
Exploring Ramanujan Sums in
Digital Signal Processing

Subhojit Sarkar



Exploring Ramanujan Sums in
Digital Signal Processing

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Subhojit Sarkar
[ Roll No: CS-1507 ]

under the guidance of

Dr. Sarbani Palit
Assistant Professor

Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
Kolkata-700108, India

July 2017



Abstract

The problem of estimation of period lengths from a “mixture” of periodic signals is
a well-studied topic in the field of digital signal processing. Various methods have
been proposed in the past, to extract signal periods. The extraction of periods of
sinosoidal components in particular has attracted much attention. The more general
problem of period determination when the mixture is of periodic but non-sinosoidal
signals was first addressed in 1997 to separate foetal ECG from the maternal ECG.
The algorithm used the Singular Value Decomposition method, but it had the
stringent requirement of a large difference in the strengths of the individual sig-
nals. That is, if we have two signals having similar amplitude levels added together,
the SVD method cannot be used. (Since the foetal ECG is generally much weaker
than the maternal one, this method was sufficient for the problem.) Recently, us-
ing a summation proposed by the great Indian mathematician S. Ramanujan in
1918, certain methods have been developed. These algorithms also have good noise
performance, which was usually absent in the older methods. We examine these
algorithms in the first part of the thesis. We also point out some of the drawbacks
of a few of the older methods.

While one of the main problems of signal processing is the identification of periods
from a signal mixture, another equally important problem is their separation, that
is, reconstructing the original signals, the “mixture” of which produced the signal
under consideration. We will consider two such “mixing” operations, addition and
multiplication in this thesis. There are methods such as filtering which have been
used in the past to reconstruct the signals. Even Singular Value Decomposition has
been used for this purpose. We propose an alternative method to “almost” separate
the signals given a few conditions. The conditions are the mutual co-primality
amongst the signal periods and a signal length of the LCM of the periods. We
prove that “exact” reconstruction is never possible, for any given added or point by
point multiplied signals. We then go on to show that using very little computation
time and hardware support, we can very simply get back the original signals, with
nominal changes. For the additive case, we get the initial signal with an offset and
for the multiplicative case, we get a scaled version. We also show that this method
gives better noise performance for white noise, under some conditions. Finally we
show how, under few more strict conditions, even exact reconstruction of the initial
signals in the multiplicative case is possible.
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Chapter 1

Introduction

A signal, in layman’s terms, can be defined as something which provides infor-
mation. There are signals all around us, natural and man-made. Any quantity
exhibiting variation (or lack of it) in time or in space is potentially a signal that
might provide information on the status of a physical system, among other possibil-
ities. The temperature of a day can be regarded as a signal. The variation of share
prices of a company can be a signal. Speech, image, video and text are all signals.
Human body is home to a plethora of electrical signals; the brain operates mostly
on electrical signals. A good basis for signals and their properties are found in [1],
[6].

It has been reported [2] that the seizures in an epileptic patient are usually
preceded by some changes in the patient’s EEG activity. If we can somehow manage
to process the EEG signal in a patient, we can take measures to control the situation.
Another potent area of research is non-invasive diagnosis of blood sugar, wherein
photos of a patient’s skin can be taken to be a signal and processed accordingly.

It is no wonder, therefore, that the processing of these signals is a wide field of
study.

Basics

A signal may be continuous, or discrete. Intuitively, all signals that vary continu-
ously are called continuous signals. On the other hand, those which vary only at
specified points, remaining steady at other times are called discrete signals.
Continuous time signals, to be stored, processed and studied would require an infi-
nite amount of resources. Indeed, how can we store infinite precision in a modern
computer which has finite memory? For example, if we were to continuously record
the temperature in a room (temperature change being a random process) for even a
second, we would need infinite space to store the infinite amount of data recorded!
Hence, all processing of continuous time signals done in a computer are in the dis-
crete domain. In particular, we sample these continuously varying signals at specified
instances, and treat the signal to be constant between these instances. In general,
the more densely we sample the signal, the more precisely can our sampled discrete
wave mimic the continuous signal. In Fig. 1.3, though we claim that the sinosoid is
“continuous”, it is actually produced by a computer and hence discrete. However,
it serves for illustration purposes.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Monthly mean total sunspot number [1/1749 - 12/2016]. Source: WDC-
SILSO, Royal Observatory of Belgium, Brussels.

Figure 1.2: EEG data of a patient with an onset of a seizure. Source: UPenn and
Mayo Clinic’s Seizure Detection Challenge.
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CHAPTER 1. INTRODUCTION

Figure 1.3: A “continuous” time sinosoid and its sampled version.

Again, in a computer, the value sampled at a particular instance has to be stored
with finite precision. Hence, there appears another error, called the quantization
error, in the processing of signals in a digital computer. Quantization error can be
defined as process of mapping a large set of input values to a (countable) smaller
set, usually attained by rounding off. Thus, digital signal processing suffers from
two inaccuracies; one due to finite instances that can be sampled, and the rounding
off of sampled values.

Periodicity

It has been observed that many real world signals tend to repeat themselves after
some finite amount of time. If this time period is constant, then the signals are
periodic signals and the time interval is called its period. If x(n) is the given
signal and N is the smallest number for which

x(n+N) = x(n)

then N is the period of x(n).
The sunspot data, shown in the first figure, however exhibit some variation in its
period, that is, in this case, N is not constant. It varies around 11 years, but is not
fixed. Such signals are called quasi-periodic signals.

11



Chapter 2

Period Estimation

Estimation of periods is one of the most well-studied problems in the field of signal
processing. Various methods have been proposed in the past, of which we will briefly
discuss a few here.

2.1 Successive Differencing

Given a signal x(n) of length N , we construct a function

dk(n) = x(n+ k)− x(n) ∀n

Now, we see that if the period happens to be the selected k, or a factor of k,
dk(n) = 0. Thus, we can use this method to take the power spectrum of dk(n) and
the the minimum value of k corresponding to the minima of the power spectrum is
the period.

This method is a brute force method, and hence is not preferable in practice.
Besides, this will not work well for signals which have multiple hidden components,
but whose lengths are less than the LCM of the periodicities. For example, in the
Fig. 2.3, we have taken two signals of period 9 and 5, added them and taken a
truncated added signal of length 40. Since the effective period length of the periodic
signal is 45, no detection of period is possible.

2.2 SVD

Singular Value Decomposition (SVD) can be carried out on the given signal to
get the period. The method was proposed in [4]. It was found that if a periodic
signal was reshaped into a matrix such that the number of columns became the
period length, the singular values of that matrix were all very close to zero except
the first one. This way,the periods can be found.
Let us assume that A is a signal of length N , having period length m = N

n
, i.e., we

have n cycles of A. SVD is defined as

Am×n = Um×m.σm×n.V
T
n×n

The method followed is as follows.
We arrange the signal in the form of a matrix, varying the row size as our candi-
date periods, i.e., if we know that m1 ≤ m ≤ m2, we can arrange the signal as

12



2.2. SVD CHAPTER 2. PERIOD ESTIMATION

[H]

Figure 2.1: A random signal having period length 9, repeated over 11 periods.

Figure 2.2: Power spectrum of the function dk(n) in the previous figure. We notice
that the minimas are at multiples of 9.
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Figure 2.3: Two random signals of period length 5 and 9, added and truncated to
length 40.

Figure 2.4: Power spectrum of the function dk(n) in the previous figure. We cannot
draw any conclusion from this.
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Figure 2.5: A periodic signal of length 99, having period 9.

matrices having row sizes varying from m1 to m2. It has been shown that after this
decomposition, if the row size happens to be the period length m, the ratio of the
first two diagonal elements of σ, σ1

σ2
is very high (if the signal has more than 1 signal,

then the ratio of subsequent σi
σi+1

is high). In Fig. 2.5, we take a signal of period

length 9, taken over 11 cycles. We try to find m, starting from a possible candidate
period of 3 and going upto 99/3 = 33. We see that the very high peaks are at 9,18
and 27. This means that when the signal is arranged as a matrix having number of
columns 9, 18 and 27, we get a very high σ1

σ2
, thus letting us know that 9 is a period.

If there are multiple periodic signals contained in the signal under consideration,
this method only works when the individual signals are of considerable different
strengths. This is shown in Fig. 2.8.

2.3 Ramanujan Sums

In the year 1918, the Indian mathematician Srinivas Ramanujan came up with
a summation [5], which he showed could be used to represent several well-known
arithmetic functions.
The sum, now called the Ramanujan Sum has the following form

cq(n) =

q∑
k=1

(k,q)=1

ej2πkn/q

where (k, q) = 1 signifies that k and q are relatively co-prime. In other words,
(k, q) denotes the Greatest Common Divisor of k and q. For example, if q = 12,

15
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Figure 2.6: The σ1
σ2

values for candidate period lengths from 3 to 33.

Figure 2.7: Two periodic signals having periods 5 and 9, added with 40dB white
Gaussian noise, taken over 99 samples. Signals are of comparable strengths.
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Figure 2.8: σ1
σ2

values from SVD based method applied to the previous signal. We
seen no distinct peaks.

Figure 2.9: Two periodic signals having periods 5 and 9, added with 40dB white
Gaussian noise, taken over 99 samples. The signal strengths are in the ratio 1:100
respectively.
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2.3. RAMANUJAN SUMS CHAPTER 2. PERIOD ESTIMATION

Figure 2.10: σ1
σ2

values of candidate periods from SVD based method applied to the
previous signal. Peaks at candidate period lengths of multiples of 9 are clearly found
out.

then the values of k co-prime to q are 1, 5,7 and 11. Hence,

c10(n) = ej2πn/12 + ej10πn/12 + ej14πn/12 + ej22πn/12

Ramanujan observed that a lot of arithmetic functions could be represented as a
linear combination of cq(n)s, ie,

x(n) =
∞∑
q=1

αqcq(n), n ≥ 1

An arithmetic function is usually an infinite sequence of numbers, defined for 1 ≤
n <∞ and usually integer valued. For example, Euler’s Totient function, φ(n),
is a very well-known arithmetic function. For a given positive integer n, it is defined
as the number of integers between 1 and n that are co-prime to n. For example,
φ(10) = 4, since 1,3, 5 and 10 are co-prime to 10.
We will now point out some useful properties of this summation.
For ease of writing, we will often represent e−j2π/q as Wq. Also, (k, q) represents the
GCD of k and q

18
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Periodicity
We can easily observe that the sequence cq(n) repeats itself after every q values.
This is because

cq(n+ q) =

q∑
k=1

(k,q)=1

ej2πk(n+q)/q

=

q∑
k=1

(k,q)=1

ej2πkn/q.ej2πq/q

=

q∑
k=1

(k,q)=1

ej2πkn/q

= cq(n)

Thus, the sequence cq(n) repeats after every q values.

Symmetric property
The sums are symmetric, because

cq(−n) =

q∑
k=1

(k,q)=1

ej2πk(−n)/q

=

q∑
k=1

(k,q)=1

ej2πqn/q.e−j2πkn/q

=

q∑
k=1

(k,q)=1

ej2π(q−k)n/q

Let (q − k) = k′. Also, if (k, q) = 1, then (q, q − k) = 1. Therefore,

cq(−n) =

q∑
k′=0

(k′,q)=1

ej2πk
′n/q

= cq(n)

Armed with the periodic and symmetric properties, we can prove a stronger property,
namely

cq(n) = cq(q − n)

Number of terms
The number of terms to be summed up for each cq(n) is of course equal to the num-
ber of integers between 1 and q that are relatively co-prime to q. Thus, the number
of terms in the summation cq(n) is the Euler’s Totient function, φ(q). Another

19
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observation is that cq(0)=φ(q).

Real terms
Another special property of Ramanujan sums is that despite the presence of the
complex j in the summation, the numbers are all real. This is because since

(ejθ)∗ = e−jθ

and because of the symmetric property of Ramanujan Sums

cq(−n) = cq(n)

we have
c∗q(n) = cq(n)

Hence, the sums are all real.
The Discrete Fourier Transform

We have the DFT equation of a length N function x(n) given by

X(k) =
N−1∑
n=0

x(n).e−j2πkn/N

Thus, for the Ramanujan sum cq(n), we have

Cq(k) =

q−1∑
n=0

cq(n).e−j2πkn/q

=

q−1∑
n=0

(

q∑
l=1

(l,q)=1

ej2πln/q).e−j2πkn/q

=

q∑
l=1

(l,q)=1

ej2πln/q.

q−1∑
n=0

e−j2πkn/q

If (k, q) = 1, then ∃ an l = k in first summation. Thus, ej2πln/q.e−j2πkn/q = 1
∴
∑q−1

n=0 e
j2πln/q.e−j2πkn/q = q When l 6= k, then

∑q−1
n=0 e

−j2π(l−k)n/q = 0.
Thus,

Cq(k) =

{
q, if (k, q) = 1

0, otherwise

Integers
All the terms in the summation happen to be integers. Ramanujan showed a

proof[5] by using the Mobius Function. We will show the proof as shown in [9], not
only because this gives us a fast way to compute the sums, but also for the elegance
of it.
In the definition of Ramanujan Sum, we have a set of fractions k

q
such that (k, q) = 1.

This set of irreducible rationals has only φ(q) elements, unlike the set of all rationals

S1 =
{h
q
| 1 ≤ h ≤ q

}
20
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which has q elements. We can write S1 as a union of irreducible rationals. Let

S2 =
{a
d
| 1 ≤ a ≤ d (a, d) = 1, d | q

}
Now, if x ∈ S1, then x = h

q
and can be written as a

d
by cancelling the GCD between

h and q. So x ∈ S2.
Conversely, let y ∈ S2. Then y = a

d
where a ≤ d and d | q. So we can rewrite y = a.l

q

for some integer l. Clearly, al ≤ q, so y ∈ S1. So, S1 = S2.
For example, if q=6, then

S1 =
{1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6

}
and

S2 =
{

1
}
∪
{1

2

}
∪
{1

3
,
2

3

}
∪
{1

6
,
5

6

}
Now, let F (x) be any function in x, and let us consider evaluating the sum of the
values of the function at uniformly spaced samples at x = h/q, where 1 ≤ h ≤ q,
and q is a fixed positive integer. Then,

q∑
h=1

F
(h
q

)
=
∑
d|q

d∑
a=1

(a,d)=1

F
(a
d

)

Thus, we can compute the sum of samples in two stages.
For example if F (x) = 1∀x, then the left hand side is q and the inner sum on the
right side is φ(d). Thus, ∑

d|q

φ(d) = q

a well-known result which is also used in the following sections.
Again, let F (x)=ej2πnx, where n is a fixed integer. Now,

q∑
h=1

F
(h
q

)
=

q∑
h=1

ej
2π
q
n

=
∑
d|q

d∑
a=1

(a,d)=1

ej
2πa
d n

The left side is qδ((n))q where

δ((n))q =

{
1, if q|n
0, otherwise

The inner sum on the right side is precisely the Ramanujan sum cd(n). Thus,∑
d|q

cd(n) = qδ((n))q
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Hence,

cq(n) = qδ((n))q −
∑
qk|q
qk<q

cqk(n)

where qk|q denotes that qk are divisors of q.
Hence, we have done two things. 1. Proved that if c1(n) is an integer, all cq(n) are
integers.
2. Generated a fast recursive way to produce Ramanujan sums. Examples

A few examples of the summation are shown. One cycle is shown for each case.

c1(n) = 1

c2(n) = 1,−1

c3(n) = 2,−1,−1

c4(n) = 2, 0,−2, 0

c5(n) = 4,−1,−1,−1,−1

c6(n) = 2, 1,−1,−2,−1, 1

c7(n) = 6,−1,−1,−1,−1,−1,−1

c8(n) = 4, 0, 0, 0,−4, 0, 0, 0

c9(n) = 6, 0, 0,−3, 0, 0,−3, 0, 0

c2(n) = 4, 1,−1, 1,−1,−4,−1, 1,−1, 1

Many other properties were proved in [9], which we will not prove again here.
We will instead delve into the problem solving part.
One thing was pointed out in [8]. In the equation

x(n) =
∞∑
q=1

αqcq(n), n ≥ 1

the co-efficients α are usually done as

αq =
1

φ(q)
( lim
M→∞

1

M

M∑
n=1

x(n)cq(n))

However, most signals we come across in real life are finite. Hence, x(n) equals zero
for all n except possibly 1 ≤ n ≤ N , N being the signal length.
∴ limM→∞

∑M
n=1 x(n)cq(n)/M = limM →∞

∑N
n=1 x(n)cq(n)/M → 0

Hence, new representations are to be found to apply this summation to finite signals.

2.3.1 Ramanujan Representation

One approach was proposed in [8]. We consider the following expansion

x(n) =
N∑
q=1

αqcq(n), 0 ≤ n ≤ N − 1
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where the first N sequences cq(n) are all used. In vector form,

X = A.α

where 
x(0)
x(1)

...
x(N − 1)

 = AN


a1
a2
...
aN


It was shown that the matrix A is of full rank and the representation always

holds good. But it is of little use if we want to find the periodicity.

Vaidyanathan [9] proposed the Ramanujan Subspace and proved certain prop-
erties. The subspace is developed as follows.
1. Form a circulant matrix of order q × q from the Ramanujan sum cq(n). Column
space of this matrix is called the Ramanujan subspace
2. The first φ(q) columns of the the circulant matrix are linearly independent and
they form the basis of the Ramanujan Subspace of dimension φ(q).
For example, the circulant matrix for Ramanujan sum of order 5 is as follows.

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4


∵ φ(5) = 1,
∴ the corresponding basis is 

4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4
−1 −1 −1 −1


Using this, [8] proposed another representation, which decomposed the signal down
into orthogonal projections of Ramanujan subspaces of orders being the factors of
the signal length. However, this method has the drawback of not finding any periods
which are not divisors of the signal length. That is, only periods which are divisors of
the signal length are identified. This is shown in Fig. 2.11, where we show the peak
at the well-known 132 month period is present when the signal length is truncated
to a length of a multiple of 132.

2.3.2 Nested Periodic Matrices

Vaidyanathan proposed an algorithm in [7]. Let us take a period P and all its
divisors di, 1 ≤ i ≤ K in increasing order, including 1 and P . Let us consider a
matrix of the form

A = [Cd1 Cd2 ...Cdk ]

with the following properties.
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Figure 2.11: Extracting periods from sunspot numbers. Works only when signal
length is a multiple of 132(3216 in this case).
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1. Each Cdi is a P × φ(di) matrix, so that the total number of columns in∑
di|P φ(di) = P . Thus A is a P × P matrix.
2. Each column of Cdi is a length P sequence of period di.
3. A has full rank P .
Such a matrix is called a Nested Periodic Matrix.
It has the useful property that given any nested periodic matrix A, any P × 1

vector y with period q|P can be expressed as y=Ac where all those components of c
are zero, that do not pair up with the q columns akj that have periods equal to or a
divisor of q.

We can fill up such a matrix using Ramanujan sums. It was shown in [7] that
there are a number of ways to fill up the matrix. However, Ramanujan Sums gave
the best results. For example, if P=8,

A =



1 1 2 0 4 0 0 0
1 −1 0 2 0 4 0 0
1 1 −2 0 0 0 4 0
1 −1 0 −2 0 0 0 4
1 1 2 0 4 0 0 0
1 −1 0 2 0 4 0 0
1 1 −2 0 0 0 4 0
1 −1 0 −2 0 0 0 4


We now construct a dictionary as follows. Suppose the length of signal under

consideration is N . If we have an idea that the maximum periodicity is Pmax, then
for all d going from 1 to Pmax, we make a d×d nested periodic matrix, extending the
columns upto N truncating the last matrix if necessary. We then select the φ(d))
columns of this matrix which have period d. We form a fat dictionary for all d. For
example, if N = 5 and Pmax=5, we have our dictionary as

D =


1 1 2 −1 2 0 4 −1 −1 −1
1 −1 −1 2 0 2 −1 4 −1 −1
1 1 −1 −1 −2 0 −1 −1 4 −1
1 −1 2 −1 0 −2 −1 −1 −1 4
1 1 −1 2 0 0 −1 −1 −1 −1


If the given signal x(n) is periodic in any value less than Pmax, then it has to

be a linear combination of the columns of the dictionary. So the following equation
must have a solution y

x = Dy

However, since the matrix is fat, there maybe multiple solutions. We can try to
find the least l2 norm solution to an over-determined linear system. This will work
because if we consider the following optimization problem,

min||Ey||2 such that x = Dy

where D is a diagonal matrix whose ith diagonal entry f(Pi) where Pi is the period
of the ith column of D and f(.) is some increasing function. Typically, F (P ) = P 2

gives good results.
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Figure 2.12: Period detection of a truncated signal having hidden periods 7 and 11.
Signal strengths are comparable.

We see that the method gives good results for the case where the signal strengths
are comparable, as shown in Fig 2.12.

However, in the case of different signal strengths, as shown in Fig. 2.13, the
detection of the signals with smaller strength diminishes rapidly. For ratios less
than 1:10, the smaller signal period is not determined.
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Figure 2.13: Period detection of a truncated signal having hidden periods 7 and 11.
Signal strengths are in the ratio 1:4 respectively.
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Chapter 3

Signal Reconstruction

One of the main problems of signal processing is the identification of periods in a
given signal. Yet another problem is their separation, that is, reconstructing the
original signals, the “mixture” of which produced the signal under consideration.
We will consider two such “mixing”, addition and multiplication.

3.1 Addition

3.1.1 Preliminaries

Let us assume two signals x(n) and y(n), each of length N , without loss of generality.
We can always assume that they are of equal length, because if not, we can always
pad the shorter one with zeros to make them of equal length. We define z(n) as

z(i) = x(i) + y(i)

for 1 ≤ i ≤ N .
Consequently z(n) is also of length N . Hence, we will get exactly N equations of
the form

x(i) + y(i) = z(i)

for 1 ≤ i ≤ N . The simplest idea that comes to mind is that of solving a system of
linear equations.
The number of unknowns is P1 + P2. Hence, we have N linearly independent equa-
tions and N + N = 2N unknowns. Hence, this approach is unsuitable for non-
periodic signals.

3.1.2 The Periodic Case

For example, let us take the example of a signal z(n) which is the sum of two periodic
signals, x(n) and y(n), having periodicities of P1 and P2. That is

x(n) = x(n+ P1)

y(n) = y(n+ P2)

and
z(n) = x(n) + y(n)
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Figure 3.1: The model assumed for addition

Suppose we have been able to find P1 and P2 by any suitable method, or in our
case, using the Nested Periodic Matrices and we now want to reproduce x(n)
and y(n). Can we find a solution then?

3.1.3 A Possible Solution?

Assuming

x(n) = x(1), x(2), ..., x(P1), x(1), x(2), ...

and
y(n) = y(1), y(2), ..., y(P2), y(1), y(2), ...

we can try to solve for each xi and each yi given z(n) of “sufficient” length.

An interesting fact was pointed out by Vaidyanathan [9]. The period length
of z(n) is always a divisor of P1.P2. For example, if x(n) = {1, 2, 3, 1, 2, 3} and
y(n) = {1, 1, 1, 1, 1, 1}, then the period of z(n) remains 3. However, if we have
y(n) = {3, 2, 1, 3, 2, 1}, then the period becomes 1. Thus, in both cases, the period
of z(n) becomes a divisor of P1.P2=3.

Here we prove a useful theorem.

Theorem 1 : To separate two signals with known periodicities, given their added
version, by “solving” a system of linear equations, is impossible. (However, there is
a very simple silver lining, if we are willing to compromise a bit.)

29



3.1. ADDITION CHAPTER 3. SIGNAL RECONSTRUCTION

Proof:
Case 1: P2 = kP1 ie, the length of z(n) is P2.
Therefore, we have only P2 distinct equations available to us. Even if they are all
linearly independent, their number is less than the number of unknowns, which in
this case is P1 + P2. Hence, the equations cannot be solved.

Case 2: P1 and P2 are relatively co-prime.
We find a proof of this in [10]. However, we prove this in an entirely different way.
We will prove a few lemmas for this case.

Lemma 1: If P1 and P2 are co-prime to each other, each value of x(n) gets added
to each value of y(n) exactly once, in P1.P2 samples of z(n).

Proof: The proof is by contradiction.
Let us consider the sample x(i), where 0 < i 6 P1.
In P1.P2 samples of z(n), x(n) completed exactly P2 periods.
Therefore, x(i) appears exactly P2 times.
Likewise, in P1.P2 samples of z(n), y(n) completed exactly P1 periods.
Now, for 0 < l < P2 and 0 < k < P1 where k and l are integers, we can write

l.P1 + i = k.P2 + r.....(1)

where i is an integer such that 0 < i < P1 and r is an integer such that 0 < r < P2.
Now, let us assume that there exist two values of r, corresponding to a single i.
Therefore, by the same logic, there will be two different equations, each with different
l and k (the properties of l and k are maintained).
Let the two equations be

l1.P1 + i = k1.P2 + r

and
l2.P2 + i = k2.P2 + r

.
Now subtracting one from the other, we get

(l1 − l2).P1 = (k1 − k2).P2

That is,
(l1 − l2)
(k1 − k2)

=
P2

P1

Now, ∵ both l1 and l2 are less than P2,
∴ l1 − l2 is also less than P2.
Similar arguments can be put for k1 and k2.
However, we have assumed that P1 and P2 are relatively co-prime.
∴ (l1 − l2) ≥ P2, as any factor cancellation of P2 is impossible.
However, we had proved above that (l1 − l2) < P2.
Therefore, we have a contradiction. Thus, there can be a single r for a particular i.
This concludes the proof.

An immediate consequence of Lemma 1 is the next well-known property, which
van be proved in other ways as well. This is because the period of z(n) is a divisor
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of P1.P2 and there is no repetition within the first P1.P2 values.

Property If P1 and P2 are co-prime to each other, then z(n) has period P1.P2.

Corollary: All possible pairs of i and j, 1 ≤ i ≤ P1 and 1 ≤ j ≤ P2 form
equations of the type

x(i) + y(j) = z(k), 1 ≤ z ≤ P1.P2

Now, we can prove Theorem 1 for the co-prime case.
We know that z(n) has a period P1.P2. Therefore, we have P1.P2 equations and
exactly P1 + P2 unknowns. Now, we can form groups of equations as follows:
Let z(α) = x(r) + y(s).
Now, we can find some u 6= r and v 6= s such that z(β) = x(u) + y(v).
Thus, we have

z(α) = x(r) + y(s)

z(β) = x(u) + y(v)

z(γ) = x(r) + y(v)

z(δ) = x(u) + y(s)

Hence, we can write
z(α) + z(β) = z(γ) + z(δ)

Thus, from this set of equations, we have found one dependency.
More precisely, we can find exactly (P1 − 1).(P2 − 1) pairs of u and v satisfying the
required relation. Now, we claim that for each set of 4 equations selected as above,
we will have one linear dependency. We first show this by an example and generalize
later.
Example: Let P1 = 3 and P2 = 4.
Thus, x(n), y(n) and z(n) respectively goes as

x(1), x(2), x(3), x(1), x(2), x(3), x(1), x(2), x(3), x(1), x(2), x(3)

y(1), y(2), y(3), y(4), y(1), y(2), y(3), y(4), y(1), y(2), y(3), y(4)

z(1), z(2), z(3), z(4), z(5), z(6), z(7), z(8), z(9), z(10), z(11), z(12)

Let us take r = 1 and s = 4.
Thus, we have (3− 1).(4− 1) ways of selecting u and v. A quick observation reveals
that the possible pairs are (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) and (3, 3).

So, we have 6 possible quads when each is paired with z(4) = x(1) + y(4). We
can write the resulting 6 equations as follows.
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z(4) + z(5) = z(1) + z(8)

z(4) + z(2) = z(10) + z(8)

z(4) + z(11) = z(7) + z(8)

z(4) + z(9) = z(1) + z(12)

z(4) + z(6) = z(10) + z(12)

z(4) + z(3) = z(7) + z(12)

We see that z(5), z(2), z(11), z(9), z(6) and z(3) appear exactly once in the
equations. Hence, these 6 equations are linearly independent.
Thus, though we have 12 equations initially, we have shown that at least 6 of them
are linearly dependent on the others. Thus, we are left with at maximum 12−6 = 6
linearly independent equations. However, our number of unknowns was 3 + 4 = 7.
Hence, the system of linear equations cannot be solved.
Now we move on to the general proof.

Let (i, j) denote a node of a graph. Thus, each possible pair of (i, j) is a node in
the graph. Hence there are exactly P1.P2 nodes in the graph. There are also some
unconnected vertices.
Now, from one (r, s) let us add edges to all (u, v) such that r 6= u and s 6= v. Thus,
we have exactly (P1− 1).(P2− 1) edges. Now, let us consider a neighbours of (r, s),
namely (u1, v1). Let

z(α) = x(r) + y(s)

z(β) = x(u1) + y(v1)

z(γ) = x(r) + y(v1)

z(δ) = x(u1) + y(s)

Evidently,
z(α) + z(β) = z(γ) + z(δ)

Like this, we can form exactly (P1 − 1).(P2 − 1) quads, thus eliminating an
equation with each quad. Each quad contains (r, s), some (ui, vi), and (r, vi), (u1, s).
However, there is no saying if these (P1−1).(P2−1) eliminated equations are linearly
dependent among themselves. We will now prove that they are indeed independent.
Let us take a new quad, involving say (u2, v2). We then have

z(α) = x(r) + y(s)

z(θ) = x(u2) + y(v2)

z(λ) = x(r) + y(v2)

z(φ) = x(u2) + y(s)

As before,
z(α) + z(θ) = z(λ) + z(φ)

32



3.1. ADDITION CHAPTER 3. SIGNAL RECONSTRUCTION

Figure 3.2: Proof of the dependency in equations

We observe that the new quad can never contain (u1, v1). Or indeed, no quad will
contain (ui, vi) and (uj, vj), i 6= j. Thus, all the quads we form will be linearly
independent as they all contain one term that is not present in the equations from
other quads.
Hence, there are (P1 − 1.P2 − 1) dependent equations, amongst the total of P1.P1.
Hence the total number of linearly independent equations can be at most P1.P2 −
(P1−1).(P2−1) = P1+P1−1, which is 1 less than the number of unknowns. Hence,
the equations cannot be solved.

Case 3: P1 and P2 are not co-prime, nor is one the multiple of the other.
Let d = gcd(P1, P2), 1 < d < min(P1, P2). We know that in this case, the period of
z(n) is P1.P2

d
. There are P1 + P2 unknowns, as in the above two cases.

We downsample the signal z(n) by a factor of d, in such a way as follows. If
z(n) = z(1), z(2), z(3), z(4), z(5), z(6), z(z), z(8), z(9), z(10), z(11), z(12) with d = 2,
we get two signals, z1(n) = z(1), z(3), z(5), z(7), z(9), z(11) and
z2(n) = z(2), z(4), z(6), z(8), z(10), z(12).
In general, we will get d versions of downsampled z(n). Now, for each downsampled
zi(n), we will find xi(n) and yi(n), each having period P ′1 = P1

d
and P ′2 = P2

d
respec-

tively. Here, P ′1 and P ′2 are obviously co-prime to each other. Now, by Case 2, the
set of equations given by xi(n), yi(n) and zi(n) are not solvable. Also, we claim that
any two xi(n) and xj(n), i 6= j, will not contain common terms. This proof is by
contradiction.
Proof: Let us assume that xi(n) was generated by starting from the i-th sam-
ple and xj(n) was generated by starting from the j-th sample of x(n). That is,
xi(n) = x(i + k.d) and xj(n) = x(j + k.d). Without loss of generality, we assume
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1 ≤ i < j < d. Now suppose
xi(h) = xj(g)

That is, xi(n) and xj(n) have a common term. Then,

i+ k.d = j + l.d

j − i = (k − l).d

But (j − i) is a positive number less than d. That is 1 ≤ (j − i) < d. But the right
hand side is a multiple of d. Hence, our assumptions was wrong and by contradiction,
no xi(n) and xj(n) have common terms. Hence, each system Xi(n) + yi(n) = zi(n),
1 ≤ i < d, is unsolvable. Thus the system of case 3 is also unsolvable.

3.1.4 The “Almost” Solution

As evident from the discussion above, we cannot decompose the two signals com-
pletely. However, if we are prepared to accept slightly modified versions of the
signals x(n) and y(n), we can do so, provided some conditions are met. A mention
is made of a possible solution in [10], however no formal algorithm or its analysis
was done.

We propose a very simple algorithm by which we can “almost” decompose the
input signal into its additive components, under some restrictions.

Armed with the results, we are now ready to state the following theorem:

Theorem 2: If the periods are known to be co-prime to each other, we can always
find the P1 points of x(n) added with the same y(i), where 1 6 i 6 P2.
In other words, P2 exactly offset versions of signal x(n) is distributed across z(n).
Similarly, there are P1 exactly offset versions of y(n) spread out in z(n).
The trick is now to find them.
While proving lemma 1, we found an equation that sort of mapped each x(i) with
exactly one value of y(n). So, we already have a mapping of the various values of
x(n) spread across z(n).
Let us take an example. Let P1 = 2 and P2 = 5. Also, let x(n)={x1, x2} and
y(n) = {y1, y2, y3, y4, y5}. In this case, the period of z(n) is 10. So let us have a look
at z(n).

z(n) = ..., (x1 + y1), (x2 + y2), (x1 + y3), (x2 + y4), (x1 + y5),

(x2 + y1), (x1 + y2), (x2 + y3), (x1 + y4), (x2 + y5), ...

We observe that all the samples of y(n) appear to be summed up with each
sample of x(n). Again, we see that equation (1) gives us a way of getting the sample
of x(n) to which values of y(n) are mapped. In this case, z(1), z(3), z(5), z(7), z(9)
maps y(1), y(3), y(5), y(2) and y(4) respectively, but offset by x(1). Knowing this
ordering, we can of course sort these values by a standard algorithm and solve the
problem in additional O(P2logP2) time. However, we can do better.
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3.1.5 Algorithm

We will reconstruct y(n), knowing z(n), P1 and P2. The first algorithm assumes
that there is hardware support for integer division. We will reconstruct just P2 here.

Result: Reconstructed signal with an offset
input z(n),P1,P2;
Create an array R of size P2;
Set i= 1,l=0;
while l < P2 do

Calculate k=floor( l.P1+i
P2

);

Calculate r=l.P1 + i− k.P2;
Set R(r)=z(k.P2 + r);
i=i+1;

end

Algorithm 1: Signal Reconstruction with Division

The reconstructed signal has an offset of k, where k is a sample of x(n). If the
hardware does not support fast division, we do the following.

Result: Reconstructed signal with an offset
input z(n),P1,P2;
i=1,p1=1,p2=1;
initialize R of size P2

while i≤ P1.P2 do
if p1=1 then

R(p2)=z(i);
end
if p1 > P1 then

p1=0;
end
if p2 > P2 then

p2=0;
end
i=i+1;
p1=p1+1;
p2=p2+1;

end

Algorithm 2: Signal Reconstruction

3.1.6 Complexity

We will assume that P1 and P2 are of the same order. The complexity of the first
algorithm depends on the hardware support available. However, it is not less than
of O(P 3). The second algorithm is of complexity O(P 2).
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3.1.7 Constraints

However, there are a few conditions that have to be met for this algorithm to work.
(1) The periods must be relatively co-prime to each other.
(2) The total length of the input signal z(n) must be at least the LCM of the indi-
vidual period lengths. In view of (1), this is equal to the length of the individual
periods.

3.1.8 More than two signals?

Another point that can be mentioned is that this method can be used to separate
any number of additive signals, provided the two conditions above are met. If there
are a signals, having periods P1, P2, ..., Pa, we can use the same algorithm as above,
with a slight modification. Suppose we want to extract the signal corresponding to
period Pi. We treat Pi as P2 in the procedure and the sum of all other signals as

P ′1. This is because here, P ′1 =
∑a

b=1
b6=i

Pb, a signal of period
∏a
b=1 Pb
Pi

. Thus, Pi can

be easily separated, but the offset will be different, or more precisely the sum of a
single sample of the other (a− 1) signals.

3.1.9 Noise Analysis

In terms of noise analysis, the algorithm is bound to give poor results, as the recon-
structed signals are directly mapped from the output, without any other processing.
However, if we assume that the noise corrupting the initial signal period is zero
mean noise, we can improve the output in case of noisy signals as well.

In our reconstruct procedure, we were taking only a single value of i. However, if
we were to take all possible values of i and carry out the procedure, we would have
got P1 signals. The average of these will give the reconstructed signal y(n) without
any effect of the initial noise in x().
Proof: Let each x(i) = x′(i) + b(i), where x′(n) is the uncorrupted signal and b(n)
is a zero mean noise. By the modified procedure reconstruct, we will get P1 copies
of y(n), each added with a single x(i). Now, adding these P1 signals and taking the
average, we get

Y (n) =

∑P1

i=1 y(n) + x(i)

P1

+

∑P1

i=1 b(i)

P1

Since b(n) is a zero mean noise, Y (n) is independent of the noise component of
x(n). The noise component of y(n) cannot be removed by this process.

In summary, we propose a simple, fast algorithm to decompose z(n) into its
components, albeit they are reconstructed with some non-zero offset. The algo-
rithm provides conditional noise removal for zero mean noise, but at the cost of
higher complexity. If the periods extracted by the Nested Periodic Matrices
happen to be relatively prime and we have sufficient length of signal available, we
can reconstruct the signals very fast, with an offset.
This method overcomes the major hurdle of the Singular Value Decomposition
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Figure 3.3: The noise model assumed. N1 and N2 are white noises.

based method[4], which requires that one of the signals be dominant over the other.
In our method, there is no such condition.

3.2 Multiplication

3.2.1 Preliminaries

Similar to addition, we may encounter signals which have undergone point by point
multiplication. The analysis of this section is very similar to the previous section,
barring a few subtle instances. So we omit the parts that are common to both the
analyses.
Let us take 2 non-periodic signals, x(n) and y(n), each of length N and define z(n)
to be

z(i) = x(i).y(i)

for 1 ≤ i ≤ N . Now, we have as before 2N unknowns in x(n) and y(n) and only N
values of z(n), giving us N equations, which are all linearly independent. However,
the number of unknowns exceed the number of solutions and ”exact” separation of
the signals cannot be achieved.

3.2.2 The Periodic Case

We assume x(n), y(n), P1 and P2 are as defined in the previous section. We can
show as before that an ”exact” solution can never be attained.
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3.2.3 A Possible Solution?

The usual approach will not work. That is, even in the case of multiplication, it can
be shown that whatever be the relation (eg. multiple, co-primality, or otherwise)
between P1 and P2, we can never exactly solve the equations and separate the
unknowns. The proof can be done in a way similar to the previous section. However,
intuitively, the proof can be shown by the following way.
Given a set of equations of the form

x(i).y(j) = z(k)

we can (assuming that none of them are zero, or negative) take the logarithm of
both the sides of each equation and reduce the proof to the proof of the addition
case. That is, we instead have,

log(x(i)) + log(y(j)) = log(z(k))

Hence, the proof reduces to the previous case, assuming none of the terms is zero,
or negative. The formal proof can of course be done as in the additive case.

3.2.4 The “Almost” Solution

This algorithm is almost the same as above. The variation is due to the fact is that
whereas in the addition case, we were getting the reconstructed signal xr(n) as

xr(n) = k + x(n)

where k was a sample of y(n), in the multiplication case, we will get

xr(n) = k.x(n)

where k is some sample of y(n). Here, there will be 2 things possible.
1. k = 0. Here, the reconstructed signal will be all zeros. To bypass this problem,
we will simply scan through all samples of y(n) till we get a k 6= 0. The complexity
increases in this case. One thing to note is that ∃q, for which y(q) 6= 0, as otherwise,
y(n) would not be periodic
2. Samples of y(n) are very large as compared to samples of x(n), i.e., x(i) �
y(j)∀i, j. In this case, the reconstructed signal will be a scaled by a large factor.
If such is not acceptable, we can offer a ”weaker” alternative. We call it weaker
because it introduces two more conditions for it to work. However, in this case, we
will have exact reconstruction.

3.2.5 Algorithm

The algorithm is the same as the addition, except for the ”zero-checking” case. So
we will not repeat that here, However, for the second case in the previous subsection,
we will write the conditions.
Condition 1: All the samples must be integers.
Condition 2: The greatest common divisors of the signals x(n) and y(n) individ-
ually, must be 1.
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The reasons for imposing these two conditions are as follows. We intend to
divide the samples of the reconstructed signal xr(n) by the greatest common divisor
is itself. So, if the maximum factor common to each of the samples of xr(n) is k,
where k 6= 0 is a sample of y(n), we divide xr(n) by k, so that the final reconstructed
signal xf (n) is

xf (n) =
xr(n)

k

=
k.x(n)

k
= x(n)

Thus, we get exact reconstruction. The samples must be integers because the
concept of greatest common divisors does not exist for fractions.

3.2.6 Complexity

The complexity of this algorithm is higher than its additive counterpart. This is
because, we need an additional O(P ) time to find a non-zero k, as defined above.
So, the complexity of the non-exact case is O(P 3). For the exact case, we will need
an additional O(log(P )) time for the Euclidean algorithm. However, we will have
no effect on the final complexity as the initial complexity is itself greater.
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Chapter 4

Experiments and Results

We will be dealing with pseudorandom signals, generated by software. However,
for the rest of the chapter, we will only be referring to them as random signals,
interchangeably.

4.1 Addition

4.1.1 Two signals

In the Fig. 4.1, we have taken two pseudorandomly generated signals x and y of
period 7 and 17 and repeated each one so that the length of each becomes 119.
The signals are then added to form the signal in the 3rd graph. We carry out the
reconstruct algorithm and the 4th plot shows the reconstructed x′ and the 5th shows
the reconstructed y′.

4.1.2 Three signals

We have taken 3 randomly generated signals of period 7,9 and 11 respectively, and
extended each upto 693 samples by repetition. Then we have created the added
signal adding the 3 signals thus got. We then run the “modified” algorithm to
reconstruct the signals. The simulation is shown in Fig. 4.2.
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Figure 4.1: Reconstructing 2 signals in additive case
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Figure 4.2: Reconstructing 3 signals

4.1.3 Noise Performance

In Fig. 4.3, we show the results of testing our algorithm by taking two random
signals, of period lengths 12 and 65 respectively. We have added 20 dB white
Gaussian noise to each, separately. Then we have extended each signal to 780
samples each and added them. Then we have run our reconstruction algorithm as
before. We show the errors in the two reconstructions.
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Figure 4.3: Noise analysis in the additive case

4.1.4 Comparison with SVD based method

We pit our method against the SVD based method on the 2 signal case, generating
the signals as before. The results are visually similar, but the SVD method of course
gives better results. However, as pointed out in [3], the SVD algorithm takes at least
O(mn+n3) time, where m and n are he dimensions of the matrix involved. Assuming
that our signals have periods in O(P ), the time taken will be O(P 3). However, our
method takes only O(P 2) time. The simulation is shown in Fig. 4.4.
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Figure 4.4: Comparison between our method and SVD for the additive 2 signal case.
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4.2 Multiplication

4.2.1 Two signals

We take two randomly generated signals of period lengths 11 and 15, and as in the
additive case, we have multiplied them together. In Fig. 4.5, we have the initial
signals, the multiplied signal which acts as our input, and the two separated signals.

Figure 4.5: Separation of 2 point by point multiplied signals.

4.2.2 Three signals

We create 3 signals of periods 5,8 and 11 respectively and as before, extend each
upto 440 samples by repetition. We then multiply them point by point and run our
algorithm on it. The results are shown in Fig. 4.6.
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Figure 4.6: Separation of 3 point by point multiplied signals.

4.2.3 Exact reconstruction

As pointed out previously, we will have two strict conditions for the algorithm to
give exact reconstruction. In Fig. 4.7, we take two signals of periods 9 and 10
respectively, such that all the samples are integers between 1 and 100, and the GCD
of samples in the individual signals is 1. Then we run the modified reconstruction
algorithm.
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Figure 4.7: Exact reconstruction in the point by point multiplicative case.

Comparison

To the best of our knowledge, no algorithm has been published to separate periodic
signals which have undergone point by point multiplication. Thus we have been
unable to compare the proposed algorithm with any other.

Table 4.1: Comparison between our algorithm and the SVD based approach

Property SVD based method (1997) Our Method (2017)

Possible periodicities All, except when P2 = kP1 Only co-prime periodicities
Noise Performance Good Conditional

Complexity O(P 3) O(P 2)
Multiplicative reconstruction No Yes

47



Chapter 5

Conclusion and
Scope for Future Work

We examine and compare two period estimation algorithms against the Ramanijan
sums based method. We find that the Ramanujan sums overcome some of the main
barriers of the older methods. However, there happens to be instances where this
method is also weak.

Our main contribution in this thesis is the reconstruction of signals with known
periods which have undergone any of two “mixing” operations, namely addition
and multiplication. We show that we can never fully reconstruct the said signals
even after knowing the periods. However, (i) if the periods are mutually co-prime
and (ii) the “mixed” signal is at least of the length of the individual periods (in
this case, the number being the product of the period lengths, given the previous
condition), we can get back the original signals with nominal changes. For the ad-
ditive case, the original signal is determined but with an offset and in the case of
multiplication, the input signal is found to be scaled. This method can be applied to
as many signals as we like (limited only by hardware constraints) provided the two
conditions are met. The process provides some noise performance if the signals are
corrupted with zero mean noise before being repeated and “mixed”. This algorithm
with some modification and two more strict conditions is able to recover the signals
which have undergone point by point multiplication. Finally, if the periods are not
mutually co-prime, we can get back the original signal, but a downsampled version,
with loss in information.

Further studies are required to pit this algorithm against other algorithms when
it comes to real world data. Possible relaxation of the strict conditions of the
algorithm will have to be studied. Also, reasons why Ramanujan sum based method
fails for some real world data need to be analysed.
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