathematics.

Now let us return to the problem of providing a definite scientific
symbolism. To begin, let us recall that there are at least three important
aspects to every symbol. One of these is the relation of the symbol to the
objective thing symbolized; another is the relation of the symbol to the
individual or group interpreting the symbol; and the third aspect is the
relation of a symbol to other symbols. Schematically we have the following
diagram: '

Other
Symbols

Symbol

Thing Interpreter
Symbolized

Now let us return to our discussion of the description of the symbol X".
In mathematical statistics this symbol is formally related to other symbols
such as, for example, the relation of X’ to the symbol for the error ¢’; of an
observed value X, as shown by the equation e¢/; = X’ — X;. Then there
is the response R of a given interpreter to a symbol X’ serving as a stimulus S
and sometimes indicated by the expression S — R. Finally there is a way
of relating the symbol to an operationally verifiable experience that is
presumably independent of any observer, at least to a first degree of approxi-
mation. Such, for example, are the theoretically and practically verifiable
meanings introduced in this monograph.

{Xs another example, let us take the word random. The mathematical
statistician uses this word symbol in a pretty definite way in relation to
other symbols in his theorizing. An experimentalist using this word in its
relation to his own work is led to expect such and such to be observable
when t}}e symbol is used. Here we distinguish the relation of the symbol
to the interpreter. However, the practical man has learned all too well
that. h? may be mistaken in his expectations. What he wants to do is to
maximize his ability to predict without disappointment. Thus more or less
naf,urszlly we are led to search for the best way of relating the symbol to an
objective kind of observable experience which we may designate by the
term random. We want to learn how to distinguish this kind of experience.
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In doing this, we must distinguish between meaning considered simply as
a prediction and considered in reference to evidence as a basis for a certain
degree of rational belief. The significance of the term random is different
in each of the three relations considered in this paragraph.

To each one of these three types of relation there belongs a more or less
definite set of rules defining that relation. This is particularly true in the
case of the relation of a symbol to other symbols as found in mathematical
statistics per se. The rules describing the relation of the symbol to the
individual are far less definite particularly in the field of applied statistics.
Furthermore, those rules in current use are not always the best. From the
viewpoint of use, what we particularly want to do is to establish rules for
relating symbols to operationally definite and practically verifiable entities
that will yield the greatest possible number of valid predictions. For
example, 1 have considered at great length the operational rule of statistical
control and the rules for judging when we may assume with a high degree
of assurance that a state of statistical control exists. Possibly we are justi-
fied in saying that scientifically what we are interested in doing is to establish
rules relating the symbols used in mathematical statistics to operationally
definite and observable meanings in experience that will lead to the greatest
possible number of valid scientific predictions.

In the present state of application of statistical theory in the control of
quality, it is essential that we keep in mind each of the three relations
characterizing the significance of a symbol.!

1 The reader interested in surveying some of the literature on the significance of signs

and symbols in scientific discourse will find a very useful introduction in Foundations of the
Theory of Signs by C. W. Morris (University of Chicago Press, 1938).
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