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Chapter 1

Introduction

1.1 Abstract

Present day we are looking for alternative energy source instead of fossil fuel.

Renewable energies which are available in our reach now days are solar, hydro

and wind. We are considering wind power generation scenario in this paper.

Wind energy is converted to electrical energy with help of windmill at high

wind blowing regions. But we need to differentiate between the wind speed

which is normal flow and which is storm like violent.

Whole process can be divided in two parts. First, collecting labelled

training set from huge collection of unlabelled dataset. Second, training

with those data.

Problem we face is that whole year we receive most usual and normal

wind speed reading but storm like wind speed reading is very rare in kind.

So it is imbalanced data problem. We know using imbalanced dataset we can

get high accuracy but very poor precision and recall of minority class. Our

problem is that we should shut our windmill power production when certain

wind speed is crossed to save from over power generation and protecting
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windmill from high speed rotation. Sudden or abrupt power generation cut

off can create problem in power distribution grid. Using weather forecast like

NWP(Numerical Weather Prediction) [16] we can predict the probable storm

or typhoon like high speed wind flow over larger area but we can not say exact

hour of impact. If we get the prediction for individual windmill farm using

some reading and shut down the windmill production before some time like

1 hour, 6 hours or 12 hours then we can take decision how to redistribute

the power requirement[21].

Different statistical approaches[16], [18], like time series analysis and ANN

implementation[17],[19],[20] of wind speed prediction for usual operational

speed limit are done previously with historical data. But new problem arises

when we are doing rare high wind speed prediction.

1.2 Motivation

If we are equipped to receive data in batch and data are unlabelled and im-

balanced in nature we can use Support Vector like classifier. But using all

data points or instances are not necessary all the time. We can reduce the

dataset size using active learning like approach. On the other hand, if it

is imbalanced data and data are not coming in bulk or batch, we look for

predicting event with online learning option. We know Multilayer percep-

tron, RBF neural net for online leaning. Those have some inherent problems

of training and not good performer of imbalanced dataset. In this report,

SVM using LIBSVM, Random Vector Functional Link, NORMA, Stochastic

Gradient Descent Primal L1-SVM are explored for this issue.
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1.3 Thesis Outline

The remaining chapters are organized in following sequence,

In Chapter 2, we consider different approaches to deal with imbalanced

dataset. How different sampling methods are used and their drawbacks.

In Chapter 3, we discussed batch training of SVM and RVFL for labelling

problem using active learning. Online prediction methods of Stochastic Gra-

dient Descent of Primal L1-SVM(SGD-SVM) and NORMA are illustrated.

Generic K-NN classifier is also discussed.

In Chapter 4, we proposed a way of using SVM (LIBSVM tool) and

RVFL with active learning when batch dataset is present with us. Then we

explained the use of SGD-SVM concept for online learning. Well known algo-

rithm for online SVM ,Naive Online Risk minimization Algorithm (NORMA)[5],

is also explained.

In Chapter 5, we mentioned the dataset description and how those at-

tributes are selected. All experimental results and their causes are dis-

cussed. The comparison between SVM(LIBSVM) with quadratic program-

ming,Online SVM(NORMA) and Primal L1-SVM (SGD-SVM) are there.

In Chapter 6, we mention the summary of observed results and difficul-

ties found in applied algorithms. Future research direction to reduce the

misclassification is discussed.
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Chapter 2

Imbalanced Data

2.1 Problem with Imbalanced Dataset

In everyday life we encounter with different instances of observations. But

some observations are prevalent in collection than others. Most of the time

prevalent and more frequent data instances are not so important and do not

bear any significant information. On contrary, most useful and relevant ob-

servation for classification are rare. For example, detection of cancerous cell

among normal healthy cell is an imbalanced problem. Similarly, detection of

fraudulent transaction using credit card, identifying faulty item in production

or object detection in digital images.

Equivalently, wind speed for storm and typhoon are very rare in observa-

tion than normal wind speed. We usually divide the dataset into two parts

when we find imbalanced data problem. The instances, which we like to iden-

tify is called positive instances, are very rare in dataset. Other instances are

named as negative instances. It is called Class Imbalance Problem. This im-

balanced instances actually represents very low prior probability in dataset.

Using this prior probability, we may get higher accuracy after classification
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but we miss minority class to identify, which eventually leads to failure of

whole class labelling and classification process.

2.2 Under Sampling

To reduce the imbalance ratio between positive class and negative class, we

can device different methods of under sampling which remove the major-

ity class instances[24]. But it has severe problem too, as we are removing

the instances from dataset, we may eliminate most important and relevant

observations from dataset for majority class.

2.3 Over Sampling

In the case of minority class, we can oversample instances. But those in-

stances are mostly replica of existing instances so it may increase number of

observations but it is not helpful to provide new relevant instances which can

help the classification process. When oversampling with replacement is used

this kind of situation arises.

2.4 Higher Penalty for Minority Class Mis-

classification

Many classifiers facilitate the option to fix regularization parameter to trade

off between optimal classifier and classification error[23]. When we are deal-

ing with imbalance dataset, we can assign different weight to penalty for

different classes. If we assign high cost for minority class then classifier may

shift to minority class region to predict more accurately.
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2.5 SMOTE

SMOTE(Synthetic Minority Oversampling TEchique) [3] is one of the many

over sampling methods for minority class. Instead of replicating instances

from existing data distribution this method generates ”synthetic” minority

instances. It generates new instances in feature space rather than data space.

It uses the k -Nearest Neighbour concept for creating new observations. It

uses points in the line joining k -nearest neighbours of same class. If we need

many instances in vicinity then randomly many instances are chosen and use

points on line segment.

2.6 Active Learning

We know that collecting useful data for classification is very crucial task[12],

but labelling each observed data to proper class is also very cumbersome[28].

When we are dealing with billions of observations or instances, providing

labels is not possible. In the case of supervised learning process we definitely

provide labels to all training instances. And in the case of semi-supervised

learning all data points are not labelled. Small set of whole data points is

labelled by experts or user before training. After training with those data

points, new unlabelled data points are introduced to already labelled dataset.

Using k nearest neighbour approach we can labelled those unlabelled data

and retrain the classifier. In this method we may label those points too which

do not bear significant information for better classifier.

To overcome this drawback, we use active learning. Active learning is

not actually any learning of classifier. It learns about labels of unlabelled

data points[33, 34],without creating new artificial instance. The process of

labelling data point or instance for active learning is called Query which is
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answered by user or expert or oracle.

2.6.1 Query strategies

2.6.1.1 Uncertainty Sampling

With a classifier, a instance ,which is selected randomly without replacement,

can not be classified with very high probability or confidence, is candidate

for active learning instance[32]. The search for randomly selected instance

which is not certainly classified is time consuming. We need to look for active

learning sample with this strategy in whole dataset.

2.6.1.2 Query by Committee

In this strategy [11, 31] we have multiple classifiers, like multilayer percep-

tron, k -NN, RBF neural network. A selected instance is classified by these

classifiers. We need to label only those instances which create maximum dis-

parity in classification. Suppose we have six(6) such classifiers, if 3 out of 6

classification agree to a particular class but rest 3 of 6 are not then we have

maximum conflict. If 5 out of 6 or 6 out of 6 are labelled to same class then

we do not need to do labelling. The instance which has maximum entropy,

we need to classify that instance.

2.6.1.3 Random Pool

Instead of looking for whole dataset for next active learning instance[13, 14,

30], we can select pool size of L instances, then we find the instance which

is nearest to classifier or can not be classify with high confidence. Let M is

the dataset size. let 1− η be 95% of confidence such that selected element is

nearest to classifier. Let p is the probability that top 5% of instances nearest
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to classifier. So we can say,

1− (1− p)L = 1− η

=⇒ (1− p)L = η

taking log to both sides

=⇒ L =
log η

log (1− p)
if η = 0.05 and p = 0.05 we can have

L ≈ 59

It shows that if we select 59 or more instances randomly then we have

high probability of getting an active learning instance. It does not depend

on M, size of dataset, too. So instead of searching whole dataset we can look

for small pool of unlabelled data points. It is called 59 trick[22].

2.6.1.4 Exploiting Active Learning with SVM

In subsequent chapter we will discuss the use of available SVM tools(like

LIBSVM),[26, 25] which provide details of support vectors and indices of

those vectors in whole dataset. While testing or predicting the class of a

instance we can get the distance of the instance from classifier hyperplane.

Data points or instances which are within the margin of +1 to -1 distance

or any predefined range, those are most likely to be active learning instances

[29] and can be used in retraining the classifier for betterment[28]. So instead

of all dataset, we can retrain with support vectors in previous iteration and

newly added active learning instances. So the number of training data points

will be manageable.
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Chapter 3

Learning Methods

3.1 Online Classifier

In the domain of online classifier, all data are not present before the training

process starts. It gradually learns from instances appearing one after another

and observes the error and uses the penalty to minimise future classification

error. Although we have multiple batch classifiers with very good perfor-

mance but those classifiers take lot of computational resources like memory

and CPU time and another thing, it may produce classifier which is over-

fitted to given dataset. Online learning process has many advantages over

batch process. It requires less powerful computational unit and lesser mem-

ory. Only issue with this process is that it uses multiple epochs to reduce the

overall error of classification. That means same instance is to be presented to

online classifier for training. In some online classifier like multilayer percep-

tron we use the concept of back propagation to update synaptic weights or

in other words, learning from instance representation and error observation.
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3.2 Random Vector Functional Link Network

(RVFL)

Random Vector Functional Link Network[6] is one of the variants of ANN. It

is single hidden layer neural network but little modification from conventional

multilayer perceptron architecture. As we know initial machine learning

architecture for conventional ANN[6] is shown in this figure 3.1.

Figure 3.1: Artificial Neural Network with multiple hidden layers

We initially conceptualize the idea of Feed forward Neural Network(FNN).

But present time we need to consider the previous output or result for succes-

sive prediction. This kind of neural networks are very useful for time series

kind data. When a neural network architecture contains link from hidden

layer to input layer or output layer to hidden layer, this kind of neural net-

work variant is called Recurrent Neural Network(RNN). RVFL is a single
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hidden layer feedforward neural network. The links of RVFL is shown [6] in

the figure 3.2.

Figure 3.2: Random Vector Functional Link Neural Network Architecture

3.2.1 Quick Review of Neural Network

3.2.1.1 Activation Function

For neural network[27], we need an activation function which is differential

with respect to weight of link between previous layer to present layer or
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two successive layers. Usually we use sigmoid function and hyperbolic

tangent, tanh function

logsig(x) =
1

1 + exp(−x)

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

logsig(x) ∈ (0, 1) and tanh(x) ∈ (−1,+1)

Let f(·) be either logsig(x) or tanh(x) function and induced local field

function be u.

For value of first hidden layer kth neuron h1,k be

h1,k = f (u)

where

u =

 M∑
i=0

Wi,kxi

 , i = 0, . . . ,M

M is number of input node and Wi,k is weight value between ith neuron node

of input layer to kth neuron of consequent hidden layer . W0,k = bk is bias if

present.

Similarly, for output layer neurons

ol = f (u)

where

u =

 K∑
i=0

Wi,lhk,i


3.2.1.2 Weight of Links

For training purpose, initially we do not know the weight of each link. When

we start training of neural network, weight of each link is assigned with
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random values. Usually it is assigned with small values. If we assign initially

huge value to weight to links then it may not train as expected.

3.2.1.3 Training by Back Propagation

For Batch mode training, each instance of whole batch is presented to the

neural network. The error or cost function is calculated as

J(W ) =
1

2

1

m

m∑
i=1

L∑
j=1

(
oi,j − desired valuei,j

)2
Where m is number training instances, L is number of output neurons.

For online leaning process

J(W ) =
1

2

L∑
j=1

(
oi,j − desired valuei,j

)2
for a particular instance.

We need to minimize J(W ) with respect to W taking partial derivative

for individual Wk,j.

∆Wk,j = −η∂J(W )

∂Wk,j

New weight after update after t iterations

W
(t+1)
k,j = W

(t)
k,j + ∆Wk,j

In this way, Back Propagation (BP) is utilized to update weight of links

but this method requires an iterative training process which is computation-

ally demanding. Further, BP is also highly likely to be trapped in a local

minimum.
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3.2.1.4 Random Vector and Functional Link

We know Multi Layer Perceptron(MLP) consists of hidden layers and it adds

complexity to calculate optimal weights for classification. Along with that,

hidden layer configuration is also heuristic process. Lesser number of hidden

layer neurons may under fit the training dataset and excessive number of

neurons of hidden layer may overfit. Although we can estimate the number

of hidden layers and number of nodes on those hidden layers, initial weight

value assignment and update are challenging task.

Random Vector concept suggests that instead of updating the weights

between input layer to hidden layer and within hidden layers, we can assign

weights of those hidden layer randomly with in uniform distribution [-1, +1].

It is very helpful while we are only considering BP between last hidden layer

and output layer. But it has possibility of overfitting of weights between

hidden layers. Although this method gives significant performance gain over

MLP.

Functional Link utilizes higher combination of its inputs. It reduces

number the hidden layers or removes them to make neural network training

process faster although keeping non-linear separability feature. The Func-

tional Link neural network architecture is basically a flat network without

any hidden layer which has made the learning algorithm used in the network

less complicated. The input vector is extended with a suitably enhanced rep-

resentation of the input nodes, thereby artificially increasing the dimension

of the input space. Those added enhanced nodes to input layer are called

enhancement nodes.

As shown in the figure 3.2 links between input layer to output layer rep-

resent functional links which are trained with Back Propagation(BP).
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3.3 Support Vector Machine

Support Vector Machine [1, 2] emphases the concept of classifier providing

maximum margins between two classes. It is usually very useful with linearly

separable data and it can be extended to non-separable data too. In the case

of non-separable dataset it utilized higher dimensional mapping and Kernel

Trick for classification with same mathematical foundation. Also, It requires

regularization parameter as input.

3.3.1 Margin in SVM

Main aim of maximum margin is that it can provide classification with high-

est confidence. Many classifiers like single layer perceptron provide one of

the many hyperplanes but that does not guarantee the best classifier with

maximum margin between two classes on both side of hyperplane.

Let define w be weight vector and b is bias for classifier. we have a new

instance to classify, say x, then wTx + b � 0 or wTx + b � 0 gives us the

very high confidence while classification, where wTx + b = 0 is equation of

classifier. It is also known as separating hyperplane.

If we consider the points A, B and C in figure 3.3, using the above men-

tioned equation we can say with high confidence or probability, A is most

certain to classify. About B, classification is moderately certain. But for C,

it is very low probable that classification is sure or not.

3.3.2 Binary Classification with SVM

Let D is our feature space and x ∈ Dn where m is number of instances and

n is number of features. For an instance, x = (x1, x2, . . . , xn)T if we try to

classify we need weight vector w ∈ Rn and bias b ∈ R. Class label for each
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Figure 3.3: Linearly separable dataset by hyperplane

instance is identified by y ∈ {−1,+1}

Let define

g(z) = +1,when,z ≥ 0

else

g(z) = −1,when,z < 0

Then hypothesis,

hw,b(x) = g(wTx+ b)

3.3.3 Functional and Geometric Margin

Using previously mentioned equation,

hw,b(x) = g(wTx+ b)
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, where hw,b yields value ∈ {−1,+1}. But it is also true for

hw,b(x) = g(2wTx+ 2b)

.

So it is not taking the actual distance from hyperplane for confidence

level. We can not differentiate between two cases with functional margin.

Let define functional margin for w and b,

γ̂(i) = y(i)(wTx+ b)

Let define

γ̂ = min
i=1,...,m

γ̂(i)

We know that if we have an equation

wTx+ b = 0

of a straight line, then perpendicular distance from a given point x̂ be∣∣wT x̂+ b
∣∣

‖w‖2

Using functional margin concept we can reduce that to

γ̂(i)

‖w‖2
=
y(i)(wTx(i) + b)

‖w‖2
=

∣∣∣wTx(i) + b
∣∣∣

‖w‖2

γ(i) =
γ̂(i)

‖w‖2
= y(i)

( w

‖w‖2

)T

x(i) +
b

‖w‖2


and

γ = min
1...m

γ(i)

Where γ is called geometric margin .
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Our objective is to maximize the geometric margin, so we can take func-

tional margin −1 or +1.

We can write that

max
γ̂,w,b

γ̂

‖w‖
such that,

y(i)
(
wTx+ b

)
≥ γ̂, i = 1, 2, . . . ,m

when γ̂ = 1, equation reduced to

max
γ̂,w,b

1

‖w‖

such that,

y(i)
(
wTx(i) + b

)
≥ 1, i = 1, 2, . . . ,m

It can be converted to minimization problem as

min
γ̂,w,b

1

2
‖w‖2

such that,

y(i)
(
wTx(i) + b

)
≥ 1, i = 1, 2, . . . ,m

above optimization problem is convex, using quadratic optimizer we can

solve this to use as optimal margin classifier.

3.3.4 Lagrangian Duality

Suppose we have following objective function and constraints,

min
w
f(w)

such that,

hi(w) ≤ 0
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for i = 1, . . . , l and

gi (w) = 0

for i = 1, . . . , k

So we can define general Lagrangian Construct

L(w, α, β) = f(w) +
l∑

i=1

αihi(w) +
k∑
i=1

βigi(w)

where αi and βi are Lagrangian Multipliers.

Then we can define

ΓP(w) = max
α,β:α,β≥0

L(w, α, β)

, where P stands for primal.

If all constraints are satisfied then

ΓP(w) = max
α,β:α,β≥0

f(w) +
l∑

i=1

αihi(w) +
k∑
i=1

βigi(w)

otherwise

ΓP(w) =∞

Optimization problem yields

ΓP(w) =


f(w) if w satisfies all constraints

∞ Otherwise

If we define dual of this above mentioned problem,

ΓD(α, β) = min
w
L(w, α, β)

taking max of both sides,

=⇒ max
α,β:α≥0

ΓD(α, β) = max
α,β:α≥0

min
w
L(w, α, β)
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It can be shown that d∗ = max
α,β:α≥0

ΓD(α, β) and p∗ = min
w

ΓP(α, β)

d∗ = p∗

If we assume that w∗ is solution of primal optimization problem and α∗

and β∗ are solutions of dual optimization problem and d∗ = p∗ = L(w∗, α∗, β∗),

where KKT condition (Karush-Kuhn-Tucker condition) can be applied, then

we have

∂

∂wi
L(w∗, α∗, β∗) = 0, i = 1, . . . , n

∂

∂βi
L(w∗, α∗, β∗) = 0, i = 1, . . . , k

α∗ihi(w
∗) = 0, i = 1, . . . , l

hi(w
∗) ≤ 0

α∗i ≥ 0

3.3.5 Optimal Margin Classifier

As discussed in previous subsection 3.3.3,

min
γ̂,w,b

1

2
‖w‖2

such that,

y(i)
(
wTx(i) + b

)
≥ 1, i = 1, 2, . . . ,m

It can be converted to

gi(w) = −y(i)
(
wTx(i) + b

)
+ 1 ≤ 0
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From above equations we can make Lagrangian construction as

L (w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi

(
y(i)
(
wTx(i) + b

)
− 1

)
where αi is Lagrangian Multiplier. We discussed in section 3.3.4 the La-

grangian Multiplier.

If we define

ΓP(w) = max
α,β:α,β≥0

L(w, b, α, )

and dual of this problem,

ΓD (α) = min
w
L (w, b, α)
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Using the KKT condition,

∇wL (w, b, α) = w −
m∑
i=1

αiy
(i)x(i) = 0

=⇒ w =
m∑
i=1

αiy
(i)x(i)

∇bL (w, b, α) =
m∑
i=1

αiy
(i) = 0

Putting these above equations in

L (w, b, α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

So we get dual optimization problem

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

such that

αi ≥ 0, i = 1, . . . ,m

m∑
i

αiy
(i) = 0

So we can solve the dual optimization problem instead of primal opti-

mization problem as we know d∗ = p∗.
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3.3.6 Kernel Trick

Suppose we have inputs with an attribute, x, this is called information in

input or data space. Now we define new function as vector

φ(x) =


x

x2

x3


Function φ(x) maps the input to higher dimension, it is called higher

dimensional mapping from input space to feature space.

So if we have any dot product 〈x, z〉 which can be translated to
〈
φ(x), φ(z)

〉
in feature space.

So we define Kernel as

K(x, z) =
(
φ (x)

)T
φ (z)

For our discussion, we are considering, Kernel function

K(x, z) = exp

(
−‖x− z‖

2

2σ2

)
above equation is called Gaussian Kernel,

where σ is variance, a predefined constant.

Equations of kernel functions suggest us that if both x and z are very

near in value of features then kernel function will yield big magnitude, but x

and z are nearly orthogonal to each other then kernel value will tend to zero.

3.3.7 Mercer Kernel

Suppose, K(x, z), is a valid kernel function as mentioned in section 3.3.6

using mapping function φ.
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If we have m points then we can define a matrix using m×m operations

of K(x, z)

K =
((
Kij

)
m×m

)
where (i, j) entry of matrix K,Kij is K(xi, xj)

for i, j = 1, . . . ,m

This kind of matrix is called Kernel Matrix.

Kernel Matrix has some interesting properties,

1. Kij =
(
φ (xi)

)T
φ
(
xj
)

=
(
φ
(
xj
))T

φ (xi) = Kji, So it is symmetric

matrix.

2. Suppose, z is a vector of size m× 1,

zTKz =
m∑
i=1

m∑
j=1

ziKijzj

=
m∑
i=1

m∑
j=1

zi
(
φ (xi)

)T (
φ
(
xj
))
zj

=
m∑
i=1

m∑
j=1

zi

 l∑
k=1

φk (xi)φk
(
xj
) zj

=
l∑

k=1

m∑
i=1

m∑
j=1

ziφk (xi)φk
(
xj
)
zj

=
l∑

k=1

 m∑
i=1

ziφk (xi)

2

≥ 0

When a matrix holds this property it is called positive semi-definite

matrix.
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The matrix which is symmetric and positive semi-definite is called Mercer

matrix.

3.4 Naive Online Risk Minimization Algorithm

(NORMA)

This generalized algorithm [5] suggests a way to use SVM in online setup.

It does learning in reproducing kernel Hilbert space with stochastic gradient

descent method.

3.4.1 Reproducing Kernel Hilbert Space for Stochastic

Gradient Descent

3.4.1.1 Properties of Reproducing Kernel Hilbert Space

If we have a kernel function k : X× X→ R with dot product 〈·, ·〉H

1. Kernel k has reproducing property〈
f, k(x, ·)

〉
H = f(x)

for all x ∈ X

2. f can be expressed as linear combination of kernel function in H. Inner

product 〈·, ·〉H induces norm such that f ∈ H we can get the norm of

f as

‖f‖ = 〈f, f〉
1
2
H

3.4.1.2 Risk Function

When the probability distribution is known to use in batch learning process

such that P : X×Y→ R, where P ∈ [0, 1], we can estimate the risk or error
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in following manner,

R[f,P ] = E(x,y)

[
l
(
f(x), y

)]
where l (·) is called loss function.

In case of our classification problem

l
(
f(x), y

)
) = max

(
0, ρ− yf(x)

)
As we are dealing with unknown P and we get m instances for batch

learning process we can take the empirical risk as

Remp [f,S] =
1

m

m∑
i=1

l
(
f (x) , y

)
where S is the set of observation for training in batch mode.

To avoid overfitting while minimizing the Remp [f,S] we can use regular-

ized risk function as

Rreg [f,S] =
1

m

m∑
i=1

l
(
f (x) , y

)
+
λ

2
‖f‖2H

, where λ > 0 and as given in section 3.4.1.1 , ‖f‖ = 〈f, f〉
1
2
H.

While we are dealing in online training, we are getting single instance at

a time, so that time the Rreg [f,S] will be treated as instantaneous risk for

observation (x, y)

Rinst [f, x, y] = l
(
f (x) , y

)
+
λ

2
‖f‖2H

, where m = 1

3.4.1.3 Stochastic Gradient Update Rule

By definition of simple gradient descent, we can update the f using equation
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ft+1 = ft − η∂ftRinst [ft, xt, yt]

where η is learning rate and as we know

Rinst [ft, xt, yt] = l
(
f(xt), yt

)
+
λ

2
‖ft‖2H

and

∂ft‖ft‖
2
H = 2ft

ft+1 = (1− ηλ) ft − ηl
′ (
ft (xt) , yt

)
k(xt, ·)

from the above equation if we use the concept of kernels multiplied with

Lagrangian multiplier or coefficient α values,

new αt we obtain as

αt = −ηl′
(
ft (xt) , yt

)
and for

αi = (1− ηλ)αi

for i = 1, . . . , (t− 1)

If g (x) is in the form

g (x) = ft (x) + b

where b is bias and b ∈ R

b bias will be updated as

bt+1 = bt − η∂bRinst [gt, xt, yt]

=⇒ bt+1 = bt − ηl
′ (
ft (xt) , yt

)
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3.5 Primal L1-SVM

As discussed in previous section 3.3, we can get dual of primal of

1

2
‖w‖2 + C

m∑
i=1

ξi

subjected to

y(i)
(
wTxi + b

)
≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0

for linearly non-separable data space, or

y(i)
(
wTφ (xi) + b

)
≥ 1− ξi, i = 1, . . . ,m

in higher dimension feature space, where y(i) ∈ {−1,+1}, w is weight vector,

φ is mapping function from lower data space to higher dimension feature

space, b is bias ∈ R and C is margin parameter which determines trade off

between maximization of margin and minimization of error ξi.

As classification error ξi is expressed in linear, for this kind of primal

SVM is called L1-SVM[7].

We already know that main reason of converting primal problem in weight

vector term w to dual problem in term of Lagrangian α coefficients is that

dimension of w may be very large and we need to compute wTx for any given

observations or input points.

To avoid that multiplication for very high dimension input space, we

convert the primal problem to dual.

We use quadratic optimization solver for dual of minimization problem

expressed in Lagrangian multipliers, α coefficients are mostly zero. There are

non-zero α values for support vectors. But before getting α coefficient values,

we need to deal with huge dataset for quadratic or superlinear operations

which are some time very complicated to manipulate.
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But when we know the dimension for particular feature space and which

is reasonable to calculate wTx, primal method with this approach can be

used.

Suppose we have augmented and reflected space as discussed in sec-

tion 4.3.1, I = {(yixi, yiρ)}mi=1 and I ⊂ Rn+1 where n is number of attributes

in input or feature space.

Let x̂i ∈ I and w is the weight vector, w ∈ Rn+1

The equation of regularized empirical risk will be

λ

2
‖w‖2 +

1

m

m∑
i=1

max (0, 1− wT x̂i)

, where λ is regularization parameter.

=⇒ 1

2
‖w‖2 +

1

λm

m∑
i=1

max (0, 1− wT x̂i)

taking C = 1
λm

=⇒ 1

2
‖w‖2 + C

m∑
i=1

max (0, 1− wT x̂i)

, we call C as penalty parameter.

as λ > 0 and m > 0 , which implies C > 0

ifm = 1, that is, we are considering single instance at a time, this equation

can be treated for online learning too.

=⇒ 1

2
‖w‖2 + C max (0, 1− wT x̂i)

, where C = 1/λ

=⇒ 1

2
‖w‖2 +

1

λ
max (0, 1− wT x̂i)

Using gradient descent update rule,
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wt+1 = wt − ηt∇wt

[
1

2
‖wt‖2 +

1

λ
max

(
0, 1− wTt x̂i

)]
When wTt x̂i ≤ 1

wt+1 = wt − ηt
[
wt +

1

λ
(−x̂i)

]
If we take ηt at each step t as ηt = 1

t+1

When wTt x̂i ≤ 1

wt+1 =
t

t+ 1
wt +

x̂i
λ (t+ 1)

otherwise

wt+1 =
t

t+ 1
wt

, that is, t
t+1

is acting as forgetting factor.

If we consider

wt =
αt
λt

above update equations can be reduced to

When αTt x̂i ≤ λt

wt+1 =
t

(t+ 1)

αt
λt

+
x̂i

λ (t+ 1)

=⇒ αt+1

λ (t+ 1)
=

αt
λ (t+ 1)

+
x̂i

λ (t+ 1)

=⇒ αt+1 = αt + x̂i

otherwise

wt+1 =
t

(t+ 1)

αt
λt

=⇒ αt+1

λ (t+ 1)
=

αt
λ (t+ 1)
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=⇒ αt+1 = αt

Which is similar as classical perceptron update rules.

3.6 k-Nearest Neighbour

k -Nearest Neighbour classification algorithm or k -NN in short is easiest to

comprehend and to implement. Initially k -NN starts with small number of

instances which are labelled. After that when new instance with no label is

presented in dataset, using k most nearest neighbours’ class label informa-

tion, we can find the label of that new instance.

As this classifier does not do any weight updating or optimization process

when labelled training dataset is presented, it is called Lazy learner.

Most of the cases the value “ k” is chosen as odd number so it will help

to break the tie. It is non-parametric method of classification as only “ k” is

used and no other parameter is required, such as regularization parameter,

variance or gamma constant for RBF. But it is very resource intensive algo-

rithm and it requires Euclidean distance for each instance present in training

dataset. When number of element in dataset is very huge it will not be very

effective in term of performance and throughput.
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Chapter 4

Utilized Algorithms

4.1 General Idea

We assume that meteorological data are available in bulk in many data repos-

itories and we are taking assumption that weather patterns are not changing

abruptly over span of 6 years. With those data, we tried to predict or test

wind speed prediction prior 1 hour, 6 hours, 12 hours and 24 hours.

Here we did two types of experiments. First, in which we start with small

labelled instances and try to provide correct labelling to other unlabelled

instances using prior knowledge obtained from labelled instances. Second,

predicting next wind speed prior 5 minutes, 10 minutes, 15 minutes, 30 min-

utes , 1 hour, 6 hours, 12 hours and 24 hours in online setup. Observations

are coming one after another, and predicting next wind speed class.

When we are getting data one after another we are using Primal L1-SVM

in online mode. The updating method is very much similar of online single

layer neural network update. Our aim is to predict the wind speed category

with ever changing situation.

Similarly, NORMA[5] is also used for online prediction.
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4.2 SVM using LIBSVM

Support vector machine is very effective in term of binary classification. Al-

though we can implement support vector machine for regression and novelty

detection, we are focusing on classification version of SVM or SVC. We are

interested in LIBSVM [26] as it is freely available and doing the optimization

problem without any user’s involvement to solve quadratic programming.

While discussing Support Vector Machine in detail in section 3.3 we men-

tioned for solving the dual of primal optimization problem we need to use

some sort of commercial quadratic program solver, we are using LIBSVM.

We can integrate LIBSVM in different interfaces like C, C++, JAVA,

python and matlab.

Typical use of LIBSVM is to train the model with labelled data and

predict the labels of unlabelled data. For SVC, we require to mention C

parameter value of regularization parameter for trade off between error and

maximization of margin. Along with regularization parameter, we can men-

tion the kernel type and gamma parameter γ =
(

1
2∗variance

)
.

Also LIBSVM provides some special setting to deal with imbalanced

dataset. For using different cost values for classes, we can provide as ar-

gument to LIBSVM.

Although we are mentioning LIBSVM mainly for binary classification

problem, it can do multi-class classification too.

4.2.1 Batch Mode Learning

4.2.1.1 Predicting Held Out Portion of Training Data

As for huge dataset and higher dimensional feature space, we can train model

of SVM with a portion of training dataset which is in standardised form.
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Using same parameter like C and γ, predict the held out dataset. All training

data are standardised using following equation, Where µ and σ are mean and

standard deviation of training dataset.

Standardised feature vector

x̂i =
xi − µ
σ

4.2.1.2 Algorithm

1. Find the mean µ and standard deviation σ for training dataset.

2. Standardise whole training data using following formula

x̂i =
xi − µ
σ

3. Find the C regularization parameter and other parameters related to

kernel type using cross validation using grid search.

4. Train the SVM model with C and other parameters.

5. Use the model to predict held out dataset.

4.2.1.3 Prediction of Labels of Testing Data

In this case, similar to previous algorithm 4.2.1.2, mean (µ) and variance

(σ) of training dataset are used, and testing dataset should be standardised

using those values .

4.2.2 Active Learning Approach

In case of Active learning with SVM, we start with initial set of 60 points con-

taining atleast one instance from each class for a particular year of dataset.

Train the model with those 60 training instances. Try to predict the labels
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of next randomly selected 60 instances from dataset and compute the de-

cision confidence. We only consider those points which are within decision

confidence -1 to +1 or between -2 and +2 or between +4 to -2 depending

our experiment and those points are active learning instances. Add those

instances to training set for next training. Training set of next iteration

contains active learning instances and only support vectors of model of last

training. This process continues until all training instances are used up obey-

ing without replacement policy.

4.2.2.1 Algorithm

1. Select randomly, initial training set without replacement policy of size

60.

2. Train LIBSVM model.

3. Select next 60 instances for predicting labels without replacement.

4. Measure the decision confidence for each instance for label prediction,

selected in last step(step 3).

5. Mark instances which are between predefined decision confidence val-

ues. These are active learning instances.

6. Create fresh training set with support vectors in last model training.

7. Add those active learning instances with corresponding labels to newly

created training dataset.

8. Retrain the model as going to step 2, until dataset is exhausted.

9. Predict the labels of instances using model trained with active learning

approach in previous steps.
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4.3 Stochastic Gradient Descent Primal L1-

SVM

As earlier mentioned in the section 3.5 for primal optimization problem of

L1-SVM, here the algorithm and required data structure are discussed[7].

4.3.1 Data Structure

If given training set is
{

(xi, yi)
}m
i=1

, where xi ∈ Rn and yi ∈ {−1,+1}, m

is number of instances in training set, n is the number of features. New

augmented training set is created from input data space by appending a new

dimension to it. After adding new dimenstion to existing feature space we

get
{

(xi, ρ)
}m
i=1

in augmented space. We choose ρ as 1.

We multiply the each augmented instance with respective label. So we

get augmented and reflected instances as I =
{

(yixi, yiρ)
}

.

4.3.2 Online Learning Approach

4.3.2.1 Algorithm

1. Set penalty parameter C.

2. Set regularization parameter as λ = 1/C

3. Set α vector to 0 where α ∈ Rn+1.

4. Set t = 0, where t is number of iterations still executed.

5. Calculate label of xt observation where xt in augmented space, when

t > 0

ypredictedt = sign

(
1

λt
αTxt

)
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when t = 0, ypredictedt = 0

6. if αT (ytxt) ≤ λt then

α = α + ytxt

7. Increment t,

t = t+ 1

8. Go to step 5.

4.4 NORMA

It is online learning methodology. It is using kernel and corresponding co-

efficient to control the effect of recently used data points instead of keeping

all previous observations. It considers truncation mechanism to remove very

old kernel too.

4.4.1 Algorithm

1. Set learning rate η and regularization parameter λ such that, λ > 0

and η < 1/λ.

2. Set margin parameter, ρ such that, ρ ≥ 0.

3. Set trunction parameter τ . Whenever algorithm is running we are

handling online last τ number of kernels and respective coefficients.

4. Set coefficient vector, say α, of size τ to 0.

5. Set τ number of kernels of size n to 0, where n is number of feature of

a instance.
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6. Set bias b to zero where b ∈ R .

7. Calculate constant product term γ = (1 − ηλ). It is called forgetting

factor.

8. Find new location for αt, say, alpha index in α vector.

alpha index = t%τ + 1

9. Calculate the function value f(xt) =
τ∑
i=1

αik(xi, xt) for observation xt

found on t-th step iteration. ypredictedt = sign
(
f (xt)

)
.

10. if ytf(xt) ≤ ρ then

σ = 1

else

σ = 0

11. Calculate

(a) α = γα

(b) αalpha index = ησyt.

(c) b = b+ ησyt

12. go to step 8.
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(a) Before execution (b) After execution

Figure 4.1: 2-dimensional data classification using proposed algorithm, left

hand side, is picture of before execution and right side is picture of completion

4.5 Proposed Algorithm

We are in search for a simpler algorithm for online learning using concept of

k -NN and support vector of SVM. It is in initial stage of exploration. We

did it in experimental basis whether it can provide any reasonable outcome.

4.5.1 Algorithm

1. Set initial centroids for positive class instances and for negative class

instances using available instances. Say, maximum number of centroids

for each class is 10.

2. Set the variance parameter for RBF.

3. New instance is acquired for classification.

4. Calculate the RBF value from positive centroids and negative centroids.
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5. Find the maximum value of RBF for positive(say Ipositive ) and negative(Inegative)

for the instance from centroids.

6. If Ipositive ≥ Inegative then classify as positive else negative.

7. If number of centroids for respective class is less than maximum no of

centroids then we can add instance as new centroid. Else go to next

step.

8. If distance between two centroids which are nearest to instance, say

Dcentroids, Dcentroids ≥ Ipositive and Dcentroids ≥ Inegative, then replace

nearest centroid with instance.

9. Calculate the average RBF value of each positive centroid from negative

centroids, and average RBF value from other positive centroids. If

average RBF value of positive centroid from other positive centroids is

less than negative centroids then remove that centroid.

10. Similarly calculate the average RBF value of each negative centroids

from positve centroids and average RBF value from other negative cen-

troids. If average RBF value of negative centroid from other negative

centroids is less than positive centroids then remove that centroid.

11. Go to step 3.
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Chapter 5

Statistical Information

5.1 Dataset

We have downloaded all 6 years of wind speed dataset from https://maps.nrel.gov/wind-

prospector/ . It contains variety of required dataset. We are only focusing at

particular location. It is possible to download multiple datasets of different

locations. These data are freely available for research pertaining to renewable

energy.

5.1.1 Attributes present in dataset

1. Day

2. Month

3. Hour

4. Minute

5. Wind Power(MW )

6. Wind Direction(deg)
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7. Wind Speed(m/s)

8. Temperature(K)

9. Surface Air Pressure(Pascal)

10. Density(Kg/m3)

Dataset is available for 2007 to 2012. Every five minute, above mentioned

observations were collected. So every one hour we have 12 observations. It

is found that above mentioned attributes of observations are most relevant

in case of wind speed prediction. It was supported by experiments [15] that

already present attributes are most relevant, so we do not need to do feature

selection separately. While we are predicting in online setup, every observa-

tion is separated by 5 minutes from previous and next observation.

From that collection of observations, we prepare observations separated

by 10 minutes, 15 minutes, 30 minutes and 1 hour. While we extracting data

for 10 minutes and 15 minutes we only include average of 2 observations and

3 observations of original dataset,respectively.

1. Wind Power(MW)

2. Wind Direction(deg)

3. Wind Speed(m/s)

4. Temperature (Kelvin)

5. Surface Air Pressure (Pascal)

6. Air Density(Kg/m3)

For 30 minutes and 1 hours, aggregated dataset are prepared by taking

average of 6 and 12 observations respectively.
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1. Wind Power(MW)

2. Wind Direction(deg)

3. Wind Speed(m/s)

4. Temperature (Kelvin)

5. Surface Air Pressure (Pascal)

6. Air Density (Kg/m3)

7. Median of wind speed (of 6 or 12 observations)

8. Mode of wind speed (of 6 or 12 observations)

9. Variance of wind speed (of 6 or 12 observations)

As shown in above list, mean, mode and variance of wind speed are added

as new attributes.

5.1.2 Definitions of Attributes

5.1.2.1 Wind Speed

Wind Speed is measure of airflow, how fast it is blowing. It is usually

measured in knots, km/h or m/s. In this paper we are considering only

in m/s unit. Wind speed is categorised in Beaufort Wind Scale. By the

categorisation, speeds above 17 m/s is called Gale type wind.

Different types of wind

1. Gust wind is sudden wind speed increase for few seconds from average

wind speed. Gust are usually 30 to 40 percent higher than average wind

speed.
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2. Squall wind is abrupt and large increase in wind speed which lasts

for few minutes and diminishes suddenly.

3. Lull wind short duration decrease in wind speed than average speed

for few seconds.

4. Gale wind when average wind speed is more than 17m/s.

5. Storm When average wind speed is above 25m/s.

In given dataset, all wind speed measurements are done at hight of 100m

from surface. We are classifying speed which is greater than 18 m/s as +1

and rest as -1.

In the given figure 5.1, it is found that where data points recorded, high

wind speed is directly related to direction. When wind direction is between

150◦ to 250◦, the maximum wind speed is observed.

5.1.2.2 Wind Direction

As name suggests, it is providing the wind flow direction. It is measurement

of wind flow from which direction. If wind flows from north direction to

south direction then it is called northerly wind. Wind direction is measured

in degrees clockwise from due north and so a wind coming from the south

has a wind direction of 180◦; one from the east is 90◦.

Wind speed and direction are measured with help of anemometer and

wind vane.

5.1.2.3 Temperature

Air temperature is the most frequently measured information pertaining to

weather prediction. In this dataset temperatures are measured in Kelvin.
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5.1.2.4 Surface Air Pressure

Wind pressure is also very helpful parameter for wind speed prediction.

When atmospheric pressure is reduced that time probability of high wind

speed increases. If we notice in the figure 5.2, where 5th and 6th column

are air pressure or atmospheric pressure and wind speed respectively. It is

prominently visible that whenever there is drop of air pressure, wind speed

increases in that area. Where is low pressure, winds are flowing from other

places to that location.

Air pressures are measured in Pascal, if q is the air pressure then q =

1
2
ρW 2, where ρ is air density and W is wind speed in m/s.

5.1.2.5 Air Density

Air density is represented by ρ, which is the measure of air mass per unit

volume.

In this dataset air density is measured in Kg/m3 unit.

The mathematical relation between air density ρ and air pressure and

temperature as follows,

ρ =
p

RconstT

where

p in Pascal

T in Kelvin

Rconst is air specific constant
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Figure 5.1: Relation of wind speed and wind direction

5.2 Feature Selection Methods

5.2.1 Principal Component Analysis

To identify the principal component, we did singular value decomposition.

Steps are described in followings.

1. Calculate the mean of whole dataset.

2. Subtract mean vector from all observations. This step helps us to shift

origin to centre of data points.

Xcentralized = (X − µ)

, where X is collection of all data and µ is mean vector of X.
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Figure 5.2: Relation of wind speed with different other parameters
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3. Finding the covariance matrix of Xcentralized

COVXcentralized
=

1

m− 1

{
XT
centralizedXcentralized

}
, where m is total number of observations.

4. Compute singular value decomposition using matlab function

[U, S, V ] = SV D(COVXcentralized
)

,where each column of U represents the eigen vector with non-increasing

variance.

5. Getting first K features from Xcentralized as

Xpca = XcentralizedU(:, 1 : K)

, where we need first K principal component.

5.2.2 Autocorrelated Features

Autocorrelation between wind speed of different lags are shown in figure 5.3

It is found that upto 72 lags, that is, 6 hours we have autocorrelation

coefficient more than 0.5. So we added one sample for last 6 hours. So we

have 6 additional features along with above mentioned features.
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Figure 5.3: Autocorrelation of wind speed

5.3 Experimental Results

5.3.1 Usual SVM Approach to Check Training Perfor-

mance

As shown in table 5.1, It shows different measures of training set while it is

trained with all labelled instances and with predefined parameters C = 200

and γ = 0.5 for 1 hour ahead prediction. It is used as standard against which

all other outcomes are compared.

Last row of the table 5.1 shows how many support vectors are required

to classify the training set with high recall and precision.
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Learning performance of SVM with All labelled Training Data

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.9296 0.9013 0.8436 0.9036 0.8784 0.8564 0.6382

Precision 0.9882 0.9468 0.9648 0.9944 0.9956 0.9514 0.9285

Specificity 0.9999 0.9996 0.9999 0.9999 0.9999 0.9998 0.9998

Gmean 0.9642 0.9492 0.9184 0.9505 0.9372 0.9253 0.7988

F1-Score/Measure 0.9580 0.9235 0.9001 0.9468 0.9333 0.9014 0.7565

No of SV 464 976 891 495 712 1106 5853

Table 5.1: SVM Learning performance from labelled dataset with C = 200

and γ = 0.5 for 1 hour ahead

5.3.2 Labelling Training Dataset with Active Learning

5.3.2.1 Experiment Type 1

In this experiment, initial 60 instances are selected as described in sec-

tion 4.2.2.1. It ensures atleast one instance from minority class is present.

The result of experiment is shown for 1 hour ahead prediction in table 5.2

and 5.3. In the table 5.2 margin of -1 to +1 is used. In table 5.3, margin

from -2 to +4 is used to give preference to minority class. In the figure 5.4

shows how number of support vectors converges for active learning process

with iterations.

It shows that if we use asymmetric margin for minority and majority class

we can get better recall and precision.

We notice that in this configuration all active learning instances are not

part of support vectors of learning model. Very few of the active instances

are support vector of ultimate model.
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5.3.2.2 Experiment Type 2

Similar type of active learning experiment is done with RVFL neural network.

As it is binary classification problem, we are taking the difference of two

output neurons. If the output difference is less than 0.01 for any instance,

that instance is used for active learning.

This experiment is done to show, if we keep precision high then recall

is less for neural network setup, (table 5.4). Neural network is not good

performer of imbalanced dataset. Training of RVFL with 1:1 ratio of minority

and majority class is also done but if suffers very low precision error.

5.3.2.3 Experiment Type 3

This active learning experiment is done with certain constraint on training

set. The margin is from -1 to +0.5. Regularization parameter C = 0.9 and

γ = 100 are decided after some trial and error.

But while we train, we keep positive(minority) and negative(majority)

instances in 1:1 ratio. Select one positive active learning instance with one

negative active learning instance.

When we get the active learning set which is not growing any more, we

train with just those active learning instances at last step. Then we test the

model with rest of the instances which are not selected as active learning

instances.

From this experiment we can get great recall (1) but precision suffers. For

this reason we can assure that we do not have False Negative error. When

we get positive class predicted instances, we can verify as the number is low.

This problem is observed that, if we keep recall high, we suffer with

precision.

Tests are done for 1 hour, 6 hour, 12 hour and 24 hour ahead prediction
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Active Learning of Training Data with LIBSVM tool

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6407 0.7693 0.5829 0.5685 0.7317 0.6305 0.5161

Precision 0.9505 0.9444 0.8849 0.9655 0.7402 0.8571 0.8467

Specificity 0.9999 0.9997 0.9997 1.0000 0.9987 0.9994 0.9996

Gmean 0.8004 0.8770 0.7634 0.7540 0.8548 0.7938 0.7183

F1-Score/Measure 0.7655 0.8479 0.7029 0.7157 0.7359 0.7265 0.6413

No of SV 202 518 338 218 326 363 1686

No of Active Inst. 1223 2454 1446 1276 1384 1288 4938

Percentage of labelling 1.20 2.33 1.38 1.21 1.31 1.22 0.783

Table 5.2: Labelling of training set of size 105120 each with Active Learning,

except last column which is for 6 years, where C = 200 and γ = 0.5, for 1

hour ahead prediction, instances within range of -1 and +1 are considered

for active learning labelling.

labelling as shown in table 5.5,5.6, 5.7, 5.8 respectively.

But it saves lot of effort for labelling other negative instances, quantity

of which is more than 100000.

Last row of those table shows percentage of whole dataset we required to

label to obtain displayed recall and precision.

Another interesting observation is that mostly all active learning instances

are support vector of learned model. We can check the row with No of SV

and No of Active Instances.
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Active Learning of Training Data with LIBSVM tool

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.8185 0.8160 0.7251 0.7107 0.8108 0.7356 0.5224

Precision 0.9866 0.9474 0.9623 0.9790 0.9976 0.9272 0.8968

Specificity 0.9999 0.9997 0.9999 0.9999 0.9999 0.9997 0.9997

Gmean 0.9047 0.9032 0.8515 0.8430 0.9004 0.8575 0.7227

F1-Score/Measure 0.8947 0.8768 0.8270 0.8235 0.8946 0.8203 0.6602

No of SV 316 640 598 278 531 657 3243

No of Active Inst. 9176 15426 9561 5664 9852 6144 34985

Percent. of labelling 8.73 14.67 9.10 5.39 9.37 5.84 5.55

Table 5.3: Labelling of training set of size 105120 each with Active Learning,

except last column which is for 6 years, where C = 200 and γ = 0.5, for 1

hour ahead prediction, instances within range of -2 and +4 are considered

for active learning labelling.
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(a) Number of Support

Vector change with iter-

ation in active learning

for 2007

(b) Number of Support

Vector change with iter-

ation in active learning

for 2008

(c) Number of Support

Vector change with iter-

ation in active learning

for 2009

(d) Number of Support

Vector change with iter-

ation in active learning

for 2010

(e) Number of Support

Vector change with iter-

ation in active learning

for 2011

(f) Number of Support

Vector change with iter-

ation in active learning

for 2012

Figure 5.4: Relation between number of iterations and number of support

vectors
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Active Learning of Training Data with RVFL

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.3556 0.4427 0.0592 0 0.3861 0.2277 0.1851

Precision 0.7273 0.6917 0.6944 0 0.9009 0.6250 0.7143

Specificity 0.9997 0.9986 0.9999 1 0.9998 0.9993 0.9997

Gmean 0.5962 0.6649 0.2434 0 0.6213 0.4770 0.4302

F1-Score/Measure 0.4776 0.5398 0.1092 0 0.5405 0.3338 0.2940

No of Active Inst. 143 244 89 51 124 283 650

Percent. of labelling 0.14 0.23 0.084 0.049 0.12 0.27 0.10

Table 5.4: Labelling of training set of size 105120 each for 1 hour ahead

prediction with Active Learning, except last column which is for 6 years,

when difference between output values of two neurons is less than equal to

0.01, those instances are identified as active instance.
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7519 0.8493 0.7725 0.6904 0.8417 0.8144 0.7082

Precision 0.7868 0.8811 0.8089 0.7083 0.8532 0.8318 0.8197

Specificity 0.9995 0.9992 0.9993 0.9995 0.9993 0.9991 0.9993

Gmean 0.8669 0.9212 0.8786 0.8307 0.9171 0.9020 0.8413

F1-Score/Measure 0.7689 0.8649 0.7903 0.6992 0.8474 0.8230 0.7599

Table 5.9: Wind speed prediction at interval of 5 minutes with Stochastic

Gradient Descent Primal L1-SVM

5.3.3 Online Learning for Prediction

5.3.3.1 Experiment with Stochastic Gradient Descent Primal L1-

SVM

Online classifier SGD primal L1-SVM is used to predict minority class of

high wind speed for 5 minute, 10 minute, 15 minute, 1 hour, 6 hour , 12 hour

and 24 hour ahead. Results are shown in tables 5.9,5.12,5.15,5.18,5.21,5.23

and 5.25.

It is clearly seen that as prediction gap increases the reliability of recall

and precision decreases.

5.3.3.2 Experiment with NORMA

Experiments of NORMA outperform all the results of SGD primal L1-SVM.

It is also done for 5 minute, 10 minute, 15 minute, 1 hour , 6 hour , 12 hour

and 24 hour ahead prediction.

Observed results are shown in tables 5.10,5.13,5.16,5.19,5.22, 5.24 and

5.26.
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Online Training data from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.8000 0.8880 0.8104 0.7157 0.8687 0.8406 0.8416

Precision 0.7970 0.8868 0.8143 0.7157 0.8687 0.8421 0.8420

Specificity 0.9995 0.9992 0.9993 0.9995 0.9993 0.9991 0.9993

Gmean 0.8942 0.9420 0.8999 0.8458 0.9318 0.9165 0.9171

F1-Score/Measure 0.7985 0.8874 0.8124 0.7157 0.8687 0.8414 0.8418

Table 5.10: Online wind speed prediction at interval of 5 minutes with

NORMA

Online Training data from 2007 to 2012 and overall 6 years with proposed algorithm

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7370 0.8480 0.7464 0.6497 0.8108 0.7723 0.7955

Precision 0.4761 0.7430 0.4730 0.3459 0.6688 0.6733 0.6618

Specificity 0.9979 0.9979 0.9966 0.9977 0.9980 0.9980 0.9982

Gmean 0.8576 0.9199 0.8625 0.8051 0.8996 0.8779 0.8911

F1-Score/Measure 0.5785 0.7920 0.5790 0.4515 0.7330 0.7194 0.7225

Table 5.11: Online wind speed prediction at interval of 5 minutes with pro-

posed algorithm
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7015 0.8011 0.6634 0.5333 0.7617 0.7382 0.6647

Precision 0.7287 0.8282 0.6154 0.5581 0.7959 0.7660 0.7617

Specificity 0.9993 0.9988 0.9984 0.9993 0.9990 0.9988 0.9991

Gmean 0.8373 0.8945 0.8138 0.7300 0.8723 0.8587 0.8149

F1-Score/Measure 0.7148 0.8144 0.6385 0.5455 0.7784 0.7519 0.7099

Table 5.12: Online wind speed prediction at interval of 10 minutes with

stochastic gradient descent Primal L1-SVM with C=15, penalty variable

5.3.3.3 Experiment with Proposed Algorithm

Online experiments with proposed algorithm are carried for 5 minutes, 10

minutes, 15 minutes and 1 hour ahead prediction. Details of experimental

results are shown in tables 5.11,5.14,5.17,5.20.
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Online Training data from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7313 0.8229 0.6829 0.5889 0.7852 0.7673 0.7566

Precision 0.7206 0.8229 0.6965 0.5824 0.7821 0.7729 0.7577

Specificity 0.9993 0.9988 0.9988 0.9993 0.9989 0.9988 0.9990

Gmean 0.8549 0.9066 0.8259 0.7671 0.8856 0.8754 0.8694

F1-Score/Measure 0.7259 0.8229 0.6897 0.5856 0.7836 0.7701 0.7572

Table 5.13: Online wind speed prediction at interval of 10 minutes with

NORMA

Online Training from 2007 to 2012 and overall 6 years with proposed algorithm

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6493 0.7657 0.6585 0.5111 0.7422 0.6618 0.7265

Precision 0.2390 0.5643 0.2328 0.1447 0.4299 0.4777 0.4477

Specificity 0.9947 0.9958 0.9915 0.9948 0.9952 0.9962 0.9962

Gmean 0.8036 0.8732 0.8080 0.7131 0.8594 0.8120 0.8507

F1-Score/Measure 0.3494 0.6497 0.3439 0.2255 0.5444 0.5549 0.5540

Table 5.14: Online wind speed prediction at interval 10 minutes with pro-

posed algorithm
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7664 0.8116 0.7055 0.6750 0.8238 0.7977 0.7153

Precision 0.7736 0.8421 0.7188 0.6835 0.8386 0.8135 0.8087

Specificity 0.9993 0.9988 0.9987 0.9993 0.9990 0.9986 0.9987

Gmean 0.8751 0.9003 0.8394 0.8213 0.9072 0.8925 0.8452

F1-Score/Measure 0.7700 0.8266 0.7121 0.6792 0.8311 0.8055 0.7591

Table 5.15: Online wind speed prediction at interval of 15 minutes with

stochastic gradient descent Primal L1-SVM , where C=15 , penalty constant

Online Training from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.8131 0.8333 0.7423 0.7125 0.8238 0.8093 0.8093

Precision 0.7909 0.8303 0.7423 0.7125 0.8202 0.8125 0.8125

Specificity 0.9993 0.9986 0.9988 0.9993 0.9988 0.9986 0.9986

Gmean 0.9014 0.9123 0.8611 0.8438 0.9071 0.8990 0.8990

F1-Score/Measure 0.8018 0.8318 0.7423 0.7125 0.8220 0.8109 0.8109

Table 5.16: Online wind speed prediction at interval 15 minutes with

NORMA
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Online Training from 2007 to 2012 and overall 6 years with proposed algorithm

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.7009 0.7899 0.6748 0.6250 0.7974 0.7626 0.7652

Precision 0.2941 0.5767 0.2619 0.1984 0.5764 0.7000 0.6913

Specificity 0.9948 0.9954 0.9911 0.9942 0.9962 0.9976 0.9975

Gmean 0.8351 0.8867 0.8178 0.7883 0.8912 0.8722 0.8737

F1-Score/Measure 0.4144 0.6667 0.3774 0.3012 0.6691 0.7300 0.7264

Table 5.17: Online wind speed prediction at interval 15 minutes with pro-

posed algorithm

Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6111 0.5741 0.3913 0.2500 0.6552 0.4146 0.4913

Precision 0.6471 0.5962 0.3214 0.1667 0.6129 0.4474 0.5346

Specificity 0.9993 0.9976 0.9978 0.9989 0.9986 0.9976 0.9986

Gmean 0.6286 0.7568 0.6249 0.4997 0.8089 0.6431 0.7005

F1-Score/Measure 0.6000 0.5849 0.3529 0.2000 0.6333 0.4304 0.5120

Table 5.18: Online wind speed prediction at interval of 1 hour with stochastic

gradient descent Primal L1-SVM, where C=15, penalty parameter

77



Online Training from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6667 0.6111 0.3913 0.2500 0.6552 0.4634 0.5434

Precision 0.6667 0.6111 0.3913 0.2857 0.6333 0.4634 0.5434

Specificity 0.9993 0.9976 0.9984 0.9994 0.9987 0.9975 0.9985

Gmean 0.8162 0.7808 0.6250 0.4999 0.8089 0.6799 0.7366

F1-Score/Measure 0.6667 0.6111 0.3913 0.2667 0.6441 0.4634 0.5434

Table 5.19: Online wind speed prediction at interval of 1 hour with NORMA

Online Training from 2007 to 2012 and overall 6 years with proposed algorithm

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.5556 0.2844 0.7725 0.6904 0.8340 0.8161 0.5202

Precision 0.0385 0.5741 0.5790 0.4444 0.6636 0.6843 0.0635

Specificity 0.9714 0.9910 0.9977 0.9984 0.9979 0.9979 0.9747

Gmean 0.7346 0.7543 0.8779 0.8302 0.9123 0.9025 0.7121

F1-Score/Measure 0.0719 0.3804 0.6619 0.5408 0.7391 0.7444 0.1132

Table 5.20: Online wind speed prediction at interval of 1 hour with proposed

algorithm
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6111 0.4815 0.3043 0.1250 0.5517 0.3902 0.3526

Precision 0.5789 0.5909 0.2917 0.0909 0.5517 0.3902 0.5446

Specificity 0.9991 0.9979 0.9981 0.9989 0.9985 0.9971 0.9990

Gmean 0.7814 0.6932 0.5511 0.3534 0.7422 0.6238 0.5935

F1-Score/Measure 0.5946 0.5306 0.2979 0.1053 0.5517 0.3902 0.4281

Table 5.21: Online wind speed prediction at interval of 6 hours with stochas-

tic gradient decent Primal L1-SVM, where C=5.

Online Training from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6667 0.6296 0.3478 0.2500 0.6207 0.4878 0.5434

Precision 0.6667 0.6296 0.3636 0.2500 0.6207 0.4878 0.5465

Specificity 0.9993 0.9977 0.9984 0.9993 0.9987 0.9976 0.9985

Gmean 0.8162 0.7926 0.5893 0.4998 0.7873 0.6976 0.7366

F1-Score/Measure 0.6667 0.6296 0.3556 0.2500 0.6207 0.4878 0.5449

Table 5.22: Online wind speed prediction at interval of 6 hours with NORMA
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6111 0.4074 0.1739 0 0.5862 0.2927 0.2832

Precision 0.5500 0.5366 0.2500 0 0.6071 0.4000 0.5698

Specificity 0.9990 0.9978 0.9986 0.9990 0.9987 0.9979 0.9993

Gmean 0.7813 0.6376 0.4167 0 0.7652 0.5404 0.5320

F1-Score/Measure 0.5789 0.4632 0.2051 0 0.5965 0.3380 0.3784

Table 5.23: Online wind speed prediction at interval of 12 hours with stochas-

tic gradient descent Primal L1-SVM, where C=5

Online Training from 2007 to 2012 and overall 6 years with NORMA

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6667 0.6296 0.3913 0.2500 0.6897 0.4878 0.5549

Precision 0.6667 0.6296 0.3913 0.2500 0.6667 0.4878 0.5549

Specificity 0.9993 0.9977 0.9984 0.9993 0.9989 0.9976 0.9985

Gmean 0.8162 0.7926 0.6250 0.4998 0.8300 0.6976 0.7444

F1-Score/Measure 0.6667 0.6296 0.3913 0.2500 0.6780 0.4878 0.5549

Table 5.24: Online wind speed prediction at interval of 12 hours with

NORMA
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Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.2778 0.3704 0.0435 0.2500 0.4138 0.3171 0.1618

Precision 0.4167 0.5263 0.1111 0.1429 0.5217 0.4483 0.4667

Specificity 0.9992 0.9979 0.9991 0.9986 0.9987 0.9982 0.9994

Gmean 0.5268 0.6080 0.2084 0.4997 0.6429 0.5626 0.4022

F1-Score/Measure 0.3333 0.4348 0.0625 0.1818 0.4615 0.3714 0.2403

Table 5.25: Online wind speed prediction at interval of 24 hours with stochas-

tic gradient descent, where C=5.

Online Training from 2007 to 2012 and overall 6 years with SGD Primal L1-SVM

Year → 2007 2008 2009 2010 2011 2012 All 6 years

Recall/Sensitivity 0.6667 0.6296 0.3913 0.2500 0.6552 0.4762 0.5549

Precision 0.6667 0.6071 0.3913 0.2500 0.6552 0.4878 0.5455

Specificity 0.9993 0.9975 0.9984 0.9993 0.9989 0.9975 0.9985

Gmean 0.8162 0.7925 0.6250 0.4998 0.8090 0.6975 0.7444

F1-Score/Measure 0.6667 0.6182 0.3913 0.2500 0.6552 0.4819 0.5501

Table 5.26: Online wind speed prediction at interval of 24 hours with

NORMA
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Chapter 6

Conclusion

6.1 Summary

In this effort, we tried to do two types of experiments. First is for labelling

huge unlabelled dataset. Second is try to predict violent wind speed ahead of

few minutes to one day(24 hours). For very volatile wind speed and weather,

generic static classifiers are not found. Generic classifiers like MLP, SVM,

KNN may work for dataset where classes have nearly equal number of in-

stances for training. But those classifiers fail if we have imbalanced dataset.

So instead of providing right away any static classifier, in this report we

tried to explore how good quality dataset for training can be produced. And

we also considered the online prediction process too. In which training and

test process are sequential. Online classifier is dynamic in nature such that

it learns from previous instances and try to predict subsequent events. It is

more reasonable in term of shifting the classifier hyperplane and computation

overhead is less.

First kind of experiments will provide us more reliable training set than

other sampling methods. Although in our first kind of experiments, minority
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Figure 6.1: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 5 minutes ahead

Figure 6.2: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 5 minutes ahead
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Figure 6.3: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 10 minutes ahead

Figure 6.4: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 10 minutes ahead
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Figure 6.5: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 15 minutes ahead

Figure 6.6: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 15 minutes ahead
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Figure 6.7: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 1 hour ahead

Figure 6.8: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 1 hour ahead

86



Figure 6.9: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 6 hour ahead

Figure 6.10: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 6 hour ahead
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Figure 6.11: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 12 hour ahead

Figure 6.12: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 12 hour ahead
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Figure 6.13: Comparison of minority class recall between NORMA and SGD

Primal L1-SVM when predicting 24 hour ahead

Figure 6.14: Comparison of minority class precision between NORMA and

SGD Primal L1-SVM when predicting 24 hour ahead
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class instances are very few, which is less than 1% that we can afford to label

manually, but huge portion of operational wind speed labelling is unnecessary,

it was found. Using active learning process, we can omit less important

majority class instance labelling. It will save lots of time and effort for

training data collection and may produce relevant instances for training. We

did active learning with help of RVFL neural network architecture and SVM.

We found that SVM with active learning performing well than RVFL neural

network. If we train with whole dataset and measure recall and precision of

training, generic SVM perform well as it is using all the necessary support

vector as required and all labels. But we can easily find out in table 5.2

and table 5.3, using only 16% of labelled dataset we can acquire reasonable

accuracy for majority class and also acceptable recall for minority class.

Second type of experiments, we implemented stochastic gradient descent

primal L1-SVM and NORMA. Both are in online training mode. Both the

classifier try to predict next value of wind speed for prescribed time interval.

And it then learns from error reckoned from prediction and actual value

difference. After Learning it, predicts next value. From the table 5.10,

5.13and 5.16, we found that it outperformed SGD primal L1-SVM, table

5.9, 5.12 and 5.15. But SGD primal L1-SVM is much more faster than

NORMA. SGD primal L1-SVM requies few additions and condition checking.

But NORMA produces better recall and reliability in cost of multiple kernel

value calculations and storage of few past coefficients and centroids. It is also

noticed that as gap between present time and predicted value time increasing,

recall and precision are rapidly diminishing. Upto 1 hour of predictions are

acceptable but beyond that it is not reliable.
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6.2 Future Work

In the development process we could not find any static classifier for wind

speed prediction where we have imbalanced dataset, our next arena of explo-

ration will be whether it is possible to produce static classifier for this kind

of weather prediction process where dataset is imbalanced.

We also consider own developed algorithm for prediction in our online

learning process, it is using KNN and SVM like concept for identifying bound-

ary instances from both classes of instances.Although that algorithm is pro-

viding good recall but precision is very poor. We like to convey in that

direction to reduce the computation cost and increase precision using KNN

and SVM like properties.
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